
Developer Guide

Amazon DynamoDB

API Version 2012-08-10

Amazon DynamoDB Developer Guide

Amazon DynamoDB: Developer Guide

Amazon DynamoDB Developer Guide

Table of Contents

What is Amazon DynamoDB? ... 1
Characteristics ... 2

Serverless .. 2
NoSQL .. 2
Fully managed ... 2
Single-digit millisecond performance at any scale .. 2

Use cases .. 3
Capabilities ... 4

Multi-active replication with global tables .. 4
ACID transactions .. 4
Change data capture .. 4
Secondary indexes .. 5

Service integrations ... 5
Serverless integrations ... 5
Importing and exporting data to Amazon S3 ... 5
Zero-ETL integration ... 6
Caching .. 6

Security ... 6
Resilience .. 7

Global tables .. 7
Continuous backups and point-in-time recovery ... 7
On-demand backup and restore .. 8

Accessing DynamoDB ... 8
Pricing ... 8
Getting started .. 8

Getting started with DynamoDB .. 10
First-time user resources .. 11

Amazon DynamoDB additional best practices for first-time users ... 12
Amazon CLI resources .. 12
Programming resources ... 13

Accessing DynamoDB .. 13
Using the console ... 14
Using the Amazon CLI ... 14
Using the API ... 17

API Version 2012-08-10 iii

Amazon DynamoDB Developer Guide

Using the NoSQL workbench ... 17
IP address ranges .. 18

Prerequisites .. 18
Setting up DynamoDB ... 19

Setting up DynamoDB (web service) ... 19
Setting up DynamoDB local (downloadable version) ... 22

Step 1: Create a table ... 47
Step 2: Write data ... 100
Step 3: Read data .. 132
Step 4: Update data .. 159
Step 5: Query data .. 191
Step 6: (Optional) clean up ... 230
Next steps .. 248
Console-to-Code ... 248

How it works ... 249
Benefits of using Console-to-Code with DynamoDB .. 249
Example use cases .. 250
Getting started .. 250

How it works .. 251
Cheat sheet ... 251

Initial setup .. 251
SDK or CLI .. 252
Basic actions .. 252
Naming rules ... 253
Service quota basics ... 254
More information .. 256

Core components ... 256
Tables, items, and attributes .. 257
Primary key .. 260
Secondary indexes .. 262
DynamoDB Streams ... 265

DynamoDB API ... 267
Control plane ... 267
Data plane .. 268
DynamoDB Streams ... 269
Transactions ... 270

API Version 2012-08-10 iv

Amazon DynamoDB Developer Guide

Supported data types and naming rules .. 270
Naming rules ... 271
Data types .. 272
Data type descriptors .. 277

DynamoDB table classes .. 277
Partitions and data distribution in DynamoDB ... 278

Data distribution: Partition key ... 278
Data distribution: Partition key and sort key ... 280

Learn how to go from SQL to NoSQL ... 282
Relational or NoSQL? ... 283
Accessing and authentication .. 286
Creating a table .. 289
Getting information about a table ... 291
Writing data to a table ... 293
Reading data from a table ... 298
Managing indexes ... 306
Modifying data in a table ... 312
Deleting data from a table ... 315
Removing a table ... 318

Amazon DynamoDB learning resources and tools .. 318
Tools for coding and visualization .. 319
Prescriptive Guidance .. 319
Knowledge Center .. 320
Blog posts, repositories, and guides ... 321
Data modeling and design patterns ... 322
Training courses .. 322

Reads and writes ... 324
DynamoDB read consistency ... 324

Eventually consistent reads .. 324
Strongly consistent reads ... 325
Global tables read consistency .. 325

Read and write operations .. 325
Read operation consumption ... 325
Write operation consumption .. 327

DynamoDB throughput capacity .. 329
On-demand mode ... 329

API Version 2012-08-10 v

Amazon DynamoDB Developer Guide

Provisioned mode .. 330
DynamoDB on-demand capacity mode .. 330

Read request units and write request units .. 331
Initial throughput and scaling properties ... 332
DynamoDB maximum throughput for on-demand tables ... 332

Provisioned capacity mode .. 335
Read and write capacity units ... 336
Choosing initial throughput settings .. 336
DynamoDB auto scaling .. 337
Managing throughput capacity with auto scaling ... 338
Reserved capacity ... 369

Warm throughput .. 370
Check your table's warm throughput ... 371
Increase your table's warm throughput ... 374
Create a table with higher warm throughput .. 381
Warm throughput scenarios ... 392

Burst and adaptive capacity .. 394
Burst capacity .. 394
Adaptive capacity ... 394

Switching capacity modes .. 396
Provisioned mode to on-demand mode .. 396
On-demand mode to provisioned mode ... 398

Programming with DynamoDB ... 399
Overview of Amazon SDK support for DynamoDB .. 399

SDK support of Amazon account-based endpoints ... 401
Programmatic interfaces that work with DynamoDB ... 401
Higher-level programming interfaces .. 408
Running the code examples ... 469
Low-level API ... 477

Programming with Python .. 482
About Boto ... 483
Boto documentation .. 483
Client and resource layers .. 484
Using batch_writer ... 487
Additional code examples ... 488
Sessions and thread safety ... 488

API Version 2012-08-10 vi

Amazon DynamoDB Developer Guide

Config .. 488
Error handling ... 493
Logging ... 495
Event hooks ... 496
Pagination and the Paginator .. 498
Waiters .. 500

Programming with JavaScript ... 500
About Amazon SDK for JavaScript ... 501
Amazon SDK for JavaScript V3 ... 501
JavaScript documentation .. 501
Abstraction layers ... 502
Marshall utility function .. 504
Reading items .. 505
Conditional writes .. 506
Pagination .. 507
Config .. 509
Waiters .. 512
Error handling ... 513
Logging ... 515
Considerations ... 515

Programming with the Amazon SDK for Java 2.x .. 517
About the Amazon SDK for Java 2.x .. 517
Getting started .. 518
SDK for Java 2.x documentation ... 527
Supported interfaces ... 528
Additional code examples ... 543
Sync and async programming ... 543
HTTP clients ... 544
Config .. 545
Error handling ... 552
Amazon request ID ... 553
Logging ... 553
Pagination .. 556
Data class annotations .. 557

Error handling ... 558
Error components ... 558

API Version 2012-08-10 vii

Amazon DynamoDB Developer Guide

Transactional errors .. 559
Error messages and codes .. 559
Error handling in your application .. 564
Error retries and exponential backoff .. 564
Batch operations and error handling ... 565

Working with Amazon SDKs .. 566
Working with DynamoDB ... 568

Working with tables .. 568
Basic operations on tables ... 569
Considerations when choosing a table class in DynamoDB ... 578
Tags and labels ... 579

Working with global tables ... 584
Consistency modes ... 585
Account configurations .. 585
Core concepts .. 587
Same-account global table ... 591
Multi-account global tables .. 651
Global tables billing ... 673
Global tables versions ... 675
Global tables best practices ... 687

Working with items ... 688
Item sizes and formats .. 690
Reading an item ... 691
Writing an item ... 692
Return values ... 694
Batch operations ... 696
Atomic counters .. 698
Conditional writes .. 699
Using expressions ... 704
Time to Live (TTL) .. 746
Querying tables .. 776
Scanning tables ... 784
PartiQL query language .. 793
Working with items: Java ... 840
Working with items: .NET ... 871

Working with indexes ... 904

API Version 2012-08-10 viii

Amazon DynamoDB Developer Guide

Global secondary indexes ... 909
Local secondary indexes ... 1004

Working with transactions ... 1055
How it works ... 1056
Using IAM with transactions .. 1065
Example code .. 1069

Working with streams .. 1072
Options ... 1073
Working with Kinesis Data Streams ... 1075
Working with DynamoDB Streams ... 1092

In-memory acceleration with DAX ... 1174
Use cases for DAX ... 1175
DAX usage notes .. 1176
How it works .. 1177

How DAX processes requests ... 1179
Item cache ... 1180
Query cache ... 1181

DAX cluster components .. 1182
Nodes .. 1183
Clusters ... 1183
Regions and availability zones .. 1184
Parameter groups ... 1185
Security groups ... 1185
Cluster ARN ... 1185
Cluster endpoint ... 1186
Node endpoints .. 1186
Subnet groups ... 1186
Events ... 1187
Maintenance window ... 1187

Creating a DAX cluster ... 1188
Creating an IAM service role for DAX to access DynamoDB .. 1189
Using the Amazon CLI ... 1191
Using the console ... 1197

Consistency models ... 1202
Consistency among DAX cluster nodes ... 1202
DAX item cache behavior ... 1203

API Version 2012-08-10 ix

Amazon DynamoDB Developer Guide

DAX query cache behavior ... 1206
Strongly consistent and transactional reads .. 1207
Negative caching .. 1208
Strategies for writes .. 1208

Developing with the DAX client ... 1212
Tutorial: Running a sample application ... 1212
Modifying an existing application to use DAX ... 1275

Managing DAX clusters .. 1276
IAM permissions for managing a DAX cluster .. 1277
Scaling a DAX cluster .. 1280
Customizing DAX cluster settings ... 1281
Configuring TTL settings .. 1282
Tagging support for DAX ... 1284
Amazon CloudTrail integration ... 1285
Deleting a DAX cluster .. 1285

Monitoring DynamoDB Accelerator ... 1285
DAX monitoring tools .. 1286
Monitoring with CloudWatch ... 1288
Logging DAX operations using Amazon CloudTrail .. 1313

DAX T3/T2 burstable instances .. 1313
DAX T2 instance family .. 1314
DAX T3 instance family .. 1314

DAX access control .. 1315
IAM service role for DAX .. 1316
IAM policy to allow DAX cluster access ... 1318
Case study: Accessing DynamoDB and DAX ... 1319
Access to DynamoDB, but no access with DAX .. 1320
Access to DynamoDB and to DAX .. 1322
Access to DynamoDB via DAX, but no direct access to DynamoDB 1328

DAX encryption at rest ... 1330
Enabling encryption at rest using the Amazon Web Services Management Console 1333

DAX encryption in transit .. 1334
Using service-linked roles for DAX .. 1334

Service-linked role permissions for DAX ... 1335
Creating a service-linked role for DAX .. 1336
Editing a service-linked role for DAX ... 1337

API Version 2012-08-10 x

Amazon DynamoDB Developer Guide

Deleting a service-linked role for DAX .. 1337
Accessing DAX across Amazon accounts ... 1339

Set up IAM ... 1339
Set up a VPC ... 1342
Modify the DAX client to allow cross-account access ... 1344

DAX cluster sizing guide .. 1349
Overview .. 1349
Estimating traffic .. 1350
Load testing .. 1351

Data modeling ... 1353
Working with Item Collections ... 1354

Speed up queries by organizing your data with item collections .. 1356
Data modeling foundations .. 1356

Single table design .. 1356
Multiple table design .. 1359

Data modeling building blocks ... 1360
Composite sort key .. 1361
Multi-tenancy .. 1362
Sparse index .. 1363
Time to live ... 1365
Time to live archival .. 1366
Vertical partitioning ... 1367
Write sharding .. 1370

Data modeling schema design packages ... 1371
Prerequisites .. 1372
Social network .. 1373
Gaming profile .. 1382
Complaint management system ... 1391
Recurring payments ... 1408
Device status updates ... 1413
Online shop ... 1427

Relational modeling .. 1451
Traditional relational database models ... 1452
How DynamoDB eliminates the need for JOIN operations ... 1454
How DynamoDB transactions eliminate overhead to the write process 1455
First steps ... 1456

API Version 2012-08-10 xi

Amazon DynamoDB Developer Guide

Example .. 1458
Migrating to DynamoDB ... 1462

Reasons to migrate ... 1462
Considerations when migrating .. 1463
How it works .. 1465
Migration tools ... 1466
Choosing a migration strategy ... 1467
Offline migration ... 1469
Hybrid migration ... 1471
Online - migrating each table 1:1 ... 1473
Online - migrating with a custom staging table .. 1474

NoSQL Workbench .. 1477
Download .. 1478
Install .. 1479
Data modeler .. 1487

Creating a new model ... 1487
Importing an existing model ... 1494
Exporting a model ... 1497
Editing an existing model .. 1499

Data visualizer .. 1502
Adding sample data ... 1503
Importing from CSV .. 1506
Facets .. 1507
Aggregate view ... 1511
Committing a data model .. 1512

Operation builder .. 1515
Connecting to datasets ... 1516
Building operations .. 1517
Cloning tables ... 1529
Exporting to CSV .. 1530

Sample data models ... 1531
Employee data model ... 1531
Discussion forum data model .. 1532
Music library data model .. 1532
Ski resort data model ... 1532
Credit card offers data model ... 1533

API Version 2012-08-10 xii

Amazon DynamoDB Developer Guide

Bookmarks data model ... 1533
Release history ... 1534

Backup and restore ... 1540
Point-in-time backups .. 1541

Before you begin .. 1542
Enable point-in-time recovery ... 1543

On-demand backups ... 1547
How it works ... 1547
Backing up a table ... 1550
Restoring a table .. 1553
Deleting a table backup ... 1559
Using IAM ... 1560

Billing for backups .. 1568
How it works ... 1568
DynamoDB backup billing example ... 1569

Restores ... 1573
Restoring a table using point-in-time recovery ... 1573
Restoring a DynamoDB table to a point in time ... 1575

Using Amazon Backup .. 1581
How it works ... 1582
Creating backups .. 1585
Copying backups .. 1587
Restoring a table .. 1588
Deleting backups .. 1589
On-demand backups managed by Amazon Backup versus DynamoDB 1589

Code examples ... 1591
Basics .. 1594

Hello DynamoDB .. 1595
Learn the basics .. 1605
Actions .. 1762

Scenarios .. 2165
Accelerate reads with DAX ... 2167
Advanced Global Secondary Index scenarios ... 2176
Build an app to submit data to a DynamoDB table ... 2179
Compare multiple values with a single attribute .. 2180
Conditionally update an item's TTL ... 2203

API Version 2012-08-10 xiii

Amazon DynamoDB Developer Guide

Connect to a local instance ... 2210
Count expression operators ... 2211
Create a REST API to track COVID-19 data .. 2243
Create a messenger application .. 2244
Create a serverless application to manage photos ... 2245
Create a table with global secondary index ... 2249
Create a table with warm throughput enabled ... 2254
Create a web application to track DynamoDB data .. 2264
Create a websocket chat application ... 2265
Create an item with a TTL ... 2266
Create and manage MRSC global tables ... 2273
Create and manage global tables demonstrating MREC ... 2293
Delete data using PartiQL DELETE ... 2302
Detect PPE in images .. 2309
Insert data using PartiQL INSERT ... 2309
Invoke a Lambda function from a browser .. 2314
Manage Global Secondary Indexes ... 2315
Manage resource-based policies ... 2317
Monitor DynamoDB performance ... 2320
Perform advanced query operations ... 2321
Perform list operations ... 2356
Perform map operations .. 2388
Perform set operations ... 2412
Query a table by using batches of PartiQL statements ... 2443
Query a table using PartiQL .. 2505
Query a table using a Global Secondary Index ... 2559
Query a table using a begins_with condition .. 2568
Query a table using a date range .. 2574
Query a table with a complex filter expression ... 2583
Query a table with a dynamic filter expression ... 2590
Query a table with a filter expression and limit .. 2599
Query a table with nested attributes .. 2604
Query a table with pagination .. 2613
Query a table with strongly consistent reads .. 2624
Query data using PartiQL SELECT .. 2628
Query for TTL items .. 2634

API Version 2012-08-10 xiv

Amazon DynamoDB Developer Guide

Query tables using date and time patterns ... 2638
Save EXIF and other image information ... 2652
Set up Attribute-Based Access Control .. 2653
Understand update expression order ... 2656
Update a table's warm throughput setting .. 2687
Update an item's TTL .. 2692
Update data using PartiQL UPDATE .. 2697
Use API Gateway to invoke a Lambda function .. 2703
Use Step Functions to invoke Lambda functions .. 2705
Use a document model ... 2706
Use a high-level object persistence model ... 2722
Use atomic counter operations ... 2731
Use conditional operations .. 2755
Use expression attribute names .. 2784
Use scheduled events to invoke a Lambda function .. 2812
Work with Local Secondary Indexes .. 2814
Work with Streams and Time-to-Live .. 2816
Work with global tables and multi-Region replication eventual consistency (MREC) 2820
Work with resource tagging ... 2824
Work with table encryption ... 2826

Serverless examples .. 2828
Invoke a Lambda function from a DynamoDB trigger ... 2829
Reporting batch item failures for Lambda functions with a DynamoDB trigger 2838

Amazon community contributions ... 2849
Build and test a serverless application .. 2849

Security .. 2852
Amazon managed policies ... 2853

Amazon managed policies ... 2853
Amazon managed policy: AmazonDynamoDBFullAccess_v2 .. 2854
AmazonDynamoDBReadOnlyAccess ... 2854
DynamoDB updates to Amazon managed policies ... 2855

Resource-based policies ... 2857
Create table ... 2858
Attach resource-based policy .. 2864
Attach policy to a stream ... 2869
Remove resource-based policy .. 2872

API Version 2012-08-10 xv

Amazon DynamoDB Developer Guide

Cross-account access ... 2873
Blocking public access ... 2875
API operations ... 2878
IAM authorization ... 2886
Examples .. 2887
Considerations ... 2894
Best practices .. 2895

Attribute-based access control ... 2897
Why should I use ABAC? ... 2898
Condition keys .. 2899
Considerations ... 2899
Enabling ABAC in DynamoDB .. 2900
Using ABAC .. 2902
Example use cases ... 2904
Troubleshooting .. 2918

Data protection .. 2919
Encryption at rest .. 2920
Securing DynamoDB connections ... 2945

IAM .. 2947
Identity and Access Management ... 2947
Using conditions ... 2978

Compliance validation .. 3005
Resilience ... 3006
Infrastructure security .. 3007

Using VPC endpoints ... 3007
Amazon PrivateLink for DynamoDB .. 3016

Types of Amazon VPC endpoints ... 3017
Considerations when using Amazon PrivateLink for Amazon DynamoDB 3018
Creating an Amazon VPC endpoint .. 3019
Accessing Amazon DynamoDB interface endpoints .. 3019
Accessing DynamoDB tables and control API operations from DynamoDB interface
endpoints ... 3019
Updating an on-premises DNS configuration .. 3022
Creating an Amazon VPC endpoint policy .. 3024
Using DynamoDB endpoints with Amazon Web Services Management Console Private
Access .. 3025

API Version 2012-08-10 xvi

Amazon DynamoDB Developer Guide

Amazon PrivateLink for DynamoDB Streams ... 3025
Amazon PrivateLink for DAX ... 3031

Configuration and vulnerability analysis .. 3034
Security best practices ... 3035

Preventative security best practices ... 3035
Detective security best practices .. 3037

Monitoring and logging .. 3041
Monitoring plan ... 3041
Performance baseline ... 3041
Integrated services .. 3042
Automated monitoring tools .. 3042
Monitoring metrics .. 3043

How do I use DynamoDB metrics? ... 3043
Viewing metrics in the CloudWatch console .. 3044
Viewing metrics in the Amazon CLI ... 3045
Metrics and dimensions .. 3046
Creating CloudWatch alarms in DynamoDB ... 3075

Logging operations ... 3078
DynamoDB information in CloudTrail .. 3079
Understanding DynamoDB log file entries ... 3082

Contributor Insights .. 3102
How it works ... 3102
Getting started ... 3112
Using IAM ... 3122

Best practices ... 3129
NoSQL design ... 3129

NoSQL vs. RDBMS .. 3130
Two key concepts ... 3130
General approach ... 3131
NoSQL Workbench ... 3132

The DynamoDB Well-Architected Lens ... 3132
Cost optimization ... 3132
Conducting the Amazon DynamoDB Well-Architected Lens review 3182
The pillars of the Amazon DynamoDB Well-Architected Lens .. 3182

Partition key design .. 3184
Distributing workloads .. 3185

API Version 2012-08-10 xvii

Amazon DynamoDB Developer Guide

Write sharding .. 3187
Uploading data efficiently .. 3188

Sort key design .. 3190
Version control .. 3190

Secondary indexes ... 3192
General guidelines ... 3192
Sparse indexes .. 3195
Aggregation ... 3197
GSI overloading .. 3198
GSI sharding .. 3200
Creating a replica ... 3205

Large items ... 3206
Compression .. 3206
Vertical partitioning ... 3206
Using Amazon S3 ... 3207

Time series data ... 3208
Design pattern for time series data ... 3208
Time series table examples .. 3208

Many-to-many relationships ... 3209
Adjacency lists ... 3210
Materialized graphs ... 3211

Querying and scanning .. 3216
Scan performance .. 3216
Avoid spikes ... 3216
Parallel scans ... 3219

Table design .. 3221
Using global tables ... 3221

Key facts ... 3222
Key facts about MREC ... 3223
Key facts about MRSC ... 3224
Use cases .. 3226
Write modes .. 3227
Routing strategies in DynamoDB .. 3233
Evacuation processes ... 3239
Throughput capacity planning .. 3242
Preparation checklist ... 3243

API Version 2012-08-10 xviii

Amazon DynamoDB Developer Guide

Conclusion and resources ... 3251
Control plane .. 3252
Bulk data operations .. 3253

Conditional batch update ... 3253
Efficient bulk operations .. 3258

Implementing version control ... 3260
When to use this pattern ... 3260
Pattern design ... 3261
Using the pattern ... 3261

Billing and Usage Reports ... 3264
Throughput Capacity ... 3267
Streams ... 3271
Storage ... 3272
Backup and Restore ... 3273
Data Transfer ... 3276
CloudWatch ... 3277
DAX .. 3278

Migrating a DynamoDB table from one account to another .. 3279
Migrate a table using Amazon Backup for cross-account backup and restore 3280
Migrate a table using export to S3 and import from S3 ... 3282

DAX prescriptive guidance ... 3285
Evaluating the suitability of DAX ... 3285
Configuring your DAX client .. 3288
Configuring your DAX cluster .. 3289
Sizing your DAX cluster .. 3295
Deploying a cluster .. 3301
Cluster operations .. 3303
Monitoring DAX .. 3306

Using DynamoDB with other Amazon services ... 3309
Integrating with Amazon Cognito ... 3309
Integrating with Amazon Redshift ... 3312

Cross-account integration considerations with CMK .. 3312
Zero-ETL integration with Amazon Redshift .. 3316
Loading data from DynamoDB into Amazon Redshift with COPY ... 3325

Integrating with Amazon EMR .. 3326
Overview .. 3327

API Version 2012-08-10 xix

Amazon DynamoDB Developer Guide

Tutorial: Working with Amazon DynamoDB and Apache Hive .. 3328
Creating an external table in Hive ... 3336
Processing HiveQL statements .. 3340
Querying data in DynamoDB ... 3341
Copying data to and from Amazon DynamoDB .. 3343
Performance tuning ... 3357

Integrating with S3 ... 3363
Import from Amazon S3 .. 3363
Export to Amazon S3 .. 3383

Integrating with Amazon SageMaker Lakehouse .. 3405
Zero-ETL integration with Amazon SageMaker Lakehouse ... 3406

Integrating with Amazon OpenSearch Service .. 3408
How it works ... 3408
Creating an integration ... 3409
Next steps .. 3409
Handling breaking changes ... 3410
Zero-ETL integration with OpenSearch Service ... 3413

Integrating with Amazon EventBridge .. 3416
How it works ... 3417
Creating an integration through the console ... 3417
Next steps .. 3420

Integrating with Amazon MSK .. 3420
How it works ... 3421
Example integration .. 3422
Next steps .. 3428

Integration best practices .. 3429
Creating a snapshot ... 3429
Change data capture ... 3429

Using generative AI with DynamoDB ... 3431
Generative AI use cases for DynamoDB ... 3431
Generative AI blogs for DynamoDB ... 3432
Leveraging DynamoDB Zero-ETL integration with OpenSearch Service 3432

Quotas and constraints ... 3434
Performing quota management tasks .. 3434

Accessing DynamoDB quotas ... 3434
Viewing current quotas in the console .. 3435

API Version 2012-08-10 xx

Amazon DynamoDB Developer Guide

Viewing current quotas using the Amazon CLI .. 3435
Requesting a quota increase ... 3437
Quotas .. 3438

Read/write throughput ... 3439
Reserved Capacity .. 369
Tables .. 3442
Global tables ... 3442
Secondary indexes ... 3443
Projected secondary index attributes .. 3443
DynamoDB Streams ... 3444
Import from Amazon S3 .. 3444
Table export to Amazon S3 ... 3444
Backup and restore .. 3444
Contributor Insights ... 3445

Constraints .. 3445
Read/write capacity mode ... 3446
Secondary indexes ... 3443
Partition keys and sort keys .. 3447
Naming rules ... 3448
Data types .. 3448
Items ... 3449
Attributes ... 3450
Expression parameters .. 3450
DynamoDB transactions .. 3451
DynamoDB Streams ... 3452
DynamoDB Accelerator (DAX) .. 3452
API-specific constraints ... 3453
DynamoDB encryption at rest ... 3455

API reference ... 3457
Troubleshooting ... 3458

Internal server errors .. 3458
Investigating internal server errors .. 3458
Minimizing the impact from internal server errors ... 3459
Improving operational awareness ... 3460

Latency ... 3464
Throttling .. 3467

API Version 2012-08-10 xxi

Amazon DynamoDB Developer Guide

Diagnosing throttling .. 3469
Resolution guide ... 3475
GSI write throttling and back-pressure ... 3500
CloudWatch throttling metrics .. 3502

Appendix .. 3505
Troubleshooting SSL/TLS connection establishment issues with DynamoDB 3505

Testing your application or service .. 3505
Testing your client browser .. 3506
Updating your software application client ... 3506
Updating your client browser .. 3507
Manually updating your certificate bundle .. 3507

Example tables and data for use in DynamoDB ... 3508
Sample data files ... 3509

Creating example tables and uploading data ... 3522
Creating example tables and uploading data - Java .. 3522
Creating example tables and uploading data - .NET .. 3532

Example application using Amazon SDK for Python (Boto3) ... 3544
Step 1: Deploy and test locally ... 3545
Step 2: Examine the data model and implementation details ... 3550
Step 3: Deploy in production .. 3560
Step 4: Clean up resources .. 3569

Reserved words in DynamoDB .. 3570
Amazon SDK for Java 1.x examples .. 3583

DAX and Java SDK v1 ... 3583
Modifying an existing SDK for Java 1.x application to use DAX ... 3595
Querying global secondary indexes with SDK for Java 1.x ... 3600

Amazon SDK for Go 1.x examples ... 3604
Go and DAX ... 3604

Amazon SDK for Node.js 2.x examples ... 3607
Node.js and DAX ... 3607

Document history .. 3618
Earlier updates ... 3652

Legacy features .. 3684
Global tables version 2017.11.29 (Legacy) .. 3684

How it works ... 3685
Best Practices and Requirements .. 3690

API Version 2012-08-10 xxii

Amazon DynamoDB Developer Guide

Creating a global table ... 3694
Monitoring global tables .. 3698
Using IAM with global tables .. 3699

Previous low-level DynamoDB API version (2011-12-05) ... 3703
BatchGetItem .. 3704
BatchWriteItem ... 3711
CreateTable .. 3718
DeleteItem ... 3726
DeleteTable .. 3733
DescribeTables .. 3737
GetItem ... 3741
ListTables .. 3745
PutItem ... 3748
Query .. 3755
Scan ... 3769
UpdateItem .. 3787
UpdateTable .. 3797

Legacy DynamoDB conditional parameters ... 3802
AttributesToGet .. 3804
AttributeUpdates .. 3805
ConditionalOperator .. 3807
Expected ... 3808
KeyConditions ... 3814
QueryFilter ... 3817
ScanFilter ... 3819
Writing conditions with legacy parameters .. 3821

API Version 2012-08-10 xxiii

Amazon DynamoDB Developer Guide

What is Amazon DynamoDB?

Amazon DynamoDB is a serverless, fully managed, distributed NoSQL database with single-digit
millisecond performance at any scale.

DynamoDB addresses your needs to overcome scaling and operational complexities of relational
databases. DynamoDB is purpose-built and optimized for operational workloads that require
consistent performance at any scale. For example, DynamoDB delivers consistent single-digit
millisecond performance for a shopping cart use case, whether you have 10 or 100 million users.
Launched in 2012, DynamoDB continues to help you move away from relational databases while
reducing cost and improving performance at scale.

Customers across all sizes, industries, and geographies use DynamoDB to build modern, serverless
applications that can start small and scale globally. DynamoDB scales to support tables of virtually
any size while providing consistent single-digit millisecond performance and high availability.

For events, such as Amazon Prime Day, DynamoDB powers multiple high-traffic Amazon properties
and systems, including Alexa, Amazon.com sites, and all Amazon fulfillment centers. For such
events, DynamoDB APIs have handled trillions of calls from Amazon properties and systems.
DynamoDB continuously serves hundreds of customers with tables that have peak traffic of over
half a million requests per second. It also serves hundreds of customers whose table sizes exceed
200 TB, and processes over one billion requests per hour.

Topics

• Characteristics of DynamoDB

• DynamoDB use cases

• Capabilities of DynamoDB

• Service integrations

• Security

• Resilience

• Accessing DynamoDB

• DynamoDB pricing

• Getting started with DynamoDB

API Version 2012-08-10 1

https://press.aboutamazon.com/2012/1/amazon-web-services-launches-amazon-dynamodb-a-new-nosql-database-service-designed-for-the-scale-of-the-internet
https://amazonaws-china.com/blogs/aws/prime-day-2023-powered-by-aws-all-the-numbers/
https://alexa.com/
https://www.amazon.com/
https://www.aboutamazon.com/workplace/facilities

Amazon DynamoDB Developer Guide

Characteristics of DynamoDB

Serverless

With DynamoDB, you don't need to provision any servers, or patch, manage, install, maintain, or
operate any software. DynamoDB provides zero downtime maintenance. It has no versions (major,
minor, or patch), and there are no maintenance windows.

DynamoDB's on-demand capacity mode offers pay-as-you-go pricing for read and write requests
so you only pay for what you use. With on-demand, DynamoDB instantly scales up or down your
tables to adjust for capacity and maintains performance with zero administration. It also scales
down to zero so you don't pay for throughput when your table doesn't have traffic and there are no
cold starts.

NoSQL

As a NoSQL database, DynamoDB is purpose-built to deliver improved performance, scalability,
manageability, and flexibility compared to traditional relational databases. To support a wide
variety of use cases, DynamoDB supports both key-value and document data models.

Unlike relational databases, DynamoDB doesn't support a JOIN operator. We recommend that
you denormalize your data model to reduce database round trips and processing power needed
to answer queries. As a NoSQL database, DynamoDB provides strong read consistency and ACID
transactions to build enterprise-grade applications.

Fully managed

As a fully managed database service, DynamoDB handles the undifferentiated heavy lifting of
managing a database so that you can focus on building value for your customers. It handles
setup, configurations, maintenance, high availability, hardware provisioning, security, backups,
monitoring, and more. This ensures that when you create a DynamoDB table, it's instantly ready
for production workloads. DynamoDB constantly improves its availability, reliability, performance,
security, and functionality without requiring upgrades or downtime.

Single-digit millisecond performance at any scale

DynamoDB was purpose-built to improve upon the performance and scalability of relational
databases to deliver single-digit millisecond performance at any scale. To achieve this scale and
performance, DynamoDB is optimized for high-performance workloads and provides APIs that

Characteristics API Version 2012-08-10 2

https://amazonaws-china.com/blogs/aws/new-amazon-dynamodb-transactions/
https://amazonaws-china.com/blogs/aws/new-amazon-dynamodb-transactions/

Amazon DynamoDB Developer Guide

encourage efficient database usage. It omits features that are inefficient and non-performing
at scale, for example, JOIN operations. DynamoDB delivers consistent single-digit millisecond
performance for your application, whether you have 100 or 100 million users.

DynamoDB use cases

Customers across all sizes, industries, and geographies use DynamoDB to build modern, serverless
applications that can start small and scale globally. DynamoDB is ideal for use cases that require
consistent performance at any scale with little to zero operational overhead. The following list
presents some use cases where you can use DynamoDB:

• Financial service applications – Suppose you're a financial services company building
applications, such as live trading and routing, loan management, token generation, and
transaction ledgers. With DynamoDB global tables, your applications can respond to events
and serve traffic from your chosen Amazon Web Services Regions with fast, local read and write
performance.

DynamoDB is suitable for applications with the most stringent availability requirements.
It removes the operational burden of manually scaling instances for increased storage or
throughput, versioning, and licensing.

You can use DynamoDB transactions to achieve atomicity, consistency, isolation, and durability
(ACID) across one or more tables with a single request. (ACID) transactions suit workloads that
include processing financial transactions or fulfilling orders. DynamoDB instantly accommodates
your workloads as they ramp up or down, enabling you to efficiently scale your database for
market conditions, such as trading hours.

• Gaming applications – As a gaming company, you can use DynamoDB for all parts of game
platforms, for example, game state, player data, session history, and leaderboards. Choose
DynamoDB for its scale, consistent performance, and the ease of operations provided by its
serverless architecture. DynamoDB is well suited for scale-out architectures needed to support
successful games. It quickly scales your game’s throughput both in and out (scale to zero with no
cold start). This scalability optimizes your architecture's efficiency whether you’re scaling out for
peak traffic or scaling back when gameplay usage is low.

• Streaming applications – Media and entertainment companies use DynamoDB as a metadata
index for content, content management service, or to serve near real-time sports statistics. They
also use DynamoDB to run user watchlist and bookmarking services and process billions of daily
customer events for generating recommendations. These customers benefit from DynamoDB's

Use cases API Version 2012-08-10 3

Amazon DynamoDB Developer Guide

scalability, performance, and resiliency. DynamoDB scales to workload changes as they ramp up
or down, enabling streaming media use cases that can support any levels of demand.

To learn more about how customers from different industries use DynamoDB, see Amazon
DynamoDB Customers and This is My Architecture.

Capabilities of DynamoDB

Multi-active replication with global tables

Global tables provide multi-active replication of your data across your chosen Amazon Web
Services Regions with 99.999% availability. Global tables deliver a fully managed solution for
deploying a multi-Region, multi-active database, without building and maintaining your own
replication solution. With global tables, you can specify the Amazon Web Services Regions where
you want the tables to be available. DynamoDB replicates ongoing data changes to all of these
tables.

Your globally distributed applications can access data locally in your selected Regions to achieve
single-digit millisecond read and write performance. Because global tables are multi-active, you
don't need a primary table. This means there are no complicated or delayed fail-overs, or database
downtime when failing over an application between Regions.

ACID transactions

DynamoDB is built for mission-critical workloads. It includes (ACID) transactions support for
applications that require complex business logic. DynamoDB provides native, server-side support
for transactions, simplifying the developer experience of making coordinated, all-or-nothing
changes to multiple items within and across tables.

Change data capture for event-driven architectures

DynamoDB supports streaming of item-level change data capture (CDC) records in near-real
time. It offers two streaming models for CDC: DynamoDB Streams and Kinesis Data Streams for
DynamoDB. Whenever an application creates, updates, or deletes items in a table, streams records
a time-ordered sequence of every item-level change in near-real time. This makes DynamoDB
Streams ideal for applications with event-driven architecture to consume and act upon the
changes.

Capabilities API Version 2012-08-10 4

https://www.amazonaws.cn/dynamodb/customers/
https://www.amazonaws.cn/dynamodb/customers/
https://aws.amazon.com/architecture/this-is-my-architecture/?tma.sort-by=item.additionalFields.airDate&tma.sort-order=desc&awsf.category=*all&awsf.industry=*all&awsf.language=*all&awsf.show=*all&awsf.product=*all&tma.q=DynamoDB&tma.q_operator=AND
https://aws.amazon.com/dynamodb/sla/

Amazon DynamoDB Developer Guide

Secondary indexes

DynamoDB offers the option to create both global and local secondary indexes, which let you
query the table data using an alternate key. With these secondary indexes, you can access data with
attributes other than the primary key, giving you maximum flexibility in accessing your data.

Service integrations

DynamoDB broadly integrates with several Amazon Web Services services to help you get more
value from your data, eliminate undifferentiated heavy lifting, and operate your workloads at scale.
Some examples are: Amazon CloudFormation, Amazon CloudWatch, Amazon S3, Amazon Identity
and Access Management (IAM), and Amazon Auto Scaling. The following sections describe some of
the service integrations that you can perform using DynamoDB:

Serverless integrations

To build end-to-end serverless applications, DynamoDB integrates natively with a number of
serverless Amazon Web Services services. For example, you can integrate DynamoDB with Amazon
Lambda to create triggers, which are pieces of code that automatically respond to events in
DynamoDB Streams. With triggers, you can build event-driven applications that react to data
modifications in DynamoDB tables. For cost optimization, you can filter events that Lambda
processes from a DynamoDB stream.

The following list presents some examples of serverless integrations with DynamoDB:

• Amazon AppSync for creating GraphQL APIs

• Amazon API Gateway for creating REST APIs

• Lambda for serverless compute

• Amazon Kinesis Data Streams for change data capture (CDC)

Importing and exporting data to Amazon S3

Integrating DynamoDB with Amazon S3 enables you to easily export data to an Amazon S3 bucket
for analytics and machine learning. DynamoDB supports full table exports and incremental exports
to export changed, updated, or deleted data between a specified time period. You can also import
data from Amazon S3 into a new DynamoDB table.

Secondary indexes API Version 2012-08-10 5

https://docs.amazonaws.cn/appsync/latest/devguide/what-is-appsync.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/welcome.html
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html
https://docs.amazonaws.cn/streams/latest/dev/introduction.html

Amazon DynamoDB Developer Guide

Zero-ETL integration

DynamoDB supports zero-ETL integration with Amazon Redshift and Using an OpenSearch
Ingestion pipeline with Amazon DynamoDB. These integrations enable you to run complex
analytics and use advanced search capabilities on your DynamoDB table data. For example, you
can perform full-text and vector search, and semantic search on your DynamoDB data. Zero-ETL
integrations have no impact on production workloads running on DynamoDB.

Caching

DynamoDB Accelerator (DAX) is a fully managed, highly available caching service built for
DynamoDB. DAX delivers up to 10 times performance improvement – from milliseconds to
microseconds – even at millions of requests per second. DAX does all the heavy lifting required to
add in-memory acceleration to your DynamoDB tables, without requiring you to manage cache
invalidation, data population, or cluster management.

Security

DynamoDB utilizes IAM to help you securely control access to your DynamoDB resources. With IAM,
you can centrally manage permissions that control which DynamoDB users can access resources.
You use IAM to control who is authenticated (signed in) and authorized (has permissions) to use
resources. Because DynamoDB utilizes IAM, there are no user names or passwords for accessing
DynamoDB. Because you don't have any complicated password rotation policies to manage, it
simplifies your security posture. With IAM, you can also enable fine-grained access control to
provide authorization at the attribute level. You can also define resource-based policies with
support for IAM Access Analyzer and Block Public Access (BPA) to simplify policy management.

By default, DynamoDB encrypts all customer data at rest. Encryption at rest enhances the security
of your data by using encryption keys stored in Amazon Key Management Service (Amazon KMS).
With encryption at rest, you can build security-sensitive applications that meet strict encryption
compliance and regulatory requirements. When you access an encrypted table, DynamoDB
decrypts the table data transparently. You don't have to change any code or applications to use
or manage encrypted tables. DynamoDB continues to deliver the same single-digit millisecond
latency that you have come to expect, and all DynamoDB queries work seamlessly on your
encrypted data.

You can specify whether DynamoDB should use an Amazon owned key (default encryption type),
Amazon managed key, or a Customer managed key to encrypt user data. The default encryption

Zero-ETL integration API Version 2012-08-10 6

https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-ddb.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/configure-client-ddb.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_dynamodb_attributes.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html#what-is-access-analyzer-resource-identification
https://docs.amazonaws.cn/kms/latest/developerguide/overview.html

Amazon DynamoDB Developer Guide

using Amazon-owned KMS keys is available at no additional charge. For client-side encryption, you
can use the Amazon Database Encryption SDK.

DynamoDB also adheres to several compliance standards, including HIPAA, PCI DSS, and GDPR,
which enables you to meet regulatory requirements.

Resilience

By default, DynamoDB automatically replicates your data across three Availability Zones to provide
high durability and a 99.99% availability SLA. DynamoDB also provides additional capabilities to
help you achieve your business continuity and disaster recovery objectives.

DynamoDB includes the following features to help support your data resiliency and backup needs:

Features

• Global tables

• Continuous backups and point-in-time recovery

• On-demand backup and restore

Global tables

DynamoDB global tables enable a 99.999% availability SLA and multi-Region resilience. This helps
you build resilient applications and optimize them for the lowest recovery time objective (RTO) and
recovery point objective (RPO). Global tables also integrates with Amazon Fault Injection Service
(Amazon FIS) to perform fault injection experiments on your global table workloads. For example,
pausing global table replication to any replica table.

Continuous backups and point-in-time recovery

Continuous backups provide you per-second granularity and the ability to initiate a point-in-time
recovery. With point-in-time recovery, you can restore a table to any point in time up to the second
during the last 35 days. You can set the recovery period to any value between 1 and 35 days.

Continuous backups and initiating a point-in-time restore doesn't use provisioned capacity. They
also don't have any impact on the performance or availability of your applications.

Resilience API Version 2012-08-10 7

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#key-mgmt
https://amazonaws-china.com/blogs/security/how-to-use-aws-database-encryption-sdk-for-client-side-encryption-and-perform-searches-on-encrypted-attributes-in-dynamodb-tables/
https://www.amazonaws.cn/compliance/services-in-scope/
https://www.amazonaws.cn/about-aws/global-infrastructure/regions_az/
https://www.amazonaws.cn/dynamodb/sla/
https://docs.amazonaws.cn/fis/latest/userguide/what-is.html
https://docs.amazonaws.cn/fis/latest/userguide/what-is.html
https://docs.amazonaws.cn/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference
https://docs.amazonaws.cn/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference

Amazon DynamoDB Developer Guide

On-demand backup and restore

On-demand backup and restore let you create full backups of a table for long-term retention and
archival for regulatory compliance needs. Backups don't impact the performance of your table
and you can back up tables of any size. With Amazon Backup integration, you can use Amazon
Backup to schedule, copy, tag, and manage the life cycle of your DynamoDB on-demand backups
automatically. Using Amazon Backup, you can copy on-demand backups across accounts and
Regions, and transition older backups to cold storage for cost-optimization.

Accessing DynamoDB

You can work with DynamoDB using the Amazon Web Services Management Console, the Amazon
Command Line Interface, NoSQL Workbench for DynamoDB, or DynamoDB APIs.

For more information, see Accessing DynamoDB.

DynamoDB pricing

DynamoDB charges for reading, writing, and storing data in your tables, along with any optional
features you choose to enable. DynamoDB has two capacity modes with their respective billing
options for processing reads and writes on your tables: on-demand and provisioned.

DynamoDB is also included in the always free tier, providing 25 GB of storage. The Always free
tier also includes 25 provisioned Write and 25 provisioned Read Capacity Units (WCU, RCU) which is
enough to handle 200 M requests per month.

For more information, see Amazon DynamoDB pricing.

Getting started with DynamoDB

If you're a first-time user of DynamoDB, we recommend that you begin by reading the following
topics:

• Getting started with DynamoDB – Walks you through the process of setting up DynamoDB,
creating sample tables, and uploading data. This topic also provides information about
performing some basic database operations using the Amazon Web Services Management
Console, Amazon CLI, NoSQL Workbench, and DynamoDB APIs.

• DynamoDB core components – Describes the basic DynamoDB concepts.

On-demand backup and restore API Version 2012-08-10 8

https://console.amazonaws.cn/dynamodb
https://www.amazonaws.cn/cli/
https://www.amazonaws.cn/cli/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html
https://www.amazonaws.cn/dynamodb/pricing/

Amazon DynamoDB Developer Guide

• Best practices for designing and architecting with DynamoDB – Provides recommendations about
NoSQL design, DynamoDB Well-Architected Lens, table design and several other DynamoDB
features. These best practices help you maximize performance and minimize throughput costs
when working with DynamoDB.

We also recommend that you review the following tutorials that present complete end-to-end
procedures to familiarize yourself with DynamoDB. You can complete these tutorials using the
always free tier feature.

• Create and Query a NoSQL Table with Amazon DynamoDB

• Build an Application Using a NoSQL Key-Value Data Store

For information about resources, tools, and strategies to migrate to DynamoDB, see Migrating to
DynamoDB. To read the latest blogs and whitepapers, see Amazon DynamoDB resources.

Getting started API Version 2012-08-10 9

https://www.amazonaws.cn/tutorials/create-nosql-table/
https://www.amazonaws.cn/tutorials/build-an-application-using-a-no-sql-key-value-data-store/
https://www.amazonaws.cn/dynamodb/resources/

Amazon DynamoDB Developer Guide

Getting started with DynamoDB

You’ll learn how to connect to, create, and manage DynamoDB tables in the following sections.

Before you begin, you should familiarize yourself with the basic concepts in Amazon DynamoDB.
You can get a quick overview in What is Amazon DynamoDB? and a more in-depth look in Core
components of Amazon DynamoDB. Then, continue on to Prerequisites.

Note

When you sign up for Amazon, you can get started with DynamoDB using the Amazon Free
Tier. If you have not already exceeded the free tier benefits for Amazon DynamoDB, it won't
cost you anything to complete the examples in this section. Otherwise, you'll incur the
standard DynamoDB usage fees from the time that you create the tables until you delete
the tables.
If you don't want to sign up for a free tier account, you can set up DynamoDB local
(downloadable version) on your computer. The downloadable version lets you develop
and test applications locally without signing up for an Amazon account or accessing the
DynamoDB web service.

Topics

• Amazon DynamoDB resources for first-time users

• Accessing DynamoDB

• Prerequisites

• Setting up DynamoDB

• Step 1: Create a table in DynamoDB

• Step 2: Write data to a DynamoDB table

• Step 3: Read data from a DynamoDB table

• Step 4: Update data in a DynamoDB table

• Step 5: Query data in a DynamoDB table

• Step 6: (Optional) Delete your DynamoDB table to clean up resources

• Continue learning about DynamoDB

• Generate infrastructure code for Amazon DynamoDB using Console-to-Code

API Version 2012-08-10 10

https://aws.amazon.com/free/
https://aws.amazon.com/free/

Amazon DynamoDB Developer Guide

Amazon DynamoDB resources for first-time users

We recommend that first time users begin by reading the following sections, and refer to them as
needed.

Example

Service highlights and pricing

Provides a general product overview of
DynamoDB, common use cases, service
highlights, and pricing.

Example

DynamoDB resources

Videos, tutorials, and prescriptive guidance
that introduces you to the service, concepts of
data modeling, and core features and capabilit
ies.

Example

Getting started

Information on setting up DynamoDB,
creating sample tables, and uploading data.

Example

DynamoDB basics course

Free digital course that teaches the fundament
als of DynamoDB, including table design, data
types, and basic operations.

Example

DynamoDB Nuggets

Short, focused video tutorials that explain key
DynamoDB concepts and features.

Example

DynamoDB code samples repository

Practical DynamoDB code examples in various
programming languages.

Example

Free DynamoDB training

Amazon provides free digital training courses
that cover DynamoDB concepts, features, and
best practices.

Example

NoSQL Workbench for DynamoDB

Unified visual tool that provides data
modeling, data visualization, and query
development features.

Example

DynamoDB Design Patterns

Example

Hands-on Tutorials

First-time user resources API Version 2012-08-10 11

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/resources/
https://explore.skillbuilder.aws/learn/course/external/view/elearning/16104/amazon-dynamodb-basics
https://www.youtube.com/playlist?list=PLhr1KZpdzukemNOO71Hca0GpjG0QmXwEd
https://github.com/aws-samples/aws-dynamodb-examples
https://skillbuilder.aws/learn/WC3K4Y4S5N/amazon-dynamodb-getting-started/
https://youtu.be/p5va6ZX9_o0
https://aws.amazon.com/tutorials/create-nosql-table/

Amazon DynamoDB Developer Guide

Best practices and data modeling examples
for different use cases with practical code
samples.

Step-by-step tutorials in the Amazon Web
Services Management Console that guide you
through common DynamoDB tasks.

Example

Migrating to DynamoDB

Overview of the process, tools, and strategies
for migrating a database into DynamoDB.

Example

Amazon Well-Architected Lens for
DynamoDB

Architectural best practices for designing and
operating reliable, secure, efficient, and cost-
effective applications using DynamoDB.

Amazon DynamoDB additional best practices for first-time users

After you complete the preceding sections, read these sections:

• DynamoDB throughput capacity

Provides an overview of the two throughput modes available for DynamoDB and considerations
in selecting the appropriate capacity mode for your application. On-demand mode is the default
and recommended throughput option for most DynamoDB workloads.

• Best practices

Identify and address issues to maximize performance and minimize costs when working with
DynamoDB.

Amazon CLI resources

If you want to use the Amazon Command Line Interface (Amazon CLI), you can use these
documents to help you get started:

• Amazon CLI documentation

This section provides information on downloading the Amazon CLI, getting the Amazon CLI
working on your system, and providing your Amazon credentials.

• Amazon CLI documentation for DynamoDB

Amazon DynamoDB additional best practices for first-time users API Version 2012-08-10 12

https://docs.aws.amazon.com/cli/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/index.html

Amazon DynamoDB Developer Guide

This separate document covers all of the Amazon CLI for DynamoDB commands, including syntax
and examples.

Programming resources

You can write application programs to use the DynamoDB API with a variety of popular
programming languages. Here are some resources:

• Tools for Amazon Web Services

Amazon provides a number of software development kits (SDKs) with support for DynamoDB.
You can code for DynamoDB using Java, .NET, PHP, Ruby, and other languages. These SDKs
can greatly simplify your application development by formatting your requests to DynamoDB,
parsing responses, and providing retry logic and error handling.

• DynamoDB API Reference

If you don't want to use the Amazon SDKs, you can interact with DynamoDB directly using the
DynamoDB API. This document covers all of the DynamoDB API operations, including syntax and
examples. You can find troubleshooting tips and information on creating and authenticating
requests and handling responses in this section.

Accessing DynamoDB

You can access Amazon DynamoDB using the Amazon Web Services Management Console, the
Amazon Command Line Interface (Amazon CLI), or the DynamoDB API.

Topics

• Using the console

• Using the Amazon CLI

• Using the API

• Using the NoSQL workbench for DynamoDB

• IP address ranges

Programming resources API Version 2012-08-10 13

https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

Using the console

You can access the Amazon Web Services Management Console for Amazon DynamoDB at https://
console.amazonaws.cn/dynamodb/home.

Here are some of the actions you can perform in the DynamoDB console:

• Manage tables: Create, update, and delete tables. The capacity calculator can help estimate
capacity requirements.

• Interact with data: View, add, update, and delete items in your tables. Manage Time to Live
(TTL) settings.

• Monitor and analyze: View dashboards, monitor and set up alarms, and analyze metrics and
alerts for your DynamoDB tables.

• Optimize and extend: Manage secondary indexes, streams, triggers, reserved capacity, and other
advanced features to enhance your DynamoDB usage.

The DynamoDB console provides a comprehensive interface for managing your DynamoDB
resources. We encourage you to access the console and interact with it to learn more.

Using the Amazon CLI

You can use the Amazon Command Line Interface (Amazon CLI) to control multiple Amazon
services from the command line and automate them through scripts. You can use the Amazon CLI
for ad hoc operations, such as creating a table. You can also use it to embed Amazon DynamoDB
operations within utility scripts.

Before you can use the Amazon CLI with DynamoDB, you must get an access key ID and secret
access key. For more information, see Granting programmatic access .

For a complete listing of all the commands available for DynamoDB in the Amazon CLI, see the
Amazon CLI command reference.

Downloading and configuring the Amazon CLI

The Amazon CLI is available at http://www.amazonaws.cn/cli. It runs on Windows, macOS, or
Linux. After you download the Amazon CLI, follow these steps to install and configure it:

1. Go to the Amazon Command Line Interface User Guide.

2. Follow the instructions for Installing the Amazon CLI and Configuring the Amazon CLI.

Using the console API Version 2012-08-10 14

https://console.amazonaws.cn/dynamodb/home
https://console.amazonaws.cn/dynamodb/home
https://docs.amazonaws.cn/cli/latest/reference/dynamodb/index.html
http://www.amazonaws.cn/cli
https://docs.amazonaws.cn/cli/latest/userguide/
https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html

Amazon DynamoDB Developer Guide

Using the Amazon CLI with DynamoDB

The command line format consists of a DynamoDB operation name followed by the parameters for
that operation. The Amazon CLI supports a shorthand syntax for the parameter values, as well as
JSON.

For example, the following command creates a table named Music. The partition key is Artist, and
the sort key is SongTitle. (For easier readability, long commands in this section are broken into
separate lines.)

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --table-class STANDARD

The following commands add new items to the table. These examples use a combination of
shorthand syntax and JSON.

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "No One You Know"}, "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Somewhat Famous"}}' \
 --return-consumed-capacity TOTAL

aws dynamodb put-item \
 --table-name Music \
 --item '{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"},
 "AlbumTitle": {"S": "Songs About Life"} }' \
 --return-consumed-capacity TOTAL

On the command line, it can be difficult to compose valid JSON. However, the Amazon CLI can read
JSON files. For example, consider the following JSON code snippet, which is stored in a file named
key-conditions.json.

Using the Amazon CLI API Version 2012-08-10 15

Amazon DynamoDB Developer Guide

{
 "Artist": {
 "AttributeValueList": [
 {
 "S": "No One You Know"
 }
],
 "ComparisonOperator": "EQ"
 },
 "SongTitle": {
 "AttributeValueList": [
 {
 "S": "Call Me Today"
 }
],
 "ComparisonOperator": "EQ"
 }
}

You can now issue a Query request using the Amazon CLI. In this example, the contents of the key-
conditions.json file are used for the --key-conditions parameter.

aws dynamodb query --table-name Music --key-conditions file://key-conditions.json

Using the Amazon CLI with DynamoDB local

The Amazon CLI can also interact with DynamoDB local (downloadable version) that runs on your
computer. To enable this, add the following parameter to each command:

--endpoint-url http://localhost:8000

The following example uses the Amazon CLI to list the tables in a local database.

aws dynamodb list-tables --endpoint-url http://localhost:8000

If DynamoDB is using a port number other than the default (8000), modify the --endpoint-url
value accordingly.

Using the Amazon CLI API Version 2012-08-10 16

Amazon DynamoDB Developer Guide

Note

The Amazon CLI can't use the DynamoDB local (downloadable version) as a default
endpoint. Therefore, you must specify --endpoint-url with each command.

Using the API

You can use the Amazon Web Services Management Console and the Amazon Command Line
Interface to work interactively with Amazon DynamoDB. However, to get the most out of
DynamoDB, you can write application code using the Amazon SDKs.

The Amazon SDKs provide broad support for DynamoDB in Java, JavaScript in the browser, .NET,
Node.js, PHP, Python, Ruby, C++, Go, Android, and iOS. .

Before you can use the Amazon SDKs with DynamoDB, you must get an Amazon access key ID and
secret access key. For more information, see Setting up DynamoDB (web service) .

For a high-level overview of DynamoDB application programming with the Amazon SDKs, see
Programming with DynamoDB and the Amazon SDKs.

Using the NoSQL workbench for DynamoDB

You can also access DynamoDB by downloading and using the NoSQL Workbench for DynamoDB.

NoSQL Workbench for Amazon DynamoDB is a cross-platform, client-side GUI application that
you can use for modern database development and operations. It's available for Windows, macOS,
and Linux. NoSQL Workbench is a visual development tool that provides data modeling, data
visualization, and query development features to help you design, create, query, and manage
DynamoDB tables. NoSQL Workbench now includes DynamoDB local as an optional part of the
installation process, which makes it easier to model your data in DynamoDB local. To learn more
about DynamoDB local and its requirements, see Setting up DynamoDB local (downloadable
version) .

Note

The NoSQL Workbench for DynamoDB currently doesn't support Amazon logins that are
configured with two-factor authentication (2FA).

Using the API API Version 2012-08-10 17

http://www.amazonaws.cn/sdk-for-java
http://www.amazonaws.cn/sdk-for-browser
http://www.amazonaws.cn/sdk-for-net
http://www.amazonaws.cn/sdk-for-node-js
http://www.amazonaws.cn/sdk-for-php
http://www.amazonaws.cn/sdk-for-python
http://www.amazonaws.cn/sdk-for-ruby
http://www.amazonaws.cn/sdk-for-cpp
http://www.amazonaws.cn/sdk-for-go
http://www.amazonaws.cn/mobile/sdk/
http://www.amazonaws.cn/mobile/sdk/

Amazon DynamoDB Developer Guide

Data modeling

With NoSQL Workbench for DynamoDB, you can build new data models from, or design models
based on, existing data models that satisfy your application's data access patterns. You can also
import and export the designed data model at the end of the process. For more information,
see Building data models with NoSQL Workbench.

Data visualization

The data model visualizer provides a canvas where you can map queries and visualize the access
patterns (facets) of the application without having to write code. Every facet corresponds to a
different access pattern in DynamoDB. You can autogenerate sample data for use in your data
model. For more information, see Visualizing data access patterns.

Operation building

NoSQL Workbench provides a rich graphical user interface for you to develop and test queries.
You can use the operation builder to view, explore, and query live datasets. You can also use the
structured operation builder to build and perform data plane operations. It supports projection
and condition expression, and lets you generate sample code in multiple languages. For more
information, see Exploring datasets and building operations with NoSQL Workbench.

IP address ranges

Amazon Web Services (Amazon) publishes its current IP address ranges in JSON format. To view
the current ranges, download ip-ranges.json. For more information, see Amazon IP address ranges
in the Amazon Web Services General Reference.

To find the IP address ranges that you can use to access to DynamoDB tables and indexes, search
the ip-ranges.json file for the following string: "service": "DYNAMODB".

Note

The IP address ranges do not apply to DynamoDB Streams or DynamoDB Accelerator (DAX).

Prerequisites

Before starting the Amazon DynamoDB tutorial, learn about the ways you can access DynamoDB
in Accessing DynamoDB. Then, set up DynamoDB through either the web service or the locally

IP address ranges API Version 2012-08-10 18

https://ip-ranges.amazonaws.com/ip-ranges.json
https://docs.amazonaws.cn/general/latest/gr/aws-ip-ranges.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html

Amazon DynamoDB Developer Guide

downloaded version in Setting up DynamoDB . After that, continue on to Step 1: Create a table in
DynamoDB.

Note

• If you plan to interact with DynamoDB only through the Amazon Web Services
Management Console, you don't need an Amazon access key. Complete the steps in
Signing up for Amazon, and then continue on to Step 1: Create a table in DynamoDB.

• If you don't want to sign up for a free tier account, you can set up DynamoDB local
(downloadable version). Then continue on to Step 1: Create a table in DynamoDB.

• There are differences when working with CLI commands in terminals on Linux and
Windows. The following guide presents commands formatted for Linux terminals (this
includes macOS), and commands formatted for Windows CMD. Choose the command
that best fits the terminal application you are using.

Setting up DynamoDB

In addition to the Amazon DynamoDB web service, Amazon provides a downloadable version
of DynamoDB that you can run on your computer. The downloadable version is helpful for
developing and testing your code. It lets you write and test applications locally without accessing
the DynamoDB web service.

The topics in this section describe how to set up DynamoDB (downloadable version) and the
DynamoDB web service.

Topics

• Setting up DynamoDB (web service)

• Setting up DynamoDB local (downloadable version)

Setting up DynamoDB (web service)

To use the Amazon DynamoDB web service:

1. Sign up for Amazon.

2. Get an Amazon access key (used to access DynamoDB programmatically).

Setting up DynamoDB API Version 2012-08-10 19

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.SignUpForAWS
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

Note

If you plan to interact with DynamoDB only through the Amazon Web Services
Management Console, you don't need an Amazon access key, and you can skip ahead to
Using the console.

3. Configure your credentials (used to access DynamoDB programmatically).

Signing up for Amazon

To use the DynamoDB service, you must have an Amazon account. If you don't already have an
account, you are prompted to create one when you sign up. You're not charged for any Amazon
services that you sign up for unless you use them.

To sign up for Amazon

1. Open https://portal.amazonaws.cn/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an Amazon Web Services account, an Amazon Web Services account root
user is created. The root user has access to all Amazon Web Services services and resources in
the account. As a security best practice, assign administrative access to a user, and use only the
root user to perform tasks that require root user access.

Granting programmatic access

Before you can access DynamoDB programmatically or through the Amazon Command Line
Interface (Amazon CLI), you must have programmatic access. You don't need programmatic access
if you plan to use the DynamoDB console only.

Users need programmatic access if they want to interact with Amazon outside of the Amazon Web
Services Management Console. The Amazon APIs and the Amazon Command Line Interface require
access keys. Whenever possible, create temporary credentials that consist of an access key ID, a
secret access key, and a security token that indicates when the credentials expire.

Setting up DynamoDB (web service) API Version 2012-08-10 20

https://portal.amazonaws.cn/billing/signup
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon DynamoDB Developer Guide

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

IAM Use short-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Using temporary credentials
with Amazon resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the Amazon CLI or Amazon
APIs (directly or by using the
Amazon SDKs).

Following the instructions in
Managing access keys for IAM
users in the IAM User Guide.

Configuring your credentials

Before you can access DynamoDB programmatically or through the Amazon CLI, you must
configure your credentials to enable authorization for your applications.

There are several ways to do this. For example, you can manually create the credentials file to
store your access key ID and secret access key. You also can use the Amazon CLI command aws
configure to automatically create the file. Alternatively, you can use environment variables. For
more information about configuring your credentials, see the programming-specific Amazon SDK
developer guide.

To install and configure the Amazon CLI, see Using the Amazon CLI.

Integrating with other DynamoDB services

You can integrate DynamoDB with many other Amazon services. For more information, see the
following:

• Using DynamoDB with other Amazon services

• Amazon CloudFormation for DynamoDB

Setting up DynamoDB (web service) API Version 2012-08-10 21

https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.amazonaws.cn//AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

• Using Amazon Backup with DynamoDB

• Amazon Identity and Access Management (IAM) and DynamoDB

• Using Amazon Lambda with Amazon DynamoDB

Setting up DynamoDB local (downloadable version)

With the downloadable version of Amazon DynamoDB, you can develop and test applications
without accessing the DynamoDB web service. Instead, the database is self-contained on your
computer. When you're ready to deploy your application in production, you remove the local
endpoint in the code, and then it points to the DynamoDB web service.

Having this local version helps you save on throughput, data storage, and data transfer fees. In
addition, you don't need an internet connection while you develop your application.

DynamoDB local is available as a download (requires JRE), as an Apache Maven dependency, or as
a Docker image.

If you prefer to use the Amazon DynamoDB web service instead, see Setting up DynamoDB (web
service) .

Topics

• Deploying DynamoDB locally on your computer

• DynamoDB local usage notes

• Release history for DynamoDB local

• Telemetry in DynamoDB local

Deploying DynamoDB locally on your computer

Note

• DynamoDB local is available in three versions: v3.x (Current), v2.x (Legacy), and v1.x
(Deprecated).

• DynamoDB v3.x is recommended for your local testing and development use.

• Migration from DynamoDB local V2.x to V3.x requires updating import statements from
com.amazonaws.services.dynamodbv2 to software.amazon.dynamodb and
updating Maven dependencies for Maven users.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 22

https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html#apache-maven
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html#docker

Amazon DynamoDB Developer Guide

• If you're migrating an application that uses the SDK for Java v1.x to the SDK for Java 2.x,
follow the steps for Amazon SDK for Java 2.x.

Download DynamoDB local

Follow these steps to set up and run DynamoDB on your computer.

To set up DynamoDB on your computer

1. Download DynamoDB local for free from one of the following locations.

Download Links Checksums

.tar.gz | .zip .tar.gz.sha256 | .zip.sha256

Important

To run DynamoDB v2.6.0 or greater on your computer, you must have the Java
Runtime Environment (JRE) version 17.x or newer. The application doesn't run on
earlier JRE versions.

2. After you download the archive, extract the contents and copy the extracted directory to a
location of your choice.

3. To start DynamoDB on your computer, open a command prompt window, navigate to the
directory where you extracted DynamoDBLocal.jar, and enter the following command.

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -sharedDb

Note

If you're using Windows PowerShell, be sure to enclose the parameter name or the
entire name and value like this:
java -D"java.library.path=./DynamoDBLocal_lib" -jar
DynamoDBLocal.jar
DynamoDB processes incoming requests until you stop it. To stop DynamoDB, press
Ctrl+C at the command prompt.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 23

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://d1ni2b6xgvw0s0.cloudfront.net/v2.x/dynamodb_local_latest.tar.gz
https://d1ni2b6xgvw0s0.cloudfront.net/v2.x/dynamodb_local_latest.zip
https://d1ni2b6xgvw0s0.cloudfront.net/v2.x/dynamodb_local_latest.tar.gz.sha256
https://d1ni2b6xgvw0s0.cloudfront.net/v2.x/dynamodb_local_latest.zip.sha256

Amazon DynamoDB Developer Guide

DynamoDB uses port 8000 by default. If port 8000 is unavailable, this command
throws an exception. For a complete list of DynamoDB runtime options, including -
port, enter this command.
java -Djava.library.path=./DynamoDBLocal_lib -jar
DynamoDBLocal.jar -help

4. Before you can access DynamoDB programmatically or through the Amazon Command Line
Interface (Amazon CLI), you must configure your credentials to enable authorization for your
applications. Downloadable DynamoDB requires any credentials to work, as shown in the
following example.

Amazon Access Key ID: "fakeMyKeyId"
Amazon Secret Access Key: "fakeSecretAccessKey"
Default Region Name: "fakeRegion"

You can use the aws configure command of the Amazon CLI to set up credentials. For more
information, see Using the Amazon CLI.

5. Start writing applications. To access DynamoDB running locally with the Amazon CLI, use the
--endpoint-url parameter. For example, use the following command to list DynamoDB
tables.

aws dynamodb list-tables --endpoint-url http://localhost:8000

Run DynamoDB local as Docker image

The downloadable version of Amazon DynamoDB is available as a Docker image. For more
information, see dynamodb-local. To see your current DynamoDB local version, enter the following
command:

java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar -version

For an example of using DynamoDB local as part of a REST application built on the Amazon
Serverless Application Model (Amazon SAM), see SAM DynamoDB application for managing orders.
This sample application demonstrates how to use DynamoDB local for testing.

If you want to run a multi-container application that also uses the DynamoDB local container, use
Docker Compose to define and run all the services in your application, including DynamoDB local.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 24

https://hub.docker.com/r/amazon/dynamodb-local
https://github.com/aws-samples/aws-sam-java-rest

Amazon DynamoDB Developer Guide

To install and run DynamoDB local with Docker compose:

1. Download and install Docker desktop.

2. Copy the following code to a file and save it as docker-compose.yml.

services:
 dynamodb-local:
 command: "-jar DynamoDBLocal.jar -sharedDb -dbPath ./data"
 image: "amazon/dynamodb-local:latest"
 container_name: dynamodb-local
 ports:
 - "8000:8000"
 volumes:
 - "./docker/dynamodb:/home/dynamodblocal/data"
 working_dir: /home/dynamodblocal

If you want your application and DynamoDB local to be in separate containers, use the
following yaml file.

version: '3.8'
services:
 dynamodb-local:
 command: "-jar DynamoDBLocal.jar -sharedDb -dbPath ./data"
 image: "amazon/dynamodb-local:latest"
 container_name: dynamodb-local
 ports:
 - "8000:8000"
 volumes:
 - "./docker/dynamodb:/home/dynamodblocal/data"
 working_dir: /home/dynamodblocal
 app-node:
 depends_on:
 - dynamodb-local
 image: amazon/aws-cli
 container_name: app-node
 ports:
 - "8080:8080"
 environment:
 AWS_ACCESS_KEY_ID: 'DUMMYIDEXAMPLE'
 AWS_SECRET_ACCESS_KEY: 'DUMMYEXAMPLEKEY'
 command:

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 25

https://www.docker.com/products/docker-desktop

Amazon DynamoDB Developer Guide

 dynamodb describe-limits --endpoint-url http://dynamodb-local:8000 --region
 us-west-2

This docker-compose.yml script creates an app-node container and a dynamodb-local
container. The script runs a command in the app-node container that uses the Amazon CLI to
connect to the dynamodb-local container and describes the account and table limits.

To use with your own application image, replace the image value in the example below with
that of your application.

version: '3.8'
services:
 dynamodb-local:
 command: "-jar DynamoDBLocal.jar -sharedDb -dbPath ./data"
 image: "amazon/dynamodb-local:latest"
 container_name: dynamodb-local
 ports:
 - "8000:8000"
 volumes:
 - "./docker/dynamodb:/home/dynamodblocal/data"
 working_dir: /home/dynamodblocal
 app-node:
 image: location-of-your-dynamodb-demo-app:latest
 container_name: app-node
 ports:
 - "8080:8080"
 depends_on:
 - "dynamodb-local"
 links:
 - "dynamodb-local"
 environment:
 AWS_ACCESS_KEY_ID: 'DUMMYIDEXAMPLE'
 AWS_SECRET_ACCESS_KEY: 'DUMMYEXAMPLEKEY'
 REGION: 'eu-west-1'

Note

The YAML scripts require that you specify an Amazon access key and an Amazon secret
key, but they are not required to be valid Amazon keys for you to access DynamoDB
local.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 26

Amazon DynamoDB Developer Guide

3. Run the following command-line command:

docker-compose up

Run DynamoDB local as an Apache Maven dependency

Note

If you're migrating an application that uses the SDK for Java v1.x to the SDK for Java 2.x,
follow the steps for Amazon SDK for Java 2.x.

Follow these steps to use Amazon DynamoDB in your application as a dependency.

To deploy DynamoDB as an Apache Maven repository

1. Download and install Apache Maven. For more information, see Downloading Apache Maven
and Installing Apache Maven.

2. Add the DynamoDB Maven repository to your application's Project Object Model (POM) file.

<!--Dependency:-->
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>DynamoDBLocal</artifactId>
 <version>3.3.0</version>
 </dependency>
</dependencies>

Example template for use with Spring Boot 3 and/or Spring Framework 6:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.example</groupId>
<artifactId>SpringMavenDynamoDB</artifactId>

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 27

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

Amazon DynamoDB Developer Guide

<version>1.0-SNAPSHOT</version>

<properties>
 <spring-boot.version>3.0.1</spring-boot.version>
 <maven.compiler.source>17</maven.compiler.source>
 <maven.compiler.target>17</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>3.1.0</version>
 </parent>

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>DynamoDBLocal</artifactId>
 <version>3.3.0</version>
 </dependency>
 <!-- Spring Boot -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <version>${spring-boot.version}</version>
 </dependency>
 <!-- Spring Web -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>${spring-boot.version}</version>
 </dependency>
 <!-- Spring Data JPA -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 <version>${spring-boot.version}</version>
 </dependency>
 <!-- Other Spring dependencies -->
 <!-- Replace the version numbers with the desired version -->
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 28

Amazon DynamoDB Developer Guide

 <version>6.0.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-core</artifactId>
 <version>6.0.0</version>
 </dependency>
 <!-- Add other Spring dependencies as needed -->
 <!-- Add any other dependencies your project requires -->
</dependencies>
</project>

Note

You can also use the Maven central repository URL.

Run DynamoDB local in Amazon CloudShell

Amazon CloudShell is a browser-based, pre-authenticated shell that you can launch directly from
the Amazon Web Services Management Console. You can navigate to Amazon CloudShell from
the Amazon Web Services Management Console a few different ways. For more information, see
Getting started with Amazon CloudShell.

Follow these steps to run DynamoDB local in your Amazon CloudShell anywhere in the Amazon
Web Services Management Console.

To run DynamoDB local in your Amazon CloudShell in the Amazon Web Services Management
Console

1. Launch Amazon CloudShell from the console interface, choose an available Amazon Web
Services Region, and switch to your preferred shell, such as Bash, PowerShell, or Z shell.

2. To choose an Amazon Web Services Region, go to the Select a Region menu and select a
supported Amazon Web Services Region. (Available Regions are highlighted.)

3. From the Amazon Web Services Management Console, launch Amazon CloudShell by choosing
one of the following options:

a. On the navigation bar, choose the Amazon CloudShell icon.

b. In the Search box, enter the word CloudShell, and then choose CloudShell.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 29

https://mvnrepository.com/artifact/com.amazonaws/DynamoDBLocal?repo=dynamodb-local-release
https://docs.aws.amazon.com/cloudshell/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/supported-aws-regions.html

Amazon DynamoDB Developer Guide

c. In the Recently visited widget, choose CloudShell.

d. From the console toolbar, choose CloudShell.

4. To run DynamoDB local in Amazon CloudShell you can use the dynamodb-local alias. You
can specify additional command line options for changing DynamoDB local settings. See the
section called “Usage notes” for available options.

Note

To run DynamoDB local in the background, run DynamoDB local in Amazon CloudShell
using: dynamodb-local &.

5. To access DynamoDB running locally in Amazon CloudShell with the Amazon CLI, use the --
endpoint-url parameter. For example, use the following command to list DynamoDB tables:

aws dynamodb list-tables --endpoint-url http://localhost:8000

For an example of a sample project that showcases multiple approaches to set up and use
DynamoDB local, including downloading JAR files, running it as a Docker image, and using it as a
Maven dependency, see DynamoDB Local Sample Java Project.

DynamoDB local usage notes

Except for the endpoint, applications that run with the downloadable version of Amazon
DynamoDB should also work with the DynamoDB web service. However, when using DynamoDB
locally, you should be aware of the following:

• If you use the -sharedDb option, DynamoDB creates a single database file named shared-local-
instance.db. Every program that connects to DynamoDB accesses this file. If you delete the file,
you lose any data that you have stored in it.

• If you omit -sharedDb, the database file is named myaccesskeyid_region.db, with the Amazon
access key ID and Amazon Region as they appear in your application configuration. If you delete
the file, you lose any data that you have stored in it.

• If you use the -inMemory option, DynamoDB doesn't write any database files at all. Instead, all
data is written to memory, and the data is not saved when you terminate DynamoDB.

• If you use the -inMemory option, the -sharedDb option is also required.

• If you use the -optimizeDbBeforeStartup option, you must also specify the -dbPath
parameter so that DynamoDB can find its database file.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 30

https://github.com/awslabs/amazon-dynamodb-local-samples/tree/main

Amazon DynamoDB Developer Guide

• The Amazon SDKs for DynamoDB require that your application configuration specify an access
key value and an Amazon Region value. Unless you're using the -sharedDb or the -inMemory
option, DynamoDB uses these values to name the local database file. These values don't have to
be valid Amazon values to run locally. However, you might find it convenient to use valid values
so that you can run your code in the cloud later by changing the endpoint you're using.

• DynamoDB local always returns null for billingModeSummary.

• DynamoDB local AWS_ACCESS_KEY_ID can contain only letters (A–Z, a–z) and numbers (0–9).

• DynamoDB local doesn't support Point-in-time recovery (PITR).

Topics

• Command line options

• Setting the local endpoint

• Differences between downloadable DynamoDB and the DynamoDB web service

Command line options

You can use the following command line options with the downloadable version of DynamoDB:

• -cors value — Enables support for cross-origin resource sharing (CORS) for JavaScript. You
must provide a comma-separated "allow" list of specific domains. The default setting for -cors
is an asterisk (*), which allows public access.

• -dbPath value — The directory where DynamoDB writes its database file. If you don't specify
this option, the file is written to the current directory. You can't specify both -dbPath and -
inMemory at once.

• -delayTransientStatuses — Causes DynamoDB to introduce delays for certain operations.
DynamoDB (downloadable version) can perform some tasks almost instantaneously, such
as create/update/delete operations on tables and indexes. However, the DynamoDB service
requires more time for these tasks. Setting this parameter helps DynamoDB running on your
computer simulate the behavior of the DynamoDB web service more closely. (Currently, this
parameter introduces delays only for global secondary indexes that are in either CREATING or
DELETING status.)

• -help — Prints a usage summary and options.

• -inMemory — DynamoDB runs in memory instead of using a database file. When you stop
DynamoDB, none of the data is saved. You can't specify both -dbPath and -inMemory at once.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 31

Amazon DynamoDB Developer Guide

• -optimizeDbBeforeStartup — Optimizes the underlying database tables before starting
DynamoDB on your computer. You also must specify -dbPath when you use this parameter.

• -port value — The port number that DynamoDB uses to communicate with your application. If
you don't specify this option, the default port is 8000.

Note

DynamoDB uses port 8000 by default. If port 8000 is unavailable, this command throws
an exception. You can use the -port option to specify a different port number. For a
complete list of DynamoDB runtime options, including -port , type this command:
java -Djava.library.path=./DynamoDBLocal_lib -jar DynamoDBLocal.jar
-help

• -sharedDb — If you specify -sharedDb, DynamoDB uses a single database file instead of
separate files for each credential and Region.

• -disableTelemetry — When specified, DynamoDB local will not send any telemetry.

• -version — Prints the version of DynamoDB local.

Setting the local endpoint

By default, the Amazon SDKs and tools use endpoints for the Amazon DynamoDB web service. To
use the SDKs and tools with the downloadable version of DynamoDB, you must specify the local
endpoint:

http://localhost:8000

Amazon Command Line Interface

You can use the Amazon Command Line Interface (Amazon CLI) to interact with downloadable
DynamoDB.

To access DynamoDB running locally, use the --endpoint-url parameter. The following is an
example of using the Amazon CLI to list the tables in DynamoDB on your computer.

aws dynamodb list-tables --endpoint-url http://localhost:8000

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 32

Amazon DynamoDB Developer Guide

Note

The Amazon CLI can't use the downloadable version of DynamoDB as a default endpoint.
Therefore, you must specify --endpoint-url with each Amazon CLI command.

Amazon SDKs

The way you specify an endpoint depends on the programming language and Amazon SDK you're
using. The following sections describe how to do this:

• Java: Setting the Amazon Region and endpoint (DynamoDB local supports the Amazon SDK for
Java V1 and V2)

• CodeSamples.Java.RegionAndEndpoint .NET: Setting the Amazon Region and endpoint

Differences between downloadable DynamoDB and the DynamoDB web service

The downloadable version of DynamoDB is intended for development and testing purposes only.
By comparison, the DynamoDB web service is a managed service with scalability, availability, and
durability features that make it ideal for production use.

The downloadable version of DynamoDB differs from the web service in the following ways:

• Amazon Web Services Regions and distinct Amazon Web Services accounts are not supported at
the client level.

• Provisioned throughput settings are ignored in downloadable DynamoDB, even though the
CreateTable operation requires them. For CreateTable, you can specify any numbers you
want for provisioned read and write throughput, even though these numbers are not used. You
can call UpdateTable as many times as you want per day. However, any changes to provisioned
throughput values are ignored.

• Scan operations are performed sequentially. Parallel scans are not supported. The Segment and
TotalSegments parameters of the Scan operation are ignored.

• The speed of read and write operations on table data is limited only by the speed of your
computer. CreateTable, UpdateTable, and DeleteTable operations occur immediately,
and table state is always ACTIVE. UpdateTable operations that change only the provisioned
throughput settings on tables or global secondary indexes occur immediately. If an
UpdateTable operation creates or deletes any global secondary indexes, then those indexes

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 33

Amazon DynamoDB Developer Guide

transition through normal states (such as CREATING and DELETING, respectively) before they
become an ACTIVE state. The table remains ACTIVE during this time.

• Read operations are eventually consistent. However, due to the speed of DynamoDB local
running on your computer, most reads appear to be strongly consistent.

• Item collection metrics and item collection sizes are not tracked. In operation responses, nulls are
returned instead of item collection metrics.

• In DynamoDB, there is a 1 MB limit on data returned per result set. Both the DynamoDB web
service and the downloadable version enforce this limit. However, when querying an index, the
DynamoDB service calculates only the size of the projected key and attributes. By contrast, the
downloadable version of DynamoDB calculates the size of the entire item.

• If you're using DynamoDB Streams, the rate at which shards are created might differ. In the
DynamoDB web service, shard-creation behavior is partially influenced by table partition
activity. When you run DynamoDB locally, there is no table partitioning. In either case, shards are
ephemeral, so your application should not be dependent on shard behavior.

• TransactionConflictExceptions aren't thrown by downloadable DynamoDB for
transactional APIs. We recommend that you use a Java mocking framework to simulate
TransactionConflictExceptions in the DynamoDB handler to test how your application
responds to conflicting transactions.

• In the DynamoDB web service, whether being accessed via the console or the Amazon CLI, table
names are case sensitive. A table named Authors and one named authors can both exist as
separate tables. In the downloadable version, table names are case insensitive, and attempting
to create these two tables would result in an error.

• Tagging is not supported in the downloadable version of DynamoDB.

• The downloadable version of DynamoDB ignores the Limit parameter in ExecuteStatement.

Release history for DynamoDB local

The following table describes the important changes in each release of DynamoDB local.

Version Change Description Date

3.3.0 Adding multi-att
ribute key support
for Global Secondary
Indexes

• Adding multi-
attribute key
support for Global
Secondary Indexes

January 19, 2026

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 34

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteStatement.html#DDB-ExecuteStatement-request-Limit
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteStatement.html

Amazon DynamoDB Developer Guide

Version Change Description Date

• Updating SDK
Java version to
the latest public
version from 2.41.0
to 2.41.7

3.2.0 Fixed Compatibility
Issues with multiple
Kotlin Versions

• Adding Support for
ShardFilter param
on DescribeStream
API

• Updating SDK
Java version to
the latest public
version from 2.33.0
to 2.41.0

• Fixing DeletionP
rotection bug on
UpdateTable

January 09, 2026

3.1.0 Improving performan
ce for PartiQL
Queries, Including
Joda-time dependenc
y

• Updating SDK
Java version to
the latest public
version from
2.25.50 to 2.33.0

• Including Joda-
time dependency
inside Pom.xml file

• Improving
performance for
PartiQL queries

• Upgrading
dependencies to
fix multiple CVE
vulnerability issues

September 14, 2025

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 35

Amazon DynamoDB Developer Guide

Version Change Description Date

3.0.0 Migrating from
Amazon SDK Java V1
to V2

• Migrating from
Amazon SDK Java
V1 to V2

• Updated package
structure from
com.amazo
naws.serv
ices.dyna
modbv2 to
software.
amazon.dy
namodb.se
rvices

• Removed Amazon
SDK Java V1
dependencies

July 17, 2025

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 36

Amazon DynamoDB Developer Guide

Version Change Description Date

2.6.0 Support table ARN
as table name in
DynamoDB APIs

Performance fix and
security updates

• Added support for
using table ARN
as table name in
several DynamoDB
APIs

• Fixing CreateStr
eamTable bug on
high performance
machines, such as
Mac M3

• Upgrading
dependencies to
fix vulnerability
issues (CVE-2022
-49043,CV
E-2024-56732,
CVE-2020-29582,
CVE-2025-21502,
CVE-2024-50602,
CVE-2025-24970,
CVE-2025-25193)

March 13, 2025

2.5.4 Upgrading to Jetty
Dependencies

• Upgrading
from Jetty
12.0.8 to Jetty
12.0.14 (Resolves
CVE-2024-
6763, CVE-2024-
8184, CVE-2024-
47535)
Mitigati
on for (CVE-2024
-21634)

December 12, 2024

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 37

Amazon DynamoDB Developer Guide

Version Change Description Date

2.5.3 Upgrading Jackson
Dependencies to
2.17.x in Log4j Core
(Resolves CVE-2022-
1471)

• Upgrading Jackson
Dependencies to
2.17.x in Log4j
Core (Resolves
 CVE-2022-1471)
to address a
critical security
vulnerability in the
SnakeYAML library,
which is a transitive
dependency

November 6, 2024

2.5.2 Bug fix for Update
table workflow

• Bug fix for
workflow when
update table tries
to update table
with Billing Mode
Ondemand to
Provisioned With
GSI

June 20, 2024

2.5.1 Patch for bugs
introduced in
OndemandT
hroughPut
feature

• Fixed a couple
of bugs related
to OndemandT
hroughPut

June 5, 2024

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 38

Amazon DynamoDB Developer Guide

Version Change Description Date

2.5.0 Support for configura
ble maximum
throughput for on-
demand tables,
ReturnVal
uesOnCond
itionChec
kFailure ,
BatchExec
uteStatement ,
and ExecuteTr
ansaction
Request

• Adding telemetry
to Embedded Mode

• Fixing the SDKv2
translation for
Condition
alCheckEx
ception

May 28, 2024

2.4.0 Support for
ReturnVal
uesOnCond
itionChec
kFailure -
Embedded Mode

• Embedded Mode
Fix for TrimmedDa
taAccessE
xception for
Operation on
Multiple Streams

• Fixing exception
translation
for SDKv2 in
Embedded Mode

April 17, 2024

2.3.0 Jetty and JDK
Upgrade

• Upgrading to Jetty
12.0.2

• Upgrading to JDK
17

• Upgrading ANTLR4
to 4.10.1

March 14, 2024

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 39

Amazon DynamoDB Developer Guide

Version Change Description Date

2.2.0 Added support
for table deletion
protection and
the ReturnVal
uesOnCond
itionChec
kFailure
parameter

• Added support
of Table delete
protection

• Added support
for ReturnVal
uesOnCond
itionCheckFailure

• Added support for
-version flag

December 14, 2023

2.1.0 Support for SQLLite
Native Libraries for
Maven projects and
adding telemetry

• Adding telemetry
to DynamoDB local

• Dynamically copy
SQLLite Native
Libraries for Maven
projects

• Removed io.github
.ganadist.sqlite4j
ava library from
Maven dependency

• Upgrading
GoogleGuava to
32.1.1-jre

October 23, 2023

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 40

Amazon DynamoDB Developer Guide

Version Change Description Date

2.0.0 Migrating from javax
to jakarta namespace
and JDK11 Support

• Migrating from
javax to jakarta
namespace and
JDK11 support

• Fix for handling
invalid access and
secret key while
server startup

• Fixing Maven
identified vulnerabi
lities by updating
dependencies

July 5, 2023

1.25.1 Upgrading Jackson
Dependencies to
2.17.x in Log4j Core
(Resolves CVE-2022-
1471)

Upgrading Jackson
Dependencies to
2.17.x in Log4j Core
(Resolves CVE-2022-
1471) to address
a critical security
vulnerability in the
SnakeYAML library,
which is a transitive
dependency

November 6, 2024

1.25.0 Added support
for table deletion
protection and
the ReturnVal
uesOnCond
itionChec
kFailure
parameter

• Added support
of Table delete
protection

• Added support
for ReturnVal
uesOnCond
itionCheckFailure

• Added support for
-version flag

December 18, 2023

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 41

Amazon DynamoDB Developer Guide

Version Change Description Date

1.24.0 Support for SQLLite
Native Libraries for
Maven projects and
adding telemetry

• Adding telemetry
to DynamoDB local

• Dynamically copy
SQLLite Native
Libraries for Maven
projects

• Removed io.github
.ganadist.sqlite4j
ava library from
Maven dependency

• Upgrading
GoogleGuava to
32.1.1-jre

October 23, 2023

1.23.0 Handle invalid access
and secret key while
server startup

• Fix for handling
invalid access and
secret key while
server startup

• Fixing Maven
identified vulnerabi
lities by updating
dependencies

June 28, 2023

1.22.0 Support of Limit
Operation for PartiQL

• Optimize IN clause
for PartiQL

• Support for Limit
Operation

• M1 support for
Maven projects

June 8, 2023

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 42

Amazon DynamoDB Developer Guide

Version Change Description Date

1.21.0 Support for 100
actions per transacti
on

• Increased actions
per transaction
from 25 to 100

• Upgrading docker
image Open JDK to
11

• Fixing the parity for
exception thrown
when duplicate
items in BatchExec
uteStatement

January 26, 2023

1.20.0 Added support for
M1 Mac

• Added support for
M1 Mac

• Upgrading Jetty
dependency to
9.4.48.v20220622

September 12, 2022

1.19.0 Upgraded the
PartiQL Parser

Upgraded the
PartiQL Parser and
other related libraries

July 27, 2022

1.18.0 Upgraded log4j-core
and Jackson-core

Upgraded log4j-
core to 2.17.1 and
Jackson-core 2.10.x
to 2.12.0

January 10, 2022

1.17.2 Upgraded log4j-core Upgraded log4j-cor
e dependency to
version 2.16

January 16, 2021

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 43

Amazon DynamoDB Developer Guide

Version Change Description Date

1.17.1 Upgraded log4j-core Updated log4j-core
dependency to patch
zero-day exploit to
prevent remote code
execution - Log4Shel

January 10, 2021

1.17.0 Deprecated Javascript
Web Shell

• Updated the
Amazon SDK
dependency to
Amazon SDK for
Java 1.12.x

• Deprecated
Javascript Web
Shell

January 8, 2021

Telemetry in DynamoDB local

At Amazon, we develop and launch services based on what we learn from interactions with
customers, and we use customer feedback to iterate on our products. Telemetry is additional
information that helps us to better understand our customers needs, diagnose issues, and deliver
features that improve the customer experience.

DynamoDB local collects telemetry, such as generic usage metrics, systems and environment
information, and errors. For details about the types of telemetry collected, see Types of
information collected.

DynamoDB local does not collect personal information, such as user names or email addresses. It
also does not extract sensitive project-level information.

As a customer, you control whether telemetry is turned on, and you can change your settings
at any point in time. If telemetry remains on, DynamoDB local sends telemetry data in the
background without requiring any additional customer interaction.

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 44

Amazon DynamoDB Developer Guide

Turn off telemetry using command line options

You can turn off telemetry using command line options when starting DynamoDB local using the
option -disableTelemetry. For more information, see Command line options .

Turn off telemetry for a single session

In macOS and Linux operating systems, you can turn off telemetry for a single session. To turn off
telemetry for your current session, run the following command to set the environment variable
DDB_LOCAL_TELEMETRY to false. Repeat the command for each new terminal or session.

export DDB_LOCAL_TELEMETRY=0

Turn off telemetry for your profile in all sessions

Run the following commands to turn off telemetry for all sessions when you're running DynamoDB
local on your operating system.

To turn off telemetry in Linux

1. Run:

echo "export DDB_LOCAL_TELEMETRY=0" >>~/.profile

2. Run:

source ~/.profile

To turn off telemetry in macOS

1. Run:

echo "export DDB_LOCAL_TELEMETRY=0" >>~/.profile

2. Run:

source ~/.profile

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 45

Amazon DynamoDB Developer Guide

To turn off telemetry in Windows

1. Run:

setx DDB_LOCAL_TELEMETRY 0

2. Run:

refreshenv

Turn off telemetry using DynamoDB local embedded on Maven projects

You can turn off telemetry using DynamoDB local embedded on Maven projects.

boolean disableTelemetry = true;
// AWS SDK v1
 AmazonDynamoDB amazonDynamoDB =
 DynamoDBEmbedded.create(disableTelemetry).amazonDynamoDB();

// AWS SDK v2
DynamoDbClient ddbClientSDKv2Local =
 DynamoDBEmbedded.create(disableTelemetry).dynamoDbClient();

Types of information collected

• Usage information — The generic telemetry like server start/stop and the API or Operation
called.

• System and environment information — The Java version, operating system (Windows, Linux or
macOS), the environment in which DynamoDB local runs (for example, Stand alone JAR, Docker
container, or as a Maven Dependency), and hash values of usage attributes.

Learn more

The telemetry data that DynamoDB local collects adheres to the Amazon data privacy policies. For
more information, see the following:

• Amazon service terms

• Data privacy FAQ

Setting up DynamoDB local (downloadable version) API Version 2012-08-10 46

https://www.amazonaws.cn/service-terms/
https://www.amazonaws.cn/compliance/data-privacy-faq/

Amazon DynamoDB Developer Guide

Step 1: Create a table in DynamoDB

In this step, you create a Music table in Amazon DynamoDB. The table has the following details:

• Partition key — Artist

• Sort key — SongTitle

For more information about table operations, see Working with tables and data in DynamoDB.

Note

Before you begin, make sure that you followed the steps in Prerequisites.

Amazon Web Services Management Console

To create a new Music table using the DynamoDB console:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. Choose Create table.

4. Enter the Table details as follows:

a. For Table name, enter Music.

b. For Partition key, enter Artist.

c. For Sort key, enter SongTitle.

5. For Table settings, keep the default selection of Default settings.

6. Choose Create table to create the table.

Step 1: Create a table API Version 2012-08-10 47

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

7. Once the table is in ACTIVE status, we recommend that you enable Point-in-time backups for
DynamoDB on the table by performing the following steps:

a. Choose the table name to open the table.

b. Choose Backups.

c. Choose Edit in the Point-in-time recovery (PITR) section.

d. On the Edit point-in-time recovery settings page, choose Turn on point-in-time
recovery.

e. Choose Save changes.

Amazon CLI

The following Amazon CLI example creates a new Music table using create-table.

Linux

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \

Step 1: Create a table API Version 2012-08-10 48

Amazon DynamoDB Developer Guide

 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --table-class STANDARD

Windows CMD

aws dynamodb create-table ^
 --table-name Music ^
 --attribute-definitions ^
 AttributeName=Artist,AttributeType=S ^
 AttributeName=SongTitle,AttributeType=S ^
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE ^
 --billing-mode PAY_PER_REQUEST ^
 --table-class STANDARD

Using create-table returns the following sample result.

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "Music",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",

Step 1: Create a table API Version 2012-08-10 49

Amazon DynamoDB Developer Guide

 "CreationDateTime": "2023-03-29T12:11:43.379000-04:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-east-1:111122223333:table/Music",
 "TableId": "60abf404-1839-4917-a89b-a8b0ab2a1b87",
 "TableClassSummary": {
 "TableClass": "STANDARD"
 }
 }
}
}

Note that the value of the TableStatus field is set to CREATING.

To verify that DynamoDB has finished creating the Music table, use the describe-table
command.

Linux

 aws dynamodb describe-table --table-name Music | grep TableStatus

Windows CMD

 aws dynamodb describe-table --table-name Music | findstr TableStatus

This command returns the following result. When DynamoDB finishes creating the table, the value
of the TableStatus field is set to ACTIVE.

"TableStatus": "ACTIVE",

Once the table is in ACTIVE status, it's considered best practice to enable Point-in-time backups for
DynamoDB on the table by running the following command:

Linux

Step 1: Create a table API Version 2012-08-10 50

Amazon DynamoDB Developer Guide

aws dynamodb update-continuous-backups \
 --table-name Music \
 --point-in-time-recovery-specification \
 PointInTimeRecoveryEnabled=true

Windows CMD

aws dynamodb update-continuous-backups --table-name Music --point-in-time-recovery-
specification PointInTimeRecoveryEnabled=true

This command returns the following result.

{
 "ContinuousBackupsDescription": {
 "ContinuousBackupsStatus": "ENABLED",
 "PointInTimeRecoveryDescription": {
 "PointInTimeRecoveryStatus": "ENABLED",
 "EarliestRestorableDateTime": "2023-03-29T12:18:19-04:00",
 "LatestRestorableDateTime": "2023-03-29T12:18:19-04:00"
 }
 }
}

Note

There are cost implications to enabling continuous backups with point-in-time recovery. For
more information about pricing, see Amazon DynamoDB pricing.

Amazon SDK

The following code examples show how to create a DynamoDB table using an Amazon SDK.

Step 1: Create a table API Version 2012-08-10 51

https://aws.amazon.com/dynamodb/pricing

Amazon DynamoDB Developer Guide

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Creates a new Amazon DynamoDB table and then waits for the new
 /// table to become active.
 /// </summary>
 /// <param name="tableName">The name of the table to create.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> CreateMovieTableAsync(string tableName)
 {
 try
 {
 var response = await _amazonDynamoDB.CreateTableAsync(new
 CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "title",
 AttributeType = ScalarAttributeType.S,
 },
 new AttributeDefinition
 {
 AttributeName = "year",
 AttributeType = ScalarAttributeType.N,
 },
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement

Step 1: Create a table API Version 2012-08-10 52

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 {
 AttributeName = "year",
 KeyType = KeyType.HASH,
 },
 new KeySchemaElement
 {
 AttributeName = "title",
 KeyType = KeyType.RANGE,
 },
 },
 BillingMode = BillingMode.PAY_PER_REQUEST,
 });

 // Wait until the table is ACTIVE and then report success.
 Console.Write("Waiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = response.TableDescription.TableName,
 };

 TableStatus status;

 int sleepDuration = 2000;

 do
 {
 Thread.Sleep(sleepDuration);

 var describeTableResponse = await
 _amazonDynamoDB.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException ex)
 {
 Console.WriteLine($"Table {tableName} already exists. {ex.Message}");
 throw;
 }

Step 1: Create a table API Version 2012-08-10 53

Amazon DynamoDB Developer Guide

 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while creating
 table {tableName}. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating table
 {tableName}. {ex.Message}");
 throw;
 }
 }

• For API details, see CreateTable in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_create_table
#
This function creates an Amazon DynamoDB table.
#
Parameters:
-n table_name -- The name of the table to create.
-a attribute_definitions -- JSON file path of a list of attributes and
 their types.
-k key_schema -- JSON file path of a list of attributes and their key
 types.
#
Returns:
0 - If successful.

Step 1: Create a table API Version 2012-08-10 54

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

1 - If it fails.
###
function dynamodb_create_table() {
 local table_name attribute_definitions key_schema response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_create_table"
 echo "Creates an Amazon DynamoDB table with on-demand billing."
 echo " -n table_name -- The name of the table to create."
 echo " -a attribute_definitions -- JSON file path of a list of attributes and
 their types."
 echo " -k key_schema -- JSON file path of a list of attributes and their key
 types."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:a:k:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 a) attribute_definitions="${OPTARG}" ;;
 k) key_schema="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

Step 1: Create a table API Version 2012-08-10 55

Amazon DynamoDB Developer Guide

 if [[-z "$attribute_definitions"]]; then
 errecho "ERROR: You must provide an attribute definitions json file path the
 -a parameter."
 usage
 return 1
 fi

 if [[-z "$key_schema"]]; then
 errecho "ERROR: You must provide a key schema json file path the -k
 parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " attribute_definitions: $attribute_definitions"
 iecho " key_schema: $key_schema"
 iecho ""

 response=$(aws dynamodb create-table \
 --table-name "$table_name" \
 --attribute-definitions file://"$attribute_definitions" \
 --billing-mode PAY_PER_REQUEST \
 --key-schema file://"$key_schema")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-table operation failed.$response"
 return 1
 fi

 return 0
}

The utility functions used in this example.

###
function iecho

Step 1: Create a table API Version 2012-08-10 56

Amazon DynamoDB Developer Guide

#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then

Step 1: Create a table API Version 2012-08-10 57

Amazon DynamoDB Developer Guide

 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see CreateTable in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Create an Amazon DynamoDB table.
/*!
 \sa createTable()
 \param tableName: Name for the DynamoDB table.
 \param primaryKey: Primary key for the DynamoDB table.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::createTable(const Aws::String &tableName,
 const Aws::String &primaryKey,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 std::cout << "Creating table " << tableName <<
 " with a simple primary key: \"" << primaryKey << "\"." <<
 std::endl;

Step 1: Create a table API Version 2012-08-10 58

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::CreateTableRequest request;

 Aws::DynamoDB::Model::AttributeDefinition hashKey;
 hashKey.SetAttributeName(primaryKey);
 hashKey.SetAttributeType(Aws::DynamoDB::Model::ScalarAttributeType::S);
 request.AddAttributeDefinitions(hashKey);

 Aws::DynamoDB::Model::KeySchemaElement keySchemaElement;
 keySchemaElement.WithAttributeName(primaryKey).WithKeyType(
 Aws::DynamoDB::Model::KeyType::HASH);
 request.AddKeySchema(keySchemaElement);

 Aws::DynamoDB::Model::ProvisionedThroughput throughput;
 throughput.WithReadCapacityUnits(5).WithWriteCapacityUnits(5);
 request.SetProvisionedThroughput(throughput);
 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::CreateTableOutcome &outcome =
 dynamoClient.CreateTable(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Table \""
 << outcome.GetResult().GetTableDescription().GetTableName() <<
 " created!" << std::endl;
 }
 else {
 std::cerr << "Failed to create table: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.

Step 1: Create a table API Version 2012-08-10 59

Amazon DynamoDB Developer Guide

 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see CreateTable in Amazon SDK for C++ API Reference.

Step 1: Create a table API Version 2012-08-10 60

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

CLI

Amazon CLI

Example 1: To create a table with tags

The following create-table example uses the specified attributes and key schema to
create a table named MusicCollection. This table uses provisioned throughput and is
encrypted at rest using the default Amazon owned CMK. The command also applies a tag to
the table, with a key of Owner and a value of blueTeam.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --tags Key=Owner,Value=blueTeam

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "TableName": "MusicCollection",
 "TableStatus": "CREATING",

Step 1: Create a table API Version 2012-08-10 61

Amazon DynamoDB Developer Guide

 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Artist"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": "2020-05-26T16:04:41.627000-07:00",
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 2: To create a table in On-Demand Mode

The following example creates a table called MusicCollection using on-demand mode,
rather than provisioned throughput mode. This is useful for tables with unpredictable
workloads.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",

Step 1: Create a table API Version 2012-08-10 62

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T11:44:10.807000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 0,
 "WriteCapacityUnits": 0
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "BillingModeSummary": {
 "BillingMode": "PAY_PER_REQUEST"
 }
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 3: To create a table and encrypt it with a Customer Managed CMK

The following example creates a table named MusicCollection and encrypts it using a
customer managed CMK.

Step 1: Create a table API Version 2012-08-10 63

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-
abcd-1234-a123-ab1234a1b234

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T11:12:16.431000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },

Step 1: Create a table API Version 2012-08-10 64

Amazon DynamoDB Developer Guide

 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "SSEDescription": {
 "Status": "ENABLED",
 "SSEType": "KMS",
 "KMSMasterKeyArn": "arn:aws:kms:us-west-2:123456789012:key/abcd1234-
abcd-1234-a123-ab1234a1b234"
 }
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 4: To create a table with a Local Secondary Index

The following example uses the specified attributes and key schema to create a table named
MusicCollection with a Local Secondary Index named AlbumTitleIndex.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S AttributeName=AlbumTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --local-secondary-indexes \
 "[
 {
 \"IndexName\": \"AlbumTitleIndex\",
 \"KeySchema\": [
 {\"AttributeName\": \"Artist\",\"KeyType\":\"HASH\"},
 {\"AttributeName\": \"AlbumTitle\",\"KeyType\":\"RANGE\"}
],
 \"Projection\": {
 \"ProjectionType\": \"INCLUDE\",
 \"NonKeyAttributes\": [\"Genre\", \"Year\"]
 }
 }

Step 1: Create a table API Version 2012-08-10 65

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

]"

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",

Step 1: Create a table API Version 2012-08-10 66

Amazon DynamoDB Developer Guide

 "LocalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "Genre",
 "Year"
]
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitleIndex"
 }
]
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 5: To create a table with a Global Secondary Index

The following example creates a table named GameScores with a Global Secondary Index
called GameTitleIndex. The base table has a partition key of UserId and a sort key
of GameTitle, allowing you to find an individual user's best score for a specific game
efficiently, whereas the GSI has a partition key of GameTitle and a sort key of TopScore,
allowing you to quickly find the overall highest score for a particular game.

aws dynamodb create-table \
 --table-name GameScores \

Step 1: Create a table API Version 2012-08-10 67

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S AttributeName=TopScore,AttributeType=N
 \
 --key-schema AttributeName=UserId,KeyType=HASH \
 AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"GameTitleIndex\",
 \"KeySchema\": [
 {\"AttributeName\":\"GameTitle\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"TopScore\",\"KeyType\":\"RANGE\"}
],
 \"Projection\": {
 \"ProjectionType\":\"INCLUDE\",
 \"NonKeyAttributes\":[\"UserId\"]
 },
 \"ProvisionedThroughput\": {
 \"ReadCapacityUnits\": 10,
 \"WriteCapacityUnits\": 5
 }
 }
]"

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],

Step 1: Create a table API Version 2012-08-10 68

Amazon DynamoDB Developer Guide

 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-26T17:28:15.602000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "UserId"
]
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,

Step 1: Create a table API Version 2012-08-10 69

Amazon DynamoDB Developer Guide

 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameTitleIndex"
 }
]
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 6: To create a table with multiple Global Secondary Indexes at once

The following example creates a table named GameScores with two Global Secondary
Indexes. The GSI schemas are passed via a file, rather than on the command line.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S AttributeName=TopScore,AttributeType=N AttributeName=Date,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --global-secondary-indexes file://gsi.json

Contents of gsi.json:

[
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",

Step 1: Create a table API Version 2012-08-10 70

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 }
 },
 {
 "IndexName": "GameDateIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Date",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 }
 }
]

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Date",
 "AttributeType": "S"
 },
 {

Step 1: Create a table API Version 2012-08-10 71

Amazon DynamoDB Developer Guide

 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-08-04T16:40:55.524000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",

Step 1: Create a table API Version 2012-08-10 72

Amazon DynamoDB Developer Guide

 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameTitleIndex"
 },
 {
 "IndexName": "GameDateIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Date",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameDateIndex"
 }
]

Step 1: Create a table API Version 2012-08-10 73

Amazon DynamoDB Developer Guide

 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 7: To create a table with Streams enabled

The following example creates a table called GameScores with DynamoDB Streams
enabled. Both new and old images of each item will be written to the stream.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=TRUE,StreamViewType=NEW_AND_OLD_IMAGES

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",

Step 1: Create a table API Version 2012-08-10 74

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T10:49:34.056000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "LatestStreamLabel": "2020-05-27T17:49:34.056",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/2020-05-27T17:49:34.056"
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 8: To create a table with Keys-Only Stream enabled

The following example creates a table called GameScores with DynamoDB Streams
enabled. Only the key attributes of modified items are written to the stream.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=TRUE,StreamViewType=KEYS_ONLY

Output:

Step 1: Create a table API Version 2012-08-10 75

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T18:45:34.140000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "KEYS_ONLY"
 },
 "LatestStreamLabel": "2023-05-25T18:45:34.140",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/2023-05-25T18:45:34.140",
 "DeletionProtectionEnabled": false
 }

Step 1: Create a table API Version 2012-08-10 76

Amazon DynamoDB Developer Guide

}

For more information, see Change data capture for DynamoDB Streams in the Amazon
DynamoDB Developer Guide.

Example 9: To create a table with the Standard Infrequent Access class

The following example creates a table called GameScores and assigns the Standard-
Infrequent Access (DynamoDB Standard-IA) table class. This table class is optimized for
storage being the dominant cost.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --table-class STANDARD_INFREQUENT_ACCESS

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {

Step 1: Create a table API Version 2012-08-10 77

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

Amazon DynamoDB Developer Guide

 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T18:33:07.581000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "TableClassSummary": {
 "TableClass": "STANDARD_INFREQUENT_ACCESS"
 },
 "DeletionProtectionEnabled": false
 }
}

For more information, see Table classes in the Amazon DynamoDB Developer Guide.

Example 10: To Create a table with Delete Protection enabled

The following example creates a table called GameScores and enables deletion protection.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --deletion-protection-enabled

Output:

{
 "TableDescription": {

Step 1: Create a table API Version 2012-08-10 78

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.TableClasses.html

Amazon DynamoDB Developer Guide

 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T23:02:17.093000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeletionProtectionEnabled": true
 }
}

For more information, see Using deletion protection in the Amazon DynamoDB Developer
Guide.

• For API details, see CreateTable in Amazon CLI Command Reference.

Step 1: Create a table API Version 2012-08-10 79

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.DeletionProtection
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/create-table.html

Amazon DynamoDB Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// CreateMovieTable creates a DynamoDB table with a composite primary key defined
 as
// a string sort key named `title`, and a numeric partition key named `year`.
// This function uses NewTableExistsWaiter to wait for the table to be created by
// DynamoDB before it returns.
func (basics TableBasics) CreateMovieTable(ctx context.Context)
 (*types.TableDescription, error) {

Step 1: Create a table API Version 2012-08-10 80

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 var tableDesc *types.TableDescription
 table, err := basics.DynamoDbClient.CreateTable(ctx, &dynamodb.CreateTableInput{
 AttributeDefinitions: []types.AttributeDefinition{{
 AttributeName: aws.String("year"),
 AttributeType: types.ScalarAttributeTypeN,
 }, {
 AttributeName: aws.String("title"),
 AttributeType: types.ScalarAttributeTypeS,
 }},
 KeySchema: []types.KeySchemaElement{{
 AttributeName: aws.String("year"),
 KeyType: types.KeyTypeHash,
 }, {
 AttributeName: aws.String("title"),
 KeyType: types.KeyTypeRange,
 }},
 TableName: aws.String(basics.TableName),
 BillingMode: types.BillingModePayPerRequest,
 })
 if err != nil {
 log.Printf("Couldn't create table %v. Here's why: %v\n", basics.TableName, err)
 } else {
 waiter := dynamodb.NewTableExistsWaiter(basics.DynamoDbClient)
 err = waiter.Wait(ctx, &dynamodb.DescribeTableInput{
 TableName: aws.String(basics.TableName)}, 5*time.Minute)
 if err != nil {
 log.Printf("Wait for table exists failed. Here's why: %v\n", err)
 }
 tableDesc = table.TableDescription
 log.Printf("Ccreating table test")
 }
 return tableDesc, err
}

• For API details, see CreateTable in Amazon SDK for Go API Reference.

Step 1: Create a table API Version 2012-08-10 81

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.CreateTable

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.BillingMode;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.OnDemandThroughput;
import software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughput;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.waiters.DynamoDbWaiter;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 * <p>
 * For more information, see the following documentation topic:
 * <p>
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:

Step 1: Create a table API Version 2012-08-10 82

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 <tableName> <key>

 Where:
 tableName - The Amazon DynamoDB table to create (for example,
 Music3).
 key - The key for the Amazon DynamoDB table (for example,
 Artist).
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 System.out.println("Creating an Amazon DynamoDB table " + tableName + "
 with a simple primary key: " + key);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 String result = createTable(ddb, tableName, key);
 System.out.println("New table is " + result);
 ddb.close();
 }

 public static String createTable(DynamoDbClient ddb, String tableName, String
 key) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 CreateTableRequest request = CreateTableRequest.builder()
 .attributeDefinitions(AttributeDefinition.builder()
 .attributeName(key)
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(KeySchemaElement.builder()
 .attributeName(key)
 .keyType(KeyType.HASH)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .tableName(tableName)
 .build();

Step 1: Create a table API Version 2012-08-10 83

Amazon DynamoDB Developer Guide

 String newTable;
 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 newTable = response.tableDescription().tableName();
 return newTable;

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateTable in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { CreateTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new CreateTableCommand({

Step 1: Create a table API Version 2012-08-10 84

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 TableName: "EspressoDrinks",
 // For more information about data types,
 // see https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes and
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeDefinitions: [
 {
 AttributeName: "DrinkName",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "DrinkName",
 KeyType: "HASH",
 },
],
 BillingMode: "PAY_PER_REQUEST",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateTable in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Step 1: Create a table API Version 2012-08-10 85

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 AttributeDefinitions: [
 {
 AttributeName: "CUSTOMER_ID",
 AttributeType: "N",
 },
 {
 AttributeName: "CUSTOMER_NAME",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "CUSTOMER_ID",
 KeyType: "HASH",
 },
 {
 AttributeName: "CUSTOMER_NAME",
 KeyType: "RANGE",
 },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 TableName: "CUSTOMER_LIST",
 StreamSpecification: {
 StreamEnabled: false,
 },
};

// Call DynamoDB to create the table
ddb.createTable(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Table Created", data);
 }
});

Step 1: Create a table API Version 2012-08-10 86

Amazon DynamoDB Developer Guide

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateTable in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun createNewTable(
 tableNameVal: String,
 key: String,
): String? {
 val attDef =
 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef)
 keySchema = listOf(keySchemaVal)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 var tableArn: String

Step 1: Create a table API Version 2012-08-10 87

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {
 // suspend call
 tableName = tableNameVal
 }
 tableArn = response.tableDescription!!.tableArn.toString()
 println("Table $tableArn is ready")
 return tableArn
 }
}

• For API details, see CreateTable in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a table.

 $tableName = "ddb_demo_table_$uuid";
 $service->createTable(
 $tableName,
 [
 new DynamoDBAttribute('year', 'N', 'HASH'),
 new DynamoDBAttribute('title', 'S', 'RANGE')
]
);

 public function createTable(string $tableName, array $attributes)
 {
 $keySchema = [];
 $attributeDefinitions = [];
 foreach ($attributes as $attribute) {
 if (is_a($attribute, DynamoDBAttribute::class)) {

Step 1: Create a table API Version 2012-08-10 88

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $keySchema[] = ['AttributeName' => $attribute->AttributeName,
 'KeyType' => $attribute->KeyType];
 $attributeDefinitions[] =
 ['AttributeName' => $attribute->AttributeName,
 'AttributeType' => $attribute->AttributeType];
 }
 }

 $this->dynamoDbClient->createTable([
 'TableName' => $tableName,
 'KeySchema' => $keySchema,
 'AttributeDefinitions' => $attributeDefinitions,
 'ProvisionedThroughput' => ['ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 10],
]);
 }

• For API details, see CreateTable in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). The schema used to
construct the table can be piped into each cmdlet as shown or specified using the -
Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyType RANGE -KeyDataType "S"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription

Step 1: Create a table API Version 2012-08-10 89

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {}

Example 2: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). A local secondary index
is also defined. The key of the local secondary index will be set automatically from the
primary hash key on the table (ForumName). The schema used to construct the table can
be piped into each cmdlet as shown or specified using the -Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S"
$schema | Add-DDBIndexSchema -IndexName "LastPostIndex" -RangeKeyName
 "LastPostDateTime" -RangeKeyDataType "S" -ProjectionType "keys_only"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

Example 3: This example shows how to use a single pipeline to create a table named
Thread that has a primary key consisting of 'ForumName' (key type hash) and
'Subject' (key type range) and a local secondary index. The Add-DDBKeySchema and
Add-DDBIndexSchema create a new TableSchema object for you if one is not supplied
from the pipeline or the -Schema parameter.

New-DDBTableSchema |
 Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S" |
 Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S" |
 Add-DDBIndexSchema -IndexName "LastPostIndex" `
 -RangeKeyName "LastPostDateTime" `

Step 1: Create a table API Version 2012-08-10 90

Amazon DynamoDB Developer Guide

 -RangeKeyDataType "S" `
 -ProjectionType "keys_only" |
 New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

• For API details, see CreateTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). The schema used to
construct the table can be piped into each cmdlet as shown or specified using the -
Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyType RANGE -KeyDataType "S"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {}

Step 1: Create a table API Version 2012-08-10 91

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Example 2: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). A local secondary index
is also defined. The key of the local secondary index will be set automatically from the
primary hash key on the table (ForumName). The schema used to construct the table can
be piped into each cmdlet as shown or specified using the -Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S"
$schema | Add-DDBIndexSchema -IndexName "LastPostIndex" -RangeKeyName
 "LastPostDateTime" -RangeKeyDataType "S" -ProjectionType "keys_only"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

Example 3: This example shows how to use a single pipeline to create a table named
Thread that has a primary key consisting of 'ForumName' (key type hash) and
'Subject' (key type range) and a local secondary index. The Add-DDBKeySchema and
Add-DDBIndexSchema create a new TableSchema object for you if one is not supplied
from the pipeline or the -Schema parameter.

New-DDBTableSchema |
 Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S" |
 Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S" |
 Add-DDBIndexSchema -IndexName "LastPostIndex" `
 -RangeKeyName "LastPostDateTime" `
 -RangeKeyDataType "S" `
 -ProjectionType "keys_only" |
 New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

Step 1: Create a table API Version 2012-08-10 92

Amazon DynamoDB Developer Guide

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

• For API details, see CreateTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a table for storing movie data.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",

Step 1: Create a table API Version 2012-08-10 93

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def create_table(self, table_name):
 """
 Creates an Amazon DynamoDB table that can be used to store movie data.
 The table uses the release year of the movie as the partition key and the
 title as the sort key.

 :param table_name: The name of the table to create.
 :return: The newly created table.
 """
 try:
 self.table = self.dyn_resource.create_table(
 TableName=table_name,
 KeySchema=[
 {"AttributeName": "year", "KeyType": "HASH"}, # Partition
 key
 {"AttributeName": "title", "KeyType": "RANGE"}, # Sort key
],
 AttributeDefinitions=[
 {"AttributeName": "year", "AttributeType": "N"},
 {"AttributeName": "title", "AttributeType": "S"},
],
 BillingMode='PAY_PER_REQUEST',
)
 self.table.wait_until_exists()
 except ClientError as err:
 logger.error(
 "Couldn't create table %s. Here's why: %s: %s",
 table_name,

Step 1: Create a table API Version 2012-08-10 94

Amazon DynamoDB Developer Guide

 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return self.table

• For API details, see CreateTable in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Creates an Amazon DynamoDB table that can be used to store movie data.
 # The table uses the release year of the movie as the partition key and the
 # title as the sort key.
 #
 # @param table_name [String] The name of the table to create.
 # @return [Aws::DynamoDB::Table] The newly created table.
 def create_table(table_name)
 @table = @dynamo_resource.create_table(

Step 1: Create a table API Version 2012-08-10 95

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 table_name: table_name,
 key_schema: [
 { attribute_name: 'year', key_type: 'HASH' }, # Partition key
 { attribute_name: 'title', key_type: 'RANGE' } # Sort key
],
 attribute_definitions: [
 { attribute_name: 'year', attribute_type: 'N' },
 { attribute_name: 'title', attribute_type: 'S' }
],
 billing_mode: 'PAY_PER_REQUEST'
)
 @dynamo_resource.client.wait_until(:table_exists, table_name: table_name)
 @table
 rescue Aws::DynamoDB::Errors::ServiceError => e
 @logger.error("Failed create table #{table_name}:\n#{e.code}: #{e.message}")
 raise
 end

• For API details, see CreateTable in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn create_table(
 client: &Client,
 table: &str,
 key: &str,
) -> Result<CreateTableOutput, Error> {
 let a_name: String = key.into();
 let table_name: String = table.into();

 let ad = AttributeDefinition::builder()
 .attribute_name(&a_name)
 .attribute_type(ScalarAttributeType::S)

Step 1: Create a table API Version 2012-08-10 96

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 .build()
 .map_err(Error::BuildError)?;

 let ks = KeySchemaElement::builder()
 .attribute_name(&a_name)
 .key_type(KeyType::Hash)
 .build()
 .map_err(Error::BuildError)?;

 let create_table_response = client
 .create_table()
 .table_name(table_name)
 .key_schema(ks)
 .attribute_definitions(ad)
 .billing_mode(BillingMode::PayPerRequest)
 .send()
 .await;

 match create_table_response {
 Ok(out) => {
 println!("Added table {} with key {}", table, key);
 Ok(out)
 }
 Err(e) => {
 eprintln!("Got an error creating table:");
 eprintln!("{}", e);
 Err(Error::unhandled(e))
 }
 }
}

• For API details, see CreateTable in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Step 1: Create a table API Version 2012-08-10 97

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.create_table
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 TRY.
 DATA(lt_keyschema) = VALUE /aws1/cl_dynkeyschemaelement=>tt_keyschema(
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'year'
 iv_keytype = 'HASH'))
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'title'
 iv_keytype = 'RANGE'))).
 DATA(lt_attributedefinitions) = VALUE /aws1/
cl_dynattributedefn=>tt_attributedefinitions(
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'year'
 iv_attributetype = 'N'))
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'title'
 iv_attributetype = 'S'))).

 " Adjust read/write capacities as desired.
 DATA(lo_dynprovthroughput) = NEW /aws1/cl_dynprovthroughput(
 iv_readcapacityunits = 5
 iv_writecapacityunits = 5).
 oo_result = lo_dyn->createtable(
 it_keyschema = lt_keyschema
 iv_tablename = iv_table_name
 it_attributedefinitions = lt_attributedefinitions
 io_provisionedthroughput = lo_dynprovthroughput).
 " Table creation can take some time. Wait till table exists before
 returning.
 lo_dyn->get_waiter()->tableexists(
 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'DynamoDB Table' && iv_table_name && 'created.' TYPE 'I'.
 " This exception can happen if the table already exists.
 CATCH /aws1/cx_dynresourceinuseex INTO DATA(lo_resourceinuseex).
 DATA(lv_error) = |"{ lo_resourceinuseex->av_err_code }" -
 { lo_resourceinuseex->av_err_msg }|.
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

• For API details, see CreateTable in Amazon SDK for SAP ABAP API reference.

Step 1: Create a table API Version 2012-08-10 98

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon DynamoDB Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 ///
 /// Create a movie table in the Amazon DynamoDB data store.
 ///
 private func createTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = CreateTableInput(
 attributeDefinitions: [
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "year", attributeType: .n),
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "title", attributeType: .s)
],
 billingMode: DynamoDBClientTypes.BillingMode.payPerRequest,
 keySchema: [
 DynamoDBClientTypes.KeySchemaElement(attributeName: "year",
 keyType: .hash),
 DynamoDBClientTypes.KeySchemaElement(attributeName: "title",
 keyType: .range)
],
 tableName: self.tableName
)
 let output = try await client.createTable(input: input)
 if output.tableDescription == nil {
 throw MoviesError.TableNotFound
 }

Step 1: Create a table API Version 2012-08-10 99

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 } catch {
 print("ERROR: createTable:", dump(error))
 throw error
 }
 }

• For API details, see CreateTable in Amazon SDK for Swift API reference.

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

After creating the new table, proceed to Step 2: Write data to a DynamoDB table.

Step 2: Write data to a DynamoDB table

In this step, you insert several items into the Music table that you created in Step 1: Create a table
in DynamoDB.

For more information about write operations, see Writing an item.

Amazon Web Services Management Console

Follow these steps to write data to the Music table using the DynamoDB console.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. On the Tables page, choose the Music table.

4. Choose Explore table items.

5. In the Items returned section, choose Create item.

6. On the Create item page, do the following to add items to your table:

a. Choose Add new attribute, and then choose Number.

b. For Attribute name, enter Awards.

c. Repeat this process to create an AlbumTitle of type String.

d. Enter the following values for your item:

i. For Artist, enter No One You Know.

Step 2: Write data API Version 2012-08-10 100

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/createtable(input:)
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

ii. For SongTitle, enter Call Me Today.

iii. For AlbumTitle, enter Somewhat Famous.

iv. For Awards, enter 1.

7. Choose Create item.

8. Repeat this process and create another item with the following values:

a. For Artist, enter Acme Band.

b. For SongTitle enter Happy Day.

c. For AlbumTitle, enter Songs About Life.

d. For Awards, enter 10.

9. Do this one more time to create another item with the same Artist as the previous step, but
different values for the other attributes:

a. For Artist, enter Acme Band.

b. For SongTitle enter PartiQL Rocks.

c. For AlbumTitle, enter Another Album Title.

d. For Awards, enter 8.

Amazon CLI

The following Amazon CLI example creates several new items in the Music table. You can do this
either through the DynamoDB API or PartiQL, a SQL-compatible query language for DynamoDB.

DynamoDB API

Linux

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "No One You Know"}, "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Somewhat Famous"}, "Awards": {"N": "1"}}'

aws dynamodb put-item \
 --table-name Music \
 --item \

Step 2: Write data API Version 2012-08-10 101

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 '{"Artist": {"S": "No One You Know"}, "SongTitle": {"S": "Howdy"},
 "AlbumTitle": {"S": "Somewhat Famous"}, "Awards": {"N": "2"}}'

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "Acme Band"}, "SongTitle": {"S": "Happy Day"},
 "AlbumTitle": {"S": "Songs About Life"}, "Awards": {"N": "10"}}'

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "Acme Band"}, "SongTitle": {"S": "PartiQL Rocks"},
 "AlbumTitle": {"S": "Another Album Title"}, "Awards": {"N": "8"}}'

Windows CMD

aws dynamodb put-item ^
 --table-name Music ^
 --item ^
 "{\"Artist\": {\"S\": \"No One You Know\"}, \"SongTitle\": {\"S\": \"Call
 Me Today\"}, \"AlbumTitle\": {\"S\": \"Somewhat Famous\"}, \"Awards\": {\"N\":
 \"1\"}}"

aws dynamodb put-item ^
 --table-name Music ^
 --item ^
 "{\"Artist\": {\"S\": \"No One You Know\"}, \"SongTitle\": {\"S\": \"Howdy
\"}, \"AlbumTitle\": {\"S\": \"Somewhat Famous\"}, \"Awards\": {\"N\": \"2\"}}"

aws dynamodb put-item ^
 --table-name Music ^
 --item ^
 "{\"Artist\": {\"S\": \"Acme Band\"}, \"SongTitle\": {\"S\": \"Happy Day\"},
 \"AlbumTitle\": {\"S\": \"Songs About Life\"}, \"Awards\": {\"N\": \"10\"}}"

aws dynamodb put-item ^
 --table-name Music ^
 --item ^
 "{\"Artist\": {\"S\": \"Acme Band\"}, \"SongTitle\": {\"S\": \"PartiQL Rocks
\"}, \"AlbumTitle\": {\"S\": \"Another Album Title\"}, \"Awards\": {\"N\": \"8\"}}"

Step 2: Write data API Version 2012-08-10 102

Amazon DynamoDB Developer Guide

PartiQL for DynamoDB

Linux

aws dynamodb execute-statement --statement "INSERT INTO Music \
 VALUE \
 {'Artist':'No One You Know','SongTitle':'Call Me Today',
 'AlbumTitle':'Somewhat Famous', 'Awards':'1'}"

aws dynamodb execute-statement --statement "INSERT INTO Music \
 VALUE \
 {'Artist':'No One You Know','SongTitle':'Howdy',
 'AlbumTitle':'Somewhat Famous', 'Awards':'2'}"

aws dynamodb execute-statement --statement "INSERT INTO Music \
 VALUE \
 {'Artist':'Acme Band','SongTitle':'Happy Day', 'AlbumTitle':'Songs
 About Life', 'Awards':'10'}"

aws dynamodb execute-statement --statement "INSERT INTO Music \
 VALUE \
 {'Artist':'Acme Band','SongTitle':'PartiQL Rocks',
 'AlbumTitle':'Another Album Title', 'Awards':'8'}"

Windows CMD

aws dynamodb execute-statement --statement "INSERT INTO Music VALUE {'Artist':'No
 One You Know','SongTitle':'Call Me Today', 'AlbumTitle':'Somewhat Famous',
 'Awards':'1'}"

aws dynamodb execute-statement --statement "INSERT INTO Music VALUE {'Artist':'No
 One You Know','SongTitle':'Howdy', 'AlbumTitle':'Somewhat Famous', 'Awards':'2'}"

aws dynamodb execute-statement --statement "INSERT INTO Music VALUE {'Artist':'Acme
 Band','SongTitle':'Happy Day', 'AlbumTitle':'Songs About Life', 'Awards':'10'}"

aws dynamodb execute-statement --statement "INSERT INTO Music VALUE {'Artist':'Acme
 Band','SongTitle':'PartiQL Rocks', 'AlbumTitle':'Another Album Title',
 'Awards':'8'}"

For more information about writing data with PartiQL, see PartiQL insert statements.

Step 2: Write data API Version 2012-08-10 103

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.insert.html

Amazon DynamoDB Developer Guide

For more information about supported data types in DynamoDB, see Data types.

For more information about how to represent DynamoDB data types in JSON, see Attribute values.

Amazon SDK

The following code examples show how to write an item to a DynamoDB table using an Amazon
SDK.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Adds a new item to the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing informtation for
 /// the movie to add to the table.</param>
 /// <param name="tableName">The name of the table where the item will be
 added.</param>
 /// <returns>A Boolean value that indicates the results of adding the item.</
returns>
 public async Task<bool> PutItemAsync(Movie newMovie, string tableName)
 {
 try
 {
 var item = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = item,

Step 2: Write data API Version 2012-08-10 104

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_AttributeValue.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 };

 await _amazonDynamoDB.PutItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while putting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while putting item.
 {ex.Message}");
 throw;
 }
 }

• For API details, see PutItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_put_item
#
This function puts an item into a DynamoDB table.

Step 2: Write data API Version 2012-08-10 105

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

#
Parameters:
-n table_name -- The name of the table.
-i item -- Path to json file containing the item values.
#
Returns:
0 - If successful.
1 - If it fails.
##
function dynamodb_put_item() {
 local table_name item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_put_item"
 echo "Put an item into a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -i item -- Path to json file containing the item values."
 echo ""
 }

 while getopts "n:i:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 i) item="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage

Step 2: Write data API Version 2012-08-10 106

Amazon DynamoDB Developer Guide

 return 1
 fi

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " item: $item"
 iecho ""
 iecho ""

 response=$(aws dynamodb put-item \
 --table-name "$table_name" \
 --item file://"$item")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports put-item operation failed.$response"
 return 1
 fi

 return 0

}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"

Step 2: Write data API Version 2012-08-10 107

Amazon DynamoDB Developer Guide

 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."

Step 2: Write data API Version 2012-08-10 108

Amazon DynamoDB Developer Guide

 fi

 return 0
}

• For API details, see PutItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Put an item in an Amazon DynamoDB table.
/*!
 \sa putItem()
 \param tableName: The table name.
 \param artistKey: The artist key. This is the partition key for the table.
 \param artistValue: The artist value.
 \param albumTitleKey: The album title key.
 \param albumTitleValue: The album title value.
 \param awardsKey: The awards key.
 \param awardsValue: The awards value.
 \param songTitleKey: The song title key.
 \param songTitleValue: The song title value.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::putItem(const Aws::String &tableName,
 const Aws::String &artistKey,
 const Aws::String &artistValue,
 const Aws::String &albumTitleKey,
 const Aws::String &albumTitleValue,
 const Aws::String &awardsKey,
 const Aws::String &awardsValue,
 const Aws::String &songTitleKey,
 const Aws::String &songTitleValue,

Step 2: Write data API Version 2012-08-10 109

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::PutItemRequest putItemRequest;
 putItemRequest.SetTableName(tableName);

 putItemRequest.AddItem(artistKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(
 artistValue)); // This is the hash key.
 putItemRequest.AddItem(albumTitleKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(
 albumTitleValue));
 putItemRequest.AddItem(awardsKey,

 Aws::DynamoDB::Model::AttributeValue().SetS(awardsValue));
 putItemRequest.AddItem(songTitleKey,

 Aws::DynamoDB::Model::AttributeValue().SetS(songTitleValue));

 const Aws::DynamoDB::Model::PutItemOutcome outcome = dynamoClient.PutItem(
 putItemRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully added Item!" << std::endl;
 }
 else {
 std::cerr << outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.

Step 2: Write data API Version 2012-08-10 110

Amazon DynamoDB Developer Guide

*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see PutItem in Amazon SDK for C++ API Reference.

Step 2: Write data API Version 2012-08-10 111

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

CLI

Amazon CLI

Example 1: To add an item to a table

The following put-item example adds a new item to the MusicCollection table.

aws dynamodb put-item \
 --table-name MusicCollection \
 --item file://item.json \
 --return-consumed-capacity TOTAL \
 --return-item-collection-metrics SIZE

Contents of item.json:

{
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Greatest Hits"}
}

Output:

{
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "Artist": {
 "S": "No One You Know"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 }
}

Step 2: Write data API Version 2012-08-10 112

Amazon DynamoDB Developer Guide

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Example 2: To conditionally overwrite an item in a table

The following put-item example overwrites an existing item in the MusicCollection
table only if that existing item has an AlbumTitle attribute with a value of Greatest
Hits. The command returns the previous value of the item.

aws dynamodb put-item \
 --table-name MusicCollection \
 --item file://item.json \
 --condition-expression "#A = :A" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-values ALL_OLD

Contents of item.json:

{
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Somewhat Famous"}
}

Contents of names.json:

{
 "#A": "AlbumTitle"
}

Contents of values.json:

{
 ":A": {"S": "Greatest Hits"}
}

Output:

{
 "Attributes": {

Step 2: Write data API Version 2012-08-10 113

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

 "AlbumTitle": {
 "S": "Greatest Hits"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
}

If the key already exists, you should see the following output:

A client error (ConditionalCheckFailedException) occurred when calling the
 PutItem operation: The conditional request failed.

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

• For API details, see PutItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"

Step 2: Write data API Version 2012-08-10 114

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/put-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// AddMovie adds a movie the DynamoDB table.
func (basics TableBasics) AddMovie(ctx context.Context, movie Movie) error {
 item, err := attributevalue.MarshalMap(movie)
 if err != nil {
 panic(err)
 }
 _, err = basics.DynamoDbClient.PutItem(ctx, &dynamodb.PutItemInput{
 TableName: aws.String(basics.TableName), Item: item,
 })
 if err != nil {
 log.Printf("Couldn't add item to table. Here's why: %v\n", err)
 }
 return err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

Step 2: Write data API Version 2012-08-10 115

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see PutItem in Amazon SDK for Go API Reference.

Step 2: Write data API Version 2012-08-10 116

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.PutItem

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Puts an item into a table using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.PutItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To place items into an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client. See the EnhancedPutItem example.
 */
public class PutItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal> <albumtitle> <albumtitleval>
 <awards> <awardsval> <Songtitle> <songtitleval>

 Where:

Step 2: Write data API Version 2012-08-10 117

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

 tableName - The Amazon DynamoDB table in which an item is
 placed (for example, Music3).
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).
 keyval - The key value that represents the item to get (for
 example, Famous Band).
 albumTitle - The Album title (for example, AlbumTitle).
 AlbumTitleValue - The name of the album (for example, Songs
 About Life).
 Awards - The awards column (for example, Awards).
 AwardVal - The value of the awards (for example, 10).
 SongTitle - The song title (for example, SongTitle).
 SongTitleVal - The value of the song title (for example,
 Happy Day).
 Warning This program will place an item that you specify
 into a table!
 """;

 if (args.length != 9) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 String albumTitle = args[3];
 String albumTitleValue = args[4];
 String awards = args[5];
 String awardVal = args[6];
 String songTitle = args[7];
 String songTitleVal = args[8];

 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 putItemInTable(ddb, tableName, key, keyVal, albumTitle, albumTitleValue,
 awards, awardVal, songTitle,
 songTitleVal);
 System.out.println("Done!");
 ddb.close();
 }

Step 2: Write data API Version 2012-08-10 118

Amazon DynamoDB Developer Guide

 public static void putItemInTable(DynamoDbClient ddb,
 String tableName,
 String key,
 String keyVal,
 String albumTitle,
 String albumTitleValue,
 String awards,
 String awardVal,
 String songTitle,
 String songTitleVal) {

 HashMap<String, AttributeValue> itemValues = new HashMap<>();
 itemValues.put(key, AttributeValue.builder().s(keyVal).build());
 itemValues.put(songTitle,
 AttributeValue.builder().s(songTitleVal).build());
 itemValues.put(albumTitle,
 AttributeValue.builder().s(albumTitleValue).build());
 itemValues.put(awards, AttributeValue.builder().s(awardVal).build());

 PutItemRequest request = PutItemRequest.builder()
 .tableName(tableName)
 .item(itemValues)
 .build();

 try {
 PutItemResponse response = ddb.putItem(request);
 System.out.println(tableName + " was successfully updated. The
 request id is "
 + response.responseMetadata().requestId());

 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 System.err.println("Be sure that it exists and that you've typed its
 name correctly!");
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

Step 2: Write data API Version 2012-08-10 119

Amazon DynamoDB Developer Guide

• For API details, see PutItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see PutCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { PutCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new PutCommand({
 TableName: "HappyAnimals",
 Item: {
 CommonName: "Shiba Inu",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

Step 2: Write data API Version 2012-08-10 120

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/PutCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand

Amazon DynamoDB Developer Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Put an item in a table.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "CUSTOMER_LIST",
 Item: {
 CUSTOMER_ID: { N: "001" },
 CUSTOMER_NAME: { S: "Richard Roe" },
 },
};

// Call DynamoDB to add the item to the table
ddb.putItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Put an item in a table using the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Step 2: Write data API Version 2012-08-10 121

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Item: {
 HASHKEY: VALUE,
 ATTRIBUTE_1: "STRING_VALUE",
 ATTRIBUTE_2: VALUE_2,
 },
};

docClient.put(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun putItemInTable(
 tableNameVal: String,
 key: String,
 keyVal: String,
 albumTitle: String,
 albumTitleValue: String,

Step 2: Write data API Version 2012-08-10 122

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-writing-an-item
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 awards: String,
 awardVal: String,
 songTitle: String,
 songTitleVal: String,
) {
 val itemValues = mutableMapOf<String, AttributeValue>()

 // Add all content to the table.
 itemValues[key] = AttributeValue.S(keyVal)
 itemValues[songTitle] = AttributeValue.S(songTitleVal)
 itemValues[albumTitle] = AttributeValue.S(albumTitleValue)
 itemValues[awards] = AttributeValue.S(awardVal)

 val request =
 PutItemRequest {
 tableName = tableNameVal
 item = itemValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.putItem(request)
 println(" A new item was placed into $tableNameVal.")
 }
}

• For API details, see PutItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 echo "What's the name of the last movie you watched?\n";
 while (empty($movieName)) {
 $movieName = testable_readline("Movie name: ");
 }

Step 2: Write data API Version 2012-08-10 123

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 echo "And what year was it released?\n";
 $movieYear = "year";
 while (!is_numeric($movieYear) || intval($movieYear) != $movieYear) {
 $movieYear = testable_readline("Year released: ");
 }

 $service->putItem([
 'Item' => [
 'year' => [
 'N' => "$movieYear",
],
 'title' => [
 'S' => $movieName,
],
],
 'TableName' => $tableName,
]);

 public function putItem(array $array)
 {
 $this->dynamoDbClient->putItem($array);
 }

• For API details, see PutItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Creates a new item, or replaces an existing item with a new item.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 9.0
} | ConvertTo-DDBItem
Set-DDBItem -TableName 'Music' -Item $item

• For API details, see PutItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Step 2: Write data API Version 2012-08-10 124

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/PutItem
https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Tools for PowerShell V5

Example 1: Creates a new item, or replaces an existing item with a new item.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 9.0
} | ConvertTo-DDBItem
Set-DDBItem -TableName 'Music' -Item $item

• For API details, see PutItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [

Step 2: Write data API Version 2012-08-10 125

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def add_movie(self, title, year, plot, rating):
 """
 Adds a movie to the table.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :param plot: The plot summary of the movie.
 :param rating: The quality rating of the movie.
 """
 try:
 self.table.put_item(
 Item={
 "year": year,
 "title": title,
 "info": {"plot": plot, "rating": Decimal(str(rating))},
 }
)
 except ClientError as err:
 logger.error(
 "Couldn't add movie %s to table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Step 2: Write data API Version 2012-08-10 126

Amazon DynamoDB Developer Guide

• For API details, see PutItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Adds a movie to the table.
 #
 # @param movie [Hash] The title, year, plot, and rating of the movie.
 def add_item(movie)
 @table.put_item(
 item: {
 'year' => movie[:year],
 'title' => movie[:title],
 'info' => { 'plot' => movie[:plot], 'rating' => movie[:rating] }
 }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't add movie #{title} to table #{@table.name}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

Step 2: Write data API Version 2012-08-10 127

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see PutItem in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn add_item(client: &Client, item: Item, table: &String) ->
 Result<ItemOut, Error> {
 let user_av = AttributeValue::S(item.username);
 let type_av = AttributeValue::S(item.p_type);
 let age_av = AttributeValue::S(item.age);
 let first_av = AttributeValue::S(item.first);
 let last_av = AttributeValue::S(item.last);

 let request = client
 .put_item()
 .table_name(table)
 .item("username", user_av)
 .item("account_type", type_av)
 .item("age", age_av)
 .item("first_name", first_av)
 .item("last_name", last_av);

 println!("Executing request [{request:?}] to add item...");

 let resp = request.send().await?;

 let attributes = resp.attributes().unwrap();

 let username = attributes.get("username").cloned();
 let first_name = attributes.get("first_name").cloned();
 let last_name = attributes.get("last_name").cloned();
 let age = attributes.get("age").cloned();
 let p_type = attributes.get("p_type").cloned();

 println!(

Step 2: Write data API Version 2012-08-10 128

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "Added user {:?}, {:?} {:?}, age {:?} as {:?} user",
 username, first_name, last_name, age, p_type
);

 Ok(ItemOut {
 p_type,
 age,
 username,
 first_name,
 last_name,
 })
}

• For API details, see PutItem in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 DATA(lo_resp) = lo_dyn->putitem(
 iv_tablename = iv_table_name
 it_item = it_item).
 MESSAGE '1 row inserted into DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

Step 2: Write data API Version 2012-08-10 129

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.put_item
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

• For API details, see PutItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Add a movie specified as a `Movie` structure to the Amazon DynamoDB
 /// table.
 ///
 /// - Parameter movie: The `Movie` to add to the table.
 ///
 func add(movie: Movie) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Get a DynamoDB item containing the movie data.
 let item = try await movie.getAsItem()

 // Send the `PutItem` request to Amazon DynamoDB.

 let input = PutItemInput(
 item: item,
 tableName: self.tableName
)
 _ = try await client.putItem(input: input)
 } catch {
 print("ERROR: add movie:", dump(error))
 throw error
 }
 }

Step 2: Write data API Version 2012-08-10 130

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 ///
 /// Return an array mapping attribute names to Amazon DynamoDB attribute
 /// values, representing the contents of the `Movie` record as a DynamoDB
 /// item.
 ///
 /// - Returns: The movie item as an array of type
 /// `[Swift.String:DynamoDBClientTypes.AttributeValue]`.
 ///
 func getAsItem() async throws ->
 [Swift.String:DynamoDBClientTypes.AttributeValue] {
 // Build the item record, starting with the year and title, which are
 // always present.

 var item: [Swift.String:DynamoDBClientTypes.AttributeValue] = [
 "year": .n(String(self.year)),
 "title": .s(self.title)
]

 // Add the `info` field with the rating and/or plot if they're
 // available.

 var details: [Swift.String:DynamoDBClientTypes.AttributeValue] = [:]
 if (self.info.rating != nil || self.info.plot != nil) {
 if self.info.rating != nil {
 details["rating"] = .n(String(self.info.rating!))
 }
 if self.info.plot != nil {
 details["plot"] = .s(self.info.plot!)
 }
 }
 item["info"] = .m(details)

 return item
 }

• For API details, see PutItem in Amazon SDK for Swift API reference.

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

After writing data to your table, proceed to Step 3: Read data from a DynamoDB table.

Step 2: Write data API Version 2012-08-10 131

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/putitem(input:)

Amazon DynamoDB Developer Guide

Step 3: Read data from a DynamoDB table

In this step, you'll read back one of the items that you created in Step 2: Write data to a DynamoDB
table. You can use the DynamoDB console or the Amazon CLI to read an item from the Music table
by specifying Artist and SongTitle.

For more information about read operations in DynamoDB, see Reading an item.

Amazon Web Services Management Console

Follow these steps to read data from the Music table using the DynamoDB console.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. On the Tables page, choose the Music table.

4. Choose Explore table items.

5. On the Items returned section, view the list of items stored in the table, sorted by Artist
and SongTitle. The first item in the list is the one with the Artist named Acme Band and the
SongTitle PartiQL Rocks.

Amazon CLI

The following Amazon CLI example reads an item from the Music. You can do this either through
the DynamoDB API or PartiQL, a SQL-compatible query language for DynamoDB.

DynamoDB API

Note

The default behavior for DynamoDB is eventually consistent reads. The consistent-
read parameter is used below to demonstrate strongly consistent reads.

Linux

aws dynamodb get-item --consistent-read \
 --table-name Music \
 --key '{ "Artist": {"S": "Acme Band"}, "SongTitle": {"S": "Happy Day"}}'

Step 3: Read data API Version 2012-08-10 132

https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

Windows CMD

aws dynamodb get-item --consistent-read ^
 --table-name Music ^
 --key "{\"Artist\": {\"S\": \"Acme Band\"}, \"SongTitle\": {\"S\": \"Happy Day
\"}}"

Using get-item returns the following sample result.

{
 "Item": {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "Awards": {
 "S": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 }
}

PartiQL for DynamoDB

Linux

aws dynamodb execute-statement --statement "SELECT * FROM Music \
WHERE Artist='Acme Band' AND SongTitle='Happy Day'"

Windows CMD

aws dynamodb execute-statement --statement "SELECT * FROM Music WHERE Artist='Acme
 Band' AND SongTitle='Happy Day'"

Using the PartiQL Select statement returns the following sample result.

{

Step 3: Read data API Version 2012-08-10 133

Amazon DynamoDB Developer Guide

 "Items": [
 {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "Awards": {
 "S": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 }
]
}

For more information about reading data with PartiQL, see PartiQL select statements.

Amazon SDK

The following code examples show how to read an item from a DynamoDB table using an Amazon
SDK.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Gets information about an existing movie from the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information about
 /// the movie to retrieve.</param>

Step 3: Read data API Version 2012-08-10 134

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.SELECT.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 /// <param name="tableName">The name of the table containing the movie.</
param>
 /// <returns>A Dictionary object containing information about the item
 /// retrieved.</returns>
 public async Task<Dictionary<string, AttributeValue>> GetItemAsync(Movie
 newMovie, string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new GetItemRequest
 {
 Key = key,
 TableName = tableName,
 };

 var response = await _amazonDynamoDB.GetItemAsync(request);
 return response.Item;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return new Dictionary<string, AttributeValue>();
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while getting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while getting item.
 {ex.Message}");
 throw;
 }
 }

Step 3: Read data API Version 2012-08-10 135

Amazon DynamoDB Developer Guide

• For API details, see GetItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_get_item
#
This function gets an item from a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to get.
[-q query] -- Optional JMESPath query expression.
#
Returns:
The item as text output.
And:
0 - If successful.
1 - If it fails.
##
function dynamodb_get_item() {
 local table_name keys query response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_get_item"
 echo "Get an item from a DynamoDB table."
 echo " -n table_name -- The name of the table."

Step 3: Read data API Version 2012-08-10 136

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 echo " -k keys -- Path to json file containing the keys that identify the
 item to get."
 echo " [-q query] -- Optional JMESPath query expression."
 echo ""
 }
 query=""
 while getopts "n:k:q:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 q) query="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi

 if [[-n "$query"]]; then
 response=$(aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text \
 --query "$query")
 else
 response=$(

Step 3: Read data API Version 2012-08-10 137

Amazon DynamoDB Developer Guide

 aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text
)
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports get-item operation failed.$response"
 return 1
 fi

 if [[-n "$query"]]; then
 echo "$response" | sed "/^\t/s/\t//1" # Remove initial tab that the JMSEPath
 query inserts on some strings.
 else
 echo "$response"
 fi

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#

Step 3: Read data API Version 2012-08-10 138

Amazon DynamoDB Developer Guide

See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see GetItem in Amazon CLI Command Reference.

Step 3: Read data API Version 2012-08-10 139

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Get an item from an Amazon DynamoDB table.
/*!
 \sa getItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

bool AwsDoc::DynamoDB::getItem(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);
 Aws::DynamoDB::Model::GetItemRequest request;

 // Set up the request.
 request.SetTableName(tableName);
 request.AddKey(partitionKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(partitionValue));

 // Retrieve the item's fields and values.
 const Aws::DynamoDB::Model::GetItemOutcome &outcome =
 dynamoClient.GetItem(request);
 if (outcome.IsSuccess()) {
 // Reference the retrieved fields/values.
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> &item =
 outcome.GetResult().GetItem();
 if (!item.empty()) {
 // Output each retrieved field and its value.

Step 3: Read data API Version 2012-08-10 140

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 for (const auto &i: item)
 std::cout << "Values: " << i.first << ": " << i.second.GetS()
 << std::endl;
 }
 else {
 std::cout << "No item found with the key " << partitionKey <<
 std::endl;
 }
 }
 else {
 std::cerr << "Failed to get item: " << outcome.GetError().GetMessage();
 }

 return outcome.IsSuccess();
}

• For API details, see GetItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To read an item in a table

The following get-item example retrieves an item from the MusicCollection table.
The table has a hash-and-range primary key (Artist and SongTitle), so you must specify
both of these attributes. The command also requests information about the read capacity
consumed by the operation.

aws dynamodb get-item \
 --table-name MusicCollection \
 --key file://key.json \
 --return-consumed-capacity TOTAL

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Step 3: Read data API Version 2012-08-10 141

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

Output:

{
 "Item": {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "SongTitle": {
 "S": "Happy Day"
 },
 "Artist": {
 "S": "Acme Band"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

Example 2: To read an item using a consistent read

The following example retrieves an item from the MusicCollection table using strongly
consistent reads.

aws dynamodb get-item \
 --table-name MusicCollection \
 --key file://key.json \
 --consistent-read \
 --return-consumed-capacity TOTAL

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Output:

Step 3: Read data API Version 2012-08-10 142

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData

Amazon DynamoDB Developer Guide

{
 "Item": {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "SongTitle": {
 "S": "Happy Day"
 },
 "Artist": {
 "S": "Acme Band"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

Example 3: To retrieve specific attributes of an item

The following example uses a projection expression to retrieve only three attributes of the
desired item.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "102"}}' \
 --projection-expression "#T, #C, #P" \
 --expression-attribute-names file://names.json

Contents of names.json:

{
 "#T": "Title",
 "#C": "ProductCategory",
 "#P": "Price"
}

Output:

{

Step 3: Read data API Version 2012-08-10 143

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData

Amazon DynamoDB Developer Guide

 "Item": {
 "Price": {
 "N": "20"
 },
 "Title": {
 "S": "Book 102 Title"
 },
 "ProductCategory": {
 "S": "Book"
 }
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

• For API details, see GetItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

Step 3: Read data API Version 2012-08-10 144

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/get-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// GetMovie gets movie data from the DynamoDB table by using the primary
 composite key
// made of title and year.
func (basics TableBasics) GetMovie(ctx context.Context, title string, year int)
 (Movie, error) {
 movie := Movie{Title: title, Year: year}
 response, err := basics.DynamoDbClient.GetItem(ctx, &dynamodb.GetItemInput{
 Key: movie.GetKey(), TableName: aws.String(basics.TableName),
 })
 if err != nil {
 log.Printf("Couldn't get info about %v. Here's why: %v\n", title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Item, &movie)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 }
 }
 return movie, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"

Step 3: Read data API Version 2012-08-10 145

Amazon DynamoDB Developer Guide

 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see GetItem in Amazon SDK for Go API Reference.

Step 3: Read data API Version 2012-08-10 146

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.GetItem

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Gets an item from a table by using the DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To get an item from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client, see the EnhancedGetItem example.
 */
public class GetItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal>

 Where:

Step 3: Read data API Version 2012-08-10 147

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 tableName - The Amazon DynamoDB table from which an item is
 retrieved (for example, Music3).\s
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).\s
 keyval - The key value that represents the item to get (for
 example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 System.out.format("Retrieving item \"%s\" from \"%s\"\n", keyVal,
 tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 getDynamoDBItem(ddb, tableName, key, keyVal);
 ddb.close();
 }

 public static void getDynamoDBItem(DynamoDbClient ddb, String tableName,
 String key, String keyVal) {
 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put(key, AttributeValue.builder()
 .s(keyVal)
 .build());

 GetItemRequest request = GetItemRequest.builder()
 .key(keyToGet)
 .tableName(tableName)
 .build();

 try {
 // If there is no matching item, GetItem does not return any data.
 Map<String, AttributeValue> returnedItem =
 ddb.getItem(request).item();
 if (returnedItem.isEmpty())

Step 3: Read data API Version 2012-08-10 148

Amazon DynamoDB Developer Guide

 System.out.format("No item found with the key %s!\n", key);
 else {
 Set<String> keys = returnedItem.keySet();
 System.out.println("Amazon DynamoDB table attributes: \n");
 for (String key1 : keys) {
 System.out.format("%s: %s\n", key1,
 returnedItem.get(key1).toString());
 }
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see GetItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see GetCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, GetCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new GetCommand({
 TableName: "AngryAnimals",

Step 3: Read data API Version 2012-08-10 149

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/GetCommand/

Amazon DynamoDB Developer Guide

 Key: {
 CommonName: "Shoebill",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see GetItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Get an item from a table.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Key: {
 KEY_NAME: { N: "001" },
 },
 ProjectionExpression: "ATTRIBUTE_NAME",
};

// Call DynamoDB to read the item from the table
ddb.getItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);

Step 3: Read data API Version 2012-08-10 150

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/GetItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 } else {
 console.log("Success", data.Item);
 }
});

Get an item from a table using the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "EPISODES_TABLE",
 Key: { KEY_NAME: VALUE },
};

docClient.get(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Item);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see GetItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Step 3: Read data API Version 2012-08-10 151

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-dynamodb-utilities.html#dynamodb-example-document-client-get
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

suspend fun getSpecificItem(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
) {
 val keyToGet = mutableMapOf<String, AttributeValue>()
 keyToGet[keyName] = AttributeValue.S(keyVal)

 val request =
 GetItemRequest {
 key = keyToGet
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val returnedItem = ddb.getItem(request)
 val numbersMap = returnedItem.item
 numbersMap?.forEach { key1 ->
 println(key1.key)
 println(key1.value)
 }
 }
}

• For API details, see GetItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 $movie = $service->getItemByKey($tableName, $key);
 echo "\nThe movie {$movie['Item']['title']['S']} was released in
 {$movie['Item']['year']['N']}.\n";

Step 3: Read data API Version 2012-08-10 152

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 public function getItemByKey(string $tableName, array $key)
 {
 return $this->dynamoDbClient->getItem([
 'Key' => $key['Item'],
 'TableName' => $tableName,
]);
 }

• For API details, see GetItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Returns the DynamoDB item with the partition key SongTitle and the sort key
Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

Get-DDBItem -TableName 'Music' -Key $key | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
SongTitle Somewhere Down The Road
Price 1.94
Artist No One You Know
CriticRating 9
AlbumTitle Somewhat Famous

• For API details, see GetItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Step 3: Read data API Version 2012-08-10 153

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/GetItem
https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Tools for PowerShell V5

Example 1: Returns the DynamoDB item with the partition key SongTitle and the sort key
Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

Get-DDBItem -TableName 'Music' -Key $key | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
SongTitle Somewhere Down The Road
Price 1.94
Artist No One You Know
CriticRating 9
AlbumTitle Somewhat Famous

• For API details, see GetItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,

Step 3: Read data API Version 2012-08-10 154

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def get_movie(self, title, year):
 """
 Gets movie data from the table for a specific movie.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :return: The data about the requested movie.
 """
 try:
 response = self.table.get_item(Key={"year": year, "title": title})
 except ClientError as err:
 logger.error(
 "Couldn't get movie %s from table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],

Step 3: Read data API Version 2012-08-10 155

Amazon DynamoDB Developer Guide

)
 raise
 else:
 return response["Item"]

• For API details, see GetItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Gets movie data from the table for a specific movie.
 #
 # @param title [String] The title of the movie.
 # @param year [Integer] The release year of the movie.
 # @return [Hash] The data about the requested movie.
 def get_item(title, year)
 @table.get_item(key: { 'year' => year, 'title' => title })
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't get movie #{title} (#{year}) from table #{@table.name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

Step 3: Read data API Version 2012-08-10 156

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see GetItem in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_item = lo_dyn->getitem(
 iv_tablename = iv_table_name
 it_key = it_key).
 DATA(lt_attr) = oo_item->get_item().
 DATA(lo_title) = lt_attr[key = 'title']-value.
 DATA(lo_year) = lt_attr[key = 'year']-value.
 DATA(lo_rating) = lt_attr[key = 'rating']-value.
 MESSAGE 'Movie name is: ' && lo_title->get_s()
 && 'Movie year is: ' && lo_year->get_n()
 && 'Moving rating is: ' && lo_rating->get_n() TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

• For API details, see GetItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Step 3: Read data API Version 2012-08-10 157

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import AWSDynamoDB

 /// Return a `Movie` record describing the specified movie from the Amazon
 /// DynamoDB table.
 ///
 /// - Parameters:
 /// - title: The movie's title (`String`).
 /// - year: The movie's release year (`Int`).
 ///
 /// - Throws: `MoviesError.ItemNotFound` if the movie isn't in the table.
 ///
 /// - Returns: A `Movie` record with the movie's details.
 func get(title: String, year: Int) async throws -> Movie {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = GetItemInput(
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 tableName: self.tableName
)
 let output = try await client.getItem(input: input)
 guard let item = output.item else {
 throw MoviesError.ItemNotFound
 }

 let movie = try Movie(withItem: item)
 return movie
 } catch {
 print("ERROR: get:", dump(error))
 throw error
 }
 }

• For API details, see GetItem in Amazon SDK for Swift API reference.

Step 3: Read data API Version 2012-08-10 158

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/getitem(input:)

Amazon DynamoDB Developer Guide

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

To update the data in your table, proceed to Step 4: Update data in a DynamoDB table.

Step 4: Update data in a DynamoDB table

In this step, you update an item that you created in Step 2: Write data to a DynamoDB table. You
can use the DynamoDB console or the Amazon CLI to update the AlbumTitle of an item in the
Music table by specifying Artist, SongTitle, and the updated AlbumTitle.

For more information about write operations, see Writing an item.

Amazon Web Services Management Console

You can use the DynamoDB console to update data in the Music table.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. Choose the Music table from the table list.

4. Choose Explore table items.

5. In Items returned, for the item row with Acme Band Artist and Happy Day SongTitle, do the
following:

a. Place your cursor on the AlbumTitle named Songs About Life.

b. Choose the Edit icon.

c. In the Edit String popup window, enter Songs of Twilight.

d. Choose Save.

Tip

Alternatively, to update an item, do the following in the Items returned section:

1. Choose the item row with Artist named Acme Band and SongTitle named Happy
Day.

2. From the Actions dropdown list, choose Edit item.

3. For enter AlbumTitle, enter Songs of Twilight.

Step 4: Update data API Version 2012-08-10 159

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

4. Choose Save and close.

Amazon CLI

The following Amazon CLI example updates an item in the Music table. You can do this either
through the DynamoDB API or PartiQL, a SQL-compatible query language for DynamoDB.

DynamoDB API

Linux

aws dynamodb update-item \
 --table-name Music \
 --key '{ "Artist": {"S": "Acme Band"}, "SongTitle": {"S": "Happy Day"}}' \
 --update-expression "SET AlbumTitle = :newval" \
 --expression-attribute-values '{":newval":{"S":"Updated Album Title"}}' \
 --return-values ALL_NEW

Windows CMD

aws dynamodb update-item ^
 --table-name Music ^
 --key "{\"Artist\": {\"S\": \"Acme Band\"}, \"SongTitle\": {\"S\": \"Happy Day
\"}}" ^
 --update-expression "SET AlbumTitle = :newval" ^
 --expression-attribute-values "{\":newval\":{\"S\":\"Updated Album Title\"}}" ^
 --return-values ALL_NEW

Using update-item returns the following sample result because return-values ALL_NEW
was specified.

{
 "Attributes": {
 "AlbumTitle": {
 "S": "Updated Album Title"
 },
 "Awards": {
 "S": "10"
 },
 "Artist": {

Step 4: Update data API Version 2012-08-10 160

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 }
}

PartiQL for DynamoDB

Linux

aws dynamodb execute-statement --statement "UPDATE Music \
 SET AlbumTitle='Updated Album Title' \
 WHERE Artist='Acme Band' AND SongTitle='Happy Day' \
 RETURNING ALL NEW *"

Windows CMD

aws dynamodb execute-statement --statement "UPDATE Music SET AlbumTitle='Updated
 Album Title' WHERE Artist='Acme Band' AND SongTitle='Happy Day' RETURNING ALL NEW
 *"

Using the Update statement returns the following sample result because RETURNING ALL
NEW * was specified.

{
 "Items": [
 {
 "AlbumTitle": {
 "S": "Updated Album Title"
 },
 "Awards": {
 "S": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 }

Step 4: Update data API Version 2012-08-10 161

Amazon DynamoDB Developer Guide

]
}

For more information about updating data with PartiQL, see PartiQL update statements.

Amazon SDK

The following code examples show how to update an item in a DynamoDB table using an Amazon
SDK.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Updates an existing item in the movies table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information for
 /// the movie to update.</param>
 /// <param name="newInfo">A MovieInfo object that contains the
 /// information that will be changed.</param>
 /// <param name="tableName">The name of the table that contains the movie.</
param>
 /// <returns>A Boolean value that indicates the success of the operation.</
returns>
 public async Task<bool> UpdateItemAsync(
 Movie newMovie,
 MovieInfo newInfo,
 string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {

Step 4: Update data API Version 2012-08-10 162

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.update.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };
 var updates = new Dictionary<string, AttributeValueUpdate>
 {
 ["info.plot"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { S = newInfo.Plot },
 },

 ["info.rating"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { N = newInfo.Rank.ToString() },
 },
 };

 var request = new UpdateItemRequest
 {
 AttributeUpdates = updates,
 Key = key,
 TableName = tableName,
 };

 await _amazonDynamoDB.UpdateItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} or item was not found.
 {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while updating
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while updating item.
 {ex.Message}");

Step 4: Update data API Version 2012-08-10 163

Amazon DynamoDB Developer Guide

 throw;
 }
 }

• For API details, see UpdateItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_update_item
#
This function updates an item in a DynamoDB table.
#
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to update.
-e update expression -- An expression that defines one or more
 attributes to be updated.
-v values -- Path to json file containing the update values.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_update_item() {
 local table_name keys update_expression values response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation

Step 4: Update data API Version 2012-08-10 164

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 #######################################
 function usage() {
 echo "function dynamodb_update_item"
 echo "Update an item in a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to update."
 echo " -e update expression -- An expression that defines one or more
 attributes to be updated."
 echo " -v values -- Path to json file containing the update values."
 echo ""
 }

 while getopts "n:k:e:v:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 e) update_expression="${OPTARG}" ;;
 v) values="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi
 if [[-z "$update_expression"]]; then

Step 4: Update data API Version 2012-08-10 165

Amazon DynamoDB Developer Guide

 errecho "ERROR: You must provide an update expression with the -e parameter."
 usage
 return 1
 fi

 if [[-z "$values"]]; then
 errecho "ERROR: You must provide a values json file path the -v parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " keys: $keys"
 iecho " update_expression: $update_expression"
 iecho " values: $values"

 response=$(aws dynamodb update-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --update-expression "$update_expression" \
 --expression-attribute-values file://"$values")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports update-item operation failed.$response"
 return 1
 fi

 return 0

}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.

Step 4: Update data API Version 2012-08-10 166

Amazon DynamoDB Developer Guide

###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."

Step 4: Update data API Version 2012-08-10 167

Amazon DynamoDB Developer Guide

 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see UpdateItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Update an Amazon DynamoDB table item.
/*!
 \sa updateItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param attributeKey: The key for the attribute to be updated.
 \param attributeValue: The value for the attribute to be updated.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

/*
 * The example code only sets/updates an attribute value. It processes
 * the attribute value as a string, even if the value could be interpreted
 * as a number. Also, the example code does not remove an existing attribute
 * from the key value.
 */

bool AwsDoc::DynamoDB::updateItem(const Aws::String &tableName,

Step 4: Update data API Version 2012-08-10 168

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::String &attributeKey,
 const Aws::String &attributeValue,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 // *** Define UpdateItem request arguments.
 // Define TableName argument.
 Aws::DynamoDB::Model::UpdateItemRequest request;
 request.SetTableName(tableName);

 // Define KeyName argument.
 Aws::DynamoDB::Model::AttributeValue attribValue;
 attribValue.SetS(partitionValue);
 request.AddKey(partitionKey, attribValue);

 // Construct the SET update expression argument.
 Aws::String update_expression("SET #a = :valueA");
 request.SetUpdateExpression(update_expression);

 // Construct attribute name argument.
 Aws::Map<Aws::String, Aws::String> expressionAttributeNames;
 expressionAttributeNames["#a"] = attributeKey;
 request.SetExpressionAttributeNames(expressionAttributeNames);

 // Construct attribute value argument.
 Aws::DynamoDB::Model::AttributeValue attributeUpdatedValue;
 attributeUpdatedValue.SetS(attributeValue);
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 expressionAttributeValues;
 expressionAttributeValues[":valueA"] = attributeUpdatedValue;
 request.SetExpressionAttributeValues(expressionAttributeValues);

 // Update the item.
 const Aws::DynamoDB::Model::UpdateItemOutcome &outcome =
 dynamoClient.UpdateItem(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Item was updated" << std::endl;
 } else {
 std::cerr << outcome.GetError().GetMessage() << std::endl;
 return false;

Step 4: Update data API Version 2012-08-10 169

Amazon DynamoDB Developer Guide

 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;

Step 4: Update data API Version 2012-08-10 170

Amazon DynamoDB Developer Guide

 return false;
 }
 count++;
 }
 return false;
}

• For API details, see UpdateItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To update an item in a table

The following update-item example updates an item in the MusicCollection table. It
adds a new attribute (Year) and modifies the AlbumTitle attribute. All of the attributes in
the item, as they appear after the update, are returned in the response.

aws dynamodb update-item \
 --table-name MusicCollection \
 --key file://key.json \
 --update-expression "SET #Y = :y, #AT = :t" \
 --expression-attribute-names file://expression-attribute-names.json \
 --expression-attribute-values file://expression-attribute-values.json \
 --return-values ALL_NEW \
 --return-consumed-capacity TOTAL \
 --return-item-collection-metrics SIZE

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Contents of expression-attribute-names.json:

{
 "#Y":"Year", "#AT":"AlbumTitle"

Step 4: Update data API Version 2012-08-10 171

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

}

Contents of expression-attribute-values.json:

{
 ":y":{"N": "2015"},
 ":t":{"S": "Louder Than Ever"}
}

Output:

{
 "Attributes": {
 "AlbumTitle": {
 "S": "Louder Than Ever"
 },
 "Awards": {
 "N": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "Year": {
 "N": "2015"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 3.0
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "Artist": {
 "S": "Acme Band"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]

Step 4: Update data API Version 2012-08-10 172

Amazon DynamoDB Developer Guide

 }
}

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Example 2: To update an item conditionally

The following example updates an item in the MusicCollection table, but only if the
existing item does not already have a Year attribute.

aws dynamodb update-item \
 --table-name MusicCollection \
 --key file://key.json \
 --update-expression "SET #Y = :y, #AT = :t" \
 --expression-attribute-names file://expression-attribute-names.json \
 --expression-attribute-values file://expression-attribute-values.json \
 --condition-expression "attribute_not_exists(#Y)"

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Contents of expression-attribute-names.json:

{
 "#Y":"Year",
 "#AT":"AlbumTitle"
}

Contents of expression-attribute-values.json:

{
 ":y":{"N": "2015"},
 ":t":{"S": "Louder Than Ever"}
}

If the item already has a Year attribute, DynamoDB returns the following output.

Step 4: Update data API Version 2012-08-10 173

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

An error occurred (ConditionalCheckFailedException) when calling the UpdateItem
 operation: The conditional request failed

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

• For API details, see UpdateItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

Step 4: Update data API Version 2012-08-10 174

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/update-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// UpdateMovie updates the rating and plot of a movie that already exists in the
// DynamoDB table. This function uses the `expression` package to build the
 update
// expression.
func (basics TableBasics) UpdateMovie(ctx context.Context, movie Movie)
 (map[string]map[string]interface{}, error) {
 var err error
 var response *dynamodb.UpdateItemOutput
 var attributeMap map[string]map[string]interface{}
 update := expression.Set(expression.Name("info.rating"),
 expression.Value(movie.Info["rating"]))
 update.Set(expression.Name("info.plot"), expression.Value(movie.Info["plot"]))
 expr, err := expression.NewBuilder().WithUpdate(update).Build()
 if err != nil {
 log.Printf("Couldn't build expression for update. Here's why: %v\n", err)
 } else {
 response, err = basics.DynamoDbClient.UpdateItem(ctx,
 &dynamodb.UpdateItemInput{
 TableName: aws.String(basics.TableName),
 Key: movie.GetKey(),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 UpdateExpression: expr.Update(),
 ReturnValues: types.ReturnValueUpdatedNew,
 })
 if err != nil {
 log.Printf("Couldn't update movie %v. Here's why: %v\n", movie.Title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Attributes, &attributeMap)
 if err != nil {
 log.Printf("Couldn't unmarshall update response. Here's why: %v\n", err)
 }
 }
 }
 return attributeMap, err
}

Define a Movie struct that is used in this example.

Step 4: Update data API Version 2012-08-10 175

Amazon DynamoDB Developer Guide

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

Step 4: Update data API Version 2012-08-10 176

Amazon DynamoDB Developer Guide

• For API details, see UpdateItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Updates an item in a table using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.AttributeAction;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.AttributeValueUpdate;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To update an Amazon DynamoDB table using the AWS SDK for Java V2, its better
 * practice to use the
 * Enhanced Client, See the EnhancedModifyItem example.
 */
public class UpdateItem {
 public static void main(String[] args) {
 final String usage = """

Step 4: Update data API Version 2012-08-10 177

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

 Usage:
 <tableName> <key> <keyVal> <name> <updateVal>

 Where:
 tableName - The Amazon DynamoDB table (for example, Music3).
 key - The name of the key in the table (for example, Artist).
 keyVal - The value of the key (for example, Famous Band).
 name - The name of the column where the value is updated (for
 example, Awards).
 updateVal - The value used to update an item (for example,
 14).
 Example:
 UpdateItem Music3 Artist Famous Band Awards 14
 """;

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 String name = args[3];
 String updateVal = args[4];

 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();
 updateTableItem(ddb, tableName, key, keyVal, name, updateVal);
 ddb.close();
 }

 public static void updateTableItem(DynamoDbClient ddb,
 String tableName,
 String key,
 String keyVal,
 String name,
 String updateVal) {

 HashMap<String, AttributeValue> itemKey = new HashMap<>();
 itemKey.put(key, AttributeValue.builder()

Step 4: Update data API Version 2012-08-10 178

Amazon DynamoDB Developer Guide

 .s(keyVal)
 .build());

 HashMap<String, AttributeValueUpdate> updatedValues = new HashMap<>();
 updatedValues.put(name, AttributeValueUpdate.builder()
 .value(AttributeValue.builder().s(updateVal).build())
 .action(AttributeAction.PUT)
 .build());

 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(itemKey)
 .attributeUpdates(updatedValues)
 .build();

 try {
 ddb.updateItem(request);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println("The Amazon DynamoDB table was updated!");
 }
}

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see UpdateCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

Step 4: Update data API Version 2012-08-10 179

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/UpdateCommand/

Amazon DynamoDB Developer Guide

import { DynamoDBDocumentClient, UpdateCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new UpdateCommand({
 TableName: "Dogs",
 Key: {
 Breed: "Labrador",
 },
 UpdateExpression: "set Color = :color",
 ExpressionAttributeValues: {
 ":color": "black",
 },
 ReturnValues: "ALL_NEW",
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun updateTableItem(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
 name: String,
 updateVal: String,

Step 4: Update data API Version 2012-08-10 180

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

) {
 val itemKey = mutableMapOf<String, AttributeValue>()
 itemKey[keyName] = AttributeValue.S(keyVal)

 val updatedValues = mutableMapOf<String, AttributeValueUpdate>()
 updatedValues[name] =
 AttributeValueUpdate {
 value = AttributeValue.S(updateVal)
 action = AttributeAction.Put
 }

 val request =
 UpdateItemRequest {
 tableName = tableNameVal
 key = itemKey
 attributeUpdates = updatedValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.updateItem(request)
 println("Item in $tableNameVal was updated")
 }
}

• For API details, see UpdateItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 echo "What rating would you like to give {$movie['Item']['title']['S']}?
\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {

Step 4: Update data API Version 2012-08-10 181

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $rating = testable_readline("Rating (1-10): ");
 }
 $service->updateItemAttributeByKey($tableName, $key, 'rating', 'N',
 $rating);

 public function updateItemAttributeByKey(
 string $tableName,
 array $key,
 string $attributeName,
 string $attributeType,
 string $newValue
) {
 $this->dynamoDbClient->updateItem([
 'Key' => $key['Item'],
 'TableName' => $tableName,
 'UpdateExpression' => "set #NV=:NV",
 'ExpressionAttributeNames' => [
 '#NV' => $attributeName,
],
 'ExpressionAttributeValues' => [
 ':NV' => [
 $attributeType => $newValue
]
],
]);
 }

• For API details, see UpdateItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Sets the genre attribute to 'Rap' on the DynamoDB item with the partition
key SongTitle and the sort key Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

$updateDdbItem = @{

Step 4: Update data API Version 2012-08-10 182

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 TableName = 'Music'
 Key = $key
 UpdateExpression = 'set Genre = :val1'
 ExpressionAttributeValue = (@{
 ':val1' = ([Amazon.DynamoDBv2.Model.AttributeValue]'Rap')
 })
}
Update-DDBItem @updateDdbItem

Output:

Name Value
---- -----
Genre Rap

• For API details, see UpdateItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Sets the genre attribute to 'Rap' on the DynamoDB item with the partition
key SongTitle and the sort key Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

$updateDdbItem = @{
 TableName = 'Music'
 Key = $key
 UpdateExpression = 'set Genre = :val1'
 ExpressionAttributeValue = (@{
 ':val1' = ([Amazon.DynamoDBv2.Model.AttributeValue]'Rap')
 })
}
Update-DDBItem @updateDdbItem

Output:

Name Value
---- -----
Genre Rap

Step 4: Update data API Version 2012-08-10 183

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

• For API details, see UpdateItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Update an item by using an update expression.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource

Step 4: Update data API Version 2012-08-10 184

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def update_movie(self, title, year, rating, plot):
 """
 Updates rating and plot data for a movie in the table.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param rating: The updated rating to the give the movie.
 :param plot: The updated plot summary to give the movie.
 :return: The fields that were updated, with their new values.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="set info.rating=:r, info.plot=:p",
 ExpressionAttributeValues={":r": Decimal(str(rating)), ":p":
 plot},
 ReturnValues="UPDATED_NEW",
)
 except ClientError as err:
 logger.error(
 "Couldn't update movie %s in table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

Update an item by using an update expression that includes an arithmetic operation.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

Step 4: Update data API Version 2012-08-10 185

Amazon DynamoDB Developer Guide

 def update_rating(self, title, year, rating_change):
 """
 Updates the quality rating of a movie in the table by using an arithmetic
 operation in the update expression. By specifying an arithmetic
 operation,
 you can adjust a value in a single request, rather than first getting its
 value and then setting its new value.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param rating_change: The amount to add to the current rating for the
 movie.
 :return: The updated rating.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="set info.rating = info.rating + :val",
 ExpressionAttributeValues={":val": Decimal(str(rating_change))},
 ReturnValues="UPDATED_NEW",
)
 except ClientError as err:
 logger.error(
 "Couldn't update movie %s in table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

Update an item only when it meets certain conditions.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

Step 4: Update data API Version 2012-08-10 186

Amazon DynamoDB Developer Guide

 def remove_actors(self, title, year, actor_threshold):
 """
 Removes an actor from a movie, but only when the number of actors is
 greater
 than a specified threshold. If the movie does not list more than the
 threshold,
 no actors are removed.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param actor_threshold: The threshold of actors to check.
 :return: The movie data after the update.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="remove info.actors[0]",
 ConditionExpression="size(info.actors) > :num",
 ExpressionAttributeValues={":num": actor_threshold},
 ReturnValues="ALL_NEW",
)
 except ClientError as err:
 if err.response["Error"]["Code"] ==
 "ConditionalCheckFailedException":
 logger.warning(
 "Didn't update %s because it has fewer than %s actors.",
 title,
 actor_threshold + 1,
)
 else:
 logger.error(
 "Couldn't update movie %s. Here's why: %s: %s",
 title,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

Step 4: Update data API Version 2012-08-10 187

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Updates rating and plot data for a movie in the table.
 #
 # @param movie [Hash] The title, year, plot, rating of the movie.
 def update_item(movie)
 response = @table.update_item(
 key: { 'year' => movie[:year], 'title' => movie[:title] },
 update_expression: 'set info.rating=:r',
 expression_attribute_values: { ':r' => movie[:rating] },
 return_values: 'UPDATED_NEW'
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't update movie #{movie[:title]} (#{movie[:year]}) in table
 #{@table.name}\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.attributes
 end

• For API details, see UpdateItem in Amazon SDK for Ruby API Reference.

Step 4: Update data API Version 2012-08-10 188

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_output = lo_dyn->updateitem(
 iv_tablename = iv_table_name
 it_key = it_item_key
 it_attributeupdates = it_attribute_updates).
 MESSAGE '1 item updated in DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

• For API details, see UpdateItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

Step 4: Update data API Version 2012-08-10 189

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// Update the specified movie with new `rating` and `plot` information.
 ///
 /// - Parameters:
 /// - title: The title of the movie to update.
 /// - year: The release year of the movie to update.
 /// - rating: The new rating for the movie.
 /// - plot: The new plot summary string for the movie.
 ///
 /// - Returns: An array of mappings of attribute names to their new
 /// listing each item actually changed. Items that didn't need to change
 /// aren't included in this list. `nil` if no changes were made.
 ///
 func update(title: String, year: Int, rating: Double? = nil, plot: String? =
 nil) async throws
 -> [Swift.String: DynamoDBClientTypes.AttributeValue]?
 {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Build the update expression and the list of expression attribute
 // values. Include only the information that's changed.

 var expressionParts: [String] = []
 var attrValues: [Swift.String: DynamoDBClientTypes.AttributeValue] =
 [:]

 if rating != nil {
 expressionParts.append("info.rating=:r")
 attrValues[":r"] = .n(String(rating!))
 }
 if plot != nil {
 expressionParts.append("info.plot=:p")
 attrValues[":p"] = .s(plot!)
 }
 let expression = "set \(expressionParts.joined(separator: ", "))"

 let input = UpdateItemInput(
 // Create substitution tokens for the attribute values, to ensure
 // no conflicts in expression syntax.
 expressionAttributeValues: attrValues,

Step 4: Update data API Version 2012-08-10 190

Amazon DynamoDB Developer Guide

 // The key identifying the movie to update consists of the
 release
 // year and title.
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 returnValues: .updatedNew,
 tableName: self.tableName,
 updateExpression: expression
)
 let output = try await client.updateItem(input: input)

 guard let attributes: [Swift.String:
 DynamoDBClientTypes.AttributeValue] = output.attributes else {
 throw MoviesError.InvalidAttributes
 }
 return attributes
 } catch {
 print("ERROR: update:", dump(error))
 throw error
 }
 }

• For API details, see UpdateItem in Amazon SDK for Swift API reference.

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

To query the data in the Music table, proceed to Step 5: Query data in a DynamoDB table.

Step 5: Query data in a DynamoDB table

In this step, you query the data that you wrote to the Music table in the section called “Step 2:
Write data” by specifying Artist. This will display all songs that are associated with the partition
key: Artist.

For more information about query operations, see Querying tables in DynamoDB.

Step 5: Query data API Version 2012-08-10 191

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/updateitem(input:)

Amazon DynamoDB Developer Guide

Amazon Web Services Management Console

Follow these steps to use the DynamoDB console to query data in the Music table.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. Choose the Music table from the table list.

4. Choose Explore table items.

5. In Scan or query items, make sure that Query is selected.

6. For Partition key, enter Acme Band, and then choose Run.

Amazon CLI

The following Amazon CLI example queries an item in the Music table. You can do this either
through the DynamoDB API or PartiQL, a SQL-compatible query language for DynamoDB.

DynamoDB API

You query an item through the DynamoDB API by using query and providing the partition key.

Linux

aws dynamodb query \
 --table-name Music \
 --key-condition-expression "Artist = :name" \
 --expression-attribute-values '{":name":{"S":"Acme Band"}}'

Windows CMD

aws dynamodb query ^
 --table-name Music ^
 --key-condition-expression "Artist = :name" ^
 --expression-attribute-values "{\":name\":{\"S\":\"Acme Band\"}}"

Using query returns all the songs associated with this particular Artist.

{
 "Items": [

Step 5: Query data API Version 2012-08-10 192

https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 {
 "AlbumTitle": {
 "S": "Updated Album Title"
 },
 "Awards": {
 "N": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 },
 {
 "AlbumTitle": {
 "S": "Another Album Title"
 },
 "Awards": {
 "N": "8"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "PartiQL Rocks"
 }
 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": null
}

PartiQL for DynamoDB

You query an item through PartiQL by using the Select statement and providing the partition
key.

Linux

aws dynamodb execute-statement --statement "SELECT * FROM Music \
 WHERE Artist='Acme Band'"

Step 5: Query data API Version 2012-08-10 193

Amazon DynamoDB Developer Guide

Windows CMD

aws dynamodb execute-statement --statement "SELECT * FROM Music WHERE Artist='Acme
 Band'"

Using the Select statement in this way returns all the songs associated with this particular
Artist.

{
 "Items": [
 {
 "AlbumTitle": {
 "S": "Updated Album Title"
 },
 "Awards": {
 "S": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "Happy Day"
 }
 },
 {
 "AlbumTitle": {
 "S": "Another Album Title"
 },
 "Awards": {
 "S": "8"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "PartiQL Rocks"
 }
 }
]
}

For more information about querying data with PartiQL, see PartiQL select statements.

Step 5: Query data API Version 2012-08-10 194

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.select.html

Amazon DynamoDB Developer Guide

Amazon SDK

The following code examples show how to query a DynamoDB table using an Amazon SDK.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Queries the table for movies released in a particular year and
 /// then displays the information for the movies returned.
 /// </summary>
 /// <param name="tableName">The name of the table to query.</param>
 /// <param name="year">The release year for which we want to
 /// view movies.</param>
 /// <returns>The number of movies that match the query.</returns>
 public async Task<int> QueryMoviesAsync(string tableName, int year)
 {
 try
 {
 var movieTable = new TableBuilder(_amazonDynamoDB, tableName)
 .AddHashKey("year", DynamoDBEntryType.Numeric)
 .AddRangeKey("title", DynamoDBEntryType.String)
 .Build();

 var filter = new QueryFilter("year", QueryOperator.Equal, year);

 Console.WriteLine("\nFind movies released in: {year}:");

 var config = new QueryOperationConfig()
 {
 Limit = 10, // 10 items per page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {

Step 5: Query data API Version 2012-08-10 195

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 "title",
 "year",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 // Value used to track how many movies match the
 // supplied criteria.
 var moviesFound = 0;

 var search = movieTable.Query(config);
 do
 {
 var movieList = await search.GetNextSetAsync();
 moviesFound += movieList.Count;

 foreach (var movie in movieList)
 {
 DisplayDocument(movie);
 }
 }
 while (!search.IsDone);

 return moviesFound;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return 0;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while querying
 movies. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while querying movies.
 {ex.Message}");
 throw;
 }
 }

Step 5: Query data API Version 2012-08-10 196

Amazon DynamoDB Developer Guide

• For API details, see Query in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_query
#
This function queries a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k key_condition_expression -- The key condition expression.
-a attribute_names -- Path to JSON file containing the attribute names.
-v attribute_values -- Path to JSON file containing the attribute values.
[-p projection_expression] -- Optional projection expression.
#
Returns:
The items as json output.
And:
0 - If successful.
1 - If it fails.
###
function dynamodb_query() {
 local table_name key_condition_expression attribute_names attribute_values
 projection_expression response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {

Step 5: Query data API Version 2012-08-10 197

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 echo "function dynamodb_query"
 echo "Query a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k key_condition_expression -- The key condition expression."
 echo " -a attribute_names -- Path to JSON file containing the attribute
 names."
 echo " -v attribute_values -- Path to JSON file containing the attribute
 values."
 echo " [-p projection_expression] -- Optional projection expression."
 echo ""
 }

 while getopts "n:k:a:v:p:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) key_condition_expression="${OPTARG}" ;;
 a) attribute_names="${OPTARG}" ;;
 v) attribute_values="${OPTARG}" ;;
 p) projection_expression="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$key_condition_expression"]]; then
 errecho "ERROR: You must provide a key condition expression with the -k
 parameter."
 usage
 return 1
 fi

Step 5: Query data API Version 2012-08-10 198

Amazon DynamoDB Developer Guide

 if [[-z "$attribute_names"]]; then
 errecho "ERROR: You must provide a attribute names with the -a parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_values"]]; then
 errecho "ERROR: You must provide a attribute values with the -v parameter."
 usage
 return 1
 fi

 if [[-z "$projection_expression"]]; then
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values")
 else
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values" \
 --projection-expression "$projection_expression")
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports query operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

The utility functions used in this example.

Step 5: Query data API Version 2012-08-10 199

Amazon DynamoDB Developer Guide

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

Step 5: Query data API Version 2012-08-10 200

Amazon DynamoDB Developer Guide

 return 0
}

• For API details, see Query in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Perform a query on an Amazon DynamoDB Table and retrieve items.
/*!
 \sa queryItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param projectionExpression: The projections expression, which is ignored if
 empty.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

/*
 * The partition key attribute is searched with the specified value. By default,
 all fields and values
 * contained in the item are returned. If an optional projection expression is
 * specified on the command line, only the specified fields and values are
 * returned.
 */

bool AwsDoc::DynamoDB::queryItems(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::String &projectionExpression,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {

Step 5: Query data API Version 2012-08-10 201

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);
 Aws::DynamoDB::Model::QueryRequest request;

 request.SetTableName(tableName);

 if (!projectionExpression.empty()) {
 request.SetProjectionExpression(projectionExpression);
 }

 // Set query key condition expression.
 request.SetKeyConditionExpression(partitionKey + "= :valueToMatch");

 // Set Expression AttributeValues.
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> attributeValues;
 attributeValues.emplace(":valueToMatch", partitionValue);

 request.SetExpressionAttributeValues(attributeValues);

 bool result = true;

 // "exclusiveStartKey" is used for pagination.
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 exclusiveStartKey;
 do {
 if (!exclusiveStartKey.empty()) {
 request.SetExclusiveStartKey(exclusiveStartKey);
 exclusiveStartKey.clear();
 }
 // Perform Query operation.
 const Aws::DynamoDB::Model::QueryOutcome &outcome =
 dynamoClient.Query(request);
 if (outcome.IsSuccess()) {
 // Reference the retrieved items.
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = outcome.GetResult().GetItems();
 if (!items.empty()) {
 std::cout << "Number of items retrieved from Query: " <<
 items.size()
 << std::endl;
 // Iterate each item and print.
 for (const auto &item: items) {
 std::cout
 <<
 "**"

Step 5: Query data API Version 2012-08-10 202

Amazon DynamoDB Developer Guide

 << std::endl;
 // Output each retrieved field and its value.
 for (const auto &i: item)
 std::cout << i.first << ": " << i.second.GetS() <<
 std::endl;
 }
 }
 else {
 std::cout << "No item found in table: " << tableName <<
 std::endl;
 }

 exclusiveStartKey = outcome.GetResult().GetLastEvaluatedKey();
 }
 else {
 std::cerr << "Failed to Query items: " <<
 outcome.GetError().GetMessage();
 result = false;
 break;
 }
 } while (!exclusiveStartKey.empty());

 return result;
}

• For API details, see Query in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To query a table

The following query example queries items in the MusicCollection table. The table has
a hash-and-range primary key (Artist and SongTitle), but this query only specifies the
hash key value. It returns song titles by the artist named "No One You Know".

aws dynamodb query \
 --table-name MusicCollection \
 --projection-expression "SongTitle" \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json \

Step 5: Query data API Version 2012-08-10 203

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 --return-consumed-capacity TOTAL

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [
 {
 "SongTitle": {
 "S": "Call Me Today"
 },
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 2: To query a table using strongly consistent reads and traverse the index in
descending order

The following example performs the same query as the first example, but returns results in
reverse order and uses strongly consistent reads.

aws dynamodb query \
 --table-name MusicCollection \
 --projection-expression "SongTitle" \
 --key-condition-expression "Artist = :v1" \

Step 5: Query data API Version 2012-08-10 204

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

 --expression-attribute-values file://expression-attributes.json \
 --consistent-read \
 --no-scan-index-forward \
 --return-consumed-capacity TOTAL

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [
 {
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 },
 {
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 3: To filter out specific results

The following example queries the MusicCollection but excludes results with specific
values in the AlbumTitle attribute. Note that this does not affect the ScannedCount or
ConsumedCapacity, because the filter is applied after the items have been read.

Step 5: Query data API Version 2012-08-10 205

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

aws dynamodb query \
 --table-name MusicCollection \
 --key-condition-expression "#n1 = :v1" \
 --filter-expression "NOT (#n2 IN (:v2, :v3))" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-consumed-capacity TOTAL

Contents of values.json:

{
 ":v1": {"S": "No One You Know"},
 ":v2": {"S": "Blue Sky Blues"},
 ":v3": {"S": "Greatest Hits"}
}

Contents of names.json:

{
 "#n1": "Artist",
 "#n2": "AlbumTitle"
}

Output:

{
 "Items": [
 {
 "AlbumTitle": {
 "S": "Somewhat Famous"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
],
 "Count": 1,
 "ScannedCount": 2,

Step 5: Query data API Version 2012-08-10 206

Amazon DynamoDB Developer Guide

 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 4: To retrieve only an item count

The following example retrieves a count of items matching the query, but does not retrieve
any of the items themselves.

aws dynamodb query \
 --table-name MusicCollection \
 --select COUNT \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": null
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 5: To query an index

The following example queries the local secondary index AlbumTitleIndex. The query
returns all attributes from the base table that have been projected into the local secondary

Step 5: Query data API Version 2012-08-10 207

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

index. Note that when querying a local secondary index or global secondary index, you must
also provide the name of the base table using the table-name parameter.

aws dynamodb query \
 --table-name MusicCollection \
 --index-name AlbumTitleIndex \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json \
 --select ALL_PROJECTED_ATTRIBUTES \
 --return-consumed-capacity INDEXES

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [
 {
 "AlbumTitle": {
 "S": "Blue Sky Blues"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 },
 {
 "AlbumTitle": {
 "S": "Somewhat Famous"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }

Step 5: Query data API Version 2012-08-10 208

Amazon DynamoDB Developer Guide

 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5,
 "Table": {
 "CapacityUnits": 0.0
 },
 "LocalSecondaryIndexes": {
 "AlbumTitleIndex": {
 "CapacityUnits": 0.5
 }
 }
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

• For API details, see Query in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"

Step 5: Query data API Version 2012-08-10 209

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/query.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// Query gets all movies in the DynamoDB table that were released in the
 specified year.
// The function uses the `expression` package to build the key condition
 expression
// that is used in the query.
func (basics TableBasics) Query(ctx context.Context, releaseYear int) ([]Movie,
 error) {
 var err error
 var response *dynamodb.QueryOutput
 var movies []Movie
 keyEx := expression.Key("year").Equal(expression.Value(releaseYear))
 expr, err := expression.NewBuilder().WithKeyCondition(keyEx).Build()
 if err != nil {
 log.Printf("Couldn't build expression for query. Here's why: %v\n", err)
 } else {
 queryPaginator := dynamodb.NewQueryPaginator(basics.DynamoDbClient,
 &dynamodb.QueryInput{
 TableName: aws.String(basics.TableName),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 KeyConditionExpression: expr.KeyCondition(),
 })
 for queryPaginator.HasMorePages() {
 response, err = queryPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't query for movies released in %v. Here's why: %v\n",
 releaseYear, err)
 break

Step 5: Query data API Version 2012-08-10 210

Amazon DynamoDB Developer Guide

 } else {
 var moviePage []Movie
 err = attributevalue.UnmarshalListOfMaps(response.Items, &moviePage)
 if err != nil {
 log.Printf("Couldn't unmarshal query response. Here's why: %v\n", err)
 break
 } else {
 movies = append(movies, moviePage...)
 }
 }
 }
 }
 return movies, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

Step 5: Query data API Version 2012-08-10 211

Amazon DynamoDB Developer Guide

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see Query in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Queries a table by using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

Step 5: Query data API Version 2012-08-10 212

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To query items from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client. See the EnhancedQueryRecords example.
 */
public class Query {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <partitionKeyName> <partitionKeyVal>

 Where:
 tableName - The Amazon DynamoDB table to put the item in (for
 example, Music3).
 partitionKeyName - The partition key name of the Amazon
 DynamoDB table (for example, Artist).
 partitionKeyVal - The value of the partition key that should
 match (for example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String partitionKeyName = args[1];
 String partitionKeyVal = args[2];

 // For more information about an alias, see:

Step 5: Query data API Version 2012-08-10 213

Amazon DynamoDB Developer Guide

 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Expressions.ExpressionAttributeNames.html
 String partitionAlias = "#a";

 System.out.format("Querying %s", tableName);
 System.out.println("");
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 int count = queryTable(ddb, tableName, partitionKeyName, partitionKeyVal,
 partitionAlias);
 System.out.println("There were " + count + " record(s) returned");
 ddb.close();
 }

 public static int queryTable(DynamoDbClient ddb, String tableName, String
 partitionKeyName, String partitionKeyVal,
 String partitionAlias) {
 // Set up an alias for the partition key name in case it's a reserved
 word.
 HashMap<String, String> attrNameAlias = new HashMap<String, String>();
 attrNameAlias.put(partitionAlias, partitionKeyName);

 // Set up mapping of the partition name with the value.
 HashMap<String, AttributeValue> attrValues = new HashMap<>();
 attrValues.put(":" + partitionKeyName, AttributeValue.builder()
 .s(partitionKeyVal)
 .build());

 QueryRequest queryReq = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(partitionAlias + " = :" +
 partitionKeyName)
 .expressionAttributeNames(attrNameAlias)
 .expressionAttributeValues(attrValues)
 .build();

 try {
 QueryResponse response = ddb.query(queryReq);
 return response.count();

 } catch (DynamoDbException e) {

Step 5: Query data API Version 2012-08-10 214

Amazon DynamoDB Developer Guide

 System.err.println(e.getMessage());
 System.exit(1);
 }
 return -1;
 }
}

Queries a table by using DynamoDbClient and a secondary index.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import java.util.HashMap;
import java.util.Map;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * Create the Movies table by running the Scenario example and loading the Movie
 * data from the JSON file. Next create a secondary
 * index for the Movies table that uses only the year column. Name the index
 * **year-index**. For more information, see:
 *
 * https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
 */
public class QueryItemsUsingIndex {
 public static void main(String[] args) {
 String tableName = "Movies";
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

Step 5: Query data API Version 2012-08-10 215

Amazon DynamoDB Developer Guide

 queryIndex(ddb, tableName);
 ddb.close();
 }

 public static void queryIndex(DynamoDbClient ddb, String tableName) {
 try {
 Map<String, String> expressionAttributesNames = new HashMap<>();
 expressionAttributesNames.put("#year", "year");
 Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(":yearValue",
 AttributeValue.builder().n("2013").build());

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .indexName("year-index")
 .keyConditionExpression("#year = :yearValue")
 .expressionAttributeNames(expressionAttributesNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 System.out.println("=== Movie Titles ===");
 QueryResponse response = ddb.query(request);
 response.items()
 .forEach(movie ->
 System.out.println(movie.get("title").s()));

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

Step 5: Query data API Version 2012-08-10 216

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see QueryCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { QueryCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new QueryCommand({
 TableName: "CoffeeCrop",
 KeyConditionExpression:
 "OriginCountry = :originCountry AND RoastDate > :roastDate",
 ExpressionAttributeValues: {
 ":originCountry": "Ethiopia",
 ":roastDate": "2023-05-01",
 },
 ConsistentRead: true,
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Step 5: Query data API Version 2012-08-10 217

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/QueryCommand/
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 ExpressionAttributeValues: {
 ":s": 2,
 ":e": 9,
 ":topic": "PHRASE",
 },
 KeyConditionExpression: "Season = :s and Episode > :e",
 FilterExpression: "contains (Subtitle, :topic)",
 TableName: "EPISODES_TABLE",
};

docClient.query(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Items);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Step 5: Query data API Version 2012-08-10 218

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun queryDynTable(
 tableNameVal: String,
 partitionKeyName: String,
 partitionKeyVal: String,
 partitionAlias: String,
): Int {
 val attrNameAlias = mutableMapOf<String, String>()
 attrNameAlias[partitionAlias] = partitionKeyName

 // Set up mapping of the partition name with the value.
 val attrValues = mutableMapOf<String, AttributeValue>()
 attrValues[":$partitionKeyName"] = AttributeValue.S(partitionKeyVal)

 val request =
 QueryRequest {
 tableName = tableNameVal
 keyConditionExpression = "$partitionAlias = :$partitionKeyName"
 expressionAttributeNames = attrNameAlias
 this.expressionAttributeValues = attrValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.query(request)
 return response.count
 }
}

• For API details, see Query in Amazon SDK for Kotlin API reference.

Step 5: Query data API Version 2012-08-10 219

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 $birthKey = [
 'Key' => [
 'year' => [
 'N' => "$birthYear",
],
],
];
 $result = $service->query($tableName, $birthKey);

 public function query(string $tableName, $key)
 {
 $expressionAttributeValues = [];
 $expressionAttributeNames = [];
 $keyConditionExpression = "";
 $index = 1;
 foreach ($key as $name => $value) {
 $keyConditionExpression .= "#" . array_key_first($value) . " = :v
$index,";
 $expressionAttributeNames["#" . array_key_first($value)] =
 array_key_first($value);
 $hold = array_pop($value);
 $expressionAttributeValues[":v$index"] = [
 array_key_first($hold) => array_pop($hold),
];
 }
 $keyConditionExpression = substr($keyConditionExpression, 0, -1);
 $query = [
 'ExpressionAttributeValues' => $expressionAttributeValues,
 'ExpressionAttributeNames' => $expressionAttributeNames,
 'KeyConditionExpression' => $keyConditionExpression,
 'TableName' => $tableName,
];

Step 5: Query data API Version 2012-08-10 220

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 return $this->dynamoDbClient->query($query);
 }

• For API details, see Query in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Invokes a query that returns DynamoDB items with the specified SongTitle
and Artist.

$invokeDDBQuery = @{
 TableName = 'Music'
 KeyConditionExpression = ' SongTitle = :SongTitle and Artist = :Artist'
 ExpressionAttributeValues = @{
 ':SongTitle' = 'Somewhere Down The Road'
 ':Artist' = 'No One You Know'
 } | ConvertTo-DDBItem
}
Invoke-DDBQuery @invokeDDBQuery | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

• For API details, see Query in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Invokes a query that returns DynamoDB items with the specified SongTitle
and Artist.

$invokeDDBQuery = @{

Step 5: Query data API Version 2012-08-10 221

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/Query
https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

 TableName = 'Music'
 KeyConditionExpression = ' SongTitle = :SongTitle and Artist = :Artist'
 ExpressionAttributeValues = @{
 ':SongTitle' = 'Somewhere Down The Road'
 ':Artist' = 'No One You Know'
 } | ConvertTo-DDBItem
}
Invoke-DDBQuery @invokeDDBQuery | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

• For API details, see Query in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Query items by using a key condition expression.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",

Step 5: Query data API Version 2012-08-10 222

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def query_movies(self, year):
 """
 Queries for movies that were released in the specified year.

 :param year: The year to query.
 :return: The list of movies that were released in the specified year.
 """
 try:
 response =
 self.table.query(KeyConditionExpression=Key("year").eq(year))
 except ClientError as err:
 logger.error(
 "Couldn't query for movies released in %s. Here's why: %s: %s",
 year,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Step 5: Query data API Version 2012-08-10 223

Amazon DynamoDB Developer Guide

 else:
 return response["Items"]

Query items and project them to return a subset of data.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

 def query_and_project_movies(self, year, title_bounds):
 """
 Query for movies that were released in a specified year and that have
 titles
 that start within a range of letters. A projection expression is used
 to return a subset of data for each movie.

 :param year: The release year to query.
 :param title_bounds: The range of starting letters to query.
 :return: The list of movies.
 """
 try:
 response = self.table.query(
 ProjectionExpression="#yr, title, info.genres, info.actors[0]",
 ExpressionAttributeNames={"#yr": "year"},
 KeyConditionExpression=(
 Key("year").eq(year)
 & Key("title").between(
 title_bounds["first"], title_bounds["second"]
)
),
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ValidationException":
 logger.warning(
 "There's a validation error. Here's the message: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 else:
 logger.error(

Step 5: Query data API Version 2012-08-10 224

Amazon DynamoDB Developer Guide

 "Couldn't query for movies. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Items"]

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Queries for movies that were released in the specified year.
 #
 # @param year [Integer] The year to query.
 # @return [Array] The list of movies that were released in the specified year.
 def query_items(year)
 response = @table.query(
 key_condition_expression: '#yr = :year',
 expression_attribute_names: { '#yr' => 'year' },
 expression_attribute_values: { ':year' => year }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e

Step 5: Query data API Version 2012-08-10 225

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 puts("Couldn't query for movies released in #{year}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.items
 end

• For API details, see Query in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Find the movies made in the specified year.

pub async fn movies_in_year(
 client: &Client,
 table_name: &str,
 year: u16,
) -> Result<Vec<Movie>, MovieError> {
 let results = client
 .query()
 .table_name(table_name)
 .key_condition_expression("#yr = :yyyy")
 .expression_attribute_names("#yr", "year")
 .expression_attribute_values(":yyyy",
 AttributeValue::N(year.to_string()))
 .send()
 .await?;

 if let Some(items) = results.items {
 let movies = items.iter().map(|v| v.into()).collect();
 Ok(movies)
 } else {
 Ok(vec![])

Step 5: Query data API Version 2012-08-10 226

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }
}

• For API details, see Query in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 " Query movies for a given year .
 DATA(lt_attributelist) = VALUE /aws1/
cl_dynattributevalue=>tt_attributevaluelist(
 (NEW /aws1/cl_dynattributevalue(iv_n = |{ iv_year }|))).
 DATA(lt_key_conditions) = VALUE /aws1/cl_dyncondition=>tt_keyconditions(
 (VALUE /aws1/cl_dyncondition=>ts_keyconditions_maprow(
 key = 'year'
 value = NEW /aws1/cl_dyncondition(
 it_attributevaluelist = lt_attributelist
 iv_comparisonoperator = |EQ|
)))).
 oo_result = lo_dyn->query(
 iv_tablename = iv_table_name
 it_keyconditions = lt_key_conditions).
 DATA(lt_items) = oo_result->get_items().
 "You can loop over the results to get item attributes.
 LOOP AT lt_items INTO DATA(lt_item).
 DATA(lo_title) = lt_item[key = 'title']-value.
 DATA(lo_year) = lt_item[key = 'year']-value.
 ENDLOOP.
 DATA(lv_count) = oo_result->get_count().
 MESSAGE 'Item count is: ' && lv_count TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.

Step 5: Query data API Version 2012-08-10 227

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 ENDTRY.

• For API details, see Query in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Get all the movies released in the specified year.
 ///
 /// - Parameter year: The release year of the movies to return.
 ///
 /// - Returns: An array of `Movie` objects describing each matching movie.
 ///
 func getMovies(fromYear year: Int) async throws -> [Movie] {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = QueryInput(
 expressionAttributeNames: [
 "#y": "year"
],
 expressionAttributeValues: [
 ":y": .n(String(year))
],
 keyConditionExpression: "#y = :y",
 tableName: self.tableName
)
 // Use "Paginated" to get all the movies.

Step 5: Query data API Version 2012-08-10 228

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 // This lets the SDK handle the 'lastEvaluatedKey' property in
 "QueryOutput".

 let pages = client.queryPaginated(input: input)

 var movieList: [Movie] = []
 for try await page in pages {
 guard let items = page.items else {
 print("Error: no items returned.")
 continue
 }

 // Convert the found movies into `Movie` objects and return an
 array
 // of them.

 for item in items {
 let movie = try Movie(withItem: item)
 movieList.append(movie)
 }
 }
 return movieList
 } catch {
 print("ERROR: getMovies:", dump(error))
 throw error
 }
 }

• For API details, see Query in Amazon SDK for Swift API reference.

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

To create a global secondary index for your table, proceed to Step 6: (Optional) Delete your
DynamoDB table to clean up resources.

Step 5: Query data API Version 2012-08-10 229

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/query(input:)

Amazon DynamoDB Developer Guide

Step 6: (Optional) Delete your DynamoDB table to clean up
resources

If you no longer need the Amazon DynamoDB table that you created for the tutorial, you can
delete it. This step helps ensure that you aren't charged for resources that you aren't using. You can
use the DynamoDB console or the Amazon CLI to delete the Music table that you created in Step
1: Create a table in DynamoDB.

For more information about table operations in DynamoDB, see Working with tables and data in
DynamoDB.

Amazon Web Services Management Console

To delete the Music table using the console:

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. Choose the checkbox beside the Music table in the table list.

4. Choose Delete.

Amazon CLI

The following Amazon CLI example deletes the Music table using delete-table.

aws dynamodb delete-table --table-name Music

Amazon SDK

The following code examples show how to delete a DynamoDB table using an Amazon SDK.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Step 6: (Optional) clean up API Version 2012-08-10 230

https://console.amazonaws.cn/dynamodb/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Deletes a DynamoDB table.
 /// </summary>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> DeleteTableAsync(string tableName)
 {
 try
 {
 var request = new DeleteTableRequest
 {
 TableName = tableName,
 };

 var response = await _amazonDynamoDB.DeleteTableAsync(request);

 Console.WriteLine($"Table {response.TableDescription.TableName}
 successfully deleted.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found and cannot be
 deleted. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while deleting
 table {tableName}. {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting table
 {tableName}. {ex.Message}");
 return false;
 }
 }

Step 6: (Optional) clean up API Version 2012-08-10 231

Amazon DynamoDB Developer Guide

• For API details, see DeleteTable in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_delete_table
#
This function deletes a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_delete_table() {
 local table_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function dynamodb_delete_table"
 echo "Deletes an Amazon DynamoDB table."
 echo " -n table_name -- The name of the table to delete."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 h)
 usage

Step 6: (Optional) clean up API Version 2012-08-10 232

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho ""

 response=$(aws dynamodb delete-table \
 --table-name "$table_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-table operation failed.$response"
 return 1
 fi

 return 0
}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.

Step 6: (Optional) clean up API Version 2012-08-10 233

Amazon DynamoDB Developer Guide

###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."

Step 6: (Optional) clean up API Version 2012-08-10 234

Amazon DynamoDB Developer Guide

 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see DeleteTable in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Delete an Amazon DynamoDB table.
/*!
 \sa deleteTable()
 \param tableName: The DynamoDB table name.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::deleteTable(const Aws::String &tableName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteTableRequest request;
 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::DeleteTableOutcome &result =
 dynamoClient.DeleteTable(
 request);
 if (result.IsSuccess()) {
 std::cout << "Your table \""

Step 6: (Optional) clean up API Version 2012-08-10 235

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 << result.GetResult().GetTableDescription().GetTableName()
 << " was deleted.\n";
 }
 else {
 std::cerr << "Failed to delete table: " << result.GetError().GetMessage()
 << std::endl;
 }

 return result.IsSuccess();
}

• For API details, see DeleteTable in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete a table

The following delete-table example deletes the MusicCollection table.

aws dynamodb delete-table \
 --table-name MusicCollection

Output:

{
 "TableDescription": {
 "TableStatus": "DELETING",
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableName": "MusicCollection",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 }
 }
}

For more information, see Deleting a Table in the Amazon DynamoDB Developer Guide.

Step 6: (Optional) clean up API Version 2012-08-10 236

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DeleteTable
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.DeleteTable

Amazon DynamoDB Developer Guide

• For API details, see DeleteTable in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// DeleteTable deletes the DynamoDB table and all of its data.
func (basics TableBasics) DeleteTable(ctx context.Context) error {
 _, err := basics.DynamoDbClient.DeleteTable(ctx, &dynamodb.DeleteTableInput{
 TableName: aws.String(basics.TableName)})
 if err != nil {

Step 6: (Optional) clean up API Version 2012-08-10 237

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/delete-table.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 log.Printf("Couldn't delete table %v. Here's why: %v\n", basics.TableName, err)
 }
 return err
}

• For API details, see DeleteTable in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class DeleteTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName>

 Where:

Step 6: (Optional) clean up API Version 2012-08-10 238

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 tableName - The Amazon DynamoDB table to delete (for example,
 Music3).

 Warning This program will delete the table that you specify!
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 System.out.format("Deleting the Amazon DynamoDB table %s...\n",
 tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 deleteDynamoDBTable(ddb, tableName);
 ddb.close();
 }

 public static void deleteDynamoDBTable(DynamoDbClient ddb, String tableName)
 {
 DeleteTableRequest request = DeleteTableRequest.builder()
 .tableName(tableName)
 .build();

 try {
 ddb.deleteTable(request);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println(tableName + " was successfully deleted!");
 }
}

• For API details, see DeleteTable in Amazon SDK for Java 2.x API Reference.

Step 6: (Optional) clean up API Version 2012-08-10 239

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { DeleteTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new DeleteTableCommand({
 TableName: "DecafCoffees",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see DeleteTable in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object

Step 6: (Optional) clean up API Version 2012-08-10 240

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: process.argv[2],
};

// Call DynamoDB to delete the specified table
ddb.deleteTable(params, function (err, data) {
 if (err && err.code === "ResourceNotFoundException") {
 console.log("Error: Table not found");
 } else if (err && err.code === "ResourceInUseException") {
 console.log("Error: Table in use");
 } else {
 console.log("Success", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteTable in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun deleteDynamoDBTable(tableNameVal: String) {
 val request =
 DeleteTableRequest {
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.deleteTable(request)
 println("$tableNameVal was deleted")
 }

Step 6: (Optional) clean up API Version 2012-08-10 241

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-deleting-a-table
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

}

• For API details, see DeleteTable in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function deleteTable(string $TableName)
 {
 $this->customWaiter(function () use ($TableName) {
 return $this->dynamoDbClient->deleteTable([
 'TableName' => $TableName,
]);
 });
 }

• For API details, see DeleteTable in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Deletes the specified table. You are prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable"

Example 2: Deletes the specified table. You are not prompted for confirmation before the
operation proceeds.

Step 6: (Optional) clean up API Version 2012-08-10 242

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

Remove-DDBTable -TableName "myTable" -Force

• For API details, see DeleteTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Deletes the specified table. You are prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable"

Example 2: Deletes the specified table. You are not prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable" -Force

• For API details, see DeleteTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,

Step 6: (Optional) clean up API Version 2012-08-10 243

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def delete_table(self):
 """
 Deletes the table.
 """
 try:
 self.table.delete()
 self.table = None
 except ClientError as err:
 logger.error(
 "Couldn't delete table. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteTable in Amazon SDK for Python (Boto3) API Reference.

Step 6: (Optional) clean up API Version 2012-08-10 244

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Deletes the table.
 def delete_table
 @table.delete
 @table = nil
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't delete table. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteTable in Amazon SDK for Ruby API Reference.

Step 6: (Optional) clean up API Version 2012-08-10 245

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn delete_table(client: &Client, table: &str) ->
 Result<DeleteTableOutput, Error> {
 let resp = client.delete_table().table_name(table).send().await;

 match resp {
 Ok(out) => {
 println!("Deleted table");
 Ok(out)
 }
 Err(e) => Err(Error::Unhandled(e.into())),
 }
}

• For API details, see DeleteTable in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 lo_dyn->deletetable(iv_tablename = iv_table_name).
 " Wait till the table is actually deleted.
 lo_dyn->get_waiter()->tablenotexists(

Step 6: (Optional) clean up API Version 2012-08-10 246

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples
https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.delete_table
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'Table ' && iv_table_name && ' deleted.' TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table ' && iv_table_name && ' does not exist' TYPE 'E'.
 CATCH /aws1/cx_dynresourceinuseex.
 MESSAGE 'The table cannot be deleted since it is in use' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteTable in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 ///
 /// Deletes the table from Amazon DynamoDB.
 ///
 func deleteTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DeleteTableInput(
 tableName: self.tableName
)
 _ = try await client.deleteTable(input: input)
 } catch {
 print("ERROR: deleteTable:", dump(error))
 throw error
 }

Step 6: (Optional) clean up API Version 2012-08-10 247

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }

• For API details, see DeleteTable in Amazon SDK for Swift API reference.

For more DynamoDB examples, see Code examples for DynamoDB using Amazon SDKs.

Continue learning about DynamoDB

For more information about using Amazon DynamoDB, see the following topics:

• Working with tables and data in DynamoDB

• Working with items and attributes in DynamoDB

• Querying tables in DynamoDB

• Using Global Secondary Indexes in DynamoDB

• Working with transactions

• In-memory acceleration with DynamoDB Accelerator (DAX)

• Programming with DynamoDB and the Amazon SDKs

Generate infrastructure code for Amazon DynamoDB using
Console-to-Code

Amazon Q Developer's Console-to-Code feature simplifies infrastructure management for Amazon
DynamoDB by transforming manual table creation steps into reproducible automation code.
This capability helps developers efficiently scale database resource configuration across their
environments. For more information, see Automating Amazon Web Services services with Amazon
Q Developer Console-to-Code.

Console-to-Code captures detailed DynamoDB table configurations, including partition keys, sort
keys, provisioned throughput settings, and secondary indexes, and converts these into precise
infrastructure-as-code templates. Using generative AI, the tool ensures generated code maintains
the parameter compatibility established during your console workflow.

Developers can generate DynamoDB infrastructure code in multiple formats, such as:

Next steps API Version 2012-08-10 248

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/deletetable(input:)
https://docs.amazonaws.cn/amazonq/latest/qdeveloper-ug/console-to-code.html
https://docs.amazonaws.cn/amazonq/latest/qdeveloper-ug/console-to-code.html

Amazon DynamoDB Developer Guide

• Amazon Cloud Development Kit (Amazon CDK) in TypeScript, Python, and Java

• Amazon CloudFormation in YAML or JSON

This approach allows teams to:

• Standardize database resource management

• Implement version-controlled infrastructure

• Reduce manual configuration errors

Console-to-Code for Amazon DynamoDB is available in all commercial Amazon Regions, providing
a powerful solution for transforming manual configurations into automated, reproducible
infrastructure code.

How it works

When using Console-to-Code with DynamoDB, the process typically involves:

1. Prototyping in the console – Use the DynamoDB console to create and configure resources like
tables. See Connect to Amazon DynamoDB for more information.

2. Recording actions – Console-to-Code records these actions as you perform them.

3. Code generation – The feature uses Amazon Q Developer's generative AI capabilities to
transform your console actions into reusable code in your preferred format.

4. Code customization – You can then copy or download this code and further customize it for
your production workloads.

Benefits of using Console-to-Code with DynamoDB

Simplified automation

Convert manual DynamoDB table creation and configuration into reusable code with a single
click.

Best practices

Generated code follows Amazon guided best practices for reliable deployments.

How it works API Version 2012-08-10 249

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

Amazon DynamoDB Developer Guide

Bridge between console and code

You don't have to choose between using the Amazon Web Services Management Console or
Infrastructure-as-Code (IaC). You can use both approaches together.

Accelerated development

Get started quickly with automation code that can be further customized for production use.

Example use cases

• Creating DynamoDB tables with specific attributes, keys, and capacity settings

• Setting up Global Secondary Indexes and Local Secondary Indexes

• Configuring auto-scaling policies for DynamoDB tables

• Establishing backup and restore configurations

• Creating and managing DynamoDB Streams

Getting started

To start using Console-to-Code with DynamoDB:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.aws.amazon.com/dynamodbv2/.

2. Begin creating or modifying DynamoDB resources through the console interface.

3. Use the Console-to-Code feature to generate code for your actions in your preferred format.

4. Copy or download the generated code and customize it as needed for your specific
requirements.

For more information and detailed instructions on how to use Console-to-Code, see Automating
Amazon Web Services services with Amazon Q Developer Console-to-Code in the Amazon Q
Developer User Guide.

Example use cases API Version 2012-08-10 250

https://console.aws.amazon.com/dynamodbv2/
https://docs.amazonaws.cn/amazonq/latest/qdeveloper-ug/console-to-code.html
https://docs.amazonaws.cn/amazonq/latest/qdeveloper-ug/console-to-code.html

Amazon DynamoDB Developer Guide

Amazon DynamoDB: How it works

The following sections provide an overview of Amazon DynamoDB service components and how
they interact.

Topics

• Cheat sheet for DynamoDB

• Core components of Amazon DynamoDB

• DynamoDB API

• Supported data types and naming rules in Amazon DynamoDB

• DynamoDB table classes

• Partitions and data distribution in DynamoDB

• Learn how to go from SQL to NoSQL

• Amazon DynamoDB learning resources and tools

Cheat sheet for DynamoDB

This cheat sheet provides a quick reference for working with Amazon DynamoDB and its various
Amazon SDKs.

Initial setup

1. Sign up for Amazon.

2. Get an Amazon access key to access DynamoDB programmatically.

3. Configure your DynamoDB credentials.

See also:

• Setting up DynamoDB (web service)

• Getting started with DynamoDB

• Basic overview of core components

Cheat sheet API Version 2012-08-10 251

SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.SignUpForAWS
SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials
SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.ConfigureCredentials
SettingUp.DynamoWebService.html
GettingStartedDynamoDB.html
HowItWorks.CoreComponents.html

Amazon DynamoDB Developer Guide

SDK or CLI

Choose your preferred SDK, or set up the Amazon CLI.

Note

When you use the Amazon CLI on Windows, a backslash (\) that is not inside a quote is
treated as a carriage return. Also, you must escape any quotes and braces inside other
quotes. For an example, see the Windows tab in "Create a table" in the next section.

See also:

• Amazon CLI with DynamoDB

• Getting started with DynamoDB - step 2

Basic actions

This section provides code for basic DynamoDB tasks. For more information about these tasks, see
Getting started with DynamoDB and the Amazon SDKs.

Create a table

Default

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --table-class STANDARD

Windows

aws dynamodb create-table ^
 --table-name Music ^
 --attribute-definitions ^

SDK or CLI API Version 2012-08-10 252

sdk-general-information-section.html
Tools.CLI.html
getting-started-step-2.html
GettingStarted.html

Amazon DynamoDB Developer Guide

 AttributeName=Artist,AttributeType=S ^
 AttributeName=SongTitle,AttributeType=S ^
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE ^
 --billing-mode PAY_PER_REQUEST ^
 --table-class STANDARD

Write item to a table

aws dynamodb put-item \ --table-name Music \ --item file://item.json

Read item from a table

aws dynamodb get-item \ --table-name Music \ --item file://item.json

Delete item from a table

aws dynamodb delete-item --table-name Music --key file://key.json

Query a table

aws dynamodb query --table-name Music
--key-condition-expression "ArtistName=:Artist and SongName=:Songtitle"

Delete a table

aws dynamodb delete-table --table-name Music

List table names

aws dynamodb list-tables

Naming rules

• All names must be encoded using UTF-8 and are case sensitive.

• Table names and index names must be between 3 and 255 characters long, and can contain only
the following characters:

Naming rules API Version 2012-08-10 253

Amazon DynamoDB Developer Guide

• a-z

• A-Z

• 0-9

• _(underscore)

• -(hyphen)

• .(dot)

• Attribute names must be at least one character long, and less than 64 KB in size.

For more information, see Naming rules.

Service quota basics

Read and write units

• Read capacity unit (RCU) – One strongly consistent read per second, or two eventually
consistent reads per second, for items up to 4 KB in size.

• Write capacity unit (WCU) – One write per second, for items up to 1 KB in size.

Table limits

• Table size – There is no practical limit on table size. Tables are unconstrained in terms of the
number of items or the number of bytes.

• Number of tables – For any Amazon account, there is an initial quota of 2,500 tables per
Amazon Region.

• Page size limit for query and scan – There is a limit of 1 MB per page, per query or scan. If your
query parameters or scan operation on a table result in more than 1 MB of data, DynamoDB
returns the initial matching items. It also returns a LastEvaluatedKey property that you can
use in a new request to read the next page.

Indexes

• Local secondary indexes (LSIs) – You can define a maximum of five local secondary indexes. LSIs
are primarily useful when an index must have strong consistency with the base table.

• Global secondary indexes (GSIs) – There is a default quota of 20 global secondary indexes per
table.

Service quota basics API Version 2012-08-10 254

HowItWorks.NamingRulesDataTypes.html

Amazon DynamoDB Developer Guide

• Projected secondary index attributes per table – You can project a total of up to 100 attributes
into all of a table's local and global secondary indexes. This only applies to user-specified
projected attributes.

Partition keys

• The minimum length of a partition key value is 1 byte. The maximum length is 2048 bytes.

• There is no practical limit on the number of distinct partition key values, for tables or for
secondary indexes.

• The minimum length of a sort key value is 1 byte. The maximum length is 1024 bytes.

• In general, there is no practical limit on the number of distinct sort key values per partition key
value. The exception is for tables with secondary indexes.

For more information on secondary indexes, partition key design, and sort key design, see Best
practices.

Limits for commonly used data types

• String – The length of a string is constrained by the maximum item size of 400 KB. Strings are
Unicode with UTF-8 binary encoding.

• Number – A number can have up to 38 digits of precision, and can be positive, negative, or zero.

• Binary – The length of a binary is constrained by the maximum item size of 400 KB. Applications
that work with binary attributes must encode the data in base64 encoding before sending it to
DynamoDB.

For a full list of supported data types, see Data types. For more information, also see Service
quotas.

Items, attributes, and expression parameters

The maximum item size in DynamoDB is 400 KB, which includes both attribute name binary length
(UTF-8 length) and attribute value binary lengths (UTF-8 length). The attribute name counts
towards the size limit.

There is no limit on the number of values in a list, map, or set, as long as the item that contains the
values fits within the 400-KB item size limit.

Service quota basics API Version 2012-08-10 255

best-practices.html
best-practices.html
HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes
ServiceQuotas.html#limits-items
ServiceQuotas.html#limits-items

Amazon DynamoDB Developer Guide

For expression parameters, the maximum length of any expression string is 4 KB.

For more information about item size, attributes, and expression parameters, see Service quotas.

More information

• Security

• Monitoring and logging

• Working with streams

• Backups and Point-in-time recovery

• Integrating with other Amazon services

• API reference

• Architecture Center: Database Best Practices

• Video tutorials

• DynamoDB forum

Core components of Amazon DynamoDB

In DynamoDB, tables, items, and attributes are the core components that you work with. A
table is a collection of items, and each item is a collection of attributes. DynamoDB uses primary
keys to uniquely identify each item in a table. You can use DynamoDB Streams to capture data
modification events in DynamoDB tables.

There are limits in DynamoDB. For more information, see Quotas in Amazon DynamoDB.

The following video will give you an introductory look at tables, items, and attributes.

Tables, items, and attributes

More information API Version 2012-08-10 256

ServiceQuotas.html#limits-items
security.html
monitoring.html
streamsmain.html
Backup-and-Restore.html
Point-in-time-recovery.html
OtherServices.html
https://aws.amazon.com/architecture/databases/
https://youtu.be/Mw8wCj0gkRc
https://repost.aws/search/questions?globalSearch=dynamodb
https://www.youtube.com/embed/Mw8wCj0gkRc

Amazon DynamoDB Developer Guide

Tables, items, and attributes

The following are the basic DynamoDB components:

• Tables – Similar to other database systems, DynamoDB stores data in tables. A table is a
collection of data. For example, see the example table called People that you could use to store
personal contact information about friends, family, or anyone else of interest. You could also
have a Cars table to store information about vehicles that people drive.

• Items – Each table contains zero or more items. An item is a group of attributes that is uniquely
identifiable among all of the other items. In a People table, each item represents a person. For
a Cars table, each item represents one vehicle. Items in DynamoDB are similar in many ways to
rows, records, or tuples in other database systems. In DynamoDB, there is no limit to the number
of items you can store in a table.

• Attributes – Each item is composed of one or more attributes. An attribute is a fundamental
data element, something that does not need to be broken down any further. For example, an
item in a People table contains attributes called PersonID, LastName, FirstName, and so on. For
a Department table, an item might have attributes such as DepartmentID, Name, Manager, and
so on. Attributes in DynamoDB are similar in many ways to fields or columns in other database
systems.

The following diagram shows a table named People with some example items and attributes.

Tables, items, and attributes API Version 2012-08-10 257

Amazon DynamoDB Developer Guide

People

{
 "PersonID": 101,
 "LastName": "Smith",
 "FirstName": "Fred",
 "Phone": "555-4321"
}

{
 "PersonID": 102,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

{
 "PersonID": 103,
 "LastName": "Stephens",
 "FirstName": "Howard",
 "Address": {
 "Street": "123 Main",
 "City": "London",
 "PostalCode": "ER3 5K8"
 },
 "FavoriteColor": "Blue"
}

Note the following about the People table:

• Each item in the table has a unique identifier, or primary key, that distinguishes the item from
all of the others in the table. In the People table, the primary key consists of one attribute
(PersonID).

• Other than the primary key, the People table is schemaless, which means that neither the
attributes nor their data types need to be defined beforehand. Each item can have its own
distinct attributes.

Tables, items, and attributes API Version 2012-08-10 258

Amazon DynamoDB Developer Guide

• Most of the attributes are scalar, which means that they can have only one value. Strings and
numbers are common examples of scalars.

• Some of the items have a nested attribute (Address). DynamoDB supports nested attributes up to
32 levels deep.

The following is another example table named Music that you could use to keep track of your
music collection.

Music

{
 "Artist": "No One You Know",
 "SongTitle": "My Dog Spot",
 "AlbumTitle": "Hey Now",
 "Price": 1.98,
 "Genre": "Country",
 "CriticRating": 8.4
}

{
 "Artist": "No One You Know",
 "SongTitle": "Somewhere Down The Road",
 "AlbumTitle": "Somewhat Famous",
 "Genre": "Country",
 "CriticRating": 8.4,
 "Year": 1984
}

{
 "Artist": "The Acme Band",
 "SongTitle": "Still in Love",
 "AlbumTitle": "The Buck Starts Here",
 "Price": 2.47,
 "Genre": "Rock",
 "PromotionInfo": {
 "RadioStationsPlaying": [
 "KHCR",
 "KQBX",
 "WTNR",
 "WJJH"
],

Tables, items, and attributes API Version 2012-08-10 259

Amazon DynamoDB Developer Guide

 "TourDates": {
 "Seattle": "20150622",
 "Cleveland": "20150630"
 },
 "Rotation": "Heavy"
 }
}

{
 "Artist": "The Acme Band",
 "SongTitle": "Look Out, World",
 "AlbumTitle": "The Buck Starts Here",
 "Price": 0.99,
 "Genre": "Rock"
}

Note the following about the Music table:

• The primary key for Music consists of two attributes (Artist and SongTitle). Each item in the table
must have these two attributes. The combination of Artist and SongTitle distinguishes each item
in the table from all of the others.

• Other than the primary key, the Music table is schemaless, which means that neither the
attributes nor their data types need to be defined beforehand. Each item can have its own
distinct attributes.

• One of the items has a nested attribute (PromotionInfo), which contains other nested attributes.
DynamoDB supports nested attributes up to 32 levels deep.

For more information, see Working with tables and data in DynamoDB.

Primary key

When you create a table, in addition to the table name, you must specify the primary key of the
table. The primary key uniquely identifies each item in the table, so that no two items can have the
same key.

DynamoDB supports two different kinds of primary keys:

• Partition key – A simple primary key, composed of one attribute known as the partition key.

Primary key API Version 2012-08-10 260

Amazon DynamoDB Developer Guide

DynamoDB uses the partition key's value as input to an internal hash function. The output from
the hash function determines the partition (physical storage internal to DynamoDB) in which the
item will be stored.

In a table that has only a partition key, no two items can have the same partition key value.

The People table described in Tables, items, and attributes is an example of a table with a simple
primary key (PersonID). You can access any item in the People table directly by providing the
PersonId value for that item.

• Partition key and sort key – Referred to as a composite primary key, this type of key is composed
of two attributes. The first attribute is the partition key, and the second attribute is the sort key.

DynamoDB uses the partition key value as input to an internal hash function. The output from
the hash function determines the partition (physical storage internal to DynamoDB) in which
the item will be stored. All items with the same partition key value are stored together, in sorted
order by sort key value.

In a table that has a partition key and a sort key, it's possible for multiple items to have the same
partition key value. However, those items must have different sort key values.

The Music table described in Tables, items, and attributes is an example of a table with a
composite primary key (Artist and SongTitle). You can access any item in the Music table directly,
if you provide the Artist and SongTitle values for that item.

A composite primary key gives you additional flexibility when querying data. For example, if you
provide only the value for Artist, DynamoDB retrieves all of the songs by that artist. To retrieve
only a subset of songs by a particular artist, you can provide a value for Artist along with a range
of values for SongTitle.

Note

The partition key of an item is also known as its hash attribute. The term hash attribute
derives from the use of an internal hash function in DynamoDB that evenly distributes data
items across partitions, based on their partition key values.
The sort key of an item is also known as its range attribute. The term range attribute derives
from the way DynamoDB stores items with the same partition key physically close together,
in sorted order by the sort key value.

Primary key API Version 2012-08-10 261

Amazon DynamoDB Developer Guide

Each primary key attribute must be a scalar (meaning that it can hold only a single value). The
only data types allowed for primary key attributes are string, number, or binary. There are no such
restrictions for other, non-key attributes.

Secondary indexes

You can create one or more secondary indexes on a table. A secondary index lets you query the
data in the table using an alternate key, in addition to queries against the primary key. DynamoDB
doesn't require that you use indexes, but they give your applications more flexibility when querying
your data. After you create a secondary index on a table, you can read data from the index in much
the same way as you do from the table.

DynamoDB supports two kinds of indexes:

• Global secondary index – An index with a partition key and sort key that can be different from
those on the table. The primary key values in global secondary indexes don't need to be unique.

• Local secondary index – An index that has the same partition key as the table, but a different sort
key.

In DynamoDB, global secondary indexes (GSIs) are indexes that span the entire table, allowing you
to query across all partition keys. Local secondary indexes (LSIs) are indexes that have the same
partition key as the base table but a different sort key.

Each table in DynamoDB has a quota of 20 global secondary indexes (default quota) and 5 local
secondary indexes.

In the example Music table shown previously, you can query data items by Artist (partition key) or
by Artist and SongTitle (partition key and sort key). What if you also wanted to query the data by
Genre and AlbumTitle? To do this, you could create an index on Genre and AlbumTitle, and then
query the index in much the same way as you'd query the Music table.

The following diagram shows the example Music table, with a new index called GenreAlbumTitle. In
the index, Genre is the partition key and AlbumTitle is the sort key.

Music Table GenreAlbumTitle

{
 "Artist": "No One You Know",

{
 "Genre": "Country",

Secondary indexes API Version 2012-08-10 262

Amazon DynamoDB Developer Guide

Music Table GenreAlbumTitle

 "SongTitle": "My Dog Spot",
 "AlbumTitle": "Hey Now",
 "Price": 1.98,
 "Genre": "Country",
 "CriticRating": 8.4
}

 "AlbumTitle": "Hey Now",
 "Artist": "No One You Know",
 "SongTitle": "My Dog Spot"
}

{
 "Artist": "No One You Know",
 "SongTitle": "Somewhere Down The
 Road",
 "AlbumTitle": "Somewhat Famous",
 "Genre": "Country",
 "CriticRating": 8.4,
 "Year": 1984
}

{
 "Genre": "Country",
 "AlbumTitle": "Somewhat Famous",
 "Artist": "No One You Know",
 "SongTitle": "Somewhere Down The
 Road"
}

Secondary indexes API Version 2012-08-10 263

Amazon DynamoDB Developer Guide

Music Table GenreAlbumTitle

{
 "Artist": "The Acme Band",
 "SongTitle": "Still in Love",
 "AlbumTitle": "The Buck Starts
 Here",
 "Price": 2.47,
 "Genre": "Rock",
 "PromotionInfo": {
 "RadioStationsPlaying": {
 "KHCR",
 "KQBX",
 "WTNR",
 "WJJH"
 },
 "TourDates": {
 "Seattle": "20150622",
 "Cleveland": "20150630"
 },
 "Rotation": "Heavy"
 }
}

{
 "Genre": "Rock",
 "AlbumTitle": "The Buck Starts
 Here",
 "Artist": "The Acme Band",
 "SongTitle": "Still In Love"
}

{
 "Artist": "The Acme Band",
 "SongTitle": "Look Out, World",
 "AlbumTitle": "The Buck Starts
 Here",
 "Price": 0.99,
 "Genre": "Rock"
}

{
 "Genre": "Rock",
 "AlbumTitle": "The Buck Starts
 Here",
 "Artist": "The Acme Band",
 "SongTitle": "Look Out, World"
}

Note the following about the GenreAlbumTitle index:

Secondary indexes API Version 2012-08-10 264

Amazon DynamoDB Developer Guide

• Every index belongs to a table, which is called the base table for the index. In the preceding
example, Music is the base table for the GenreAlbumTitle index.

• DynamoDB maintains indexes automatically. When you add, update, or delete an item in the
base table, DynamoDB adds, updates, or deletes the corresponding item in any indexes that
belong to that table.

• When you create an index, you specify which attributes will be copied, or projected, from the
base table to the index. At a minimum, DynamoDB projects the key attributes from the base
table into the index. This is the case with GenreAlbumTitle, where only the key attributes from
the Music table are projected into the index.

You can query the GenreAlbumTitle index to find all albums of a particular genre (for example, all
Rock albums). You can also query the index to find all albums within a particular genre that have
certain album titles (for example, all Country albums with titles that start with the letter H).

For more information, see Improving data access with secondary indexes in DynamoDB.

DynamoDB Streams

DynamoDB Streams is an optional feature that captures data modification events in DynamoDB
tables. The data about these events appear in the stream in near-real time, and in the order that
the events occurred.

Each event is represented by a stream record. If you enable a stream on a table, DynamoDB
Streams writes a stream record whenever one of the following events occurs:

• A new item is added to the table: The stream captures an image of the entire item, including all
of its attributes.

• An item is updated: The stream captures the "before" and "after" image of any attributes that
were modified in the item.

• An item is deleted from the table: The stream captures an image of the entire item before it was
deleted.

Each stream record also contains the name of the table, the event timestamp, and other metadata.
Stream records have a lifetime of 24 hours; after that, they are automatically removed from the
stream.

DynamoDB Streams API Version 2012-08-10 265

Amazon DynamoDB Developer Guide

You can use DynamoDB Streams together with Amazon Lambda to create a trigger—code that
runs automatically whenever an event of interest appears in a stream. For example, consider a
Customers table that contains customer information for a company. Suppose that you want to
send a "welcome" email to each new customer. You could enable a stream on that table, and then
associate the stream with a Lambda function. The Lambda function would run whenever a new
stream record appears, but only process new items added to the Customers table. For any item that
has an EmailAddress attribute, the Lambda function would invoke Amazon Simple Email Service
(Amazon SES) to send an email to that address.

Note

In this example, the last customer, Craig Roe, will not receive an email because he doesn't
have an EmailAddress.

DynamoDB Streams API Version 2012-08-10 266

Amazon DynamoDB Developer Guide

In addition to triggers, DynamoDB Streams enables powerful solutions such as data replication
within and across Amazon Regions, materialized views of data in DynamoDB tables, data analysis
using Kinesis materialized views, and much more.

For more information, see Change data capture for DynamoDB Streams.

DynamoDB API

To work with Amazon DynamoDB, your application must use a few simple API operations. The
following is a summary of these operations, organized by category.

Note

For a full list of the API operations, see the Amazon DynamoDB API Reference.

Topics

• Control plane

• Data plane

• DynamoDB Streams

• Transactions

Control plane

Control plane operations let you create and manage DynamoDB tables. They also let you work with
indexes, streams, and other objects that are dependent on tables.

• CreateTable – Creates a new table. Optionally, you can create one or more secondary indexes,
and enable DynamoDB Streams for the table.

• DescribeTable– Returns information about a table, such as its primary key schema,
throughput settings, and index information.

• ListTables – Returns the names of all of your tables in a list.

• UpdateTable – Modifies the settings of a table or its indexes, creates or removes new indexes
on a table, or modifies DynamoDB Streams settings for a table.

• DeleteTable – Removes a table and all of its dependent objects from DynamoDB.

DynamoDB API API Version 2012-08-10 267

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

Data plane

Data plane operations let you perform create, read, update, and delete (also called CRUD) actions
on data in a table. Some of the data plane operations also let you read data from a secondary
index.

You can use PartiQL - a SQL-compatible query language for Amazon DynamoDB, to perform these
CRUD operations or you can use DynamoDB’s classic CRUD APIs that separates each operation into
a distinct API call.

PartiQL - A SQL-compatible query language

• ExecuteStatement – Reads multiple items from a table. You can also write or update a single
item from a table. When writing or updating a single item, you must specify the primary key
attributes.

• BatchExecuteStatement – Writes, updates or reads multiple items from a table. This is more
efficient than ExecuteStatement because your application only needs a single network round
trip to write or read the items.

Classic APIs

Creating data

• PutItem – Writes a single item to a table. You must specify the primary key attributes, but you
don't have to specify other attributes.

• BatchWriteItem – Writes up to 25 items to a table. This is more efficient than calling PutItem
multiple times because your application only needs a single network round trip to write the
items.

Reading data

• GetItem – Retrieves a single item from a table. You must specify the primary key for the item
that you want. You can retrieve the entire item, or just a subset of its attributes.

• BatchGetItem – Retrieves up to 100 items from one or more tables. This is more efficient than
calling GetItem multiple times because your application only needs a single network round trip
to read the items.

Data plane API Version 2012-08-10 268

Amazon DynamoDB Developer Guide

• Query – Retrieves all items that have a specific partition key. You must specify the partition key
value. You can retrieve entire items, or just a subset of their attributes. Optionally, you can apply
a condition to the sort key values so that you only retrieve a subset of the data that has the same
partition key. You can use this operation on a table, provided that the table has both a partition
key and a sort key. You can also use this operation on an index, provided that the index has both
a partition key and a sort key.

• Scan – Retrieves all items in the specified table or index. You can retrieve entire items, or just a
subset of their attributes. Optionally, you can apply a filtering condition to return only the values
that you are interested in and discard the rest.

Updating data

• UpdateItem – Modifies one or more attributes in an item. You must specify the primary key for
the item that you want to modify. You can add new attributes and modify or remove existing
attributes. You can also perform conditional updates, so that the update is only successful
when a user-defined condition is met. Optionally, you can implement an atomic counter, which
increments or decrements a numeric attribute without interfering with other write requests.

Deleting data

• DeleteItem – Deletes a single item from a table. You must specify the primary key for the item
that you want to delete.

• BatchWriteItem – Deletes up to 25 items from one or more tables. This is more efficient than
calling DeleteItem multiple times because your application only needs a single network round
trip to delete the items.

Note

You can use BatchWriteItem to both create data and delete data.

DynamoDB Streams

DynamoDB Streams operations let you enable or disable a stream on a table, and allow access to
the data modification records contained in a stream.

• ListStreams – Returns a list of all your streams, or just the stream for a specific table.

DynamoDB Streams API Version 2012-08-10 269

Amazon DynamoDB Developer Guide

• DescribeStream – Returns information about a stream, such as its Amazon Resource Name
(ARN) and where your application can begin reading the first few stream records.

• GetShardIterator – Returns a shard iterator, which is a data structure that your application
uses to retrieve the records from the stream.

• GetRecords – Retrieves one or more stream records, using a given shard iterator.

Transactions

Transactions provide atomicity, consistency, isolation, and durability (ACID) enabling you to
maintain data correctness in your applications more easily.

You can use PartiQL - a SQL-compatible query language for Amazon DynamoDB, to perform
transactional operations or you can use DynamoDB’s classic CRUD APIs that separates each
operation into a distinct API call.

PartiQL - A SQL-compatible query language

• ExecuteTransaction – A batch operation that allows CRUD operations to multiple items both
within and across tables with a guaranteed all-or-nothing result.

Classic APIs

• TransactWriteItems – A batch operation that allows Put, Update, and Delete operations to
multiple items both within and across tables with a guaranteed all-or-nothing result.

• TransactGetItems – A batch operation that allows Get operations to retrieve multiple items
from one or more tables.

Supported data types and naming rules in Amazon DynamoDB

This section describes the Amazon DynamoDB naming rules and the various data types that
DynamoDB supports. There are limits that apply to data types. For more information, see Data
types.

Topics

• Naming rules

• Data types

Transactions API Version 2012-08-10 270

Amazon DynamoDB Developer Guide

• Data type descriptors

Naming rules

Tables, attributes, and other objects in DynamoDB must have names. Names should be meaningful
and concise—for example, names such as Products, Books, and Authors are self-explanatory.

The following are the naming rules for DynamoDB:

• All names must be encoded using UTF-8, and are case-sensitive.

• Table names and index names must be between 3 and 255 characters long, and can contain only
the following characters:

• a-z

• A-Z

• 0-9

• _ (underscore)

• - (dash)

• . (dot)

• Attribute names must be at least one character long and less than 64 KB in size. It is considered
best practice to keep your attribute names as short as possible. This helps reduce read request
units consumed, as attribute names are included in metering of storage and throughput usage.

The following are the exceptions. These attribute names must be no greater than 255 characters
long:

• Secondary index partition key names

• Secondary index sort key names

• The names of any user-specified projected attributes (applicable only to local secondary
indexes)

Reserved words and special characters

DynamoDB has a list of reserved words and special characters. For a complete list, see Reserved
words in DynamoDB. Also, the following characters have special meaning in DynamoDB: # (hash)
and : (colon).
Naming rules API Version 2012-08-10 271

Amazon DynamoDB Developer Guide

Although DynamoDB allows you to use these reserved words and special characters for names, we
recommend that you avoid doing so because you have to define placeholder variables whenever
you use these names in an expression. For more information, see Expression attribute names
(aliases) in DynamoDB.

Data types

DynamoDB supports many different data types for attributes within a table. They can be
categorized as follows:

• Scalar Types – A scalar type can represent exactly one value. The scalar types are number, string,
binary, Boolean, and null.

• Document Types – A document type can represent a complex structure with nested attributes,
such as what you would find in a JSON document. The document types are list and map.

• Set Types – A set type can represent multiple scalar values. The set types are string set, number
set, and binary set.

When you create a table or a secondary index, you must specify the names and data types of each
primary key attribute (partition key and sort key). Furthermore, each primary key attribute must be
defined as type string, number, or binary.

DynamoDB is a NoSQL database and is schemaless. This means that other than the primary
key attributes, you don't have to define any attributes or data types when you create tables. By
comparison, relational databases require you to define the names and data types of each column
when you create a table.

The following are descriptions of each data type, along with examples in JSON format.

Scalar types

The scalar types are number, string, binary, Boolean, and null.

Number

Numbers can be positive, negative, or zero. Numbers can have up to 38 digits of precision.
Exceeding this results in an exception. If you need greater precision than 38 digits, you can use
strings.

• Positive range: 1E-130 to 9.9999999999999999999999999999999999999E+125

Data types API Version 2012-08-10 272

Amazon DynamoDB Developer Guide

• Negative range: -9.9999999999999999999999999999999999999E+125 to -1E-130

In DynamoDB, numbers are represented as variable length. Leading and trailing zeroes are
trimmed.

All numbers are sent across the network to DynamoDB as strings to maximize compatibility
across languages and libraries. However, DynamoDB treats them as number type attributes for
mathematical operations.

You can use the number data type to represent a date or a timestamp. One way to do this is by
using epoch time—the number of seconds since 00:00:00 UTC on 1 January 1970. For example, the
epoch time 1437136300 represents 12:31:40 PM UTC on 17 July 2015.

For more information, see http://en.wikipedia.org/wiki/Unix_time.

String

Strings are Unicode with UTF-8 binary encoding. The minimum length of a string can be zero, if the
attribute is not used as a key for an index or table, and is constrained by the maximum DynamoDB
item size limit of 400 KB.

The following additional constraints apply to primary key attributes that are defined as type string:

• For a simple primary key, the maximum length of the first attribute value (the partition key) is
2048 bytes.

• For a composite primary key, the maximum length of the second attribute value (the sort key) is
1024 bytes.

DynamoDB collates and compares strings using the bytes of the underlying UTF-8 string encoding.
For example, "a" (0x61) is greater than "A" (0x41), and "¿" (0xC2BF) is greater than "z" (0x7A).

You can use the string data type to represent a date or a timestamp. One way to do this is by using
ISO 8601 strings, as shown in these examples:

• 2016-02-15

• 2015-12-21T17:42:34Z

• 20150311T122706Z

For more information, see http://en.wikipedia.org/wiki/ISO_8601.

Data types API Version 2012-08-10 273

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/ISO_8601

Amazon DynamoDB Developer Guide

Note

Unlike conventional relational databases, DynamoDB does not natively support a date and
time data type. It can be useful instead to store date and time data as a number data type,
using Unix epoch time.

Binary

Binary type attributes can store any binary data, such as compressed text, encrypted data, or
images. Whenever DynamoDB compares binary values, it treats each byte of the binary data as
unsigned.

The length of a binary attribute can be zero, if the attribute is not used as a key for an index or
table, and is constrained by the maximum DynamoDB item size limit of 400 KB.

If you define a primary key attribute as a binary type attribute, the following additional constraints
apply:

• For a simple primary key, the maximum length of the first attribute value (the partition key) is
2048 bytes.

• For a composite primary key, the maximum length of the second attribute value (the sort key) is
1024 bytes.

Your applications must encode binary values in base64-encoded format before sending them to
DynamoDB. Upon receipt of these values, DynamoDB decodes the data into an unsigned byte array
and uses that as the length of the binary attribute.

The following example is a binary attribute, using base64-encoded text.

dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk

Boolean

A Boolean type attribute can store either true or false.

Null

Null represents an attribute with an unknown or undefined state.

Data types API Version 2012-08-10 274

Amazon DynamoDB Developer Guide

Document types

The document types are list and map. These data types can be nested within each other, to
represent complex data structures up to 32 levels deep.

There is no limit on the number of values in a list or a map, as long as the item containing the
values fits within the DynamoDB item size limit (400 KB).

An attribute value can be an empty string or empty binary value if the attribute is not used for a
table or index key. An attribute value cannot be an empty set (string set, number set, or binary set),
however, empty lists and maps are allowed. Empty string and binary values are allowed within lists
and maps. For more information, see Attributes.

List

A list type attribute can store an ordered collection of values. Lists are enclosed in square brackets:
[...]

A list is similar to a JSON array. There are no restrictions on the data types that can be stored in a
list element, and the elements in a list element do not have to be of the same type.

The following example shows a list that contains two strings and a number.

FavoriteThings: ["Cookies", "Coffee", 3.14159]

Note

DynamoDB lets you work with individual elements within lists, even if those elements are
deeply nested. For more information, see Using expressions in DynamoDB.

Map

A map type attribute can store an unordered collection of name-value pairs. Maps are enclosed in
curly braces: { ... }

A map is similar to a JSON object. There are no restrictions on the data types that can be stored in
a map element, and the elements in a map do not have to be of the same type.

Maps are ideal for storing JSON documents in DynamoDB. The following example shows a map
that contains a string, a number, and a nested list that contains another map.

Data types API Version 2012-08-10 275

Amazon DynamoDB Developer Guide

{
 Day: "Monday",
 UnreadEmails: 42,
 ItemsOnMyDesk: [
 "Coffee Cup",
 "Telephone",
 {
 Pens: { Quantity : 3},
 Pencils: { Quantity : 2},
 Erasers: { Quantity : 1}
 }
]
}

Note

DynamoDB lets you work with individual elements within maps, even if those elements are
deeply nested. For more information, see Using expressions in DynamoDB.

Sets

DynamoDB supports types that represent sets of number, string, or binary values. All the elements
within a set must be of the same type. For example, a Number Set can only contain numbers and a
String Set can only contain strings.

There is no limit on the number of values in a set, as long as the item containing the values fits
within the DynamoDB item size limit (400 KB).

Each value within a set must be unique. The order of the values within a set is not preserved.
Therefore, your applications must not rely on any particular order of elements within the set.
DynamoDB does not support empty sets, however, empty string and binary values are allowed
within a set.

The following example shows a string set, a number set, and a binary set:

["Black", "Green", "Red"]

[42.2, -19, 7.5, 3.14]

Data types API Version 2012-08-10 276

Amazon DynamoDB Developer Guide

["U3Vubnk=", "UmFpbnk=", "U25vd3k="]

Data type descriptors

The low-level DynamoDB API protocol uses Data type descriptors as tokens that tell DynamoDB
how to interpret each attribute.

The following is a complete list of DynamoDB data type descriptors:

• S – String

• N – Number

• B – Binary

• BOOL – Boolean

• NULL – Null

• M – Map

• L – List

• SS – String Set

• NS – Number Set

• BS – Binary Set

DynamoDB table classes

DynamoDB offers two table classes designed to help you optimize for cost. The DynamoDB
Standard table class is the default, and is recommended for the vast majority of workloads. The
DynamoDB Standard-Infrequent Access (DynamoDB Standard-IA) table class is optimized for
tables where storage is the dominant cost. For example, tables that store infrequently accessed
data, such as application logs, old social media posts, e-commerce order history, and past gaming
achievements, are good candidates for the Standard-IA table class. See Amazon DynamoDB Pricing
for pricing details.

Every DynamoDB table is associated with a table class (DynamoDB Standard by default). All
secondary indexes associated with the table use the same table class. Each table class offers
different pricing for data storage as well as for read and write requests. You can select the most
cost-effective table class for your table based on its storage and throughput usage patterns.

Data type descriptors API Version 2012-08-10 277

https://aws.amazon.com/dynamodb/pricing/on-demand/

Amazon DynamoDB Developer Guide

The choice of a table class is not permanent—you can change this setting using the Amazon Web
Services Management Console, Amazon CLI, or Amazon SDK. DynamoDB also supports managing
your table class using Amazon CloudFormation for single-Region tables and global tables. To
learn more about selecting your table class, see Considerations when choosing a table class in
DynamoDB.

Partitions and data distribution in DynamoDB

Amazon DynamoDB stores data in partitions. A partition is an allocation of storage for a table,
backed by solid state drives (SSDs) and automatically replicated across multiple Availability Zones
within an Amazon Region. Partition management is handled entirely by DynamoDB—you never
have to manage partitions yourself.

When you create a table, the initial status of the table is CREATING. During this phase, DynamoDB
allocates sufficient partitions to the table so that it can handle your provisioned throughput
requirements. You can begin writing and reading table data after the table status changes to
ACTIVE.

DynamoDB allocates additional partitions to a table in the following situations:

• If you increase the table's provisioned throughput settings beyond what the existing partitions
can support.

• If an existing partition fills to capacity and more storage space is required.

Partition management occurs automatically in the background and is transparent to your
applications. Your table remains available throughout and fully supports your provisioned
throughput requirements.

For more details, see Partition key design.

Global secondary indexes in DynamoDB are also composed of partitions. The data in a global
secondary index is stored separately from the data in its base table, but index partitions behave in
much the same way as table partitions.

Data distribution: Partition key

If your table has a simple primary key (partition key only), DynamoDB stores and retrieves each
item based on its partition key value.

Partitions and data distribution in DynamoDB API Version 2012-08-10 278

Amazon DynamoDB Developer Guide

To write an item to the table, DynamoDB uses the value of the partition key as input to an internal
hash function. The output value from the hash function determines the partition in which the item
will be stored.

To read an item from the table, you must specify the partition key value for the item. DynamoDB
uses this value as input to its hash function, yielding the partition in which the item can be found.

The following diagram shows a table named Pets, which spans multiple partitions. The table's
primary key is AnimalType (only this key attribute is shown). DynamoDB uses its hash function to
determine where to store a new item, in this case based on the hash value of the string Dog. Note
that the items are not stored in sorted order. Each item's location is determined by the hash value
of its partition key.

Data distribution: Partition key API Version 2012-08-10 279

Amazon DynamoDB Developer Guide

Note

DynamoDB is optimized for uniform distribution of items across a table's partitions, no
matter how many partitions there may be. We recommend that you choose a partition key
that can have a large number of distinct values relative to the number of items in the table.

Data distribution: Partition key and sort key

If the table has a composite primary key (partition key and sort key), DynamoDB calculates the
hash value of the partition key in the same way as described in Data distribution: Partition key.
However, it tends to keep items which have the same value of partition key close together and
in sorted order by the sort key attribute's value. The set of items which have the same value of
partition key is called an item collection. Item collections are optimized for efficient retrieval
of ranges of the items within the collection. If your table doesn't have local secondary indexes,
DynamoDB will automatically split your item collection over as many partitions as required to store
the data and to serve read and write throughput.

To write an item to the table, DynamoDB calculates the hash value of the partition key to
determine which partition should contain the item. In that partition, several items could have the
same partition key value. So DynamoDB stores the item among the others with the same partition
key, in ascending order by sort key.

To read an item from the table, you must specify its partition key value and sort key value.
DynamoDB calculates the partition key's hash value, yielding the partition in which the item can be
found.

You can read multiple items from the table in a single operation (Query) if the items you want
have the same partition key value. DynamoDB returns all of the items with that partition key value.
Optionally, you can apply a condition to the sort key so that it returns only the items within a
certain range of values.

Suppose that the Pets table has a composite primary key consisting of AnimalType (partition key)
and Name (sort key). The following diagram shows DynamoDB writing an item with a partition key
value of Dog and a sort key value of Fido.

Data distribution: Partition key and sort key API Version 2012-08-10 280

Amazon DynamoDB Developer Guide

To read that same item from the Pets table, DynamoDB calculates the hash value of Dog, yielding
the partition in which these items are stored. DynamoDB then scans the sort key attribute values
until it finds Fido.

To read all of the items with an AnimalType of Dog, you can issue a Query operation without
specifying a sort key condition. By default, the items are returned in the order that they are stored
(that is, in ascending order by sort key). Optionally, you can request descending order instead.

To query only some of the Dog items, you can apply a condition to the sort key (for example, only
the Dog items where Name begins with a letter that is within the range A through K).

Data distribution: Partition key and sort key API Version 2012-08-10 281

Amazon DynamoDB Developer Guide

Note

In a DynamoDB table, there is no upper limit on the number of distinct sort key values per
partition key value. If you needed to store many billions of Dog items in the Pets table,
DynamoDB would allocate enough storage to handle this requirement automatically.

Learn how to go from SQL to NoSQL

If you are an application developer, you might have some experience using a relational database
management system (RDBMS) and Structured Query Language (SQL). As you begin working with
Amazon DynamoDB, you will encounter many similarities, but also many things that are different.
NoSQL is a term used to describe nonrelational database systems that are highly available,
scalable, and optimized for high performance. Instead of the relational model, NoSQL databases
(like DynamoDB) use alternate models for data management, such as key-value pairs or document
storage. For more information, see What is NoSQL?.

Amazon DynamoDB supports PartiQL, an open-source, SQL-compatible query language that makes
it easy for you to efficiently query data, regardless of where or in what format it is stored. With
PartiQL, you can easily process structured data from relational databases, semi-structured and
nested data in open data formats, and even schema-less data in NoSQL or document databases
that allow different attributes for different rows. For more information, see PartiQL query
language.

The following sections describe common database tasks, comparing and contrasting SQL
statements with their equivalent DynamoDB operations.

Note

The SQL examples in this section are compatible with the MySQL RDBMS.
The DynamoDB examples in this section show the name of the DynamoDB operation, along
with the parameters for that operation in JSON format.

Topics

• Choosing between relational (SQL) and NoSQL

• Differences in accessing a relational (SQL) database and DynamoDB

Learn how to go from SQL to NoSQL API Version 2012-08-10 282

http://aws.amazon.com/nosql
https://partiql.org/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

• Differences between a relational (SQL) database and DynamoDB when creating a table

• Differences between getting table information from a relational (SQL) database and DynamoDB

• Differences between a relational (SQL) database and DynamoDB when writing data to a table

• Differences between a relational (SQL) database and DynamoDB when reading data from a table

• Differences between a relational (SQL) database and DynamoDB when managing indexes

• Differences between a relational (SQL) database and DynamoDB when modifying data in a table

• Differences between a relational (SQL) database and DynamoDB when deleting data from a table

• Differences between a relational (SQL) database and DynamoDB when removing a table

Choosing between relational (SQL) and NoSQL

Today's applications have more demanding requirements than ever before. For example, an online
game might start out with just a few users and a very small amount of data. However, if the game
becomes successful, it can easily outstrip the resources of the underlying database management
system. It is common for web-based applications to have hundreds, thousands, or millions of
concurrent users, with terabytes or more of new data generated per day. Databases for such
applications must handle tens (or hundreds) of thousands of reads and writes per second.

Amazon DynamoDB is well-suited for these kinds of workloads. As a developer, you can start small
and gradually increase your utilization as your application becomes more popular. DynamoDB
scales seamlessly to handle very large amounts of data and very large numbers of users.

For more information on traditional relational database modeling and how to adapt it for
DynamoDB, see Best practices for modeling relational data in DynamoDB.

The following table shows some high-level differences between a relational database management
system (RDBMS) and DynamoDB.

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Optimal Workloads Ad hoc queries; data
warehousing; OLAP (online
analytical processing).

Web-scale applications,
including social networks,
gaming, media sharing, and
Internet of Things (IoT).

Relational or NoSQL? API Version 2012-08-10 283

Amazon DynamoDB Developer Guide

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Data Model The relational model requires
a well-defined schema,
where data is normalized into
tables, rows, and columns. In
addition, all of the relations
hips are defined among
tables, columns, indexes, and
other database elements.

DynamoDB is schemales
s. Every table must have
a primary key to uniquely
identify each data item, but
there are no similar constrain
ts on other non-key attribute
s. DynamoDB can manage
structured or semistruc
tured data, including JSON
documents.

Data Access SQL is the standard for
storing and retrieving data.
Relational databases offer a
rich set of tools for simplifyi
ng the development of
database-driven applications,
but all of these tools use SQL.

You can use the Amazon
Web Services Managemen
t Console, the Amazon
CLI, or NoSQL WorkBench
to work with DynamoDB
and perform ad hoc tasks.
PartiQL, a SQL-compatible
query language, lets you
select, insert, update, and
delete data in DynamoDB.
Applications can use the
Amazon software developme
nt kits (SDKs) to work with
DynamoDB using object-ba
sed, document-centric, or
low-level interfaces.

Relational or NoSQL? API Version 2012-08-10 284

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Performance Relational databases are
optimized for storage, so
performance generally
depends on the disk
subsystem. Developers and
database administrators must
optimize queries, indexes, and
table structures in order to
achieve peak performance.

DynamoDB is optimized
for compute, so performan
ce is mainly a function of
the underlying hardware
and network latency. As a
managed service, DynamoDB
insulates you and your
applications from these
implementation details,
so that you can focus on
designing and building
robust, high-performance
applications.

Scaling It is easiest to scale up with
faster hardware. It is also
possible for database tables
to span across multiple hosts
in a distributed system,
but this requires additiona
l investment. Relational
databases have maximum
sizes for the number and size
of files, which imposes upper
limits on scalability.

DynamoDB is designed to
scale out using distributed
clusters of hardware. This
design allows increased
throughput without increased
 latency. Customers specify
their throughput requireme
nts, and DynamoDB allocates
sufficient resources to meet
those requirements. There
are no upper limits on the
number of items per table,
nor the total size of that
table.

Relational or NoSQL? API Version 2012-08-10 285

Amazon DynamoDB Developer Guide

Differences in accessing a relational (SQL) database and DynamoDB

Before your application can access a database, it must be authenticated to ensure that the
application is allowed to use the database. It must be authorized so that the application can
perform only the actions for which it has permissions.

The following diagram shows a client's interaction with a relational database and with Amazon
DynamoDB.

The following table has more details about client interaction tasks.

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Tools for Accessing the
Database

Most relational databases
provide a command line

In most cases, you write
application code. You can also

Accessing and authentication API Version 2012-08-10 286

Amazon DynamoDB Developer Guide

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

interface (CLI) so that you can
enter ad hoc SQL statements
and see the results immediate
ly.

use the Amazon Web Services
Management Console, the
Amazon Command Line
Interface (Amazon CLI), or
NoSQL Workbench to send ad
hoc requests to DynamoDB
and view the results. PartiQL,
a SQL-compatible query
language, lets you select,
insert, update, and delete
data in DynamoDB.

Connecting to the Database An application program
establishes and maintains a
network connection with the
database. When the applicati
on is finished, it terminates
the connection.

DynamoDB is a web service,
and interactions with it are
stateless. Applications do not
need to maintain persistent
network connections. Instead,
interaction with DynamoDB
occurs using HTTP(S) requests
and responses.

Accessing and authentication API Version 2012-08-10 287

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Authentication An application cannot
connect to the database
until it is authenticated. The
RDBMS can perform the
authentication itself, or it
can offload this task to the
host operating system or a
directory service.

Every request to DynamoDB
must be accompanied by
a cryptographic signature
, which authenticates that
particular request. The
Amazon SDKs provide all
of the logic necessary for
creating signatures and
signing requests. For more
information, see Signing
Amazon API requests in the
Amazon Web Services General
Reference.

Authorization Applications can perform
only the actions for which
they have been authorized.
Database administrators or
application owners can use
the SQL GRANT and REVOKE
statements to control access
to database objects (such
as tables), data (such as
rows within a table), or the
ability to issue certain SQL
statements.

In DynamoDB, authoriza
tion is handled by Amazon
Identity and Access
Management (IAM). You can
write an IAM policy to grant
permissions on a DynamoDB
resource (such as a table),
and then allow users and
roles to use that policy. IAM
also features fine-grained
access control for individua
l data items in DynamoDB
tables. For more informati
on, see Identity and Access
Management for Amazon
DynamoDB.

Accessing and authentication API Version 2012-08-10 288

https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html

Amazon DynamoDB Developer Guide

Characteristic Relational database
management system
(RDBMS)

Amazon DynamoDB

Sending a Request The application issues a SQL
statement for every database
operation that it wants to
perform. Upon receipt of the
SQL statement, the RDBMS
checks its syntax, creates
a plan for performing the
operation, and then runs the
plan.

The application sends
HTTP(S) requests to
DynamoDB. The requests
contain the name of the
DynamoDB operation
to perform, along with
parameters. DynamoDB runs
the request immediately.

Receiving a Response The RDBMS returns the
results from the SQL
statement. If there is an error,
the RDBMS returns an error
status and message.

DynamoDB returns an
HTTP(S) response containing
the results of the operation. If
there is an error, DynamoDB
returns an HTTP error status
and messages.

Differences between a relational (SQL) database and DynamoDB when
creating a table

Tables are the fundamental data structures in relational databases and in Amazon DynamoDB. A
relational database management system (RDBMS) requires you to define the table's schema when
you create it. In contrast, DynamoDB tables are schemaless—other than the primary key, you do
not need to define any extra attributes or data types when you create a table.

The following section compares how you would create a table with SQL to how you would create it
with DynamoDB.

Topics

• Creating a table with SQL

• Creating a table with DynamoDB

Creating a table API Version 2012-08-10 289

Amazon DynamoDB Developer Guide

Creating a table with SQL

With SQL you would use the CREATE TABLE statement to create a table, as shown in the following
example.

CREATE TABLE Music (
 Artist VARCHAR(20) NOT NULL,
 SongTitle VARCHAR(30) NOT NULL,
 AlbumTitle VARCHAR(25),
 Year INT,
 Price FLOAT,
 Genre VARCHAR(10),
 Tags TEXT,
 PRIMARY KEY(Artist, SongTitle)
);

The primary key for this table consists of Artist and SongTitle.

You must define all of the table's columns and data types, and the table's primary key. (You can use
the ALTER TABLE statement to change these definitions later, if necessary.)

Many SQL implementations let you define storage specifications for your table, as part of the
CREATE TABLE statement. Unless you indicate otherwise, the table is created with default storage
settings. In a production environment, a database administrator can help determine the optimal
storage parameters.

Creating a table with DynamoDB

Use the CreateTable operation to create a provisioned mode table, specifying parameters as
shown following:

{
 TableName : "Music",
 KeySchema: [
 {
 AttributeName: "Artist",
 KeyType: "HASH" //Partition key
 },
 {
 AttributeName: "SongTitle",
 KeyType: "RANGE" //Sort key
 }

Creating a table API Version 2012-08-10 290

Amazon DynamoDB Developer Guide

],
 AttributeDefinitions: [
 {
 AttributeName: "Artist",
 AttributeType: "S"
 },
 {
 AttributeName: "SongTitle",
 AttributeType: "S"
 }
],
 ProvisionedThroughput: { // Only specified if using provisioned mode
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1
 }
}

The primary key for this table consists of Artist (partition key) and SongTitle (sort key).

You must provide the following parameters to CreateTable:

• TableName – Name of the table.

• KeySchema – Attributes that are used for the primary key. For more information, see Tables,
items, and attributes and Primary key.

• AttributeDefinitions – Data types for the key schema attributes.

• ProvisionedThroughput (for provisioned tables) – Number of reads and writes per
second that you need for this table. DynamoDB reserves sufficient storage and system resources
so that your throughput requirements are always met. You can use the UpdateTable operation
to change these later, if necessary. You do not need to specify a table's storage requirements
because storage allocation is managed entirely by DynamoDB.

Differences between getting table information from a relational (SQL)
database and DynamoDB

You can verify that a table has been created according to your specifications. In a relational
database, all of the table's schema is shown. Amazon DynamoDB tables are schemaless, so only the
primary key attributes are shown.

Topics

Getting information about a table API Version 2012-08-10 291

Amazon DynamoDB Developer Guide

• Getting information about a table with SQL

• Getting information about a table in DynamoDB

Getting information about a table with SQL

Most relational database management systems (RDBMS) allow you to describe a table's structure—
columns, data types, primary key definition, and so on. There is no standard way to do this in SQL.
However, many database systems provide a DESCRIBE command. The following is an example
from MySQL.

DESCRIBE Music;

This returns the structure of your table, with all of the column names, data types, and sizes.

+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
Artist	varchar(20)	NO	PRI	NULL	
SongTitle	varchar(30)	NO	PRI	NULL	
AlbumTitle	varchar(25)	YES		NULL	
Year	int(11)	YES		NULL	
Price	float	YES		NULL	
Genre	varchar(10)	YES		NULL	
Tags	text	YES		NULL	
+------------+-------------+------+-----+---------+-------+

The primary key for this table consists of Artist and SongTitle.

Getting information about a table in DynamoDB

DynamoDB has a DescribeTable operation, which is similar. The only parameter is the table
name.

{
 TableName : "Music"
}

The reply from DescribeTable looks like the following.

Getting information about a table API Version 2012-08-10 292

Amazon DynamoDB Developer Guide

{
 "Table": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "Music",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH" //Partition key
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE" //Sort key
 }
],

 ...

DescribeTable also returns information about indexes on the table, provisioned throughput
settings, an approximate item count, and other metadata.

Differences between a relational (SQL) database and DynamoDB when
writing data to a table

Relational database tables contain rows of data. Rows are composed of columns. Amazon
DynamoDB tables contain items. Items are composed of attributes.

This section describes how to write one row (or item) to a table.

Topics

• Writing data to a table with SQL

• Writing data to a table in DynamoDB

Writing data to a table API Version 2012-08-10 293

Amazon DynamoDB Developer Guide

Writing data to a table with SQL

A table in a relational database is a two-dimensional data structure composed of rows and
columns. Some database management systems also provide support for semistructured data,
usually with native JSON or XML data types. However, the implementation details vary among
vendors.

In SQL, you would use the INSERT statement to add a row to a table.

INSERT INTO Music
 (Artist, SongTitle, AlbumTitle,
 Year, Price, Genre,
 Tags)
VALUES(
 'No One You Know', 'Call Me Today', 'Somewhat Famous',
 2015, 2.14, 'Country',
 '{"Composers": ["Smith", "Jones", "Davis"],"LengthInSeconds": 214}'
);

The primary key for this table consists of Artist and SongTitle. You must specify values for these
columns.

Note

This example uses the Tags column to store semistructured data about the songs in
the Music table. The Tags column is defined as type TEXT, which can store up to 65,535
characters in MySQL.

Writing data to a table in DynamoDB

In Amazon DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to add an item to a table.

DynamoDB API

With the DynamoDB API, you use the PutItem operation to add an item to a table.

{
 TableName: "Music",
 Item: {

Writing data to a table API Version 2012-08-10 294

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 "Artist":"No One You Know",
 "SongTitle":"Call Me Today",
 "AlbumTitle":"Somewhat Famous",
 "Year": 2015,
 "Price": 2.14,
 "Genre": "Country",
 "Tags": {
 "Composers": [
 "Smith",
 "Jones",
 "Davis"
],
 "LengthInSeconds": 214
 }
 }
}

The primary key for this table consists of Artist and SongTitle. You must specify values for these
attributes.

Here are some key things to know about this PutItem example:

• DynamoDB provides native support for documents, using JSON. This makes DynamoDB ideal
for storing semistructured data, such as Tags. You can also retrieve and manipulate data from
within JSON documents.

• The Music table does not have any predefined attributes, other than the primary key (Artist
and SongTitle).

• Most SQL databases are transaction oriented. When you issue an INSERT statement, the
data modifications are not permanent until you issue a COMMIT statement. With Amazon
DynamoDB, the effects of a PutItem operation are permanent when DynamoDB replies with
an HTTP 200 status code (OK).

The following are some other PutItem examples.

{
 TableName: "Music",
 Item: {
 "Artist": "No One You Know",
 "SongTitle": "My Dog Spot",
 "AlbumTitle":"Hey Now",

Writing data to a table API Version 2012-08-10 295

Amazon DynamoDB Developer Guide

 "Price": 1.98,
 "Genre": "Country",
 "CriticRating": 8.4
 }
}

{
 TableName: "Music",
 Item: {
 "Artist": "No One You Know",
 "SongTitle": "Somewhere Down The Road",
 "AlbumTitle":"Somewhat Famous",
 "Genre": "Country",
 "CriticRating": 8.4,
 "Year": 1984
 }
}

{
 TableName: "Music",
 Item: {
 "Artist": "The Acme Band",
 "SongTitle": "Still In Love",
 "AlbumTitle":"The Buck Starts Here",
 "Price": 2.47,
 "Genre": "Rock",
 "PromotionInfo": {
 "RadioStationsPlaying":[
 "KHCR", "KBQX", "WTNR", "WJJH"
],
 "TourDates": {
 "Seattle": "20150625",
 "Cleveland": "20150630"
 },
 "Rotation": "Heavy"
 }
 }
}

{
 TableName: "Music",
 Item: {

Writing data to a table API Version 2012-08-10 296

Amazon DynamoDB Developer Guide

 "Artist": "The Acme Band",
 "SongTitle": "Look Out, World",
 "AlbumTitle":"The Buck Starts Here",
 "Price": 0.99,
 "Genre": "Rock"
 }
}

Note

In addition to PutItem, DynamoDB supports a BatchWriteItem operation for writing
multiple items at the same time.

PartiQL for DynamoDB

With PartiQL, you use the ExecuteStatement operation to add an item to a table, using the
PartiQL Insert statement.

INSERT into Music value {
 'Artist': 'No One You Know',
 'SongTitle': 'Call Me Today',
 'AlbumTitle': 'Somewhat Famous',
 'Year' : '2015',
 'Genre' : 'Acme'
}

The primary key for this table consists of Artist and SongTitle. You must specify values for these
attributes.

Note

For code examples using Insert and ExecuteStatement, see PartiQL insert
statements for DynamoDB.

Writing data to a table API Version 2012-08-10 297

Amazon DynamoDB Developer Guide

Differences between a relational (SQL) database and DynamoDB when
reading data from a table

With SQL, you use the SELECT statement to retrieve one or more rows from a table. You use the
WHERE clause to determine the data that is returned to you.

This is different than using Amazon DynamoDB which provides the following operations for
reading data:

• ExecuteStatement retrieves a single or multiple items from a table.
BatchExecuteStatement retrieves multiple items from different tables in a single operation.
Both of these operations use PartiQL, a SQL-compatible query language.

• GetItem – Retrieves a single item from a table. This is the most efficient way to read a single
item because it provides direct access to the physical location of the item. (DynamoDB also
provides the BatchGetItem operation, allowing you to perform up to 100 GetItem calls in a
single operation.)

• Query – Retrieves all of the items that have a specific partition key. Within those items, you can
apply a condition to the sort key and retrieve only a subset of the data. Query provides quick,
efficient access to the partitions where the data is stored. (For more information, see Partitions
and data distribution in DynamoDB.)

• Scan – Retrieves all of the items in the specified table. (This operation should not be used with
large tables because it can consume large amounts of system resources.)

Note

With a relational database, you can use the SELECT statement to join data from multiple
tables and return the results. Joins are fundamental to the relational model. To ensure that
joins run efficiently, the database and its applications should be performance-tuned on an
ongoing basis. DynamoDB is a non-relational NoSQL database that does not support table
joins. Instead, applications read data from one table at a time.

The following sections describe different use cases for reading data, and how to perform these
tasks with a relational database and with DynamoDB.

Topics

Reading data from a table API Version 2012-08-10 298

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

• Differences in reading an item using its primary key

• Differences in querying a table

• Differences in scanning a table

Differences in reading an item using its primary key

One common access pattern for databases is to read a single item from a table. You have to specify
the primary key of the item you want.

Topics

• Reading an item using its primary key with SQL

• Reading an item using its primary key in DynamoDB

Reading an item using its primary key with SQL

In SQL, you would use the SELECT statement to retrieve data from a table. You can request one or
more columns in the result (or all of them, if you use the * operator). The WHERE clause determines
which rows to return.

The following is a SELECT statement to retrieve a single row from the Music table. The WHERE
clause specifies the primary key values.

SELECT *
FROM Music
WHERE Artist='No One You Know' AND SongTitle = 'Call Me Today'

You can modify this query to retrieve only a subset of the columns.

SELECT AlbumTitle, Year, Price
FROM Music
WHERE Artist='No One You Know' AND SongTitle = 'Call Me Today'

Note that the primary key for this table consists of Artist and SongTitle.

Reading an item using its primary key in DynamoDB

In Amazon DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to read an item from a table.

Reading data from a table API Version 2012-08-10 299

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

DynamoDB API

With the DynamoDB API, you use the PutItem operation to add an item to a table.

DynamoDB provides the GetItem operation for retrieving an item by its primary key. GetItem
is highly efficient because it provides direct access to the physical location of the item. (For
more information, see Partitions and data distribution in DynamoDB.)

By default, GetItem returns the entire item with all of its attributes.

{
 TableName: "Music",
 Key: {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Today"
 }
}

You can add a ProjectionExpression parameter to return only some of the attributes.

{
 TableName: "Music",
 Key: {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Today"
 },
 "ProjectionExpression": "AlbumTitle, Year, Price"
}

Note that the primary key for this table consists of Artist and SongTitle.

The DynamoDB GetItem operation is very efficient. It uses the primary key values to determine
the exact storage location of the item in question, and retrieves it directly from there. The SQL
SELECT statement is similarly efficient, in the case of retrieving items by primary key values.

The SQL SELECT statement supports many kinds of queries and table scans. DynamoDB
provides similar functionality with its Query and Scan operations, which are described in
Differences in querying a table and Differences in scanning a table.

The SQL SELECT statement can perform table joins, allowing you to retrieve data from multiple
tables at the same time. Joins are most effective where the database tables are normalized

Reading data from a table API Version 2012-08-10 300

Amazon DynamoDB Developer Guide

and the relationships among the tables are clear. However, if you join too many tables in one
SELECT statement application performance can be affected. You can work around such issues
by using database replication, materialized views, or query rewrites.

DynamoDB is a nonrelational database and doesn't support table joins. If you are migrating an
existing application from a relational database to DynamoDB, you need to denormalize your
data model to eliminate the need for joins.

PartiQL for DynamoDB

With PartiQL, you use the ExecuteStatement operation to read an item from a table, using
the PartiQL Select statement.

SELECT AlbumTitle, Year, Price
FROM Music
WHERE Artist='No One You Know' AND SongTitle = 'Call Me Today'

Note that the primary key for this table consists of Artist and SongTitle.

Note

The select PartiQL statement can also be used to Query or Scan a DynamoDB table

For code examples using Select and ExecuteStatement, see PartiQL select statements for
DynamoDB.

Differences in querying a table

Another common access pattern is reading multiple items from a table, based on your query
criteria.

Topics

• Querying a table with SQL

• Querying a table in DynamoDB

Reading data from a table API Version 2012-08-10 301

Amazon DynamoDB Developer Guide

Querying a table with SQL

When using SQL the SELECT statement lets you query on key columns, non-key columns, or any
combination. The WHERE clause determines which rows are returned, as shown in the following
examples.

/* Return a single song, by primary key */

SELECT * FROM Music
WHERE Artist='No One You Know' AND SongTitle = 'Call Me Today';

/* Return all of the songs by an artist */

SELECT * FROM Music
WHERE Artist='No One You Know';

/* Return all of the songs by an artist, matching first part of title */

SELECT * FROM Music
WHERE Artist='No One You Know' AND SongTitle LIKE 'Call%';

/* Return all of the songs by an artist, with a particular word in the title...
...but only if the price is less than 1.00 */

SELECT * FROM Music
WHERE Artist='No One You Know' AND SongTitle LIKE '%Today%'
AND Price < 1.00;

Note that the primary key for this table consists of Artist and SongTitle.

Querying a table in DynamoDB

In Amazon DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to query an item from a table.

DynamoDB API

With Amazon DynamoDB, you can use the Query operation to retrieve data in a similar fashion.
The Query operation provides quick, efficient access to the physical locations where the data is
stored. For more information, see Partitions and data distribution in DynamoDB.

Reading data from a table API Version 2012-08-10 302

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

You can use Query with any table or secondary index. You must specify an equality condition
for the partition key's value, and you can optionally provide another condition for the sort key
attribute if it is defined.

The KeyConditionExpression parameter specifies the key values that you want to query.
You can use an optional FilterExpression to remove certain items from the results before
they are returned to you.

In DynamoDB, you must use ExpressionAttributeValues as placeholders in expression
parameters (such as KeyConditionExpression and FilterExpression). This is analogous
to the use of bind variables in relational databases, where you substitute the actual values into
the SELECT statement at runtime.

Note that the primary key for this table consists of Artist and SongTitle.

The following are some DynamoDB Query examples.

// Return a single song, by primary key

{
 TableName: "Music",
 KeyConditionExpression: "Artist = :a and SongTitle = :t",
 ExpressionAttributeValues: {
 ":a": "No One You Know",
 ":t": "Call Me Today"
 }
}

// Return all of the songs by an artist

{
 TableName: "Music",
 KeyConditionExpression: "Artist = :a",
 ExpressionAttributeValues: {
 ":a": "No One You Know"
 }
}

// Return all of the songs by an artist, matching first part of title

{

Reading data from a table API Version 2012-08-10 303

Amazon DynamoDB Developer Guide

 TableName: "Music",
 KeyConditionExpression: "Artist = :a and begins_with(SongTitle, :t)",
 ExpressionAttributeValues: {
 ":a": "No One You Know",
 ":t": "Call"
 }
}

PartiQL for DynamoDB

With PartiQL, you can perform a query by using the ExecuteStatement operation and the
Select statement on the partition key.

SELECT AlbumTitle, Year, Price
FROM Music
WHERE Artist='No One You Know'

Using the SELECT statement in this way returns all the songs associated with this particular
Artist.

For code examples using Select and ExecuteStatement, see PartiQL select statements for
DynamoDB.

Differences in scanning a table

In SQL, a SELECT statement without a WHERE clause will return every row in a table. In Amazon
DynamoDB, the Scan operation does the same thing. In both cases, you can retrieve all of the
items or just some of them.

Whether you are using a SQL or a NoSQL database, scans should be used sparingly because
they can consume large amounts of system resources. Sometimes a scan is appropriate (such as
scanning a small table) or unavoidable (such as performing a bulk export of data). However, as a
general rule, you should design your applications to avoid performing scans. For more information,
see Querying tables in DynamoDB.

Note

Doing a bulk export also creates at least 1 file per partition. All of the items in each file are
from that particular partition's hashed keyspace.

Reading data from a table API Version 2012-08-10 304

Amazon DynamoDB Developer Guide

Topics

• Scanning a table with SQL

• Scanning a table in DynamoDB

Scanning a table with SQL

When using SQL you can scan a table and retrieve all of its data by using a SELECT statement
without specifying a WHERE clause. You can request one or more columns in the result. Or you can
request all of them if you use the wildcard character (*).

The following are examples of using a SELECT statement.

/* Return all of the data in the table */
SELECT * FROM Music;

/* Return all of the values for Artist and Title */
SELECT Artist, Title FROM Music;

Scanning a table in DynamoDB

In Amazon DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to perform a scan on a table.

DynamoDB API

With the DynamoDB API, you use the Scan operation to return one or more items and item
attributes by accessing every item in a table or a secondary index.

// Return all of the data in the table
{
 TableName: "Music"
}

// Return all of the values for Artist and Title
{
 TableName: "Music",
 ProjectionExpression: "Artist, Title"
}

Reading data from a table API Version 2012-08-10 305

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

The Scan operation also provides a FilterExpression parameter, which you can use
to discard items that you do not want to appear in the results. A FilterExpression is
applied after the scan is performed, but before the results are returned to you. (This is not
recommended with large tables. You are still charged for the entire Scan, even if only a few
matching items are returned.)

PartiQL for DynamoDB

With PartiQL, you perform a scan by using the ExecuteStatement operation to return all the
contents for a table using the Select statement.

SELECT AlbumTitle, Year, Price
FROM Music

Note that this statement will return all items for in the Music table.

For code examples using Select and ExecuteStatement, see PartiQL select statements for
DynamoDB.

Differences between a relational (SQL) database and DynamoDB when
managing indexes

Indexes give you access to alternate query patterns, and can speed up queries. This section
compares and contrasts index creation and usage in SQL and Amazon DynamoDB.

Whether you are using a relational database or DynamoDB, you should be judicious with index
creation. Whenever a write occurs on a table, all of the table's indexes must be updated. In a write-
heavy environment with large tables, this can consume large amounts of system resources. In
a read-only or read-mostly environment, this is not as much of a concern. However, you should
ensure that the indexes are actually being used by your application, and not simply taking up
space.

Topics

• Differences between a relational (SQL) database and DynamoDB when creating an index

• Differences between a relational (SQL) database and DynamoDB when querying and scanning an
index

Managing indexes API Version 2012-08-10 306

Amazon DynamoDB Developer Guide

Differences between a relational (SQL) database and DynamoDB when creating
an index

Compare the CREATE INDEX statement in SQL with the UpdateTable operation in Amazon
DynamoDB.

Topics

• Creating an index with SQL

• Creating an index in DynamoDB

Creating an index with SQL

In a relational database, an index is a data structure that lets you perform fast queries on different
columns in a table. You can use the CREATE INDEX SQL statement to add an index to an existing
table, specifying the columns to be indexed. After the index has been created, you can query the
data in the table as usual, but now the database can use the index to quickly find the specified
rows in the table instead of scanning the entire table.

After you create an index, the database maintains it for you. Whenever you modify data in the
table, the index is automatically modified to reflect changes in the table.

In MySQL, you would create an index like the following.

CREATE INDEX GenreAndPriceIndex
ON Music (genre, price);

Creating an index in DynamoDB

In DynamoDB, you can create and use a secondary index for similar purposes.

Indexes in DynamoDB are different from their relational counterparts. When you create a
secondary index, you must specify its key attributes—a partition key and a sort key. After you
create the secondary index, you can Query it or Scan it just as you would with a table. DynamoDB
does not have a query optimizer, so a secondary index is only used when you Query it or Scan it.

DynamoDB supports two different kinds of indexes:

• Global secondary indexes – The primary key of the index can be any two attributes from its table.

Managing indexes API Version 2012-08-10 307

Amazon DynamoDB Developer Guide

• Local secondary indexes – The partition key of the index must be the same as the partition key of
its table. However, the sort key can be any other attribute.

DynamoDB ensures that the data in a secondary index is eventually consistent with its table. You
can request strongly consistent Query or Scan operations on a table or a local secondary index.
However, global secondary indexes support only eventual consistency.

You can add a global secondary index to an existing table, using the UpdateTable operation and
specifying GlobalSecondaryIndexUpdates.

{
 TableName: "Music",
 AttributeDefinitions:[
 {AttributeName: "Genre", AttributeType: "S"},
 {AttributeName: "Price", AttributeType: "N"}
],
 GlobalSecondaryIndexUpdates: [
 {
 Create: {
 IndexName: "GenreAndPriceIndex",
 KeySchema: [
 {AttributeName: "Genre", KeyType: "HASH"}, //Partition key
 {AttributeName: "Price", KeyType: "RANGE"}, //Sort key
],
 Projection: {
 "ProjectionType": "ALL"
 },
 ProvisionedThroughput: { // Only
 specified if using provisioned mode
 "ReadCapacityUnits": 1,"WriteCapacityUnits": 1
 }
 }
 }
]
}

You must provide the following parameters to UpdateTable:

• TableName – The table that the index will be associated with.

• AttributeDefinitions – The data types for the key schema attributes of the index.

• GlobalSecondaryIndexUpdates – Details about the index you want to create:

Managing indexes API Version 2012-08-10 308

Amazon DynamoDB Developer Guide

• IndexName – A name for the index.

• KeySchema – The attributes that are used for the index's primary key.

• Projection – Attributes from the table that are copied to the index. In this case, ALL means
that all of the attributes are copied.

• ProvisionedThroughput (for provisioned tables) – The number of reads and
writes per second that you need for this index. (This is separate from the provisioned
throughput settings of the table.)

Part of this operation involves backfilling data from the table into the new index. During
backfilling, the table remains available. However, the index is not ready until its Backfilling
attribute changes from true to false. You can use the DescribeTable operation to view this
attribute.

Differences between a relational (SQL) database and DynamoDB when querying
and scanning an index

Compare querying and scanning an index using the SELECT statement in SQL with the Query and
Scan operations in Amazon DynamoDB.

Topics

• Querying and scanning an index with SQL

• Querying and scanning an index in DynamoDB

Querying and scanning an index with SQL

In a relational database, you do not work directly with indexes. Instead, you query tables by issuing
SELECT statements, and the query optimizer can make use of any indexes.

A query optimizer is a relational database management system (RDBMS) component that evaluates
the available indexes and determines whether they can be used to speed up a query. If the indexes
can be used to speed up a query, the RDBMS accesses the index first and then uses it to locate the
data in the table.

Here are some SQL statements that can use GenreAndPriceIndex to improve performance. We
assume that the Music table has enough data in it that the query optimizer decides to use this
index, rather than simply scanning the entire table.

Managing indexes API Version 2012-08-10 309

Amazon DynamoDB Developer Guide

/* All of the rock songs */

SELECT * FROM Music
WHERE Genre = 'Rock';

/* All of the cheap country songs */

SELECT Artist, SongTitle, Price FROM Music
WHERE Genre = 'Country' AND Price < 0.50;

Querying and scanning an index in DynamoDB

In DynamoDB, you perform Query and Scan operations directly on the index, in the same way that
you would on a table. You can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to query or scan the index. You must specify both TableName and IndexName.

The following are some queries on GenreAndPriceIndex in DynamoDB. (The key schema for this
index consists of Genre and Price.)

DynamoDB API

// All of the rock songs

{
 TableName: "Music",
 IndexName: "GenreAndPriceIndex",
 KeyConditionExpression: "Genre = :genre",
 ExpressionAttributeValues: {
 ":genre": "Rock"
 },
};

This example uses a ProjectionExpression to indicate that you only want some of the
attributes, rather than all of them, to appear in the results.

// All of the cheap country songs

{
 TableName: "Music",
 IndexName: "GenreAndPriceIndex",

Managing indexes API Version 2012-08-10 310

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 KeyConditionExpression: "Genre = :genre and Price < :price",
 ExpressionAttributeValues: {
 ":genre": "Country",
 ":price": 0.50
 },
 ProjectionExpression: "Artist, SongTitle, Price"
};

The following is a scan on GenreAndPriceIndex.

// Return all of the data in the index

{
 TableName: "Music",
 IndexName: "GenreAndPriceIndex"
}

PartiQL for DynamoDB

With PartiQL, you use the PartiQL Select statement to perform queries and scans on the
index.

// All of the rock songs

SELECT *
FROM Music.GenreAndPriceIndex
WHERE Genre = 'Rock'

// All of the cheap country songs

SELECT *
FROM Music.GenreAndPriceIndex
WHERE Genre = 'Rock' AND Price < 0.50

The following is a scan on GenreAndPriceIndex.

// Return all of the data in the index

SELECT *
FROM Music.GenreAndPriceIndex

Managing indexes API Version 2012-08-10 311

Amazon DynamoDB Developer Guide

Note

For code examples using Select, see PartiQL select statements for DynamoDB.

Differences between a relational (SQL) database and DynamoDB when
modifying data in a table

The SQL language provides the UPDATE statement for modifying data. Amazon DynamoDB uses
the UpdateItem operation to accomplish similar tasks.

Topics

• Modifying data in a table with SQL

• Modifying data in a table in DynamoDB

Modifying data in a table with SQL

In SQL, you would use the UPDATE statement to modify one or more rows. The SET clause specifies
new values for one or more columns, and the WHERE clause determines which rows are modified.
The following is an example.

UPDATE Music
SET RecordLabel = 'Global Records'
WHERE Artist = 'No One You Know' AND SongTitle = 'Call Me Today';

If no rows match the WHERE clause, the UPDATE statement has no effect.

Modifying data in a table in DynamoDB

In DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to modify a single item. If you want to modify multiple items, you must use multiple
operations.

DynamoDB API

With the DynamoDB API, you use the UpdateItem operation to modify a single item.

{

Modifying data in a table API Version 2012-08-10 312

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

 TableName: "Music",
 Key: {
 "Artist":"No One You Know",
 "SongTitle":"Call Me Today"
 },
 UpdateExpression: "SET RecordLabel = :label",
 ExpressionAttributeValues: {
 ":label": "Global Records"
 }
}

You must specify the Key attributes of the item to be modified and an UpdateExpression to
specify attribute values. UpdateItem behaves like an "upsert" operation. The item is updated if
it exists in the table, but if not, a new item is added (inserted).

UpdateItem supports conditional writes, where the operation succeeds only if a specific
ConditionExpression evaluates to true. For example, the following UpdateItem operation
does not perform the update unless the price of the song is greater than or equal to 2.00.

{
 TableName: "Music",
 Key: {
 "Artist":"No One You Know",
 "SongTitle":"Call Me Today"
 },
 UpdateExpression: "SET RecordLabel = :label",
 ConditionExpression: "Price >= :p",
 ExpressionAttributeValues: {
 ":label": "Global Records",
 ":p": 2.00
 }
}

UpdateItem also supports atomic counters, or attributes of type Number that can be
incremented or decremented. Atomic counters are similar in many ways to sequence generators,
identity columns, or autoincrement fields in SQL databases.

The following is an example of an UpdateItem operation to initialize a new attribute (Plays) to
keep track of the number of times a song has been played.

{

Modifying data in a table API Version 2012-08-10 313

Amazon DynamoDB Developer Guide

 TableName: "Music",
 Key: {
 "Artist":"No One You Know",
 "SongTitle":"Call Me Today"
 },
 UpdateExpression: "SET Plays = :val",
 ExpressionAttributeValues: {
 ":val": 0
 },
 ReturnValues: "UPDATED_NEW"
}

The ReturnValues parameter is set to UPDATED_NEW, which returns the new values of any
attributes that were updated. In this case, it returns 0 (zero).

Whenever someone plays this song, we can use the following UpdateItem operation to
increment Plays by one.

{
 TableName: "Music",
 Key: {
 "Artist":"No One You Know",
 "SongTitle":"Call Me Today"
 },
 UpdateExpression: "SET Plays = Plays + :incr",
 ExpressionAttributeValues: {
 ":incr": 1
 },
 ReturnValues: "UPDATED_NEW"
}

PartiQL for DynamoDB

With PartiQL, you use the ExecuteStatement operation to modify an item in a table, using
the PartiQL Update statement.

The primary key for this table consists of Artist and SongTitle. You must specify values for these
attributes.

UPDATE Music
SET RecordLabel ='Global Records'
WHERE Artist='No One You Know' AND SongTitle='Call Me Today'

Modifying data in a table API Version 2012-08-10 314

Amazon DynamoDB Developer Guide

You can also modify multiple fields at once, such as in the following example.

UPDATE Music
SET RecordLabel = 'Global Records'
SET AwardsWon = 10
WHERE Artist ='No One You Know' AND SongTitle='Call Me Today'

Update also supports atomic counters, or attributes of type Number that can be incremented
or decremented. Atomic counters are similar in many ways to sequence generators, identity
columns, or autoincrement fields in SQL databases.

The following is an example of an Update statement to initialize a new attribute (Plays) to keep
track of the number of times a song has been played.

UPDATE Music
SET Plays = 0
WHERE Artist='No One You Know' AND SongTitle='Call Me Today'

Whenever someone plays this song, we can use the following Update statement to increment
Plays by one.

UPDATE Music
SET Plays = Plays + 1
WHERE Artist='No One You Know' AND SongTitle='Call Me Today'

Note

For code examples using Update and ExecuteStatement, see PartiQL update
statements for DynamoDB.

Differences between a relational (SQL) database and DynamoDB when
deleting data from a table

In SQL, the DELETE statement removes one or more rows from a table. Amazon DynamoDB uses
the DeleteItem operation to delete one item at a time.

Topics

• Deleting data from a table with SQL

Deleting data from a table API Version 2012-08-10 315

Amazon DynamoDB Developer Guide

• Deleting data from a table in DynamoDB

Deleting data from a table with SQL

In SQL, you use the DELETE statement to delete one or more rows. The WHERE clause determines
the rows that you want to modify. The following is an example.

DELETE FROM Music
WHERE Artist = 'The Acme Band' AND SongTitle = 'Look Out, World';

You can modify the WHERE clause to delete multiple rows. For example, you could delete all of the
songs by a particular artist, as shown in the following example.

DELETE FROM Music WHERE Artist = 'The Acme Band'

Deleting data from a table in DynamoDB

In DynamoDB, you can use either the DynamoDB API or PartiQL (a SQL-compatible query
language) to delete a single item. If you want to modify multiple items, you must use multiple
operations.

DynamoDB API

With the DynamoDB API, you use the DeleteItem operation to delete data from a table, one
item at a time. You must specify the item's primary key values.

{
 TableName: "Music",
 Key: {
 Artist: "The Acme Band",
 SongTitle: "Look Out, World"
 }
}

Note

In addition to DeleteItem, Amazon DynamoDB supports a BatchWriteItem
operation for deleting multiple items at the same time.

Deleting data from a table API Version 2012-08-10 316

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

DeleteItem supports conditional writes, where the operation succeeds only if a specific
ConditionExpression evaluates to true. For example, the following DeleteItem operation
deletes the item only if it has a RecordLabel attribute.

{
 TableName: "Music",
 Key: {
 Artist: "The Acme Band",
 SongTitle: "Look Out, World"
 },
 ConditionExpression: "attribute_exists(RecordLabel)"
}

PartiQL for DynamoDB

With PartiQL, you use the Delete statement through the ExecuteStatement operation to
delete data from a table, one item at a time. You must specify the item's primary key values.

The primary key for this table consists of Artist and SongTitle. You must specify values for these
attributes.

DELETE FROM Music
WHERE Artist = 'Acme Band' AND SongTitle = 'PartiQL Rocks'

You can also specify additional conditions for the operation. The following DELETE operation
only deletes the item if it has more than 11 Awards.

DELETE FROM Music
WHERE Artist = 'Acme Band' AND SongTitle = 'PartiQL Rocks' AND Awards > 11

Note

For code examples using DELETE and ExecuteStatement, see PartiQL delete
statements for DynamoDB.

Deleting data from a table API Version 2012-08-10 317

Amazon DynamoDB Developer Guide

Differences between a relational (SQL) database and DynamoDB when
removing a table

In SQL, you use the DROP TABLE statement to remove a table. In Amazon DynamoDB, you use the
DeleteTable operation.

Topics

• Removing a table with SQL

• Removing a table in DynamoDB

Removing a table with SQL

When you no longer need a table and want to discard it permanently, you would use the DROP
TABLE statement in SQL.

DROP TABLE Music;

After a table is dropped, it cannot be recovered. (Some relational databases do allow you to undo a
DROP TABLE operation, but this is vendor-specific functionality and it is not widely implemented.)

Removing a table in DynamoDB

In DynamoDB, DeleteTable is a similar operation. In the following example, the table is
permanently deleted.

{
 TableName: "Music"
}

Amazon DynamoDB learning resources and tools

You can use the following additional resources to understand and work with DynamoDB.

Topics

• Tools for coding and visualization

• Prescriptive Guidance articles

• Knowledge Center articles

Removing a table API Version 2012-08-10 318

Amazon DynamoDB Developer Guide

• Blog posts, repositories, and guides

• Data modeling and design pattern presentations

• Training courses

Tools for coding and visualization

You can use the following coding and visualization tools to work with DynamoDB:

• NoSQL Workbench for Amazon DynamoDB – A unified, visual tool that helps you design, create,
query, and manage DynamoDB tables. It provides data modeling, data visualization, and query
development features.

• Dynobase – A desktop tool that makes it easy to see your DynamoDB tables and work with them,
create app code, and edit records with real-time validation.

• DynamoDB Toolbox – A project from Jeremy Daly that provides helpful utilities for working with
data modeling and JavaScript and Node.js.

• DynamoDB Streams Processor – A simple tool that you can use to work with DynamoDB streams.

Prescriptive Guidance articles

Amazon Prescriptive Guidance provides time-tested strategies, guides, and patterns to help
accelerate your projects. These resources were developed by Amazon technology experts and
the global community of Amazon Partners, based on their years of experience helping customers
achieve their business objectives.

Data modeling and migration

• A hierarchical data model in DynamoDB

• Modeling data with DynamoDB

• Migrate an Oracle database to DynamoDB using Amazon DMS

Global tables

• Using Amazon DynamoDB global tables

Serverless

Tools for coding and visualization API Version 2012-08-10 319

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://dynobase.dev/
https://github.com/jeremydaly/dynamodb-toolbox
https://github.com/jeremydaly/dynamodb-streams-processor
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-hierarchical-data-model/introduction.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-data-modeling/welcome.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/migrate-an-oracle-database-to-amazon-dynamodb-using-aws-dms.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-global-tables/introduction.html

Amazon DynamoDB Developer Guide

• Implement the serverless saga pattern with Amazon Step Functions

SaaS architecture

• Manage tenants across multiple SaaS products on a single control plane

• Tenant onboarding in SaaS architecture for the silo model using C# and Amazon CDK

Data protection and data movement

• Configure cross-account access to Amazon DynamoDB

• Full table copy options for DynamoDB

• Disaster recovery strategy for databases on Amazon

Miscellaneous

• Help enforce tagging in DynamoDB

Prescriptive guidance video walkthroughs

• Using Serverless Architecture to Create Data Pipelines

• Novartis - Buying Engine: AI-powered Procurement Portal

• Veritiv: Enable Insights to Forecast Sales Demand on Amazon Data Lakes

• mimik: Hybrid Edge Cloud Leveraging Amazon to Support Edge Microservice Mesh

• Change Data Capture with Amazon DynamoDB

For additional Prescriptive Guidance articles and videos for DynamoDB, see Prescriptive Guidance.

Knowledge Center articles

The Amazon Knowledge Center articles and videos cover the most frequent questions and requests
that we receive from Amazon customers. The following are some current Knowledge Center articles
on specific tasks that relate to DynamoDB:

Cost optimization

• How do I optimize costs with Amazon DynamoDB?

Knowledge Center API Version 2012-08-10 320

https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/implement-the-serverless-saga-pattern-by-using-aws-step-functions.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/manage-tenants-across-multiple-saas-products-on-a-single-control-plane.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/tenant-onboarding-in-saas-architecture-for-the-silo-model-using-c-and-aws-cdk.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/configure-cross-account-access-to-amazon-dynamodb.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-full-table-copy-options/
https://docs.amazonaws.cn/prescriptive-guidance/latest/strategy-database-disaster-recovery/
https://docs.amazonaws.cn/prescriptive-guidance/latest/patterns/help-enforce-dynamodb-tagging.html
https://youtu.be/JiWHomdh1oI?
https://youtu.be/vp8oPiHN4cA
https://youtu.be/jg85DzUZ9Ac
https://youtu.be/-S-R7MWRpaI
https://youtu.be/6YVjzD-70p4
https://tiny.amazon.com/fiui3cog/ForinternaldemoofnewpageExternalURLwillbeneededforlive
https://repost.aws/knowledge-center/dynamodb-optimize-costs

Amazon DynamoDB Developer Guide

Throttling and latency

• How can I troubleshoot high latency on an Amazon DynamoDB table?

• Why is my DynamoDB table being throttled?

• Why is my on-demand DynamoDB table being throttled?

Pagination

• How do I implement pagination in DynamoDB

Transactions

• Why is my TransactWriteItems API call failing in DynamoDB

Troubleshooting

• How do I resolve issues with DynamoDB auto scaling?

• How do I troubleshoot HTTP 4XX errors in DynamoDB

For additional articles and videos for DynamoDB, see the Knowledge Center articles.

Blog posts, repositories, and guides

In addition to the DynamoDB Developer Guide, there are many useful resources for working
with DynamoDB. Here are some selected blog posts, repositories, and guides for working with
DynamoDB:

• Amazon repository of DynamoDB code examples in various Amazon SDK languages: Node.js,
Java, Python, .Net, Go, and Rust.

• The DynamoDB Book – A comprehensive guide from Alex DeBrie that teaches a strategy-driven
approach to data modeling with DynamoDB.

• DynamoDB guide – An open guide from Alex DeBrie that walks through the basic concepts and
advanced features of the DynamoDB NoSQL database.

• How to switch from RDBMS to DynamoDB in 20 easy steps – A list of useful steps for learning
data modeling from Jeremy Daly.

Blog posts, repositories, and guides API Version 2012-08-10 321

https://repost.aws/knowledge-center/dynamodb-high-latency
https://repost.aws/knowledge-center/dynamodb-table-throttled
https://repost.aws/knowledge-center/on-demand-table-throttling-dynamodb
https://repost.aws/knowledge-center/dynamodb-implement-pagination
https://repost.aws/knowledge-center/dynamodb-transactwriteitems
https://repost.aws/knowledge-center/dynamodb-auto-scaling
https://repost.aws/knowledge-center/usererrors-dynamodb-table
https://repost.aws/search/knowledge-center?globalSearch=dynamodb
https://github.com/aws-samples/aws-dynamodb-examples
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/node.js
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/java
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/python
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/dotnet
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/golang
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/rust
https://www.dynamodbbook.com/
https://twitter.com/alexbdebrie
https://www.dynamodbguide.com/
https://twitter.com/alexbdebrie
https://www.jeremydaly.com/how-to-switch-from-rdbms-to-dynamodb-in-20-easy-steps/
https://twitter.com/jeremy_daly

Amazon DynamoDB Developer Guide

• DynamoDB JavaScript DocumentClient cheat sheet – A cheat sheet to help you get started
building applications with DynamoDB in a Node.js or JavaScript environment.

• DynamoDB Core Concept Videos – This playlist covers many of the core concepts of DynamoDB.

Data modeling and design pattern presentations

You can use the following resources on data modeling and design patterns to help you get the
most out of DynamoDB:

• Amazon re:Invent 2019: Data modeling with DynamoDB

• A talk by Alex DeBrie that helps you started with the principles of DynamoDB data modeling.

• Amazon re:Invent 2020: Data modeling with DynamoDB – Part 1

• Amazon re:Invent 2020: Data modeling with DynamoDB – Part 2

• Amazon re:Invent 2017: Advanced design patterns

• Amazon re:Invent 2018: Advanced design patterns

• Amazon re:Invent 2019: Advanced design patterns

• Jeremy Daly shares his 12 key takeaways from this session.

• Amazon re:Invent 2020: DynamoDB advanced design patterns – Part 1

• Amazon re:Invent 2020: DynamoDB advanced design patterns – Part 2

• DynamoDB Office Hours on Twitch

Note

Each session covers different use cases and examples.

Training courses

There are many different training courses and educational options for learning more about
DynamoDB. Here are some current examples:

• Developing with Amazon DynamoDB – Designed by Amazon to take you from beginner to expert
in developing real-world applications with data modeling for Amazon DynamoDB.

• DynamoDB deep dive course – A course from Pluralsight.

Data modeling and design patterns API Version 2012-08-10 322

https://github.com/dabit3/dynamodb-documentclient-cheat-sheet
https://www.youtube.com/playlist?list=PLJo-rJlep0EDNtcDeHDMqsXJcuKMcrC5F
https://www.youtube.com/watch?v=DIQVJqiSUkE
https://twitter.com/alexbdebrie
https://www.youtube.com/watch?v=fiP2e-g-r4g
https://www.youtube.com/watch?v=0uLF1tjI_BI
https://www.youtube.com/watch?v=jzeKPKpucS0
https://www.youtube.com/watch?v=HaEPXoXVf2k
https://www.youtube.com/watch?v=6yqfmXiZTlM
https://www.jeremydaly.com/takeaways-from-dynamodb-deep-dive-advanced-design-patterns-dat403/
https://www.youtube.com/watch?v=MF9a1UNOAQo&index=1
https://www.youtube.com/watch?v=_KNrRdWD25M&index=2
https://amazondynamodbofficehrs.splashthat.com/
https://www.aws.training/Details/Curriculum?id=65583
https://www.pluralsight.com/courses/aws-dynamodb-deep-dive-2019

Amazon DynamoDB Developer Guide

• Amazon DynamoDB: Building NoSQL database-driven applications – A course from the Amazon
Training and Certification team hosted on edX.

Training courses API Version 2012-08-10 323

https://www.edx.org/course/amazon-dynamodb-building-nosql-database-driven-app

Amazon DynamoDB Developer Guide

DynamoDB reads and writes

DynamoDB reads and writes refer to the operations that retrieve data from a table (reads) and
insert, update, or delete data in a table (writes). When you work with DynamoDB, it's essential to
understand the concepts of reads and writes, because they directly impact the performance and
cost of your application.

This topic provides details about the different types of read consistency that apply to DynamoDB.
This topic also describes the unit consumption for different read and write operations that you
might perform.

Topics

• DynamoDB read consistency

• DynamoDB read and write operations

DynamoDB read consistency

Amazon DynamoDB reads data from tables, local secondary indexes (LSIs), global secondary
indexes (GSIs), and streams. For more information, see Core components of Amazon DynamoDB.
Both tables and LSIs provide two read consistency options: eventually consistent (default) and
strongly consistent reads. All reads from GSIs and streams are eventually consistent.

When your application writes data to a DynamoDB table and receives an HTTP 200 response (OK),
that means the write completed successfully and has been durably persisted. DynamoDB provides
read-committed isolation and ensures that read operations always return committed values for an
item. The read will never present a view to the item from a write which did not ultimately succeed.
Read-committed isolation does not prevent modifications of the item immediately after the read
operation.

Eventually consistent reads

Eventually consistent is the default read consistent model for all read operations. When issuing
eventually consistent reads to a DynamoDB table or an index, the responses may not reflect the
results of a recently completed write operation. If you repeat your read request after a short
time, the response should eventually return the more recent item. Eventually consistent reads are
supported on tables, local secondary indexes, and global secondary indexes. Also note that all
reads from a DynamoDB stream are also eventually consistent.

DynamoDB read consistency API Version 2012-08-10 324

Amazon DynamoDB Developer Guide

Eventually consistent reads are half the cost of strongly consistent reads. For more information, see
Amazon DynamoDB pricing.

Strongly consistent reads

Read operations such as GetItem, Query, and Scan provide an optional ConsistentRead
parameter. If you set ConsistentRead to true, DynamoDB returns a response with the most up-
to-date data, reflecting the updates from all prior write operations that were successful. Strongly
consistent reads are only supported on tables and local secondary indexes. Strongly consistent
reads from a global secondary index or a DynamoDB stream are not supported.

Global tables read consistency

DynamoDB also supports global tables for multi-active and multi-Region replication. A global table
is composed of multiple replica tables in different Amazon Regions. Any change made to any item
in any replica table is replicated to all the other replicas within the same global table, typically
within a second, and are eventually consistent. For more information, see Consistency modes.

DynamoDB read and write operations

DynamoDB read operations allow you to retrieve one or more items from a table by specifying the
partition key value and, optionally, the sort key value. Using DynamoDB write operations, you can
insert, update, or delete items in a table. This topic explains capacity unit consumption for these
two operations.

Topics

• Capacity unit consumption for read operations

• Capacity unit consumption for write operations

Capacity unit consumption for read operations

DynamoDB read requests can be either strongly consistent, eventually consistent, or transactional.

• A strongly consistent read request of an item up to 4 KB requires one read unit.

• An eventually consistent read request of an item up to 4 KB requires one-half read unit.

• A transactional read request of an item up to 4 KB requires two read units.

Strongly consistent reads API Version 2012-08-10 325

https://aws.amazon.com/dynamodb/pricing/

Amazon DynamoDB Developer Guide

To learn more about DynamoDB read consistency models, see DynamoDB read consistency.

Item sizes for reads are rounded up to the next 4 KB multiple. For example, reading a 3,500-byte
item consumes the same throughput as reading a 4 KB item.

If you need to read an item that is larger than 4 KB, DynamoDB needs additional read units. The
total number of read units required depends on the item size, and whether you want an eventually
consistent or strongly consistent read. For example, if your item size is 8 KB, you require 2 read
units to sustain one strongly consistent read. You'll require 1 read unit if you choose eventually
consistent reads or 4 read units for a transactional read request.

The following list describes how DynamoDB read operations consume read units:

• GetItem: Reads a single item from a table. To determine the number of read units that GetItem
will consume, take the item size and round it up to the next 4 KB boundary. This is the number of
read units required if you specified a strongly consistent read. For an eventually consistent read,
which is the default, divide this number by two.

For example, if you read an item that is 3.5 KB, DynamoDB rounds the item size to 4 KB. If you
read an item of 10 KB, DynamoDB rounds the item size to 12 KB.

• BatchGetItem: Reads up to 100 items from one or more tables. DynamoDB processes each item
in the batch as an individual GetItem request. DynamoDB first rounds up the size of each item
to the next 4 KB boundary and then calculates the total size. The result isn't necessarily the same
as the total size of all the items. For example, if BatchGetItem reads two items of sizes 1.5 KB
and 6.5 KB, DynamoDB calculates the size as 12 KB (4 KB + 8 KB). DynamoDB doesn’t calculate
the size as 8 KB (1.5 KB + 6.5 KB).

• Query: Reads multiple items that have the same partition key value. All items returned are
treated as a single read operation, where DynamoDB computes the total size of all items.
DynamoDB then rounds up the size to the next 4 KB boundary. For example, suppose your
query returns 10 items whose combined size is 40.8 KB. DynamoDB rounds the item size for the
operation to 44 KB. If a query returns 1500 items of 64 bytes each, the cumulative size is 96 KB.

• Scan: Reads all items in a table. DynamoDB considers the size of the items that are evaluated,
not the size of the items returned by the scan. For more information about Scan operations, see
Scanning tables in DynamoDB.

Read operation consumption API Version 2012-08-10 326

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html

Amazon DynamoDB Developer Guide

Important

If you perform a read operation on an item that doesn't exist, DynamoDB will still consume
read throughput as outlined above. For Query/Scan operations, you'll still be charged
additional read throughput based on read consistency and the number of partitions
searched to serve the request, even if no data exists.

For any operation that returns items, you can request a subset of attributes to retrieve. However,
doing so has no impact on the item size calculations. In addition, Query and Scan can return item
counts instead of attribute values. Getting the count of items uses the same quantity of read units
and is subject to the same item size calculations. This is because DynamoDB has to read each item
in order to increment the count.

Capacity unit consumption for write operations

One write unit represents one write for an item up to 1 KB in size. If you need to write an item
that is larger than 1 KB, DynamoDB needs to consume additional write units. Transactional write
requests require 2 write units to perform one write for items up to 1 KB. The total number of write
request units required depends on the item size. For example, if your item size is 2 KB, you require
2 write units to sustain one write request or 4 write units for a transactional write request.

Item sizes for writes are rounded up to the next 1 KB multiple. For example, writing a 500-byte
item consumes the same throughput as writing a 1 KB item.

The following list describes how DynamoDB write operations consume write units:

• PutItem: Writes a single item to a table. If an item with the same primary key exists in the table,
the operation replaces the item. For calculating provisioned throughput consumption, the item
size that matters is the larger of the two.

• UpdateItem: Modifies a single item in the table. DynamoDB considers the size of the item as it
appears before and after the update. The provisioned throughput consumed reflects the larger
of these item sizes. Even if you update a subset of the item's attributes, UpdateItem will still
consume the full amount of provisioned throughput (the larger of the "before" and "after" item
sizes).

• DeleteItem: Removes a single item from a table. The provisioned throughput consumption is
based on the size of the deleted item.

Write operation consumption API Version 2012-08-10 327

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

• BatchWriteItem: Writes up to 25 items to one or more tables. DynamoDB processes each item
in the batch as an individual PutItem or DeleteItem request (updates are not supported).
DynamoDB first rounds up the size of each item to the next 1 KB boundary, and then calculates
the total size. The result isn't necessarily the same as the total size of all the items. For example,
if BatchWriteItem writes two items of sizes 500-byte and 3.5 KB, DynamoDB calculates the
size as 5 KB (1 KB + 4 KB). DynamoDB doesn’t calculate the size as 4 KB (500 bytes + 3.5 KB).

For PutItem, UpdateItem, and DeleteItem operations, DynamoDB rounds the item size up to
the next 1 KB. For example, if you put or delete an item of 1.6 KB, DynamoDB rounds the item size
up to 2 KB.

PutItem, UpdateItem, and DeleteItem operations allow conditional writes, where you specify
an expression that must evaluate to true for the operation to succeed. If the expression evaluates
to false, DynamoDB still consumes write capacity units from the table. The amount of consumed
write capacity units depends on the size of the item. This item can be an existing item in the table
or a new one you're attempting to create or update. For example, say that an existing item is 300
KB. The new item you’re trying to create or update is 310 KB. The write capacity units consumed
will be 310 KB for the new item.

Write operation consumption API Version 2012-08-10 328

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

Amazon DynamoDB Developer Guide

DynamoDB throughput capacity

This section provides an overview of the two throughput modes available for your DynamoDB
table and considerations in selecting the appropriate capacity mode for your application. A table’s
throughput mode determines how the capacity of a table is managed. Throughput mode also
determines how you're charged for the read and write operations on your tables. In Amazon
DynamoDB, you can choose between on-demand mode and provisioned mode for your tables to
accommodate different workload requirements.

Topics

• On-demand mode

• Provisioned mode

• DynamoDB on-demand capacity mode

• DynamoDB provisioned capacity mode

• Understanding DynamoDB warm throughput

• DynamoDB burst and adaptive capacity

• Considerations when switching capacity modes in DynamoDB

On-demand mode

Amazon DynamoDB on-demand mode is a serverless throughput option that simplifies database
management and automatically scales to support customers' most demanding applications.
DynamoDB on-demand enables you to create a table without worrying about capacity planning,
monitoring usage, and configuring scaling policies. DynamoDB on-demand offers pay-per-request
pricing for read and write requests so that you only pay for what you use. For on-demand mode
tables, you don't need to specify how much read and write throughput you expect your application
to perform.

On-demand mode is the default and recommended throughput option for most DynamoDB
workloads. DynamoDB handles all aspects of throughput management and scaling to support
workloads that can start small and scale to millions of requests per second. You can read and write
to your DynamoDB tables as needed without managing throughput capacity on the table. For more
information, see DynamoDB on-demand capacity mode.

On-demand mode API Version 2012-08-10 329

Amazon DynamoDB Developer Guide

Provisioned mode

In provisioned mode, you must specify the number of reads and writes per second that you require
for your application. You'll be charged based on the hourly read and write capacity you have
provisioned, not how much of that provisioned capacity you actually consumed. This helps you
govern your DynamoDB use to stay at or below a defined request rate in order to obtain cost
predictability.

You can choose to use provisioned capacity if you have steady workloads with predictable growth,
and if you can reliably forecast capacity requirements for your application. For more information,
see DynamoDB provisioned capacity mode.

DynamoDB on-demand capacity mode

Amazon DynamoDB on-demand offers a truly serverless database experience that automatically
scales to accommodate the most demanding workloads without capacity planning. On-demand
simplifies the setup process, eliminates capacity management and monitoring, and provides fast,
automatic scaling. With pay-per-request pricing, you don’t have to worry about idle capacity
because you only pay for the throughput you actually use. You are billed per read or write request,
so your costs directly reflect your actual usage.

When you choose on-demand mode, DynamoDB instantly accommodates your workloads as they
ramp up or down to any previously reached traffic level. If a workload’s traffic level hits a new peak,
DynamoDB automatically scales to accommodate the increased throughput requirements. On-
demand mode is the default and recommended throughput option because it simplifies building
modern, serverless applications that can start small and scale to millions of requests per second.
Once your on-demand table is scaled out, you can instantly achieve the same throughput again in
the future without throttling. If you are driving zero traffic to your table, then with on-demand,
you are not charged for any throughput. For more information about on-demand mode's scaling
properties, see Initial throughput and scaling properties.

Tables that use on-demand mode deliver the same single-digit millisecond latency, service-level
agreement (SLA), and security that DynamoDB provisioned mode offers.

Note

By default, DynamoDB protects you from unintended, runaway usage. To scale beyond
the 40,000 table-level read and write throughput limits for all tables in your account, you

Provisioned mode API Version 2012-08-10 330

Amazon DynamoDB Developer Guide

can request an increase for this quota. Throughput requests that exceed the default table
throughput quota are throttled. For more information, see Throughput default quotas.

Optionally, you can also configure maximum read or write (or both) throughput per second for
individual on-demand tables and global secondary indexes. By configuring throughput, you can
keep table-level usage and costs bounded, protect against an inadvertent surge in consumed
resources, and prevent excessive use for predictable cost management. Throughput requests
that exceed the maximum table throughput are throttled. You can modify the table-specific
maximum throughput at any time based on your application requirements. For more information,
see DynamoDB maximum throughput for on-demand tables.

To get started, create or update a table to use on-demand mode. For more information, see Basic
operations on DynamoDB tables.

You can switch tables from provisioned capacity mode to on-demand mode up to four times in
a 24-hour rolling window. You can switch tables from on-demand mode to provisioned capacity
mode at any time.

For more information about switching between read and write capacity modes, see Considerations
when switching capacity modes in DynamoDB. For on-demand table quotas, see Read/write
throughput.

Topics

• Read request units and write request units

• Initial throughput and scaling properties

• DynamoDB maximum throughput for on-demand tables

Read request units and write request units

DynamoDB charges you for the reads and writes that your application performs on your tables in
terms of read request units and write request units.

One read request unit represents one strongly consistent read operation per second, or two
eventually consistent read operations per second, for an item up to 4 KB in size. For more
information about DynamoDB read consistency models, see DynamoDB read consistency.

One write request unit represents one write operation per second, for an item up to 1 KB in size.

Read request units and write request units API Version 2012-08-10 331

Amazon DynamoDB Developer Guide

For more information about how read and write units are consumed, see DynamoDB read and write
operations.

Initial throughput and scaling properties

DynamoDB tables using on-demand capacity mode automatically adapt to your application’s
traffic volume. New on-demand tables will be able to sustain up to 4,000 writes per second and
12,000 reads per second. On-demand capacity mode instantly accommodates up to double the
previous peak traffic on a table. For example, say that your application’s traffic pattern varies
between 25,000 and 50,000 strongly consistent reads per second. 50,000 reads per second is the
previous traffic peak. On-demand capacity mode instantly accommodates sustained traffic of up
to 100,000 reads per second. If your application sustains traffic of 100,000 reads per second, that
peak becomes your new previous peak. This previous peak enables subsequent traffic to reach up
to 200,000 reads per second.

If your workload generates more than double your previous peak on a table, DynamoDB
automatically allocates more capacity as your traffic volume increases. This capacity allocation
helps ensure that your workload doesn't experience throttling. However, throttling can occur if
you exceed double your previous peak within 30 minutes. For example, say that your application’s
traffic pattern varies between 25,000 and 50,000 strongly consistent reads per second. 50,000
reads per second is the previously reached traffic peak. We recommend that you either pre-warm
your table or space your traffic growth over at least 30 minutes before driving more than 100,000
reads per second. For more information about pre-warming, see Understanding DynamoDB warm
throughput.

DynamoDB doesn’t place the 30 minute throttling restriction if your workload’s peak traffic
remains within double your previous peak. If your peak traffic exceeds double the peak, make sure
that this growth occurs 30 minutes after you last reached the peak.

DynamoDB maximum throughput for on-demand tables

For on-demand tables, you can optionally specify maximum read or write (or both) throughput per
second on individual tables and associated global secondary indexes (GSIs). Specifying a maximum
on-demand throughput helps keep table-level usage and costs bounded. By default, maximum
throughput settings don’t apply and your on-demand throughput rate is bounded by 40,000 table-
level read and write throughput Amazon service quota for all tables in the account. If needed, you
can request an increase to your service quota.

Initial throughput and scaling properties API Version 2012-08-10 332

Amazon DynamoDB Developer Guide

When you configure maximum throughput for an on-demand table, throughput requests
that exceed the maximum amount specified will be throttled. You can modify the table-level
throughput settings any time based on your application requirements.

The following are some common use cases that can benefit from using maximum throughput for
on-demand tables:

• Throughput cost optimization – Using maximum throughput for on-demand tables provides an
additional layer of cost predictability and manageability. Additionally, it offers greater flexibility
to use on-demand mode to support workloads with differing traffic patterns and budget.

• Protection against excessive usage – By setting maximum throughput, you can prevent an
accidental surge in read or write consumption, which might arise from non-optimized code or
rogue processes, against an on-demand table. This table-level setting can protect organizations
from consuming excessive resources within a certain time frame.

• Safeguarding downstream services – A customer application can include serverless and
non-serverless technologies. The serverless piece of the architecture can scale rapidly to
match demand. But downstream components with fixed capacities could be overwhelmed.
Implementing maximum throughput settings for on-demand tables can prevent large volume of
events from propagating to multiple downstream components with unexpected side effects.

You can configure maximum throughput for on-demand mode for new and existing single-Region
tables and global tables and GSIs. You can also configure maximum throughput during table
restore and data import from Amazon S3 workflows.

You can specify maximum throughput settings for an on-demand tables using the DynamoDB
console, Amazon CLI, Amazon CloudFormation, or DynamoDB API.

Note

The maximum throughput for an on-demand table is applied on a best-effort basis and
should be thought of as targets instead of guaranteed request ceilings. Your workload
might temporarily exceed the maximum throughput specified because of burst capacity.
In some cases, DynamoDB uses burst capacity to accommodate reads or writes in excess of
your table's maximum throughput settings. With burst capacity, unexpected read or write
requests can succeed where they otherwise would be throttled.

Topics

DynamoDB maximum throughput for on-demand tables API Version 2012-08-10 333

https://console.amazonaws.cn/dynamodb/
https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

• Considerations when using maximum throughput for on-demand mode

• Request throttling and CloudWatch metrics

Considerations when using maximum throughput for on-demand mode

When you use maximum throughput for tables in on-demand mode, the following considerations
apply:

• You can independently set maximum throughput for reads and writes for any on-demand table,
or individual global secondary index within that table to fine-tune your approach based on
specific requirements.

• You can use Amazon CloudWatch to monitor and understand DynamoDB table-level usage
metrics and to determine appropriate maximum throughput settings for on-demand mode. For
more information, see DynamoDB Metrics and dimensions.

• When you specify the maximum read or write (or both) throughput settings on one global table
replica, the same maximum throughput settings are automatically applied to all replica tables.
It's important that the replica tables and secondary indexes in a global table have identical
write throughput settings to ensure proper replication of data. For more information, see Best
practices for global tables.

• The smallest maximum read or write throughput that you can specify is one request unit per
second.

• The maximum throughput you specify must be lower than the default throughput quota that is
available for any on-demand table, or individual global secondary index within that table.

Request throttling and CloudWatch metrics

If your application exceeds the maximum read or write throughput you've set on your on-demand
table, DynamoDB begins to throttle those requests. When DynamoDB throttles a read or write, it
returns a ThrottlingException to the caller. You can then take appropriate action, if required.
For example, you can increase or disable the maximum table throughput setting, or wait for a short
interval before retrying the request.

To simplify monitoring the maximum throughput configured for a table or global secondary
index, CloudWatch provides the following metrics: OnDemandMaxReadRequestUnits and
OnDemandMaxWriteRequestUnits.

DynamoDB maximum throughput for on-demand tables API Version 2012-08-10 334

Amazon DynamoDB Developer Guide

DynamoDB provisioned capacity mode

When you create a new provisioned table in DynamoDB, you must specify its provisioned
throughput capacity. This is the amount of read and write throughput that the table can support.
You'll be charged based on the hourly read and write capacity you have provisioned, not how much
of that provisioned capacity you actually consumed.

As your application's data and access requirements change, you might need to adjust your
table's throughput settings. You can use auto scaling to adjust your table’s provisioned capacity
automatically in response to traffic changes. DynamoDB auto scaling uses a scaling policy in
Application Auto Scaling. To configure auto scaling in DynamoDB, you set the minimum and
maximum levels of read and write capacity in addition to the target utilization percentage.
Application Auto Scaling creates and manages the CloudWatch alarms that trigger scaling events
when the metric deviates from the target. Auto Scaling monitors your table’s activity and adjusts
its capacity settings up or down based on preconfigured thresholds. Auto scaling triggers when
your consumed capacity breaches the configured target utilization for two consecutive minutes.
CloudWatch alarms might have a short delay of up to a few minutes before triggering auto scaling.
For more information, see Managing throughput capacity automatically with DynamoDB auto
scaling.

If you're using DynamoDB auto scaling, the throughput settings are automatically adjusted in
response to actual workloads. You can also use the UpdateTable operation to manually adjust your
table's throughput capacity. For example, you might decide to do this if you need to bulk-load data
from an existing data store into your new DynamoDB table. You could create the table with a large
write throughput setting and then reduce this setting after the bulk data load is complete.

Note

By default, DynamoDB protects you from unintended, runaway usage. To scale beyond
the 40,000 table-level read and write throughput limits for all tables in your account, you
can request an increase for this quota. Throughput requests that exceed the default table
throughput quota are throttled. For more information, see Throughput default quotas.

You can switch tables from provisioned capacity mode to on-demand mode up to four times in
a 24-hour rolling window. You can switch tables from on-demand mode to provisioned capacity
mode at any time.

Provisioned capacity mode API Version 2012-08-10 335

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

For more information about switching between read and write capacity modes, see Considerations
when switching capacity modes in DynamoDB.

Topics

• Read capacity units and write capacity units

• Choosing initial throughput settings

• DynamoDB auto scaling

• Managing throughput capacity automatically with DynamoDB auto scaling

• DynamoDB reserved capacity

Read capacity units and write capacity units

For provisioned mode tables, you specify throughput requirements in terms of capacity units.
These units represent the amount of data your application needs to read or write per second.
You can modify these settings later, if needed, or enable DynamoDB auto scaling to modify them
automatically.

For an item up to 4 KB, one read capacity unit (RCU) represents one strongly consistent read
operation per second, or two eventually consistent read operations per second. For more
information about DynamoDB read consistency models, see DynamoDB read consistency.

A write capacity unit (WCU) represents one write per second for an item up to 1 KB. For more
information about the different read and write operations, see DynamoDB read and write
operations.

Choosing initial throughput settings

Every application has different requirements for reading from and writing to a database. When
you're determining the initial throughput settings for a DynamoDB table, consider the following:

• Expected read and write request rates — You should estimate the number of reads and writes
you need to perform per second.

• Item sizes — Some items are small enough that they can be read or written using a single
capacity unit. Larger items require multiple capacity units. By estimating the average size of the
items that will be in your table, you can specify accurate settings for your table's provisioned
throughput.

Read and write capacity units API Version 2012-08-10 336

Amazon DynamoDB Developer Guide

• Read consistency requirements — Read capacity units are based on strongly consistent read
operations, which consume twice as many database resources as eventually consistent reads.
You should determine whether your application requires strongly consistent reads, or whether it
can relax this requirement and perform eventually consistent reads instead. Read operations in
DynamoDB are eventually consistent, by default. You can request strongly consistent reads for
these operations, if necessary.

For example, say that you want to read 80 items per second from a table. The size of these items is
3 KB, and you want strongly consistent reads. In this case, each read requires one provisioned read
capacity unit. To determine this number, divide the item size of the operation by 4 KB. Then, round
up to the nearest whole number, as shown in the following example:

• 3 KB / 4 KB = 0.75 or 1 read capacity unit

Therefore, to read 80 items per second from a table, set the table's provisioned read throughput to
80 read capacity units as shown in the following example:

• 1 read capacity unit per item × 80 reads per second = 80 read capacity units

Now suppose that you want to write 100 items per second to your table and that the size of each
item is 512 bytes. In this case, each write requires one provisioned write capacity unit. To determine
this number, divide the item size of the operation by 1 KB. Then, round up to the nearest whole
number, as shown in the following example:

• 512 bytes / 1 KB = 0.5 or 1 write capacity unit

To write 100 items per second to your table, set the table's provisioned write throughput to 100
write capacity units:

• 1 write capacity unit per item × 100 writes per second = 100 write capacity units

DynamoDB auto scaling

DynamoDB auto scaling actively manages provisioned throughput capacity for tables and global
secondary indexes. With auto scaling, you define a range (upper and lower limits) for read and
write capacity units. You also define a target utilization percentage within that range. DynamoDB

DynamoDB auto scaling API Version 2012-08-10 337

Amazon DynamoDB Developer Guide

auto scaling seeks to maintain your target utilization, even as your application workload increases
or decreases.

With DynamoDB auto scaling, a table or a global secondary index can increase its provisioned
read and write capacity to handle sudden increases in traffic, without request throttling. When the
workload decreases, DynamoDB auto scaling can decrease the throughput so that you don't pay for
unused provisioned capacity.

Note

If you use the Amazon Web Services Management Console to create a table or a global
secondary index, DynamoDB auto scaling is enabled by default.
You can manage auto scaling settings at any time by using the console, the Amazon CLI,
or one of the Amazon SDKs. For more information, see Managing throughput capacity
automatically with DynamoDB auto scaling.

Utilization rate

Utilization rate can help you determine if you’re over provisioning capacity, in which case should
reduce your table capacity to save costs. Conversely, it can also help you determine if you’re
under provisioning capacity. In this case, you should increase table capacity to prevent potential
throttling of requests during unexpected high traffic instances. For more information, see Amazon
DynamoDB auto scaling: Performance and cost optimization at any scale.

If you’re using DynamoDB auto scaling, you’ll also need to set a target utilization percentage.
Auto scaling will use this percentage as a target to adjust capacity upward or downward. We
recommend setting target utilization to 70%. For more information, see Managing throughput
capacity automatically with DynamoDB auto scaling.

Managing throughput capacity automatically with DynamoDB auto
scaling

Many database workloads are cyclical in nature, while others are difficult to predict in advance.
For one example, consider a social networking app where most of the users are active during
daytime hours. The database must be able to handle the daytime activity, but there's no need for
the same levels of throughput at night. For another example, consider a new mobile gaming app
that is experiencing unexpectedly rapid adoption. If the game becomes too popular it could exceed

Managing throughput capacity with auto scaling API Version 2012-08-10 338

https://amazonaws-china.com/blogs/database/amazon-dynamodb-auto-scaling-performance-and-cost-optimization-at-any-scale/
https://amazonaws-china.com/blogs/database/amazon-dynamodb-auto-scaling-performance-and-cost-optimization-at-any-scale/

Amazon DynamoDB Developer Guide

the available database resources, resulting in slow performance and unhappy customers. These
kinds of workloads often require manual intervention to scale database resources up or down in
response to varying usage levels.

Amazon DynamoDB auto scaling uses the Amazon Application Auto Scaling service to dynamically
adjust provisioned throughput capacity on your behalf, in response to actual traffic patterns. This
enables a table or a global secondary index (GSI) to increase its provisioned read and write capacity
to handle sudden increases in traffic, without throttling. When the workload decreases, Application
Auto Scaling decreases the throughput so that you don't pay for unused provisioned capacity.

Note

If you use the Amazon Web Services Management Console to create a table or a global
secondary index, DynamoDB auto scaling is enabled by default. You can modify your auto
scaling settings at any time. For more information, see Using the Amazon Web Services
Management Console with DynamoDB auto scaling.
When you delete a table or global table replica then any associated scalable targets, scaling
polices, or CloudWatch alarms are not automatically deleted with it.

With Application Auto Scaling, you create a scaling policy for a table or a global secondary index.
The scaling policy specifies whether you want to scale read capacity or write capacity (or both), and
the minimum and maximum provisioned capacity unit settings for the table or index.

The scaling policy also contains a target utilization—the percentage of consumed provisioned
throughput at a point in time. Application Auto Scaling uses a target tracking algorithm to adjust
the provisioned throughput of the table (or index) upward or downward in response to actual
workloads, so that the actual capacity utilization remains at or near your target utilization.

DynamoDB outputs consumed provisioned throughput for one-minute periods. Auto scaling
triggers when your consumed capacity breaches the configured target utilization for two
consecutive minutes. CloudWatch alarms might have a short delay of up to a few minutes before
triggering auto scaling. This delay ensures accurate CloudWatch metric evaluation. If the consumed
throughput spikes are more than a minute apart, auto scaling might not trigger. Similarly, a scale
down event can occur when 15 consecutive data points are lower than the target utilization.
In either case, after auto scaling triggers, the UpdateTable API is invoked. It then takes several
minutes to update the provisioned capacity for the table or index. During this period, any requests
that exceed the previous provisioned capacity of the tables are throttled.

Managing throughput capacity with auto scaling API Version 2012-08-10 339

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

Important

You can't adjust the number of data points to breach to trigger the underlying alarm
(though the current number could change in the future).

You can set the auto scaling target utilization values between 20 and 90 percent for your read and
write capacity.

Note

In addition to tables, DynamoDB auto scaling also supports global secondary indexes. Every
global secondary index has its own provisioned throughput capacity, separate from that of
its base table. When you create a scaling policy for a global secondary index, Application
Auto Scaling adjusts the provisioned throughput settings for the index to ensure that its
actual utilization stays at or near your desired utilization ratio.

How DynamoDB auto scaling works

Note

To get started quickly with DynamoDB auto scaling, see Using the Amazon Web Services
Management Console with DynamoDB auto scaling.

The following diagram provides a high-level overview of how DynamoDB auto scaling manages
throughput capacity for a table.

Managing throughput capacity with auto scaling API Version 2012-08-10 340

Amazon DynamoDB Developer Guide

The following steps summarize the auto scaling process as shown in the previous diagram:

1. You create an Application Auto Scaling policy for your DynamoDB table.

2. DynamoDB publishes consumed capacity metrics to Amazon CloudWatch.

3. If the table's consumed capacity exceeds your target utilization (or falls below the target) for a
specific length of time, Amazon CloudWatch triggers an alarm. You can view the alarm on the
console and receive notifications using Amazon Simple Notification Service (Amazon SNS).

4. The CloudWatch alarm invokes Application Auto Scaling to evaluate your scaling policy.

5. Application Auto Scaling issues an UpdateTable request to adjust your table's provisioned
throughput.

6. DynamoDB processes the UpdateTable request, dynamically increasing (or decreasing) the
table's provisioned throughput capacity so that it approaches your target utilization.

To understand how DynamoDB auto scaling works, suppose that you have a table named
ProductCatalog. The table is bulk-loaded with data infrequently, so it doesn't incur very much

Managing throughput capacity with auto scaling API Version 2012-08-10 341

Amazon DynamoDB Developer Guide

write activity. However, it does experience a high degree of read activity, which varies over time.
By monitoring the Amazon CloudWatch metrics for ProductCatalog, you determine that the
table requires 1,200 read capacity units (to avoid DynamoDB throttling read requests when
activity is at its peak). You also determine that ProductCatalog requires 150 read capacity units
at a minimum, when read traffic is at its lowest point. For more information about preventing
throttling, see Troubleshooting throttling in Amazon DynamoDB.

Within the range of 150 to 1,200 read capacity units, you decide that a target utilization of 70
percent would be appropriate for the ProductCatalog table. Target utilization is the ratio of
consumed capacity units to provisioned capacity units, expressed as a percentage. Application
Auto Scaling uses its target tracking algorithm to ensure that the provisioned read capacity of
ProductCatalog is adjusted as required so that utilization remains at or near 70 percent.

Note

DynamoDB auto scaling modifies provisioned throughput settings only when the actual
workload stays elevated or depressed for a sustained period of several minutes. The
Application Auto Scaling target tracking algorithm seeks to keep the target utilization at or
near your chosen value over the long term.
Sudden, short-duration spikes of activity are accommodated by the table's built-in burst
capacity. For more information, see Burst capacity.

To enable DynamoDB auto scaling for the ProductCatalog table, you create a scaling policy. This
policy specifies the following:

• The table or global secondary index that you want to manage

• Which capacity type to manage (read capacity or write capacity)

• The upper and lower boundaries for the provisioned throughput settings

• Your target utilization

When you create a scaling policy, Application Auto Scaling creates a pair of Amazon CloudWatch
alarms on your behalf. Each pair represents the upper and lower boundaries for your provisioned
throughput settings. These CloudWatch alarms are triggered when the table's actual utilization
deviates from your target utilization for a sustained period of time.

Managing throughput capacity with auto scaling API Version 2012-08-10 342

Amazon DynamoDB Developer Guide

When one of the CloudWatch alarms is triggered, Amazon SNS sends you a notification (if you have
enabled it). The CloudWatch alarm then invokes Application Auto Scaling, which in turn notifies
DynamoDB to adjust the ProductCatalog table's provisioned capacity upward or downward as
appropriate.

During a scaling event, Amazon Config is charged per configuration item recorded. When a
scaling event occurs, four CloudWatch alarms are created for each read and write auto-scaling
event: ProvisionedCapacity alarms: ProvisionedCapacityLow, ProvisionedCapacityHigh and
ConsumedCapacity alarms: AlarmHigh, AlarmLow. This results in a total of eight alarms. Therefore,
Amazon Config records eight configuration items for every scaling event.

Note

You can also schedule your DynamoDB scaling so it happens at certain times. Learn the
basic steps here.

Usage notes

Before you begin using DynamoDB auto scaling, you should be aware of the following:

• DynamoDB auto scaling can increase read capacity or write capacity as often as necessary, in
accordance with your auto scaling policy. All DynamoDB quotas remain in effect, as described in
Quotas in Amazon DynamoDB.

• DynamoDB auto scaling doesn't prevent you from manually modifying provisioned throughput
settings. These manual adjustments don't affect any existing CloudWatch alarms that are related
to DynamoDB auto scaling.

• If you enable DynamoDB auto scaling for a table that has one or more global secondary indexes,
we highly recommend that you also apply auto scaling uniformly to those indexes. This will help
ensure better performance for table writes and reads, and help avoid throttling. You can enable
auto scaling by selecting Apply same settings to global secondary indexes in the Amazon Web
Services Management Console. For more information, see Enabling DynamoDB auto scaling on
existing tables.

• When you delete a table or global table replica, any associated scalable targets, scaling polices or
CloudWatch alarms are not automatically deleted with it.

Managing throughput capacity with auto scaling API Version 2012-08-10 343

https://docs.amazonaws.cn/autoscaling/application/userguide/get-started-exercise.html

Amazon DynamoDB Developer Guide

• When creating a GSI for an existing table, auto scaling is not enabled for the GSI. You will have
to manually manage the capacity while the GSI is being built. Once the backfill on the GSI
completes and it reaches active status, auto scaling will operate as normal.

Using the Amazon Web Services Management Console with DynamoDB auto
scaling

When you use the Amazon Web Services Management Console to create a new table, Amazon
DynamoDB auto scaling is enabled for that table by default. You can also use the console to enable
auto scaling for existing tables, modify auto scaling settings, or disable auto scaling.

Note

For more advanced features like setting scale-in and scale-out cooldown times, use the
Amazon Command Line Interface (Amazon CLI) to manage DynamoDB auto scaling. For
more information, see Using the Amazon CLI to manage DynamoDB auto scaling.

Topics

• Before you begin: Granting user permissions for DynamoDB auto scaling

• Creating a new table with auto scaling enabled

• Enabling DynamoDB auto scaling on existing tables

• Viewing auto scaling activities on the console

• Modifying or disabling DynamoDB auto scaling settings

Before you begin: Granting user permissions for DynamoDB auto scaling

In Amazon Identity and Access Management (IAM), the Amazon managed policy
DynamoDBFullAccess provides the required permissions for using the DynamoDB console.
However, for DynamoDB auto scaling, users require additional permissions.

Important

To delete an auto scaling-enabled table, application-autoscaling:* permissions are
required. The Amazon managed policy DynamoDBFullAccess includes such permissions.

Managing throughput capacity with auto scaling API Version 2012-08-10 344

Amazon DynamoDB Developer Guide

To set up a user for DynamoDB console access and DynamoDB auto scaling, create a role and add
the AmazonDynamoDBFullAccess policy to that role. Then assign the role to a user.

Creating a new table with auto scaling enabled

Note

DynamoDB auto scaling requires the presence of a service-linked role
(AWSServiceRoleForApplicationAutoScaling_DynamoDBTable) that performs
auto scaling actions on your behalf. This role is created automatically for you. For more
information, see Service-linked roles for Application Auto Scaling in theApplication Auto
Scaling User Guide.

To create a new table with auto scaling enabled

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. Choose Create table.

3. On the Create table page, enter the Table name and primary key details.

4. If you choose Default settings, auto scaling is enabled in the new table.

Otherwise, choose Customize settings and do the following to specify custom settings for the
table:

a. For Table class, keep the default selection of DynamoDB Standard.

b. For Read/write capacity settings, keep the default selection of Provisioned, then do the
following:

i. For Read capacity, make sure Auto scaling is set to On.

ii. For Write capacity, make sure Auto scaling is set to On.

iii. For Read capacity and Write capacity, set your desired scaling policy for the table
and, optionally, all global secondary indexes of the table.

• Minimum capacity units – Enter your lower boundary for the auto scaling range.

• Maximum capacity units – Enter your upper boundary for the auto scaling range.

• Target utilization – Enter your target utilization percentage for the table.

Managing throughput capacity with auto scaling API Version 2012-08-10 345

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Note

If you create a global secondary index for the new table, the index's capacity
at time of creation will be the same as your base table's capacity. You can
change the index's capacity in the table's settings after you create the table.

5. Choose Create table. This creates your table with the auto scaling parameters you specified.

Enabling DynamoDB auto scaling on existing tables

Note

DynamoDB auto scaling requires the presence of a service-linked role
(AWSServiceRoleForApplicationAutoScaling_DynamoDBTable) that performs
auto scaling actions on your behalf. This role is created automatically for you. For more
information, see Service-linked roles for Application Auto Scaling.

To enable DynamoDB auto scaling for an existing table

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose the table on which you want to enable auto scaling, and then do the following:

a. Choose the Additional settings tab.

b. In the Read/write capacity section, choose Edit.

c. In the Capacity mode section, choose Provisioned.

d. In the Table capacity section, set Auto scaling to On for Read capacity, Write capacity,
or both. For each of these, set your desired scaling policy for the table and, optionally, all
global secondary indexes of the table.

• Minimum capacity units – Enter your lower boundary for the auto scaling range.

• Maximum capacity units – Enter your upper boundary for the auto scaling range.

• Target utilization – Enter your target utilization percentage for the table.

Managing throughput capacity with auto scaling API Version 2012-08-10 346

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

• Use the same capacity read/write capacity settings for all global secondary indexes
– Choose whether global secondary indexes should use the same auto scaling policy as
the base table.

Note

For best performance, we recommend that you enable Use the same read/
write capacity settings for all global secondary indexes. This option allows
DynamoDB auto scaling to uniformly scale all the global secondary indexes on
the base table. This includes existing global secondary indexes, and any others
that you create for this table in the future.
With this option enabled, you can't set a scaling policy on an individual global
secondary index.

4. When the settings are as you want them, choose Save.

Viewing auto scaling activities on the console

As your application drives read and write traffic to your table, DynamoDB auto scaling dynamically
modifies the table's throughput settings. Amazon CloudWatch keeps track of provisioned and
consumed capacity, throttled events, latency, and other metrics for all of your DynamoDB tables
and secondary indexes.

To view these metrics in the DynamoDB console, choose the table that you want to work with
and choose the Monitor tab. To create a customizable view of table metrics, select View all in
CloudWatch.

Modifying or disabling DynamoDB auto scaling settings

You can use the Amazon Web Services Management Console to modify your DynamoDB auto
scaling settings. To do this, go to the Additional settings tab for your table, and choose Edit in the
Read/write capacity section. For more information about these settings, see Enabling DynamoDB
auto scaling on existing tables.

Using the Amazon CLI to manage DynamoDB auto scaling

Instead of using the Amazon Web Services Management Console, you can use the Amazon
Command Line Interface (Amazon CLI) to manage Amazon DynamoDB auto scaling. The tutorial in

Managing throughput capacity with auto scaling API Version 2012-08-10 347

Amazon DynamoDB Developer Guide

this section demonstrates how to install and configure the Amazon CLI for managing DynamoDB
auto scaling. In this tutorial, you do the following:

• Create a DynamoDB table named TestTable. The initial throughput settings are 5 read capacity
units and 5 write capacity units.

• Create an Application Auto Scaling policy for TestTable. The policy seeks to maintain a 50
percent target ratio between consumed write capacity and provisioned write capacity. The range
for this metric is between 5 and 10 write capacity units. (Application Auto Scaling is not allowed
to adjust the throughput beyond this range.)

• Run a Python program to drive write traffic to TestTable. When the target ratio exceeds 50
percent for a sustained period of time, Application Auto Scaling notifies DynamoDB to adjust the
throughput of TestTable upward to maintain the 50 percent target utilization.

• Verify that DynamoDB has successfully adjusted the provisioned write capacity for TestTable.

Note

You can also schedule your DynamoDB scaling so it happens at certain times. Learn the
basic steps here.

Topics

• Before you begin

• Step 1: Create a DynamoDB table

• Step 2: Register a scalable target

• Step 3: Create a scaling policy

• Step 4: Drive write traffic to TestTable

• Step 5: View Application Auto Scaling actions

• (Optional) Step 6: Clean up

Before you begin

Complete the following tasks before starting the tutorial.

Managing throughput capacity with auto scaling API Version 2012-08-10 348

https://docs.amazonaws.cn/autoscaling/application/userguide/get-started-exercise.html

Amazon DynamoDB Developer Guide

Install the Amazon CLI

If you haven't already done so, you must install and configure the Amazon CLI. To do this, follow
these instructions in the Amazon Command Line Interface User Guide:

• Installing the Amazon CLI

• Configuring the Amazon CLI

Install Python

Part of this tutorial requires you to run a Python program (see Step 4: Drive write traffic to
TestTable). If you don't already have it installed, you can download Python.

Step 1: Create a DynamoDB table

In this step, you use the Amazon CLI to create TestTable. The primary key consists of pk
(partition key) and sk (sort key). Both of these attributes are of type Number. The initial
throughput settings are 5 read capacity units and 5 write capacity units.

1. Use the following Amazon CLI command to create the table.

aws dynamodb create-table \
 --table-name TestTable \
 --attribute-definitions \
 AttributeName=pk,AttributeType=N \
 AttributeName=sk,AttributeType=N \
 --key-schema \
 AttributeName=pk,KeyType=HASH \
 AttributeName=sk,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

2. To check the status of the table, use the following command.

aws dynamodb describe-table \
 --table-name TestTable \
 --query "Table.[TableName,TableStatus,ProvisionedThroughput]"

The table is ready for use when its status is ACTIVE.

Managing throughput capacity with auto scaling API Version 2012-08-10 349

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html
https://www.python.org/downloads

Amazon DynamoDB Developer Guide

Step 2: Register a scalable target

Next you register the table's write capacity as a scalable target with Application Auto Scaling. This
allows Application Auto Scaling to adjust the provisioned write capacity for TestTable, but only
within the range of 5–10 capacity units.

Note

DynamoDB auto scaling requires the presence of a service linked role
(AWSServiceRoleForApplicationAutoScaling_DynamoDBTable) that performs
auto scaling actions on your behalf. This role is created automatically for you. For more
information, see Service-linked roles for Application Auto Scaling in the Application Auto
Scaling User Guide.

1. Enter the following command to register the scalable target.

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/TestTable" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits" \
 --min-capacity 5 \
 --max-capacity 10

2. To verify the registration, use the following command.

aws application-autoscaling describe-scalable-targets \
 --service-namespace dynamodb \
 --resource-id "table/TestTable"

Note

You can also register a scalable target against a global secondary index. For example,
for a global secondary index ("test-index"), the resource ID and scalable dimension
arguments are updated appropriately.

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/TestTable/index/test-index" \
 --scalable-dimension "dynamodb:index:WriteCapacityUnits" \

Managing throughput capacity with auto scaling API Version 2012-08-10 350

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon DynamoDB Developer Guide

 --min-capacity 5 \
 --max-capacity 10

Step 3: Create a scaling policy

In this step, you create a scaling policy for TestTable. The policy defines the details under which
Application Auto Scaling can adjust your table's provisioned throughput, and what actions to take
when it does so. You associate this policy with the scalable target that you defined in the previous
step (write capacity units for the TestTable table).

The policy contains the following elements:

• PredefinedMetricSpecification—The metric that Application Auto Scaling is allowed to
adjust. For DynamoDB, the following values are valid values for PredefinedMetricType:

• DynamoDBReadCapacityUtilization

• DynamoDBWriteCapacityUtilization

• ScaleOutCooldown—The minimum amount of time (in seconds) between each Application
Auto Scaling event that increases provisioned throughput. This parameter allows Application
Auto Scaling to continuously, but not aggressively, increase the throughput in response to real-
world workloads. The default setting for ScaleOutCooldown is 0.

• ScaleInCooldown—The minimum amount of time (in seconds) between each Application
Auto Scaling event that decreases provisioned throughput. This parameter allows Application
Auto Scaling to decrease the throughput gradually and predictably. The default setting for
ScaleInCooldown is 0.

• TargetValue—Application Auto Scaling ensures that the ratio of consumed capacity to
provisioned capacity stays at or near this value. You define TargetValue as a percentage.

Note

To further understand how TargetValue works, suppose that you have a table with a
provisioned throughput setting of 200 write capacity units. You decide to create a scaling
policy for this table, with a TargetValue of 70 percent.
Now suppose that you begin driving write traffic to the table so that the actual write
throughput is 150 capacity units. The consumed-to-provisioned ratio is now (150 / 200),
or 75 percent. This ratio exceeds your target, so Application Auto Scaling increases the

Managing throughput capacity with auto scaling API Version 2012-08-10 351

Amazon DynamoDB Developer Guide

provisioned write capacity to 215 so that the ratio is (150 / 215), or 69.77 percent—as close
to your TargetValue as possible, but not exceeding it.

For TestTable, you set TargetValue to 50 percent. Application Auto Scaling adjusts the table's
provisioned throughput within the range of 5–10 capacity units (see Step 2: Register a scalable
target) so that the consumed-to-provisioned ratio remains at or near 50 percent. You set the values
for ScaleOutCooldown and ScaleInCooldown to 60 seconds.

1. Create a file named scaling-policy.json with the following contents.

{
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "DynamoDBWriteCapacityUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "TargetValue": 50.0
}

2. Use the following Amazon CLI command to create the policy.

aws application-autoscaling put-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/TestTable" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits" \
 --policy-name "MyScalingPolicy" \
 --policy-type "TargetTrackingScaling" \
 --target-tracking-scaling-policy-configuration file://scaling-policy.json

3. In the output, note that Application Auto Scaling has created two Amazon CloudWatch alarms
—one each for the upper and lower boundary of the scaling target range.

4. Use the following Amazon CLI command to view more details about the scaling policy.

aws application-autoscaling describe-scaling-policies \
 --service-namespace dynamodb \
 --resource-id "table/TestTable" \
 --policy-name "MyScalingPolicy"

5. In the output, verify that the policy settings match your specifications from Step 2: Register a
scalable target and Step 3: Create a scaling policy.

Managing throughput capacity with auto scaling API Version 2012-08-10 352

Amazon DynamoDB Developer Guide

Step 4: Drive write traffic to TestTable

Now you can test your scaling policy by writing data to TestTable. To do this, you run a Python
program.

1. Create a file named bulk-load-test-table.py with the following contents.

import boto3
dynamodb = boto3.resource('dynamodb')

table = dynamodb.Table("TestTable")

filler = "x" * 100000

i = 0
while (i < 10):
 j = 0
 while (j < 10):
 print (i, j)

 table.put_item(
 Item={
 'pk':i,
 'sk':j,
 'filler':{"S":filler}
 }
)
 j += 1
 i += 1

2. Enter the following command to run the program.

python bulk-load-test-table.py

The provisioned write capacity for TestTable is very low (5 write capacity units), so the
program stalls occasionally due to write throttling. This is expected behavior.

Let the program continue running while you move on to the next step.

Managing throughput capacity with auto scaling API Version 2012-08-10 353

Amazon DynamoDB Developer Guide

Step 5: View Application Auto Scaling actions

In this step, you view the Application Auto Scaling actions that are initiated on your behalf.
You also verify that Application Auto Scaling has updated the provisioned write capacity for
TestTable.

1. Enter the following command to view the Application Auto Scaling actions.

aws application-autoscaling describe-scaling-activities \
 --service-namespace dynamodb

Rerun this command occasionally, while the Python program is running. (It takes several
minutes before your scaling policy is invoked.) You should eventually see the following output.

...
{
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting write capacity units to 10.",
 "ResourceId": "table/TestTable",
 "ActivityId": "0cc6fb03-2a7c-4b51-b67f-217224c6b656",
 "StartTime": 1489088210.175,
 "ServiceNamespace": "dynamodb",
 "EndTime": 1489088246.85,
 "Cause": "monitor alarm AutoScaling-table/TestTable-
AlarmHigh-1bb3c8db-1b97-4353-baf1-4def76f4e1b9 in state ALARM triggered policy
 MyScalingPolicy",
 "StatusMessage": "Successfully set write capacity units to 10. Change
 successfully fulfilled by dynamodb.",
 "StatusCode": "Successful"
},
...

This indicates that Application Auto Scaling has issued an UpdateTable request to
DynamoDB.

2. Enter the following command to verify that DynamoDB increased the table's write capacity.

aws dynamodb describe-table \
 --table-name TestTable \
 --query "Table.[TableName,TableStatus,ProvisionedThroughput]"

Managing throughput capacity with auto scaling API Version 2012-08-10 354

Amazon DynamoDB Developer Guide

The WriteCapacityUnits should have been scaled from 5 to 10.

(Optional) Step 6: Clean up

In this tutorial, you created several resources. You can delete these resources if you no longer need
them.

1. Delete the scaling policy for TestTable.

aws application-autoscaling delete-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/TestTable" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits" \
 --policy-name "MyScalingPolicy"

2. Deregister the scalable target.

aws application-autoscaling deregister-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/TestTable" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits"

3. Delete the TestTable table.

aws dynamodb delete-table --table-name TestTable

Using the Amazon SDK to configure auto scaling on Amazon DynamoDB tables

In addition to using the Amazon Web Services Management Console and the Amazon Command
Line Interface (Amazon CLI), you can write applications that interact with Amazon DynamoDB auto
scaling. This section contains two Java programs that you can use to test this functionality:

• EnableDynamoDBAutoscaling.java

• DisableDynamoDBAutoscaling.java

Managing throughput capacity with auto scaling API Version 2012-08-10 355

Amazon DynamoDB Developer Guide

Enabling Application Auto Scaling for a table

The following program shows an example of setting up an auto scaling policy for a DynamoDB
table (TestTable). It proceeds as follows:

• The program registers write capacity units as a scalable target for TestTable. The range for this
metric is between 5 and 10 write capacity units.

• After the scalable target is created, the program builds a target tracking configuration. The
policy seeks to maintain a 50 percent target ratio between consumed write capacity and
provisioned write capacity.

• The program then creates the scaling policy, based on the target tracking configuration.

Note

When you manually remove a table or global table replica, you do not automatically
remove any associated scalable targets, scaling policies, or CloudWatch alarms.

Java v2

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.applicationautoscaling.ApplicationAutoScalingClient;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ApplicationAutoScalingException;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsResponse;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesResponse;
import software.amazon.awssdk.services.applicationautoscaling.model.PolicyType;
import
 software.amazon.awssdk.services.applicationautoscaling.model.PredefinedMetricSpecification;
import
 software.amazon.awssdk.services.applicationautoscaling.model.PutScalingPolicyRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.RegisterScalableTargetRequest;

Managing throughput capacity with auto scaling API Version 2012-08-10 356

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.applicationautoscaling.model.ScalingPolicy;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ServiceNamespace;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ScalableDimension;
import software.amazon.awssdk.services.applicationautoscaling.model.MetricType;
import
 software.amazon.awssdk.services.applicationautoscaling.model.TargetTrackingScalingPolicyConfiguration;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
 */
public class EnableDynamoDBAutoscaling {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableId> <roleARN> <policyName>\s

 Where:
 tableId - The table Id value (for example, table/Music).
 roleARN - The ARN of the role that has ApplicationAutoScaling
 permissions.
 policyName - The name of the policy to create.

 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 System.out.println("This example registers an Amazon DynamoDB table, which
 is the resource to scale.");
 String tableId = args[0];
 String roleARN = args[1];
 String policyName = args[2];
 ServiceNamespace ns = ServiceNamespace.DYNAMODB;

Managing throughput capacity with auto scaling API Version 2012-08-10 357

Amazon DynamoDB Developer Guide

 ScalableDimension tableWCUs =
 ScalableDimension.DYNAMODB_TABLE_WRITE_CAPACITY_UNITS;
 ApplicationAutoScalingClient appAutoScalingClient =
 ApplicationAutoScalingClient.builder()
 .region(Region.US_EAST_1)
 .build();

 registerScalableTarget(appAutoScalingClient, tableId, roleARN, ns,
 tableWCUs);
 verifyTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 configureScalingPolicy(appAutoScalingClient, tableId, ns, tableWCUs,
 policyName);
 }

 public static void registerScalableTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, String roleARN, ServiceNamespace ns,
 ScalableDimension tableWCUs) {
 try {
 RegisterScalableTargetRequest targetRequest =
 RegisterScalableTargetRequest.builder()
 .serviceNamespace(ns)
 .scalableDimension(tableWCUs)
 .resourceId(tableId)
 .roleARN(roleARN)
 .minCapacity(5)
 .maxCapacity(10)
 .build();

 appAutoScalingClient.registerScalableTarget(targetRequest);
 System.out.println("You have registered " + tableId);

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 // Verify that the target was created.
 public static void verifyTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalableTargetsRequest dscRequest =
 DescribeScalableTargetsRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)

Managing throughput capacity with auto scaling API Version 2012-08-10 358

Amazon DynamoDB Developer Guide

 .resourceIds(tableId)
 .build();

 DescribeScalableTargetsResponse response =
 appAutoScalingClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);
 }

 // Configure a scaling policy.
 public static void configureScalingPolicy(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs, String policyName) {
 // Check if the policy exists before creating a new one.
 DescribeScalingPoliciesResponse describeScalingPoliciesResponse =
 appAutoScalingClient.describeScalingPolicies(DescribeScalingPoliciesRequest.builder()
 .serviceNamespace(ns)
 .resourceId(tableId)
 .scalableDimension(tableWCUs)
 .build());

 if (!describeScalingPoliciesResponse.scalingPolicies().isEmpty()) {
 // If policies exist, consider updating an existing policy instead of
 creating a new one.
 System.out.println("Policy already exists. Consider updating it
 instead.");
 List<ScalingPolicy> polList =
 describeScalingPoliciesResponse.scalingPolicies();
 for (ScalingPolicy pol : polList) {
 System.out.println("Policy name:" +pol.policyName());
 }
 } else {
 // If no policies exist, proceed with creating a new policy.
 PredefinedMetricSpecification specification =
 PredefinedMetricSpecification.builder()

 .predefinedMetricType(MetricType.DYNAMO_DB_WRITE_CAPACITY_UTILIZATION)
 .build();

 TargetTrackingScalingPolicyConfiguration policyConfiguration =
 TargetTrackingScalingPolicyConfiguration.builder()
 .predefinedMetricSpecification(specification)
 .targetValue(50.0)
 .scaleInCooldown(60)

Managing throughput capacity with auto scaling API Version 2012-08-10 359

Amazon DynamoDB Developer Guide

 .scaleOutCooldown(60)
 .build();

 PutScalingPolicyRequest putScalingPolicyRequest =
 PutScalingPolicyRequest.builder()
 .targetTrackingScalingPolicyConfiguration(policyConfiguration)
 .serviceNamespace(ns)
 .scalableDimension(tableWCUs)
 .resourceId(tableId)
 .policyName(policyName)
 .policyType(PolicyType.TARGET_TRACKING_SCALING)
 .build();

 try {
 appAutoScalingClient.putScalingPolicy(putScalingPolicyRequest);
 System.out.println("You have successfully created a scaling policy
 for an Application Auto Scaling scalable target");
 } catch (ApplicationAutoScalingException e) {
 System.err.println("Error: " + e.awsErrorDetails().errorMessage());
 }
 }
 }
}

Java v1

The program requires that you provide an Amazon Resource Name (ARN) for a valid Application
Auto Scaling service linked role. (For example: arn:aws:iam::122517410325:role/
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable.) In the following
program, replace SERVICE_ROLE_ARN_GOES_HERE with the actual ARN.

package com.amazonaws.codesamples.autoscaling;

import
 com.amazonaws.services.applicationautoscaling.AWSApplicationAutoScalingClient;
import
 com.amazonaws.services.applicationautoscaling.AWSApplicationAutoScalingClientBuilder;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalableTargetsResult;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;

Managing throughput capacity with auto scaling API Version 2012-08-10 360

Amazon DynamoDB Developer Guide

import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalingPoliciesResult;
import com.amazonaws.services.applicationautoscaling.model.MetricType;
import com.amazonaws.services.applicationautoscaling.model.PolicyType;
import
 com.amazonaws.services.applicationautoscaling.model.PredefinedMetricSpecification;
import com.amazonaws.services.applicationautoscaling.model.PutScalingPolicyRequest;
import
 com.amazonaws.services.applicationautoscaling.model.RegisterScalableTargetRequest;
import com.amazonaws.services.applicationautoscaling.model.ScalableDimension;
import com.amazonaws.services.applicationautoscaling.model.ServiceNamespace;
import
 com.amazonaws.services.applicationautoscaling.model.TargetTrackingScalingPolicyConfiguration;

public class EnableDynamoDBAutoscaling {

 static AWSApplicationAutoScalingClient aaClient = (AWSApplicationAutoScalingClient)
 AWSApplicationAutoScalingClientBuilder
 .standard().build();

 public static void main(String args[]) {

 ServiceNamespace ns = ServiceNamespace.Dynamodb;
 ScalableDimension tableWCUs = ScalableDimension.DynamodbTableWriteCapacityUnits;
 String resourceID = "table/TestTable";

 // Define the scalable target
 RegisterScalableTargetRequest rstRequest = new RegisterScalableTargetRequest()
 .withServiceNamespace(ns)
 .withResourceId(resourceID)
 .withScalableDimension(tableWCUs)
 .withMinCapacity(5)
 .withMaxCapacity(10)
 .withRoleARN("SERVICE_ROLE_ARN_GOES_HERE");

 try {
 aaClient.registerScalableTarget(rstRequest);
 } catch (Exception e) {
 System.err.println("Unable to register scalable target: ");
 System.err.println(e.getMessage());
 }

 // Verify that the target was created
 DescribeScalableTargetsRequest dscRequest = new DescribeScalableTargetsRequest()

Managing throughput capacity with auto scaling API Version 2012-08-10 361

Amazon DynamoDB Developer Guide

 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceIds(resourceID);
 try {
 DescribeScalableTargetsResult dsaResult =
 aaClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(dsaResult);
 System.out.println();
 } catch (Exception e) {
 System.err.println("Unable to describe scalable target: ");
 System.err.println(e.getMessage());
 }

 System.out.println();

 // Configure a scaling policy
 TargetTrackingScalingPolicyConfiguration targetTrackingScalingPolicyConfiguration
 = new TargetTrackingScalingPolicyConfiguration()
 .withPredefinedMetricSpecification(
 new PredefinedMetricSpecification()
 .withPredefinedMetricType(MetricType.DynamoDBWriteCapacityUtilization))
 .withTargetValue(50.0)
 .withScaleInCooldown(60)
 .withScaleOutCooldown(60);

 // Create the scaling policy, based on your configuration
 PutScalingPolicyRequest pspRequest = new PutScalingPolicyRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceId(resourceID)
 .withPolicyName("MyScalingPolicy")
 .withPolicyType(PolicyType.TargetTrackingScaling)

 .withTargetTrackingScalingPolicyConfiguration(targetTrackingScalingPolicyConfiguration);

 try {
 aaClient.putScalingPolicy(pspRequest);
 } catch (Exception e) {
 System.err.println("Unable to put scaling policy: ");
 System.err.println(e.getMessage());
 }

 // Verify that the scaling policy was created

Managing throughput capacity with auto scaling API Version 2012-08-10 362

Amazon DynamoDB Developer Guide

 DescribeScalingPoliciesRequest dspRequest = new DescribeScalingPoliciesRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceId(resourceID);

 try {
 DescribeScalingPoliciesResult dspResult =
 aaClient.describeScalingPolicies(dspRequest);
 System.out.println("DescribeScalingPolicies result: ");
 System.out.println(dspResult);
 } catch (Exception e) {
 e.printStackTrace();
 System.err.println("Unable to describe scaling policy: ");
 System.err.println(e.getMessage());
 }

 }

}

Disabling Application Auto Scaling for a table

The following program reverses the previous process. It removes the auto scaling policy and then
deregisters the scalable target.

Java v2

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.applicationautoscaling.ApplicationAutoScalingClient;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ApplicationAutoScalingException;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DeleteScalingPolicyRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DeregisterScalableTargetRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsResponse;

Managing throughput capacity with auto scaling API Version 2012-08-10 363

Amazon DynamoDB Developer Guide

import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesResponse;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ScalableDimension;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ServiceNamespace;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
 */

public class DisableDynamoDBAutoscaling {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableId> <policyName>\s

 Where:
 tableId - The table Id value (for example, table/Music).\s
 policyName - The name of the policy (for example, $Music5-scaling-
policy).

 """;
 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 ApplicationAutoScalingClient appAutoScalingClient =
 ApplicationAutoScalingClient.builder()
 .region(Region.US_EAST_1)
 .build();

 ServiceNamespace ns = ServiceNamespace.DYNAMODB;
 ScalableDimension tableWCUs =
 ScalableDimension.DYNAMODB_TABLE_WRITE_CAPACITY_UNITS;

Managing throughput capacity with auto scaling API Version 2012-08-10 364

Amazon DynamoDB Developer Guide

 String tableId = args[0];
 String policyName = args[1];

 deletePolicy(appAutoScalingClient, policyName, tableWCUs, ns, tableId);
 verifyScalingPolicies(appAutoScalingClient, tableId, ns, tableWCUs);
 deregisterScalableTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 verifyTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 }

 public static void deletePolicy(ApplicationAutoScalingClient
 appAutoScalingClient, String policyName, ScalableDimension tableWCUs,
 ServiceNamespace ns, String tableId) {
 try {
 DeleteScalingPolicyRequest delSPRequest =
 DeleteScalingPolicyRequest.builder()
 .policyName(policyName)
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

 appAutoScalingClient.deleteScalingPolicy(delSPRequest);
 System.out.println(policyName +" was deleted successfully.");

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 // Verify that the scaling policy was deleted
 public static void verifyScalingPolicies(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalingPoliciesRequest dscRequest =
 DescribeScalingPoliciesRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

 DescribeScalingPoliciesResponse response =
 appAutoScalingClient.describeScalingPolicies(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);

Managing throughput capacity with auto scaling API Version 2012-08-10 365

Amazon DynamoDB Developer Guide

 }

 public static void deregisterScalableTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 try {
 DeregisterScalableTargetRequest targetRequest =
 DeregisterScalableTargetRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

 appAutoScalingClient.deregisterScalableTarget(targetRequest);
 System.out.println("The scalable target was deregistered.");

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 public static void verifyTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalableTargetsRequest dscRequest =
 DescribeScalableTargetsRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceIds(tableId)
 .build();

 DescribeScalableTargetsResponse response =
 appAutoScalingClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);
 }
}

Java v1

package com.amazonaws.codesamples.autoscaling;

Managing throughput capacity with auto scaling API Version 2012-08-10 366

Amazon DynamoDB Developer Guide

import
 com.amazonaws.services.applicationautoscaling.AWSApplicationAutoScalingClient;
import
 com.amazonaws.services.applicationautoscaling.model.DeleteScalingPolicyRequest;
import
 com.amazonaws.services.applicationautoscaling.model.DeregisterScalableTargetRequest;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalableTargetsResult;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;
import
 com.amazonaws.services.applicationautoscaling.model.DescribeScalingPoliciesResult;
import com.amazonaws.services.applicationautoscaling.model.ScalableDimension;
import com.amazonaws.services.applicationautoscaling.model.ServiceNamespace;

public class DisableDynamoDBAutoscaling {

 static AWSApplicationAutoScalingClient aaClient = new
 AWSApplicationAutoScalingClient();

 public static void main(String args[]) {

 ServiceNamespace ns = ServiceNamespace.Dynamodb;
 ScalableDimension tableWCUs = ScalableDimension.DynamodbTableWriteCapacityUnits;
 String resourceID = "table/TestTable";

 // Delete the scaling policy
 DeleteScalingPolicyRequest delSPRequest = new DeleteScalingPolicyRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceId(resourceID)
 .withPolicyName("MyScalingPolicy");

 try {
 aaClient.deleteScalingPolicy(delSPRequest);
 } catch (Exception e) {
 System.err.println("Unable to delete scaling policy: ");
 System.err.println(e.getMessage());
 }

 // Verify that the scaling policy was deleted

Managing throughput capacity with auto scaling API Version 2012-08-10 367

Amazon DynamoDB Developer Guide

 DescribeScalingPoliciesRequest descSPRequest = new
 DescribeScalingPoliciesRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceId(resourceID);

 try {
 DescribeScalingPoliciesResult dspResult =
 aaClient.describeScalingPolicies(descSPRequest);
 System.out.println("DescribeScalingPolicies result: ");
 System.out.println(dspResult);
 } catch (Exception e) {
 e.printStackTrace();
 System.err.println("Unable to describe scaling policy: ");
 System.err.println(e.getMessage());
 }

 System.out.println();

 // Remove the scalable target
 DeregisterScalableTargetRequest delSTRequest = new
 DeregisterScalableTargetRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceId(resourceID);

 try {
 aaClient.deregisterScalableTarget(delSTRequest);
 } catch (Exception e) {
 System.err.println("Unable to deregister scalable target: ");
 System.err.println(e.getMessage());
 }

 // Verify that the scalable target was removed
 DescribeScalableTargetsRequest dscRequest = new DescribeScalableTargetsRequest()
 .withServiceNamespace(ns)
 .withScalableDimension(tableWCUs)
 .withResourceIds(resourceID);

 try {
 DescribeScalableTargetsResult dsaResult =
 aaClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(dsaResult);

Managing throughput capacity with auto scaling API Version 2012-08-10 368

Amazon DynamoDB Developer Guide

 System.out.println();
 } catch (Exception e) {
 System.err.println("Unable to describe scalable target: ");
 System.err.println(e.getMessage());
 }

 }

}

DynamoDB reserved capacity

For provisioned capacity tables that use the Standard table class, DynamoDB offers the ability to
purchase reserved capacity for your read and write capacity. A reserved capacity purchase is an
agreement to pay for a minimum amount of provisioned throughput capacity, for the duration of
the term of the agreement, in exchange for discounted pricing.

Note

You can't purchase reserved capacity for replicated write capacity units (rWCUs). Reserved
capacity is applied only to the Region in which it was purchased. Reserved capacity is
also not available for tables using the DynamoDB Standard-IA table class or on-demand
capacity mode.

Reserved capacity is purchased in allocations of 100 WCUs or 100 RCUs. The smallest reserved
capacity offering is 100 capacity units (reads or writes). DynamoDB reserved capacity is offered as
either a one-year commitment or in select Regions as a three-year commitment. You can save up
to 54% off standard rates for a one-year term and 77% off standard rates for a three-year term.
For more information about how and when you should purchase, see Amazon DynamoDB Reserved
Capacity.

When you purchase DynamoDB reserved capacity, you pay a one-time partial upfront payment
and receive a discounted hourly rate for the committed provisioned usage. You pay for the entire
committed provisioned usage, regardless of actual usage, so your cost savings are closely tied
to use. Any capacity that you provision in excess of the purchased reserved capacity is billed at
standard provisioned capacity rates. By reserving your read and write capacity units ahead of time,
you realize significant cost savings on your provisioned capacity costs.

Reserved capacity API Version 2012-08-10 369

https://www.amazonaws.cn/dynamodb/reserved-capacity/
https://www.amazonaws.cn/dynamodb/reserved-capacity/

Amazon DynamoDB Developer Guide

You can't sell, cancel, or transfer reserved capacity to another Region or account.

Understanding DynamoDB warm throughput

Warm throughput refers to the number of read and write operations your DynamoDB table can
instantaneously support. These values are available by default for all tables and global secondary
indexes (GSI) and represent how much they have scaled based on historical usage. If you are using
on-demand mode, or if you update your provisioned throughput to these values, your application
will be able to issue requests up to those values instantly.

DynamoDB will automatically adjust warm throughput values as your usage increases. However,
you can also increase these values proactively when needed, which is especially useful for
upcoming peak events like product launches or sales. For planned peak events, where request rates
to your DynamoDB table might increase by 10x, 100x, or more, you can now assess whether the
current warm throughput is sufficient to handle the expected traffic. If it’s not, you can increase the
warm throughput value without changing your throughput settings or billing mode. This process
is referred to as pre-warming a table, allowing you to set a baseline that your tables can instantly
support. This ensures your applications can handle higher request rates from the moment they
occur.

You can increase the warm throughput value for read operations, write operations, or both. You
can increase this value for new and existing single-Region tables, global tables, and GSIs. For global
tables, this feature is available for version 2019.11.21 (Current), and the warm throughput settings
you set will automatically apply to all replica tables in the global table. There is no limit to the
number of DynamoDB tables you can pre-warm at any time. The time to complete pre-warming
depends on the values you set and the size of the table or index. You can submit simultaneous pre-
warm requests and these requests will not interfere with any table operations. You can pre-warm
your table up to the table or index quota limit for your account in that Region. Use the Service
Quotas console to check your current limits and increase them if needed.

Warm throughput values are available by default for all tables and secondary indexes at no cost.
However, if you proactively increase these default warm throughput values to pre-warm the tables,
you will be charged for those requests. For more information, see Amazon DynamoDB pricing.

For more information about warm throughput, see the topics below:

Topics

• Check your DynamoDB table's current warm throughput

Warm throughput API Version 2012-08-10 370

https://console.aws.amazon.com/servicequotas
https://console.aws.amazon.com/servicequotas
https://aws.amazon.com/dynamodb/pricing/

Amazon DynamoDB Developer Guide

• Increase your existing DynamoDB table's warm throughput

• Create a new DynamoDB table with higher warm throughput

• Understanding DynamoDB warm throughput in different scenarios

Check your DynamoDB table's current warm throughput

Use the following Amazon CLI and Amazon Console instructions to check your table or index's
current warm throughput value.

Amazon Web Services Management Console

To check your DynamoDB table's warm throughput using the DynamoDB console:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. On the Tables page, choose your desired table.

4. Select Additional settings to view your current warm throughput value. This value is shown as
read units per second and write units per second.

Amazon CLI

The following Amazon CLI example shows you how to check your DynamoDB table's warm
throughput.

1. Run the describe-table operation on your DynamoDB table.

aws dynamodb describe-table --table-name GameScores

2. You’ll receive a response similar to the one below. Your WarmThroughput settings will be
displayed as ReadUnitsPerSecond and WriteUnitsPerSecond. The Status will be
UPDATING when the warm throughput value is being updated, and ACTIVE when the new
warm throughput value is set.

{
 "Table": {
 "AttributeDefinitions": [
 {

Check your table's warm throughput API Version 2012-08-10 371

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "ACTIVE",
 "CreationDateTime": 1726128388.729,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 0,
 "WriteCapacityUnits": 0
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/GameScores",
 "TableId": "XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "BillingModeSummary": {
 "BillingMode": "PAY_PER_REQUEST",
 "LastUpdateToPayPerRequestDateTime": 1726128388.729
 },
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",

Check your table's warm throughput API Version 2012-08-10 372

Amazon DynamoDB Developer Guide

 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "UserId"
]
 },
 "IndexStatus": "ACTIVE",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 0,
 "WriteCapacityUnits": 0
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/
GameScores/index/GameTitleIndex",
 "WarmThroughput": {
 "ReadUnitsPerSecond": 12000,
 "WriteUnitsPerSecond": 4000,
 "Status": "ACTIVE"
 }
 }
],
 "DeletionProtectionEnabled": false,
 "WarmThroughput": {
 "ReadUnitsPerSecond": 12000,
 "WriteUnitsPerSecond": 4000,
 "Status": "ACTIVE"
 }
 }
}

Check your table's warm throughput API Version 2012-08-10 373

Amazon DynamoDB Developer Guide

Increase your existing DynamoDB table's warm throughput

Once you've checked your DynamoDB table's current warm throughput value, you can update it
with the following steps:

Amazon Web Services Management Console

To check your DynamoDB table's warm throughput value using the DynamoDB console:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the left navigation pane, choose Tables.

3. On the Tables page, choose your desired table.

4. In the Warm throughput field, select Edit.

5. On the Edit warm throughput page, choose Increase warm throughput.

6. Adjust the read units per second and write units pers second. These two settings define the
throughput your table can instantly handle.

7. Select Save.

8. Your read units per second and write units per second will be updated in the Warm
throughput field when the request finishes processing.

Note

Updating your warm throughput value is an asynchronous task. The Status will
change from UPDATING to ACTIVE when the update is complete.

Amazon CLI

The following Amazon CLI example shows you how to update your DynamoDB table's warm
throughput value.

1. Run the update-table operation on your DynamoDB table.

aws dynamodb update-table \
 --table-name GameScores \
 --warm-throughput ReadUnitsPerSecond=12345,WriteUnitsPerSecond=4567 \
 --global-secondary-index-updates \

Increase your table's warm throughput API Version 2012-08-10 374

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

 "[
 {
 \"Update\": {
 \"IndexName\": \"GameTitleIndex\",
 \"WarmThroughput\": {
 \"ReadUnitsPerSecond\": 88,
 \"WriteUnitsPerSecond\": 77
 }
 }
 }
]" \
 --region us-east-1

2. You’ll receive a response similar to the one below. Your WarmThroughput settings will be
displayed as ReadUnitsPerSecond and WriteUnitsPerSecond. The Status will be
UPDATING when the warm throughput value is being updated, and ACTIVE when the new
warm throughput value is set.

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"

Increase your table's warm throughput API Version 2012-08-10 375

Amazon DynamoDB Developer Guide

 }
],
 "TableStatus": "ACTIVE",
 "CreationDateTime": 1730242189.965,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 20,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/GameScores",
 "TableId": "XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "UserId"
]
 },
 "IndexStatus": "ACTIVE",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 50,
 "WriteCapacityUnits": 25
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/
GameScores/index/GameTitleIndex",
 "WarmThroughput": {
 "ReadUnitsPerSecond": 50,

Increase your table's warm throughput API Version 2012-08-10 376

Amazon DynamoDB Developer Guide

 "WriteUnitsPerSecond": 25,
 "Status": "UPDATING"
 }
 }
],
 "DeletionProtectionEnabled": false,
 "WarmThroughput": {
 "ReadUnitsPerSecond": 12300,
 "WriteUnitsPerSecond": 4500,
 "Status": "UPDATING"
 }
 }
}

Amazon SDK

The following SDK examples shows you how to update your DynamoDB table's warm throughput
value.

Java

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GlobalSecondaryIndexUpdate;
import
 software.amazon.awssdk.services.dynamodb.model.UpdateGlobalSecondaryIndexAction;
import software.amazon.awssdk.services.dynamodb.model.UpdateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.WarmThroughput;

...
public static WarmThroughput buildWarmThroughput(final Long readUnitsPerSecond,
 final Long writeUnitsPerSecond) {
 return WarmThroughput.builder()
 .readUnitsPerSecond(readUnitsPerSecond)
 .writeUnitsPerSecond(writeUnitsPerSecond)
 .build();
}

public static void updateDynamoDBTable(DynamoDbClient ddb,
 String tableName,
 Long tableReadUnitsPerSecond,
 Long tableWriteUnitsPerSecond,

Increase your table's warm throughput API Version 2012-08-10 377

Amazon DynamoDB Developer Guide

 String globalSecondaryIndexName,
 Long globalSecondaryIndexReadUnitsPerSecond,
 Long globalSecondaryIndexWriteUnitsPerSecond)
 {

 final WarmThroughput tableWarmThroughput =
 buildWarmThroughput(tableReadUnitsPerSecond, tableWriteUnitsPerSecond);
 final WarmThroughput gsiWarmThroughput =
 buildWarmThroughput(globalSecondaryIndexReadUnitsPerSecond,
 globalSecondaryIndexWriteUnitsPerSecond);

 final GlobalSecondaryIndexUpdate globalSecondaryIndexUpdate =
 GlobalSecondaryIndexUpdate.builder()
 .update(UpdateGlobalSecondaryIndexAction.builder()
 .indexName(globalSecondaryIndexName)
 .warmThroughput(gsiWarmThroughput)
 .build()
).build();

 final UpdateTableRequest request = UpdateTableRequest.builder()
 .tableName(tableName)
 .globalSecondaryIndexUpdates(globalSecondaryIndexUpdate)
 .warmThroughput(tableWarmThroughput)
 .build();

 try {
 ddb.updateTable(request);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.out.println("Done!");
}

Python

from boto3 import resource
from botocore.exceptions import ClientError

def update_dynamodb_table_warm_throughput(table_name, table_read_units,
 table_write_units, gsi_name, gsi_read_units, gsi_write_units, region_name="us-
east-1"):

Increase your table's warm throughput API Version 2012-08-10 378

Amazon DynamoDB Developer Guide

 """
 Updates the warm throughput of a DynamoDB table and a global secondary index.

 :param table_name: The name of the table to update.
 :param table_read_units: The new read units per second for the table's warm
 throughput.
 :param table_write_units: The new write units per second for the table's warm
 throughput.
 :param gsi_name: The name of the global secondary index to update.
 :param gsi_read_units: The new read units per second for the GSI's warm
 throughput.
 :param gsi_write_units: The new write units per second for the GSI's warm
 throughput.
 :param region_name: The AWS Region name to target. defaults to us-east-1
 """
 try:
 ddb = resource('dynamodb', region_name)

 # Update the table's warm throughput
 table_warm_throughput = {
 "ReadUnitsPerSecond": table_read_units,
 "WriteUnitsPerSecond": table_write_units
 }

 # Update the global secondary index's warm throughput
 gsi_warm_throughput = {
 "ReadUnitsPerSecond": gsi_read_units,
 "WriteUnitsPerSecond": gsi_write_units
 }

 # Construct the global secondary index update
 global_secondary_index_update = [
 {
 "Update": {
 "IndexName": gsi_name,
 "WarmThroughput": gsi_warm_throughput
 }
 }
]

 # Construct the update table request
 update_table_request = {
 "TableName": table_name,
 "GlobalSecondaryIndexUpdates": global_secondary_index_update,

Increase your table's warm throughput API Version 2012-08-10 379

Amazon DynamoDB Developer Guide

 "WarmThroughput": table_warm_throughput
 }

 # Update the table
 ddb.update_table(**update_table_request)
 print("Table updated successfully!")
 except ClientError as e:
 print(f"Error updating table: {e}")
 raise e

Javascript

import { DynamoDBClient, UpdateTableCommand } from "@aws-sdk/client-dynamodb";

async function updateDynamoDBTableWarmThroughput(
 tableName,
 tableReadUnits,
 tableWriteUnits,
 gsiName,
 gsiReadUnits,
 gsiWriteUnits,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });

 // Construct the update table request
 const updateTableRequest = {
 TableName: tableName,
 GlobalSecondaryIndexUpdates: [
 {
 Update: {
 IndexName: gsiName,
 WarmThroughput: {
 ReadUnitsPerSecond: gsiReadUnits,
 WriteUnitsPerSecond: gsiWriteUnits,
 },
 },
 },
],
 WarmThroughput: {
 ReadUnitsPerSecond: tableReadUnits,
 WriteUnitsPerSecond: tableWriteUnits,

Increase your table's warm throughput API Version 2012-08-10 380

Amazon DynamoDB Developer Guide

 },
 };

 const command = new UpdateTableCommand(updateTableRequest);
 const response = await ddbClient.send(command);
 console.log(`Table updated successfully! Response: ${response}`);
 } catch (error) {
 console.error(`Error updating table: ${error}`);
 throw error;
 }
}

Create a new DynamoDB table with higher warm throughput

You can adjust the warm throughput values when you create your DynamoDB table by following
the steps below. These steps also apply when creating a global table or secondary index.

Amazon Web Services Management Console

To create a DynamoDB table and adjust the warm throughput values through the console:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. Select Create table.

3. Choose a Table name, Partition key, and Sort key (optional).

4. For Table settings, choose Customize settings.

5. In the Warm throughput field, choose Increase warm throughput.

6. Adjust the read units per second and write units pers second. These two settings define the
maximum throughput your table can instantly handle.

7. Continue adding any remaining table details and then select Create table.

Amazon CLI

The following Amazon CLI example shows you how to create a DynamoDB table with customized
warm throughput values.

1. Run the create-table operation to create the following DynamoDB table.

Create a table with higher warm throughput API Version 2012-08-10 381

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-definitions AttributeName=UserId,AttributeType=S \
 AttributeName=GameTitle,AttributeType=S \
 AttributeName=TopScore,AttributeType=N \
 --key-schema AttributeName=UserId,KeyType=HASH \
 AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=20,WriteCapacityUnits=10 \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"GameTitleIndex\",
 \"KeySchema\": [{\"AttributeName\":\"GameTitle\",\"KeyType\":\"HASH
\"},
 {\"AttributeName\":\"TopScore\",\"KeyType\":\"RANGE
\"}],
 \"Projection\":{
 \"ProjectionType\":\"INCLUDE\",
 \"NonKeyAttributes\":[\"UserId\"]
 },
 \"ProvisionedThroughput\": {
 \"ReadCapacityUnits\": 50,
 \"WriteCapacityUnits\": 25
 },\"WarmThroughput\": {
 \"ReadUnitsPerSecond\": 1987,
 \"WriteUnitsPerSecond\": 543
 }
 }
]" \
 --warm-throughput ReadUnitsPerSecond=12345,WriteUnitsPerSecond=4567 \
 --region us-east-1

2. You’ll receive a response similar to the one below. Your WarmThroughput settings will be
displayed as ReadUnitsPerSecond and WriteUnitsPerSecond. The Status will be
UPDATING when the warm throughput value is being updated, and ACTIVE when the new
warm throughput value is set.

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",

Create a table with higher warm throughput API Version 2012-08-10 382

Amazon DynamoDB Developer Guide

 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": 1730241788.779,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 20,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/GameScores",
 "TableId": "XXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"

Create a table with higher warm throughput API Version 2012-08-10 383

Amazon DynamoDB Developer Guide

 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "UserId"
]
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 50,
 "WriteCapacityUnits": 25
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-east-1:XXXXXXXXXXXX:table/
GameScores/index/GameTitleIndex",
 "WarmThroughput": {
 "ReadUnitsPerSecond": 1987,
 "WriteUnitsPerSecond": 543,
 "Status": "UPDATING"
 }
 }
],
 "DeletionProtectionEnabled": false,
 "WarmThroughput": {
 "ReadUnitsPerSecond": 12345,
 "WriteUnitsPerSecond": 4567,
 "Status": "UPDATING"
 }
 }
}

Amazon SDK

The following SDK examples shows you how to create a DynamoDB table with customized warm
throughput values.

Java

import software.amazon.awscdk.services.dynamodb.ProjectionType;

Create a table with higher warm throughput API Version 2012-08-10 384

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughput;
import software.amazon.awssdk.services.dynamodb.model.Projection;
import software.amazon.awssdk.services.dynamodb.model.GlobalSecondaryIndex;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.model.WarmThroughput;
...

public static WarmThroughput buildWarmThroughput(final Long readUnitsPerSecond,
 final Long writeUnitsPerSecond) {
 return WarmThroughput.builder()
 .readUnitsPerSecond(readUnitsPerSecond)
 .writeUnitsPerSecond(writeUnitsPerSecond)
 .build();
}
private static AttributeDefinition buildAttributeDefinition(final String
 attributeName,
 final
 ScalarAttributeType scalarAttributeType) {
 return AttributeDefinition.builder()
 .attributeName(attributeName)
 .attributeType(scalarAttributeType)
 .build();
}
private static KeySchemaElement buildKeySchemaElement(final String attributeName,
 final KeyType keyType) {
 return KeySchemaElement.builder()
 .attributeName(attributeName)
 .keyType(keyType)
 .build();
}
public static void createDynamoDBTable(DynamoDbClient ddb,
 String tableName,
 String partitionKey,
 String sortKey,
 String miscellaneousKeyAttribute,
 String nonKeyAttribute,
 Long tableReadCapacityUnits,
 Long tableWriteCapacityUnits,

Create a table with higher warm throughput API Version 2012-08-10 385

Amazon DynamoDB Developer Guide

 Long tableWarmReadUnitsPerSecond,
 Long tableWarmWriteUnitsPerSecond,
 String globalSecondaryIndexName,
 Long globalSecondaryIndexReadCapacityUnits,
 Long globalSecondaryIndexWriteCapacityUnits,
 Long
 globalSecondaryIndexWarmReadUnitsPerSecond,
 Long
 globalSecondaryIndexWarmWriteUnitsPerSecond) {

 // Define the table attributes
 final AttributeDefinition partitionKeyAttribute =
 buildAttributeDefinition(partitionKey, ScalarAttributeType.S);
 final AttributeDefinition sortKeyAttribute = buildAttributeDefinition(sortKey,
 ScalarAttributeType.S);
 final AttributeDefinition miscellaneousKeyAttributeDefinition =
 buildAttributeDefinition(miscellaneousKeyAttribute, ScalarAttributeType.N);
 final AttributeDefinition[] attributeDefinitions = {partitionKeyAttribute,
 sortKeyAttribute, miscellaneousKeyAttributeDefinition};

 // Define the table key schema
 final KeySchemaElement partitionKeyElement = buildKeySchemaElement(partitionKey,
 KeyType.HASH);
 final KeySchemaElement sortKeyElement = buildKeySchemaElement(sortKey,
 KeyType.RANGE);
 final KeySchemaElement[] keySchema = {partitionKeyElement, sortKeyElement};

 // Define the provisioned throughput for the table
 final ProvisionedThroughput provisionedThroughput =
 ProvisionedThroughput.builder()
 .readCapacityUnits(tableReadCapacityUnits)
 .writeCapacityUnits(tableWriteCapacityUnits)
 .build();

 // Define the Global Secondary Index (GSI)
 final KeySchemaElement globalSecondaryIndexPartitionKeyElement =
 buildKeySchemaElement(sortKey, KeyType.HASH);
 final KeySchemaElement globalSecondaryIndexSortKeyElement =
 buildKeySchemaElement(miscellaneousKeyAttribute, KeyType.RANGE);
 final KeySchemaElement[] gsiKeySchema =
 {globalSecondaryIndexPartitionKeyElement, globalSecondaryIndexSortKeyElement};

 final Projection gsiProjection = Projection.builder()
 .projectionType(String.valueOf(ProjectionType.INCLUDE))

Create a table with higher warm throughput API Version 2012-08-10 386

Amazon DynamoDB Developer Guide

 .nonKeyAttributes(nonKeyAttribute)
 .build();
 final ProvisionedThroughput gsiProvisionedThroughput =
 ProvisionedThroughput.builder()
 .readCapacityUnits(globalSecondaryIndexReadCapacityUnits)
 .writeCapacityUnits(globalSecondaryIndexWriteCapacityUnits)
 .build();
 // Define the warm throughput for the Global Secondary Index (GSI)
 final WarmThroughput gsiWarmThroughput =
 buildWarmThroughput(globalSecondaryIndexWarmReadUnitsPerSecond,
 globalSecondaryIndexWarmWriteUnitsPerSecond);
 final GlobalSecondaryIndex globalSecondaryIndex = GlobalSecondaryIndex.builder()
 .indexName(globalSecondaryIndexName)
 .keySchema(gsiKeySchema)
 .projection(gsiProjection)
 .provisionedThroughput(gsiProvisionedThroughput)
 .warmThroughput(gsiWarmThroughput)
 .build();

 // Define the warm throughput for the table
 final WarmThroughput tableWarmThroughput =
 buildWarmThroughput(tableWarmReadUnitsPerSecond, tableWarmWriteUnitsPerSecond);

 final CreateTableRequest request = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(attributeDefinitions)
 .keySchema(keySchema)
 .provisionedThroughput(provisionedThroughput)
 .globalSecondaryIndexes(globalSecondaryIndex)
 .warmThroughput(tableWarmThroughput)
 .build();

 CreateTableResponse response = ddb.createTable(request);
 System.out.println(response);
}

Python

from boto3 import resource
from botocore.exceptions import ClientError

def create_dynamodb_table_warm_throughput(table_name, partition_key,
 sort_key, misc_key_attr, non_key_attr, table_provisioned_read_units,

Create a table with higher warm throughput API Version 2012-08-10 387

Amazon DynamoDB Developer Guide

 table_provisioned_write_units, table_warm_reads, table_warm_writes, gsi_name,
 gsi_provisioned_read_units, gsi_provisioned_write_units, gsi_warm_reads,
 gsi_warm_writes, region_name="us-east-1"):
 """
 Creates a DynamoDB table with a warm throughput setting configured.

 :param table_name: The name of the table to be created.
 :param partition_key: The partition key for the table being created.
 :param sort_key: The sort key for the table being created.
 :param misc_key_attr: A miscellaneous key attribute for the table being created.
 :param non_key_attr: A non-key attribute for the table being created.
 :param table_provisioned_read_units: The newly created table's provisioned read
 capacity units.
 :param table_provisioned_write_units: The newly created table's provisioned
 write capacity units.
 :param table_warm_reads: The read units per second setting for the table's warm
 throughput.
 :param table_warm_writes: The write units per second setting for the table's
 warm throughput.
 :param gsi_name: The name of the Global Secondary Index (GSI) to be created on
 the table.
 :param gsi_provisioned_read_units: The configured Global Secondary Index (GSI)
 provisioned read capacity units.
 :param gsi_provisioned_write_units: The configured Global Secondary Index (GSI)
 provisioned write capacity units.
 :param gsi_warm_reads: The read units per second setting for the Global
 Secondary Index (GSI)'s warm throughput.
 :param gsi_warm_writes: The write units per second setting for the Global
 Secondary Index (GSI)'s warm throughput.
 :param region_name: The AWS Region name to target. defaults to us-east-1
 """
 try:
 ddb = resource('dynamodb', region_name)

 # Define the table attributes
 attribute_definitions = [
 { "AttributeName": partition_key, "AttributeType": "S" },
 { "AttributeName": sort_key, "AttributeType": "S" },
 { "AttributeName": misc_key_attr, "AttributeType": "N" }
]

 # Define the table key schema
 key_schema = [
 { "AttributeName": partition_key, "KeyType": "HASH" },

Create a table with higher warm throughput API Version 2012-08-10 388

Amazon DynamoDB Developer Guide

 { "AttributeName": sort_key, "KeyType": "RANGE" }
]

 # Define the provisioned throughput for the table
 provisioned_throughput = {
 "ReadCapacityUnits": table_provisioned_read_units,
 "WriteCapacityUnits": table_provisioned_write_units
 }

 # Define the global secondary index
 gsi_key_schema = [
 { "AttributeName": sort_key, "KeyType": "HASH" },
 { "AttributeName": misc_key_attr, "KeyType": "RANGE" }
]
 gsi_projection = {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [non_key_attr]
 }
 gsi_provisioned_throughput = {
 "ReadCapacityUnits": gsi_provisioned_read_units,
 "WriteCapacityUnits": gsi_provisioned_write_units
 }
 gsi_warm_throughput = {
 "ReadUnitsPerSecond": gsi_warm_reads,
 "WriteUnitsPerSecond": gsi_warm_writes
 }
 global_secondary_indexes = [
 {
 "IndexName": gsi_name,
 "KeySchema": gsi_key_schema,
 "Projection": gsi_projection,
 "ProvisionedThroughput": gsi_provisioned_throughput,
 "WarmThroughput": gsi_warm_throughput
 }
]

 # Define the warm throughput for the table
 warm_throughput = {
 "ReadUnitsPerSecond": table_warm_reads,
 "WriteUnitsPerSecond": table_warm_writes
 }

 # Create the DynamoDB client and create the table
 response = ddb.create_table(

Create a table with higher warm throughput API Version 2012-08-10 389

Amazon DynamoDB Developer Guide

 TableName=table_name,
 AttributeDefinitions=attribute_definitions,
 KeySchema=key_schema,
 ProvisionedThroughput=provisioned_throughput,
 GlobalSecondaryIndexes=global_secondary_indexes,
 WarmThroughput=warm_throughput
)

 print(response)
 except ClientError as e:
 print(f"Error creating table: {e}")
 raise e

Javascript

import { DynamoDBClient, CreateTableCommand } from "@aws-sdk/client-dynamodb";

async function createDynamoDBTableWithWarmThroughput(
 tableName,
 partitionKey,
 sortKey,
 miscKeyAttr,
 nonKeyAttr,
 tableProvisionedReadUnits,
 tableProvisionedWriteUnits,
 tableWarmReads,
 tableWarmWrites,
 indexName,
 indexProvisionedReadUnits,
 indexProvisionedWriteUnits,
 indexWarmReads,
 indexWarmWrites,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });
 const command = new CreateTableCommand({
 TableName: tableName,
 AttributeDefinitions: [
 { AttributeName: partitionKey, AttributeType: "S" },
 { AttributeName: sortKey, AttributeType: "S" },
 { AttributeName: miscKeyAttr, AttributeType: "N" },
],

Create a table with higher warm throughput API Version 2012-08-10 390

Amazon DynamoDB Developer Guide

 KeySchema: [
 { AttributeName: partitionKey, KeyType: "HASH" },
 { AttributeName: sortKey, KeyType: "RANGE" },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: tableProvisionedReadUnits,
 WriteCapacityUnits: tableProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: tableWarmReads,
 WriteUnitsPerSecond: tableWarmWrites,
 },
 GlobalSecondaryIndexes: [
 {
 IndexName: indexName,
 KeySchema: [
 { AttributeName: sortKey, KeyType: "HASH" },
 { AttributeName: miscKeyAttr, KeyType: "RANGE" },
],
 Projection: {
 ProjectionType: "INCLUDE",
 NonKeyAttributes: [nonKeyAttr],
 },
 ProvisionedThroughput: {
 ReadCapacityUnits: indexProvisionedReadUnits,
 WriteCapacityUnits: indexProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: indexWarmReads,
 WriteUnitsPerSecond: indexWarmWrites,
 },
 },
],
 });
 const response = await ddbClient.send(command);
 console.log(response);
 } catch (error) {
 console.error(`Error creating table: ${error}`);
 throw error;
 }
}

Create a table with higher warm throughput API Version 2012-08-10 391

Amazon DynamoDB Developer Guide

Understanding DynamoDB warm throughput in different scenarios

Here are some different scenarios you might encounter when working with DynamoDB warm
throughput.

Topics

• Warm throughput and uneven access patterns

• Warm throughput for a provisioned table

• Warm throughput for an on-demand table

• Warm throughput for an on-demand table with maximum throughput configured

Warm throughput and uneven access patterns

A table might have a warm throughput of 30,000 read units per second and 10,000 write units per
second, but you could still experience throttling on reads or writes before hitting those values. This
is likely due to a hot partition. While DynamoDB can keep scaling to support virtually unlimited
throughput, each individual partition is limited to 1,000 write units per second and 3,000 read
units per second. If your application drives too much traffic to a small portion of the table’s
partitions, throttling can occur even before you reach the table's warm throughput values. We
recommend following DynamoDB best practices to ensure seamless scalability and avoid hot
partitions.

Warm throughput for a provisioned table

Consider a provisioned table that has a warm throughput of 30,000 read units per second and
10,000 write units per second but currently has a provisioned throughput of 4,000 RCU and 8,000
WCU. You can instantly scale the table's provisioned throughput up to 30,000 RCU or 10,000 WCU
by updating your provisioned throughput settings. As you increase the provisioned throughput
beyond these values, the warm throughput will automatically adjust to the new higher values,
because you have established a new peak throughput. For example, if you set the provisioned
throughput to 50,000 RCU, the warm throughput will increase to 50,000 read units per second.

"ProvisionedThroughput":
 {
 "ReadCapacityUnits": 4000,
 "WriteCapacityUnits": 8000
 }

Warm throughput scenarios API Version 2012-08-10 392

Amazon DynamoDB Developer Guide

"WarmThroughput":
 {
 "ReadUnitsPerSecond": 30000,
 "WriteUnitsPerSecond": 10000
 }

Warm throughput for an on-demand table

A new on-demand table starts with a warm throughput of 12,000 read units per second and 4,000
write units per second. Your table can instantly accommodate sustained traffic up to these levels.
When your requests exceed 12,000 read units per second or 4,000 write units per second, the warm
throughput will automatically adjust to higher values.

"WarmThroughput":
 {
 "ReadUnitsPerSecond": 12000,
 "WriteUnitsPerSecond": 4000
 }

Warm throughput for an on-demand table with maximum throughput configured

Consider an on-demand table with a warm throughput of 30,000 read units per second but with
a maximum throughput configured at 5,000 read request units (RRU). In this scenario, the table's
throughput will be limited to the maximum of 5,000 RRU that you set. Any throughput requests
exceeding this maximum will be throttled. However, you can modify the table-specific maximum
throughput at any time based on your application's needs.

"OnDemandThroughput":
 {
 "MaxReadRequestUnits": 5000,
 "MaxWriteRequestUnits": 4000
 }
"WarmThroughput":
 {
 "ReadUnitsPerSecond": 30000,
 "WriteUnitsPerSecond": 10000
 }

Warm throughput scenarios API Version 2012-08-10 393

Amazon DynamoDB Developer Guide

DynamoDB burst and adaptive capacity

To minimize throttling because of throughput exceptions, DynamoDB uses burst capacity to handle
usage spikes. DynamoDB uses adaptive capacity to help accommodate uneven access patterns.

Burst capacity

DynamoDB provides some flexibility for your throughput provisioning with burst capacity.
Whenever you aren't fully using your available throughput, DynamoDB reserves a portion of
that unused capacity for later bursts of throughput to handle usage spikes. With burst capacity,
unexpected read or write requests can succeed where they otherwise would be throttled.

DynamoDB currently retains up to five minutes (300 seconds) of unused read and write
capacity. During an occasional burst of read or write activity, these extra capacity units can be
consumed quickly — even faster than the per-second provisioned throughput capacity that you've
defined for your table.

DynamoDB can also consume burst capacity for background maintenance and other tasks without
prior notice.

Note that these burst capacity details might change in the future.

Adaptive capacity

DynamoDB automatically distributes your data across partitions, which are stored on multiple
servers in the Amazon Web Services Cloud. It's not always possible to evenly distribute read and
write activity all the time. When data access is imbalanced, a "hot" partition can receive a higher
volume of read and write traffic compared to other partitions. Because read and write operations
on a partition are managed independently, throttling will occur if a single partition receives
more than 3000 read operation or more than 1000 write operations. Adaptive capacity works by
automatically increasing throughput capacity for partitions that receive more traffic.

To better accommodate uneven access patterns, DynamoDB adaptive capacity enables your
application to continue reading and writing to hot partitions without being throttled, provided
that traffic does not exceed your table’s total provisioned capacity or the partition maximum
capacity. Adaptive capacity works by automatically and instantly increasing throughput capacity for
partitions that receive more traffic.

The following diagram illustrates how adaptive capacity works. The example table is provisioned
with 400 WCUs evenly shared across four partitions, allowing each partition to sustain up to 100

Burst and adaptive capacity API Version 2012-08-10 394

Amazon DynamoDB Developer Guide

WCUs per second. Partitions 1, 2, and 3 each receives write traffic of 50 WCU/sec. Partition 4
receives 150 WCU/sec. This hot partition can accept write traffic while it still has unused burst
capacity, but eventually it throttles traffic that exceeds 100 WCU/sec.

DynamoDB adaptive capacity responds by increasing the capacity of partition 4 so that it can
sustain the higher workload of 150 WCU/sec without being throttled.

Adaptive capacity is enabled automatically for every DynamoDB table, at no additional cost. You
don't need to explicitly enable or disable it.

Isolate frequently accessed items

If your application drives disproportionately high traffic to one or more items, adaptive capacity
rebalances your partitions such that frequently accessed items don't reside on the same partition.
This isolation of frequently accessed items reduces the likelihood of request throttling due to your
workload exceeding the throughput quota on a single partition. You can also break up an item
collection into segments by sort key, as long as the item collection isn't traffic that is tracked by a
monotonic increase or decrease of the sort key.

If your application drives consistently high traffic to a single item, adaptive capacity might
rebalance your data so that a partition contains only that single, frequently accessed item. In this
case, DynamoDB can deliver throughput up to the partition maximum of 3,000 RCUs and 1,000
WCUs to that single item’s primary key. Adaptive capacity will not split item collections across
multiple partitions of the table when there is a local secondary index on the table.

Adaptive capacity API Version 2012-08-10 395

Amazon DynamoDB Developer Guide

Considerations when switching capacity modes in DynamoDB

When you create a DynamoDB table, you must select either on-demand or provisioned capacity
mode.

You can switch tables from provisioned capacity mode to on-demand mode up to four times in
a 24-hour rolling window. You can switch tables from on-demand mode to provisioned capacity
mode at any time.

Topics

• Switching from provisioned capacity mode to on-demand capacity mode

• Switching from on-demand capacity mode to provisioned capacity mode

Switching from provisioned capacity mode to on-demand capacity
mode

In provisioned mode, you set read and write capacity based on your expected application needs.
When you update a table from provisioned to on-demand mode, you don't need to specify how
much read and write throughput you expect your application to perform. DynamoDB on-demand
offers simple pay-per-request pricing for read and write requests so that you only pay for what you
use, making it easy to balance costs and performance. You can optionally configure maximum read
or write (or both) throughput for individual on-demand tables and associated global secondary
indexes to help keep costs and usage bounded. For more information about setting maximum
throughput for a specific table or index, see DynamoDB maximum throughput for on-demand
tables.

When you switch from provisioned capacity mode to on-demand capacity mode, DynamoDB makes
several changes to the structure of your table and partitions. This process can take several minutes.
During the switching period, your table delivers throughput that is consistent with the previously
provisioned write capacity unit and read capacity unit amounts.

Initial throughput for on-demand capacity mode

If you recently switched an existing table to on-demand capacity mode for the first time, the table
has the following previous peak settings, even though the table has not served traffic previously
using on-demand capacity mode.

Following are examples of possible scenarios:

Switching capacity modes API Version 2012-08-10 396

Amazon DynamoDB Developer Guide

• Any provisioned table configured below 4000 WCU and 12,000 RCU, that has never been
previously provisioned for more. When you switch this table to on-demand for the first time,
DynamoDB will ensure it is scaled out to instantly sustain at least 4,000 write units/sec and
12,000 read units/sec.

• A provisioned table configured as 8,000 WCU and 24,000 RCU. When you switch this table to
on-demand, it will continue to be able to sustain at least 8,000 write units/sec and 24,000 read
units/sec at any time.

• A provisioned table configured with 8,000 WCU and 24,000 RCU, that consumed 6,000 write
units/sec and 18,000 read units/sec for a sustained period. When you switch this table to on-
demand, it will continue to be able to sustain at least 8,000 write units/sec and 24,000 read
units/sec. The previous traffic may further allow the table to sustain much higher levels of traffic
without throttling.

• A table previously provisioned with 10,000 WCU and 10,000 RCU, but currently provisioned
with 10 RCU and 10 WCU. When you switch this table to on-demand, it will be able to sustain at
least 10,000 write units/sec and 10,000 read units/sec.

Auto scaling settings

When you update a table from provisioned to on-demand mode:

• If you're using the console, all of your auto scaling settings (if any) will be deleted.

• If you're using the Amazon CLI or Amazon SDK, all of your auto scaling settings will be preserved.
These settings can be applied when you update your table to provisioned billing mode again.

Bulk editing capacity mode in the DynamoDB console

You can bulk edit multiple tables to switch from provisioned capacity mode to on-demand capacity
mode using the DynamoDB console. To bulk edit capacity mode:

1. In the DynamoDB console, go to the Tables page.

2. Select the checkboxes for the tables you want to update to on-demand capacity mode.

3. Choose Actions, and then select Update to on-demand capacity mode.

This bulk operation allows you to efficiently switch multiple tables to on-demand capacity mode
without having to update each table individually.

Provisioned mode to on-demand mode API Version 2012-08-10 397

https://console.amazonaws.cn/dynamodb
https://console.amazonaws.cn/dynamodb

Amazon DynamoDB Developer Guide

Switching from on-demand capacity mode to provisioned capacity
mode

When switching from on-demand capacity mode back to provisioned capacity mode, your table
delivers throughput consistent with the previous peak reached when the table was set to on-
demand capacity mode.

Managing capacity

Consider the following when you update a table from on-demand to provisioned mode:

• If you're using the Amazon CLI or Amazon SDK, choose the right provisioned capacity settings of
your table and global secondary indexes by using Amazon CloudWatch to look at your historical
consumption (ConsumedWriteCapacityUnits and ConsumedReadCapacityUnits metrics)
to determine the new throughput settings.

Note

If you're switching a global table to provisioned mode, look at the maximum
consumption across all your regional replicas for base tables and global secondary
indexes when determining the new throughput settings.

• If you're switching from on-demand mode back to provisioned mode, make sure to set the initial
provisioned units high enough to handle your table or index capacity during the transition.

Managing auto scaling

When you update a table from on-demand to provisioned mode:

• If you're using the console, we recommend enabling auto scaling with the following defaults:

• Target utilization: 70%

• Minimum provisioned capacity: 5 units

• Maximum provisioned capacity: The Region maximum

• If you're using the Amazon CLI or SDK, your previous auto scaling settings (if any) are preserved.

On-demand mode to provisioned mode API Version 2012-08-10 398

Amazon DynamoDB Developer Guide

Programming with DynamoDB and the Amazon SDKs

This section covers developer-related topics. If you want to run code examples instead, see Running
the code examples in this Developer Guide.

Note

In December 2017, Amazon began the process of migrating all Amazon DynamoDB
endpoints to use secure certificates issued by Amazon Trust Services (ATS). For more
information, see Troubleshooting SSL/TLS connection establishment issues with
DynamoDB.

Topics

• Overview of Amazon SDK support for DynamoDB

• Programming Amazon DynamoDB with Python and Boto3

• Programming Amazon DynamoDB with JavaScript

• Programming DynamoDB with the Amazon SDK for Java 2.x

• Error handling with DynamoDB

• Using DynamoDB with an Amazon SDK

Overview of Amazon SDK support for DynamoDB

The following diagram provides a high-level overview of Amazon DynamoDB application
programming using the Amazon SDKs.

Overview of Amazon SDK support for DynamoDB API Version 2012-08-10 399

Amazon DynamoDB Developer Guide

1. You write an application using an Amazon SDK for your programming language.

2. Each Amazon SDK provides one or more programmatic interfaces for working with DynamoDB.
The specific interfaces available depend on which programming language and Amazon SDK you
use. Options include:

• Low-level interfaces that work with DynamoDB

• Document interfaces that work with DynamoDB

• Object persistence interfaces that work with DynamoDB

• High Level Interfaces

3. The Amazon SDK constructs HTTP(S) requests for use with the low-level DynamoDB API.

4. The Amazon SDK sends the request to the DynamoDB endpoint.

5. DynamoDB runs the request. If the request is successful, DynamoDB returns an HTTP 200
response code (OK). If the request is unsuccessful, DynamoDB returns an HTTP error code and an
error message.

Overview of Amazon SDK support for DynamoDB API Version 2012-08-10 400

Amazon DynamoDB Developer Guide

6. The Amazon SDK processes the response and propagates it back to your application.

Each of the Amazon SDKs provides important services to your application, including the following:

• Formatting HTTP(S) requests and serializing request parameters.

• Generating a cryptographic signature for each request.

• Forwarding requests to a DynamoDB endpoint and receiving responses from DynamoDB.

• Extracting the results from those responses.

• Implementing basic retry logic in case of errors.

You do not need to write code for any of these tasks.

Note

For more information about Amazon SDKs, including installation instructions and
documentation, see Tools for Amazon Web Services.

SDK support of Amazon account-based endpoints

Amazon is rolling out SDK support for Amazon-account-based endpoints for DynamoDB, starting
with the Amazon SDK for Java V1 on September 4, 2024. These new endpoints help Amazon
to ensure high performance and scalability. The updated SDKs will automatically use the new
endpoints, which have the format https://(account-id).ddb.(region).amazonaws.com.

If you use a single instance of an SDK client to make requests to multiple accounts, your application
will have fewer opportunities to reuse connections. Amazon recommends modifying your
applications to connect to fewer accounts per SDK client instance. An alternative is to set your SDK
client to continue using Regional endpoints using the ACCOUNT_ID_ENDPOINT_MODE setting, as
documented in the Amazon SDKs and Tools Reference Guide.

Programmatic interfaces that work with DynamoDB

Every Amazon SDK provides one or more programmatic interfaces for working with Amazon
DynamoDB. These interfaces range from simple low-level DynamoDB wrappers to object-oriented
persistence layers. The available interfaces vary depending on the Amazon SDK and programming
language that you use.

SDK support of Amazon account-based endpoints API Version 2012-08-10 401

http://www.amazonaws.cn/tools
https://docs.amazonaws.cn/sdkref/latest/guide/feature-account-endpoints.html
http://www.amazonaws.cn/tools

Amazon DynamoDB Developer Guide

The following section highlights some of the interfaces available, using the Amazon SDK for Java
as an example. (Not all interfaces are available in all Amazon SDKs.)

Topics

• Low-level interfaces that work with DynamoDB

• Document interfaces that work with DynamoDB

• Object persistence interfaces that work with DynamoDB

Low-level interfaces that work with DynamoDB

Every language-specific Amazon SDK provides a low-level interface for Amazon DynamoDB, with
methods that closely resemble low-level DynamoDB API requests.

In some cases, you will need to identify the data types of the attributes using Data type
descriptors, such as S for string or N for number.

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 402

Amazon DynamoDB Developer Guide

Note

A low-level interface is available in every language-specific Amazon SDK.

The following Java program uses the low-level interface of the Amazon SDK for Java.

Low-level interface example

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
 *
 * To get an item from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client, see the EnhancedGetItem example.
 */
public class GetItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal>

 Where:
 tableName - The Amazon DynamoDB table from which an item is
 retrieved (for example, Music3).\s
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).\s

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 403

Amazon DynamoDB Developer Guide

 keyval - The key value that represents the item to get (for
 example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 System.out.format("Retrieving item \"%s\" from \"%s\"\n", keyVal, tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 getDynamoDBItem(ddb, tableName, key, keyVal);
 ddb.close();
 }

 public static void getDynamoDBItem(DynamoDbClient ddb, String tableName, String
 key, String keyVal) {
 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put(key, AttributeValue.builder()
 .s(keyVal)
 .build());

 GetItemRequest request = GetItemRequest.builder()
 .key(keyToGet)
 .tableName(tableName)
 .build();

 try {
 // If there is no matching item, GetItem does not return any data.
 Map<String, AttributeValue> returnedItem = ddb.getItem(request).item();
 if (returnedItem.isEmpty())
 System.out.format("No item found with the key %s!\n", key);
 else {
 Set<String> keys = returnedItem.keySet();
 System.out.println("Amazon DynamoDB table attributes: \n");
 for (String key1 : keys) {

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 404

Amazon DynamoDB Developer Guide

 System.out.format("%s: %s\n", key1,
 returnedItem.get(key1).toString());
 }
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

Document interfaces that work with DynamoDB

Many Amazon SDKs provide a document interface, allowing you to perform data plane operations
(create, read, update, delete) on tables and indexes. With a document interface, you do not need to
specify Data type descriptors. The data types are implied by the semantics of the data itself. These
Amazon SDKs also provide methods to easily convert JSON documents to and from native Amazon
DynamoDB data types.

Note

Document interfaces are available in the Amazon SDKs for Java, .NET, Node.js, and
JavaScript SDK.

The following Java program uses the document interface of the Amazon SDK for Java. The
program creates a Table object that represents the Music table, and then asks that object to use
GetItem to retrieve a song. The program then prints the year that the song was released.

The software.amazon.dynamodb.document.DynamoDB class implements the DynamoDB
document interface. Note how DynamoDB acts as a wrapper around the low-level client
(AmazonDynamoDB).

Document interface example

package com.amazonaws.codesamples.gsg;

import software.amazon.dynamodb.AmazonDynamoDB;
import software.amazon.dynamodb.AmazonDynamoDBClientBuilder;
import software.amazon.dynamodb.document.DynamoDB;

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 405

http://www.amazonaws.cn/sdk-for-java
http://www.amazonaws.cn/sdk-for-net
http://www.amazonaws.cn/sdk-for-node-js
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/

Amazon DynamoDB Developer Guide

import software.amazon.dynamodb.document.GetItemOutcome;
import software.amazon.dynamodb.document.Table;

public class MusicDocumentDemo {

 public static void main(String[] args) {

 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 DynamoDB docClient = new DynamoDB(client);

 Table table = docClient.getTable("Music");
 GetItemOutcome outcome = table.getItemOutcome(
 "Artist", "No One You Know",
 "SongTitle", "Call Me Today");

 int year = outcome.getItem().getInt("Year");
 System.out.println("The song was released in " + year);

 }
}

Object persistence interfaces that work with DynamoDB

Some Amazon SDKs provide an object persistence interface where you do not directly perform
data plane operations. Instead, you create objects that represent items in Amazon DynamoDB
tables and indexes, and interact only with those objects. This allows you to write object-centric
code, rather than database-centric code.

Note

Object persistence interfaces are available in the Amazon SDKs for Java and .NET. For more
information, see Higher-level programming interfaces for DynamoDB for DynamoDB.

Object persistence interface example

import com.example.dynamodb.Customer;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.Key;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;
import software.amazon.awssdk.enhanced.dynamodb.model.GetItemEnhancedRequest;

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 406

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

import com.example.dynamodb.Customer;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.Key;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;
import software.amazon.awssdk.enhanced.dynamodb.model.GetItemEnhancedRequest;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

/*
 * Before running this code example, create an Amazon DynamoDB table named Customer
 with these columns:
 * - id - the id of the record that is the key. Be sure one of the id values is
 `id101`
 * - custName - the customer name
 * - email - the email value
 * - registrationDate - an instant value when the item was added to the table. These
 values
 * need to be in the form of `YYYY-MM-DDTHH:mm:ssZ`, such as
 2022-07-11T00:00:00Z
 *
 * Also, ensure that you have set up your development environment, including your
 credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
 */

public class EnhancedGetItem {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)

Programmatic interfaces that work with DynamoDB API Version 2012-08-10 407

Amazon DynamoDB Developer Guide

 .build();

 getItem(enhancedClient);
 ddb.close();
 }

 public static String getItem(DynamoDbEnhancedClient enhancedClient) {
 Customer result = null;
 try {
 DynamoDbTable<Customer> table = enhancedClient.table("Customer",
 TableSchema.fromBean(Customer.class));
 Key key = Key.builder()
 .partitionValue("id101").sortValue("tred@noserver.com")
 .build();

 // Get the item by using the key.
 result = table.getItem(
 (GetItemEnhancedRequest.Builder requestBuilder) ->
 requestBuilder.key(key));
 System.out.println("******* The description value is " +
 result.getCustName());

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return result.getCustName();
 }
}

Higher-level programming interfaces for DynamoDB

The Amazon SDKs provide applications with low-level interfaces for working with Amazon
DynamoDB. These client-side classes and methods correspond directly to the low-level DynamoDB
API. However, many developers experience a sense of disconnect, or impedance mismatch, when
they need to map complex data types to items in a database table. With a low-level database
interface, developers must write methods for reading or writing object data to database tables, and
vice versa. The amount of extra code required for each combination of object type and database
table can seem overwhelming.

To simplify development, the Amazon SDKs for Java and .NET provide additional interfaces
with higher levels of abstraction. The higher-level interfaces for DynamoDB let you define the

Higher-level programming interfaces API Version 2012-08-10 408

Amazon DynamoDB Developer Guide

relationships between objects in your program and the database tables that store those objects'
data. After you define this mapping, you call simple object methods such as save, load, or
delete, and the underlying low-level DynamoDB operations are automatically invoked on your
behalf. This allows you to write object-centric code, rather than database-centric code.

The higher-level programming interfaces for DynamoDB are available in the Amazon SDKs for Java
and .NET.

Java

• Java 1.x: DynamoDBMapper

• Java 2.x: DynamoDB Enhanced Client

.NET

• Working with the .NET document model in DynamoDB

• Working with the .NET object persistence model and DynamoDB

Java 1.x: DynamoDBMapper

Note

The SDK for Java has two versions: 1.x and 2.x. The end-of-support for 1.x was announced
on January 12, 2024. It will and its end-of-support is due on December 31, 2025. For new
development, we highly recommend that you use 2.x.

The Amazon SDK for Java provides a DynamoDBMapper class, allowing you to map your client-
side classes to Amazon DynamoDB tables. To use DynamoDBMapper, you define the relationship
between items in a DynamoDB table and their corresponding object instances in your code. The
DynamoDBMapper class enables you to perform various create, read, update, and delete (CRUD)
operations on items, and run queries and scans against tables.

Topics

• DynamoDBMapper Class

• Supported data types for DynamoDBMapper for Java

• Java Annotations for DynamoDB

Higher-level programming interfaces API Version 2012-08-10 409

https://amazonaws-china.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-java-v1-x-on-december-31-2025/

Amazon DynamoDB Developer Guide

• Optional configuration settings for DynamoDBMapper

• DynamoDB and optimistic locking with version number

• Mapping arbitrary data in DynamoDB

• DynamoDBMapper examples

Note

The DynamoDBMapper class does not allow you to create, update, or delete tables. To
perform those tasks, use the low-level SDK for Java interface instead.

The SDK for Java provides a set of annotation types so that you can map your classes to tables. For
example, consider a ProductCatalog table that has Id as the partition key.

ProductCatalog(Id, ...)

You can map a class in your client application to the ProductCatalog table as shown in the
following Java code. This code defines a plain old Java object (POJO) named CatalogItem, which
uses annotations to map object fields to DynamoDB attribute names.

Example

package com.amazonaws.codesamples;

import java.util.Set;

import software.amazon.dynamodb.datamodeling.DynamoDBAttribute;
import software.amazon.dynamodb.datamodeling.DynamoDBHashKey;
import software.amazon.dynamodb.datamodeling.DynamoDBIgnore;
import software.amazon.dynamodb.datamodeling.DynamoDBTable;

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 private Integer id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;

Higher-level programming interfaces API Version 2012-08-10 410

Amazon DynamoDB Developer Guide

 private String someProp;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id; }
 public void setId(Integer id) {this.id = id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() {return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN; }

 @DynamoDBAttribute(attributeName="Authors")
 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors =
 bookAuthors; }

 @DynamoDBIgnore
 public String getSomeProp() { return someProp; }
 public void setSomeProp(String someProp) { this.someProp = someProp; }
}

In the preceding code, the @DynamoDBTable annotation maps the CatalogItem class to the
ProductCatalog table. You can store individual class instances as items in the table. In the class
definition, the @DynamoDBHashKey annotation maps the Id property to the primary key.

By default, the class properties map to the same name attributes in the table. The properties
Title and ISBN map to the same name attributes in the table.

The @DynamoDBAttribute annotation is optional when the name of the DynamoDB attribute
matches the name of the property declared in the class. When they differ, use this annotation with
the attributeName parameter to specify which DynamoDB attribute this property corresponds
to.

In the preceding example, the @DynamoDBAttribute annotation is added to each property to
ensure that the property names match exactly with the tables created in a previous step, and to be
consistent with the attribute names used in other code examples in this guide.

Your class definition can have properties that don't map to any attributes in the table. You identify
these properties by adding the @DynamoDBIgnore annotation. In the preceding example, the

Higher-level programming interfaces API Version 2012-08-10 411

Amazon DynamoDB Developer Guide

SomeProp property is marked with the @DynamoDBIgnore annotation. When you upload a
CatalogItem instance to the table, your DynamoDBMapper instance does not include the
SomeProp property. In addition, the mapper does not return this attribute when you retrieve an
item from the table.

After you define your mapping class, you can use DynamoDBMapper methods to write an
instance of that class to a corresponding item in the Catalog table. The following code example
demonstrates this technique.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();

DynamoDBMapper mapper = new DynamoDBMapper(client);

CatalogItem item = new CatalogItem();
item.setId(102);
item.setTitle("Book 102 Title");
item.setISBN("222-2222222222");
item.setBookAuthors(new HashSet<String>(Arrays.asList("Author 1", "Author 2")));
item.setSomeProp("Test");

mapper.save(item);

The following code example shows how to retrieve the item and access some of its attributes.

CatalogItem partitionKey = new CatalogItem();

partitionKey.setId(102);
DynamoDBQueryExpression<CatalogItem> queryExpression = new
 DynamoDBQueryExpression<CatalogItem>()
 .withHashKeyValues(partitionKey);

List<CatalogItem> itemList = mapper.query(CatalogItem.class, queryExpression);

for (int i = 0; i < itemList.size(); i++) {
 System.out.println(itemList.get(i).getTitle());
 System.out.println(itemList.get(i).getBookAuthors());
}

DynamoDBMapper offers an intuitive, natural way of working with DynamoDB data within Java. It
also provides several built-in features, such as optimistic locking, ACID transactions, autogenerated
partition key and sort key values, and object versioning.

Higher-level programming interfaces API Version 2012-08-10 412

Amazon DynamoDB Developer Guide

DynamoDBMapper Class

The DynamoDBMapper class is the entry point to Amazon DynamoDB. It provides access to a
DynamoDB endpoint and enables you to access your data in various tables. It also enables you to
perform various create, read, update, and delete (CRUD) operations on items, and run queries and
scans against tables. This class provides the following methods for working with DynamoDB.

For the corresponding Javadoc documentation, see DynamoDBMapper in the Amazon SDK for Java
API Reference.

Topics

• save

• load

• delete

• query

• queryPage

• scan

• scanPage

• parallelScan

• batchSave

• batchLoad

• batchDelete

• batchWrite

• transactionWrite

• transactionLoad

• count

• generateCreateTableRequest

• createS3Link

• getS3ClientCache

Higher-level programming interfaces API Version 2012-08-10 413

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapper.html

Amazon DynamoDB Developer Guide

save

Saves the specified object to the table. The object that you want to save is the only required
parameter for this method. You can provide optional configuration parameters using the
DynamoDBMapperConfig object.

If an item that has the same primary key does not exist, this method creates a new item in the
table. If an item that has the same primary key exists, it updates the existing item. If the partition
key and sort key are of type String and are annotated with @DynamoDBAutoGeneratedKey, they
are given a random universally unique identifier (UUID) if left uninitialized. Version fields that are
annotated with @DynamoDBVersionAttribute are incremented by one. Additionally, if a version
field is updated or a key generated, the object passed in is updated as a result of the operation.

By default, only attributes corresponding to mapped class properties are updated. Any additional
existing attributes on an item are unaffected. However, if you specify SaveBehavior.CLOBBER,
you can force the item to be completely overwritten.

DynamoDBMapperConfig config = DynamoDBMapperConfig.builder()
 .withSaveBehavior(DynamoDBMapperConfig.SaveBehavior.CLOBBER).build();

mapper.save(item, config);

If you have versioning enabled, the client-side and server-side item versions must match. However,
the version does not need to match if the SaveBehavior.CLOBBER option is used. For more
information about versioning, see DynamoDB and optimistic locking with version number.

load

Retrieves an item from a table. You must provide the primary key of the item that you want to
retrieve. You can provide optional configuration parameters using the DynamoDBMapperConfig
object. For example, you can optionally request strongly consistent reads to ensure that this
method retrieves only the latest item values as shown in the following Java statement.

DynamoDBMapperConfig config = DynamoDBMapperConfig.builder()
 .withConsistentReads(DynamoDBMapperConfig.ConsistentReads.CONSISTENT).build();

CatalogItem item = mapper.load(CatalogItem.class, item.getId(), config);

By default, DynamoDB returns the item that has values that are eventually consistent. For
information about the eventual consistency model of DynamoDB, see DynamoDB read consistency.

Higher-level programming interfaces API Version 2012-08-10 414

Amazon DynamoDB Developer Guide

delete

Deletes an item from the table. You must pass in an object instance of the mapped class.

If you have versioning enabled, the client-side and server-side item versions must match. However,
the version does not need to match if the SaveBehavior.CLOBBER option is used. For more
information about versioning, see DynamoDB and optimistic locking with version number.

query

Queries a table or a secondary index.

Assume that you have a table, Reply, that stores forum thread replies. Each thread subject
can have zero or more replies. The primary key of the Reply table consists of the Id and
ReplyDateTime fields, where Id is the partition key and ReplyDateTime is the sort key of the
primary key.

Reply (Id, ReplyDateTime, ...)

Assume that you created a mapping between a Reply class and the corresponding Reply table
in DynamoDB. The following Java code uses DynamoDBMapper to find all replies in the past two
weeks for a specific thread subject.

Example

String forumName = "&DDB;";
String forumSubject = "&DDB; Thread 1";
String partitionKey = forumName + "#" + forumSubject;

long twoWeeksAgoMilli = (new Date()).getTime() - (14L*24L*60L*60L*1000L);
Date twoWeeksAgo = new Date();
twoWeeksAgo.setTime(twoWeeksAgoMilli);
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");
String twoWeeksAgoStr = df.format(twoWeeksAgo);

Map<String, AttributeValue> eav = new HashMap<String, AttributeValue>();
eav.put(":v1", new AttributeValue().withS(partitionKey));
eav.put(":v2",new AttributeValue().withS(twoWeeksAgoStr.toString()));

DynamoDBQueryExpression<Reply> queryExpression = new DynamoDBQueryExpression<Reply>()
 .withKeyConditionExpression("Id = :v1 and ReplyDateTime > :v2")
 .withExpressionAttributeValues(eav);

Higher-level programming interfaces API Version 2012-08-10 415

Amazon DynamoDB Developer Guide

List<Reply> latestReplies = mapper.query(Reply.class, queryExpression);

The query returns a collection of Reply objects.

By default, the query method returns a "lazy-loaded" collection. It initially returns only one page
of results, and then makes a service call for the next page if needed. To obtain all the matching
items, iterate over the latestReplies collection.

Note that calling the size() method on the collection will load every result in order to provide an
accurate count. This can result in a lot of provisioned throughput being consumed, and on a very
large table could even exhaust all the memory in your JVM.

To query an index, you must first model the index as a mapper class. Suppose that the Reply table
has a global secondary index named PostedBy-Message-Index. The partition key for this index is
PostedBy, and the sort key is Message. The class definition for an item in the index would look
like the following.

@DynamoDBTable(tableName="Reply")
public class PostedByMessage {
 private String postedBy;
 private String message;

 @DynamoDBIndexHashKey(globalSecondaryIndexName = "PostedBy-Message-Index",
 attributeName = "PostedBy")
 public String getPostedBy() { return postedBy; }
 public void setPostedBy(String postedBy) { this.postedBy = postedBy; }

 @DynamoDBIndexRangeKey(globalSecondaryIndexName = "PostedBy-Message-Index",
 attributeName = "Message")
 public String getMessage() { return message; }
 public void setMessage(String message) { this.message = message; }

 // Additional properties go here.
}

The @DynamoDBTable annotation indicates that this index is associated with the Reply table.
The @DynamoDBIndexHashKey annotation denotes the partition key (PostedBy) of the index, and
@DynamoDBIndexRangeKey denotes the sort key (Message) of the index.

Now you can use DynamoDBMapper to query the index, retrieving a subset of messages that
were posted by a particular user. You do not need to specify the index name if you do not have

Higher-level programming interfaces API Version 2012-08-10 416

Amazon DynamoDB Developer Guide

conflicting mappings across tables and indexes and the mappings are already made in the mapper.
The mapper will infer based on the primary key and sort key. The following code queries a global
secondary index. Because global secondary indexes support eventually consistent reads but not
strongly consistent reads, you must specify withConsistentRead(false).

HashMap<String, AttributeValue> eav = new HashMap<String, AttributeValue>();
eav.put(":v1", new AttributeValue().withS("User A"));
eav.put(":v2", new AttributeValue().withS("DynamoDB"));

DynamoDBQueryExpression<PostedByMessage> queryExpression = new
 DynamoDBQueryExpression<PostedByMessage>()
 .withIndexName("PostedBy-Message-Index")
 .withConsistentRead(false)
 .withKeyConditionExpression("PostedBy = :v1 and begins_with(Message, :v2)")
 .withExpressionAttributeValues(eav);

List<PostedByMessage> iList = mapper.query(PostedByMessage.class, queryExpression);

The query returns a collection of PostedByMessage objects.

queryPage

Queries a table or secondary index and returns a single page of matching results. As with the
query method, you must specify a partition key value and a query filter that is applied on the sort
key attribute. However, queryPage returns only the first "page" of data, that is, the amount of
data that fits in 1 MB

scan

Scans an entire table or a secondary index. You can optionally specify a FilterExpression to
filter the result set.

Assume that you have a table, Reply, that stores forum thread replies. Each thread subject
can have zero or more replies. The primary key of the Reply table consists of the Id and
ReplyDateTime fields, where Id is the partition key and ReplyDateTime is the sort key of the
primary key.

Reply (Id, ReplyDateTime, ...)

Higher-level programming interfaces API Version 2012-08-10 417

Amazon DynamoDB Developer Guide

If you mapped a Java class to the Reply table, you can use the DynamoDBMapper to scan the
table. For example, the following Java code scans the entire Reply table, returning only the replies
for a particular year.

Example

HashMap<String, AttributeValue> eav = new HashMap<String, AttributeValue>();
eav.put(":v1", new AttributeValue().withS("2015"));

DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withFilterExpression("begins_with(ReplyDateTime,:v1)")
 .withExpressionAttributeValues(eav);

List<Reply> replies = mapper.scan(Reply.class, scanExpression);

By default, the scan method returns a "lazy-loaded" collection. It initially returns only one page of
results, and then makes a service call for the next page if needed. To obtain all the matching items,
iterate over the replies collection.

Note that calling the size() method on the collection will load every result in order to provide an
accurate count. This can result in a lot of provisioned throughput being consumed, and on a very
large table could even exhaust all the memory in your JVM.

To scan an index, you must first model the index as a mapper class. Suppose that the Reply table
has a global secondary index named PostedBy-Message-Index. The partition key for this index
is PostedBy, and the sort key is Message. A mapper class for this index is shown in the query
section. It uses the @DynamoDBIndexHashKey and @DynamoDBIndexRangeKey annotations to
specify the index partition key and sort key.

The following code example scans PostedBy-Message-Index. It does not use a scan filter, so all
of the items in the index are returned to you.

DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withIndexName("PostedBy-Message-Index")
 .withConsistentRead(false);

 List<PostedByMessage> iList = mapper.scan(PostedByMessage.class, scanExpression);
 Iterator<PostedByMessage> indexItems = iList.iterator();

Higher-level programming interfaces API Version 2012-08-10 418

Amazon DynamoDB Developer Guide

scanPage

Scans a table or secondary index and returns a single page of matching results. As with the scan
method, you can optionally specify a FilterExpression to filter the result set. However,
scanPage only returns the first "page" of data, that is, the amount of data that fits within 1 MB.

parallelScan

Performs a parallel scan of an entire table or secondary index. You specify a number of logical
segments for the table, along with a scan expression to filter the results. The parallelScan
divides the scan task among multiple workers, one for each logical segment; the workers process
the data in parallel and return the results.

The following Java code example performs a parallel scan on the Product table.

int numberOfThreads = 4;

Map<String, AttributeValue> eav = new HashMap<String, AttributeValue>();
eav.put(":n", new AttributeValue().withN("100"));

DynamoDBScanExpression scanExpression = new DynamoDBScanExpression()
 .withFilterExpression("Price <= :n")
 .withExpressionAttributeValues(eav);

List<Product> scanResult = mapper.parallelScan(Product.class, scanExpression,
 numberOfThreads);

batchSave

Saves objects to one or more tables using one or more calls to the
AmazonDynamoDB.batchWriteItem method. This method does not provide transaction
guarantees.

The following Java code saves two items (books) to the ProductCatalog table.

Book book1 = new Book();
book1.setId(901);
book1.setProductCategory("Book");
book1.setTitle("Book 901 Title");

Book book2 = new Book();
book2.setId(902);

Higher-level programming interfaces API Version 2012-08-10 419

Amazon DynamoDB Developer Guide

book2.setProductCategory("Book");
book2.setTitle("Book 902 Title");

mapper.batchSave(Arrays.asList(book1, book2));

batchLoad

Retrieves multiple items from one or more tables using their primary keys.

The following Java code retrieves two items from two different tables.

ArrayList<Object> itemsToGet = new ArrayList<Object>();

ForumItem forumItem = new ForumItem();
forumItem.setForumName("Amazon DynamoDB");
itemsToGet.add(forumItem);

ThreadItem threadItem = new ThreadItem();
threadItem.setForumName("Amazon DynamoDB");
threadItem.setSubject("Amazon DynamoDB thread 1 message text");
itemsToGet.add(threadItem);

Map<String, List<Object>> items = mapper.batchLoad(itemsToGet);

batchDelete

Deletes objects from one or more tables using one or more calls to the
AmazonDynamoDB.batchWriteItem method. This method does not provide transaction
guarantees.

The following Java code deletes two items (books) from the ProductCatalog table.

Book book1 = mapper.load(Book.class, 901);
Book book2 = mapper.load(Book.class, 902);
mapper.batchDelete(Arrays.asList(book1, book2));

batchWrite

Saves objects to and deletes objects from one or more tables using one or more calls to the
AmazonDynamoDB.batchWriteItem method. This method does not provide transaction
guarantees or support versioning (conditional puts or deletes).

Higher-level programming interfaces API Version 2012-08-10 420

Amazon DynamoDB Developer Guide

The following Java code writes a new item to the Forum table, writes a new item to the Thread
table, and deletes an item from the ProductCatalog table.

// Create a Forum item to save
Forum forumItem = new Forum();
forumItem.setName("Test BatchWrite Forum");

// Create a Thread item to save
Thread threadItem = new Thread();
threadItem.setForumName("AmazonDynamoDB");
threadItem.setSubject("My sample question");

// Load a ProductCatalog item to delete
Book book3 = mapper.load(Book.class, 903);

List<Object> objectsToWrite = Arrays.asList(forumItem, threadItem);
List<Book> objectsToDelete = Arrays.asList(book3);

mapper.batchWrite(objectsToWrite, objectsToDelete);

transactionWrite

Saves objects to and deletes objects from one or more tables using one call to the
AmazonDynamoDB.transactWriteItems method.

For a list of transaction-specific exceptions, see TransactWriteItems errors.

For more information about DynamoDB transactions and the provided atomicity, consistency,
isolation, and durability (ACID) guarantees see Amazon DynamoDB Transactions.

Note

This method does not support the following:

• DynamoDBMapperConfig.SaveBehavior.

The following Java code writes a new item to each of the Forum and Thread tables,
transactionally.

Thread s3ForumThread = new Thread();

Higher-level programming interfaces API Version 2012-08-10 421

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html#API_TransactWriteItems_Errors
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBMapper.OptionalConfig.html

Amazon DynamoDB Developer Guide

s3ForumThread.setForumName("S3 Forum");
s3ForumThread.setSubject("Sample Subject 1");
s3ForumThread.setMessage("Sample Question 1");

Forum s3Forum = new Forum();
s3Forum.setName("S3 Forum");
s3Forum.setCategory("Amazon Web Services");
s3Forum.setThreads(1);

TransactionWriteRequest transactionWriteRequest = new TransactionWriteRequest();
transactionWriteRequest.addPut(s3Forum);
transactionWriteRequest.addPut(s3ForumThread);
mapper.transactionWrite(transactionWriteRequest);

transactionLoad

Loads objects from one or more tables using one call to the
AmazonDynamoDB.transactGetItems method.

For a list of transaction-specific exceptions, see TransactGetItems errors.

For more information about DynamoDB transactions and the provided atomicity, consistency,
isolation, and durability (ACID) guarantees see Amazon DynamoDB Transactions.

The following Java code loads one item from each of the Forum and Thread tables,
transactionally.

Forum dynamodbForum = new Forum();
dynamodbForum.setName("DynamoDB Forum");
Thread dynamodbForumThread = new Thread();
dynamodbForumThread.setForumName("DynamoDB Forum");

TransactionLoadRequest transactionLoadRequest = new TransactionLoadRequest();
transactionLoadRequest.addLoad(dynamodbForum);
transactionLoadRequest.addLoad(dynamodbForumThread);
mapper.transactionLoad(transactionLoadRequest);

count

Evaluates the specified scan expression and returns the count of matching items. No item data is
returned.

Higher-level programming interfaces API Version 2012-08-10 422

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html#API_TransactGetItems_Errors
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

generateCreateTableRequest

Parses a POJO class that represents a DynamoDB table, and returns a CreateTableRequest for
that table.

createS3Link

Creates a link to an object in Amazon S3. You must specify a bucket name and a key name, which
uniquely identifies the object in the bucket.

To use createS3Link, your mapper class must define getter and setter methods. The following
code example illustrates this by adding a new attribute and getter/setter methods to the
CatalogItem class.

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 ...

 public S3Link productImage;

 @DynamoDBAttribute(attributeName = "ProductImage")
 public S3Link getProductImage() {
 return productImage;
 }

 public void setProductImage(S3Link productImage) {
 this.productImage = productImage;
 }

...
}

The following Java code defines a new item to be written to the Product table. The item includes
a link to a product image; the image data is uploaded to Amazon S3.

CatalogItem item = new CatalogItem();

item.setId(150);
item.setTitle("Book 150 Title");

Higher-level programming interfaces API Version 2012-08-10 423

Amazon DynamoDB Developer Guide

String amzn-s3-demo-bucket = "amzn-s3-demo-bucket";
String myS3Key = "productImages/book_150_cover.jpg";
item.setProductImage(mapper.createS3Link(amzn-s3-demo-bucket, myS3Key));

item.getProductImage().uploadFrom(new File("/file/path/book_150_cover.jpg"));

mapper.save(item);

The S3Link class provides many other methods for manipulating objects in Amazon S3. For more
information, see the Javadocs for S3Link.

getS3ClientCache

Returns the underlying S3ClientCache for accessing Amazon S3. An S3ClientCache is a smart
Map for AmazonS3Client objects. If you have multiple clients, an S3ClientCache can help you
keep the clients organized by Amazon Region, and can create new Amazon S3 clients on demand.

Supported data types for DynamoDBMapper for Java

This section describes the supported primitive Java data types, collections, and arbitrary data types
in Amazon DynamoDB.

Amazon DynamoDB supports the following primitive Java data types and primitive wrapper
classes.

• String

• Boolean, boolean

• Byte, byte

• Date (as ISO_8601 millisecond-precision string, shifted to UTC)

• Calendar (as ISO_8601 millisecond-precision string, shifted to UTC)

• Long, long

• Integer, int

• Double, double

• Float, float

• BigDecimal

• BigInteger

Higher-level programming interfaces API Version 2012-08-10 424

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/S3Link.html
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Amazon DynamoDB Developer Guide

Note

• For more information about DynamoDB naming rules and the various supported data
types, see Supported data types and naming rules in Amazon DynamoDB.

• Empty Binary values are supported by the DynamoDBMapper.

• Empty String values are supported by Amazon SDK for Java 2.x.

In Amazon SDK for Java 1.x, DynamoDBMapper supports reading of empty String
attribute values, however, it will not write empty String attribute values because these
attributes are dropped from the request.

DynamoDB supports the Java Set, List, and Map collection types. The following table summarizes
how these Java types map to the DynamoDB types.

Java type DynamoDB type

All number types N (number type)

Strings S (string type)

Boolean BOOL (Boolean type), 0 or 1.

ByteBuffer B (binary type)

Date S (string type). The Date values are stored as
ISO-8601 formatted strings.

Set collection types SS (string set) type, NS (number set) type, or
BS (binary set) type.

The DynamoDBTypeConverter interface lets you map your own arbitrary data types to a data
type that is natively supported by DynamoDB. For more information, see Mapping arbitrary data in
DynamoDB.

Higher-level programming interfaces API Version 2012-08-10 425

http://docs.oracle.com/javase/6/docs/api/java/util/Set.html
http://docs.oracle.com/javase/6/docs/api/java/util/List.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Set.html

Amazon DynamoDB Developer Guide

Java Annotations for DynamoDB

This section describes the annotations that are available for mapping your classes and properties
to tables and attributes in Amazon DynamoDB.

For the corresponding Javadoc documentation, see Annotation Types Summary in the Amazon SDK
for Java API Reference.

Note

In the following annotations, only DynamoDBTable and the DynamoDBHashKey are
required.

Topics

• DynamoDBAttribute

• DynamoDBAutoGeneratedKey

• DynamoDBAutoGeneratedTimestamp

• DynamoDBDocument

• DynamoDBHashKey

• DynamoDBIgnore

• DynamoDBIndexHashKey

• DynamoDBIndexRangeKey

• DynamoDBRangeKey

• DynamoDBTable

• DynamoDBTypeConverted

• DynamoDBTyped

• DynamoDBVersionAttribute

DynamoDBAttribute

Maps a property to a table attribute. By default, each class property maps to an item attribute
with the same name. However, if the names are not the same, you can use this annotation to map

Higher-level programming interfaces API Version 2012-08-10 426

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/package-summary.html
https://docs.amazonaws.cn/sdk-for-java/latest/reference/
https://docs.amazonaws.cn/sdk-for-java/latest/reference/

Amazon DynamoDB Developer Guide

a property to the attribute. In the following Java snippet, the DynamoDBAttribute maps the
BookAuthors property to the Authors attribute name in the table.

@DynamoDBAttribute(attributeName = "Authors")
public List<String> getBookAuthors() { return BookAuthors; }
public void setBookAuthors(List<String> BookAuthors) { this.BookAuthors =
 BookAuthors; }

The DynamoDBMapper uses Authors as the attribute name when saving the object to the table.

DynamoDBAutoGeneratedKey

Marks a partition key or sort key property as being autogenerated. DynamoDBMapper generates
a random UUID when saving these attributes. Only String properties can be marked as
autogenerated keys.

The following example demonstrates using autogenerated keys.

@DynamoDBTable(tableName="AutoGeneratedKeysExample")
public class AutoGeneratedKeys {
 private String id;
 private String payload;

 @DynamoDBHashKey(attributeName = "Id")
 @DynamoDBAutoGeneratedKey
 public String getId() { return id; }
 public void setId(String id) { this.id = id; }

 @DynamoDBAttribute(attributeName="payload")
 public String getPayload() { return this.payload; }
 public void setPayload(String payload) { this.payload = payload; }

 public static void saveItem() {
 AutoGeneratedKeys obj = new AutoGeneratedKeys();
 obj.setPayload("abc123");

 // id field is null at this point
 DynamoDBMapper mapper = new DynamoDBMapper(dynamoDBClient);
 mapper.save(obj);

 System.out.println("Object was saved with id " + obj.getId());
 }

Higher-level programming interfaces API Version 2012-08-10 427

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html

Amazon DynamoDB Developer Guide

}

DynamoDBAutoGeneratedTimestamp

Automatically generates a timestamp.

@DynamoDBAutoGeneratedTimestamp(strategy=DynamoDBAutoGenerateStrategy.ALWAYS)
public Date getLastUpdatedDate() { return lastUpdatedDate; }
public void setLastUpdatedDate(Date lastUpdatedDate) { this.lastUpdatedDate =
 lastUpdatedDate; }

Optionally, the auto-generation strategy can be defined by providing a strategy attribute. The
default is ALWAYS.

DynamoDBDocument

Indicates that a class can be serialized as an Amazon DynamoDB document.

For example, suppose that you wanted to map a JSON document to a DynamoDB attribute of type
Map (M). The following code example defines an item containing a nested attribute (Pictures) of
type Map.

public class ProductCatalogItem {

 private Integer id; //partition key
 private Pictures pictures;
 /* ...other attributes omitted... */

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id;}
 public void setId(Integer id) {this.id = id;}

 @DynamoDBAttribute(attributeName="Pictures")
 public Pictures getPictures() { return pictures;}
 public void setPictures(Pictures pictures) {this.pictures = pictures;}

 // Additional properties go here.

 @DynamoDBDocument
 public static class Pictures {
 private String frontView;
 private String rearView;

Higher-level programming interfaces API Version 2012-08-10 428

Amazon DynamoDB Developer Guide

 private String sideView;

 @DynamoDBAttribute(attributeName = "FrontView")
 public String getFrontView() { return frontView; }
 public void setFrontView(String frontView) { this.frontView = frontView; }

 @DynamoDBAttribute(attributeName = "RearView")
 public String getRearView() { return rearView; }
 public void setRearView(String rearView) { this.rearView = rearView; }

 @DynamoDBAttribute(attributeName = "SideView")
 public String getSideView() { return sideView; }
 public void setSideView(String sideView) { this.sideView = sideView; }

 }
}

You could then save a new ProductCatalog item, with Pictures, as shown in the following
example.

ProductCatalogItem item = new ProductCatalogItem();

Pictures pix = new Pictures();
pix.setFrontView("http://example.com/products/123_front.jpg");
pix.setRearView("http://example.com/products/123_rear.jpg");
pix.setSideView("http://example.com/products/123_left_side.jpg");
item.setPictures(pix);

item.setId(123);

mapper.save(item);

The resulting ProductCatalog item would look like the following (in JSON format).

{
 "Id" : 123
 "Pictures" : {
 "SideView" : "http://example.com/products/123_left_side.jpg",
 "RearView" : "http://example.com/products/123_rear.jpg",
 "FrontView" : "http://example.com/products/123_front.jpg"
 }
}

Higher-level programming interfaces API Version 2012-08-10 429

Amazon DynamoDB Developer Guide

DynamoDBHashKey

Maps a class property to the partition key of the table. The property must be one of the scalar
string, number, or binary types. The property can't be a collection type.

Assume that you have a table, ProductCatalog, that has Id as the primary key. The following
Java code defines a CatalogItem class and maps its Id property to the primary key of the
ProductCatalog table using the @DynamoDBHashKey tag.

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {
 private Integer Id;
 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() {
 return Id;
 }
 public void setId(Integer Id) {
 this.Id = Id;
 }
 // Additional properties go here.
}

DynamoDBIgnore

Indicates to the DynamoDBMapper instance that the associated property should be ignored. When
saving data to the table, the DynamoDBMapper does not save this property to the table.

Applied to the getter method or the class field for a non-modeled property. If the annotation is
applied directly to the class field, the corresponding getter and setter must be declared in the same
class.

DynamoDBIndexHashKey

Maps a class property to the partition key of a global secondary index. The property must be one
of the scalar string, number, or binary types. The property can't be a collection type.

Use this annotation if you need to Query a global secondary index. You must specify the index
name (globalSecondaryIndexName). If the name of the class property is different from the
index partition key, you also must specify the name of that index attribute (attributeName).

Higher-level programming interfaces API Version 2012-08-10 430

Amazon DynamoDB Developer Guide

DynamoDBIndexRangeKey

Maps a class property to the sort key of a global secondary index or a local secondary index.
The property must be one of the scalar string, number, or binary types. The property can't be a
collection type.

Use this annotation if you need to Query a local secondary index or a global secondary index
and want to refine your results using the index sort key. You must specify the index name (either
globalSecondaryIndexName or localSecondaryIndexName). If the name of the class
property is different from the index sort key, you must also specify the name of that index
attribute (attributeName).

DynamoDBRangeKey

Maps a class property to the sort key of the table. The property must be one of the scalar string,
number, or binary types. It cannot be a collection type.

If the primary key is composite (partition key and sort key), you can use this tag to map your class
field to the sort key. For example, assume that you have a Reply table that stores replies for forum
threads. Each thread can have many replies. So the primary key of this table is both the ThreadId
and ReplyDateTime. The ThreadId is the partition key, and ReplyDateTime is the sort key.

The following Java code defines a Reply class and maps it to the Reply table. It uses both the
@DynamoDBHashKey and @DynamoDBRangeKey tags to identify class properties that map to the
primary key.

@DynamoDBTable(tableName="Reply")
public class Reply {
 private Integer id;
 private String replyDateTime;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 @DynamoDBRangeKey(attributeName="ReplyDateTime")
 public String getReplyDateTime() { return replyDateTime; }
 public void setReplyDateTime(String replyDateTime) { this.replyDateTime =
 replyDateTime; }

 // Additional properties go here.

Higher-level programming interfaces API Version 2012-08-10 431

Amazon DynamoDB Developer Guide

}

DynamoDBTable

Identifies the target table in DynamoDB. For example, the following Java code defines a class
Developer and maps it to the People table in DynamoDB.

@DynamoDBTable(tableName="People")
public class Developer { ...}

The @DynamoDBTable annotation can be inherited. Any new class that inherits from the
Developer class also maps to the People table. For example, assume that you create a Lead class
that inherits from the Developer class. Because you mapped the Developer class to the People
table, the Lead class objects are also stored in the same table.

The @DynamoDBTable can also be overridden. Any new class that inherits from the Developer
class by default maps to the same People table. However, you can override this default mapping.
For example, if you create a class that inherits from the Developer class, you can explicitly map it
to another table by adding the @DynamoDBTable annotation as shown in the following Java code
example.

@DynamoDBTable(tableName="Managers")
public class Manager extends Developer { ...}

DynamoDBTypeConverted

An annotation to mark a property as using a custom type converter. Can be annotated on a user-
defined annotation to pass additional properties to the DynamoDBTypeConverter.

The DynamoDBTypeConverter interface lets you map your own arbitrary data types to a data
type that is natively supported by DynamoDB. For more information, see Mapping arbitrary data in
DynamoDB.

DynamoDBTyped

An annotation to override the standard attribute type binding. Standard types do not require the
annotation if applying the default attribute binding for that type.

Higher-level programming interfaces API Version 2012-08-10 432

Amazon DynamoDB Developer Guide

DynamoDBVersionAttribute

Identifies a class property for storing an optimistic locking version number. DynamoDBMapper
assigns a version number to this property when it saves a new item, and increments it each time
you update the item. Only number scalar types are supported. For more information about data
types, see Data types. For more information about versioning, see DynamoDB and optimistic
locking with version number.

Optional configuration settings for DynamoDBMapper

When you create an instance of DynamoDBMapper, it has certain default behaviors; you can
override these defaults by using the DynamoDBMapperConfig class.

The following code snippet creates a DynamoDBMapper with custom settings:

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();

DynamoDBMapperConfig mapperConfig = DynamoDBMapperConfig.builder()
 .withSaveBehavior(DynamoDBMapperConfig.SaveBehavior.CLOBBER)
 .withConsistentReads(DynamoDBMapperConfig.ConsistentReads.CONSISTENT)
 .withTableNameOverride(null)

 .withPaginationLoadingStrategy(DynamoDBMapperConfig.PaginationLoadingStrategy.EAGER_LOADING)
 .build();

DynamoDBMapper mapper = new DynamoDBMapper(client, mapperConfig);

For more information, see DynamoDBMapperConfig in the Amazon SDK for Java API Reference.

You can use the following arguments for an instance of DynamoDBMapperConfig:

• A DynamoDBMapperConfig.ConsistentReads enumeration value:

• EVENTUAL—the mapper instance uses an eventually consistent read request.

• CONSISTENT—the mapper instance uses a strongly consistent read request. You can use
this optional setting with load, query, or scan operations. Strongly consistent reads have
implications for performance and billing; see the DynamoDB product detail page for more
information.

If you do not specify a read consistency setting for your mapper instance, the default is
EVENTUAL.

Higher-level programming interfaces API Version 2012-08-10 433

https://docs.amazonaws.cn/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.html
https://docs.amazonaws.cn/sdk-for-java/latest/reference/
http://www.amazonaws.cn/dynamodb

Amazon DynamoDB Developer Guide

Note

This value is applied in the query, querypage, load, and batch load operations of
the DynamoDBMapper.

• A DynamoDBMapperConfig.PaginationLoadingStrategy enumeration value—Controls
how the mapper instance processes a paginated list of data, such as the results from a query or
scan:

• LAZY_LOADING—the mapper instance loads data when possible, and keeps all loaded results
in memory.

• EAGER_LOADING—the mapper instance loads the data as soon as the list is initialized.

• ITERATION_ONLY—you can only use an Iterator to read from the list. During the iteration, the
list will clear all the previous results before loading the next page, so that the list will keep at
most one page of the loaded results in memory. This also means the list can only be iterated
once. This strategy is recommended when handling large items, in order to reduce memory
overhead.

If you do not specify a pagination loading strategy for your mapper instance, the default is
LAZY_LOADING.

• A DynamoDBMapperConfig.SaveBehavior enumeration value - Specifies how the mapper
instance should deal with attributes during save operations:

• UPDATE—during a save operation, all modeled attributes are updated, and unmodeled
attributes are unaffected. Primitive number types (byte, int, long) are set to 0. Object types are
set to null.

• CLOBBER—clears and replaces all attributes, included unmodeled ones, during a save
operation. This is done by deleting the item and re-creating it. Versioned field constraints are
also disregarded.

If you do not specify the save behavior for your mapper instance, the default is UPDATE.

Note

DynamoDBMapper transactional operations do not support
DynamoDBMapperConfig.SaveBehavior enumeration.

Higher-level programming interfaces API Version 2012-08-10 434

Amazon DynamoDB Developer Guide

• A DynamoDBMapperConfig.TableNameOverride object—Instructs the mapper instance
to ignore the table name specified by a class's DynamoDBTable annotation, and instead use a
different table name that you supply. This is useful when partitioning your data into multiple
tables at runtime.

You can override the default configuration object for DynamoDBMapper per operation, as needed.

DynamoDB and optimistic locking with version number

Optimistic locking is a strategy to ensure that the client-side item that you are updating (or
deleting) is the same as the item in Amazon DynamoDB. If you use this strategy, your database
writes are protected from being overwritten by the writes of others, and vice versa.

With optimistic locking, each item has an attribute that acts as a version number. If you retrieve
an item from a table, the application records the version number of that item. You can update
the item, but only if the version number on the server side has not changed. If there is a version
mismatch, it means that someone else has modified the item before you did. The update attempt
fails, because you have a stale version of the item. If this happens, try again by retrieving the
item and then trying to update it. Optimistic locking prevents you from accidentally overwriting
changes that were made by others. It also prevents others from accidentally overwriting your
changes.

While you can implement your own optimistic locking strategy, the Amazon SDK for Java provides
the @DynamoDBVersionAttribute annotation. In the mapping class for your table, you
designate one property to store the version number, and mark it using this annotation. When you
save an object, the corresponding item in the DynamoDB table will have an attribute that stores
the version number. The DynamoDBMapper assigns a version number when you first save the
object, and it automatically increments the version number each time you update the item. Your
update or delete requests succeed only if the client-side object version matches the corresponding
version number of the item in the DynamoDB table.

ConditionalCheckFailedException is thrown if:

• You use optimistic locking with @DynamoDBVersionAttribute and the version value on the
server is different from the value on the client side.

• You specify your own conditional constraints while saving data by using DynamoDBMapper with
DynamoDBSaveExpression and these constraints failed.

Higher-level programming interfaces API Version 2012-08-10 435

Amazon DynamoDB Developer Guide

Note

• DynamoDB global tables use a “last writer wins” reconciliation between concurrent
updates. If you use global tables, last writer policy wins. So in this case, the locking
strategy does not work as expected.

• DynamoDBMapper transactional write operations do not support
@DynamoDBVersionAttribute annotation and condition expressions on
the same object. If an object within a transactional write is annotated with
@DynamoDBVersionAttribute and also has a condition expression, then an
SdkClientException will be thrown.

For example, the following Java code defines a CatalogItem class that has several properties. The
Version property is tagged with the @DynamoDBVersionAttribute annotation.

Example

@DynamoDBTable(tableName="ProductCatalog")
public class CatalogItem {

 private Integer id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;
 private String someProp;
 private Long version;

 @DynamoDBHashKey(attributeName="Id")
 public Integer getId() { return id; }
 public void setId(Integer Id) { this.id = Id; }

 @DynamoDBAttribute(attributeName="Title")
 public String getTitle() { return title; }
 public void setTitle(String title) { this.title = title; }

 @DynamoDBAttribute(attributeName="ISBN")
 public String getISBN() { return ISBN; }
 public void setISBN(String ISBN) { this.ISBN = ISBN;}

 @DynamoDBAttribute(attributeName = "Authors")

Higher-level programming interfaces API Version 2012-08-10 436

Amazon DynamoDB Developer Guide

 public Set<String> getBookAuthors() { return bookAuthors; }
 public void setBookAuthors(Set<String> bookAuthors) { this.bookAuthors =
 bookAuthors; }

 @DynamoDBIgnore
 public String getSomeProp() { return someProp;}
 public void setSomeProp(String someProp) {this.someProp = someProp;}

 @DynamoDBVersionAttribute
 public Long getVersion() { return version; }
 public void setVersion(Long version) { this.version = version;}
}

You can apply the @DynamoDBVersionAttribute annotation to nullable types provided by the
primitive wrappers classes that provide a nullable type, such as Long and Integer.

Optimistic locking has the following impact on these DynamoDBMapper methods:

• save — For a new item, the DynamoDBMapper assigns an initial version number of 1. If you
retrieve an item, update one or more of its properties, and attempt to save the changes, the save
operation succeeds only if the version number on the client side and the server side match. The
DynamoDBMapper increments the version number automatically.

• delete — The delete method takes an object as a parameter, and the DynamoDBMapper
performs a version check before deleting the item. The version check can be disabled if
DynamoDBMapperConfig.SaveBehavior.CLOBBER is specified in the request.

The internal implementation of optimistic locking within DynamoDBMapper uses conditional
update and conditional delete support provided by DynamoDB.

• transactionWrite —

• Put — For a new item, the DynamoDBMapper assigns an initial version number of 1. If you
retrieve an item, update one or more of its properties, and attempt to save the changes, the
put operation succeeds only if the version number on the client side and the server side match.
The DynamoDBMapper increments the version number automatically.

• Update — For a new item, the DynamoDBMapper assigns an initial version number of 1. If you
retrieve an item, update one or more of its properties, and attempt to save the changes, the
update operation succeeds only if the version number on the client side and the server side
match. The DynamoDBMapper increments the version number automatically.

Higher-level programming interfaces API Version 2012-08-10 437

Amazon DynamoDB Developer Guide

• Delete — The DynamoDBMapper performs a version check before deleting the item. The
delete operation succeeds only if the version number on the client side and the server side
match.

• ConditionCheck — The @DynamoDBVersionAttribute annotation is not supported
for ConditionCheck operations. An SdkClientException will be thrown when a
ConditionCheck item is annotated with @DynamoDBVersionAttribute.

Disabling optimistic locking

To disable optimistic locking, you can change the DynamoDBMapperConfig.SaveBehavior
enumeration value from UPDATE to CLOBBER. You can do this by creating a
DynamoDBMapperConfig instance that skips version checking and use this instance for all your
requests. For information about DynamoDBMapperConfig.SaveBehavior and other optional
DynamoDBMapper parameters, see Optional configuration settings for DynamoDBMapper .

You can also set locking behavior for a specific operation only. For example, the
following Java snippet uses the DynamoDBMapper to save a catalog item. It specifies
DynamoDBMapperConfig.SaveBehavior by adding the optional DynamoDBMapperConfig
parameter to the save method.

Note

The transactionWrite method does not support DynamoDBMapperConfig.SaveBehavior
configuration. Disabling optimistic locking for transactionWrite is not supported.

Example

DynamoDBMapper mapper = new DynamoDBMapper(client);

// Load a catalog item.
CatalogItem item = mapper.load(CatalogItem.class, 101);
item.setTitle("This is a new title for the item");
...
// Save the item.
mapper.save(item,
 new DynamoDBMapperConfig(
 DynamoDBMapperConfig.SaveBehavior.CLOBBER));

Higher-level programming interfaces API Version 2012-08-10 438

Amazon DynamoDB Developer Guide

Mapping arbitrary data in DynamoDB

In addition to the supported Java types (see Supported data types for DynamoDBMapper for
Java), you can use types in your application for which there is no direct mapping to the Amazon
DynamoDB types. To map these types, you must provide an implementation that converts
your complex type to a DynamoDB supported type and vice versa, and annotate the complex
type accessor method using the @DynamoDBTypeConverted annotation. The converter code
transforms data when objects are saved or loaded. It is also used for all operations that consume
complex types. Note that when comparing data during query and scan operations, the comparisons
are made against the data stored in DynamoDB.

For example, consider the following CatalogItem class that defines a property, Dimension,
that is of DimensionType. This property stores the item dimensions as height, width, and
thickness. Assume that you decide to store these item dimensions as a string (such as 8.5x11x.05)
in DynamoDB. The following example provides converter code that converts the DimensionType
object to a string and a string to the DimensionType.

Note

This code example assumes that you have already loaded data into DynamoDB for your
account by following the instructions in the Creating tables and loading data for code
examples in DynamoDB section.
For step-by-step instructions to run the following example, see Java code examples.

Example

public class DynamoDBMapperExample {

 static AmazonDynamoDB client;

 public static void main(String[] args) throws IOException {

 // Set the AWS region you want to access.
 Regions usWest2 = Regions.US_WEST_2;
 client = AmazonDynamoDBClientBuilder.standard().withRegion(usWest2).build();

 DimensionType dimType = new DimensionType();
 dimType.setHeight("8.00");
 dimType.setLength("11.0");

Higher-level programming interfaces API Version 2012-08-10 439

Amazon DynamoDB Developer Guide

 dimType.setThickness("1.0");

 Book book = new Book();
 book.setId(502);
 book.setTitle("Book 502");
 book.setISBN("555-5555555555");
 book.setBookAuthors(new HashSet<String>(Arrays.asList("Author1", "Author2")));
 book.setDimensions(dimType);

 DynamoDBMapper mapper = new DynamoDBMapper(client);
 mapper.save(book);

 Book bookRetrieved = mapper.load(Book.class, 502);
 System.out.println("Book info: " + "\n" + bookRetrieved);

 bookRetrieved.getDimensions().setHeight("9.0");
 bookRetrieved.getDimensions().setLength("12.0");
 bookRetrieved.getDimensions().setThickness("2.0");

 mapper.save(bookRetrieved);

 bookRetrieved = mapper.load(Book.class, 502);
 System.out.println("Updated book info: " + "\n" + bookRetrieved);
 }

 @DynamoDBTable(tableName = "ProductCatalog")
 public static class Book {
 private int id;
 private String title;
 private String ISBN;
 private Set<String> bookAuthors;
 private DimensionType dimensionType;

 // Partition key
 @DynamoDBHashKey(attributeName = "Id")
 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 @DynamoDBAttribute(attributeName = "Title")

Higher-level programming interfaces API Version 2012-08-10 440

Amazon DynamoDB Developer Guide

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 @DynamoDBAttribute(attributeName = "ISBN")
 public String getISBN() {
 return ISBN;
 }

 public void setISBN(String ISBN) {
 this.ISBN = ISBN;
 }

 @DynamoDBAttribute(attributeName = "Authors")
 public Set<String> getBookAuthors() {
 return bookAuthors;
 }

 public void setBookAuthors(Set<String> bookAuthors) {
 this.bookAuthors = bookAuthors;
 }

 @DynamoDBTypeConverted(converter = DimensionTypeConverter.class)
 @DynamoDBAttribute(attributeName = "Dimensions")
 public DimensionType getDimensions() {
 return dimensionType;
 }

 @DynamoDBAttribute(attributeName = "Dimensions")
 public void setDimensions(DimensionType dimensionType) {
 this.dimensionType = dimensionType;
 }

 @Override
 public String toString() {
 return "Book [ISBN=" + ISBN + ", bookAuthors=" + bookAuthors + ",
 dimensionType= "
 + dimensionType.getHeight() + " X " + dimensionType.getLength() + "
 X "
 + dimensionType.getThickness()

Higher-level programming interfaces API Version 2012-08-10 441

Amazon DynamoDB Developer Guide

 + ", Id=" + id + ", Title=" + title + "]";
 }
 }

 static public class DimensionType {

 private String length;
 private String height;
 private String thickness;

 public String getLength() {
 return length;
 }

 public void setLength(String length) {
 this.length = length;
 }

 public String getHeight() {
 return height;
 }

 public void setHeight(String height) {
 this.height = height;
 }

 public String getThickness() {
 return thickness;
 }

 public void setThickness(String thickness) {
 this.thickness = thickness;
 }
 }

 // Converts the complex type DimensionType to a string and vice-versa.
 static public class DimensionTypeConverter implements DynamoDBTypeConverter<String,
 DimensionType> {

 @Override
 public String convert(DimensionType object) {
 DimensionType itemDimensions = (DimensionType) object;
 String dimension = null;
 try {

Higher-level programming interfaces API Version 2012-08-10 442

Amazon DynamoDB Developer Guide

 if (itemDimensions != null) {
 dimension = String.format("%s x %s x %s",
 itemDimensions.getLength(), itemDimensions.getHeight(),
 itemDimensions.getThickness());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return dimension;
 }

 @Override
 public DimensionType unconvert(String s) {

 DimensionType itemDimension = new DimensionType();
 try {
 if (s != null && s.length() != 0) {
 String[] data = s.split("x");
 itemDimension.setLength(data[0].trim());
 itemDimension.setHeight(data[1].trim());
 itemDimension.setThickness(data[2].trim());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 return itemDimension;
 }
 }
}

DynamoDBMapper examples

The Amazon SDK for Java provides a DynamoDBMapper class, allowing you to map your client-side
classes to DynamoDB tables. To use DynamoDBMapper, you define the relationship between items
in a DynamoDB table and their corresponding object instances in your code. The DynamoDBMapper
class enables you to perform various create, read, update, and delete (CRUD) operations on items,
and run queries and scans against tables.

To learn more about how to use DynamoDBMapper, see DynamoDB Examples Using the Amazon
SDK for Java in the Amazon SDK for Java 1.x Developer Guide.

Higher-level programming interfaces API Version 2012-08-10 443

https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/examples-dynamodb.html
https://docs.amazonaws.cn/sdk-for-java/v1/developer-guide/examples-dynamodb.html

Amazon DynamoDB Developer Guide

Java 2.x: DynamoDB Enhanced Client

The DynamoDB enhanced client is a high-level library that is part of the Amazon SDK for Java
version 2 (v2). It offers a straightforward way to map client-side classes to DynamoDB tables. You
define the relationships between tables and their corresponding model classes in your code. After
you define those relationships, you can intuitively perform various create, read, update, or delete
(CRUD) operations on tables or items in DynamoDB.

For more information on how you can use the enhanced client with DynamoDB, see Using the
DynamoDB Enhanced Client in the Amazon SDK for Java 2.x .

Working with the .NET document model in DynamoDB

The Amazon SDK for .NET provides document model classes that wrap some of the low-level
Amazon DynamoDB operations, further simplifying your coding. In the document model, the
primary classes are Table and Document. The Table class provides data operation methods such
as PutItem, GetItem, and DeleteItem. It also provides the Query and the Scan methods. The
Document class represents a single item in a table.

The preceding document model classes are available in the
Amazon.DynamoDBv2.DocumentModel namespace.

Note

You can't use the document model classes to create, update, and delete tables. However,
the document model does support most common data operations.

Topics

• Supported data types

Supported data types

The document model supports a set of primitive .NET data types and collections data types. The
model supports the following primitive data types.

• bool

• byte

Higher-level programming interfaces API Version 2012-08-10 444

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html

Amazon DynamoDB Developer Guide

• char

• DateTime

• decimal

• double

• float

• Guid

• Int16

• Int32

• Int64

• SByte

• string

• UInt16

• UInt32

• UInt64

The following table summarizes the mapping of the preceding .NET types to the DynamoDB types.

.NET primitive type DynamoDB type

All number types N (number type)

All string types S (string type)

MemoryStream, byte[] B (binary type)

bool N (number type). 0 represents false and 1
represents true.

DateTime S (string type). The DateTime values are
stored as ISO-8601 formatted strings.

Guid S (string type).

Collection types (List, HashSet, and array) BS (binary set) type, SS (string set) type, and
NS (number set) type

Higher-level programming interfaces API Version 2012-08-10 445

Amazon DynamoDB Developer Guide

Amazon SDK for .NET defines types for mapping DynamoDB's Boolean, null, list and map types
to .NET document model API:

• Use DynamoDBBool for Boolean type.

• Use DynamoDBNull for null type.

• Use DynamoDBList for list type.

• Use Document for map type.

Note

• Empty binary values are supported.

• Reading of empty string values is supported. Empty string attribute values are supported
within attribute values of string Set type while writing to DynamoDB. Empty string
attribute values of string type and empty string values contained within List or Map type
are dropped from write requests

Working with the .NET object persistence model and DynamoDB

The Amazon SDK for .NET provides an object persistence model that enables you to map your
client-side classes to Amazon DynamoDB tables. Each object instance then maps to an item in the
corresponding tables. To save your client-side objects to the tables, the object persistence model
provides the DynamoDBContext class, an entry point to DynamoDB. This class provides you a
connection to DynamoDB and enables you to access tables, perform various CRUD operations, and
run queries.

The object persistence model provides a set of attributes to map client-side classes to tables, and
properties/fields to table attributes.

Note

The object persistence model does not provide an API to create, update, or delete tables. It
provides only data operations. You can use only the Amazon SDK for .NET low-level API to
create, update, and delete tables.

Higher-level programming interfaces API Version 2012-08-10 446

Amazon DynamoDB Developer Guide

The following example shows how the object persistence model works. It starts with the
ProductCatalog table. It has Id as the primary key.

ProductCatalog(Id, ...)

Suppose that you have a Book class with Title, ISBN, and Authors properties. You can map
the Book class to the ProductCatalog table by adding the attributes defined by the object
persistence model, as shown in the following C# code example.

Example

[DynamoDBTable("ProductCatalog")]
 public class Book
 {
 [DynamoDBHashKey]
 public int Id { get; set; }

 public string Title { get; set; }
 public int ISBN { get; set; }

 [DynamoDBProperty("Authors")]
 public List<string> BookAuthors { get; set; }

 [DynamoDBIgnore]
 public string CoverPage { get; set; }
 }

In the preceding example, the DynamoDBTable attribute maps the Book class to the
ProductCatalog table.

The object persistence model supports both the explicit and default mapping between class
properties and table attributes.

• Explicit mapping—To map a property to a primary key, you must use the DynamoDBHashKey
and DynamoDBRangeKey object persistence model attributes. Additionally, for the nonprimary
key attributes, if a property name in your class and the corresponding table attribute to which
you want to map it are not the same, you must define the mapping by explicitly adding the
DynamoDBProperty attribute.

In the preceding example, the Id property maps to the primary key with the same name, and the
BookAuthors property maps to the Authors attribute in the ProductCatalog table.

Higher-level programming interfaces API Version 2012-08-10 447

Amazon DynamoDB Developer Guide

• Default mapping—By default, the object persistence model maps the class properties to the
attributes with the same name in the table.

In the preceding example, the properties Title and ISBN map to the attributes with the same
name in the ProductCatalog table.

You don't have to map every single class property. You identify these properties by adding the
DynamoDBIgnore attribute. When you save a Book instance to the table, the DynamoDBContext
does not include the CoverPage property. It also does not return this property when you retrieve
the book instance.

You can map properties of .NET primitive types such as int and string. You also can map any
arbitrary data types as long as you provide an appropriate converter to map the arbitrary data to
one of the DynamoDB types. To learn about mapping arbitrary types, see Mapping arbitrary data
with DynamoDB using the Amazon SDK for .NET object persistence model.

The object persistence model supports optimistic locking. During an update operation, this ensures
that you have the latest copy of the item you are about to update. For more information, see
Optimistic locking using DynamoDB and the Amazon SDK for .NET object persistence model.

For more information, see the topics below.

Topics

• Supported data types

• DynamoDB attributes from the .NET object persistence model

• DynamoDBContext class from the .NET object persistence model

• Optimistic locking using DynamoDB and the Amazon SDK for .NET object persistence model

• Mapping arbitrary data with DynamoDB using the Amazon SDK for .NET object persistence
model

Supported data types

The object persistence model supports a set of primitive .NET data types, collections, and arbitrary
data types. The model supports the following primitive data types.

• bool

• byte

Higher-level programming interfaces API Version 2012-08-10 448

Amazon DynamoDB Developer Guide

• char

• DateTime

• decimal

• double

• float

• Int16

• Int32

• Int64

• SByte

• string

• UInt16

• UInt32

• UInt64

The object persistence model also supports the .NET collection types. DynamoDBContext is able to
convert concrete collection types and simple Plain Old CLR Objects (POCOs).

The following table summarizes the mapping of the preceding .NET types to the DynamoDB types.

.NET primitive type DynamoDB type

All number types N (number type)

All string types S (string type)

MemoryStream, byte[] B (binary type)

bool N (number type). 0 represents false and 1
represents true.

Collection types BS (binary set) type, SS (string set) type, and
NS (number set) type

DateTime S (string type). The DateTime values are
stored as ISO-8601 formatted strings.

Higher-level programming interfaces API Version 2012-08-10 449

Amazon DynamoDB Developer Guide

The object persistence model also supports arbitrary data types. However, you must provide
converter code to map the complex types to the DynamoDB types.

Note

• Empty binary values are supported.

• Reading of empty string values is supported. Empty string attribute values are supported
within attribute values of string Set type while writing to DynamoDB. Empty string
attribute values of string type and empty string values contained within List or Map type
are dropped from write requests

DynamoDB attributes from the .NET object persistence model

This section describes the attributes that the object persistence model offers so that you can map
your classes and properties to DynamoDB tables and attributes.

Note

In the following attributes, only DynamoDBTable and DynamoDBHashKey are required.

DynamoDBGlobalSecondaryIndexHashKey

Maps a class property to the partition key of a global secondary index. Use this attribute if you
need to Query a global secondary index.

DynamoDBGlobalSecondaryIndexRangeKey

Maps a class property to the sort key of a global secondary index. Use this attribute if you need to
Query a global secondary index and want to refine your results using the index sort key.

DynamoDBHashKey

Maps a class property to the partition key of the table's primary key. The primary key attributes
cannot be a collection type.

The following C# code example maps the Book class to the ProductCatalog table, and the Id
property to the table's primary key partition key.

Higher-level programming interfaces API Version 2012-08-10 450

Amazon DynamoDB Developer Guide

[DynamoDBTable("ProductCatalog")]
public class Book
{
 [DynamoDBHashKey]
 public int Id { get; set; }

 // Additional properties go here.
}

DynamoDBIgnore

Indicates that the associated property should be ignored. If you don't want to save any of your
class properties, you can add this attribute to instruct DynamoDBContext not to include this
property when saving objects to the table.

DynamoDBLocalSecondaryIndexRangeKey

Maps a class property to the sort key of a local secondary index. Use this attribute if you need to
Query a local secondary index and want to refine your results using the index sort key.

DynamoDBProperty

Maps a class property to a table attribute. If the class property maps to a table attribute of the
same name, you don't need to specify this attribute. However, if the names are not the same, you
can use this tag to provide the mapping. In the following C# statement, the DynamoDBProperty
maps the BookAuthors property to the Authors attribute in the table.

[DynamoDBProperty("Authors")]
public List<string> BookAuthors { get; set; }

DynamoDBContext uses this mapping information to create the Authors attribute when saving
object data to the corresponding table.

DynamoDBRenamable

Specifies an alternative name for a class property. This is useful if you are writing a custom
converter for mapping arbitrary data to a DynamoDB table where the name of a class property is
different from a table attribute.

Higher-level programming interfaces API Version 2012-08-10 451

Amazon DynamoDB Developer Guide

DynamoDBRangeKey

Maps a class property to the sort key of the table's primary key. If the table has a composite
primary key (partition key and sort key), you must specify both the DynamoDBHashKey and
DynamoDBRangeKey attributes in your class mapping.

For example, the sample table Reply has a primary key made of the Id partition key and
Replenishment sort key. The following C# code example maps the Reply class to the Reply
table. The class definition also indicates that two of its properties map to the primary key.

[DynamoDBTable("Reply")]
public class Reply
{
 [DynamoDBHashKey]
 public int ThreadId { get; set; }
 [DynamoDBRangeKey]
 public string Replenishment { get; set; }

 // Additional properties go here.
}

DynamoDBTable

Identifies the target table in DynamoDB to which the class maps. For example, the following C#
code example maps the Developer class to the People table in DynamoDB.

[DynamoDBTable("People")]
public class Developer { ...}

This attribute can be inherited or overridden.

• The DynamoDBTable attribute can be inherited. In the preceding example, if you add a new
class, Lead, that inherits from the Developer class, it also maps to the People table. Both the
Developer and Lead objects are stored in the People table.

• The DynamoDBTable attribute can also be overridden. In the following C# code example,
the Manager class inherits from the Developer class. However, the explicit addition of the
DynamoDBTable attribute maps the class to another table (Managers).

[DynamoDBTable("Managers")]
public class Manager : Developer { ...}

Higher-level programming interfaces API Version 2012-08-10 452

Amazon DynamoDB Developer Guide

You can add the optional parameter, LowerCamelCaseProperties, to request DynamoDB to
make the first letter of the property name lowercase when storing the objects to a table, as shown
in the following C# example.

[DynamoDBTable("People", LowerCamelCaseProperties=true)]
public class Developer
{
 string DeveloperName;
 ...
}

When saving instances of the Developer class, DynamoDBContext saves the DeveloperName
property as the developerName.

DynamoDBVersion

Identifies a class property for storing the item version number. For more information about
versioning, see Optimistic locking using DynamoDB and the Amazon SDK for .NET object
persistence model.

DynamoDBContext class from the .NET object persistence model

The DynamoDBContext class is the entry point to the Amazon DynamoDB database. It provides a
connection to DynamoDB and enables you to access your data in various tables, perform various
CRUD operations, and run queries. The DynamoDBContext class provides the following methods.

Topics

• CreateMultiTableBatchGet

• CreateMultiTableBatchWrite

• CreateBatchGet

• CreateBatchWrite

• Delete

• Dispose

• ExecuteBatchGet

• ExecuteBatchWrite

• FromDocument

• FromQuery

Higher-level programming interfaces API Version 2012-08-10 453

Amazon DynamoDB Developer Guide

• FromScan

• GetTargetTable

• Load

• Query

• Save

• Scan

• ToDocument

• Specifying optional parameters for DynamoDBContext

CreateMultiTableBatchGet

Creates a MultiTableBatchGet object, composed of multiple individual BatchGet objects. Each
of these BatchGet objects can be used for retrieving items from a single DynamoDB table.

To retrieve the items from tables, use the ExecuteBatchGet method, passing the
MultiTableBatchGet object as a parameter.

CreateMultiTableBatchWrite

Creates a MultiTableBatchWrite object, composed of multiple individual BatchWrite objects.
Each of these BatchWrite objects can be used for writing or deleting items in a single DynamoDB
table.

To write to tables, use the ExecuteBatchWrite method, passing the MultiTableBatchWrite
object as a parameter.

CreateBatchGet

Creates a BatchGet object that you can use to retrieve multiple items from a table.

CreateBatchWrite

Creates a BatchWrite object that you can use to put multiple items into a table, or to delete
multiple items from a table.

Delete

Deletes an item from the table. The method requires the primary key of the item you want to
delete. You can provide either the primary key value or a client-side object containing a primary
key value as a parameter to this method.

Higher-level programming interfaces API Version 2012-08-10 454

Amazon DynamoDB Developer Guide

• If you specify a client-side object as a parameter and you have enabled optimistic locking, the
delete succeeds only if the client-side and the server-side versions of the object match.

• If you specify only the primary key value as a parameter, the delete succeeds regardless of
whether you have enabled optimistic locking or not.

Note

To perform this operation in the background, use the DeleteAsync method instead.

Dispose

Disposes of all managed and unmanaged resources.

ExecuteBatchGet

Reads data from one or more tables, processing all of the BatchGet objects in a
MultiTableBatchGet.

Note

To perform this operation in the background, use the ExecuteBatchGetAsync method
instead.

ExecuteBatchWrite

Writes or deletes data in one or more tables, processing all of the BatchWrite objects in a
MultiTableBatchWrite.

Note

To perform this operation in the background, use the ExecuteBatchWriteAsync method
instead.

FromDocument

Given an instance of a Document, the FromDocument method returns an instance of a client-side
class.

Higher-level programming interfaces API Version 2012-08-10 455

Amazon DynamoDB Developer Guide

This is helpful if you want to use the document model classes along with the object persistence
model to perform any data operations. For more information about the document model classes
provided by the Amazon SDK for .NET, see Working with the .NET document model in DynamoDB.

Suppose that you have a Document object named doc, that contains a representation of a Forum
item. (To see how to construct this object, see the description for the ToDocument method later in
this topic.) You can use FromDocument to retrieve the Forum item from the Document, as shown
in the following C# code example.

Example

forum101 = context.FromDocument<Forum>(101);

Note

If your Document object implements the IEnumerable interface, you can use the
FromDocuments method instead. This allows you to iterate over all of the class instances
in the Document.

FromQuery

Runs a Query operation, with the query parameters defined in a QueryOperationConfig object.

Note

To perform this operation in the background, use the FromQueryAsync method instead.

FromScan

Runs a Scan operation, with the scan parameters defined in a ScanOperationConfig object.

Note

To perform this operation in the background, use the FromScanAsync method instead.

Higher-level programming interfaces API Version 2012-08-10 456

Amazon DynamoDB Developer Guide

GetTargetTable

Retrieves the target table for the specified type. This is useful if you are writing a custom converter
for mapping arbitrary data to a DynamoDB table, and you need to determine which table is
associated with a custom data type.

Load

Retrieves an item from a table. The method requires only the primary key of the item you want to
retrieve.

By default, DynamoDB returns the item with values that are eventually consistent. For information
about the eventual consistency model, see DynamoDB read consistency.

Load or LoadAsync method calls the GetItem operation, which requires you to specify the primary
key for the table. Because GetItem ignores the IndexName parameter, you can’t load an item
using an index’s partition or sort key. Therefore, you must use the table's primary key to load an
item.

Note

To perform this operation in the background, use the LoadAsync method instead. To view
an example of using the LoadAsync method to perform high-level CRUD operations on a
DynamoDB table, see the following example.

 /// <summary>
 /// Shows how to perform high-level CRUD operations on an Amazon DynamoDB
 /// table.
 /// </summary>
 public class HighLevelItemCrud
 {
 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);
 await PerformCRUDOperations(context);
 }

 public static async Task PerformCRUDOperations(IDynamoDBContext context)
 {

Higher-level programming interfaces API Version 2012-08-10 457

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html

Amazon DynamoDB Developer Guide

 int bookId = 1001; // Some unique value.
 Book myBook = new Book
 {
 Id = bookId,
 Title = "object persistence-AWS SDK for.NET SDK-Book 1001",
 Isbn = "111-1111111001",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 };

 // Save the book to the ProductCatalog table.
 await context.SaveAsync(myBook);

 // Retrieve the book from the ProductCatalog table.
 Book bookRetrieved = await context.LoadAsync<Book>(bookId);

 // Update some properties.
 bookRetrieved.Isbn = "222-2222221001";

 // Update existing authors list with the following values.
 bookRetrieved.BookAuthors = new List<string> { " Author 1", "Author x" };
 await context.SaveAsync(bookRetrieved);

 // Retrieve the updated book. This time, add the optional
 // ConsistentRead parameter using DynamoDBContextConfig object.
 await context.LoadAsync<Book>(bookId, new DynamoDBContextConfig
 {
 ConsistentRead = true,
 });

 // Delete the book.
 await context.DeleteAsync<Book>(bookId);

 // Try to retrieve deleted book. It should return null.
 Book deletedBook = await context.LoadAsync<Book>(bookId, new
 DynamoDBContextConfig
 {
 ConsistentRead = true,
 });

 if (deletedBook == null)
 {
 Console.WriteLine("Book is deleted");
 }
 }

Higher-level programming interfaces API Version 2012-08-10 458

Amazon DynamoDB Developer Guide

 }

Query

Queries a table based on query parameters you provide.

You can query a table only if it has a composite primary key (partition key and sort key). When
querying, you must specify a partition key and a condition that applies to the sort key.

Suppose that you have a client-side Reply class mapped to the Reply table in DynamoDB. The
following C# code example queries the Reply table to find forum thread replies posted in the past
15 days. The Reply table has a primary key that has the Id partition key and the ReplyDateTime
sort key.

Example

DynamoDBContext context = new DynamoDBContext(client);

string replyId = "DynamoDB#DynamoDB Thread 1"; //Partition key
DateTime twoWeeksAgoDate = DateTime.UtcNow.Subtract(new TimeSpan(14, 0, 0, 0)); // Date
 to compare.
IEnumerable<Reply> latestReplies = context.Query<Reply>(replyId,
 QueryOperator.GreaterThan, twoWeeksAgoDate);

This returns a collection of Reply objects.

The Query method returns a "lazy-loaded" IEnumerable collection. It initially returns only
one page of results, and then makes a service call for the next page if needed. To obtain all the
matching items, you need to iterate only over the IEnumerable.

If your table has a simple primary key (partition key), you can't use the Query method. Instead, you
can use the Load method and provide the partition key to retrieve the item.

Note

To perform this operation in the background, use the QueryAsync method instead.

Higher-level programming interfaces API Version 2012-08-10 459

Amazon DynamoDB Developer Guide

Save

Saves the specified object to the table. If the primary key specified in the input object doesn't
exist in the table, the method adds a new item to the table. If the primary key exists, the method
updates the existing item.

If you have optimistic locking configured, the update succeeds only if the client and the server-side
versions of the item match. For more information, see Optimistic locking using DynamoDB and the
Amazon SDK for .NET object persistence model.

Note

To perform this operation in the background, use the SaveAsync method instead.

Scan

Performs an entire table scan.

You can filter scan results by specifying a scan condition. The condition can be evaluated on
any attributes in the table. Suppose that you have a client-side class Book mapped to the
ProductCatalog table in DynamoDB. The following C# example scans the table and returns only
the book items priced less than 0.

Example

IEnumerable<Book> itemsWithWrongPrice = context.Scan<Book>(
 new ScanCondition("Price", ScanOperator.LessThan, price),
 new ScanCondition("ProductCategory", ScanOperator.Equal, "Book")
);

The Scan method returns a "lazy-loaded" IEnumerable collection. It initially returns only one
page of results, and then makes a service call for the next page if needed. To obtain all the
matching items, you only need to iterate over the IEnumerable.

For performance reasons, you should query your tables and avoid a table scan.

Note

To perform this operation in the background, use the ScanAsync method instead.

Higher-level programming interfaces API Version 2012-08-10 460

Amazon DynamoDB Developer Guide

ToDocument

Returns an instance of the Document document model class from your class instance.

This is helpful if you want to use the document model classes along with the object persistence
model to perform any data operations. For more information about the document model classes
provided by the Amazon SDK for .NET, see Working with the .NET document model in DynamoDB.

Suppose that you have a client-side class mapped to the sample Forum table. You can then use a
DynamoDBContext to get an item as a Document object from the Forum table, as shown in the
following C# code example.

Example

DynamoDBContext context = new DynamoDBContext(client);

Forum forum101 = context.Load<Forum>(101); // Retrieve a forum by primary key.
Document doc = context.ToDocument<Forum>(forum101);

Specifying optional parameters for DynamoDBContext

When using the object persistence model, you can specify the following optional parameters for
the DynamoDBContext.

• ConsistentRead—When retrieving data using the Load, Query, or Scan operations, you can
add this optional parameter to request the latest values for the data.

• IgnoreNullValues—This parameter informs DynamoDBContext to ignore null values on
attributes during a Save operation. If this parameter is false (or if it is not set), then a null value
is interpreted as a directive to delete the specific attribute.

• SkipVersionCheck— This parameter informs DynamoDBContext not to compare versions
when saving or deleting an item. For more information about versioning, see Optimistic locking
using DynamoDB and the Amazon SDK for .NET object persistence model.

• TableNamePrefix— Prefixes all table names with a specific string. If this parameter is null (or if
it is not set), then no prefix is used.

• DynamoDBEntryConversion – Specifies the conversion schema that is used by the client. You
can set this parameter to version V1 or V2. V1 is the default version.

Based on the version that you set, the behavior of this parameter changes. For example:

Higher-level programming interfaces API Version 2012-08-10 461

Amazon DynamoDB Developer Guide

• In V1, the bool data type is converted to the N number type, where 0 represents false and 1
represents true. In V2, bool is converted to BOOL.

• In V2, lists and arrays aren’t grouped together with HashSets. Lists and arrays of numerics,
string-based types, and binary-based types are converted to the L (List) type, which can be
sent empty to update a list. This is unlike V1, where an empty list isn't sent over the wire.

In V1, collection types, such as List, HashSet, and arrays are treated the same. List, HashSet,
and array of numerics is converted to the NS (number set) type.

The following example sets the conversion schema version to V2, which changes the conversion
behavior between .NET types and DynamoDB data types.

var config = new DynamoDBContextConfig
{
 Conversion = DynamoDBEntryConversion.V2
};
var contextV2 = new DynamoDBContext(client, config);

The following C# example creates a new DynamoDBContext by specifying two of the preceding
optional parameters, ConsistentRead and SkipVersionCheck.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
...
DynamoDBContext context =
 new DynamoDBContext(client, new DynamoDBContextConfig { ConsistentRead = true,
 SkipVersionCheck = true});

DynamoDBContext includes these optional parameters with each request that you send using this
context.

Instead of setting these parameters at the DynamoDBContext level, you can specify them for
individual operations you run using DynamoDBContext, as shown in the following C# code
example. The example loads a specific book item. The Load method of DynamoDBContext
specifies the ConsistentRead and SkipVersionCheck optional parameters.

Higher-level programming interfaces API Version 2012-08-10 462

Amazon DynamoDB Developer Guide

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
...
DynamoDBContext context = new DynamoDBContext(client);
Book bookItem = context.Load<Book>(productId,new DynamoDBContextConfig{ ConsistentRead
 = true, SkipVersionCheck = true });

In this case, DynamoDBContext includes these parameters only when sending the Get request.

Optimistic locking using DynamoDB and the Amazon SDK for .NET object persistence model

Optimistic locking support in the object persistence model ensures that the item version for your
application is the same as the item version on the server side before updating or deleting the
item. Suppose that you retrieve an item for update. However, before you send your updates back,
some other application updates the same item. Now your application has a stale copy of the item.
Without optimistic locking, any update you perform will overwrite the update made by the other
application.

The optimistic locking feature of the object persistence model provides the DynamoDBVersion
tag that you can use to enable optimistic locking. To use this feature, you add a property to your
class for storing the version number. You add the DynamoDBVersion attribute to the property.
When you first save the object, the DynamoDBContext assigns a version number and increments
this value each time you update the item.

Your update or delete request succeeds only if the client-side object version matches the
corresponding version number of the item on the server side. If your application has a stale copy, it
must get the latest version from the server before it can update or delete that item.

The following C# code example defines a Book class with object persistence attributes mapping
it to the ProductCatalog table. The VersionNumber property in the class decorated with the
DynamoDBVersion attribute stores the version number value.

Example

[DynamoDBTable("ProductCatalog")]
 public class Book
 {
 [DynamoDBHashKey] //Partition key
 public int Id { get; set; }

Higher-level programming interfaces API Version 2012-08-10 463

Amazon DynamoDB Developer Guide

 [DynamoDBProperty]
 public string Title { get; set; }
 [DynamoDBProperty]
 public string ISBN { get; set; }
 [DynamoDBProperty("Authors")]
 public List<string> BookAuthors { get; set; }
 [DynamoDBVersion]
 public int? VersionNumber { get; set; }
 }

Note

You can apply the DynamoDBVersion attribute only to a nullable numeric primitive type
(such as int?).

Optimistic locking has the following impact on DynamoDBContext operations:

• For a new item, DynamoDBContext assigns initial version number 0. If you retrieve an
existing item, update one or more of its properties, and try to save the changes, the save
operation succeeds only if the version number on the client side and the server side match.
DynamoDBContext increments the version number. You don't need to set the version number.

• The Delete method provides overloads that can take either a primary key value or an object as
parameter, as shown in the following C# code example.

Example

DynamoDBContext context = new DynamoDBContext(client);
...
// Load a book.
Book book = context.Load<ProductCatalog>(111);
// Do other operations.
// Delete 1 - Pass in the book object.
context.Delete<ProductCatalog>(book);

// Delete 2 - Pass in the Id (primary key)
context.Delete<ProductCatalog>(222);

If you provide an object as the parameter, the delete succeeds only if the object version matches
the corresponding server-side item version. However, if you provide a primary key value as the

Higher-level programming interfaces API Version 2012-08-10 464

Amazon DynamoDB Developer Guide

parameter, DynamoDBContext is unaware of any version numbers, and it deletes the item
without making the version check.

Note that the internal implementation of optimistic locking in the object persistence model code
uses the conditional update and the conditional delete API actions in DynamoDB.

Disabling optimistic locking

To disable optimistic locking, you use the SkipVersionCheck configuration property. You can
set this property when creating DynamoDBContext. In this case, optimistic locking is disabled
for any requests that you make using the context. For more information, see Specifying optional
parameters for DynamoDBContext .

Instead of setting the property at the context level, you can disable optimistic locking for a specific
operation, as shown in the following C# code example. The example uses the context to delete a
book item. The Delete method sets the optional SkipVersionCheck property to true, disabling
version checking.

Example

DynamoDBContext context = new DynamoDBContext(client);
// Load a book.
Book book = context.Load<ProductCatalog>(111);
...
// Delete the book.
context.Delete<Book>(book, new DynamoDBContextConfig { SkipVersionCheck = true });

Mapping arbitrary data with DynamoDB using the Amazon SDK for .NET object persistence
model

In addition to the supported .NET types (see Supported data types), you can use types in your
application for which there is no direct mapping to the Amazon DynamoDB types. The object
persistence model supports storing data of arbitrary types as long as you provide the converter
to convert data from the arbitrary type to the DynamoDB type and vice versa. The converter code
transforms data during both the saving and loading of the objects.

You can create any types on the client-side. However the data stored in the tables is one of the
DynamoDB types, and during query and scan, any data comparisons made are against the data
stored in DynamoDB.

Higher-level programming interfaces API Version 2012-08-10 465

Amazon DynamoDB Developer Guide

The following C# code example defines a Book class with Id, Title, ISBN, and Dimension
properties. The Dimension property is of the DimensionType that describes Height, Width,
and Thickness properties. The example code provides the converter methods ToEntry and
FromEntry to convert data between the DimensionType and the DynamoDB string types. For
example, when saving a Book instance, the converter creates a book Dimension string such as
"8.5x11x.05". When you retrieve a book, it converts the string to a DimensionType instance.

The example maps the Book type to the ProductCatalog table. It saves a sample Book instance,
retrieves it, updates its dimensions, and saves the updated Book again.

For step-by-step instructions for testing the following example, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
{
 class HighLevelMappingArbitraryData
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {
 DynamoDBContext context = new DynamoDBContext(client);

 // 1. Create a book.
 DimensionType myBookDimensions = new DimensionType()
 {
 Length = 8M,
 Height = 11M,
 Thickness = 0.5M
 };

Higher-level programming interfaces API Version 2012-08-10 466

Amazon DynamoDB Developer Guide

 Book myBook = new Book
 {
 Id = 501,
 Title = "AWS SDK for .NET Object Persistence Model Handling
 Arbitrary Data",
 ISBN = "999-9999999999",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 Dimensions = myBookDimensions
 };

 context.Save(myBook);

 // 2. Retrieve the book.
 Book bookRetrieved = context.Load<Book>(501);

 // 3. Update property (book dimensions).
 bookRetrieved.Dimensions.Height += 1;
 bookRetrieved.Dimensions.Length += 1;
 bookRetrieved.Dimensions.Thickness += 0.2M;
 // Update the book.
 context.Save(bookRetrieved);

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message); }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }
 }
 }
 [DynamoDBTable("ProductCatalog")]
 public class Book
 {
 [DynamoDBHashKey] //Partition key
 public int Id
 {
 get; set;
 }
 [DynamoDBProperty]
 public string Title
 {
 get; set;
 }
 [DynamoDBProperty]

Higher-level programming interfaces API Version 2012-08-10 467

Amazon DynamoDB Developer Guide

 public string ISBN
 {
 get; set;
 }
 // Multi-valued (set type) attribute.
 [DynamoDBProperty("Authors")]
 public List<string> BookAuthors
 {
 get; set;
 }
 // Arbitrary type, with a converter to map it to DynamoDB type.
 [DynamoDBProperty(typeof(DimensionTypeConverter))]
 public DimensionType Dimensions
 {
 get; set;
 }
 }

 public class DimensionType
 {
 public decimal Length
 {
 get; set;
 }
 public decimal Height
 {
 get; set;
 }
 public decimal Thickness
 {
 get; set;
 }
 }

 // Converts the complex type DimensionType to string and vice-versa.
 public class DimensionTypeConverter : IPropertyConverter
 {
 public DynamoDBEntry ToEntry(object value)
 {
 DimensionType bookDimensions = value as DimensionType;
 if (bookDimensions == null) throw new ArgumentOutOfRangeException();

 string data = string.Format("{1}{0}{2}{0}{3}", " x ",

Higher-level programming interfaces API Version 2012-08-10 468

Amazon DynamoDB Developer Guide

 bookDimensions.Length, bookDimensions.Height,
 bookDimensions.Thickness);

 DynamoDBEntry entry = new Primitive
 {
 Value = data
 };
 return entry;
 }

 public object FromEntry(DynamoDBEntry entry)
 {
 Primitive primitive = entry as Primitive;
 if (primitive == null || !(primitive.Value is String) ||
 string.IsNullOrEmpty((string)primitive.Value))
 throw new ArgumentOutOfRangeException();

 string[] data = ((string)(primitive.Value)).Split(new string[] { " x " },
 StringSplitOptions.None);
 if (data.Length != 3) throw new ArgumentOutOfRangeException();

 DimensionType complexData = new DimensionType
 {
 Length = Convert.ToDecimal(data[0]),
 Height = Convert.ToDecimal(data[1]),
 Thickness = Convert.ToDecimal(data[2])
 };
 return complexData;
 }
 }
}

Running the code examples in this Developer Guide

The Amazon SDKs provide broad support for Amazon DynamoDB in the following languages:

• Java

• JavaScript in the browser

• .NET

• Node.js

• PHP

Running the code examples API Version 2012-08-10 469

http://www.amazonaws.cn/sdk-for-java
http://www.amazonaws.cn/sdk-for-browser
http://www.amazonaws.cn/sdk-for-net
http://www.amazonaws.cn/sdk-for-node-js
http://www.amazonaws.cn/sdk-for-php

Amazon DynamoDB Developer Guide

• Python

• Ruby

• C++

• Go

• Android

• iOS

The code examples in this developer guide provide more in-depth coverage of DynamoDB
operations, using the following programming languages:

• Java code examples

• .NET code examples

Before you can begin with this exercise, you need to create an Amazon account, get your access key
and secret key, and set up the Amazon Command Line Interface (Amazon CLI) on your computer.
For more information, see Setting up DynamoDB (web service) .

Note

If you are using the downloadable version of DynamoDB, you need to use the Amazon
CLI to create the tables and sample data. You also need to specify the --endpoint-url
parameter with each Amazon CLI command. For more information, see Setting the local
endpoint .

Creating tables and loading data for code examples in DynamoDB

See below for the basics on creating tables in DynamoDB, loading in a sample dataset, querying
the data, and updating the data.

• Step 1: Create a table in DynamoDB

• Step 2: Write data to a DynamoDB table

• Step 3: Read data from a DynamoDB table

• Step 4: Update data in a DynamoDB table

Running the code examples API Version 2012-08-10 470

http://www.amazonaws.cn/sdk-for-python
http://www.amazonaws.cn/sdk-for-ruby
http://www.amazonaws.cn/sdk-for-cpp
http://www.amazonaws.cn/sdk-for-go
http://www.amazonaws.cn/mobile/sdk/
http://www.amazonaws.cn/mobile/sdk/

Amazon DynamoDB Developer Guide

Java code examples

Topics

• Java: Setting your Amazon credentials

• Java: Setting the Amazon Region and endpoint

This Developer Guide contains Java code snippets and ready-to-run programs. You can find these
code examples in the following sections:

• Working with items and attributes in DynamoDB

• Working with tables and data in DynamoDB

• Querying tables in DynamoDB

• Scanning tables in DynamoDB

• Improving data access with secondary indexes in DynamoDB

• Java 1.x: DynamoDBMapper

• Change data capture for DynamoDB Streams

You can get started quickly by using Eclipse with the Amazon Toolkit for Eclipse. In addition
to a full-featured IDE, you also get the Amazon SDK for Java with automatic updates, and
preconfigured templates for building Amazon applications.

To run the Java code examples (using Eclipse)

1. Download and install the Eclipse IDE.

2. Download and install the Amazon Toolkit for Eclipse.

3. Start Eclipse, and on the Eclipse menu, choose File, New, and then Other.

4. In Select a wizard, choose Amazon, choose Amazon Java Project, and then choose Next.

5. In Create an Amazon Java, do the following:

a. In Project name, enter a name for your project.

b. In Select Account, choose your credentials profile from the list.

If this is your first time using the Amazon Toolkit for Eclipse, choose Configure Amazon
Accounts to set up your Amazon credentials.

6. Choose Finish to create the project.

Running the code examples API Version 2012-08-10 471

http://www.amazonaws.cn/eclipse/
http://www.eclipse.org
http://www.amazonaws.cn/eclipse/
http://www.amazonaws.cn/eclipse/

Amazon DynamoDB Developer Guide

7. From the Eclipse menu, choose File, New, and then Class.

8. In Java Class, enter a name for your class in Name (use the same name as the code example
that you want to run), and then choose Finish to create the class.

9. Copy the code example from the documentation page into the Eclipse editor.

10. To run the code, choose Run on the Eclipse menu.

The SDK for Java provides thread-safe clients for working with DynamoDB. As a best practice, your
applications should create one client and reuse the client between threads.

For more information, see the Amazon SDK for Java.

Note

The code examples in this guide are intended for use with the latest version of the Amazon
SDK for Java.
If you are using the Amazon Toolkit for Eclipse, you can configure automatic updates for
the SDK for Java. To do this in Eclipse, go to Preferences and choose Amazon Toolkit,
Amazon SDK for Java, Download new SDKs automatically.

Java: Setting your Amazon credentials

The SDK for Java requires that you provide Amazon credentials to your application at runtime. The
code examples in this guide assume that you are using an Amazon credentials file, as described in
Set up your Amazon credentials in the Amazon SDK for Java Developer Guide.

The following is an example of an Amazon credentials file named ~/.aws/credentials, where
the tilde character (~) represents your home directory.

[default]
aws_access_key_id = Amazon access key ID goes here
aws_secret_access_key = Secret key goes here

Java: Setting the Amazon Region and endpoint

By default, the code examples access DynamoDB in the US West (Oregon) Region. You can change
the Region by modifying the AmazonDynamoDB properties.

Running the code examples API Version 2012-08-10 472

http://www.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/set-up-creds.html

Amazon DynamoDB Developer Guide

The following code example instantiates a new AmazonDynamoDB.

import software.amazon.dynamodb.AmazonDynamoDBClientBuilder;
import com.amazonaws.regions.Regions;
...
// This client will default to US West (Oregon)
AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
.withRegion(Regions.US_WEST_2)
.build();

You can use the withRegion method to run your code against DynamoDB in any Region where
it is available. For a complete list, see Amazon regions and endpoints in the Amazon Web Services
General Reference.

If you want to run the code examples using DynamoDB locally on your computer, set the endpoint
as follows.

Amazon SDK V1

AmazonDynamoDB client =
 AmazonDynamoDBClientBuilder.standard().withEndpointConfiguration(
new AwsClientBuilder.EndpointConfiguration("http://localhost:8000", "us-west-2"))
.build();

Amazon SDK V2

DynamoDbClient client = DynamoDbClient.builder()
 .endpointOverride(URI.create("http://localhost:8000"))
 // The region is meaningless for local DynamoDb but required for client builder
 validation
 .region(Region.US_EAST_1)
 .credentialsProvider(StaticCredentialsProvider.create(
 AwsBasicCredentials.create("dummy-key", "dummy-secret")))
 .build();

.NET code examples

Topics

• .NET: Setting your Amazon credentials

• .NET: Setting the Amazon Region and endpoint

Running the code examples API Version 2012-08-10 473

https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region

Amazon DynamoDB Developer Guide

This guide contains .NET code snippets and ready-to-run programs. You can find these code
examples in the following sections:

• Working with items and attributes in DynamoDB

• Working with tables and data in DynamoDB

• Querying tables in DynamoDB

• Scanning tables in DynamoDB

• Improving data access with secondary indexes in DynamoDB

• Working with the .NET document model in DynamoDB

• Working with the .NET object persistence model and DynamoDB

• Change data capture for DynamoDB Streams

You can get started quickly by using the Amazon SDK for .NET with the Toolkit for Visual Studio.

To run the .NET code examples (using Visual Studio)

1. Download and install Microsoft Visual Studio.

2. Download and install the Toolkit for Visual Studio.

3. Start Visual Studio. Choose File, New, Project.

4. In New Project, choose Amazon Empty Project, and then choose OK.

5. In Amazon Access Credentials, choose Use existing profile, choose your credentials profile
from the list, and then choose OK.

If this is your first time using Toolkit for Visual Studio, choose Use a new profile to set up your
Amazon credentials.

6. In your Visual Studio project, choose the tab for your program's source code (Program.cs).
Copy the code example from the documentation page into the Visual Studio editor, replacing
any other code that you see in the editor.

7. If you see error messages of the form The type or namespace name...could not be found, you
need to install the Amazon SDK assembly for DynamoDB as follows:

a. In Solution Explorer, open the context (right-click) menu for your project, and then choose
Manage NuGet Packages.

b. In NuGet Package Manager, choose Browse.

c. In the search box, enter AWSSDK.DynamoDBv2, and wait for the search to complete.

Running the code examples API Version 2012-08-10 474

https://www.visualstudio.com
http://www.amazonaws.cn/visualstudio/

Amazon DynamoDB Developer Guide

d. Choose AWSSDK.DynamoDBv2, and then choose Install.

e. When the installation is complete, choose the Program.cs tab to return to your program.

8. To run the code, choose Start in the Visual Studio toolbar.

The Amazon SDK for .NET provides thread-safe clients for working with DynamoDB. As a best
practice, your applications should create one client and reuse the client between threads.

For more information, see Amazon SDK for .NET.

Note

The code examples in this guide are intended for use with the latest version of the Amazon
SDK for .NET.

.NET: Setting your Amazon credentials

The Amazon SDK for .NET requires that you provide Amazon credentials to your application at
runtime. The code examples in this guide assume that you are using the SDK Store to manage your
Amazon credentials file, as described in Using the SDK store in the Amazon SDK for .NET Developer
Guide.

The Toolkit for Visual Studio supports multiple sets of credentials from any number of accounts.
Each set is referred to as a profile. Visual Studio adds entries to the project's App.config file so
that your application can find the Amazon credentials at runtime.

The following example shows the default App.config file that is generated when you create a
new project using Toolkit for Visual Studio.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="AWSProfileName" value="default"/>
 <add key="AWSRegion" value="us-west-2" />
 </appSettings>
</configuration>

At runtime, the program uses the default set of Amazon credentials, as specified by the
AWSProfileName entry. The Amazon credentials themselves are kept in the SDK Store in

Running the code examples API Version 2012-08-10 475

http://www.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/net-dg-config-creds.html#sdk-store

Amazon DynamoDB Developer Guide

encrypted form. The Toolkit for Visual Studio provides a graphical user interface for managing your
credentials, all from within Visual Studio. For more information, see Specifying credentials in the
Amazon Toolkit for Visual Studio User Guide.

Note

By default, the code examples access DynamoDB in the US West (Oregon) Region. You can
change the Region by modifying the AWSRegion entry in the App.config file. You can set
AWSRegion to any Region where DynamoDB is available. For a complete list, see Amazon
regions and endpoints in the Amazon Web Services General Reference.

.NET: Setting the Amazon Region and endpoint

By default, the code examples access DynamoDB in the US West (Oregon) Region. You can change
the Region by modifying the AWSRegion entry in the App.config file. Or, you can change the
Region by modifying the AmazonDynamoDBClient properties.

The following code example instantiates a new AmazonDynamoDBClient. The client is modified so
that the code runs against DynamoDB in a different Region.

AmazonDynamoDBConfig clientConfig = new AmazonDynamoDBConfig();
// This client will access the US East 1 region.
clientConfig.RegionEndpoint = RegionEndpoint.USEast1;
AmazonDynamoDBClient client = new AmazonDynamoDBClient(clientConfig);

For a complete list of Regions, see Amazon regions and endpoints in the Amazon Web Services
General Reference.

If you want to run the code examples using DynamoDB locally on your computer, set the endpoint
as follows.

AmazonDynamoDBConfig clientConfig = new AmazonDynamoDBConfig();
// Set the endpoint URL
clientConfig.ServiceURL = "http://localhost:8000";
AmazonDynamoDBClient client = new AmazonDynamoDBClient(clientConfig);

Running the code examples API Version 2012-08-10 476

https://docs.amazonaws.cn/AWSToolkitVS/latest/UserGuide/tkv_setup.html#creds
https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region
https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region

Amazon DynamoDB Developer Guide

DynamoDB low-level API

The Amazon DynamoDB low-level API is the protocol-level interface for DynamoDB. At this level,
every HTTP(S) request must be correctly formatted and carry a valid digital signature.

The Amazon SDKs construct low-level DynamoDB API requests on your behalf and process the
responses from DynamoDB. This lets you focus on your application logic, instead of low-level
details. However, you can still benefit from a basic knowledge of how the low-level DynamoDB API
works.

For more information about the low-level DynamoDB API, see Amazon DynamoDB API Reference.

Note

DynamoDB Streams has its own low-level API, which is separate from that of DynamoDB
and is fully supported by the Amazon SDKs.
For more information, see Change data capture for DynamoDB Streams. For the low-level
DynamoDB Streams API, see the Amazon DynamoDB Streams API Reference.

The low-level DynamoDB API uses JavaScript Object Notation (JSON) as a wire protocol format.
JSON presents data in a hierarchy so that both data values and data structure are conveyed
simultaneously. Name-value pairs are defined in the format name:value. The data hierarchy is
defined by nested brackets of name-value pairs.

DynamoDB uses JSON only as a transport protocol, not as a storage format. The Amazon SDKs use
JSON to send data to DynamoDB, and DynamoDB responds with JSON. DynamoDB does not store
data persistently in JSON format.

Note

For more information about JSON, see Introducing JSON on the JSON.org website.

Topics

• Request format

• Response format

• Data type descriptors

Low-level API API Version 2012-08-10 477

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Streams.html
http://json.org

Amazon DynamoDB Developer Guide

• Numeric data

• Binary data

Request format

The DynamoDB low-level API accepts HTTP(S) POST requests as input. The Amazon SDKs construct
these requests for you.

Suppose that you have a table named Pets, with a key schema consisting of AnimalType
(partition key) and Name (sort key). Both of these attributes are of type string. To retrieve an item
from Pets, the Amazon SDK constructs the following request.

POST / HTTP/1.1
Host: dynamodb.<region>.<domain>;

Low-level API API Version 2012-08-10 478

Amazon DynamoDB Developer Guide

Accept-Encoding: identity
Content-Length: <PayloadSizeBytes>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.0
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
X-Amz-Date: <Date>
X-Amz-Target: DynamoDB_20120810.GetItem

{
 "TableName": "Pets",
 "Key": {
 "AnimalType": {"S": "Dog"},
 "Name": {"S": "Fido"}
 }
}

Note the following about this request:

• The Authorization header contains information required for DynamoDB to authenticate the
request. For more information, see Signing Amazon API requests and Signature Version 4 signing
process in the Amazon Web Services General Reference.

• The X-Amz-Target header contains the name of a DynamoDB operation: GetItem. (This is also
accompanied by the low-level API version, in this case 20120810.)

• The payload (body) of the request contains the parameters for the operation, in JSON format.
For the GetItem operation, the parameters are TableName and Key.

Response format

Upon receipt of the request, DynamoDB processes it and returns a response. For the request shown
previously, the HTTP(S) response payload contains the results from the operation, as shown in the
following example.

HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
x-amz-crc32: <Checksum>
Content-Type: application/x-amz-json-1.0
Content-Length: <PayloadSizeBytes>
Date: <Date>
{

Low-level API API Version 2012-08-10 479

https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon DynamoDB Developer Guide

 "Item": {
 "Age": {"N": "8"},
 "Colors": {
 "L": [
 {"S": "White"},
 {"S": "Brown"},
 {"S": "Black"}
]
 },
 "Name": {"S": "Fido"},
 "Vaccinations": {
 "M": {
 "Rabies": {
 "L": [
 {"S": "2009-03-17"},
 {"S": "2011-09-21"},
 {"S": "2014-07-08"}
]
 },
 "Distemper": {"S": "2015-10-13"}
 }
 },
 "Breed": {"S": "Beagle"},
 "AnimalType": {"S": "Dog"}
 }
}

At this point, the Amazon SDK returns the response data to your application for further processing.

Note

If DynamoDB can't process a request, it returns an HTTP error code and message. The
Amazon SDK propagates these to your application in the form of exceptions. For more
information, see Error handling with DynamoDB.

Data type descriptors

The low-level DynamoDB API protocol requires each attribute to be accompanied by a data type
descriptor. Data type descriptors are tokens that tell DynamoDB how to interpret each attribute.

Low-level API API Version 2012-08-10 480

Amazon DynamoDB Developer Guide

The examples in Request format and Response format show examples of how data type descriptors
are used. The GetItem request specifies S for the Pets key schema attributes (AnimalType and
Name), which are of type string. The GetItem response contains a Pets item with attributes of
type string (S), number (N), map (M), and list (L).

The following is a complete list of DynamoDB data type descriptors:

• S – String

• N – Number

• B – Binary

• BOOL – Boolean

• NULL – Null

• M – Map

• L – List

• SS – String Set

• NS – Number Set

• BS – Binary Set

Note

For detailed descriptions of DynamoDB data types, see Data types.

Numeric data

Different programming languages offer different levels of support for JSON. In some cases, you
might decide to use a third-party library for validating and parsing JSON documents.

Some third-party libraries build upon the JSON number type, providing their own types such as
int, long, or double. However, the native number data type in DynamoDB does not map exactly
to these other data types, so these type distinctions can cause conflicts. In addition, many JSON
libraries do not handle fixed-precision numeric values, and they automatically infer a double data
type for digit sequences that contain a decimal point.

To solve these problems, DynamoDB provides a single numeric type with no data loss. To avoid
unwanted implicit conversions to a double value, DynamoDB uses strings for the data transfer of

Low-level API API Version 2012-08-10 481

Amazon DynamoDB Developer Guide

numeric values. This approach provides flexibility for updating attribute values while maintaining
proper sorting semantics, such as putting the values "01", "2", and "03" in the proper sequence.

If number precision is important to your application, you should convert numeric values to strings
before you pass them to DynamoDB.

Binary data

DynamoDB supports binary attributes. However, JSON does not natively support encoding binary
data. To send binary data in a request, you will need to encode it in base64 format. Upon receiving
the request, DynamoDB decodes the base64 data back to binary.

The base64 encoding scheme used by DynamoDB is described at RFC 4648 on the Internet
Engineering Task Force (IETF) website.

Programming Amazon DynamoDB with Python and Boto3

This guide provides an orientation to programmers wanting to use Amazon DynamoDB with
Python. Learn about the different abstraction layers, configuration management, error handling,
controlling retry policies, managing keep-alive, and more.

Topics

• About Boto

• Using the Boto documentation

• Understanding the client and resource abstraction layers

• Using the table resource batch_writer

• Additional code examples that explore the client and resource layers

• Understanding how the Client and Resource objects interact with sessions and threads

• Customizing the Config object

• Error handling

• Logging

• Event hooks

• Pagination and the Paginator

• Waiters

Programming with Python API Version 2012-08-10 482

http://tools.ietf.org/html/rfc4648

Amazon DynamoDB Developer Guide

About Boto

You can access DynamoDB from Python by using the official Amazon SDK for Python, commonly
referred to as Boto3. The name Boto (pronounced boh-toh) comes from a freshwater dolphin
native to the Amazon River. The Boto3 library is the library’s third major version, first released in
2015. The Boto3 library is quite large, as it supports all Amazon services, not just DynamoDB. This
orientation targets only the parts of Boto3 relevant to DynamoDB.

Boto is maintained and published by Amazon as open-source project hosted on GitHub. It’s split
into two packages: Botocore and Boto3.

• Botocore provides the low-level functionality. In Botocore you’ll find the client, session,
credentials, config, and exception classes.

• Boto3 builds on top of Botocore. It offers a higher-level, more Pythonic interface. Specifically, it
exposes a DynamoDB table as a Resource and offers a simpler, more elegant interface compared
to the lower-level, service-oriented client interface.

Because these projects are hosted on GitHub, you can view the source code, track open issues, or
submit your own issues.

Using the Boto documentation

Get started with the Boto documentation with the following resources:

• Begin with the Quickstart section that provides a solid starting point for the package
installation. Go there for instructions on getting Boto3 installed if it’s not already (Boto3 is often
automatically available within Amazon services such as Amazon Lambda).

• After that, focus on the documentation’s DynamoDB guide. It shows you how to perform the
basic DynamoDB activities: create and delete a table, manipulate items, run batch operations,
run a query, and perform a scan. Its examples use the resource interface. When you see
boto3.resource('dynamodb') that indicates you’re using the higher-level resource
interface.

• After the guide, you can review the DynamoDB reference. This landing page provides
an exhaustive list of the classes and methods available to you. At the top, you’ll see the
DynamoDB.Client class. This provides low-level access to all the control-plane and data-plane
operations. At the bottom, look at the DynamoDB.ServiceResource class. This is the higher-

About Boto API Version 2012-08-10 483

https://github.com/boto/botocore
https://github.com/boto/boto3
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/dynamodb.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html

Amazon DynamoDB Developer Guide

level Pythonic interface. With it you can create a table, do batch operations across tables, or
obtain a DynamoDB.ServiceResource.Table instance for table-specific actions.

Understanding the client and resource abstraction layers

The two interfaces you'll be working with are the client interface and the resource interface.

• The low-level client interface provides a 1-to-1 mapping to the underlying service API. Every API
offered by DynamoDB is available through the client. This means the client interface can provide
complete functionality, but it's often more verbose and complex to use.

• The higher-level resource interface does not provide a 1-to-1 mapping of the underlying service
API. However, it provides methods that make it more convenient for you to access the service
such as batch_writer.

Here’s an example of inserting an item using the client interface. Notice how all values are passed
as a map with the key indicating their type ('S' for string, 'N' for number) and their value as a string.
This is known as DynamoDB JSON format.

import boto3

dynamodb = boto3.client('dynamodb')

dynamodb.put_item(
 TableName='YourTableName',
 Item={
 'pk': {'S': 'id#1'},
 'sk': {'S': 'cart#123'},
 'name': {'S': 'SomeName'},
 'inventory': {'N': '500'},
 # ... more attributes ...
 }
)

Here's the same PutItem operation using the resource interface. The data typing is implicit:

import boto3

dynamodb = boto3.resource('dynamodb')

Client and resource layers API Version 2012-08-10 484

Amazon DynamoDB Developer Guide

table = dynamodb.Table('YourTableName')

table.put_item(
 Item={
 'pk': 'id#1',
 'sk': 'cart#123',
 'name': 'SomeName',
 'inventory': 500,
 # ... more attributes ...
 }
)

If needed, you can convert between regular JSON and DynamoDB JSON using the
TypeSerializer and TypeDeserializer classes provided with boto3:

def dynamo_to_python(dynamo_object: dict) -> dict:
 deserializer = TypeDeserializer()
 return {
 k: deserializer.deserialize(v)
 for k, v in dynamo_object.items()
 }

def python_to_dynamo(python_object: dict) -> dict:
 serializer = TypeSerializer()
 return {
 k: serializer.serialize(v)
 for k, v in python_object.items()
 }

Here is how to perform a query using the client interface. It expresses the query as a JSON
construct. It uses a KeyConditionExpression string which requires variable substitution to
handle any potential keyword conflicts:

import boto3

client = boto3.client('dynamodb')

Construct the query
response = client.query(
 TableName='YourTableName',
 KeyConditionExpression='pk = :pk_val AND begins_with(sk, :sk_val)',

Client and resource layers API Version 2012-08-10 485

Amazon DynamoDB Developer Guide

 FilterExpression='#name = :name_val',
 ExpressionAttributeValues={
 ':pk_val': {'S': 'id#1'},
 ':sk_val': {'S': 'cart#'},
 ':name_val': {'S': 'SomeName'},
 },
 ExpressionAttributeNames={
 '#name': 'name',
 }
)

The same query operation using the resource interface can be shortened and simplified:

import boto3
from boto3.dynamodb.conditions import Key, Attr

dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('YourTableName')

response = table.query(
 KeyConditionExpression=Key('pk').eq('id#1') & Key('sk').begins_with('cart#'),
 FilterExpression=Attr('name').eq('SomeName')
)

As a final example, imagine you want to get the approximate size of a table (which is metadata
kept on the table that is updated about every 6 hours). With the client interface, you do a
describe_table() operation and pull the answer from the JSON structure returned:

import boto3

dynamodb = boto3.client('dynamodb')

response = dynamodb.describe_table(TableName='YourTableName')
size = response['Table']['TableSizeBytes']

With the resource interface, the table performs the describe operation implicitly and presents the
data directly as an attribute:

import boto3

Client and resource layers API Version 2012-08-10 486

Amazon DynamoDB Developer Guide

dynamodb = boto3.resource('dynamodb')

table = dynamodb.Table('YourTableName')
size = table.table_size_bytes

Note

When considering whether to develop using the client or resource interface, be aware that
new features will not be added to the resource interface per the resource documentation:
“The Amazon Python SDK team does not intend to add new features to the resources
interface in boto3. Existing interfaces will continue to operate during boto3’s lifecycle.
Customers can find access to newer service features through the client interface.”

Using the table resource batch_writer

One convenience available only with the higher-level table resource is the batch_writer.
DynamoDB supports batch write operations allowing up to 25 put or delete operations in one
network request. Batching like this improves efficiency by minimizing network round trips.

With the low-level client library, you use the client.batch_write_item() operation to
run batches. You must manually split your work into batches of 25. After each operation, you
also have to request to receive a list of unprocessed items (some of the write operations may
succeed while others could fail). You then have to pass those unprocessed items again into a later
batch_write_item() operation. There's a significant amount of boilerplate code.

The Table.batch_writer method creates a context manager for writing objects in a batch. It presents
an interface where it seems as if you're writing items one at a time, but internally it's buffering and
sending the items in batches. It also handles unprocessed item retries implicitly.

dynamodb = boto3.resource('dynamodb')

table = dynamodb.Table('YourTableName')

movies = # long list of movies in {'pk': 'val', 'sk': 'val', etc} format
with table.batch_writer() as writer:
 for movie in movies:
 writer.put_item(Item=movie)

Using batch_writer API Version 2012-08-10 487

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb/table/batch_writer.html

Amazon DynamoDB Developer Guide

Additional code examples that explore the client and resource layers

You can also refer to the following code sample repositories that explore usage of the various
functions, using both client and resource:

• Official Amazon single-action code examples.

• Official Amazon scenario-oriented code examples.

• Community-maintained single-action code examples.

Understanding how the Client and Resource objects interact with
sessions and threads

The Resource object is not thread safe and should not be shared across threads or processes. Refer
to the guide on Resource for more details.

The Client object, in contrast, is generally thread safe, except for specific advanced features. Refer
to the guide on Clients for more details.

The Session object is not thread safe. So, each time you make a Client or Resource in a multi-
threaded environment you should create a new Session first and then make the Client or Resource
from the Session. Refer to the guide on Sessions for more details.

When you call the boto3.resource(), you’re implicitly using the default Session. This is
convenient for writing single-threaded code. When writing multi-threaded code, you’ll want to first
construct a new Session for each thread and then retrieve the resource from that Session:

Explicitly create a new Session for this thread
session = boto3.Session()
dynamodb = session.resource('dynamodb')

Customizing the Config object

When constructing a Client or Resource object, you can pass optional named parameters to
customize behavior. The parameter named config unlocks a variety of functionality. It’s an
instance of botocore.client.Config and the reference documentation for Config shows
everything it exposes for you to control. The guide to Configuration provides a good overview.

Additional code examples API Version 2012-08-10 488

https://docs.amazonaws.cn/code-library/latest/ug/python_3_dynamodb_code_examples.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/python
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html#multithreading-or-multiprocessing-with-resources
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html#multithreading-or-multiprocessing-with-clients
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/session.html#multithreading-or-multiprocessing-with-sessions
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html

Amazon DynamoDB Developer Guide

Note

You can modify many of these behavioral settings at the Session level, within the Amazon
configuration file, or as environment variables.

Config for timeouts

One use of a custom config is to adjust networking behaviors:

• connect_timeout (float or int) – The time in seconds till a timeout exception is thrown when
attempting to make a connection. The default is 60 seconds.

• read_timeout (float or int) – The time in seconds till a timeout exception is thrown when
attempting to read from a connection. The default is 60 seconds.

Timeouts of 60 seconds are excessive for DynamoDB. It means a transient network glitch will cause
a minute’s delay for the client before it can try again. The following code shortens the timeouts to
a second:

import boto3
from botocore.config import Config

my_config = Config(
 connect_timeout = 1.0,
 read_timeout = 1.0
)
dynamodb = boto3.resource('dynamodb', config=my_config)

For more discussion about timeouts, see Tuning Amazon Java SDK HTTP request settings for
latency-aware DynamoDB applications. Note the Java SDK has more timeout configurations than
Python.

Config for keep-alive

If you're using botocore 1.27.84 or later, you can also control TCP Keep-Alive:

• tcp_keepalive (bool) - Enables the TCP Keep-Alive socket option used when creating new
connections if set to True (defaults to False). This is only available starting with botocore
1.27.84.

Config API Version 2012-08-10 489

https://aws.amazon.com/blogs/database/tuning-aws-java-sdk-http-request-settings-for-latency-aware-amazon-dynamodb-applications/
https://aws.amazon.com/blogs/database/tuning-aws-java-sdk-http-request-settings-for-latency-aware-amazon-dynamodb-applications/

Amazon DynamoDB Developer Guide

Setting TCP Keep-Alive to True can reduce average latencies. Here's sample code that conditionally
sets TCP Keep-Alive to true when you have the right botocore version:

import botocore
import boto3
from botocore.config import Config
from distutils.version import LooseVersion

required_version = "1.27.84"
current_version = botocore.__version__

my_config = Config(
 connect_timeout = 0.5,
 read_timeout = 0.5
)
if LooseVersion(current_version) > LooseVersion(required_version):
 my_config = my_config.merge(Config(tcp_keepalive = True))

dynamodb = boto3.resource('dynamodb', config=my_config)

Note

TCP Keep-Alive is different than HTTP Keep-Alive. With TCP Keep-Alive, small packets are
sent by the underlying operating system over the socket connection to keep the connection
alive and immediately detect any drops. With HTTP Keep-Alive, the web connection built
on the underlying socket gets reused. HTTP Keep-Alive is always enabled with boto3.

There's a limit to how long an idle connection can be kept alive. Consider sending periodic requests
(say every minute) if you have an idle connection but want the next request to use an already-
established connection.

Config for retries

The config also accepts a dictionary called retries where you can specify your desired retry
behavior. Retries happen within the SDK when the SDK receives an error and the error is of
a transient type. If an error is retried internally (and a retry eventually produces a successful
response), there's no error seen from the calling code's perspective, just a slightly elevated latency.
Here are the values you can specify:

Config API Version 2012-08-10 490

Amazon DynamoDB Developer Guide

• max_attempts – An integer representing the maximum number of retry attempts that will be
made on a single request. For example, setting this value to 2 will result in the request being
retried at most two times after the initial request. Setting this value to 0 will result in no retries
ever being attempted after the initial request.

• total_max_attempts – An integer representing the maximum number of total attempts that
will be made on a single request. This includes the initial request, so a value of 1 indicates
that no requests will be retried. If total_max_attempts and max_attempts are both
provided, total_max_attempts takes precedence. total_max_attempts is preferred over
max_attempts because it maps to the Amazon_MAX_ATTEMPTS environment variable and the
max_attempts config file value.

• mode – A string representing the type of retry mode botocore should use. Valid values are:

• legacy – The default mode. Waits 50ms the first retry, then uses exponential backoff with a
base factor of 2. For DynamoDB, it performs up to 10 total max attempts (unless overridden
with the above).

Note

With exponential backoff, the last attempt will wait almost 13 seconds.

• standard – Named standard because it’s more consistent with other Amazon SDKs. Waits a
random time from 0ms to 1,000ms for the first retry. If another retry is necessary, it picks
another random time from 0ms to 1,000ms and multiplies it by 2. If an additional retry is
necessary, it does the same random pick multiplied by 4, and so on. Each wait is capped at 20
seconds. This mode will perform retries on more detected failure conditions than the legacy
mode. For DynamoDB, it performs up to 3 total max attempts (unless overridden with the
above).

• adaptive - An experimental retry mode that includes all the functionality of standard mode
but adds automatic client-side throttling. With adaptive rate limiting, SDKs can slow down the
rate at which requests are sent to better accommodate the capacity of Amazon services. This is
a provisional mode whose behavior might change.

An expanded definition of these retry modes can be found in the guide to retries as well as in the
Retry behavior topic in the SDK reference.

Here’s an example that explicitly uses the legacy retry policy with a maximum of 3 total requests
(2 retries):

Config API Version 2012-08-10 491

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/retries.html
https://docs.amazonaws.cn/sdkref/latest/guide/feature-retry-behavior.html

Amazon DynamoDB Developer Guide

import boto3
from botocore.config import Config

my_config = Config(
 connect_timeout = 1.0,
 read_timeout = 1.0,
 retries = {
 'mode': 'legacy',
 'total_max_attempts': 3
 }
)
dynamodb = boto3.resource('dynamodb', config=my_config)

Because DynamoDB is a highly-available, low-latency system, you may want to be more aggressive
with the speed of retries than the built-in retry policies allow. You can implement your own
retry policy by setting the max attempts to 0, catching the exceptions yourself, and retrying as
appropriate from your own code instead of relying on boto3 to do implicit retries.

If you manage your own retry policy, you'll want to differentiate between throttles and errors:

• A throttle (indicated by a ProvisionedThroughputExceededException or
ThrottlingException) indicates a healthy service that's informing you that you've exceeded
your read or write capacity on a DynamoDB table or partition. Every millisecond that passes, a
bit more read or write capacity is made available, so you can retry quickly (such as every 50ms)
to attempt to access that newly released capacity. With throttles, you don't especially need
exponential backoff because throttles are lightweight for DynamoDB to return and incur no per-
request charge to you. Exponential backoff assigns longer delays to client threads that have
already waited the longest, which statistically extends the p50 and p99 outward.

• An error (indicated by an InternalServerError or a ServiceUnavailable, among others)
indicates a transient issue with the service. This can be for the whole table or possibly just the
partition you're reading from or writing to. With errors, you can pause longer before retries (such
as 250ms or 500ms) and use jitter to stagger the retries.

Config for max pool connections

Lastly, the config lets you control the connection pool size:

• max_pool_connections (int) – The maximum number of connections to keep in a connection
pool. If this value is not set, the default value of 10 is used.

Config API Version 2012-08-10 492

Amazon DynamoDB Developer Guide

This option controls the maximum number of HTTP connections to keep pooled for reuse. A
different pool is kept per Session. If you anticipate more than 10 threads going against clients or
resources built off the same Session, you should consider raising this, so threads don't have to wait
on other threads using a pooled connection.

import boto3
from botocore.config import Config

my_config = Config(
 max_pool_connections = 20
)

Setup a single session holding up to 20 pooled connections
session = boto3.Session(my_config)

Create up to 20 resources against that session for handing to threads
Notice the single-threaded access to the Session and each Resource
resource1 = session.resource('dynamodb')
resource2 = session.resource('dynamodb')
etc

Error handling

Amazon service exceptions aren’t all statically defined in Boto3. This is because errors and
exceptions from Amazon services vary widely and are subject to change. Boto3 wraps all service
exceptions as a ClientError and exposes the details as structured JSON. For example, an error
response might be structured like this:

{
 'Error': {
 'Code': 'SomeServiceException',
 'Message': 'Details/context around the exception or error'
 },
 'ResponseMetadata': {
 'RequestId': '1234567890ABCDEF',
 'HostId': 'host ID data will appear here as a hash',
 'HTTPStatusCode': 400,
 'HTTPHeaders': {'header metadata key/values will appear here'},
 'RetryAttempts': 0
 }
}

Error handling API Version 2012-08-10 493

Amazon DynamoDB Developer Guide

The following code catches any ClientError exceptions and looks at the string value of the Code
within the Error to determine what action to take:

import botocore
import boto3

dynamodb = boto3.client('dynamodb')

try:
 response = dynamodb.put_item(...)

except botocore.exceptions.ClientError as err:
 print('Error Code: {}'.format(err.response['Error']['Code']))
 print('Error Message: {}'.format(err.response['Error']['Message']))
 print('Http Code: {}'.format(err.response['ResponseMetadata']['HTTPStatusCode']))
 print('Request ID: {}'.format(err.response['ResponseMetadata']['RequestId']))

 if err.response['Error']['Code'] in ('ProvisionedThroughputExceededException',
 'ThrottlingException'):
 print("Received a throttle")
 elif err.response['Error']['Code'] == 'InternalServerError':
 print("Received a server error")
 else:
 raise err

Some (but not all) exception codes have been materialized as top-level classes. You can choose to
handle these directly. When using the Client interface, these exceptions are dynamically populated
on your client and you catch these exceptions using your client instance, like this:

except ddb_client.exceptions.ProvisionedThroughputExceededException:

When using the Resource interface, you have to use .meta.client to traverse from the resource
to the underlying Client to access the exceptions, like this:

except ddb_resource.meta.client.exceptions.ProvisionedThroughputExceededException:

To review the list of materialized exception types, you can generate the list dynamically:

ddb = boto3.client("dynamodb")
print([e for e in dir(ddb.exceptions) if e.endswith('Exception') or
 e.endswith('Error')])

Error handling API Version 2012-08-10 494

Amazon DynamoDB Developer Guide

When doing a write operation with a condition expression, you can request that if the expression
fails the value of the item should be returned in the error response.

try:
 response = table.put_item(
 Item=item,
 ConditionExpression='attribute_not_exists(pk)',
 ReturnValuesOnConditionCheckFailure='ALL_OLD'
)
except table.meta.client.exceptions.ConditionalCheckFailedException as e:
 print('Item already exists:', e.response['Item'])

For further reading on error handling and exceptions:

• The boto3 guide on error handling has more information on error handling techniques.

• The DynamoDB developer guide section on programming errors lists what errors you might
encounter.

• The Common Errors section in the API reference .

• The documentation on each API operation lists what errors that call might generate (for example
BatchWriteItem).

Logging

The boto3 library integrates with Python's built-in logging module for tracking what happens
during a session. To control logging levels, you can configure the logging module:

import logging

logging.basicConfig(level=logging.INFO)

This configures the root logger to log INFO and above level messages. Logging messages which are
less severe than level will be ignored. Logging levels include DEBUG, INFO, WARNING, ERROR, and
CRITICAL. The default is WARNING.

Loggers in boto3 are hierarchical. The library uses a few different loggers, each corresponding to
different parts of the library. You can separately control the behavior of each:

• boto3: The main logger for the boto3 module.

• botocore: The main logger for the botocore package.

Logging API Version 2012-08-10 495

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/error-handling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/CommonErrors.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

Amazon DynamoDB Developer Guide

• botocore.auth: Used for logging Amazon signature creation for requests.

• botocore.credentials: Used for logging the process of credential fetching and refresh.

• botocore.endpoint: Used for logging request creation before it's sent over the network.

• botocore.hooks: Used for logging events triggered in the library.

• botocore.loaders: Used for logging when parts of Amazon service models are loaded.

• botocore.parsers: Used for logging Amazon service responses before they're parsed.

• botocore.retryhandler: Used for logging the processing of Amazon service request retries
(legacy mode).

• botocore.retries.standard: Used for logging the processing of Amazon service request retries
(standard or adaptive mode).

• botocore.utils: Used for logging miscellaneous activities in the library.

• botocore.waiter: Used for logging the functionality of waiters, which poll an Amazon service
until a certain state is reached.

Other libraries log as well. Internally, boto3 uses the third party urllib3 for HTTP connection
handling. When latency is important, you can watch its logs to ensure your pool is being well
utilized by seeing when urllib3 establishes a new connection or closes an idle one down.

• urllib3.connectionpool: Use for logging connection pool handling events.

The following code snippet sets most logging to INFO with DEBUG logging for endpoint and
connection pool activity:

import logging

logging.getLogger('boto3').setLevel(logging.INFO)
logging.getLogger('botocore').setLevel(logging.INFO)
logging.getLogger('botocore.endpoint').setLevel(logging.DEBUG)
logging.getLogger('urllib3.connectionpool').setLevel(logging.DEBUG)

Event hooks

Botocore emits events during various parts of its execution. You can register handlers for these
events so that whenever an event is emitted, your handler will be called. This lets you extend the
behavior of botocore without having to modify the internals.

Event hooks API Version 2012-08-10 496

Amazon DynamoDB Developer Guide

For instance, let's say you want to keep track of every time a PutItem operation is called
on any DynamoDB table in your application. You might register on the 'provide-client-
params.dynamodb.PutItem' event to catch and log every time a PutItem operation is invoked
on the associated Session. Here's an example:

import boto3
import botocore
import logging

def log_put_params(params, **kwargs):
 if 'TableName' in params and 'Item' in params:
 logging.info(f"PutItem on table {params['TableName']}: {params['Item']}")

logging.basicConfig(level=logging.INFO)

session = boto3.Session()
event_system = session.events

Register our interest in hooking in when the parameters are provided to PutItem
event_system.register('provide-client-params.dynamodb.PutItem', log_put_params)

Now, every time you use this session to put an item in DynamoDB,
it will log the table name and item data.
dynamodb = session.resource('dynamodb')
table = dynamodb.Table('YourTableName')
table.put_item(
 Item={
 'pk': '123',
 'sk': 'cart#123',
 'item_data': 'YourItemData',
 # ... more attributes ...
 }
)

Within the handler, you can even manipulate the params programmatically to change behavior:

params['TableName'] = "NewTableName"

For more information on events, see the botocore documentation on events and the boto3
documentation on events.

Event hooks API Version 2012-08-10 497

https://botocore.amazonaws.com/v1/documentation/api/latest/topics/events.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/events.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/events.html

Amazon DynamoDB Developer Guide

Pagination and the Paginator

Some requests, such as Query and Scan, limit the size of data returned on a single request and
require you to make repeated requests to pull subsequent pages.

You can control the maximum number of items to be read for each page with the limit
parameter. For example, if you want the last 10 items, you can use limit to retrieve only the last
10. Note the limit is how much should be read from the table before any filtering is applied. There's
no way to specify you want exactly 10 after filtering; you can only control the pre-filtered count
and check client-side when you've actually retrieved 10. Regardless of the limit, every response
always has a maximum size of 1 MB.

If the response includes a LastEvaluatedKey, it indicates the response ended because it hit
a count or size limit. The key is the last key evaluated for the response. You can retrieve this
LastEvaluatedKey and pass it to a follow-up call as ExclusiveStartKey to read the next
chunk from that starting point. When there's no LastEvaluatedKey returned that, means there
are no more items matching the Query or Scan.

Here's a simple example (using the Resource interface, but the Client interface has the same
pattern) that reads at most 100 items per page and loops until all items have been read.

import boto3

dynamodb = boto3.resource('dynamodb')
table = dynamodb.Table('YourTableName')

query_params = {
 'KeyConditionExpression': Key('pk').eq('123') & Key('sk').gt(1000),
 'Limit': 100
}

while True:
 response = table.query(**query_params)

 # Process the items however you like
 for item in response['Items']:
 print(item)

 # No LastEvaluatedKey means no more items to retrieve
 if 'LastEvaluatedKey' not in response:
 break

Pagination and the Paginator API Version 2012-08-10 498

Amazon DynamoDB Developer Guide

 # If there are possibly more items, update the start key for the next page
 query_params['ExclusiveStartKey'] = response['LastEvaluatedKey']

For convenience, boto3 can do this for you with Paginators. However, it only works with the Client
interface. Here's the code rewritten to use Paginators:

import boto3

dynamodb = boto3.client('dynamodb')

paginator = dynamodb.get_paginator('query')

query_params = {
 'TableName': 'YourTableName',
 'KeyConditionExpression': 'pk = :pk_val AND sk > :sk_val',
 'ExpressionAttributeValues': {
 ':pk_val': {'S': '123'},
 ':sk_val': {'N': '1000'},
 },
 'Limit': 100
}

page_iterator = paginator.paginate(**query_params)

for page in page_iterator:
 # Process the items however you like
 for item in page['Items']:
 print(item)

For more information, see the Guide on Paginators and the API reference for
DynamoDB.Paginator.Query.

Note

Paginators also have their own configuration settings named MaxItems, StartingToken,
and PageSize. For paginating with DynamoDB, you should ignore these settings.

Pagination and the Paginator API Version 2012-08-10 499

https://botocore.amazonaws.com/v1/documentation/api/latest/topics/events.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb/paginator/Query.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb/paginator/Query.html

Amazon DynamoDB Developer Guide

Waiters

Waiters provide the ability to wait for something to complete before proceeding. At present, they
only support waiting for a table to be created or deleted. In the background, the waiter operation
does a check for you every 20 seconds up to 25 times. You could do this yourself, but using a waiter
is elegant when writing automation.

This code shows how to wait for a particular table to have been created:

Create a table, wait until it exists, and print its ARN
response = client.create_table(...)
waiter = client.get_waiter('table_exists')
waiter.wait(TableName='YourTableName')
print('Table created:', response['TableDescription']['TableArn']

For more information, see the Guide to Waiters and Reference on Waiters.

Programming Amazon DynamoDB with JavaScript

This guide provides an orientation to programmers wanting to use Amazon DynamoDB with
JavaScript. Learn about the Amazon SDK for JavaScript, abstraction layers available, configuring
connections, handling errors, defining retry policies, managing keep-alive, and more.

Topics

• About Amazon SDK for JavaScript

• Using the Amazon SDK for JavaScript V3

• Accessing JavaScript documentation

• Abstraction layers

• Using the marshall utility function

• Reading items

• Conditional writes

• Pagination

• Specifying configuration

• Waiters

• Error handling

• Logging

Waiters API Version 2012-08-10 500

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html#waiters
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#waiters

Amazon DynamoDB Developer Guide

• Considerations

About Amazon SDK for JavaScript

The Amazon SDK for JavaScript provides access to Amazon Web Services services using either
browser scripts or Node.js. This documentation focuses on the latest version of the SDK (V3). The
Amazon SDK for JavaScript V3 is maintained by Amazon as an open-source project hosted on
GitHub. Issues and feature requests are public and you can access them on the issues page for the
GitHub repository.

JavaScript V2 is similar to V3, but contains syntax differences. V3 is more modular, making it easier
to ship smaller dependencies, and has first-class TypeScript support. We recommend using the
latest version of the SDK.

Using the Amazon SDK for JavaScript V3

You can add the SDK to your Node.js application using the Node Package Manager. The examples
below show how to add the most common SDK packages for working with DynamoDB.

• npm install @aws-sdk/client-dynamodb

• npm install @aws-sdk/lib-dynamodb

• npm install @aws-sdk/util-dynamodb

Installing packages adds references to the dependency section of your package.json project file.
You have the option to use the newer ECMAScript module syntax. For further details on these two
approaches, see the Considerations section.

Accessing JavaScript documentation

Get started with JavaScript documentation with the following resources:

• Access the Developer guide for core JavaScript documentation. Installation instructions are
located in the Setting up section.

• Access the API reference documentation to explore all available classes and methods.

• The SDK for JavaScript supports many Amazon Web Services services other than DynamoDB. Use
the following procedure to locate specific API coverage for DynamoDB:

1. From Services, choose DynamoDB and Libraries. This documents the low-level client.

About Amazon SDK for JavaScript API Version 2012-08-10 501

https://github.com/aws/aws-sdk-js-v3
https://github.com/aws/aws-sdk-js-v3
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/

Amazon DynamoDB Developer Guide

2. Choose lib-dynamodb. This documents the high-level client. The two clients represent two
different abstraction layers that you have the choice to use. See the section below for more
information about abstraction layers.

Abstraction layers

The SDK for JavaScript V3 has a low-level client (DynamoDBClient) and a high-level client
(DynamoDBDocumentClient).

Topics

• Low-level client (DynamoDBClient)

• High-level client (DynamoDBDocumentClient)

Low-level client (DynamoDBClient)

The low-level client provides no extra abstractions over the underlying wire protocol. It gives you
full control over all aspects of communication, but because there are no abstractions, you must do
things like provide item definitions using the DynamoDB JSON format.

As the example below shows, with this format data types must be stated explicitly. An S indicates
a string value and an N indicates a number value. Numbers on the wire are always sent as strings
tagged as number types to ensure no loss in precision. The low-level API calls have a naming
pattern such as PutItemCommand and GetItemCommand.

The following example is using low-level client with Item defined using DynamoDB JSON:

const { DynamoDBClient, PutItemCommand } = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({});

async function addProduct() {
 const params = {
 TableName: "products",
 Item: {
 "id": { S: "Product01" },
 "description": { S: "Hiking Boots" },
 "category": { S: "footwear" },
 "sku": { S: "hiking-sku-01" },

Abstraction layers API Version 2012-08-10 502

Amazon DynamoDB Developer Guide

 "size": { N: "9" }
 }
 };

 try {
 const data = await client.send(new PutItemCommand(params));
 console.log('result : ' + JSON.stringify(data));
 } catch (error) {
 console.error("Error:", error);
 }
}
addProduct();

High-level client (DynamoDBDocumentClient)

The high-level DynamoDB document client offers built-in convenience features, such as eliminating
the need to manually marshal data and allowing for direct reads and writes using standard
JavaScript objects. The documentation for lib-dynamodb provides the list of advantages.

To instantiate the DynamoDBDocumentClient, construct a low-level DynamoDBClient and
then wrap it with a DynamoDBDocumentClient. The function naming convention differs slightly
between the two packages. For instance, the low-level uses PutItemCommand while the high-level
uses PutCommand. The distinct names allow both sets of functions to coexist in the same context,
allowing you to mix both in the same script.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const { DynamoDBDocumentClient, PutCommand } = require("@aws-sdk/lib-dynamodb");

const client = new DynamoDBClient({});

const docClient = DynamoDBDocumentClient.from(client);

async function addProduct() {
 const params = {
 TableName: "products",
 Item: {
 id: "Product01",
 description: "Hiking Boots",
 category: "footwear",
 sku: "hiking-sku-01",
 size: 9,
 },

Abstraction layers API Version 2012-08-10 503

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/

Amazon DynamoDB Developer Guide

 };

 try {
 const data = await docClient.send(new PutCommand(params));
 console.log('result : ' + JSON.stringify(data));
 } catch (error) {
 console.error("Error:", error);
 }
}

addProduct();

The pattern of usage is consistent when you're reading items using API operations such as
GetItem, Query, or Scan.

Using the marshall utility function

You can use the low-level client and marshall or unmarshall the data types on your own. The utility
package, util-dynamodb, has a marshall() utility function that accepts JSON and produces
DynamoDB JSON, as well as an unmarshall() function, that does the reverse. The following
example uses the low-level client with data marshalling handled by the marshall() call.

const { DynamoDBClient, PutItemCommand } = require("@aws-sdk/client-dynamodb");
const { marshall } = require("@aws-sdk/util-dynamodb");

const client = new DynamoDBClient({});

async function addProduct() {
 const params = {
 TableName: "products",
 Item: marshall({
 id: "Product01",
 description: "Hiking Boots",
 category: "footwear",
 sku: "hiking-sku-01",
 size: 9,
 }),
 };

 try {
 const data = await client.send(new PutItemCommand(params));
 } catch (error) {

Marshall utility function API Version 2012-08-10 504

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-util-dynamodb/

Amazon DynamoDB Developer Guide

 console.error("Error:", error);
 }
}
addProduct();

Reading items

To read a single item from DynamoDB, you use the GetItem API operation. Similar to the PutItem
command, you have the choice to use either the low-level client or the high-level Document client.
The example below demonstrates using the high-level Document client to retrieve an item.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const { DynamoDBDocumentClient, GetCommand } = require("@aws-sdk/lib-dynamodb");

const client = new DynamoDBClient({});

const docClient = DynamoDBDocumentClient.from(client);

async function getProduct() {
 const params = {
 TableName: "products",
 Key: {
 id: "Product01",
 },
 };

 try {
 const data = await docClient.send(new GetCommand(params));
 console.log('result : ' + JSON.stringify(data));
 } catch (error) {
 console.error("Error:", error);
 }
}

getProduct();

Use the Query API operation to read multiple items. You can use the low-level client or the
Document client. The example below uses the high-level Document client.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,

Reading items API Version 2012-08-10 505

Amazon DynamoDB Developer Guide

 QueryCommand,
} = require("@aws-sdk/lib-dynamodb");

const client = new DynamoDBClient({});

const docClient = DynamoDBDocumentClient.from(client);

async function productSearch() {
 const params = {
 TableName: "products",
 IndexName: "GSI1",
 KeyConditionExpression: "#category = :category and begins_with(#sku, :sku)",
 ExpressionAttributeNames: {
 "#category": "category",
 "#sku": "sku",
 },
 ExpressionAttributeValues: {
 ":category": "footwear",
 ":sku": "hiking",
 },
 };

 try {
 const data = await docClient.send(new QueryCommand(params));
 console.log('result : ' + JSON.stringify(data));
 } catch (error) {
 console.error("Error:", error);
 }
}

productSearch();

Conditional writes

DynamoDB write operations can specify a logical condition expression that must evaluate to true
for the write to proceed. If the condition does not evaluate to true, the write operation generates
an exception. The condition expression can check if the item already exists or if its attributes match
certain constraints.

ConditionExpression = "version = :ver AND size(VideoClip) < :maxsize"

When the conditional expression fails, you can use ReturnValuesOnConditionCheckFailure
to request that the error response include the item that didn't satisfy the conditions to deduce

Conditional writes API Version 2012-08-10 506

Amazon DynamoDB Developer Guide

what the problem was. For more details, see Handle conditional write errors in high concurrency
scenarios with Amazon DynamoDB.

try {
 const response = await client.send(new PutCommand({
 TableName: "YourTableName",
 Item: item,
 ConditionExpression: "attribute_not_exists(pk)",
 ReturnValuesOnConditionCheckFailure: "ALL_OLD"
 }));
 } catch (e) {
 if (e.name === 'ConditionalCheckFailedException') {
 console.log('Item already exists:', e.Item);
 } else {
 throw e;
 }
 }

Additional code examples showing other aspects of JavsScript SDK V3 usage are available in the
JavaScript SDK V3 Documentation and under the DynamoDB-SDK-Examples GitHub repository.

Pagination

Topics

• Using the paginateScan convenience method

Read requests such as Scan or Query will likely return multiple items in a dataset. If you perform a
Scan or Query with a Limit parameter, then once the system has read that many items, a partial
response will be sent, and you'll need to paginate to retrieve additional items.

The system will only read a maximum of 1 megabyte of data per request. If you're including a
Filter expression, the system will still read a megabyte, at maximum, of data from disk, but will
return the items of that megabyte that match the filter. The filter operation could return 0 items
for a page, but still require further pagination before the search is exhausted.

You should look for LastEvaluatedKey in the response and using it as the ExclusiveStartKey
parameter in a subsequent request to continue data retrieval. This serves as a bookmark as noted
in the following example.

Pagination API Version 2012-08-10 507

https://aws.amazon.com/blogs/database/handle-conditional-write-errors-in-high-concurrency-scenarios-with-amazon-dynamodb/
https://aws.amazon.com/blogs/database/handle-conditional-write-errors-in-high-concurrency-scenarios-with-amazon-dynamodb/
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/javascript_dynamodb_code_examples.html
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/node.js

Amazon DynamoDB Developer Guide

Note

The sample passes a null lastEvaluatedKey as the ExclusiveStartKey on the first
iteration and this is allowed.

Example using the LastEvaluatedKey:

const { DynamoDBClient, ScanCommand } = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({});

async function paginatedScan() {
 let lastEvaluatedKey;
 let pageCount = 0;

 do {
 const params = {
 TableName: "products",
 ExclusiveStartKey: lastEvaluatedKey,
 };

 const response = await client.send(new ScanCommand(params));
 pageCount++;
 console.log(`Page ${pageCount}, Items:`, response.Items);
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);
}

paginatedScan().catch((err) => {
 console.error(err);
});

Using the paginateScan convenience method

The SDK provides convenience methods called paginateScan and paginateQuery that do this
work for you and makes the repeated requests behind the scenes. Specify the max number of items
to read per request using the standard Limit parameter.

const { DynamoDBClient, paginateScan } = require("@aws-sdk/client-dynamodb");

Pagination API Version 2012-08-10 508

Amazon DynamoDB Developer Guide

const client = new DynamoDBClient({});

async function paginatedScanUsingPaginator() {
 const params = {
 TableName: "products",
 Limit: 100
 };

 const paginator = paginateScan({client}, params);

 let pageCount = 0;

 for await (const page of paginator) {
 pageCount++;
 console.log(`Page ${pageCount}, Items:`, page.Items);
 }
}

paginatedScanUsingPaginator().catch((err) => {
 console.error(err);
});

Note

Performing full table scans regularly is not a recommended access pattern unless the table
is small.

Specifying configuration

Topics

• Config for timeouts

• Config for keep-alive

• Config for retries

When setting up the DynamoDBClient, you can specify various configuration overrides by passing
a configuration object to the constructor. For example, you can specify the Region to connect to if
it's not already known to the calling context or the endpoint URL to use. This is useful if you want
to target a DynamoDB Local instance for development purposes.

Config API Version 2012-08-10 509

Amazon DynamoDB Developer Guide

const client = new DynamoDBClient({
 region: "eu-west-1",
 endpoint: "http://localhost:8000",
});

Config for timeouts

DynamoDB uses HTTPS for client-server communication. You can control some aspects of the
HTTP layer by providing a NodeHttpHandler object. For example, you can adjust the key timeout
values connectionTimeout and requestTimeout. The connectionTimeout is the maximum
duration, in milliseconds, that the client will wait while trying to establish a connection before
giving up.

The requestTimeout defines how long the client will wait for a response after a request has
been sent, also in milliseconds. The defaults for both are zero, meaning the timeout is disabled and
there's no limit on how long the client will wait if the response does not arrive. You should set the
timeouts to something reasonable so in the event of a network issue the request will error out and
a new request can be initiated. For example:

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { NodeHttpHandler } from "@smithy/node-http-handler";

const requestHandler = new NodeHttpHandler({
 connectionTimeout: 2000,
 requestTimeout: 2000,
});

const client = new DynamoDBClient({
 requestHandler
});

Note

The example provided uses the Smithy import. Smithy is a language for defining services
and SDKs, open-source and maintained by Amazon.

Config API Version 2012-08-10 510

https://smithy.io/2.0/index.html

Amazon DynamoDB Developer Guide

In addition to configuring timeout values, you can set the maximum number of sockets, which
allows for an increased number of concurrent connections per origin. The developer guide includes
details on configuring the maxSockets parameter.

Config for keep-alive

When using HTTPS, the first request always takes some back-and-forth communication to establish
a secure connection. HTTP Keep-Alive allows subsequent requests to reuse the already-established
connection, making the requests more efficient and lowering latency. HTTP Keep-Alive is enabled
by default with JavaScript V3.

There's a limit to how long an idle connection can be kept alive. Consider sending periodic requests,
maybe every minute, if you have an idle connection but want the next request to use an already-
established connection.

Note

Note that in the older V2 of the SDK, keep-alive was off by default, meaning each
connection would get closed immediately after use. If using V2, you can override this
setting.

Config for retries

When the SDK receives an error response and the error is resumable as determined by the SDK,
such as a throttling exception or a temporary service exception, it will retry again. This happens
invisibly to you as the caller, except that you might notice the request took longer to succeed.

The SDK for JavaScript V3 will make 3 total requests, by default, before giving up and passing the
error into the calling context. You can adjust the number and frequency of these retries.

The DynamoDBClient constructor accepts a maxAttempts setting that limits how many attempts
will happen. The below example raises the value from the default of 3 to a total of 5. If you set it
to 0 or 1, that indicates you don't want any automatic retries and want to handle any resumable
errors yourself within your catch block.

const client = new DynamoDBClient({
 maxAttempts: 5,
});

Config API Version 2012-08-10 511

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/node-configuring-maxsockets.html

Amazon DynamoDB Developer Guide

You can also control the timing of the retries with a custom retry strategy. To do this, import the
util-retry utility package and create a custom backoff function that calculates the wait time
between retries based on the current retry count.

The example below says to make a maximum of 5 attempts with delays of 15, 30,
90, and 360 milliseconds should the first attempt fail. The custom backoff function,
calculateRetryBackoff, calculates the delays by accepting the retry attempt number (starts
with 1 for the first retry) and returns how many milliseconds to wait for that request.

const { ConfiguredRetryStrategy } = require("@aws-sdk/util-retry");

const calculateRetryBackoff = (attempt) => {
 const backoffTimes = [15, 30, 90, 360];
 return backoffTimes[attempt - 1] || 0;
};

const client = new DynamoDBClient({
 retryStrategy: new ConfiguredRetryStrategy(
 5, // max attempts.
 calculateRetryBackoff // backoff function.
),
});

Waiters

The DynamoDB client includes two useful waiter functions that can be used when creating,
modifying, or deleting tables when you want your code to wait to proceed until the table
modification has finished. For example, you can deploy a table, call the waitUntilTableExists
function, and the code will block until the table has been made ACTIVE. The waiter internally polls
the DynamoDB service with a describe-table every 20 seconds.

import {waitUntilTableExists, waitUntilTableNotExists} from "@aws-sdk/client-dynamodb";

… <create table details>

const results = await waitUntilTableExists({client: client, maxWaitTime: 180},
 {TableName: "products"});
if (results.state == 'SUCCESS') {
 return results.reason.Table
}
console.error(`${results.state} ${results.reason}`);

Waiters API Version 2012-08-10 512

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/wait/index.html#cli-aws-dynamodb-wait

Amazon DynamoDB Developer Guide

The waitUntilTableExists feature returns control only when it can perform a describe-
table command that shows the table status ACTIVE. This ensures that you can use
waitUntilTableExists to wait for the completion of creation, as well as modifications such as
adding a GSI index, which may take some time to apply before the table returns to ACTIVE status.

Error handling

In the early examples here, we've caught all errors broadly. However, in practical applications, it's
important to discern between various error types and implement more precise error handling.

DynamoDB error responses contain metadata, including the name of the error. You can catch errors
then match against the possible string names of error conditions to determine how to proceed. For
server-side errors, you can leverage the instanceof operator with the error types exported by the
@aws-sdk/client-dynamodb package to manage error handling efficiently.

It's important to note that these errors only manifest after all retries have been exhausted. If an
error is retried and is eventually followed by a successful call, from the code's perspective, there's
no error just a slightly elevated latency. Retries will show up in Amazon CloudWatch charts as
unsuccessful requests, such as throttle or error requests. If the client reaches the maximum retry
count, it will give up and generate an exception. This is the client's way of saying it's not going to
retry.

Below is a snippet to catch the error and take action based on the type of error that was returned.

import {
 ResourceNotFoundException
 ProvisionedThroughputExceededException,
 DynamoDBServiceException,
} from "@aws-sdk/client-dynamodb";

try {
 await client.send(someCommand);
} catch (e) {
 if (e instanceof ResourceNotFoundException) {
 // Handle ResourceNotFoundException
 } else if (e instanceof ProvisionedThroughputExceededException) {
 // Handle ProvisionedThroughputExceededException
 } else if (e instanceof DynamoDBServiceException) {
 // Handle DynamoDBServiceException
 } else {
 // Other errors such as those from the SDK

Error handling API Version 2012-08-10 513

Amazon DynamoDB Developer Guide

 if (e.name === "TimeoutError") {
 // Handle SDK TimeoutError.
 } else {
 // Handle other errors.
 }
 }
}

See the section called “Error handling” for common error strings in the DynamoDB Developer Guide.
The exact errors possible with any particular API call can be found in the documentation for that
API call, such as the Query API docs.

The metadata of errors include additional properties, depending on the error. For a
TimeoutError, the metadata includes the number of attempts that were made and the
totalRetryDelay, as shown below.

{
 "name": "TimeoutError",
 "$metadata": {
 "attempts": 3,
 "totalRetryDelay": 199
 }
}

If you manage your own retry policy, you'll want to differentiate between throttles and errors:

• A throttle (indicated by a ProvisionedThroughputExceededException or
ThrottlingException) indicates a healthy service that's informing you that you've exceeded
your read or write capacity on a DynamoDB table or partition. Every millisecond that passes, a bit
more read or write capacity is made available, and so you can retry quickly, such as every 50ms,
to attempt to access that newly released capacity.

With throttles you don't especially need exponential backoff because throttles are lightweight
for DynamoDB to return and incur no per-request charge to you. Exponential backoff assigns
longer delays to client threads that have already waited the longest, which statistically extends
the p50 and p99 outward.

• An error (indicated by an InternalServerError or a ServiceUnavailable, among others)
indicates a transient issue with the service, possibly the whole table or just the partition you're
reading from or writing to. With errors, you can pause longer before retries, such as 250ms or
500ms, and use jitter to stagger the retries.

Error handling API Version 2012-08-10 514

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

Logging

Turn on logging to get more details about what the SDK is doing. You can set a parameter on the
DynamoDBClient as shown in the example below. More log information will appear in the console
and includes metadata such as the status code and the consumed capacity. If you run the code
locally in a terminal window, the logs appear there. If you run the code in Amazon Lambda, and
you have Amazon CloudWatch logs set up, then the console output will be written there.

const client = new DynamoDBClient({
 logger: console
});

You can also hook into the internal SDK activities and perform custom logging as certain events
happen. The example below uses the client's middlewareStack to intercept each request as it's
being sent from the SDK and logs it as it's happening.

const client = new DynamoDBClient({});

client.middlewareStack.add(
 (next) => async (args) => {
 console.log("Sending request from AWS SDK", { request: args.request });
 return next(args);
 },
 {
 step: "build",
 name: "log-ddb-calls",
 }
);

The MiddlewareStack provides a powerful hook for observing and controlling SDK behavior.
See the blog Introducing Middleware Stack in Modular Amazon SDK for JavaScript, for more
information.

Considerations

When implementing the Amazon SDK for JavaScript in your project, here are some further factors
to consider.

Logging API Version 2012-08-10 515

https://aws.amazon.com/blogs/developer/middleware-stack-modular-aws-sdk-js/

Amazon DynamoDB Developer Guide

Module systems

The SDK supports two module systems, CommonJS and ES (ECMAScript). CommonJS uses the
require function, while ES uses the import keyword.

1. Common JS – const { DynamoDBClient, PutItemCommand } = require("@aws-
sdk/client-dynamodb");

2. ES (ECMAScript – import { DynamoDBClient, PutItemCommand } from "@aws-
sdk/client-dynamodb";

The project type dictates the module system to be used and is specified in the type section of
your package.json file. The default is CommonJS. Use "type": "module" to indicate an ES
project. If you have an existing Node.JS project that uses the CommonJS package format, you
can still add functions with the more modern SDK V3 Import syntax by naming your function
files with the .mjs extension. This will allow the code file to be treated as ES (ECMAScript).

Asynchronous operations

You'll see many code samples using callbacks and promises to handle the result of DynamoDB
operations. With modern JavaScript this complexity is no longer needed and developers
can take advantage of the more succinct and readable async/await syntax for asynchronous
operations.

Web browser runtime

Web and mobile developers building with React or React Native can use the SDK for JavaScript
in their projects. With the earlier V2 of the SDK, web developers would have to load the full SDK
into the browser, referencing an SDK image hosted at https://sdk.amazonaws.com/js/.

With V3, it's possible to bundle just the required V3 client modules and all required JavaScript
functions into a single JavaScript file using Webpack, and add it in a script tag in the <head>
of your HTML pages, as explained in the Getting started in a browser script section of the SDK
documentation.

DAX data plane operations

The Amazon DynamoDB Streams Accelerator (DAX) data plane operations are supported by the
SDK for JavaScript V3.

Considerations API Version 2012-08-10 516

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/getting-started-browser.html

Amazon DynamoDB Developer Guide

Programming DynamoDB with the Amazon SDK for Java 2.x

This programming guide provides an orientation for programmers who want to use Amazon
DynamoDB with Java. The guide covers different concepts including abstraction layers,
configuration management, error handling, controlling retry policies, and managing keep-alive.

Topics

• About the Amazon SDK for Java 2.x

• Getting started with the Amazon SDK for Java 2.x

• Reviewing the Amazon SDK for Java 2.x documentation

• Supported interfaces

• Additional code examples

• Synchronous and asynchronous programming

• HTTP clients

• Configuring an HTTP client

• Error handling

• Amazon request ID

• Logging

• Pagination

• Data class annotations

About the Amazon SDK for Java 2.x

You can access DynamoDB from Java using the official Amazon SDK for Java. The SDK for Java has
two versions: 1.x and 2.x. The end-of-support for 1.x was announced on January 12, 2024. It will
enter maintenance mode on July 31, 2024 and its end-of-support is due on December 31, 2025.
For new development, we highly recommend that you use 2.x, which was first released in 2018.
This guide exclusively targets 2.x and focuses only on the parts of the SDK relevant to DynamoDB.

For information about maintenance and support for the Amazon SDKs, see Amazon SDK and Tools
maintenance policy and Amazon SDKs and Tools version support matrix in the Amazon SDKs and
Tools Reference Guide.

The Amazon SDK for Java 2.x is a major rewrite of the 1.x code base. The SDK for Java 2.x supports
modern Java features, such as the non-blocking I/O introduced in Java 8. The SDK for Java 2.x also

Programming with the Amazon SDK for Java 2.x API Version 2012-08-10 517

https://amazonaws-china.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-java-v1-x-on-december-31-2025/
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html

Amazon DynamoDB Developer Guide

adds support for pluggable HTTP client implementations to provide more network connection
flexibility and configuration options.

A noticeable change between the SDK for Java 1.x and the SDK for Java 2.x is the use of a new
package name. The Java 1.x SDK uses the com.amazonaws package name, while the Java 2.x
SDK uses software.amazon.awssdk. Similarly, Maven artifacts for the Java 1.x SDK use the
com.amazonaws groupId, while Java 2.x SDK artifacts use the software.amazon.awssdk
groupId.

Important

The Amazon SDK for Java 1.x has a DynamoDB package named
com.amazonaws.dynamodbv2. The "v2" in the package name doesn't indicate that it's for
Java 2 (J2SE). Rather, "v2" indicates that the package supports the second version of the
DynamoDB low-level API instead of the original version of the low-level API.

Support for Java versions

The Amazon SDK for Java 2.x provides full support for long-term support (LTS) Java releases.

Getting started with the Amazon SDK for Java 2.x

The following tutorial shows you how to use Apache Maven for defining dependencies for the SDK
for Java 2.x. This tutorial also shows you how to write the code that connects to DynamoDB for
listing the available DynamoDB tables. The tutorial in this guide is based on the tutorial Get started
with the Amazon SDK for Java 2.x in the Amazon SDK for Java 2.x Developer Guide. We've edited
this tutorial to make calls to DynamoDB instead of Amazon S3.

To complete this tutorial, do the following:

• Step 1: Set up for this tutorial

• Step 2: Create the project

• Step 3: Write the code

• Step 4: Build and run the application

Step 1: Set up for this tutorial

Before you begin this tutorial, you need the following:

Getting started API Version 2012-08-10 518

https://github.com/aws/aws-sdk-java-v2?tab=readme-ov-file#maintenance-and-support-for-java-versions
https://maven.apache.org/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/get-started.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/get-started.html

Amazon DynamoDB Developer Guide

• Permission to access DynamoDB.

• A Java development environment that's configured with single sign-on access to Amazon Web
Services services using the Amazon Web Services access portal.

To set up for this tutorial, follow the instructions in Setup overview in the Amazon SDK for Java 2.x
Developer Guide. After you configure your development environment with single sign-on access for
the Java SDK and you have an active Amazon access portal session, then continue to Step 2 of this
tutorial.

Step 2: Create the project

To create the project for this tutorial, you run a Maven command that prompts you for input on
how to configure the project. After all input is entered and confirmed, Maven finishes building out
the project by creating a pom.xml file and creating stub Java files.

1. Open a terminal or command prompt window and navigate to a directory of your choice, for
example, your Desktop or Home folder.

2. Enter the following command at the terminal, and then press Enter.

mvn archetype:generate \
 -DarchetypeGroupId=software.amazon.awssdk \
 -DarchetypeArtifactId=archetype-app-quickstart \
 -DarchetypeVersion=2.22.0

3. For each prompt, enter the value listed in the second column.

Prompt Value to enter

Define value for property
'service':

dynamodb

Define value for property
'httpClient' :

apache-client

Define value for property
'nativeImage' :

false

Getting started API Version 2012-08-10 519

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-overview
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-credentials
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-login-sso

Amazon DynamoDB Developer Guide

Prompt Value to enter

Define value for property
'credentialProvider'

identity-center

Define value for property
'groupId':

org.example

Define value for property
'artifactId':

getstarted

Define value for property
'version' 1.0-SNAPSHOT:

<Enter>

Define value for property
'package' org.example:

<Enter>

4. After you enter the last value, Maven lists the choices that you made. To confirm, enter Y. Or,
enter N, and then re-enter your choices.

Maven creates a project folder named getstarted based on the artifactId value that you
entered. Inside the getstarted folder, find a file named README.md that you can review, a
pom.xml file, and a src directory.

Maven builds the following directory tree.

getstarted
 ### README.md
 ### pom.xml
 ### src
 ### main
 # ### java
 # # ### org
 # # ### example
 # # ### App.java
 # # ### DependencyFactory.java
 # # ### Handler.java
 # ### resources
 # ### simplelogger.properties
 ### test
 ### java

Getting started API Version 2012-08-10 520

Amazon DynamoDB Developer Guide

 ### org
 ### example
 ### HandlerTest.java

 10 directories, 7 files

The following shows the contents of the pom.xml project file.

pom.xml

The dependencyManagement section contains a dependency to the Amazon SDK for Java 2.x,
and the dependencies section has a dependency for DynamoDB. Specifying these dependencies
forces Maven to include the relevant .jar files in your Java class path. By default, the Amazon SDK
doesn't include all the classes for all Amazon Web Services services. For DynamoDB, if you use the
low-level interface, then you should have a dependency on the dynamodb artifact. Or, if you use
the high-level interface, on the dynamodb-enhanced artifact. If you don't include the relevant
dependencies, then your code can't compile. The project uses Java 1.8 because of the 1.8 value in
the maven.compiler.source and maven.compiler.target properties.

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.example</groupId>
 <artifactId>getstarted</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <maven.shade.plugin.version>3.2.1</maven.shade.plugin.version>
 <maven.compiler.plugin.version>3.6.1</maven.compiler.plugin.version>
 <exec-maven-plugin.version>1.6.0</exec-maven-plugin.version>
 <aws.java.sdk.version>2.22.0</aws.java.sdk.version> <-------- SDK version
 picked up from archetype version.
 <slf4j.version>1.7.28</slf4j.version>
 <junit5.version>5.8.1</junit5.version>
 </properties>

Getting started API Version 2012-08-10 521

Amazon DynamoDB Developer Guide

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>${aws.java.sdk.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>dynamodb</artifactId> <-------- DynamoDB dependency
 <exclusions>
 <exclusion>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>netty-nio-client</artifactId>
 </exclusion>
 <exclusion>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>apache-client</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sso</artifactId> <-------- Required for identity center
 authentication.
 </dependency>

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>ssooidc</artifactId> <-------- Required for identity center
 authentication.
 </dependency>

 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>apache-client</artifactId> <-------- HTTP client specified.
 <exclusions>

Getting started API Version 2012-08-10 522

Amazon DynamoDB Developer Guide

 <exclusion>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

 <!-- Needed to adapt Apache Commons Logging used by Apache HTTP Client to
 Slf4j to avoid
 ClassNotFoundException: org.apache.commons.logging.impl.LogFactoryImpl during
 runtime -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

 <!-- Test Dependencies -->
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>${junit5.version}</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>${maven.compiler.plugin.version}</version>

Getting started API Version 2012-08-10 523

Amazon DynamoDB Developer Guide

 </plugin>
 </plugins>
 </build>

 </project>

Step 3: Write the code

The following code shows the App class that Maven creates. The main method is the entry
point into the application, which creates an instance of the Handler class and then calls its
sendRequest method.

App class

package org.example;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;

 public class App {
 private static final Logger logger = LoggerFactory.getLogger(App.class);

 public static void main(String... args) {
 logger.info("Application starts");

 Handler handler = new Handler();
 handler.sendRequest();

 logger.info("Application ends");
 }
 }

The DependencyFactory class that Maven creates contains the dynamoDbClient factory
method that builds and returns an DynamoDbClient instance. The DynamoDbClient instance
uses an instance of the Apache-based HTTP client. This is because you specified apache-client
when Maven prompted you for which HTTP client to use.

The following code shows the DependencyFactory class.

DependencyFactory class

package org.example;

Getting started API Version 2012-08-10 524

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

 import software.amazon.awssdk.http.apache.ApacheHttpClient;
 import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

 /**
 * The module containing all dependencies required by the {@link Handler}.
 */
 public class DependencyFactory {

 private DependencyFactory() {}

 /**
 * @return an instance of DynamoDbClient
 */
 public static DynamoDbClient dynamoDbClient() {
 return DynamoDbClient.builder()
 .httpClientBuilder(ApacheHttpClient.builder())
 .build();
 }
 }

The Handler class contains the main logic of your program. When an instance of Handler is
created in the App class, the DependencyFactory furnishes the DynamoDbClient service client.
Your code uses the DynamoDbClient instance to call DynamoDB.

Maven generates the following Handler class with a TODO comment. The next step in the tutorial
replaces the TODO comment with code.

Handler class, Maven-generated

package org.example;

 import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

 public class Handler {
 private final DynamoDbClient dynamoDbClient;

 public Handler() {
 dynamoDbClient = DependencyFactory.dynamoDbClient();
 }

 public void sendRequest() {
 // TODO: invoking the API calls using dynamoDbClient.

Getting started API Version 2012-08-10 525

Amazon DynamoDB Developer Guide

 }
 }

To fill in the logic, replace the entire contents of the Handler class with the following code. The
sendRequest method is filled in and the necessary imports are added.

Handler class, implemented

The following code uses the DynamoDbClient instance to retrieve a list of existing tables. If
tables exist for a given account and Amazon Web Services Region, then the code uses the Logger
instance to log the names of these tables.

package org.example;

 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
 import software.amazon.awssdk.services.dynamodb.model.ListTablesResponse;

 public class Handler {
 private final DynamoDbClient dynamoDbClient;

 public Handler() {
 dynamoDbClient = DependencyFactory.dynamoDbClient();
 }

 public void sendRequest() {
 Logger logger = LoggerFactory.getLogger(Handler.class);

 logger.info("calling the DynamoDB API to get a list of existing tables");
 ListTablesResponse response = dynamoDbClient.listTables();

 if (!response.hasTableNames()) {
 logger.info("No existing tables found for the configured account &
 region");
 } else {
 response.tableNames().forEach(tableName -> logger.info("Table: " +
 tableName));
 }
 }
 }

Getting started API Version 2012-08-10 526

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

Step 4: Build and run the application

After you create the project and it contains the complete Handler class, build and run the
application.

1. Make sure that you have an active Amazon IAM Identity Center session. To confirm, run the
Amazon Command Line Interface (Amazon CLI) command aws sts get-caller-identity
and check the response. If you don't have an active session, then see Sign in using the Amazon
CLI for instructions.

2. Open a terminal or command prompt window and navigate to your project directory
getstarted.

3. To build your project, run the following command:

mvn clean package

4. To run the application, run the following command:

mvn exec:java -Dexec.mainClass="org.example.App"

After you view the file, delete the object, and then delete the bucket.

Success

If your Maven project built and ran without error, then congratulations! You've successfully built
your first Java application using the SDK for Java 2.x.

Cleanup

To clean up the resources that you created during this tutorial, delete the project folder
getstarted.

Reviewing the Amazon SDK for Java 2.x documentation

The Amazon SDK for Java 2.x Developer Guide covers all aspects of the SDK across all Amazon Web
Services services. We recommend that you review the following topics:

• Migrate from version 1.x to 2.x – Includes a detailed explanation of the differences between 1.x
and 2.x. This topic also contains instructions about how to use both major versions side-by-side.

SDK for Java 2.x documentation API Version 2012-08-10 527

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-login-sso
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/setup.html#setup-login-sso
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/home.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/migration.html

Amazon DynamoDB Developer Guide

• DynamoDB guide for Java 2.x SDK – Shows you how to perform basic DynamoDB operations:
creating a table, manipulating items, and retrieving items. These examples use the low-level
interface. Java has several interfaces, as explained in the following section: Supported interfaces.

Tip

After you review these topics, bookmark the Amazon SDK for Java 2.x API Reference. It
covers all Amazon Web Services services, and we recommend that you use it as your main
API reference.

Supported interfaces

The Amazon SDK for Java 2.x supports the following interfaces, depending on the level of
abstraction that you want.

Topics in this section

• Low-level interface

• High-level interface

• Document interface

• Comparing interfaces with a Query example

Low-level interface

The low-level interface provides a one-to-one mapping to the underlying service API. Every
DynamoDB API is available through this interface. This means that the low-level interface can
provide complete functionality, but it's often more verbose and complex to use. For example,
you have to use the .s() functions to hold strings and the .n() functions to hold numbers. The
following example of PutItem inserts an item using the low-level interface.

import org.slf4j.*;
import software.amazon.awssdk.http.crt.AwsCrtHttpClient;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.*;

import java.util.Map;

Supported interfaces API Version 2012-08-10 528

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/examples-dynamodb.html
https://sdk.amazonaws.com/java/api/latest/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

public class PutItem {

 // Create a DynamoDB client with the default settings connected to the DynamoDB
 // endpoint in the default region based on the default credentials provider chain.
 private static final DynamoDbClient DYNAMODB_CLIENT = DynamoDbClient.create();
 private static final Logger LOGGER = LoggerFactory.getLogger(PutItem.class);

 private void putItem() {
 PutItemResponse response = DYNAMODB_CLIENT.putItem(PutItemRequest.builder()
 .item(Map.of(
 "pk", AttributeValue.builder().s("123").build(),
 "sk", AttributeValue.builder().s("cart#123").build(),
 "item_data",
 AttributeValue.builder().s("YourItemData").build(),
 "inventory", AttributeValue.builder().n("500").build()
 // ... more attributes ...
))
 .returnConsumedCapacity(ReturnConsumedCapacity.TOTAL)
 .tableName("YourTableName")
 .build());
 LOGGER.info("PutItem call consumed [" +
 response.consumedCapacity().capacityUnits() + "] Write Capacity Unites (WCU)");
 }
}

High-level interface

The high-level interface in the Amazon SDK for Java 2.x is called the DynamoDB enhanced client.
This interface provides a more idiomatic code authoring experience.

The enhanced client offers a way to map between client-side data classes and DynamoDB tables
designed to store that data. You define the relationships between tables and their corresponding
model classes in your code. Then, you can rely on the SDK to manage the data type manipulation.
For more information about the enhanced client, see DynamoDB enhanced client API in the
Amazon SDK for Java 2.x Developer Guide.

The following example of PutItem uses the high-level interface. In this example, the
DynamoDbBean named YourItem creates a TableSchema that enables its direct use as input for
the putItem() call.

import org.slf4j.*;
import software.amazon.awssdk.enhanced.dynamodb.*;

Supported interfaces API Version 2012-08-10 529

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.enhanced.dynamodb.mapper.annotations.*;
import software.amazon.awssdk.enhanced.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.model.ReturnConsumedCapacity;

public class DynamoDbEnhancedClientPutItem {
 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();
 private static final DynamoDbTable<YourItem> DYNAMODB_TABLE =
 ENHANCED_DYNAMODB_CLIENT.table("YourTableName", TableSchema.fromBean(YourItem.class));
 private static final Logger LOGGER = LoggerFactory.getLogger(PutItem.class);

 private void putItem() {
 PutItemEnhancedResponse<YourItem> response =
 DYNAMODB_TABLE.putItemWithResponse(PutItemEnhancedRequest.builder(YourItem.class)
 .item(new YourItem("123", "cart#123", "YourItemData", 500))
 .returnConsumedCapacity(ReturnConsumedCapacity.TOTAL)
 .build());
 LOGGER.info("PutItem call consumed [" +
 response.consumedCapacity().capacityUnits() + "] Write Capacity Unites (WCU)");
 }

 @DynamoDbBean
 public static class YourItem {

 public YourItem() {}

 public YourItem(String pk, String sk, String itemData, int inventory) {
 this.pk = pk;
 this.sk = sk;
 this.itemData = itemData;
 this.inventory = inventory;
 }

 private String pk;
 private String sk;
 private String itemData;

 private int inventory;

 @DynamoDbPartitionKey
 public void setPk(String pk) {
 this.pk = pk;
 }

Supported interfaces API Version 2012-08-10 530

Amazon DynamoDB Developer Guide

 public String getPk() {
 return pk;
 }

 @DynamoDbSortKey
 public void setSk(String sk) {
 this.sk = sk;
 }

 public String getSk() {
 return sk;
 }

 public void setItemData(String itemData) {
 this.itemData = itemData;
 }

 public String getItemData() {
 return itemData;
 }

 public void setInventory(int inventory) {
 this.inventory = inventory;
 }

 public int getInventory() {
 return inventory;
 }
 }
}

The Amazon SDK for Java 1.x has its own high-level interface, which is often referred to by its main
class DynamoDBMapper. The Amazon SDK for Java 2.x is published in a separate package (and
Maven artifact) named software.amazon.awssdk.enhanced.dynamodb. The Java 2.x SDK is
often referred to by its main class DynamoDbEnhancedClient.

High-level interface using immutable data classes

The mapping feature of the DynamoDB enhanced client API also works with immutable data
classes. An immutable class has only getters and requires a builder class that the SDK uses to
create instances of the class. Immutability in Java is a commonly used style that developers can use
to create classes that have no side-effects. These classes are more predictable in their behavior in

Supported interfaces API Version 2012-08-10 531

Amazon DynamoDB Developer Guide

complex multi-threaded applications. Instead of using the @DynamoDbBean annotation as shown
in the High-level interface example, immutable classes use the @DynamoDbImmutable annotation,
which takes the builder class as its input.

The following example takes the builder class DynamoDbEnhancedClientImmutablePutItem as
input to create a table schema. The example then provides the schema as input for the PutItem API
call.

import org.slf4j.*;
import software.amazon.awssdk.enhanced.dynamodb.*;
import software.amazon.awssdk.enhanced.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.model.ReturnConsumedCapacity;

public class DynamoDbEnhancedClientImmutablePutItem {
 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();
 private static final DynamoDbTable<YourImmutableItem>
 DYNAMODB_TABLE = ENHANCED_DYNAMODB_CLIENT.table("YourTableName",
 TableSchema.fromImmutableClass(YourImmutableItem.class));
 private static final Logger LOGGER =
 LoggerFactory.getLogger(DynamoDbEnhancedClientImmutablePutItem.class);

 private void putItem() {
 PutItemEnhancedResponse<YourImmutableItem> response =
 DYNAMODB_TABLE.putItemWithResponse(PutItemEnhancedRequest.builder(YourImmutableItem.class)
 .item(YourImmutableItem.builder()
 .pk("123")
 .sk("cart#123")
 .itemData("YourItemData")
 .inventory(500)
 .build())
 .returnConsumedCapacity(ReturnConsumedCapacity.TOTAL)
 .build());
 LOGGER.info("PutItem call consumed [" +
 response.consumedCapacity().capacityUnits() + "] Write Capacity Unites (WCU)");
 }
}

The following example shows the immutable data class.

@DynamoDbImmutable(builder = YourImmutableItem.YourImmutableItemBuilder.class)
class YourImmutableItem {

Supported interfaces API Version 2012-08-10 532

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

 private final String pk;
 private final String sk;
 private final String itemData;
 private final int inventory;
 public YourImmutableItem(YourImmutableItemBuilder builder) {
 this.pk = builder.pk;
 this.sk = builder.sk;
 this.itemData = builder.itemData;
 this.inventory = builder.inventory;
 }

 public static YourImmutableItemBuilder builder() { return new
 YourImmutableItemBuilder(); }

 @DynamoDbPartitionKey
 public String getPk() {
 return pk;
 }

 @DynamoDbSortKey
 public String getSk() {
 return sk;
 }

 public String getItemData() {
 return itemData;
 }

 public int getInventory() {
 return inventory;
 }

 static final class YourImmutableItemBuilder {
 private String pk;
 private String sk;
 private String itemData;
 private int inventory;

 private YourImmutableItemBuilder() {}

 public YourImmutableItemBuilder pk(String pk) { this.pk = pk; return this; }
 public YourImmutableItemBuilder sk(String sk) { this.sk = sk; return this; }
 public YourImmutableItemBuilder itemData(String itemData) { this.itemData =
 itemData; return this; }

Supported interfaces API Version 2012-08-10 533

Amazon DynamoDB Developer Guide

 public YourImmutableItemBuilder inventory(int inventory) { this.inventory =
 inventory; return this; }

 public YourImmutableItem build() { return new YourImmutableItem(this); }
 }
}

High-level interface using immutable data classes and third-party boilerplate generation
libraries

Immutable data classes (shown in the previous example) require some boilerplate code. For
example, the getter and setter logic on the data classes, in addition to the Builder classes. Third-
party libraries, such as Project Lombok, can help you generate that type of boilerplate code.
Reducing most of the boilerplate code helps you limit the amount of code needed for working with
immutable data classes and the Amazon SDK. This further results in improved productivity and
readability of your code. For more information, see Use third-party libraries, such as Lombok in the
Amazon SDK for Java 2.x Developer Guide.

The following example demonstrates how Project Lombok simplifies the code needed to use the
DynamoDB enhanced client API.

import org.slf4j.*;
import software.amazon.awssdk.enhanced.dynamodb.*;
import software.amazon.awssdk.enhanced.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.model.ReturnConsumedCapacity;

public class DynamoDbEnhancedClientImmutableLombokPutItem {

 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();
 private static final DynamoDbTable<YourImmutableLombokItem>
 DYNAMODB_TABLE = ENHANCED_DYNAMODB_CLIENT.table("YourTableName",
 TableSchema.fromImmutableClass(YourImmutableLombokItem.class));
 private static final Logger LOGGER =
 LoggerFactory.getLogger(DynamoDbEnhancedClientImmutableLombokPutItem.class);

 private void putItem() {
 PutItemEnhancedResponse<YourImmutableLombokItem> response =
 DYNAMODB_TABLE.putItemWithResponse(PutItemEnhancedRequest.builder(YourImmutableLombokItem.class)
 .item(YourImmutableLombokItem.builder()
 .pk("123")
 .sk("cart#123")

Supported interfaces API Version 2012-08-10 534

https://projectlombok.org/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/ddb-en-client-use-immut.html#ddb-en-client-use-immut-lombok

Amazon DynamoDB Developer Guide

 .itemData("YourItemData")
 .inventory(500)
 .build())
 .returnConsumedCapacity(ReturnConsumedCapacity.TOTAL)
 .build());
 LOGGER.info("PutItem call consumed [" +
 response.consumedCapacity().capacityUnits() + "] Write Capacity Unites (WCU)");
 }
}

The following example shows the immutable data object of the immutable data class.

import lombok.*;
import software.amazon.awssdk.enhanced.dynamodb.mapper.annotations.*;

@Builder
@DynamoDbImmutable(builder =
 YourImmutableLombokItem.YourImmutableLombokItemBuilder.class)
@Value
public class YourImmutableLombokItem {

 @Getter(onMethod_=@DynamoDbPartitionKey)
 String pk;
 @Getter(onMethod_=@DynamoDbSortKey)
 String sk;
 String itemData;
 int inventory;
}

The YourImmutableLombokItem class uses the following annotations that Project Lombok and
the Amazon SDK provide:

• @Builder – Produces complex builder APIs for data classes that Project Lombok provides.

• @DynamoDbImmutable – Identifies the DynamoDbImmutable class as a DynamoDB mappable
entity annotation that the Amazon SDK provides.

• @Value – The immutable variant of @Data. By default, all fields are made private and final, and
setters are not generated. Project Lombok provides this annotation.

Supported interfaces API Version 2012-08-10 535

https://projectlombok.org/features/Builder
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/DynamoDbImmutable.html
https://projectlombok.org/features/Value

Amazon DynamoDB Developer Guide

Document interface

The Amazon SDK for Java 2.x Document interface avoids the need to specify data type descriptors.
The data types are implied by the semantics of the data itself. This Document interface is similar to
the Amazon SDK for Java 1.x, Document interface, but with a redesigned interface.

The following Document interface example shows the PutItem call expressed using the Document
interface. The example also uses EnhancedDocument. To run commands against a DynamoDB table
using the enhanced document API, you must first associate the table with your document table
schema to create a DynamoDBTable resource object. The Document table schema builder requires
the primary index key and attribute converter providers.

You can use AttributeConverterProvider.defaultProvider() to convert document
attributes of default types. You can change the overall default behavior with a custom
AttributeConverterProvider implementation. You can also change the converter for a single
attribute. The Amazon SDKs and Tools Reference Guide provides more details and examples about
how to use custom converters. Their primary use is for attributes of your domain classes that don't
have a default converter available. Using a custom converter, you can provide the SDK with the
needed information to write or read to DynamoDB.

import org.slf4j.*;
import software.amazon.awssdk.enhanced.dynamodb.*;
import software.amazon.awssdk.enhanced.dynamodb.document.EnhancedDocument;
import software.amazon.awssdk.enhanced.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.model.ReturnConsumedCapacity;

public class DynamoDbEnhancedDocumentClientPutItem {
 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();
 private static final DynamoDbTable<EnhancedDocument> DYNAMODB_TABLE =
 ENHANCED_DYNAMODB_CLIENT.table("YourTableName",
 TableSchema.documentSchemaBuilder()

 .addIndexPartitionKey(TableMetadata.primaryIndexName(),"pk", AttributeValueType.S)
 .addIndexSortKey(TableMetadata.primaryIndexName(), "sk",
 AttributeValueType.S)

 .attributeConverterProviders(AttributeConverterProvider.defaultProvider())
 .build());

Supported interfaces API Version 2012-08-10 536

https://docs.amazonaws.cn/sdkref/latest/guide/version-support-matrix.html

Amazon DynamoDB Developer Guide

 private static final Logger LOGGER =
 LoggerFactory.getLogger(DynamoDbEnhancedDocumentClientPutItem.class);

 private void putItem() {
 PutItemEnhancedResponse<EnhancedDocument> response =
 DYNAMODB_TABLE.putItemWithResponse(
 PutItemEnhancedRequest.builder(EnhancedDocument.class)
 .item(
 EnhancedDocument.builder()

 .attributeConverterProviders(AttributeConverterProvider.defaultProvider())
 .putString("pk", "123")
 .putString("sk", "cart#123")
 .putString("item_data", "YourItemData")
 .putNumber("inventory", 500)
 .build())
 .returnConsumedCapacity(ReturnConsumedCapacity.TOTAL)
 .build());
 LOGGER.info("PutItem call consumed [" +
 response.consumedCapacity().capacityUnits() + "] Write Capacity Unites (WCU)");
 }

}

To convert JSON documents to and from the native Amazon DynamoDB data types, you can use
the following utility methods:

• EnhancedDocument.fromJson(String json) – Creates a new EnhancedDocument instance
from a JSON string.

• EnhancedDocument.toJson() – Creates a JSON string representation of the document that
you can use in your application like any other JSON object.

Comparing interfaces with a Query example

This section shows the same Query call expressed using the various interfaces. To fine tune the
results of these queries, note the following:

• DynamoDB targets one specific partition key value, so you must specify the partition key
completely.

Supported interfaces API Version 2012-08-10 537

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/document/EnhancedDocument.html#fromJson(java.lang.String)
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/document/EnhancedDocument.html#toJson()
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

• To have the query target only cart items, the sort key has a key condition expression that uses
begins_with.

• We use limit() to limit the query to a maximum of 100 returned items.

• We set the scanIndexForward to false. The results are returned in order of UTF-8 bytes,
which usually means the cart item with the lowest number is returned first. By setting the
scanIndexForward to false, we reverse the order and the cart item with the highest number is
returned first.

• We apply a filter to remove any result that does not match the criteria. The data being filtered
consumes read capacity whether the item matches the filter.

Example Query using the low-level interface

The following example queries a table named YourTableName using a
keyConditionExpression. This limits the query to a specific partition key value and sort key
value that begin with a specific prefix value. These key conditions limit the amount of data read
from DynamoDB. Finally, the query applies a filter on the data retrieved from DynamoDB using a
filterExpression.

import org.slf4j.*;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.*;

import java.util.Map;

public class Query {

 // Create a DynamoDB client with the default settings connected to the DynamoDB
 // endpoint in the default region based on the default credentials provider chain.
 private static final DynamoDbClient DYNAMODB_CLIENT =
 DynamoDbClient.builder().build();
 private static final Logger LOGGER = LoggerFactory.getLogger(Query.class);

 private static void query() {
 QueryResponse response = DYNAMODB_CLIENT.query(QueryRequest.builder()
 .expressionAttributeNames(Map.of("#name", "name"))
 .expressionAttributeValues(Map.of(
 ":pk_val", AttributeValue.fromS("id#1"),
 ":sk_val", AttributeValue.fromS("cart#"),
 ":name_val", AttributeValue.fromS("SomeName")))
 .filterExpression("#name = :name_val")

Supported interfaces API Version 2012-08-10 538

Amazon DynamoDB Developer Guide

 .keyConditionExpression("pk = :pk_val AND begins_with(sk, :sk_val)")
 .limit(100)
 .scanIndexForward(false)
 .tableName("YourTableName")
 .build());

 LOGGER.info("nr of items: " + response.count());
 LOGGER.info("First item pk: " + response.items().get(0).get("pk"));
 LOGGER.info("First item sk: " + response.items().get(0).get("sk"));
 }
}

Example Query using the Document interface

The following example queries a table named YourTableName using the Document interface.

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import software.amazon.awssdk.enhanced.dynamodb.*;
import software.amazon.awssdk.enhanced.dynamodb.document.EnhancedDocument;
import software.amazon.awssdk.enhanced.dynamodb.model.*;

import java.util.Map;

public class DynamoDbEnhancedDocumentClientQuery {

 // Create a DynamoDB client with the default settings connected to the DynamoDB
 // endpoint in the default region based on the default credentials provider chain.
 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();
 private static final DynamoDbTable<EnhancedDocument> DYNAMODB_TABLE =
 ENHANCED_DYNAMODB_CLIENT.table("YourTableName",
 TableSchema.documentSchemaBuilder()
 .addIndexPartitionKey(TableMetadata.primaryIndexName(),"pk",
 AttributeValueType.S)
 .addIndexSortKey(TableMetadata.primaryIndexName(), "sk",
 AttributeValueType.S)

 .attributeConverterProviders(AttributeConverterProvider.defaultProvider())
 .build());
 private static final Logger LOGGER =
 LoggerFactory.getLogger(DynamoDbEnhancedDocumentClientQuery.class);

 private void query() {

Supported interfaces API Version 2012-08-10 539

Amazon DynamoDB Developer Guide

 PageIterable<EnhancedDocument> response =
 DYNAMODB_TABLE.query(QueryEnhancedRequest.builder()
 .filterExpression(Expression.builder()
 .expression("#name = :name_val")
 .expressionNames(Map.of("#name", "name"))
 .expressionValues(Map.of(":name_val",
 AttributeValue.fromS("SomeName")))
 .build())
 .limit(100)
 .queryConditional(QueryConditional.sortBeginsWith(Key.builder()
 .partitionValue("id#1")
 .sortValue("cart#")
 .build()))
 .scanIndexForward(false)
 .build());

 LOGGER.info("nr of items: " + response.items().stream().count());
 LOGGER.info("First item pk: " +
 response.items().iterator().next().getString("pk"));
 LOGGER.info("First item sk: " +
 response.items().iterator().next().getString("sk"));

 }
}

Example Query using the high-level interface

The following example queries a table named YourTableName using the DynamoDB enhanced
client API.

import org.slf4j.*;
import software.amazon.awssdk.enhanced.dynamodb.*;
import software.amazon.awssdk.enhanced.dynamodb.mapper.annotations.*;
import software.amazon.awssdk.enhanced.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;

import java.util.Map;

public class DynamoDbEnhancedClientQuery {

 private static final DynamoDbEnhancedClient ENHANCED_DYNAMODB_CLIENT =
 DynamoDbEnhancedClient.builder().build();

Supported interfaces API Version 2012-08-10 540

Amazon DynamoDB Developer Guide

 private static final DynamoDbTable<YourItem> DYNAMODB_TABLE =
 ENHANCED_DYNAMODB_CLIENT.table("YourTableName",
 TableSchema.fromBean(DynamoDbEnhancedClientQuery.YourItem.class));
 private static final Logger LOGGER =
 LoggerFactory.getLogger(DynamoDbEnhancedClientQuery.class);

 private void query() {
 PageIterable<YourItem> response =
 DYNAMODB_TABLE.query(QueryEnhancedRequest.builder()
 .filterExpression(Expression.builder()
 .expression("#name = :name_val")
 .expressionNames(Map.of("#name", "name"))
 .expressionValues(Map.of(":name_val",
 AttributeValue.fromS("SomeName")))
 .build())
 .limit(100)
 .queryConditional(QueryConditional.sortBeginsWith(Key.builder()
 .partitionValue("id#1")
 .sortValue("cart#")
 .build()))
 .scanIndexForward(false)
 .build());

 LOGGER.info("nr of items: " + response.items().stream().count());
 LOGGER.info("First item pk: " + response.items().iterator().next().getPk());
 LOGGER.info("First item sk: " + response.items().iterator().next().getSk());
 }

 @DynamoDbBean
 public static class YourItem {

 public YourItem() {}

 public YourItem(String pk, String sk, String name) {
 this.pk = pk;
 this.sk = sk;
 this.name = name;
 }

 private String pk;
 private String sk;
 private String name;

 @DynamoDbPartitionKey

Supported interfaces API Version 2012-08-10 541

Amazon DynamoDB Developer Guide

 public void setPk(String pk) {
 this.pk = pk;
 }

 public String getPk() {
 return pk;
 }

 @DynamoDbSortKey
 public void setSk(String sk) {
 this.sk = sk;
 }

 public String getSk() {
 return sk;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
 }
}

High-level interface using immutable data classes

When you perform a Query with the high-level immutable data classes, the code is the same
as the high-level interface example except for the construction of the entity class YourItem or
YourImmutableItem. For more information, see the PutItem example.

High-level interface using immutable data classes and third-party boilerplate generation
libraries

When you perform a Query with the high-level immutable data classes, the code is the same
as the high-level interface example except for the construction of the entity class YourItem or
YourImmutableLombokItem. For more information, see the PutItem example.

Supported interfaces API Version 2012-08-10 542

Amazon DynamoDB Developer Guide

Additional code examples

For additional examples of how to use DynamoDB with the SDK for Java 2.x, refer to the following
code example repositories:

• Official Amazon single-action code examples

• Community-maintained single-action code examples

• Official Amazon scenario-oriented code examples

Synchronous and asynchronous programming

The Amazon SDK for Java 2.x provides both synchronous and asynchronous clients for Amazon Web
Services services, such as DynamoDB.

The DynamoDbClient and DynamoDbEnhancedClient classes provide synchronous methods
that block your thread's execution until the client receives a response from the service. This client is
the most straightforward way of interacting with DynamoDB if you have no need for asynchronous
operations.

The DynamoDbAsyncClient and DynamoDbEnhancedAsyncClient classes provide
asynchronous methods that return immediately, and give control back to the calling thread
without waiting for a response. The non-blocking client has an advantage that it uses for high
concurrency across a few threads, which provides efficient handling of I/O requests with minimal
compute resources. This improves throughput and responsiveness.

The Amazon SDK for Java 2.x uses the native support for non-blocking I/O. The Amazon SDK for
Java 1.x had to simulate non-blocking I/O.

The synchronous methods return before a response is available, so you need a way to get the
response when it's ready. The asynchronous methods in the Amazon SDK for Java return a
CompletableFuture object that contains the results of the asynchronous operation in the future.
When you call get() or join() on these CompletableFuture objects, your code blocks until
the result is available. If you call these at the same time that you make the request, then the
behavior is similar to a plain synchronous call.

For more information about asynchronous programming, see Use asynchronous programming in
the Amazon SDK for Java 2.x Developer Guide.

Additional code examples API Version 2012-08-10 543

https://docs.amazonaws.cn/code-library/latest/ug/java_2_dynamodb_code_examples.html
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/java
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/examples/SDK/java
https://docs.oracle.com/javase/8/docs/api/index.html?java/util/concurrent/CompletableFuture.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/asynchronous.html

Amazon DynamoDB Developer Guide

HTTP clients

For supporting every client, there exists an HTTP client that handles communication with the
Amazon Web Services services. You can plug in alternative HTTP clients, choosing one that has
the characteristics that best fit your application. Some are more lightweight; some have more
configuration options.

Some HTTP clients support only synchronous use, while others support only asynchronous use. For
a flowchart that can help you select the optimal HTTP client for your workload, see HTTP client
recommendations in the Amazon SDK for Java 2.x Developer Guide.

The following list presents some of the possible HTTP clients:

Topics

• Apache-based HTTP client

• URLConnection-based HTTP client

• Netty-based HTTP client

• Amazon CRT-based HTTP client

Apache-based HTTP client

The ApacheHttpClient class supports synchronous service clients. It's the default HTTP client for
synchronous use. For information about configuring the ApacheHttpClient class, see Configure
the Apache-based HTTP client in the Amazon SDK for Java 2.x Developer Guide.

URLConnection-based HTTP client

The UrlConnectionHttpClient class is another option for synchronous clients. It loads
more quickly than the Apache-based HTTP client, but has fewer features. For information about
configuring the UrlConnectionHttpClient class, see Configure the URLConnection-based HTTP
client in the Amazon SDK for Java 2.x Developer Guide.

Netty-based HTTP client

The NettyNioAsyncHttpClient class supports async clients. It's the default choice for async
use. For information about configuring the NettyNioAsyncHttpClient class, see Configure the
Netty-based HTTP client in the Amazon SDK for Java 2.x Developer Guide.

HTTP clients API Version 2012-08-10 544

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration.html#http-clients-recommend
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration.html#http-clients-recommend
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/http/apache/ApacheHttpClient.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-apache.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-apache.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/http/urlconnection/UrlConnectionHttpClient.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-url.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-url.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-netty.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-netty.html

Amazon DynamoDB Developer Guide

Amazon CRT-based HTTP client

The newer AwsCrtHttpClient and AwsCrtAsyncHttpClient classes from the Amazon
Common Runtime (CRT) libraries are more options that support synchronous and asynchronous
clients. Compared to other HTTP clients, Amazon CRT offers:

• Faster SDK startup time

• Smaller memory footprint

• Reduced latency time

• Connection health management

• DNS load balancing

For information about configuring the AwsCrtHttpClient and AwsCrtAsyncHttpClient
classes, see Configure the Amazon CRT-based HTTP clients in the Amazon SDK for Java 2.x
Developer Guide.

The Amazon CRT-based HTTP client isn't the default because that would break backward
compatibility for existing applications. However, for DynamoDB we recommend that you use the
Amazon CRT-based HTTP client for both sync and async uses.

For an introduction to the Amazon CRT-based HTTP client, see Announcing availability of the
Amazon CRT HTTP Client in the Amazon SDK for Java 2.x on the Amazon Developer Tools Blog.

Configuring an HTTP client

When configuring a client, you can provide various configuration options, including:

• Setting timeouts for different aspects of API calls.

• Enabling TCP Keep-Alive.

• Controlling the retry policy when encountering errors.

• Specifying execution attributes that Execution interceptor instances can modify. Execution
interceptors can write code that intercept the execution of your API requests and responses. This
enables you to perform tasks such as publishing metrics and modifying requests in-flight.

• Adding or manipulating HTTP headers.

• Enabling the tracking of client-side performance metrics. Using this feature helps you to
collect metrics about the service clients in your application and analyze the output in Amazon
CloudWatch.

Config API Version 2012-08-10 545

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html
https://amazonaws-china.com/blogs/developer/announcing-availability-of-the-aws-crt-http-client-in-the-aws-sdk-for-java-2-x/
https://amazonaws-china.com/blogs/developer/announcing-availability-of-the-aws-crt-http-client-in-the-aws-sdk-for-java-2-x/
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/interceptors.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/metrics.html

Amazon DynamoDB Developer Guide

• Specifying an alternate executor service to be used for scheduling tasks, such as async retry
attempts and timeout tasks.

You control the configuration by providing a ClientOverrideConfiguration object to the
service client Builder class. You'll see this in some code examples in the following sections.

The ClientOverrideConfiguration provides standard configuration choices. The different
pluggable HTTP clients have implementation-specific configuration possibilities as well.

Topics in this section

• Timeout configuration

• RetryMode

• DefaultsMode

• Keep-Alive configuration

Timeout configuration

You can adjust the client configuration to control various timeouts related to the service calls.
DynamoDB provides lower latencies compared to other Amazon Web Services services. Therefore,
you might want to adjust these properties to lower timeout values so that you can fail fast if
there's a networking issue.

You can customize the latency related behavior using ClientOverrideConfiguration on the
DynamoDB client or by changing detailed configuration options on the underlying HTTP client
implementation.

You can configure the following impactful properties using ClientOverrideConfiguration:

• apiCallAttemptTimeout – The amount of time to wait for a single attempt for an HTTP
request to complete before giving up and timing out.

• apiCallTimeout – The amount of time that the client has to completely execute an API call.
This includes the request handler execution that consists of all the HTTP requests, including
retries.

The Amazon SDK for Java 2.x provides default values for some timeout options, such as
connection timeout and socket timeouts. The SDK doesn't provide default values for API
call timeouts or individual API call attempt timeouts. If these timeouts aren't set in the

Config API Version 2012-08-10 546

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/client/config/ClientOverrideConfiguration.html
https://github.com/aws/aws-sdk-java-v2/blob/a0c8a0af1fa572b16b5bd78f310594d642324156/http-client-spi/src/main/java/software/amazon/awssdk/http/SdkHttpConfigurationOption.java#L134

Amazon DynamoDB Developer Guide

ClientOverrideConfiguration, then the SDK uses the socket timeout value instead for the
overall API call timeout. The socket timeout has a default value of 30 seconds.

RetryMode

Another configuration related to the timeout configuration that you should consider is the
RetryMode configuration object. This configuration object contains a collection of retry behaviors.

The SDK for Java 2.x supports the following retry modes:

• legacy – The default retry mode if you don't explicitly change it. This retry mode is specific to
the Java SDK. It's characterized by up to three retries, or more for services such as DynamoDB,
which has up to eight retries.

• standard – Named "standard" because it's more consistent with other Amazon SDKs. This
mode waits for a random amount of time ranging from 0ms to 1,000ms for the first retry. If
another retry is necessary, then this mode picks another random time from 0ms to 1,000ms
and multiplies it by two. If an additional retry is necessary, then it does the same random pick
multiplied by four, and so on. Each wait is capped at 20 seconds. This mode performs retries on
more detected failure conditions than the legacy mode. For DynamoDB, it performs up to three
total max attempts unless you override with numRetries.

• adaptive – Builds on standard mode and dynamically limits the rate of Amazon requests to
maximize success rate. This can occur at the expense of request latency. We don't recommend
adaptive retry mode when predictable latency is important.

You can find an expanded definition of these retry modes in the Retry behavior topic in the
Amazon SDKs and Tools Reference Guide.

Retry policies

All RetryMode configurations have a RetryPolicy, which is built based on one or more
RetryCondition configurations. The TokenBucketRetryCondition is especially important to
the retry behavior of the DynamoDB SDK client implementation. This condition limits the number
of retries that the SDK makes using a token bucket algorithm. Depending on the selected retry
mode, throttling exceptions may or may not subtract tokens from the TokenBucket.

When a client encounters a retryable error, such as a throttling exception or a temporary server
error, then the SDK automatically retries the request. You can control how many times and how
quickly these retries happen.

Config API Version 2012-08-10 547

https://docs.amazonaws.cn/sdkref/latest/guide/feature-retry-behavior.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/RetryPolicy.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/conditions/RetryCondition.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/conditions/TokenBucketRetryCondition.html

Amazon DynamoDB Developer Guide

When configuring a client, you can provide a RetryPolicy that supports the following
parameters:

• numRetries – The maximum number of retries that should be applied before a request is
considered to be failed. The default value is 8 regardless of the retry mode that you use.

Warning

Make sure that you change this default value after due consideration.

• backoffStrategy – The BackoffStrategy to apply to the retries, with
FullJitterBackoffStrategy being the default strategy. This strategy performs an
exponential delay between additional retries based on the current number or retries, a base
delay, and a maximum backoff time. It then adds jitter to provide a bit of randomness. The base
delay used in the exponential delay is 25 ms regardless of the retry mode.

• retryCondition – The RetryCondition determines whether to retry a request at all. By
default, it retries a specific set of HTTP status codes and exceptions that it believes are retryable.
For most situations, the default configuration should be sufficient.

The following code provides an alternative retry policy. It specifies a total of five retries (six total
requests). The first retry should occur after a delay of approximately 100ms, with each additional
retry doubling that time exponentially, up to a maximum delay of one second.

DynamoDbClient client = DynamoDbClient.builder()
 .overrideConfiguration(ClientOverrideConfiguration.builder()
 .retryPolicy(RetryPolicy.builder()
 .backoffStrategy(FullJitterBackoffStrategy.builder()
 .baseDelay(Duration.ofMillis(100))
 .maxBackoffTime(Duration.ofSeconds(1))
 .build())
 .numRetries(5)
 .build())
 .build())
 .build();

DefaultsMode

The timeout properties that ClientOverrideConfiguration and the RetryMode don't manage
are typically configured implicitly by specifying a DefaultsMode.

Config API Version 2012-08-10 548

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/backoff/BackoffStrategy.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/backoff/FullJitterBackoffStrategy.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/retry/conditions/RetryCondition.html

Amazon DynamoDB Developer Guide

The Amazon SDK for Java 2.x (version 2.17.102 or later) introduced support for DefaultsMode.
This feature provides a set of default values for common configurable settings, such as HTTP
communication settings, retry behavior, service Regional endpoint settings, and potentially any
SDK-related configuration. When you use this feature, you can get new configuration defaults
tailored to common usage scenarios.

The default modes are standardized across all of the Amazon SDKs. The SDK for Java 2.x supports
the following default modes:

• legacy – Provides default settings that vary by Amazon SDK and that existed before
DefaultsMode was established.

• standard – Provides default non-optimized settings for most scenarios.

• in-region – Builds on the standard mode and includes settings tailored for applications that
call Amazon Web Services services from within the same Amazon Web Services Region.

• cross-region – Builds on the standard mode and includes settings with high timeouts for
applications that call Amazon Web Services services in a different Region.

• mobile – Builds on the standard mode and includes settings with high timeouts tailored for
mobile applications with higher latencies.

• auto – Builds on the standard mode and includes experimental features. The SDK attempts
to discover the runtime environment to determine the appropriate settings automatically.
The auto-detection is heuristics-based and does not provide 100% accuracy. If the runtime
environment can't be determined, then standard mode is used. The auto-detection might query
Instance metadata and user data, which might introduce latency. If startup latency is critical to
your application, we recommend choosing an explicit DefaultsMode instead.

You can configure the defaults mode in the following ways:

• Directly on a client, through AwsClientBuilder.Builder#defaultsMode(DefaultsMode).

• On a configuration profile, through the defaults_mode profile file property.

• Globally, through the aws.defaultsMode system property.

• Globally, through the AWS_DEFAULTS_MODE environment variable.

Config API Version 2012-08-10 549

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Amazon DynamoDB Developer Guide

Note

For any mode other than legacy, the vended default values might change as best
practices evolve. Therefore, if you're using a mode other than legacy, then we encourage
you to perform testing when upgrading the SDK.

The Smart configuration defaults in the Amazon SDKs and Tools Reference Guide provides a list of
configuration properties and their default values in the different default modes.

You choose the defaults mode value based on your application's characteristics and the Amazon
Web Services service that the application interacts with.

These values are configured with a broad selection of Amazon Web Services services in mind. For a
typical DynamoDB deployment in which both your DynamoDB tables and application are deployed
in one Region, the in-region defaults mode is most relevant among the standard default
modes.

Example DynamoDB SDK client configuration tuned for low-latency calls

The following example adjusts the timeouts to lower values for an expected low-latency
DynamoDB call.

DynamoDbAsyncClient asyncClient = DynamoDbAsyncClient.builder()
 .defaultsMode(DefaultsMode.IN_REGION)
 .httpClientBuilder(AwsCrtAsyncHttpClient.builder())
 .overrideConfiguration(ClientOverrideConfiguration.builder()
 .apiCallTimeout(Duration.ofSeconds(3))
 .apiCallAttemptTimeout(Duration.ofMillis(500))
 .build())
 .build();

The individual HTTP client implementation may provide you with even more granular control over
the timeout and connection usage behavior. For example, for the Amazon CRT-based client, you
can enable ConnectionHealthConfiguration, which enables the client to actively monitor the
health of the used connections. For more information, see Advanced configuration of Amazon CRT-
based HTTP clients in the Amazon SDK for Java 2.x Developer Guide.

Config API Version 2012-08-10 550

https://docs.amazonaws.cn/sdkref/latest/guide/feature-smart-config-defaults.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html#configuring-the-crt-based-http-client
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration-crt.html#configuring-the-crt-based-http-client

Amazon DynamoDB Developer Guide

Keep-Alive configuration

Enabling keep-alive can reduce latencies by reusing connections. There are two different kinds of
keep-alive: HTTP Keep-Alive and TCP Keep-Alive.

• HTTP Keep-Alive attempts to maintain the HTTPS connection between the client and server so
later requests can reuse that connection. This skips the heavyweight HTTPS authentication on
later requests. HTTP Keep-Alive is enabled by default on all clients.

• TCP Keep-Alive requests that the underlying operating system sends small packets over the
socket connection to provide extra assurance that the socket is kept alive and to immediately
detect any drops. This ensures that a later request won't spend time trying to use a dropped
socket. By default, TCP Keep-Alive is disabled on all clients. The following code examples show
how to enable it on each HTTP client. When enabled for all non-CRT based HTTP clients, the
actual Keep-Alive mechanism is dependent on the operating system. Therefore, you must
configure additional TCP Keep-Alive values, such as timeout and number of packets, through the
operating system. You can do this using sysctl on Linux or macOS, or using registry values on
Windows.

Example to enable TCP Keep-Alive on an Apache-based HTTP client

DynamoDbClient client = DynamoDbClient.builder()
 .httpClientBuilder(ApacheHttpClient.builder().tcpKeepAlive(true))
 .build();

URLConnection-based HTTP client

Any synchronous client that uses the URLConnection-based HTTP client HttpURLConnection
doesn't have a mechanism to enable keep-alive.

Example to enable TCP Keep-Alive on a Netty-based HTTP client

DynamoDbAsyncClient client = DynamoDbAsyncClient.builder()
 .httpClientBuilder(NettyNioAsyncHttpClient.builder().tcpKeepAlive(true))
 .build();

Example to enable TCP Keep-Alive on an Amazon CRT-based HTTP client

With the Amazon CRT-based HTTP client, you can enable TCP keep-alive and control the duration.

Config API Version 2012-08-10 551

https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html
https://docs.oracle.com/javase/8/docs/api/java/net/doc-files/net-properties.html

Amazon DynamoDB Developer Guide

DynamoDbClient client = DynamoDbClient.builder()
 .httpClientBuilder(AwsCrtHttpClient.builder()
 .tcpKeepAliveConfiguration(TcpKeepAliveConfiguration.builder()
 .keepAliveInterval(Duration.ofSeconds(50))
 .keepAliveTimeout(Duration.ofSeconds(5))
 .build()))
 .build();

When using the asynchronous DynamoDB client, you can enable TCP Keep-Alive as shown in the
following code.

DynamoDbAsyncClient client = DynamoDbAsyncClient.builder()
 .httpClientBuilder(AwsCrtAsyncHttpClient.builder()
 .tcpKeepAliveConfiguration(TcpKeepAliveConfiguration.builder()
 .keepAliveInterval(Duration.ofSeconds(50))
 .keepAliveTimeout(Duration.ofSeconds(5))
 .build()))
 .build();

Error handling

When it comes to exception handling, the Amazon SDK for Java 2.x uses runtime (unchecked)
exceptions.

The base exception, covering all SDK exceptions, is SdkServiceException, which extends from
the Java unchecked RuntimeException. If you catch this, you'll catch all exceptions that the SDK
throws.

SdkServiceException has a subclass called AwsServiceException. This subclass indicates
any issue in communication with the Amazon Web Services service. It has a subclass called
DynamoDbException, which indicates an issue in communication with DynamoDB. If you catch
this, you'll catch all exceptions related to DynamoDB, but no other SDK exceptions.

There are more specific exception types under DynamoDbException. Some of these exception
types apply to control-plane operations such as TableAlreadyExistsException. Others apply
to data-plane operations. The following is an example of a common data-plane exception:

• ConditionalCheckFailedException – You specified a condition in the request that
evaluated to false. For example, you might have tried to perform a conditional update on an

Error handling API Version 2012-08-10 552

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/exception/SdkServiceException.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/awscore/exception/AwsServiceException.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/model/DynamoDbException.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/model/DynamoDbException.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/model/TableAlreadyExistsException.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/model/ConditionalCheckFailedException.html

Amazon DynamoDB Developer Guide

item, but the actual value of the attribute did not match the expected value in the condition. A
request that fails in this manner isn't retried.

Other situations don't have a specific exception defined. For example, when your requests get
throttled the specific ProvisionedThroughputExceededException might get thrown, while in
other cases the more generic DynamoDbException is thrown. In either case, you can determine if
throttling caused the exception by checking if isThrottlingException() returns true.

Depending on your application needs, you can catch all AwsServiceException or
DynamoDbException instances. However, you often need different behavior in different
situations. The logic to deal with a condition check failure is different than that to handle
throttling. Define which exceptional paths you want to deal with and make sure to test the
alternative paths. This helps you make sure that you can deal with all relevant scenarios.

For lists of common errors that you might encounter, see Error handling with DynamoDB. Also see
Common Errors in the Amazon DynamoDB API Reference. The API Reference also provides the exact
errors possible for each API operation, such as for the Query operation. For information about
handling exceptions, see Exception handling for the Amazon SDK for Java 2.x in the Amazon SDK
for Java 2.x Developer Guide.

Amazon request ID

Each request includes a request ID, which can be useful to pull if you're working with Amazon Web
Services Support to diagnose an issue. Each exception derived from SdkServiceException has a
requestId() method available to retrieve the request ID.

Logging

Using the logging provided that the SDK provides can be useful both for catching any important
messages from the client libraries and for more in-depth debugging purposes. Loggers are
hierarchical and the SDK uses software.amazon.awssdk as its root logger. You can configure the
level with one of TRACE, DEBUG, INFO, WARN, ERROR, ALL, or OFF. The configured level applies to
that logger and down into the logger hierarchy.

For its logging, the Amazon SDK for Java 2.x uses the Simple Logging Façade for Java (SLF4J). This
acts as an abstraction layer around other loggers, and you can use it to plug in the logger that you
prefer. For instructions about plugging in loggers, see the SLF4J user manual.

Amazon request ID API Version 2012-08-10 553

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/CommonErrors.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/handling-exceptions.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/exception/SdkServiceException.html#requestId()
https://www.slf4j.org/manual.html

Amazon DynamoDB Developer Guide

Each logger has a particular behavior. By default, the Log4j 2.x logger creates a
ConsoleAppender, which appends log events to System.out and defaults to the ERROR log
level.

The SimpleLogger logger included in SLF4J outputs by default to System.err and defaults to the
INFO log level.

We recommend that you set the level to WARN for software.amazon.awssdk for any production
deployments to catch any important messages from the SDK's client libraries while limiting the
output quantity.

If SLF4J can't find a supported logger on the class path (no SLF4J binding), then it defaults
to a no operation implementation. This implementation results in logging messages to
System.err explaining that SLF4J could not find a logger implementation on the classpath.
To prevent this situation, you must add a logger implementation. To do this, you can add a
dependency in your Apache Maven pom.xml on artifacts, such as org.slf4j.slf4j-simple or
org.apache.logging.log4j.log4j-slf4j2-imp.

For information about how to configure the logging in the SDK, including adding logging
dependencies to your application configuration, see Logging with the SDK for Java 2.x in the
Amazon SDK for Java Developer Guide.

The following configuration in the Log4j2.xml file shows how to adjust the logging behavior
if you use the Apache Log4j 2 logger. This configuration sets the root logger level to WARN. All
loggers in the hierarchy inherit this log level, including the software.amazon.awssdk logger.

By default, the output goes to System.out. In the following example, we still override the default
output Log4j appender to apply a tailored Log4j PatternLayout.

Example of a Log4j2.xml configuration file

The following configuration logs messages to the console at the ERROR and WARN levels for all
logger hierarchies.

<Configuration status="WARN">
 <Appenders>
 <Console name="ConsoleAppender" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c:%L - %m%n" />
 </Console>
 </Appenders>

Logging API Version 2012-08-10 554

https://www.slf4j.org/codes.html#noProviders
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/logging-slf4j.html

Amazon DynamoDB Developer Guide

 <Loggers>
 <Root level="WARN">
 <AppenderRef ref="ConsoleAppender"/>
 </Root>
 </Loggers>
</Configuration>

Amazon request ID logging

When something goes wrong, you can find request IDs within exceptions. However, if you want the
request IDs for requests that aren't generating exceptions, then you can use logging.

The software.amazon.awssdk.request logger outputs request IDs at the DEBUG
level. The following example extends the previous configuration example to keep the
root logger level at ERROR, the software.amazon.awssdk at level WARN, and the
software.amazon.awssdk.request at level DEBUG. Setting these levels helps to catch the
request IDs and other request-related details, such as the endpoint and status code.

<Configuration status="WARN">
 <Appenders>
 <Console name="ConsoleAppender" target="SYSTEM_OUT">
 <PatternLayout pattern="%d{YYYY-MM-dd HH:mm:ss} [%t] %-5p %c:%L - %m%n" />
 </Console>
 </Appenders>

 <Loggers>
 <Root level="ERROR">
 <AppenderRef ref="ConsoleAppender"/>
 </Root>
 <Logger name="software.amazon.awssdk" level="WARN" />
 <Logger name="software.amazon.awssdk.request" level="DEBUG" />
 </Loggers>
</Configuration>

Here is an example of the log output:

2022-09-23 16:02:08 [main] DEBUG software.amazon.awssdk.request:85 - Sending Request:
 DefaultSdkHttpFullRequest(httpMethod=POST, protocol=https, host=dynamodb.us-
east-1.amazonaws.com, encodedPath=/, headers=[amz-sdk-invocation-id, Content-Length,
 Content-Type, User-Agent, X-Amz-Target], queryParameters=[])

Logging API Version 2012-08-10 555

Amazon DynamoDB Developer Guide

 2022-09-23 16:02:08 [main] DEBUG software.amazon.awssdk.request:85 - Received
 successful response: 200, Request ID:
 QS9DUMME2NHEDH8TGT9N5V53OJVV4KQNSO5AEMVJF66Q9ASUAAJG, Extended Request ID: not
 available

Pagination

Some requests, such as Query and Scan, limit the size of data returned on a single request and
require you make repeated requests to pull subsequent pages.

You can control the maximum number of items to read for each page with the Limit parameter.
For example, you can use the Limit parameter to retrieve only the last 10 items. This limit
specifies how many items to read from the table before any filtering is applied. If you want exactly
10 items after filtering, there's no way to specify that. You can control only the pre-filtered count
and check client-side when you've actually retrieved 10 items. Regardless of the limit, responses
always have a maximum size of 1 MB.

A LastEvaluatedKey might be included in the API response. This indicates that the response
ended because it reached a count limit or a size limit. This key is the last key evaluated for that
response. By interacting directly with the API, you can retrieve this LastEvaluatedKey and pass it
to a follow-up call as ExclusiveStartKey to read the next chunk from that starting point. If no
LastEvaluatedKey is returned, it means that there are no more items that match the Query or
Scan API call.

The following example uses the low-level interface to limit the items to 100 based on the
keyConditionExpression parameter.

QueryRequest.Builder queryRequestBuilder = QueryRequest.builder()
 .expressionAttributeValues(Map.of(
 ":pk_val", AttributeValue.fromS("123"),
 ":sk_val", AttributeValue.fromN("1000")))
 .keyConditionExpression("pk = :pk_val AND sk > :sk_val")
 .limit(100)
 .tableName(TABLE_NAME);

while (true) {
 QueryResponse queryResponse = DYNAMODB_CLIENT.query(queryRequestBuilder.build());

 queryResponse.items().forEach(item -> {
 LOGGER.info("item PK: [" + item.get("pk") + "] and SK: [" + item.get("sk") +
 "]");

Pagination API Version 2012-08-10 556

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html

Amazon DynamoDB Developer Guide

 });

 if (!queryResponse.hasLastEvaluatedKey()) {
 break;
 }
 queryRequestBuilder.exclusiveStartKey(queryResponse.lastEvaluatedKey());
}

The Amazon SDK for Java 2.x can simplify this interaction with DynamoDB by providing auto-
pagination methods that make multiple service calls to automatically get the next pages of results
for you. This simplifies your code, but it takes away some control of resource usage that you would
keep by manually reading pages.

By using the Iterable methods available in the DynamoDB client, such as QueryPaginator
and ScanPaginator, the SDK takes care of the pagination. The return type of these methods is
a custom iterable that you can use to iterate through all the pages. The SDK internally handles
service calls for you. Using the Java Stream API, you can handle the result of QueryPaginator as
shown in the following example.

QueryPublisher queryPublisher =
 DYNAMODB_CLIENT.queryPaginator(QueryRequest.builder()
 .expressionAttributeValues(Map.of(
 ":pk_val", AttributeValue.fromS("123"),
 ":sk_val", AttributeValue.fromN("1000")))
 .keyConditionExpression("pk = :pk_val AND sk > :sk_val")
 .limit(100)
 .tableName("YourTableName")
 .build());

queryPublisher.items().subscribe(item ->
 System.out.println(item.get("itemData"))).join();

Data class annotations

The Java SDK provides several annotations that you can put on the attributes of your data
class. These annotations influence how the SDK interacts with the attributes. By adding an
annotation, you can have an attribute behave as an implicit atomic counter, maintain an auto-
generated timestamp value, or track an item version number. For more information, see Data class
annotations.

Data class annotations API Version 2012-08-10 557

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html#queryPaginator(software.amazon.awssdk.services.dynamodb.model.QueryRequest)
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html#scanPaginator(software.amazon.awssdk.services.dynamodb.model.ScanRequest)
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/ddb-en-client-anno-index.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/ddb-en-client-anno-index.html

Amazon DynamoDB Developer Guide

Error handling with DynamoDB

This section describes runtime errors and how to handle them. It also describes error messages and
codes that are specific to Amazon DynamoDB. For a list of common errors that apply to all Amazon
services, see Access Management

Topics

• Error components

• Transactional errors

• Error messages and codes

• Error handling in your application

• Error retries and exponential backoff

• Batch operations and error handling

Error components

When your program sends a request, DynamoDB attempts to process it. If the request is successful,
DynamoDB returns an HTTP success status code (200 OK), along with the results from the
requested operation.

If the request is unsuccessful, DynamoDB returns an error. Each error has three components:

• An HTTP status code (such as 400).

• An exception name (such as ResourceNotFoundException).

• An error message (such as Requested resource not found: Table: tablename not
found).

The Amazon SDKs take care of propagating errors to your application so that you can take
appropriate action. For example, in a Java program, you can write try-catch logic to handle a
ResourceNotFoundException.

If you are not using an Amazon SDK, you need to parse the content of the low-level response from
DynamoDB. The following is an example of such a response.

HTTP/1.1 400 Bad Request
x-amzn-RequestId: LDM6CJP8RMQ1FHKSC1RBVJFPNVV4KQNSO5AEMF66Q9ASUAAJG

Error handling API Version 2012-08-10 558

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/CommonErrors.html

Amazon DynamoDB Developer Guide

Content-Type: application/x-amz-json-1.0
Content-Length: 240
Date: Thu, 15 Mar 2012 23:56:23 GMT

{"__type":"com.amazonaws.dynamodb.v20120810#ResourceNotFoundException",
"message":"Requested resource not found: Table: tablename not found"}

Transactional errors

For information on transactional errors, please see Transaction conflict handling in DynamoDB

Error messages and codes

The following is a list of exceptions returned by DynamoDB, grouped by HTTP status code. If OK
to retry? is Yes, you can submit the same request again. If OK to retry? is No, you need to fix the
problem on the client side before you submit a new request.

HTTP status code 400

An HTTP 400 status code indicates a problem with your request, such as authentication failure,
missing required parameters, or exceeding a table's provisioned throughput. You have to fix the
issue in your application before submitting the request again.

AccessDeniedException

Message: Access denied.

The client did not correctly sign the request. If you are using an Amazon SDK, requests are
signed for you automatically; otherwise, go to the Signature version 4 signing process in the
Amazon Web Services General Reference.

OK to retry? No

ConditionalCheckFailedException

Message: The conditional request failed.

You specified a condition that evaluated to false. For example, you might have tried to perform
a conditional update on an item, but the actual value of the attribute did not match the
expected value in the condition.

Transactional errors API Version 2012-08-10 559

https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon DynamoDB Developer Guide

OK to retry? No

IncompleteSignatureException

Message: The request signature does not conform to Amazon standards.

The request signature did not include all of the required components. If you are using an
Amazon SDK, requests are signed for you automatically; otherwise, go to the Signature Version
4 signing process in the Amazon Web Services General Reference.

OK to retry? No

ItemCollectionSizeLimitExceededException

Message: Collection size exceeded.

For a table with a local secondary index, a group of items with the same partition key value has
exceeded the maximum size limit of 10 GB. For more information on item collections, see Item
collections in Local Secondary Indexes.

OK to retry? Yes

LimitExceededException

Message: Too many operations for a given subscriber.

There are too many concurrent control plane operations. The cumulative number of tables and
indexes in the CREATING, DELETING, or UPDATING state cannot exceed 500.

OK to retry? Yes

MissingAuthenticationTokenException

Message: Request must contain a valid (registered) Amazon Access Key ID.

The request did not include the required authorization header, or it was malformed. See
DynamoDB low-level API.

OK to retry? No

Error messages and codes API Version 2012-08-10 560

https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon DynamoDB Developer Guide

ProvisionedThroughputExceededException

Message: You exceeded your maximum allowed provisioned throughput for a table or for one
or more global secondary indexes. To view performance metrics for provisioned throughput vs.
consumed throughput, open the Amazon CloudWatch console.

The error includes a list of ThrottlingReason fields that provides specific context about
why throttling occurred, following the format ResourceType+OperationType+LimitType
(e.g., TableReadProvisionedThroughputExceeded) and the ARN of the affected resource.
This helps you identify which resource is being throttled (table or index), what operation type
triggered the throttling (read or write), and the specific limit that was exceeded (in this case:
provisioned capacity). For more information about diagnosing and resolving throttling issues,
see Diagnosing throttling.

Example: Your request rate is too high. The Amazon SDKs for DynamoDB automatically
retry requests that receive this exception. Your request is eventually successful, unless your
retry queue is too large to finish. Reduce the frequency of requests using Error retries and
exponential backoff.

OK to retry? Yes

ReplicatedWriteConflictException

Message: One or more items in this request are being modified by a request in another Region.

Example: A write operation was requested for an item in a multi-Region strongly consistent
(MRSC) global table that is currently being modified by a request in another Region.

OK to retry? Yes

RequestLimitExceeded

Message: Throughput exceeds the current throughput limit for your account. To request a limit
increase, contact Amazon Support at https://aws.amazon.com/support.

The error includes a list of ThrottlingReason fields that provides specific context about why
throttling occurred, following the format ResourceType+OperationType+LimitType (e.g.,
TableWriteAccountLimitExceeded or IndexReadAccountLimitExceeded) and the
ARN of the affected resource. This helps you identify which resource is being throttled (table or

Error messages and codes API Version 2012-08-10 561

https://console.amazonaws.cn/cloudwatch/home
https://aws.amazon.com/support

Amazon DynamoDB Developer Guide

index), what operation type triggered the throttling (read or write), and that you've exceeded
account-level service quotas. For more information about diagnosing and resolving throttling
issues, see Diagnosing throttling.

Example: Rate of on-demand requests exceeds the allowed account throughput and the table
cannot be scaled further.

OK to retry? Yes

ResourceInUseException

Message: The resource which you are attempting to change is in use.

Example: You tried to re-create an existing table, or delete a table currently in the CREATING
state.

OK to retry? No

ResourceNotFoundException

Message: Requested resource not found.

Example: The table that is being requested does not exist, or is too early in the CREATING state.

OK to retry? No

ThrottlingException

Message: Rate of requests exceeds the allowed throughput.

This exception is returned as an AmazonServiceException response with a
THROTTLING_EXCEPTION status code. This exception might be returned if you perform control
plane API operations too rapidly.

For tables using on-demand mode, this exception might be returned for any data plane API
operation if your request rate is too high. To learn more about on-demand scaling, see Initial
throughput and scaling properties.

The error includes a list of ThrottlingReason fields that provides specific
context about why throttling occurred, following the format ResourceType

Error messages and codes API Version 2012-08-10 562

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.API.html#HowItWorks.API.ControlPlane
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.API.html#HowItWorks.API.ControlPlane
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.API.html#HowItWorks.API.DataPlane

Amazon DynamoDB Developer Guide

+OperationType+LimitType (e.g., TableReadKeyRangeThroughputExceeded or
IndexWriteMaxOnDemandThroughputExceeded) and the ARN of the affected resource.
This information helps you identify which resource is being throttled (table or index), what
operation type triggered the throttling (read or write), and the specific limit that was exceeded
(partition limits or on-demand maximum throughput). For more information about diagnosing
and resolving throttling issues, see Diagnosing throttling.

OK to retry? Yes

UnrecognizedClientException

Message: The Access Key ID or security token is invalid.

The request signature is incorrect. The most likely cause is an invalid Amazon access key ID or
secret key.

OK to retry? Yes

ValidationException

Message: Varies, depending upon the specific error(s) encountered

This error can occur for several reasons, such as a required parameter that is missing, a value
that is out of range, or mismatched data types. The error message contains details about the
specific part of the request that caused the error.

OK to retry? No

HTTP status code 5xx

An HTTP 5xx status code indicates a problem that must be resolved by Amazon. This might be
a transient error, in which case you can retry your request until it succeeds. Otherwise, go to the
Amazon Service Health Dashboard to see if there are any operational issues with the service.

For more information, see How do I resolve HTTP 5xx errors in Amazon DynamoDB?

InternalServerError (HTTP 500)

DynamoDB could not process your request.

Error messages and codes API Version 2012-08-10 563

http://status.amazonaws.cn/
https://www.amazonaws.cn/premiumsupport/knowledge-center/dynamodb-http-5xx-errors/

Amazon DynamoDB Developer Guide

OK to retry? Yes

Note

You might encounter internal server errors while working with items. These are
expected during the lifetime of a table. Any failed requests can be retried immediately.
When you receive a status code 500 on a write operation, the operation may have
succeeded or failed. If the write operation is a TransactWriteItem request, then it is
OK to retry the operation. If the write operation is a single-item write request such as
PutItem, UpdateItem, or DeleteItem, then your application should read the state
of the item before retrying the operation, and/or use DynamoDB condition expression
CLI example to ensure that the item remains in a correct state after retrying regardless
of whether the prior operation succeeded or failed. If idempotency is a requirement
for the write operation, please use TransactWriteItem, which supports idempotent
requests by automatically specifying a ClientRequestToken to disambiguate
multiple attempts to perform the same action.

ServiceUnavailable (HTTP 503)

DynamoDB is currently unavailable. (This should be a temporary state.)

OK to retry? Yes

Error handling in your application

For your application to run smoothly, you need to add logic to catch and respond to errors. Typical
approaches include using try-catch blocks or if-then statements.

The Amazon SDKs perform their own retries and error checking. If you encounter an error while
using one of the Amazon SDKs, the error code and description can help you troubleshoot it.

You should also see a Request ID in the response. The Request ID can be helpful if you need to
work with Amazon Support to diagnose an issue.

Error retries and exponential backoff

Numerous components on a network, such as DNS servers, switches, load balancers, and others,
can generate errors anywhere in the life of a given request. The usual technique for dealing with

Error handling in your application API Version 2012-08-10 564

Amazon DynamoDB Developer Guide

these error responses in a networked environment is to implement retries in the client application.
This technique increases the reliability of the application.

Each Amazon SDK implements retry logic automatically. You can modify the retry parameters
to your needs. For example, consider a Java application that requires a fail-fast strategy,
with no retries allowed in case of an error. With the Amazon SDK for Java, you could use the
ClientConfiguration class and provide a maxErrorRetry value of 0 to turn off the retries. For
more information, see the Amazon SDK documentation for your programming language.

If you're not using an Amazon SDK, you should retry original requests that receive server
errors (5xx). However, client errors (4xx, other than a ThrottlingException or a
ProvisionedThroughputExceededException) indicate that you need to revise the request
itself to correct the problem before trying again. For detailed recommendations to address specific
throttling scenarios, refer to the DynamoDB throttling troubleshooting section.

In addition to simple retries, each Amazon SDK implements an exponential backoff algorithm for
better flow control. The concept behind exponential backoff is to use progressively longer waits
between retries for consecutive error responses. For example, up to 50 milliseconds before the
first retry, up to 100 milliseconds before the second, up to 200 milliseconds before third, and so
on. However, after a minute, if the request has not succeeded, the problem might be the request
size exceeding your provisioned throughput, and not the request rate. Set the maximum number
of retries to stop around one minute. If the request is not successful, investigate your provisioned
throughput options.

Note

The Amazon SDKs implement automatic retry logic and exponential backoff.

Most exponential backoff algorithms use jitter (randomized delay) to prevent successive collisions.
Because you aren't trying to avoid such collisions in these cases, you do not need to use this
random number. However, if you use concurrent clients, jitter can help your requests succeed faster.
For more information, see the blog post about Exponential backoff and jitter.

Batch operations and error handling

The DynamoDB low-level API supports batch operations for reads and writes. BatchGetItem
reads items from one or more tables, and BatchWriteItem puts or deletes items in one or more
tables. These batch operations are implemented as wrappers around other non-batch DynamoDB

Batch operations and error handling API Version 2012-08-10 565

http://www.awsarchitectureblog.com/2015/03/backoff.html

Amazon DynamoDB Developer Guide

operations. In other words, BatchGetItem invokes GetItem once for each item in the batch.
Similarly,BatchWriteItem invokes DeleteItem or PutItem, as appropriate, for each item in the
batch.

A batch operation can tolerate the failure of individual requests in the batch. For example, consider
a BatchGetItem request to read five items. Even if some of the underlying GetItem requests fail,
this does not cause the entire BatchGetItem operation to fail. However, if all five read operations
fail, then the entire BatchGetItem fails.

The batch operations return information about individual requests that fail so that you can
diagnose the problem and retry the operation. For BatchGetItem, the tables and primary keys
in question are returned in the UnprocessedKeys value of the response. For BatchWriteItem,
similar information is returned in UnprocessedItems.

The most likely cause of a failed read or a failed write is throttling. For BatchGetItem, one or
more of the tables in the batch request does not have enough provisioned read capacity to support
the operation. For BatchWriteItem, one or more of the tables does not have enough provisioned
write capacity.

If DynamoDB returns any unprocessed items, you should retry the batch operation on those items.
However, we strongly recommend that you use an exponential backoff algorithm. If you retry the
batch operation immediately, the underlying read or write requests can still fail due to throttling
on the individual tables. If you delay the batch operation using exponential backoff, the individual
requests in the batch are much more likely to succeed.

Using DynamoDB with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation

Amazon CLI

Amazon SDK for Java

Amazon SDK for JavaScript

Working with Amazon SDKs API Version 2012-08-10 566

https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript

Amazon DynamoDB Developer Guide

SDK documentation

Amazon SDK for .NET

Amazon SDK for PHP

Amazon Tools for PowerShell

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

For examples specific to DynamoDB, see Code examples for DynamoDB using Amazon SDKs.

Working with Amazon SDKs API Version 2012-08-10 567

https://docs.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-php
https://docs.amazonaws.cn/powershell
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap

Amazon DynamoDB Developer Guide

Working with tables, items, queries, scans, and indexes

This section provides details about working with tables, items, queries, and more in Amazon
DynamoDB.

Topics

• Working with tables and data in DynamoDB

• Global tables - multi-active, multi-Region replication

• Working with items and attributes in DynamoDB

• Improving data access with secondary indexes in DynamoDB

• Managing complex workflows with DynamoDB transactions

• Change data capture with Amazon DynamoDB

Working with tables and data in DynamoDB

This section describes how to use the Amazon Command Line Interface (Amazon CLI) and the
Amazon SDKs to create, update, and delete tables in Amazon DynamoDB.

Note

You can also perform these same tasks using the Amazon Web Services Management
Console. For more information, see Using the console.

This section also provides more information about throughput capacity using DynamoDB auto
scaling or manually setting provisioned throughput.

Topics

• Basic operations on DynamoDB tables

• Considerations when choosing a table class in DynamoDB

• Adding tags and labels to resources in DynamoDB

Working with tables API Version 2012-08-10 568

Amazon DynamoDB Developer Guide

Basic operations on DynamoDB tables

Similar to other database systems, Amazon DynamoDB stores data in tables. You can manage your
tables using a few basic operations.

Topics

• Creating a table

• Describing a table

• Updating a table

• Deleting a table

• Using deletion protection

• Listing table names

• Describing provisioned throughput quotas

Creating a table

Use the CreateTable operation to create a table in Amazon DynamoDB. To create the table, you
must provide the following information:

• Table name. The name must conform to the DynamoDB naming rules, and must be unique
for the current Amazon account and Region. For example, you could create a People table in
US East (N. Virginia) and another People table in Europe (Ireland). However, these two tables
would be entirely different from each other. For more information, see Supported data types and
naming rules in Amazon DynamoDB.

• Primary key. The primary key can consist of one attribute (partition key) or two attributes
(partition key and sort key). You need to provide the attribute names, data types, and the role of
each attribute: HASH (for a partition key) and RANGE (for a sort key). For more information, see
Primary key.

• Throughput settings (for provisioned tables). If using provisioned mode, you must specify
the initial read and write throughput settings for the table. You can modify these settings later,
or enable DynamoDB auto scaling to manage the settings for you. For more information, see
DynamoDB provisioned capacity mode and Managing throughput capacity automatically with
DynamoDB auto scaling.

Basic operations on tables API Version 2012-08-10 569

Amazon DynamoDB Developer Guide

Example 1: Create an on-demand table

To create the same table Music using on-demand mode.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode=PAY_PER_REQUEST

The CreateTable operation returns metadata for the table, as shown following.

{
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-east-1:123456789012:table/Music",
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 0,
 "ReadCapacityUnits": 0
 },
 "TableSizeBytes": 0,
 "TableName": "Music",
 "BillingModeSummary": {
 "BillingMode": "PAY_PER_REQUEST"
 },
 "TableStatus": "CREATING",
 "TableId": "12345678-0123-4567-a123-abcdefghijkl",
 "KeySchema": [
 {

Basic operations on tables API Version 2012-08-10 570

Amazon DynamoDB Developer Guide

 "KeyType": "HASH",
 "AttributeName": "Artist"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": 1542397468.348
 }
}

Important

When calling DescribeTable on an on-demand table, read capacity units and write
capacity units are set to 0.

Example 2: Create a provisioned table

The following Amazon CLI example shows how to create a table (Music). The primary key consists
of Artist (partition key) and SongTitle (sort key), each of which has a data type of String. The
maximum throughput for this table is 10 read capacity units and 5 write capacity units.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5

The CreateTable operation returns metadata for the table, as shown following.

{
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-east-1:123456789012:table/Music",
 "AttributeDefinitions": [

Basic operations on tables API Version 2012-08-10 571

Amazon DynamoDB Developer Guide

 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 10
 },
 "TableSizeBytes": 0,
 "TableName": "Music",
 "TableStatus": "CREATING",
 "TableId": "12345678-0123-4567-a123-abcdefghijkl",
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Artist"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": 1542397215.37
 }
}

The TableStatus element indicates the current state of the table (CREATING). It might take
a while to create the table, depending on the values you specify for ReadCapacityUnits and
WriteCapacityUnits. Larger values for these require DynamoDB to allocate more resources for
the table.

Example 3: Create a table using the DynamoDB standard-infrequent access table class

To create the same Music table using the DynamoDB Standard-Infrequent Access table class.

aws dynamodb create-table \

Basic operations on tables API Version 2012-08-10 572

Amazon DynamoDB Developer Guide

 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --table-class STANDARD_INFREQUENT_ACCESS

The CreateTable operation returns metadata for the table, as shown following.

{
 "TableDescription": {
 "TableArn": "arn:aws:dynamodb:us-east-1:123456789012:table/Music",
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 10
 },
 "TableClassSummary": {
 "LastUpdateDateTime": 1542397215.37,
 "TableClass": "STANDARD_INFREQUENT_ACCESS"
 },
 "TableSizeBytes": 0,
 "TableName": "Music",
 "TableStatus": "CREATING",
 "TableId": "12345678-0123-4567-a123-abcdefghijkl",
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Artist"

Basic operations on tables API Version 2012-08-10 573

Amazon DynamoDB Developer Guide

 },
 {
 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": 1542397215.37
 }
}

Describing a table

To view details about a table, use the DescribeTable operation. You must provide the table
name. The output from DescribeTable is in the same format as that from CreateTable. It
includes the timestamp when the table was created, its key schema, its provisioned throughput
settings, its estimated size, and any secondary indexes that are present.

Important

When calling DescribeTable on an on-demand table, read capacity units and write
capacity units are set to 0.

Example

aws dynamodb describe-table --table-name Music

The table is ready for use when the TableStatus has changed from CREATING to ACTIVE.

Note

If you issue a DescribeTable request immediately after a CreateTable request,
DynamoDB might return an error (ResourceNotFoundException). This is because
DescribeTable uses an eventually consistent query, and the metadata for your
table might not be available at that moment. Wait for a few seconds, and then try the
DescribeTable request again.

Basic operations on tables API Version 2012-08-10 574

Amazon DynamoDB Developer Guide

For billing purposes, your DynamoDB storage costs include a per-item overhead of 100
bytes. (For more information, go to DynamoDB Pricing.) This extra 100 bytes per item is not
used in capacity unit calculations or by the DescribeTable operation.

Updating a table

The UpdateTable operation allows you to do one of the following:

• Modify a table's provisioned throughput settings (for provisioned mode tables).

• Change the table's read/write capacity mode.

• Manipulate global secondary indexes on the table (see Using Global Secondary Indexes in
DynamoDB).

• Enable or disable DynamoDB Streams on the table (see Change data capture for DynamoDB
Streams).

Example

The following Amazon CLI example shows how to modify a table's provisioned throughput settings.

aws dynamodb update-table --table-name Music \
 --provisioned-throughput ReadCapacityUnits=20,WriteCapacityUnits=10

Note

When you issue an UpdateTable request, the status of the table changes from
AVAILABLE to UPDATING. The table remains fully available for use while it is UPDATING.
When this process is completed, the table status changes from UPDATING to AVAILABLE.

Example

The following Amazon CLI example shows how to modify a table's read/write capacity mode to on-
demand mode.

aws dynamodb update-table --table-name Music \
 --billing-mode PAY_PER_REQUEST

Basic operations on tables API Version 2012-08-10 575

http://www.amazonaws.cn/dynamodb/pricing/

Amazon DynamoDB Developer Guide

Deleting a table

You can remove an unused table with the DeleteTable operation. Deleting a table is an
unrecoverable operation. To delete a table using the Amazon Web Services Management Console,
see the section called “Step 6: (Optional) clean up”.

Example

The following Amazon CLI example shows how to delete a table.

aws dynamodb delete-table --table-name Music

When you issue a DeleteTable request, the table's status changes from ACTIVE to DELETING. It
might take a while to delete the table, depending on the resources it uses (such as the data stored
in the table, and any streams or indexes on the table).

When the DeleteTable operation concludes, the table no longer exists in DynamoDB.

Using deletion protection

You can protect a table from accidental deletion with the deletion protection property. Enabling
this property for tables helps ensure that tables do not get accidentally deleted during regular
table management operations by your administrators. This will help prevent disruption to your
normal business operations.

The table owner or an authorized administrator controls the deletion protection property for
each table. The deletion protection property for every table is off by default. This includes global
replicas, and tables restored from backups. When deletion protection is disabled for a table, the
table can be deleted by any users authorized by an Identity and Access Management (IAM) policy.
When deletion protection is enabled for a table, it cannot be deleted by anyone.

To change this setting, go to the table’s Additional settings, navigate to the Deletion Protection
panel and select Enable delete protection.

The deletion protection property is supported by the DynamoDB console, API, CLI/SDK and
Amazon CloudFormation. The CreateTable API supports the deletion protection property at
table creation time, and the UpdateTable API supports changing the deletion protection property
for existing tables.

Basic operations on tables API Version 2012-08-10 576

Amazon DynamoDB Developer Guide

Note

• If an Amazon account is deleted, all of that account's data including tables are still
deleted within 90 days.

• If DynamoDB loses access to a customer managed key that was used to encrypt a table,
it will still archive the table. Archiving involves making a backup of the table and deleting
the original.

Listing table names

The ListTables operation returns the names of the DynamoDB tables for the current Amazon
account and Region.

Example

The following Amazon CLI example shows how to list the DynamoDB table names.

aws dynamodb list-tables

Describing provisioned throughput quotas

The DescribeLimits operation returns the current read and write capacity quotas for the current
Amazon account and Region.

Example

The following Amazon CLI example shows how to describe the current provisioned throughput
quotas.

aws dynamodb describe-limits

The output shows the upper quotas of read and write capacity units for the current Amazon
account and Region.

For more information about these quotas, and how to request quota increases, see Throughput
default quotas.

Basic operations on tables API Version 2012-08-10 577

Amazon DynamoDB Developer Guide

Considerations when choosing a table class in DynamoDB

DynamoDB offers two table classes designed to help you optimize for cost. The DynamoDB
Standard table class is the default, and is recommended for the vast majority of workloads. The
DynamoDB Standard-Infrequent Access (DynamoDB Standard-IA) table class is optimized for
tables where storage is the dominant cost. For example, tables that store infrequently accessed
data, such as application logs, old social media posts, e-commerce order history, and past gaming
achievements, are good candidates for the Standard-IA table class.

Every DynamoDB table is associated with a table class. All secondary indexes associated with the
table use the same table class. You can set your table class when creating your table (DynamoDB
Standard by default) and update the table class of an existing table using the Amazon Web
Services Management Console, Amazon CLI, or Amazon SDK. DynamoDB also supports managing
your table class using Amazon CloudFormation for single-region tables (tables that are not global
tables). Each table class offers different pricing for data storage as well as read and write requests.
When choosing a table class for your table, keep the following in mind:

• The DynamoDB Standard table class offers lower throughput costs than DynamoDB Standard-IA
and is the most cost-effective option for tables where throughput is the dominant cost.

• The DynamoDB Standard-IA table class offers lower storage costs than DynamoDB Standard, and
is the most cost-effective option for tables where storage is the dominant cost. When storage
exceeds 50% of the throughput (reads and writes) cost of a table using the DynamoDB Standard
table class, the DynamoDB Standard-IA table class can help you reduce your total table cost.

• DynamoDB Standard-IA tables offer the same performance, durability, and availability as
DynamoDB Standard tables.

• Switching between the DynamoDB Standard and DynamoDB Standard-IA table classes does not
require changing your application code. You use the same DynamoDB APIs and service endpoints
regardless of the table class your tables use.

• DynamoDB Standard-IA tables are compatible with all existing DynamoDB features such as auto
scaling, on-demand mode, time-to-live (TTL), on-demand backups, point-in-time recovery (PITR),
and global secondary indexes.

The most cost-effective table class for your table depends on your table's expected storage and
throughput usage patterns. You can look at your table's historical storage and throughput cost
and usage with Amazon Cost and Usage Reports and the Amazon Cost Explorer. Use this historical
data to determine the most cost-effective table class for your table. To learn more about using

Considerations when choosing a table class in DynamoDB API Version 2012-08-10 578

Amazon DynamoDB Developer Guide

Amazon Cost and Usage Reports and the Amazon Cost Explorer, see the Amazon Billing and Cost
Management Documentation. See Amazon DynamoDB Pricing for details about table class pricing.

Note

A table class update is a background process. You can still access your table normally during
a table class update. The time to update your table class depends on your table traffic,
storage size, and other related variables. No more than two table class updates on your
table are allowed in a 30-day trailing period.

Adding tags and labels to resources in DynamoDB

You can label Amazon DynamoDB resources using tags. Tags let you categorize your resources in
different ways, for example, by purpose, owner, environment, or other criteria. Tags can help you
do the following:

• Quickly identify a resource based on the tags that you assigned to it.

• See Amazon bills broken down by tags.

Note

Any local secondary indexes (LSI) and global secondary indexes (GSI) related to tagged
tables are labeled with the same tags automatically. Currently, DynamoDB Streams usage
cannot be tagged.

Tagging is supported by Amazon services like Amazon EC2, Amazon S3, DynamoDB, and more.
Efficient tagging can provide cost insights by enabling you to create reports across services that
carry a specific tag.

To get started with tagging, do the following:

1. Understand Tagging restrictions in DynamoDB.

2. Create tags by using Tagging resources in DynamoDB.

3. Use Using DynamoDB tags to create cost allocation reports to track your Amazon costs per
active tag.

Tags and labels API Version 2012-08-10 579

https://docs.aws.amazon.com/account-billing/index.html
https://docs.aws.amazon.com/account-billing/index.html
https://aws.amazon.com/dynamodb/pricing/on-demand/

Amazon DynamoDB Developer Guide

Finally, it is good practice to follow optimal tagging strategies. For information, see Amazon
tagging strategies.

Tagging restrictions in DynamoDB

Each tag consists of a key and a value, both of which you define. The following restrictions apply:

• Each DynamoDB table can have only one tag with the same key. If you try to add an existing tag
(same key), the existing tag value is updated to the new value.

• Tag keys and values are case sensitive.

• The maximum key length is 128 Unicode characters.

• The maximum value length is 256 Unicode characters.

• The allowed characters are letters, white space, and numbers, plus the following special
characters: + - = . _ : /

• The maximum number of tags per resource is 50.

• The maximum size supported for all the tags in a table is 10 KB.

• Amazon-assigned tag names and values are automatically assigned the aws: prefix, which you
can't assign. Amazon-assigned tag names don't count toward the tag limit of 50 or the 10 KB
maximum size limit. User-assigned tag names have the prefix user: in the cost allocation report.

• You can't backdate the application of a tag.

Tagging resources in DynamoDB

You can use the Amazon DynamoDB console or the Amazon Command Line Interface (Amazon
CLI) to add, list, edit, or delete tags. You can then activate these user-defined tags so that they
appear on the Amazon Billing and Cost Management console for cost allocation tracking. For more
information, see Using DynamoDB tags to create cost allocation reports.

For bulk editing, you can also use Tag Editor on the Amazon Web Services Management Console.
For more information, see Working with Tag Editor.

To use the DynamoDB API instead, see the following operations in the Amazon DynamoDB API
Reference:

• TagResource

• UntagResource

Tags and labels API Version 2012-08-10 580

https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf
https://d0.awsstatic.com/aws-answers/AWS_Tagging_Strategies.pdf
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UntagResource.html

Amazon DynamoDB Developer Guide

• ListTagsOfResource

Topics

• Setting permissions to filter by tags

• Adding tags to new or existing tables (Amazon Web Services Management Console)

• Adding tags to new or existing tables (Amazon CLI)

Setting permissions to filter by tags

To use tags to filter your table list in the DynamoDB console, make sure your user's policies include
access to the following operations:

• tag:GetTagKeys

• tag:GetTagValues

You can access these operations by attaching a new IAM policy to your user by following the steps
below.

1. Go to the IAM console with an Admin user.

2. Select "Policies" in the left navigation menu.

3. Select "Create policy."

4. Paste the following policy into the JSON editor.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "tag:GetTagKeys",
 "tag:GetTagValues"
],
 "Resource": "*"
 }

Tags and labels API Version 2012-08-10 581

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListTagsOfResource.html
https://console.amazonaws.cn/iam/

Amazon DynamoDB Developer Guide

]
}

5. Complete the wizard and assign a name to the policy (for example,
TagKeysAndValuesReadAccess).

6. Select "Users" in the left navigation menu.

7. From the list, select the user you normally use to access the DynamoDB console.

8. Select "Add permissions."

9. Select "Attach existing policies directly."

10. From the list, select the policy you created previously.

11. Complete the wizard.

Adding tags to new or existing tables (Amazon Web Services Management Console)

You can use the DynamoDB console to add tags to new tables when you create them, or to add,
edit, or delete tags for existing tables.

To tag resources on creation (console)

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, choose Tables, and then choose Create table.

3. On the Create DynamoDB table page, provide a name and primary key. In the Tags section,
choose Add new tag and enter the tags that you want to use.

For information about tag structure, see Tagging restrictions in DynamoDB.

For more information about creating tables, see Basic operations on DynamoDB tables.

To tag existing resources (console)

Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

1. In the navigation pane, choose Tables.

2. Choose a table in the list, and then choose the Additional settings tab. You can add, edit, or
delete your tags in the Tags section at the bottom of the page.

Tags and labels API Version 2012-08-10 582

https://console.amazonaws.cn/dynamodb/
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Adding tags to new or existing tables (Amazon CLI)

The following examples show how to use the Amazon CLI to specify tags when you create tables
and indexes, and to tag existing resources.

To tag resources on creation (Amazon CLI)

• The following example creates a new Movies table and adds the Owner tag with a value of
blueTeam:

aws dynamodb create-table \
 --table-name Movies \
 --attribute-definitions AttributeName=Title,AttributeType=S \
 --key-schema AttributeName=Title,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --tags Key=Owner,Value=blueTeam

To tag existing resources (Amazon CLI)

• The following example adds the Owner tag with a value of blueTeam for the Movies table:

aws dynamodb tag-resource \
 --resource-arn arn:aws:dynamodb:us-east-1:123456789012:table/Movies \
 --tags Key=Owner,Value=blueTeam

To list all tags for a table (Amazon CLI)

• The following example lists all the tags that are associated with the Movies table:

aws dynamodb list-tags-of-resource \
 --resource-arn arn:aws:dynamodb:us-east-1:123456789012:table/Movies

Using DynamoDB tags to create cost allocation reports

Amazon uses tags to organize resource costs on your cost allocation report. Amazon provides two
types of cost allocation tags:

• An Amazon-generated tag. Amazon defines, creates, and applies this tag for you.

Tags and labels API Version 2012-08-10 583

Amazon DynamoDB Developer Guide

• User-defined tags. You define, create, and apply these tags.

You must activate both types of tags separately before they can appear in Cost Explorer or on a
cost allocation report.

To activate Amazon-generated tags:

1. Sign in to the Amazon Web Services Management Console and open the Billing and Cost
Management console at https://console.aws.amazon.com/billing/home#/.

2. In the navigation pane, choose Cost Allocation Tags.

3. Under Amazon-Generated Cost Allocation Tags, choose Activate.

To activate user-defined tags:

1. Sign in to the Amazon Web Services Management Console and open the Billing and Cost
Management console at https://console.aws.amazon.com/billing/home#/.

2. In the navigation pane, choose Cost Allocation Tags.

3. Under User-Defined Cost Allocation Tags, choose Activate.

After you create and activate tags, Amazon generates a cost allocation report with your usage and
costs grouped by your active tags. The cost allocation report includes all of your Amazon costs
for each billing period. The report includes both tagged and untagged resources, so that you can
clearly organize the charges for resources.

Note

Currently, any data transferred out from DynamoDB won't be broken down by tags on cost
allocation reports.

For more information, see Using cost allocation tags.

Global tables - multi-active, multi-Region replication

Amazon DynamoDB global tables is a fully managed, multi-Region, and multi-active database
feature that provides easy to use data replication and fast local read and write performance for
globally scaled applications.

Working with global tables API Version 2012-08-10 584

https://console.aws.amazon.com/billing/home#/.
https://console.aws.amazon.com/billing/home#/.
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Amazon DynamoDB Developer Guide

Global tables automatically replicate your DynamoDB table data across Amazon Web Services
Regions and optionally across Amazon accounts without requiring you to build and maintain your
own replication solution. Global tables are ideal for applications requiring business continuity and
high availability through multi-Region deployment. Any global table replica can serve reads and
writes. Applications can achieve high resilience with a low or zero Recovery Point Objective (RPO)
by shifting traffic to a different Region if application processing is interrupted in a Region. Global
tables are available in all Regions where DynamoDB is available.

Consistency modes

When you create a global table, you can configure its consistency mode. Global tables support two
consistency modes: multi-Region eventual consistency (MREC) and multi-Region strong consistency
(MRSC).

If you do not specify a consistency mode when creating a global table, the global table defaults to
multi-Region eventual consistency (MREC). A global table cannot contain replicas configured with
different consistency modes. You cannot change a global table's consistency mode after creation.

Account configurations

DynamoDB now supports two global tables models, each designed for different architectural
patterns:

• Same-account global tables – All replicas are created and managed within a single Amazon
account.

• Multi-account global tables – Replicas are deployed across multiple Amazon accounts while
participating in a shared replication group.

Both same-account and multi-account models support multi-Region writes, asynchronous
replication, last-writer-wins conflict resolution, and the same billing model. However, they differ in
how accounts, permissions, encryption, and table governance are managed.

Global tables configured for MRSC only support same-account configurations.

You can configure a global table using the Amazon Management Console. Global tables use
existing DynamoDB APIs to read and write data to your tables, so no application changes
are required. You pay only for the resources you provision or use, with no upfront costs or
commitments.

Consistency modes API Version 2012-08-10 585

Amazon DynamoDB Developer Guide

Comparison of same-account and multi-account global tables

Properties Same-Account global tables Multi-account global tables

Primary use case Multi-Region resiliency for
applications within a single
Amazon account

Multi-Region, multi-account
replication for applications
owned by different teams,
distinct business units, or
strong security boundaries
across accounts

Account model All replicas created and
managed in one Amazon
account

Replicas created across
multiple Amazon accounts
within the same deployment

Resource ownership A single account owns the
table and all replicas

Each account owns its local
replica; replication group
spans accounts

Version supported Global tables version
2019.11.21 (Current) and
Version 2017.11.29 (Legacy)

Global tables version
2019.11.21 (Current)

Control plane operations Create, modify, and delete
replicas through the table
owner account

Distributed control-plane
operations: accounts join or
leave the replication group

Data plane operations Standard DynamoDB
endpoints per Region

Data-plane access per
account/Region; routing
through replication group

Security boundary A single IAM and KMS
boundary

Distinct IAM, KMS, billing,
CloudTrail, and governance
per account

Best fit Organizations with centraliz
ed ownership of tables

Organizations with federated
teams, governance boundarie
s, or multi-account setups

Comparison of same-account and multi-account global tables API Version 2012-08-10 586

Amazon DynamoDB Developer Guide

Topics

• Global tables core concepts

• DynamoDB same-account global table

• DynamoDB multi-account global tables

• Understanding Amazon DynamoDB billing for global tables

• DynamoDB global tables versions

• Best practices for global tables

Global tables core concepts

The following sections describe the concepts and behaviors of global tables in Amazon DynamoDB

Concepts

Global tables is a DynamoDB feature that replicates table data across Amazon Regions.

A replica table (or replica) is a DynamoDB table that functions as part of a global table. A global
table consists of two or more replica tables across different Amazon Regions. Each global table can
have only one replica per Amazon Region. All replicas in a global table share the same table name,
primary key schema, and item data.

When an application writes data to a replica in one Region, DynamoDB automatically replicates
the write to all other replicas in the global table. For more information about how to get started
with global tables, see Tutorials: Creating global tables or Tutorials: Creating multi-account global
tables.

Versions

There are two versions of DynamoDB global tables available: Global Tables version 2019.11.21
(Current) and Global tables version 2017.11.29 (Legacy). You should use Global Tables version
2019.11.21 (Current) whenever possible. The information in this documentation section is for
Version 2019.11.21 (Current). For more information, see Determining the version of a global table
Determining the version of a global table.

Availability

Global tables help improve your business continuity by making it easier to implement a multi-
Region high availability architecture. If a workload in a single Amazon Region becomes impaired,

Core concepts API Version 2012-08-10 587

Amazon DynamoDB Developer Guide

you can shift application traffic to a different Region and perform reads and writes to a different
replica table in the same global table.

Each replica table in a global table provides the same durability and availability as a single-Region
DynamoDB table. Global tables offer a 99.999% availability Service Level Agreement (SLA),
compared to 99.99% for single-Region tables.

Fault injection testing

Both MREC and MRSC global tables integrate with Amazon Fault Injection Service (Amazon
FIS), a fully managed service for running controlled fault injection experiments to improve an
application's resilience. Using Amazon FIS, you can:

• Create experiment templates that define specific failure scenarios.

• Inject failures to validate application resilience by simulating Region isolation (that is, pausing
replication to and from a selected replica) to test error handling, recovery mechanisms, and
multi-Region traffic shift behavior when one Amazon Region experiences disruption.

For example, in a global table with replicas in US East (N. Virginia), US East (Ohio), and US West
(Oregon), you can run an experiment in US East (Ohio) to test region isolation there while US East
(N. Virginia) and US West (Oregon) continue normal operations. This controlled testing helps you
identify and resolve potential issues before they affect production workloads.

See Action targets in the Amazon FIS user guide for a complete list of Amazon FIS supported
actions and Cross-Region Connectivity to pause DynamoDB replication between regions.

For information about Amazon DynamoDB global table actions available in Amazon FIS, see
DynamoDB global tables actions reference in the Amazon FIS User Guide.

To get started running fault injection experiments, see Planning your Amazon FIS experiments in
the Amazon FIS user guide.

Note

During Amazon FIS experiments in MRSC, eventually consistent reads are permitted,
but table setting updates - such as changing billing mode or configuring table
throughput - are not allowed, similar to MREC. Please check the CloudWatch metric
FaultInjectionServiceInducedErrors for additional details regarding the error
code.

Core concepts API Version 2012-08-10 588

https://www.amazonaws.cn//dynamodb/sla/
https://docs.amazonaws.cn/resilience-hub/latest/userguide/testing.html
https://docs.amazonaws.cn/fis/latest/userguide/action-sequence.html#action-targets
https://docs.aws.amazon.com/fis/latest/userguide/cross-region-scenario.html
https://docs.amazonaws.cn/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference
https://docs.amazonaws.cn/fis/latest/userguide/getting-started-planning.html

Amazon DynamoDB Developer Guide

Time To Live (TTL)

Global tables configured for MREC support configuring Time To Live (TTL) deletion. TTL settings
are automatically synchronized for all replicas in a global table. When TTL deletes an item from
a replica in a Region, the delete is replicated to all other replicas in the global table. TTL does not
consume write capacity, so you are not charged for the TTL delete in the Region where the delete
occurred. However, you are charged for the replicated delete in each other region with a replica in
the global table.

TTL delete replication consumes write capacity on the replicas to which the delete is being
replicated. Replicas configured for provisioned capacity may throttle requests if the combination of
write throughput and TTL delete throughput is higher than the provisioned write capacity.

Global tables configured for multi-Region strong consistency (MRSC) do not support configuring
Time To Live (TTL) deletion.

Streams

Global tables configured for multi-Region eventual consistency (MREC) replicate changes by
reading those changes from a DynamoDB Stream on a replica table and applying that change
to all other replica tables. Streams are therefore enabled by default on all replicas in an MREC
global table, and cannot be disabled on those replicas. The MREC replication process may combine
multiple changes in a short period of time into a single replicated write, resulting in each replica's
Stream containing slightly different records. Streams records on MREC replicas maintain ordering
for all changes to the same item, but the relative ordering of changes to different items may vary
across replicas.

If you want to write an application that processes Streams records for changes that occurred in a
particular Region but not other Regions in a global table, you can add an attribute to each item
that defines in which Region the change for that item occurred. You can use this attribute to filter
Streams records for changes that occurred in other Regions, including the use of Lambda event
filters to only invoke Lambda functions for changes in a specific Region.

Global tables configured for multi-Region strong consistency (MRSC) do not use DynamoDB
Streams for replication, so Streams are not enabled by default on MRSC replicas. You can enable
Streams on an MRSC replica. Streams records on MRSC replicas are identical for every replica,
including Stream record ordering.

Core concepts API Version 2012-08-10 589

Amazon DynamoDB Developer Guide

Transactions

On a global table configured for MREC, DynamoDB transaction operations (
TransactWriteItems and TransactGetItems) are only atomic within the Region where the
operation was invoked. Transactional writes are not replicated as a unit across Regions, meaning
only some of the writes in a transaction may be returned by read operations in other replicas at a
given point in time.

For example, if you have a global table with replicas in the US East (Ohio) and US West (Oregon)
Regions and perform a TransactWriteItems operation in the US East (Ohio) Region, you may
observe partially completed transactions in the US West (Oregon) Region as changes are replicated.
Changes will only be replicated to other Regions once they've been committed in the source
Region.

Global tables configured for multi-Region strong consistency (MRSC) do not support transaction
operations, and will return an error if those operations are invoked on an MRSC replica.

Read and write throughput

Provisioned mode

Replication consumes write capacity. Replicas configured for provisioned capacity may throttle
requests if the combination of application write throughput and replication write throughput
exceeds the provisioned write capacity. For global tables using provisioned mode, auto scaling
settings for both read and write capacities are synchronized between replicas.

You can independently configure read capacity settings for each replica in a global table by using
the ProvisionedThroughputOverride parameter at the replica level. By default, changes to
provisioned read capacity are applied to all replicas in the global table. When adding a new replica
to a global table, the read capacity of the source table or replica is used as the initial value unless a
replica-level override is explicitly specified.

On-demand mode

For global tables configured for on-demand mode, write capacity is automatically synchronized
across all replicas. DynamoDB automatically adjusts capacity based on traffic, and there are no
replica-specific read or write capacity settings to manage.

Core concepts API Version 2012-08-10 590

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughputOverride.html

Amazon DynamoDB Developer Guide

Monitoring global tables

Global tables configured for multi-Region eventual consistency (MREC) publish the
ReplicationLatency metric to CloudWatch. This metric tracks the elapsed time between when
an item is written to a replica table, and when that item appears in another replica in the global
table. ReplicationLatency is expressed in milliseconds and is emitted for every source and
destination Region pair in a global table.

Typical ReplicationLatency values depends on the distance between your chosen Amazon
Regions, as well as other variables like workload type and throughput. For example, a source replica
in the US West (N. California) (us-west-1) Region has lower ReplicationLatency to the US West
(Oregon) (us-west-2) Region compared to the Africa (Cape Town) (af-south-1) Region.

An increasing value for ReplicationLatency could indicate that updates from one replica
are not propagating to other replica tables in a timely manner. In this case, you can temporarily
redirect your application's read and write activity to a different Amazon Region.

Global tables configured for multi-Region strong consistency (MRSC) do not publish a
ReplicationLatency metric.

Considerations for managing global tables

You can't delete a table used to add a new global table replica until 24 hours have elapsed since
the new replica was created.

If you disable an Amazon Region that contains global table replicas, those replicas are permanently
converted to single-Region tables 20 hours after the Region is disabled.

DynamoDB same-account global table

Same-account global tables automatically replicate your DynamoDB table data across Amazon
Regions within a single Amazon account. Same-account global tables provide the simplest model
for running multi-Region applications because all replicas share the same account boundary,
ownership, and permissions model. When you choose the Amazon Regions for your replica tables,
global tables handle all replication automatically. Global tables are available in all Regions where
DynamoDB is available.

Same-account global tables provide the following benefits:

• Replicate DynamoDB table data automatically across your choice of Amazon Regions to locate
data closer to your users

Same-account global table API Version 2012-08-10 591

Amazon DynamoDB Developer Guide

• Enable higher application availability during regional isolation or degradation

• Use built-in conflict resolution so you can focus on your application's business logic

• When creating a same-account global table, you can choose either Multi-Region eventual
consistency (MREC) or Multi-Region strong consistency (MRSC)

Topics

• How DynamoDB global tables work

• Tutorials: Creating global tables

• DynamoDB global tables security

How DynamoDB global tables work

The following sections describe the concepts and behaviors of global tables in Amazon DynamoDB.

Concepts

Global tables is a DynamoDB feature that replicates table data across Amazon Regions.

A replica table (or replica) is a DynamoDB table that functions as part of a global table. A global
table consists of two or more replica tables across different Amazon Regions. Each global table can
have only one replica per Amazon Region. All replicas in a global table share the same table name,
primary key schema, and item data.

When an application writes data to a replica in one Region, DynamoDB automatically replicates the
write to all other replicas in the global table. For more information about how to get started with
global tables, see Tutorials: Creating global tables.

Versions

There are two versions of DynamoDB global tables available: Version 2019.11.21 (Current) and
Version 2017.11.29 (Legacy). You should use Version 2019.11.21 (Current) whenever possible.
The information in this documentation section is for Version 2019.11.21 (Current). For more
information, see Determining the version of a global table.

Availability

Global tables help improve your business continuity by making it easier to implement a multi-
Region high availability architecture. If a workload in a single Amazon Region becomes impaired,

Same-account global table API Version 2012-08-10 592

Amazon DynamoDB Developer Guide

you can shift application traffic to a different Region and perform reads and writes to a different
replica table in the same global table.

Each replica table in a global table provides the same durability and availability as a single-Region
DynamoDB table. Global tables offer a 99.999% availability Service Level Agreement (SLA),
compared to 99.99% for single-Region tables.

Consistency modes

When you create a global table, you can configure its consistency mode. Global tables support
two consistency modes: multi-Region eventual consistency (MREC), and multi-Region strong
consistency (MRSC).

If you do not specify a consistency mode when creating a global table, the global table defaults to
multi-Region eventual consistency (MREC). A global table cannot contain replicas configured with
different consistency modes. You cannot change a global table's consistency mode after creation.

Multi-Region eventual consistency (MREC)

Multi-Region eventual consistency (MREC) is the default consistency mode for global tables.
Item changes in an MREC global table replica are asynchronously replicated to all other replicas,
typically within a second or less. In the unlikely event a replica in a MREC global table becomes
isolated or impaired, any data not yet replicated to other Regions will be replicated when the
replica becomes healthy.

If the same item is modified in multiple Regions simultaneously, DynamoDB will resolve the
conflict by using the modification with the latest internal timestamp on a per-item basis, referred
to as a "last writer wins" conflict resolution method. An item will eventually converge in all replicas
to the version created by the last write.

Strongly consistent read operations return the latest version of an item if that item was last
updated in the Region where the read occurred, but may return stale data if the item was last
updated in a different Region. Conditional writes evaluate the condition expression against the
version of the item in the Region.

You create a MREC global table by adding a replica to an existing DynamoDB table. Adding a
replica has no performance impact on existing single-Region DynamoDB tables or global table
replicas. You can add replicas to a MREC global table to expand the number of Regions where data
is replicated, or remove replicas from an MREC global table if they are no longer needed. An MREC
global table can have a replica in any Region where DynamoDB is available, and can have as many
replicas as there are Regions in the Amazon partition.

Same-account global table API Version 2012-08-10 593

https://www.amazonaws.cn//dynamodb/sla/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-ConsistentRead
https://docs.amazonaws.cn/whitepapers/latest/aws-fault-isolation-boundaries/partitions.html

Amazon DynamoDB Developer Guide

Multi-Region strong consistency (MRSC)

You can configure multi-Region strong consistency (MRSC) mode when you create a global
table. Item changes in an MRSC global table replica are synchronously replicated to at least one
other Region before the write operation returns a successful response. Strongly consistent read
operations on any MRSC replica always return the latest version of an item. Conditional writes
always evaluate the condition expression against the latest version of an item.

A MRSC global table must be deployed in exactly three Regions. You can configure a MRSC global
table with three replicas, or with two replicas and one witness. A witness is a component of a MRSC
global table that contains data written to global table replicas and provides an optional alternative
to a full replica while supporting MRSC's availability architecture. You cannot perform read or
write operations on a witness. A witness is located in a different Region than the two replicas.
When creating a MRSC global table, you choose the Regions for both your replicas and the witness
deployment at MRSC table creation time. You can determine whether and in which Region a MRSC
global table has a witness configured from the output of the DescribeTable API. The witness is
owned and managed by DynamoDB, and the witness will not appear in your Amazon account in the
Region where it is configured.

MRSC global tables are available in the following Region sets: US Region set (US East N. Virginia,
US East Ohio, US West Oregon), EU Region set (Europe Ireland, Europe London, Europe Paris,
Europe Frankfurt), and AP Region set (Asia Pacific Tokyo, Asia Pacific Seoul, and Asia Pacific Osaka).
MRSC global tables cannot span Region sets (e.g. a MRSC global table cannot contain replicas from
both US and EU Region sets).

You create a MRSC global table by adding one replica and a witness or two replicas to an existing
DynamoDB table that contains no data. When converting an existing single-Region table to a
MRSC global table, you must ensure that the table is empty. Converting a single-Region table to
a MRSC global table with existing items is not supported. Ensure that no data is written into the
table during the conversion process. You cannot add additional replicas to an existing MRSC global
table. You cannot delete a single replica or a witness from a MRSC global table. You can delete two
replicas or delete one replica and a witness from a MRSC global table, converting the remaining
replica to a single-Region DynamoDB table.

A write operation fails with a ReplicatedWriteConflictException when it attempts
to modify an item that is already being modified in another Region. Writes that fail with the
ReplicatedWriteConflictException can be retried and will succeed if the item is no longer
being modified in another Region.

Same-account global table API Version 2012-08-10 594

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTable.html

Amazon DynamoDB Developer Guide

The following considerations apply to MRSC global tables:

• Time to Live (TTL) is not supported for MRSC global tables.

• Local secondary indexes (LSIs) are not supported for MRSC global tables.

• CloudWatch Contributor Insights information is only reported for the Region in which an
operation occurred.

Choosing a consistency mode

The key criteria for choosing a multi-Region consistency mode is whether your application
prioritizes lower latency writes and strongly consistent reads, or prioritizes global strong
consistency.

MREC global tables will have lower write and strongly consistent read latencies compared to MRSC
global tables. MREC global tables have a Recovery Point Objective (RPO) equal to the replication
delay between replicas, usually a few seconds depending on the replica Regions.

You should use the MREC mode when:

• Your application can tolerate stale data returned from strongly consistent read operations if that
data was updated in another Region.

• You prioritize lower write and strongly consistent read latencies over multi-Region read
consistency.

• Your multi-Region high availability strategy can tolerate an RPO greater than zero.

MRSC global tables will have higher write and strongly consistent read latencies compared to MREC
global tables. MRSC global tables support a Recovery Point Objective (RPO) of zero.

You should use the MRSC mode when:

• You need strongly consistent reads across multiple Regions.

• You prioritize global read consistency over lower write latency.

• Your multi-Region high availability strategy requires an RPO of zero.

Monitoring global tables

Global tables configured for multi-Region eventual consistency (MREC) publish the
ReplicationLatency metric to CloudWatch. This metric tracks the elapsed time between when

Same-account global table API Version 2012-08-10 595

Amazon DynamoDB Developer Guide

an item is written to a replica table, and when that item appears in another replica in the global
table. ReplicationLatency is expressed in milliseconds and is emitted for every source and
destination Region pair in a global table.

Typical ReplicationLatency values depends on the distance between your chosen Amazon
Regions, as well as other variables like workload type and throughput. For example, a source replica
in the US West (N. California) (us-west-1) Region has lower ReplicationLatency to the US West
(Oregon) (us-west-2) Region compared to the Africa (Cape Town) (af-south-1) Region.

An increasing value for ReplicationLatency could indicate that updates from one replica
are not propagating to other replica tables in a timely manner. In this case, you can temporarily
redirect your application's read and write activity to a different Amazon Region.

Global tables configured for multi-Region strong consistency (MRSC) do not publish a
ReplicationLatency metric.

Fault injection testing

Both MREC and MRSC global tables integrate with Amazon Fault Injection Service (Amazon
FIS), a fully managed service for running controlled fault injection experiments to improve an
application's resilience. Using Amazon FIS, you can:

• Create experiment templates that define specific failure scenarios.

• Inject failures to validate application resilience by simulating Region isolation (that is, pausing
replication to and from a selected replica) to test error handling, recovery mechanisms, and
multi-Region traffic shift behavior when one Amazon Region experiences disruption.

For example, in a global table with replicas in US East (N. Virginia), US East (Ohio), and US West
(Oregon), you can run an experiment in US East (Ohio) to test region isolation there while US East
(N. Virginia) and US West (Oregon) continue normal operations. This controlled testing helps you
identify and resolve potential issues before they affect production workloads.

See Action targets in the Amazon FIS user guide for a complete list of Amazon FIS supported
actions and Cross-Region Connectivity to pause DynamoDB replication between regions.

For information about Amazon DynamoDB global table actions available in Amazon FIS, see
DynamoDB global tables actions reference in the Amazon FIS User Guide.

To get started running fault injection experiments, see Planning your Amazon FIS experiments in
the Amazon FIS user guide.

Same-account global table API Version 2012-08-10 596

https://docs.amazonaws.cn/resilience-hub/latest/userguide/testing.html
https://docs.amazonaws.cn/fis/latest/userguide/action-sequence.html#action-targets
https://docs.aws.amazon.com/fis/latest/userguide/cross-region-scenario.html
https://docs.amazonaws.cn/fis/latest/userguide/fis-actions-reference.html#dynamodb-actions-reference
https://docs.amazonaws.cn/fis/latest/userguide/getting-started-planning.html

Amazon DynamoDB Developer Guide

Note

During Amazon FIS experiments in MRSC, eventually consistent reads are permitted,
but table setting updates - such as changing billing mode or configuring table
throughput - are not allowed, similar to MREC. Please check the CloudWatch metric
FaultInjectionServiceInducedErrors for additional details regarding the error
code.

Time To Live (TTL)

Global tables configured for MREC support configuring Time To Live (TTL) deletion. TTL settings
are automatically synchronized for all replicas in a global table. When TTL deletes an item from
a replica in a Region, the delete is replicated to all other replicas in the global table. TTL does not
consume write capacity, so you are not charged for the TTL delete in the Region where the delete
occurred. However, you are charged for the replicated delete in each other region with a replica in
the global table.

TTL delete replication consumes write capacity on the replicas to which the delete is being
replicated. Replicas configured for provisioned capacity may throttle requests if the combination of
write throughput and TTL delete throughput is higher than the provisioned write capacity.

Global tables configured for multi-Region strong consistency (MRSC) do not support configuring
Time To Live (TTL) deletion.

Streams

Global tables configured for multi-Region eventual consistency (MREC) replicate changes by
reading those changes from a DynamoDB Stream on a replica table and applying that change
to all other replica tables. Streams are therefore enabled by default on all replicas in an MREC
global table, and cannot be disabled on those replicas. The MREC replication process may combine
multiple changes in a short period of time into a single replicated write, resulting in each replica's
Stream containing slightly different records. Streams records on MREC replicas are always ordered
on a per-item basis, but ordering between items may differ between replicas.

Global tables configured for multi-Region strong consistency (MRSC) do not use DynamoDB
Streams for replication, so Streams are not enabled by default on MRSC replicas. You can enable
Streams on an MRSC replica. Streams records on MRSC replicas are identical for every replica,
including Stream record ordering.

Same-account global table API Version 2012-08-10 597

Amazon DynamoDB Developer Guide

If you want to write an application that processes Streams records for changes that occurred in a
particular Region but not other Regions in a global table, you can add an attribute to each item
that defines in which Region the change for that item occurred. You can use this attribute to filter
Streams records for changes that occurred in other Regions, including the use of Lambda event
filters to only invoke Lambda functions for changes in a specific Region.

Transactions

On a global table configured for MREC, DynamoDB transaction operations (
TransactWriteItems and TransactGetItems) are only atomic within the Region where the
operation was invoked. Transactional writes are not replicated as a unit across Regions, meaning
only some of the writes in a transaction may be returned by read operations in other replicas at a
given point in time.

For example, if you have a global table with replicas in the US East (Ohio) and US West (Oregon)
Regions and perform a TransactWriteItems operation in the US East (Ohio) Region, you may
observe partially completed transactions in the US West (Oregon) Region as changes are replicated.
Changes will only be replicated to other Regions once they've been committed in the source
Region.

Global tables configured for multi-Region strong consistency (MRSC) do not support transaction
operations, and will return an error if those operations are invoked on an MRSC replica.

Read and write throughput

Provisioned mode

Replication consumes write capacity. Replicas configured for provisioned capacity may throttle
requests if the combination of application write throughput and replication write throughput
exceeds the provisioned write capacity. For global tables using provisioned mode, auto scaling
settings for both read and write capacities are synchronized between replicas.

You can independently configure read capacity settings for each replica in a global table by using
the ProvisionedThroughputOverride parameter at the replica level. By default, changes to
provisioned read capacity are applied to all replicas in the global table. When adding a new replica
to a global table, the read capacity of the source table or replica is used as the initial value unless a
replica-level override is explicitly specified.

Same-account global table API Version 2012-08-10 598

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughputOverride.html

Amazon DynamoDB Developer Guide

On-demand mode

For global tables configured for on-demand mode, write capacity is automatically synchronized
across all replicas. DynamoDB automatically adjusts capacity based on traffic, and there are no
replica-specific read or write capacity settings to manage.

Settings synchronization

Settings in DynamoDB global tables are configuration parameters that control various aspects of
table behavior and replication. These settings are managed through the DynamoDB control plane
APIs and can be configured when creating or modifying global tables. Global tables automatically
synchronize certain settings across all replicas to maintain consistency, while allowing flexibility
for region-specific optimizations. Understanding which settings synchronize and how they behave
helps you configure your global table effectively. The settings fall into three main categories based
on how they are synchronized across replicas.

The following settings are always synchronized between replicas in a global table:

• Capacity mode (provisioned capacity or on-demand)

• Table provisioned write capacity

• Table write auto scaling

• Attribute definition of key schema

• Global Secondary Index (GSI) definition

• GSI provisioned write capacity

• GSI write auto scaling

• Server-side Encryption (SSE) type

• Streams definition in MREC mode

• Time To Live (TTL)

• Warm Throughput

• On-demand maximum write throughput

The following settings are synchronized between replicas, but can be overridden on a per-replica
basis:

• Table provisioned read capacity

• Table read auto scaling

Same-account global table API Version 2012-08-10 599

Amazon DynamoDB Developer Guide

• GSI provisioned read capacity

• GSI read auto scaling

• Table Class

• On-demand maximum read throughput

Note

Overridable setting values are changed if the setting is modified on any other replica. As
an example, you have a MREC global table with replicas in US East (N. Virginia) and US
West (Oregon). The US East (N. Virginia) replica has provisioned read throughput set to
200 RCUs. The replica in US West (Oregon) has a provisioned read throughput override
set to 100 RCUs. If you update the provisioned read throughput setting on the US East (N.
Virginia) replica from 200 RCUs to 300 RCUs, the new provisioned read throughput value
will also be applied to the replica in US West (Oregon). This changes the provisioned read
throughput setting for the US West (Oregon) replica from the overridden value of 100
RCUs to the new value of 300 RCUs.

The following settings are never synchronized between replicas:

• Deletion protection

• Point-in-time Recovery

• Tags

• Table CloudWatch Contributor Insights enablement

• GSI CloudWatch Contributor Insights enablement

• Kinesis Data Streams definition

• Resource Policies

• Streams definition in MRSC mode

All other settings are not synchronized between replicas.

Same-account global table API Version 2012-08-10 600

Amazon DynamoDB Developer Guide

DynamoDB Accelerator (DAX)

Writes to global table replicas bypass DynamoDB Accelerator (DAX), updating DynamoDB directly.
As a result, DAX caches can become stale as writes are not updating the DAX cache. DAX caches
configured for global table replicas will only be refreshed when the cache TTL expires.

Considerations for managing global tables

You can't delete a table used to add a new global table replica until 24 hours have elapsed since
the new replica was created.

If you disable an Amazon Region that contains global table replicas, those replicas are permanently
converted to single-Region tables 20 hours after the Region is disabled.

Tutorials: Creating global tables

This section provides step-by-step instructions for creating DynamoDB global tables configured
for your preferred consistency mode. Choose either Multi-Region Eventual Consistency (MREC) or
Multi-Region Strong Consistency (MRSC) modes based on your application's requirements.

MREC global tables provide lower write latency with eventual consistency across Amazon Web
Services Regions. MRSC global tables provide strongly consistent reads across Regions with slightly
higher write latencies than MREC. Choose the consistency mode that best meets your application's
needs for data consistency, latency, and availability.

Topics

• Creating a global table configured for MREC

• Creating a global table configured for MRSC

Creating a global table configured for MREC

This section shows how to create a global table with Multi-Region Eventual Consistency (MREC)
mode. MREC is the default consistency mode for global tables and provides low-latency writes
with asynchronous replication across Amazon Web Services Regions. Changes made to an item in
one region are typically replicated to all other regions within a second. This makes MREC ideal for
applications that prioritize low write latency and can tolerate brief periods where different Regions
may return slightly different versions of data.

Same-account global table API Version 2012-08-10 601

Amazon DynamoDB Developer Guide

You can create MREC global tables with replicas in any Amazon Region where DynamoDB is
available and add or remove replicas at any time. The following examples show how to create an
MREC global table with replicas in multiple regions.

Creating a MREC global table using the DynamoDB Console

Follow these steps to create a global table using the Amazon Web Services Management Console.
The following example creates a global table with replica tables in the United States and Europe.

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. For this example, choose US East (Ohio) from the Region selector in the navigation bar.

3. In the navigation pane on the left side of the console, choose Tables.

4. Choose Create Table.

5. On the Create table page:

a. For Table name, enter Music.

b. For Partition key, enter Artist.

c. For Sort key, enter SongTitle.

d. Keep the other default settings and choose Create table.

This new table serves as the first replica table in a new global table. It is the prototype for
other replica tables that you add later.

6. After the table becomes active:

a. Select the Music table from the tables list.

b. Choose the Global tables tab.

c. Choose Create replica.

7. From the Available replication Regions dropdown list, choose US West (Oregon) us-west-2.

The console ensures that a table with the same name doesn't exist in the selected Region. If a
table with the same name does exist, you must delete the existing table before you can create
a new replica table in that Region.

8. Choose Create replica. This starts the table creation process in the US West (Oregon) us-
west-2 Region.

Same-account global table API Version 2012-08-10 602

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

The Global tables tab for the Music table (and for any other replica tables) shows that the
table has been replicated in multiple Regions.

9. Add another region by repeating the previous steps, but choose Europe (Frankfurt) eu-
central-1 as the region.

10. To test replication:

a. Make sure you're using the Amazon Web Services Management Console in the US East
(Ohio) Region.

b. Choose Explore table items.

c. Choose Create item.

d. Enter item_1 for Artist and Song Value 1 for SongTitle.

e. Choose Create item.

11. Verify replication by switching to the other regions:

a. From the Region selector in the upper-right corner, choose Europe (Frankfurt).

b. Verify that the Music table contains the item you created.

c. Repeat the verification for US West (Oregon).

Creating a MREC global table using the Amazon CLI or Java

CLI

The following code example shows how to manage DynamoDB global tables with multi-Region
replication with eventual consistency (MREC).

• Create a table with multi-Region replication (MREC).

• Put and get items from replica tables.

• Remove replicas one-by-one.

• Clean up by deleting the table.

Amazon CLI with Bash script

Create a table with multi-Region replication.

Same-account global table API Version 2012-08-10 603

Amazon DynamoDB Developer Guide

Step 1: Create a new table (MusicTable) in US East (Ohio), with DynamoDB
 Streams enabled (NEW_AND_OLD_IMAGES)
aws dynamodb create-table \
 --table-name MusicTable \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \
 --region us-east-2

Step 2: Create an identical MusicTable table in US East (N. Virginia)
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Create": {
 "RegionName": "us-east-1"
 }
 }
]
}' \
--region us-east-2

Step 3: Create a table in Europe (Ireland)
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Create": {
 "RegionName": "eu-west-1"
 }
 }
]
}' \
--region us-east-2

Same-account global table API Version 2012-08-10 604

Amazon DynamoDB Developer Guide

Describe the multi-Region table.

Step 4: View the list of replicas created using describe-table
aws dynamodb describe-table \
 --table-name MusicTable \
 --region us-east-2 \
 --query 'Table.
{TableName:TableName,TableStatus:TableStatus,MultiRegionConsistency:MultiRegionConsistency,Replicas:Replicas[*].
{Region:RegionName,Status:ReplicaStatus}}'

Put items in a replica table.

Step 5: To verify that replication is working, add a new item to the Music
 table in US East (Ohio)
aws dynamodb put-item \
 --table-name MusicTable \
 --item '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-2

Get items from replica tables.

Step 6: Wait for a few seconds, and then check to see whether the item has
 been
successfully replicated to US East (N. Virginia) and Europe (Ireland)
aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-1

aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region eu-west-1

Remove replicas.

Step 7: Delete the replica table in Europe (Ireland) Region
aws dynamodb update-table --table-name MusicTable --cli-input-json \

Same-account global table API Version 2012-08-10 605

Amazon DynamoDB Developer Guide

'{
 "ReplicaUpdates":
 [
 {
 "Delete": {
 "RegionName": "eu-west-1"
 }
 }
]
}' \
--region us-east-2

Delete the replica table in US East (N. Virginia) Region
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Delete": {
 "RegionName": "us-east-1"
 }
 }
]
}' \
--region us-east-2

Clean up by deleting the table.

Clean up: Delete the primary table
aws dynamodb delete-table --table-name MusicTable --region us-east-2

echo "Global table demonstration complete."

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

• PutItem

Same-account global table API Version 2012-08-10 606

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

• UpdateTable

Java

The following code example shows how to create and manage DynamoDB global tables with
replicas across multiple Regions.

• Create a table with Global Secondary Index and DynamoDB Streams.

• Add replicas in different Regions to create a global table.

• Remove replicas from a global table.

• Add test items to verify replication across Regions.

• Describe global table configuration and replica status.

SDK for Java 2.x

Create a table with Global Secondary Index and DynamoDB Streams using Amazon SDK for
Java 2.x.

 public static CreateTableResponse createTableWithGSI(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 indexName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (indexName == null || indexName.trim().isEmpty()) {
 throw new IllegalArgumentException("Index name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Creating table: " + tableName + " with GSI: " +
 indexName);

 CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .tableName(tableName)

Same-account global table API Version 2012-08-10 607

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

 .attributeDefinitions(
 AttributeDefinition.builder()
 .attributeName("Artist")
 .attributeType(ScalarAttributeType.S)
 .build(),
 AttributeDefinition.builder()
 .attributeName("SongTitle")
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(
 KeySchemaElement.builder()
 .attributeName("Artist")
 .keyType(KeyType.HASH)
 .build(),
 KeySchemaElement.builder()
 .attributeName("SongTitle")
 .keyType(KeyType.RANGE)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .globalSecondaryIndexes(GlobalSecondaryIndex.builder()
 .indexName(indexName)
 .keySchema(KeySchemaElement.builder()
 .attributeName("SongTitle")
 .keyType(KeyType.HASH)
 .build())
 .projection(

 Projection.builder().projectionType(ProjectionType.ALL).build())
 .build())
 .streamSpecification(StreamSpecification.builder()
 .streamEnabled(true)
 .streamViewType(StreamViewType.NEW_AND_OLD_IMAGES)
 .build())
 .build();

 CreateTableResponse response =
 dynamoDbClient.createTable(createTableRequest);
 LOGGER.info("Table creation initiated. Status: "
 + response.tableDescription().tableStatus());

 return response;

 } catch (DynamoDbException e) {

Same-account global table API Version 2012-08-10 608

Amazon DynamoDB Developer Guide

 LOGGER.severe("Failed to create table: " + tableName + " - " +
 e.getMessage());
 throw e;
 }
 }

Wait for a table to become active using Amazon SDK for Java 2.x.

 public static void waitForTableActive(final DynamoDbClient dynamoDbClient,
 final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Waiting for table to become active: " + tableName);

 try (DynamoDbWaiter waiter =
 DynamoDbWaiter.builder().client(dynamoDbClient).build()) {
 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 waiter.waitUntilTableExists(request);
 LOGGER.info("Table is now active: " + tableName);
 }

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to wait for table to become active: " +
 tableName + " - " + e.getMessage());
 throw e;
 }
 }

Add a replica to create or extend a global table using Amazon SDK for Java 2.x.

 public static UpdateTableResponse addReplica(

Same-account global table API Version 2012-08-10 609

Amazon DynamoDB Developer Guide

 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final String indexName,
 final Long readCapacity) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (indexName == null || indexName.trim().isEmpty()) {
 throw new IllegalArgumentException("Index name cannot be null or
 empty");
 }
 if (readCapacity == null || readCapacity <= 0) {
 throw new IllegalArgumentException("Read capacity must be a positive
 number");
 }

 try {
 LOGGER.info("Adding replica in region: " + replicaRegion.id() + " for
 table: " + tableName);

 // Create a ReplicationGroupUpdate for adding a replica
 ReplicationGroupUpdate replicationGroupUpdate =
 ReplicationGroupUpdate.builder()
 .create(builder -> builder.regionName(replicaRegion.id())
 .globalSecondaryIndexes(ReplicaGlobalSecondaryIndex.builder()
 .indexName(indexName)

 .provisionedThroughputOverride(ProvisionedThroughputOverride.builder()
 .readCapacityUnits(readCapacity)
 .build())
 .build())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()

Same-account global table API Version 2012-08-10 610

Amazon DynamoDB Developer Guide

 .tableName(tableName)
 .replicaUpdates(replicationGroupUpdate)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("Replica addition initiated in region: " +
 replicaRegion.id());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add replica in region: " +
 replicaRegion.id() + " - " + e.getMessage());
 throw e;
 }
 }

Remove a replica from a global table using Amazon SDK for Java 2.x.

 public static UpdateTableResponse removeReplica(
 final DynamoDbClient dynamoDbClient, final String tableName, final Region
 replicaRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }

 try {
 LOGGER.info("Removing replica in region: " + replicaRegion.id() + "
 for table: " + tableName);

 // Create a ReplicationGroupUpdate for removing a replica
 ReplicationGroupUpdate replicationGroupUpdate =
 ReplicationGroupUpdate.builder()

Same-account global table API Version 2012-08-10 611

Amazon DynamoDB Developer Guide

 .delete(builder ->
 builder.regionName(replicaRegion.id()).build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(replicationGroupUpdate)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("Replica removal initiated in region: " +
 replicaRegion.id());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to remove replica in region: " +
 replicaRegion.id() + " - " + e.getMessage());
 throw e;
 }
 }

Add test items to verify replication using Amazon SDK for Java 2.x.

 public static PutItemResponse putTestItem(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 artist, final String songTitle) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");

Same-account global table API Version 2012-08-10 612

Amazon DynamoDB Developer Guide

 }

 try {
 LOGGER.info("Adding test item to table: " + tableName);

 Map<String,
 software.amazon.awssdk.services.dynamodb.model.AttributeValue> item = new
 HashMap<>();
 item.put(
 "Artist",

 software.amazon.awssdk.services.dynamodb.model.AttributeValue.builder()
 .s(artist)
 .build());
 item.put(
 "SongTitle",

 software.amazon.awssdk.services.dynamodb.model.AttributeValue.builder()
 .s(songTitle)
 .build());

 PutItemRequest putItemRequest =
 PutItemRequest.builder().tableName(tableName).item(item).build();

 PutItemResponse response = dynamoDbClient.putItem(putItemRequest);
 LOGGER.info("Test item added successfully");

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add test item to table: " + tableName + " -
 " + e.getMessage());
 throw e;
 }
 }

Describe global table configuration and replicas using Amazon SDK for Java 2.x.

 public static DescribeTableResponse describeTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {

Same-account global table API Version 2012-08-10 613

Amazon DynamoDB Developer Guide

 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Describing table: " + tableName);

 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 DescribeTableResponse response =
 dynamoDbClient.describeTable(request);

 LOGGER.info("Table status: " + response.table().tableStatus());
 if (response.table().replicas() != null
 && !response.table().replicas().isEmpty()) {
 LOGGER.info("Number of replicas: " +
 response.table().replicas().size());
 response.table()
 .replicas()
 .forEach(replica -> LOGGER.info(
 "Replica region: " + replica.regionName() + ", Status: "
 + replica.replicaStatus()));
 }

 return response;

 } catch (ResourceNotFoundException e) {
 LOGGER.severe("Table not found: " + tableName + " - " +
 e.getMessage());
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to describe table: " + tableName + " - " +
 e.getMessage());
 throw e;
 }
 }

Complete example of global table operations using Amazon SDK for Java 2.x.

Same-account global table API Version 2012-08-10 614

Amazon DynamoDB Developer Guide

 public static void exampleUsage(final Region sourceRegion, final Region
 replicaRegion) {

 String tableName = "Music";
 String indexName = "SongTitleIndex";
 Long readCapacity = 15L;

 // Create DynamoDB client for the source region
 try (DynamoDbClient dynamoDbClient =
 DynamoDbClient.builder().region(sourceRegion).build()) {

 try {
 // Step 1: Create the initial table with GSI and streams
 LOGGER.info("Step 1: Creating table in source region: " +
 sourceRegion.id());
 createTableWithGSI(dynamoDbClient, tableName, indexName);

 // Step 2: Wait for table to become active
 LOGGER.info("Step 2: Waiting for table to become active");
 waitForTableActive(dynamoDbClient, tableName);

 // Step 3: Add replica in destination region
 LOGGER.info("Step 3: Adding replica in region: " +
 replicaRegion.id());
 addReplica(dynamoDbClient, tableName, replicaRegion, indexName,
 readCapacity);

 // Step 4: Wait a moment for replica creation to start
 Thread.sleep(5000);

 // Step 5: Describe table to view replica information
 LOGGER.info("Step 5: Describing table to view replicas");
 describeTable(dynamoDbClient, tableName);

 // Step 6: Add a test item to verify replication
 LOGGER.info("Step 6: Adding test item to verify replication");
 putTestItem(dynamoDbClient, tableName, "TestArtist", "TestSong");

 LOGGER.info("Global table setup completed successfully!");
 LOGGER.info("You can verify replication by checking the item in
 region: " + replicaRegion.id());

 // Step 7: Remove replica and clean up table

Same-account global table API Version 2012-08-10 615

Amazon DynamoDB Developer Guide

 LOGGER.info("Step 7: Removing replica from region: " +
 replicaRegion.id());
 removeReplica(dynamoDbClient, tableName, replicaRegion);
 DeleteTableResponse deleteTableResponse =
 dynamoDbClient.deleteTable(
 DeleteTableRequest.builder().tableName(tableName).build());
 LOGGER.info("MREC global table demonstration completed
 successfully!");

 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 throw new RuntimeException("Thread was interrupted", e);
 } catch (DynamoDbException e) {
 LOGGER.severe("DynamoDB operation failed: " + e.getMessage());
 throw e;
 }
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateTable

• DescribeTable

• PutItem

• UpdateTable

Creating a global table configured for MRSC

This section shows you how to create a Multi-Region Strong Consistency (MRSC) global table.
MRSC global tables synchronously replicate item changes across Regions, ensuring that strongly
consistent read operations on any replica always return the latest version of an item. When
converting a single-Region table to a MRSC global table, you must ensure that the table is empty.
Converting a single-Region table to a MRSC global table with existing items is not supported.
Ensure that no data is written into the table during the conversion process.

You can configure a MRSC global table with three replicas, or two replicas and one witness. When
creating a MRSC global table, you choose the Regions where replicas and an optional witness are
deployed. The following example creates an MRSC global table with replicas in the US East (N.
Virginia) and US East (Ohio) Regions, with a witness in the US West (Oregon) Region.

Same-account global table API Version 2012-08-10 616

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

Note

Before creating a global table, verify that the Service Quota throughput limits are
consistent across all target Regions, as this is required to create a global table. For more
information about global table throughput limits, see Global tables quotas.

Creating a MRSC global table using the DynamoDB Console

Follow these steps to create about MRSC global table using the Amazon Web Services
Management Console.

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. From the Region selector in the navigation bar, choose a Region where global tables with
MRSC is supported, such as us-west-2.

3. In the navigation pane, choose Tables.

4. Choose Create table.

5. On the Create table page:

a. For Table name, enter Music.

b. For Partition key, enter Artist and keep the default String type.

c. For Sort key, enter SongTitle and keep the default String type.

d. Keep the other default settings and choose Create table

This new table serves as the first replica table in a new global table. It is the prototype for
other replica tables that you add later.

6. Wait for the table to become active, then select it from the tables list.

7. Choose the Global tables tab, then choose Create replica.

8. On the Create replica page:

a. Under Multi-Region Consistency, choose Strong consistency.

b. For Replication Region 1, choose US East (N. Virginia) us-east-1.

c. For Replication Region 2, choose US West (Oregon) us-west-2.

d. Check Configure as Witness for the US West (Oregon) region.

e. Choose Create replicas.

Same-account global table API Version 2012-08-10 617

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#gt-limits-throughput
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

9. Wait for the replica and witness creation process to complete. The replica status will show as
Active when the table is ready to use.

Creating a MRSC global table using the Amazon CLI or Java

Before you start, ensure that your IAM principal has the required permissions to create a MRSC
global table with a witness Region.

The following sample IAM policy allows you to create a DynamoDB table (MusicTable) in US East
(Ohio) with a replica in US East (N. Virginia) and a witness Region in US West (Oregon):

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:CreateTableReplica",
 "dynamodb:CreateGlobalTableWitness",
 "dynamodb:DescribeTable",
 "dynamodb:UpdateTable",
 "dynamodb:DeleteTable",
 "dynamodb:DeleteTableReplica",
 "dynamodb:DeleteGlobalTableWitness",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:UpdateItem",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/MusicTable",
 "arn:aws:dynamodb:us-east-2:123456789012:table/MusicTable",
 "arn:aws:dynamodb:us-west-2:123456789012:table/MusicTable"
]
 },
 {

Same-account global table API Version 2012-08-10 618

Amazon DynamoDB Developer Guide

 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "replication.dynamodb.amazonaws.com"
 }
 }
 }
]
}

The following code examples show how to create and manage DynamoDB global tables with Multi-
Region Strong Consistency (MRSC).

• Create a table with Multi-Region Strong Consistency.

• Verify MRSC configuration and replica status.

• Test strong consistency across Regions with immediate reads.

• Perform conditional writes with MRSC guarantees.

• Clean up MRSC global table resources.

Bash

Amazon CLI with Bash script

Create a table with Multi-Region Strong Consistency.

Step 1: Create a new table in us-east-2 (primary region for MRSC)
Note: Table must be empty when enabling MRSC
aws dynamodb create-table \
 --table-name MusicTable \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --region us-east-2

Same-account global table API Version 2012-08-10 619

Amazon DynamoDB Developer Guide

Wait for table to become active
aws dynamodb wait table-exists --table-name MusicTable --region us-east-2

Step 2: Add replica and witness with Multi-Region Strong Consistency
MRSC requires exactly three replicas in supported regions
aws dynamodb update-table \
 --table-name MusicTable \
 --replica-updates '[{"Create": {"RegionName": "us-east-1"}}]' \
 --global-table-witness-updates '[{"Create": {"RegionName": "us-west-2"}}]' \
 --multi-region-consistency STRONG \
 --region us-east-2

Verify MRSC configuration and replica status.

Verify the global table configuration and MRSC setting
aws dynamodb describe-table \
 --table-name MusicTable \
 --region us-east-2 \
 --query 'Table.
{TableName:TableName,TableStatus:TableStatus,MultiRegionConsistency:MultiRegionConsistency,Replicas:Replicas[*],GlobalTableWitnesses:GlobalTableWitnesses[*].
{Region:RegionName,Status:ReplicaStatus}}'

Test strong consistency with immediate reads across Regions.

Write an item to the primary region
aws dynamodb put-item \
 --table-name MusicTable \
 --item '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"},"Album":
 {"S":"The Beatles 1967-1970"},"Year": {"N":"1968"}}' \
 --region us-east-2

Read the item from replica region to verify strong consistency (cannot read or
 write to witness)
No wait time needed - MRSC provides immediate consistency
echo "Reading from us-east-1 (immediate consistency):"
aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"}}' \
 --consistent-read \
 --region us-east-1

Same-account global table API Version 2012-08-10 620

Amazon DynamoDB Developer Guide

Perform conditional writes with MRSC guarantees.

Perform a conditional update from a different region
This demonstrates that conditions work consistently across all regions
aws dynamodb update-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"}}' \
 --update-expression "SET #rating = :rating" \
 --condition-expression "attribute_exists(Artist)" \
 --expression-attribute-names '{"#rating": "Rating"}' \
 --expression-attribute-values '{":rating": {"N":"5"}}' \
 --region us-east-1

Clean up MRSC global table resources.

Remove replica tables (must be done before deleting the primary table)
aws dynamodb update-table \
 --table-name MusicTable \
 --replica-updates '[{"Delete": {"RegionName": "us-east-1"}}]' \
 --global-table-witness-updates '[{"Delete": {"RegionName": "us-west-2"}}]' \
 --region us-east-2

Wait for replicas to be deleted
echo "Waiting for replicas to be deleted..."
sleep 30

Delete the primary table
aws dynamodb delete-table \
 --table-name MusicTable \
 --region us-east-2

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

Same-account global table API Version 2012-08-10 621

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

• PutItem

• UpdateItem

• UpdateTable

Java

SDK for Java 2.x

Create a regional table ready for MRSC conversion using Amazon SDK for Java 2.x.

 public static CreateTableResponse createRegionalTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Creating regional table: " + tableName + " (must be
 empty for MRSC)");

 CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(
 AttributeDefinition.builder()
 .attributeName("Artist")
 .attributeType(ScalarAttributeType.S)
 .build(),
 AttributeDefinition.builder()
 .attributeName("SongTitle")
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(
 KeySchemaElement.builder()
 .attributeName("Artist")
 .keyType(KeyType.HASH)
 .build(),
 KeySchemaElement.builder()

Same-account global table API Version 2012-08-10 622

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

 .attributeName("SongTitle")
 .keyType(KeyType.RANGE)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .build();

 CreateTableResponse response =
 dynamoDbClient.createTable(createTableRequest);
 LOGGER.info("Regional table creation initiated. Status: "
 + response.tableDescription().tableStatus());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to create regional table: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to create regional table: " + tableName)
 .cause(e)
 .build();
 }
 }

Convert a regional table to MRSC with replicas and witness using Amazon SDK for Java 2.x.

 public static UpdateTableResponse convertToMRSCWithWitness(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {

Same-account global table API Version 2012-08-10 623

Amazon DynamoDB Developer Guide

 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("Converting table to MRSC with replica in " +
 replicaRegion.id() + " and witness in "
 + witnessRegion.id());

 // Create replica update using ReplicationGroupUpdate
 ReplicationGroupUpdate replicaUpdate =
 ReplicationGroupUpdate.builder()
 .create(CreateReplicationGroupMemberAction.builder()
 .regionName(replicaRegion.id())
 .build())
 .build();

 // Create witness update
 GlobalTableWitnessGroupUpdate witnessUpdate =
 GlobalTableWitnessGroupUpdate.builder()
 .create(CreateGlobalTableWitnessGroupMemberAction.builder()
 .regionName(witnessRegion.id())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(List.of(replicaUpdate))
 .globalTableWitnessUpdates(List.of(witnessUpdate))
 .multiRegionConsistency(MultiRegionConsistency.STRONG)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("MRSC conversion initiated. Status: "
 + response.tableDescription().tableStatus());
 LOGGER.info("UpdateTableResponse full object: " + response);
 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to convert table to MRSC: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to convert table to MRSC: " + tableName)
 .cause(e)

Same-account global table API Version 2012-08-10 624

Amazon DynamoDB Developer Guide

 .build();
 }
 }

Describe an MRSC global table configuration using Amazon SDK for Java 2.x.

 public static DescribeTableResponse describeMRSCTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Describing MRSC global table: " + tableName);

 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 DescribeTableResponse response =
 dynamoDbClient.describeTable(request);

 LOGGER.info("Table status: " + response.table().tableStatus());
 LOGGER.info("Multi-region consistency: " +
 response.table().multiRegionConsistency());

 if (response.table().replicas() != null
 && !response.table().replicas().isEmpty()) {
 LOGGER.info("Number of replicas: " +
 response.table().replicas().size());
 response.table()
 .replicas()
 .forEach(replica -> LOGGER.info(
 "Replica region: " + replica.regionName() + ", Status: "
 + replica.replicaStatus()));
 }

 if (response.table().globalTableWitnesses() != null

Same-account global table API Version 2012-08-10 625

Amazon DynamoDB Developer Guide

 && !response.table().globalTableWitnesses().isEmpty()) {
 LOGGER.info("Number of witnesses: "
 + response.table().globalTableWitnesses().size());
 response.table()
 .globalTableWitnesses()
 .forEach(witness -> LOGGER.info(
 "Witness region: " + witness.regionName() + ", Status: "
 + witness.witnessStatus()));
 }

 return response;

 } catch (ResourceNotFoundException e) {
 LOGGER.severe("Table not found: " + tableName + " - " +
 e.getMessage());
 throw DynamoDbException.builder()
 .message("Table not found: " + tableName)
 .cause(e)
 .build();
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to describe table: " + tableName + " - " +
 e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to describe table: " + tableName)
 .cause(e)
 .build();
 }
 }

Add test items to verify MRSC strong consistency using Amazon SDK for Java 2.x.

 public static PutItemResponse putTestItem(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final String artist,
 final String songTitle,
 final String album,
 final String year) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }

Same-account global table API Version 2012-08-10 626

Amazon DynamoDB Developer Guide

 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }

 try {
 LOGGER.info("Adding test item to MRSC global table: " + tableName);

 Map<String, AttributeValue> item = new HashMap<>();
 item.put("Artist", AttributeValue.builder().s(artist).build());
 item.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 if (album != null && !album.trim().isEmpty()) {
 item.put("Album", AttributeValue.builder().s(album).build());
 }
 if (year != null && !year.trim().isEmpty()) {
 item.put("Year", AttributeValue.builder().n(year).build());
 }

 PutItemRequest putItemRequest =
 PutItemRequest.builder().tableName(tableName).item(item).build();

 PutItemResponse response = dynamoDbClient.putItem(putItemRequest);
 LOGGER.info("Test item added successfully with strong consistency");

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add test item to table: " + tableName + " -
 " + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to add test item to table: " + tableName)
 .cause(e)
 .build();
 }
 }

Same-account global table API Version 2012-08-10 627

Amazon DynamoDB Developer Guide

Read items with consistent reads from MRSC replicas using Amazon SDK for Java 2.x.

 public static GetItemResponse getItemWithConsistentRead(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 artist, final String songTitle) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }

 try {
 LOGGER.info("Reading item from MRSC global table with consistent
 read: " + tableName);

 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Artist", AttributeValue.builder().s(artist).build());
 key.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 GetItemRequest getItemRequest = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .consistentRead(true)
 .build();

 GetItemResponse response = dynamoDbClient.getItem(getItemRequest);

 if (response.hasItem()) {
 LOGGER.info("Item found with strong consistency - no wait time
 needed");
 } else {

Same-account global table API Version 2012-08-10 628

Amazon DynamoDB Developer Guide

 LOGGER.info("Item not found");
 }

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to read item from table: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to read item from table: " + tableName)
 .cause(e)
 .build();
 }
 }

Perform conditional updates with MRSC guarantees using Amazon SDK for Java 2.x.

 public static UpdateItemResponse performConditionalUpdate(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final String artist,
 final String songTitle,
 final String rating) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }
 if (rating == null || rating.trim().isEmpty()) {
 throw new IllegalArgumentException("Rating cannot be null or empty");
 }

Same-account global table API Version 2012-08-10 629

Amazon DynamoDB Developer Guide

 try {
 LOGGER.info("Performing conditional update on MRSC global table: " +
 tableName);

 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Artist", AttributeValue.builder().s(artist).build());
 key.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#rating", "Rating");

 Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":rating", AttributeValue.builder().n(rating).build());

 UpdateItemRequest updateItemRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #rating = :rating")
 .conditionExpression("attribute_exists(Artist)")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 UpdateItemResponse response =
 dynamoDbClient.updateItem(updateItemRequest);
 LOGGER.info("Conditional update successful - demonstrates strong
 consistency");

 return response;

 } catch (ConditionalCheckFailedException e) {
 LOGGER.warning("Conditional check failed: " + e.getMessage());
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to perform conditional update: " + tableName +
 " - " + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to perform conditional update: " + tableName)
 .cause(e)
 .build();
 }
 }

Same-account global table API Version 2012-08-10 630

Amazon DynamoDB Developer Guide

Wait for MRSC replicas and witnesses to become active using Amazon SDK for Java 2.x.

 public static void waitForMRSCReplicasActive(
 final DynamoDbClient dynamoDbClient, final String tableName, final int
 maxWaitTimeSeconds)
 throws InterruptedException {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (maxWaitTimeSeconds <= 0) {
 throw new IllegalArgumentException("Max wait time must be positive");
 }

 try {
 LOGGER.info("Waiting for MRSC replicas and witnesses to become
 active: " + tableName);

 final long startTime = System.currentTimeMillis();
 final long maxWaitTimeMillis = maxWaitTimeSeconds * 1000L;
 int backoffSeconds = 5; // Start with 5 second intervals
 final int maxBackoffSeconds = 30; // Cap at 30 seconds

 while (System.currentTimeMillis() - startTime < maxWaitTimeMillis) {
 DescribeTableResponse response =
 describeMRSCTable(dynamoDbClient, tableName);

 boolean allActive = true;
 StringBuilder statusReport = new StringBuilder();

 if (response.table().multiRegionConsistency() == null
 || !MultiRegionConsistency.STRONG
 .toString()

 .equals(response.table().multiRegionConsistency().toString())) {
 allActive = false;
 statusReport

Same-account global table API Version 2012-08-10 631

Amazon DynamoDB Developer Guide

 .append("MultiRegionConsistency: ")
 .append(response.table().multiRegionConsistency())
 .append(" ");
 }
 if (response.table().replicas() == null
 || response.table().replicas().isEmpty()) {
 allActive = false;
 statusReport.append("No replicas found. ");
 }
 if (response.table().globalTableWitnesses() == null
 || response.table().globalTableWitnesses().isEmpty()) {
 allActive = false;
 statusReport.append("No witnesses found. ");
 }

 // Check table status
 if (!"ACTIVE".equals(response.table().tableStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Table: ")
 .append(response.table().tableStatus())
 .append(" ");
 }

 // Check replica status
 if (response.table().replicas() != null) {
 for (var replica : response.table().replicas()) {
 if (!"ACTIVE".equals(replica.replicaStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Replica(")
 .append(replica.regionName())
 .append("): ")
 .append(replica.replicaStatus())
 .append(" ");
 }
 }
 }

 // Check witness status
 if (response.table().globalTableWitnesses() != null) {
 for (var witness : response.table().globalTableWitnesses()) {

Same-account global table API Version 2012-08-10 632

Amazon DynamoDB Developer Guide

 if (!"ACTIVE".equals(witness.witnessStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Witness(")
 .append(witness.regionName())
 .append("): ")
 .append(witness.witnessStatus())
 .append(" ");
 }
 }
 }

 if (allActive) {
 LOGGER.info("All MRSC replicas and witnesses are now active:
 " + tableName);
 return;
 }

 LOGGER.info("Waiting for MRSC components to become active.
 Status: " + statusReport.toString());
 LOGGER.info("Next check in " + backoffSeconds + " seconds...");

 tempWait(backoffSeconds);

 // Exponential backoff with cap
 backoffSeconds = Math.min(backoffSeconds * 2, maxBackoffSeconds);
 }

 throw DynamoDbException.builder()
 .message("Timeout waiting for MRSC replicas to become active
 after " + maxWaitTimeSeconds + " seconds")
 .build();

 } catch (DynamoDbException | InterruptedException e) {
 LOGGER.severe("Failed to wait for MRSC replicas to become active: " +
 tableName + " - " + e.getMessage());
 throw e;
 }
 }

Clean up MRSC replicas and witnesses using Amazon SDK for Java 2.x.

Same-account global table API Version 2012-08-10 633

Amazon DynamoDB Developer Guide

 public static UpdateTableResponse cleanupMRSCReplicas(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {
 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("Cleaning up MRSC replicas and witnesses for table: " +
 tableName);

 // Remove replica using ReplicationGroupUpdate
 ReplicationGroupUpdate replicaUpdate =
 ReplicationGroupUpdate.builder()
 .delete(DeleteReplicationGroupMemberAction.builder()
 .regionName(replicaRegion.id())
 .build())
 .build();

 // Remove witness
 GlobalTableWitnessGroupUpdate witnessUpdate =
 GlobalTableWitnessGroupUpdate.builder()
 .delete(DeleteGlobalTableWitnessGroupMemberAction.builder()
 .regionName(witnessRegion.id())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(List.of(replicaUpdate))

Same-account global table API Version 2012-08-10 634

Amazon DynamoDB Developer Guide

 .globalTableWitnessUpdates(List.of(witnessUpdate))
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("MRSC cleanup initiated - removing replica and witness.
 Response: " + response);

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to cleanup MRSC replicas: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to cleanup MRSC replicas: " + tableName)
 .cause(e)
 .build();
 }
 }

Complete MRSC workflow demonstration using Amazon SDK for Java 2.x.

 public static void demonstrateCompleteMRSCWorkflow(
 final DynamoDbClient primaryClient,
 final DynamoDbClient replicaClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion)
 throws InterruptedException {

 if (primaryClient == null) {
 throw new IllegalArgumentException("Primary DynamoDB client cannot be
 null");
 }
 if (replicaClient == null) {
 throw new IllegalArgumentException("Replica DynamoDB client cannot be
 null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

Same-account global table API Version 2012-08-10 635

Amazon DynamoDB Developer Guide

 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {
 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("=== Starting Complete MRSC Workflow Demonstration ===");

 // Step 1: Create an empty single-Region table
 LOGGER.info("Step 1: Creating empty single-Region table");
 createRegionalTable(primaryClient, tableName);

 // Use the existing GlobalTableOperations method for basic table
 waiting
 LOGGER.info("Intermediate step: Waiting for table [" + tableName + "]
 to become active before continuing");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // Step 2: Convert to MRSC with replica and witness
 LOGGER.info("Step 2: Converting to MRSC with replica and witness");
 convertToMRSCWithWitness(primaryClient, tableName, replicaRegion,
 witnessRegion);

 // Wait for MRSC conversion to complete using MRSC-specific waiter
 LOGGER.info("Waiting for MRSC conversion to complete...");
 waitForMRSCReplicasActive(primaryClient, tableName);

 LOGGER.info("Intermediate step: Waiting for table [" + tableName + "]
 to become active before continuing");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // Step 3: Verify MRSC configuration
 LOGGER.info("Step 3: Verifying MRSC configuration");
 describeMRSCTable(primaryClient, tableName);

 // Step 4: Test strong consistency with data operations
 LOGGER.info("Step 4: Testing strong consistency with data
 operations");

 // Add test item to primary region
 putTestItem(primaryClient, tableName, "The Beatles", "Hey Jude", "The
 Beatles 1967-1970", "1968");

Same-account global table API Version 2012-08-10 636

Amazon DynamoDB Developer Guide

 // Immediately read from replica region (no wait needed with MRSC)
 LOGGER.info("Reading from replica region immediately (strong
 consistency):");
 GetItemResponse getResponse =
 getItemWithConsistentRead(replicaClient, tableName, "The
 Beatles", "Hey Jude");

 if (getResponse.hasItem()) {
 LOGGER.info("# Strong consistency verified - item immediately
 available in replica region");
 } else {
 LOGGER.warning("# Item not found in replica region");
 }

 // Test conditional update from replica region
 LOGGER.info("Testing conditional update from replica region:");
 performConditionalUpdate(replicaClient, tableName, "The Beatles",
 "Hey Jude", "5");
 LOGGER.info("# Conditional update successful - demonstrates strong
 consistency");

 // Step 5: Cleanup
 LOGGER.info("Step 5: Cleaning up resources");
 cleanupMRSCReplicas(primaryClient, tableName, replicaRegion,
 witnessRegion);

 // Wait for cleanup to complete using basic table waiter
 LOGGER.info("Waiting for replica cleanup to complete...");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // "Halt" until replica/witness cleanup is complete
 DescribeTableResponse cleanupVerification =
 describeMRSCTable(primaryClient, tableName);
 int backoffSeconds = 5; // Start with 5 second intervals
 while (cleanupVerification.table().multiRegionConsistency() != null)
 {
 LOGGER.info("Waiting additional time (" + backoffSeconds + "
 seconds) for MRSC cleanup to complete...");
 tempWait(backoffSeconds);

 // Exponential backoff with cap
 backoffSeconds = Math.min(backoffSeconds * 2, 30);

Same-account global table API Version 2012-08-10 637

Amazon DynamoDB Developer Guide

 cleanupVerification = describeMRSCTable(primaryClient,
 tableName);
 }

 // Delete the primary table
 deleteTable(primaryClient, tableName);

 LOGGER.info("=== MRSC Workflow Demonstration Complete ===");
 LOGGER.info("");
 LOGGER.info("Key benefits of Multi-Region Strong Consistency
 (MRSC):");
 LOGGER.info("- Immediate consistency across all regions (no eventual
 consistency delays)");
 LOGGER.info("- Simplified application logic (no need to handle
 eventual consistency)");
 LOGGER.info("- Support for conditional writes and transactions across
 regions");
 LOGGER.info("- Consistent read operations from any region without
 waiting");

 } catch (DynamoDbException | InterruptedException e) {
 LOGGER.severe("MRSC workflow failed: " + e.getMessage());
 throw e;
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• UpdateItem

• UpdateTable

Same-account global table API Version 2012-08-10 638

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

DynamoDB global tables security

Global tables replicas are DynamoDB tables, so you use the same methods for controlling access to
replicas that you do for single-Region tables, including Amazon Identity and Access Management
(IAM) identity policies and resource-based policies.

This topic covers how to secure DynamoDB global tables using IAM permissions and Amazon Key
Management Service (Amazon KMS) encryption. You learn about the service-linked roles (SLR) that
allow cross-Region replication and auto-scaling, the IAM permissions needed to create, update, and
delete global tables , and the differences between multi-Region eventual consistency (MREC) and
multi-Region strong consistency (MRSC) tables. You also learn about Amazon KMS encryption keys
to manage cross-Region replication securely.

Service-linked roles for global tables

DynamoDB global tables rely on service-linked roles (SLRs) to manage cross-Region replication and
auto-scaling capabilities.

You only need to set up these roles once per Amazon account. Once created, the same roles
serve all global tables in your account. For more information about service-linked roles, see Using
service-linked roles in the IAM User Guide.

Replication service-linked role

Amazon DynamoDB automatically creates the AWSServiceRoleForDynamoDBReplication
service-linked role (SLR) when you create your first global table. This role manages cross-Region
replication for you.

When applying resource-based policies to replicas, ensure that you don't deny any of the
permissions defined in the AWSServiceRoleForDynamoDBReplicationPolicy to
the SLR principal, as this will interrupt replication. If you deny required SLR permissions,
replication to and from affected replicas will stop, and the replica table status will change to
REPLICATION_NOT_AUTHORIZED.

• For multi-Region eventual consistency (MREC) global tables, if a replica remains in the
REPLICATION_NOT_AUTHORIZED state for more than 20 hours, the replica is irreversibly
converted to a single-Region DynamoDB table.

• For multi-Region strong consistency (MRSC) global tables, denying required permissions results
in AccessDeniedException for write and strongly consistent read operations. If a replica

Same-account global table API Version 2012-08-10 639

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

remains in the REPLICATION_NOT_AUTHORIZED state for more than seven days, the replica
becomes permanently inaccessible, and write and strongly consistent read operations will
continue to fail with an error. Some management operations like replica deletion will succeed.

Auto scaling service-linked role

When configuring a global table for provisioned capacity mode, auto scaling must be
configured for the global table. DynamoDB auto scaling uses the Amazon Application Auto
Scaling service to dynamically adjust provisioned throughput capacity on your global table
replicas. The Application Auto Scaling service creates a service-linked role (SLR) named
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable. This service-linked role
is automatically created in your Amazon account when you first configure auto scaling for a
DynamoDB table. It allows Application Auto Scaling to managed provisioned table capacity and
create CloudWatch alarms.

When applying resource-based policies to replicas, ensure that you don't deny any permissions
defined in the AWSApplicationAutoscalingDynamoDBTablePolicy to the Application Auto
Scaling SLR principal, as this will interrupt auto scaling functionality.

Example IAM policies for service-linked roles

An IAM policy with the following condition does not impact required permissions to the DynamoDB
replication SLR and Amazon Auto Scaling SLR. This condition can be added to otherwise broadly
restrictive policies to avoid unintentionally interrupting replication or auto scaling.

Excluding required SLR permissions from deny policies

The following example shows how to exclude service-linked role principals from deny statements:

"Condition": {
 "StringNotEquals": {
 "aws:PrincipalArn": [
 "arn:aws-cn::iam::111122223333:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication",
 "arn:aws-cn::iam::111122223333:role/aws-service-role/dynamodb.application-
autoscaling.amazonaws.com/AWSServiceRoleForApplicationAutoScaling_DynamoDBTable"
]
 }
}

Same-account global table API Version 2012-08-10 640

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingDynamoDBTablePolicy.html

Amazon DynamoDB Developer Guide

How global tables use Amazon IAM

The following sections describe the required permissions for different global table operations
and provide policy examples to help you configure the appropriate access for your users and
applications.

Note

All permissions described must be applied to the specific table resource
ARN in the affected Region(s). The table resource ARN follows the format
arn:aws:dynamodb:region:account-id:table/table-name, where you need to
specify your actual Region, account ID, and table name values.

Topics

• Creating global tables and adding replicas

• Updating global tables

• Deleting global tables and removing replicas

Creating global tables and adding replicas

DynamoDB global tables support two consistency modes: multi-Region eventual consistency
(MREC) and multi-Region strong consistency (MRSC). MREC global tables can have multiple replicas
across any number of Regions and provide eventual consistency. MRSC global tables require exactly
three Regions (three replicas or two replicas and one witness) and provide strong consistency with
zero recovery point objective (RPO).

The permissions required to create global tables depend on whether you're creating a global table
with or without a witness.

Permissions for creating global tables

The following permissions are required both for initial global table creation and for adding replicas
later. These permissions apply to both Multi-Region Eventual Consistency (MREC) and Multi-Region
Strong Consistency (MRSC) global tables.

• Global tables require cross-Region replication, which DynamoDB manages through the
AWSServiceRoleForDynamoDBReplication service-linked role (SLR). The following

Same-account global table API Version 2012-08-10 641

Amazon DynamoDB Developer Guide

permission allows DynamoDB to create this role automatically when you create a global table for
the first time:

• iam:CreateServiceLinkedRole

• To create a global table or add a replica using the UpdateTable API, you must have the
following permission on the source table resource:

• dynamodb:UpdateTable

• You must have the following permissions on the table resource in the Regions for the replicas to
be added:

• dynamodb:CreateTable

• dynamodb:CreateTableReplica

• dynamodb:Query

• dynamodb:Scan

• dynamodb:UpdateItem

• dynamodb:PutItem

• dynamodb:GetItem

• dynamodb:DeleteItem

• dynamodb:BatchWriteItem

Additional permissions for MRSC global tables using a witness

When creating a Multi-Region Strong Consistency (MRSC) global table with a witness Region, you
must have the following permission on the table resource in all participating Regions (including
both replica Regions and the witness Region):

• dynamodb:CreateGlobalTableWitness

Example IAM policies for creating global tables

Creating MREC or MRSC global table across three Regions

The following identity-based policy allows you to create an MREC or MRSC global table named
"users" across three Regions, including creating the required DynamoDB replication service-linked
role.

Same-account global table API Version 2012-08-10 642

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreatingUsersGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:CreateTableReplica",
 "dynamodb:UpdateTable",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/users",
 "arn:aws:dynamodb:us-east-2:123456789012:table/users",
 "arn:aws:dynamodb:us-west-2:123456789012:table/users"
]
 },
 {
 "Sid": "AllowCreatingSLR",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
]
 }
]
}

Same-account global table API Version 2012-08-10 643

Amazon DynamoDB Developer Guide

Restricting MREC or MRSC global table creation to specific Regions

The following identity-based policy allows you to create DynamoDB global tables replicas across
specific Regions using the aws:RequestedRegion condition key, including creating the required
DynamoDB replication service-linked role.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAddingReplicasToSourceTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateTable"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "us-east-1"
]
 }
 }
 },
 {
 "Sid": "AllowCreatingReplicas",
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:CreateTableReplica",
 "dynamodb:UpdateTable",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": "*",
 "Condition": {

Same-account global table API Version 2012-08-10 644

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion

Amazon DynamoDB Developer Guide

 "StringEquals": {
 "aws:RequestedRegion": [
 "us-east-2",
 "us-west-2"
]
 }
 }
 },
 {
 "Sid": "AllowCreatingSLR",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
]
 }
]
}

Creating MRSC global table with witness

The following identity-based policy allows you to a create a DynamoDB MRSC global table named
"users" with replicas in us-east-1 and us-east-2 and a witness in us-west-2, including creating the
required DynamoDB replication service-linked role.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreatingUsersGlobalTableWithWitness",
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:CreateTableReplica",
 "dynamodb:CreateGlobalTableWitness",
 "dynamodb:UpdateTable",

Same-account global table API Version 2012-08-10 645

Amazon DynamoDB Developer Guide

 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/users",
 "arn:aws:dynamodb:us-east-2:123456789012:table/users"
]
 },
 {
 "Sid": "AllowCreatingSLR",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
]
 }
]
}

Restricting MRSC witness creation to specific Regions

This identity-based policy allows you to create a MRSC global table with replicas restricted to
specific Regions using the aws:RequestedRegion condition key and unrestricted witness creation
across all Regions, including creating the required DynamoDB replication service-linked role.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCreatingReplicas",
 "Effect": "Allow",

Same-account global table API Version 2012-08-10 646

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion

Amazon DynamoDB Developer Guide

 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:CreateTableReplica",
 "dynamodb:UpdateTable",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "us-east-1",
 "us-east-2"
]
 }
 }
 },
 {
 "Sid": "AllowCreatingWitness",
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateGlobalTableWitness"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowCreatingSLR",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/aws-service-role/
replication.dynamodb.amazonaws.com/AWSServiceRoleForDynamoDBReplication"
]
 }
]
}

Same-account global table API Version 2012-08-10 647

Amazon DynamoDB Developer Guide

Updating global tables

To modify replica settings for an existing global table using the UpdateTable API, you need the
following permission on the table resource in the Region where you're making the API call:

• dynamodb:UpdateTable

You can additionally update other global table configurations, such as auto scaling policies
and Time to Live settings. The following permissions are required for these additional update
operations:

• To update a replica auto scaling policy with the UpdateTableReplicaAutoScaling API, you
must have the following permissions on the table resource in all Regions containing replicas:

• application-autoscaling:DeleteScalingPolicy

• application-autoscaling:DeleteScheduledAction

• application-autoscaling:DeregisterScalableTarget

• application-autoscaling:DescribeScalableTargets

• application-autoscaling:DescribeScalingActivities

• application-autoscaling:DescribeScalingPolicies

• application-autoscaling:DescribeScheduledActions

• application-autoscaling:PutScalingPolicy

• application-autoscaling:PutScheduledAction

• application-autoscaling:RegisterScalableTarget

• To update Time to Live settings with the UpdateTimeToLive API, you must have the following
permission on the table resource in all Regions containing replicas:

• dynamodb:UpdateTimeToLive

Note that Time to Live (TTL) is only supported for global tables configured with Multi-Region
Eventual Consistency (MREC). For more information about how global tables work with TTL, see
How DynamoDB global tables work.

Deleting global tables and removing replicas

To delete a global table, you must remove all replicas. The permissions required for this operation
differ depending on whether you're deleting a global table with or without a witness Region.
Same-account global table API Version 2012-08-10 648

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTableReplicaAutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTimeToLive.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_HowItWorks.html

Amazon DynamoDB Developer Guide

Permissions for deleting global tables and removing replicas

The following permissions are required both for removing individual replicas and for completely
deleting global tables. Deleting a global table configuration only removes the replication
relationship between tables in different Regions. It does not delete the underlying DynamoDB
table in the last remaining Region. The table in the last Region continues to exist as a standard
DynamoDB table with the same data and settings. These permissions apply to both Multi-Region
Eventual Consistency (MREC) and Multi-Region Strong Consistency (MRSC) global tables.

• To remove replicas from a global table using the UpdateTable API, you need the following
permission on the table resource in the Region from which you're making the API call:

• dynamodb:UpdateTable

• You need the following permissions on the table resource in each Region where you're removing
a replica:

• dynamodb:DeleteTable

• dynamodb:DeleteTableReplica

Additional permissions for MRSC global tables using a witness

To delete a multi-Region strong consistency (MRSC) global table with a witness, you must have
the following permission on the table resource in all participating Regions (including both replica
Regions and the witness Region):

• dynamodb:DeleteGlobalTableWitness

Examples IAM policies to delete a global table replicas

Deleting global table replicas

This identity-based policy allows you to delete a DynamoDB global table named "users" and its
replicas across three Regions:

JSON

{
 "Version":"2012-10-17",
 "Statement": [

Same-account global table API Version 2012-08-10 649

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateTable",
 "dynamodb:DeleteTable",
 "dynamodb:DeleteTableReplica"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/users",
 "arn:aws:dynamodb:us-east-2:123456789012:table/users",
 "arn:aws:dynamodb:us-west-2:123456789012:table/users"
]
 }
]
}

Deleting a MRSC global table with a witness

This identity-based policy allows you to delete the replica and the witness of a MRSC global table
named "users":

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateTable",
 "dynamodb:DeleteTable",
 "dynamodb:DeleteTableReplica",
 "dynamodb:DeleteGlobalTableWitness"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/users",
 "arn:aws:dynamodb:us-east-2:123456789012:table/users"
]
 }
]
}

Same-account global table API Version 2012-08-10 650

Amazon DynamoDB Developer Guide

How global tables use Amazon KMS

Like all DynamoDB tables, global tables replicas always encrypt data at rest using encryption keys
stored in Amazon Key Management Service (Amazon KMS).

All replicas in a global table must be configured with the same type of KMS key (Amazon owned
key, Amazon managed key, or Customer managed key).

Important

DynamoDB requires access to the replica's encryption key to delete a replica. If you want
to disable or delete a customer managed key used to encrypt a replica because you are
deleting the replica, you should first delete the replica, wait for the table status on one of
the remaining replicas to change to ACTIVE, then disable or delete the key.

For a global table configured for multi-Region eventual consistency (MREC), if you
disable or revoke DynamoDB's access to a customer managed key used to encrypt a
replica, replication to and from the replica will stop and the replica status will change to
INACCESSIBLE_ENCRYPTION_CREDENTIALS. If a replica in a MREC global table remains in
the INACCESSIBLE_ENCRYPTION_CREDENTIALS state for more than 20 hours, the replica is
irreversibly converted to a single-Region DynamoDB table.

For a global table configured for multi-Region strong consistency (MRSC), if you disable or revoke
DynamoDB's access to a customer managed key used to encrypt a replica, replication to and from
the replica will stop, attempts to perform write or strongly consistent reads to the replica will
return an error, and the replica status will change to INACCESSIBLE_ENCRYPTION_CREDENTIALS.
If a replica in a MRSC global table remains in the INACCESSIBLE_ENCRYPTION_CREDENTIALS
state for more than seven days, depending on the specific permissions revoked the replica will be
archived or become permanently inaccessible.

DynamoDB multi-account global tables

Multi-account global tables automatically replicate your DynamoDB table data across multiple
Amazon Regions and multiple Amazon accounts to improve resiliency, isolate workloads at the
account level, and apply distinct security and governance controls. Each replica table resides in a
distinct Amazon account, enabling fault isolation at both the Region and account level. You can
also align replicas with your Amazon organizational structure. Multi-account global tables provide
additional isolation, governance, and security benefits compared to same-account global tables.

Multi-account global tables API Version 2012-08-10 651

Amazon DynamoDB Developer Guide

Multi-account global tables provide the following benefits:

• Replicate DynamoDB table data automatically across your choice of Amazon accounts and
Regions

• Enhance security and governance by replicating data across accounts with distinct policies,
guardrails, and compliance boundaries

• Improve operational resiliency and account-level fault isolation by placing replicas in separate
Amazon accounts

• Align workloads by business unit or ownership when using a multi-account strategy

• Simplify cost attribution by billing each replica to its respective Amazon account

For more information, see Benefits of using multiple Amazon accounts. If your workloads don't
require multi-account replication, or you want simpler replica management with local overrides,
you can continue to use same-account global tables.

You can configure multi-account global tables with Multi-Region eventual consistency (MREC).
Global tables configured for Multi-Region strong consistency (MRSC) do not support the multi-
account model.

Topics

• How DynamoDB global tables work

• Tutorials: Creating multi-account global tables

• DynamoDB global tables security

How DynamoDB global tables work

Multi-account global tables extend DynamoDB global tables fully managed, serverless, multi-
Region, and multi-active capabilities to span multiple Amazon accounts. Multi-account global
tables replicate data across Amazon Regions and accounts, providing the same active-active
functionality as same-account global tables. When you write to any replica, DynamoDB replicates
the data to all other replicas.

Key differences from same-account global tables include:

• Multi-account replication is supported for multi-Region eventual consistency (MREC) global
tables.

Multi-account global tables API Version 2012-08-10 652

https://docs.amazonaws.cn/whitepapers/latest/organizing-your-aws-environment/benefits-of-using-multiple-aws-accounts.html

Amazon DynamoDB Developer Guide

• You can only add replicas by starting with a single-Region table. Converting an existing same-
account global table into a multi-account setup is not supported. To migrate, you must delete
existing replicas to return to a single-Region table before creating a new multi-account global
table.

• Each replica must reside in a separate Amazon account. For a multi-account global table with N
replicas, you must have N accounts.

• Multi-account global tables use unified table settings across all replicas by default. All replicas
automatically share the same configuration (such as throughput mode, TTL, and PITR), and
unlike same-account global tables, these settings cannot be overridden per replica.

• Customers must provide replication permissions to the DynamoDB global tables service principal
in their resource policies.

Multi-account global tables use the same underlying replication technology as same-account
global tables. Table settings are replicated automatically across all regional replicas, and customers
cannot override or customize settings per replica. This ensures consistent configuration and
predictable behavior across multiple Amazon accounts participating in the same global table.

Settings in DynamoDB global tables define how a table behaves and how data is replicated across
Regions. These settings are configured through DynamoDB control plane APIs during table creation
or when adding a new regional replica.

When creating a multi-account global table, customers must set
GlobalTableSettingsReplicationMode = ENABLED for each regional replica. This ensures
that configuration changes made in one Region propagate automatically to all other Regions that
participate in the global table.

You can enable settings replication after table creation. This supports the scenario where a table is
originally created as a regional table and later upgraded to a multi-account global table.

Synchronized Settings

The following table settings are always synchronized across all replicas in a multi-account global
table:

Multi-account global tables API Version 2012-08-10 653

Amazon DynamoDB Developer Guide

Note

Unlike same-account global tables, multi-account global tables do not allow per-Region
overrides for these settings. The only exception is that overrides for read auto-scaling
policies (tables and GSIs) are allowed as they are separate external resources.

• Capacity mode (provisioned capacity or on-demand)

• Table provisioned read and write capacity

• Table read and write auto scaling

• Local Secondary Index (LSI) definition

• Global Secondary Index (GSI) definition

• GSI provisioned read and write capacity

• GSI read and write auto scaling

• Streams definition in MREC mode

• Time To Live (TTL)

• Warm Throughput

• On-demand maximum read and write throughput

Non-Synchronized Settings

The following settings are not synchronized between replicas and must be configured
independently for each replica table in each Region.

• Table Class

• Server-side Encryption (SSE) type

• Server-side Encryption (SSE) KMS Key Id

• Deletion Protection

• Kinesis Data Streams (KDSD)

• Tags

• Resource Policy

• Table Cloudwatch-Contributor Insights (CCI)

Multi-account global tables API Version 2012-08-10 654

Amazon DynamoDB Developer Guide

• GSI Cloudwatch-Contributor Insights (CCI)

Monitoring

Global tables configured for multi-Region eventual consistency (MREC) publish the
ReplicationLatency metric to CloudWatch. This metric tracks the elapsed time between when
an item is written to a replica table, and when that item appears in another replica in the global
table. ReplicationLatency is expressed in milliseconds and is emitted for every source and
destination Region pair in a global table.

Typical ReplicationLatency values depends on the distance between your chosen Amazon
Regions, as well as other variables like workload type and throughput. For example, a source replica
in the US West (N. California) (us-west-1) Region has lower ReplicationLatency to the US West
(Oregon) (us-west-2) Region compared to the Africa (Cape Town) (af-south-1) Region.

An increasing value for ReplicationLatency could indicate that updates from one replica
are not propagating to other replica tables in a timely manner. In this case, you can temporarily
redirect your application's read and write activity to a different Amazon Region.

Handling Replication Latency Issues in Multi-account Global Tables

If ReplicationLatency exceeds 3 hours due to customer-induced issues on a replica table,
DynamoDB sends a notification requesting the customer to address the underlying problem.
Common customer-induced issues that may prevent replication include:

• Removing required permissions from the replica table's resource policy

• Opting out of an Amazon Region that hosts a replica of the multi-account global table

• Denying the table's Amazon KMS key permissions required to decrypt data

DynamoDB sends an initial notification within 3 hours of elevated replication latency, followed by
a second notification after 20 hours if the issue remains unresolved. If the problem is not corrected
within the required time window, DynamoDB will automatically disassociate the replica from the
global table. The affected replica will then be converted to a regional table.

Tutorials: Creating multi-account global tables

This section provides step-by-step instructions for creating DynamoDB global tables that span
across multiple Amazon accounts.

Multi-account global tables API Version 2012-08-10 655

Amazon DynamoDB Developer Guide

Create a multi-account global table using the DynamoDB console

Follow these steps to create a multi-account global table using the Amazon Web Services
Management Console. The following example creates a global table with replica tables in the
United States.

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.aws.amazon.com/dynamodb/ for the first account (say 111122223333).

2. For this example, choose US East (Ohio) from the Region selector in the navigation bar.

3. In the navigation pane on the left side of the console, choose Tables.

4. Choose Create Table.

5. On the Create table page:

a. For Table name, enter MusicTable.

b. For Partition key, enter Artist.

c. For Sort key, enter SongTitle.

d. Keep the other default settings and choose Create table.

6. Add the following resource policy to the table

{
"Version": "2012-10-17",
"Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["444455556666","111122223333"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:us-east-1:444455556666:table/MusicTable",
 "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable"
]

Multi-account global tables API Version 2012-08-10 656

https://console.aws.amazon.com/dynamodb/

Amazon DynamoDB Developer Guide

 }
 }
 },
 {
 "Sid": "AllowTrustedAccountsToJoinThisGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:AssociateTableReplica"
],
 "Resource": "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable",
 "Principal": {"AWS": ["444455556666"]}
 }
]
}

7. This new table serves as the first replica table in a new global table. It is the prototype for
other replica tables that you add later.

8. Wait for the table to become Active. For the newly created table, from the Global tables tab,
navigate to Settings Replication and click Enable.

9. Logout of this account (111122223333 here).

10. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.aws.amazon.com/dynamodb/ for the second account (say 444455556666).

11. For this example, choose US East (N. Virginia) from the Region selector in the navigation bar.

12. The console ensures that a table with the same name doesn't exist in the selected Region. If a
table with the same name does exist, you must delete the existing table before you can create
a new replica table in that Region.

13. In the drop down near Create Table, choose Create from another account

14. On the Create table from another account page:

a. Add arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable as the
table arn for the source table.

b. In the Replica Table ARNs, add the ARN of the source table again
arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable. If there are
multiple replicas already existing as part of a Multi Account Global Table, you must add
every existing replica to the ReplicaTableARN.

c. Keep the other default settings and choose Submit.

Multi-account global tables API Version 2012-08-10 657

https://console.aws.amazon.com/dynamodb/

Amazon DynamoDB Developer Guide

15. The Global tables tab for the Music table (and for any other replica tables) shows that the
table has been replicated in multiple Regions.

16. To test replication:

a. You can use any of the regions where a replica exists for this table

b. Choose Explore table items.

c. Choose Create item.

d. Enter item_1 for Artist and Song Value 1 for SongTitle.

e. Choose Create item.

f. Verify replication by switching to the other regions:

g. Verify that the Music table contains the item you created.

Create a multi-account global table using the Amazon CLI

The following examples show how to create a multi-account global table using the Amazon CLI.
These examples demonstrate the complete workflow for setting up cross-account replication.

CLI

Use the following Amazon CLI commands to create a multi-account global table with cross-
account replication.

STEP 1: Setting resource policy for the table in account 111122223333

cat > /tmp/source-resource-policy.json << 'EOF'
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {

Multi-account global tables API Version 2012-08-10 658

Amazon DynamoDB Developer Guide

 "StringEquals": {
 "aws:SourceAccount": ["444455556666","111122223333"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:us-east-1:444455556666:table/MusicTable",
 "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable"
]
 }
 }
 },
 {
 "Sid": "AllowTrustedAccountsToJoinThisGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:AssociateTableReplica"
],
 "Resource": "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable",
 "Principal": {"AWS": ["444455556666"]}
 }
]
}
EOF

Step 2: Create a new table (MusicTable) in US East (Ohio),
with DynamoDB Streams enabled (NEW_AND_OLD_IMAGES),
and Settings Replication ENABLED on the account 111122223333

aws dynamodb create-table \
 --table-name MusicTable \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \
 --global-table-settings-replication-mode ENABLED \
 --resource-policy file:///tmp/source-resource-policy.json \
 --region us-east-2

Step 3: Creating replica table in account 444455556666

Resource policy for account 444455556666

Multi-account global tables API Version 2012-08-10 659

Amazon DynamoDB Developer Guide

cat > /tmp/dest-resource-policy.json << 'EOF'
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:us-east-1:444455556666:table/MusicTable",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["444455556666","111122223333"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:us-east-1:444455556666:table/MusicTable",
 "arn:aws:dynamodb:us-east-2:111122223333:table/MusicTable"
]
 }
 }
 }
]
}
EOF

Execute the replica table creation
aws dynamodb create-table \
 --table-name MusicTable \
 --global-table-source-arn "arn:aws:dynamodb:us-east-2:111122223333:table/
MusicTable" \
 --resource-policy file:///tmp/dest-resource-policy.json \
 --global-table-settings-replication-mode ENABLED \
 --region us-east-1

Step 4: View the list of replicas created using describe-table
aws dynamodb describe-table \
 --table-name MusicTable \
 --region us-east-2 \
 --query 'Table.
{TableName:TableName,TableStatus:TableStatus,MultiRegionConsistency:MultiRegionConsistency,Replicas:Replicas[*].
{Region:RegionName,Status:ReplicaStatus}}'

Multi-account global tables API Version 2012-08-10 660

Amazon DynamoDB Developer Guide

Step 5: To verify that replication is working, add a new item to the Music table
 in US East (Ohio)
aws dynamodb put-item \
 --table-name MusicTable \
 --item '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-2

Step 6: Wait for a few seconds, and then check to see whether the item has been
successfully replicated to US East (N. Virginia) and Europe (Ireland)
aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-1

aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-2

Step 7: Delete the replica table in US East (N. Virginia) Region
aws dynamodb delete-table \
 --table-name MusicTable \
 --region us-east-1

Clean up: Delete the primary table
aws dynamodb delete-table \
 --table-name MusicTable \
 --region us-east-2

DynamoDB global tables security

Global tables replicas are DynamoDB tables, so you use the same methods for controlling access to
replicas that you do for single-Region tables, including Amazon Identity and Access Management
(IAM) identity policies and resource-based policies. This topic covers how to secure DynamoDB
multi-account global tables using IAM permissions and Amazon Key Management Service (Amazon
KMS) encryption. You learn about the resource based policies and service-linked roles (SLR) that
allow cross-Region cross-account replication and auto-scaling, the IAM permissions needed to
create, update, and delete global tables, for a multi-Region eventual consistency (MREC) tables.
You also learn about Amazon KMS encryption keys to manage cross-Region replication securely.

Multi-account global tables API Version 2012-08-10 661

Amazon DynamoDB Developer Guide

It provides detailed information about the resource-based policies and permissions required to
establish cross-account and cross-region table replication. Understanding this security model is
crucial for customers who need to implement secure, cross-account data replication solutions.

Service principal authorization for replication

DynamoDB's multi-account global tables use a distinct authorization approach because replication
is performed across account boundaries. This is done using DynamoDB's replication service
principal: replication.dynamodb.amazonaws.com. Each participating account must explicitly
allow that principal in the replica table's resource policy, giving it permissions that can be
constrained to specific replicas by source context conditions on keys like aws:SourceAccount,
aws:SourceArn, etc. — see Amazon global condition keys for more details. Permissions are bi-
directional, which means that all replicas must explicitly grant permissions to each other before
replication can be established across any particular pair of replicas.

The following service principal permissions are essential for cross-account replication:

• dynamodb:ReadDataForReplication grants the ability to read data for replication purposes.
This permission allows changes in one replica to be read and propagated to other replicas.

• dynamodb:WriteDataForReplication permits the writing of replicated data to destination
tables. This permission allows changes to be synchronized across all replicas in the global table.

• dynamodb:ReplicateSettings enables the synchronization of table settings across replicas,
providing consistent configuration across all participating tables.

Each replica must give the above permissions to all other replicas and to itself — i.e. the source
context conditions must include the full set of replicas that comprises the global table. These
permission are verified for each new replica when it is added to a multi-account global table. This
verifies that replication operations are performed only by the authorized DynamoDB service and
only between the intended tables.

Service-linked roles for multi-account global tables

DynamoDB multi-account global tables replicate settings across all replicas so that each replica
is set up identically with consistent throughput and provides a seamless fail-over experience.
Replication of settings is controlled through the ReplicateSettings permission on the service
principal, but we also rely on service-linked roles (SLRs) to manage certain cross-account cross-
Region replication and auto-scaling capabilities. These roles are set up only once per Amazon

Multi-account global tables API Version 2012-08-10 662

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon DynamoDB Developer Guide

account. Once created, the same roles serve all global tables in your account. For more information
about service-linked roles, see Using service-linked roles in the IAM User Guide.

Settings management service-linked role

Amazon DynamoDB automatically creates the
AWSServiceRoleForDynamoDBGlobalTableSettingsManagement service-linked role (SLR) when you
create your first multi-account global table replica in the account. This role manages cross-account
cross-Region replication of settings for you.

When applying resource-based policies to replicas, confirm that you do not deny any of the
permissions defined in the AWSServiceRoleForDynamoDBGlobalTableSettingsManagement
to the SLR principal, as this could interfere with settings management and may impair replication
if throughput does not match across replicas or GSIs. If you deny required SLR permissions,
replication to and from affected replicas may stop, and the replica table status will change
to REPLICATION_NOT_AUTHORIZED. For multi-account global tables, if a replica remains in
the REPLICATION_NOT_AUTHORIZED state for more than 20 hours, the replica is irreversibly
converted to a single-Region DynamoDB table. The SLR has the following permissions:

• application-autoscaling:DeleteScalingPolicy

• application-autoscaling:DescribeScalableTargets

• application-autoscaling:DescribeScalingPolicies

• application-autoscaling:DeregisterScalableTarget

• application-autoscaling:PutScalingPolicy

• application-autoscaling:RegisterScalableTarget

Auto scaling service-linked role

When configuring a global table for provisioned capacity mode, auto scaling must be
configured for the global table. DynamoDB auto scaling uses the Amazon Application Auto
Scaling service to dynamically adjust provisioned throughput capacity on your global table
replicas. The Application Auto Scaling service creates a service-linked role (SLR) named
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable. This service-linked role is
automatically created in your Amazon account when you first configure auto scaling for a
DynamoDB table. It allows Application Auto Scaling to manage provisioned table capacity and
create CloudWatch alarms.

Multi-account global tables API Version 2012-08-10 663

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create-service-linked-role.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html

Amazon DynamoDB Developer Guide

When applying resource-based policies to replicas, verify that you do not deny any permissions
defined in the AWSApplicationAutoscalingDynamoDBTablePolicy to the Application Auto Scaling
SLR principal, as this will interrupt auto-scaling functionality.

How global tables use Amazon IAM

The following sections describe the required permissions for different global table operations
and provide policy examples to help you configure the appropriate access for your users and
applications.

Note

All permissions described must be applied to the specific table resource
ARN in the affected Region(s). The table resource ARN follows the format
arn:aws:dynamodb:region:account-id:table/table-name, where you need to
specify your actual Region, account ID, and table name values.

The following are the step-by-step topics we cover in the sections below:

• Creating multi-account global tables and adding replicas

• Updating a multi-account global table

• Deleting global tables and removing replicas

Creating global tables and adding replicas

Permissions for creating global tables

When a new replica is added to a regional table to form a multi-account global table or to an
existing multi-account global table, the IAM principal performing the action must be authorized
by all existing members. All existing members needs to give the following permission in their table
policy for the replica addition to succeed:

• dynamodb:AssociateTableReplica - This permission allows tables to be joined into a global
table setup. This is the foundational permission that enables the initial establishment of the
replication relationship.

This precise control allows only authorized accounts to participate in the global table setup.

Multi-account global tables API Version 2012-08-10 664

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingDynamoDBTablePolicy.html

Amazon DynamoDB Developer Guide

Example IAM policies for creating global tables

Example IAM policies for a 2-replica setup

The setup of multi-account global tables follows a specific authorization flow that provides secure
replication. Let's examine how this works in practice by walking through a practical scenario where
a customer wants to establish a global table with two replicas. The first replica (ReplicaA) resides
in Account A in the ap-east-1 region, while the second replica (ReplicaB) is in Account B in the eu-
south-1 region.

• In the source account (Account A), the process begins with creating the primary replica table. The
account administrator must attach a resource-based policy to this table that explicitly grants
necessary permissions to the destination account (Account B) to perform the association. This
policy also authorizes the DynamoDB replication service to perform essential replication actions.

• The destination account (Account B) follows a similar process by attaching a corresponding
resource-based policy while creating the replica and referencing the source table ARN to be used
to create the replica. This policy mirrors the permissions granted by Account A, creating a trusted
bi-directional relationship. Before establishing replication, DynamoDB validates these cross-
account permissions to verify proper authorization is in place.

To establish this setup:

• The administrator of Account A must first attach the resource-based policy to ReplicaA. This
policy explicitly grants the necessary permissions to Account B and the DynamoDB replication
service.

• Similarly, the administrator of Account B must attach a matching policy to ReplicaB, with account
references reversed to grant corresponding permissions to Account A, in the create table call to
create replica B referencing replica A as source table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",

Multi-account global tables API Version 2012-08-10 665

Amazon DynamoDB Developer Guide

 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB"
]
 }
 }
 },
 {
 "Sid": "AllowTrustedAccountsToJoinThisGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:AssociateTableReplica"
],
 "Resource": "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "Principal": {"AWS": ["B"]}
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B"],
 "aws:SourceArn": [

Multi-account global tables API Version 2012-08-10 666

Amazon DynamoDB Developer Guide

 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB"
]
 }
 }
 }
]
}

Example IAM policies for a 3-replica setup

In this setup, we have 3 replicas ReplicaA, ReplicaB, and ReplicaC in Account A, Account B, and
Account C, respectively. Replica A is the first replica, which starts as a regional table, and then
ReplicaB and ReplicaC are added to it.

• The administrator of Account A must first attach the resource-based policy to ReplicaA allowing
replication with all members, and allowing the IAM principals of Account B and Account C to add
replicas.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B", "C"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB",
 "arn:aws:dynamodb:us-east-1:C:table/ReplicaC"
]
 }
 }

Multi-account global tables API Version 2012-08-10 667

Amazon DynamoDB Developer Guide

 },
 {
 "Sid": "AllowTrustedAccountsToJoinThisGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:AssociateTableReplica"
],
 "Resource": "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "Principal": { "AWS": ["B", "C"] }
 }
]
}

• The administrator of Account B must add a replica (Replica B) pointing to ReplicaA as a source.
Replica B has the following policy allowing replication between all members, and allowing
Account C to add a replica:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B", "C"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB",
 "arn:aws:dynamodb:us-east-1:C:table/ReplicaC"
]
 }
 }
 },
 {

Multi-account global tables API Version 2012-08-10 668

Amazon DynamoDB Developer Guide

 "Sid": "AllowTrustedAccountsToJoinThisGlobalTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:AssociateTableReplica"
],
 "Resource": "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB",
 "Principal": { "AWS": ["C"] }
 }
]
}

• Finally, the administrator of Account C create a replica with the following policy allowing
replication permissions between all members. The policy doesn't allow any further replicas to be
added.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBActionsNeededForSteadyStateReplication",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ReadDataForReplication",
 "dynamodb:WriteDataForReplication",
 "dynamodb:ReplicateSettings"
],
 "Resource": "arn:aws:dynamodb:us-east-1:C:table/ReplicaC",
 "Principal": {"Service": ["replication.dynamodb.amazonaws.com"]},
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB"
]
 }
 }
 }
]
}

Multi-account global tables API Version 2012-08-10 669

Amazon DynamoDB Developer Guide

Updating a multi-account global table

To modify replica settings for an existing global table using the UpdateTable API, you need
the following permission on the table resource in the Region where you're making the API call:
dynamodb:UpdateTable

You can additionally update other global table configurations, such as auto scaling policies
and Time to Live settings. The following permissions are required for these additional update
operations:

To update Time to Live settings with the UpdateTimeToLive API, you must have
the following permission on the table resource in all Regions containing replicas:
dynamodb:UpdateTimeToLive

To update a replica auto scaling policy with the UpdateTableReplicaAutoScaling API, you
must have the following permissions on the table resource in all Regions containing replicas:

• application-autoscaling:DeleteScalingPolicy

• application-autoscaling:DeleteScheduledAction

• application-autoscaling:DeregisterScalableTarget

• application-autoscaling:DescribeScalableTargets

• application-autoscaling:DescribeScalingActivities

• application-autoscaling:DescribeScalingPolicies

• application-autoscaling:DescribeScheduledActions

• application-autoscaling:PutScalingPolicy

• application-autoscaling:PutScheduledAction

• application-autoscaling:RegisterScalableTarget

Note

You need to provide dynamodb:ReplicateSettings permissions across all replica
regions and accounts for the update table to succeed. If any replica does not provide
permissions to replicate settings to any replica in the multi-account global table, all Update
operations across all replicas will fail with AccessDeniedException till the permissions
are fixed.

Multi-account global tables API Version 2012-08-10 670

Amazon DynamoDB Developer Guide

Deleting global tables and removing replicas

To delete a global table, you must remove all replicas. Unlike same-account Global Table, you
cannot use UpdateTable to delete a replica table in a remote region and each replica must be
deleted through the DeleteTable API from the account that controls it.

Permissions for deleting global tables and removing replicas

The following permissions are required both for removing individual replicas and for completely
deleting global tables. Deleting a global table configuration only removes the replication
relationship between tables in different Regions. It does not delete the underlying DynamoDB
table in the last remaining Region. The table in the last Region continues to exist as a standard
DynamoDB table with the same data and settings.

You need the following permissions on the table resource in each Region where you're removing a
replica:

• dynamodb:DeleteTable

• dynamodb:DeleteTableReplica

How global tables use Amazon KMS

Like all DynamoDB tables, global table replicas always encrypt data at rest using encryption keys
stored in Amazon Key Management Service (Amazon KMS).

Note

Unlike same-account global table, different replicas in a multi-account global table can be
configured with the different type of Amazon KMS key (Amazon owned key, or Customer
managed key). Multi-account global tables do not support Amazon Managed Keys.

Multi-account global tables that use CMKs requires each replica's keys policy to give permissions
to the DynamoDB replication service principal (replication.dynamodb.amazonaws.com) to
access the key for replication and settings management. The following permissions are required:

• kms:Decrypt

• kms:ReEncrypt*

• kms:GenerateDataKey*

Multi-account global tables API Version 2012-08-10 671

Amazon DynamoDB Developer Guide

• kms:DescribeKey

Important

DynamoDB requires access to the replica's encryption key to delete a replica. If you want to disable
or delete a customer managed key used to encrypt a replica because you are deleting the replica,
you should first delete the replica, wait for the table to be removed from the replication group by
calling describe in one of the other replicas, then disable or delete the key.

If you disable or revoke DynamoDB's access to a customer managed key used to
encrypt a replica, replication to and from the replica will stop and the replica status will
change to INACCESSIBLE_ENCRYPTION_CREDENTIALS. If a replica remains in the
INACCESSIBLE_ENCRYPTION_CREDENTIALS state for more than 20 hours, the replica is
irreversibly converted to a single-Region DynamoDB table.

Example Amazon KMS policy

The Amazon KMS policy allows DynamoDB to access both Amazon KMS keys for replication
between replicas A an B. The Amazon KMS keys attached to the DynamoDB replica in each account
needs to be updated with the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "Service": "replication.dynamodb.amazonaws.com" },
 "Action": [
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": ["A", "B"],
 "aws:SourceArn": [
 "arn:aws:dynamodb:ap-east-1:A:table/ReplicaA",
 "arn:aws:dynamodb:eu-south-1:B:table/ReplicaB"
]
 }

Multi-account global tables API Version 2012-08-10 672

Amazon DynamoDB Developer Guide

 }
 }
]
 }

Understanding Amazon DynamoDB billing for global tables

This guide describes how DynamoDB billing works for global tables, identifying the components
that contribute to the cost of global tables, including a practical example.

Amazon DynamoDB global tables is a fully managed, serverless, multi-Region, and multi-active
database. Global tables are designed for 99.999% availability, delivering increased application
resiliency, and improved business continuity. Global tables replicate your DynamoDB tables
automatically across your choice of Amazon Regions so you can achieve fast, local read and write
performance.

How it works

The billing model for global tables differs from single-Region DynamoDB tables. Write operations
for single-Region DynamoDB tables are billed using the following units:

• Write Request Units (WRUs) for on-demand capacity mode, where one WRU is charged for each
write up to 1KB

• Write Capacity Units (WCUs) for provisioned capacity mode, where one WCU provides one write
per second for up to 1 KB

When you create a global table by adding a replica table to an existing single-Region table, that
single-Region table becomes a replica table, which means the units used to bill for writes to the
table also change. Write operations to replica tables are billed using the following units:

• Replicated Write Request Units (rWRUs) for on-demand capacity mode, where one rWRU per
replica table is charged for each write up to 1KB

• Replicated Write Capacity Units (rWCUs) for provisioned capacity mode, where one WCU per
replica table provides one write per second for up to 1 KB

Updates to Global Secondary Indexes (GSIs) are billed using the same units as single-Region
DynamoDB tables, even if the base table for the GSI is a replica table. Update operations for GSIs
are billed using the following units:

Global tables billing API Version 2012-08-10 673

https://aws.amazon.com/dynamodb/sla/

Amazon DynamoDB Developer Guide

• Write Request Units (WRUs) for on-demand capacity mode, where one WRU is charged for each
write up to 1KB

• Write Capacity Units (WCUs) for provisioned capacity mode, where one WCU provides one write
per second for up to 1 KB

Replicated write units (rWCUs and rWRUs) are priced the same as single-Region write units (WCUs
and WRUs). Cross-Region data transfer fees apply for global tables as data is replicated across
Regions. Replicated write (rWCU or rWRU) charges are incurred in every Region containing a replica
table for the global table.

Read operations from single-Region tables and from replica tables use the following units::

• Read Request Units (RRUs) for on-demand capacity mode, where one RRU is charged for each
strongly consistent read up to 4KB

• Read Capacity Units (RCUs) for provisioned tables, where one RCU provides one strongly
consistent read per second for up to 4KB

Consistency modes and billing

The replicated write units (rWCUs and rWRUs) used to bill for write operations are identical for
both multi-Region strong consistency (MRSC) and multi-Region eventual consistency (MREC)
modes. Global tables using multi-Region strong consistency (MRSC) mode configured with a
witness don't incur replicated write unit costs (rWCUs and rWRUs), storage costs, or data transfer
costs for replication to the witness.

DynamoDB global tables billing example

Let's walk through a multi-day example scenario to see how global table write request billing works
in practice (note that this example only considers write requests, and does not include the table
restore and cross-Region data transfer charges that would be incurred in the example):

Day 1 - Single-Region table: You have a single-Region on-demand DynamoDB table named
Table_A in the us-west-2 Region. You write 100 1KB items to Table_A. For these single-Region
write operations, you are charged 1 write request unit (WRU) per 1KB written. Your day 1 charges
are:

• 100 WRUs in the us-west-2 Region for single-Region writes

Global tables billing API Version 2012-08-10 674

Amazon DynamoDB Developer Guide

The total request units charged on day 1: 100 WRUs.

Day 2 - Creating a global table: You create a global table by adding a replica to Table_A in the us-
east-2 Region. Table_A is now a global table with two replica tables; one in the us-west-2 Region,
and one in the us-east-2 Region. You write 150 1KB items to the replica table in the us-west-2
Region. Your day 2 charges are:

• 150 rWRUs in the us-west-2 Region for replicated writes

• 150 rWRUs in the us-east-2 Region for replicated writes

The total request units charged on day 2: 300 rWRUs.

Day 3 - Adding a Global Secondary Index: You add a global secondary index (GSI) to the replica
table in the us-east-2 Region that projects all attributes from the base (replica) table. The global
table automatically creates the GSI on the replica table in the us-west-2 Region for you. You write
200 new 1KB records to the replica table in the us-west-2 Region. Your day 3 charges are:

• • 200 rWRUs in the us-west-2 Region for replicated writes

• • 200 WRUs in the us-west-2 Region for GSI updates

• • 200 rWRUs in the us-east-2 Region for replicated writes

• • 200 WRUs in the us-east-2 Region for GSI updates

The total write request units charged on day 3: 400 WRUs and 400 rWRUs.

The total write unit charges for all three days are 500WRUs (100 WRU on day 1 + 400 WRUs on day
3) and 700 rWRUs (300 rWRUs on Day2 + 400 rWRUs on Day 3).

In summary, replica table write operations are billed in replicated write units in all Regions that
contain a replica table. If you have global secondary indexes, you are charged write units for
updates to GSIs in all regions that contain a GSI (which in a global table is all Regions that contain
a replica table).

DynamoDB global tables versions

There are two versions of DynamoDB global tables available: Global Tables version 2019.11.21
(Current) and Global tables version 2017.11.29 (Legacy). We recommend using Global Tables
version 2019.11.21 (Current), as it is easier to use, supported in more Regions, and lower cost for
most workloads compared to version 2017.11.29 (Legacy).

Global tables versions API Version 2012-08-10 675

Amazon DynamoDB Developer Guide

Determining the version of a global table

Determining the version using the Amazon CLI

Identifying a version 2019.11.21 (Current) global table replica

To determine if a table is a global tables version 2019.11.21 (Current) replica, invoke the
describe-table command for the table. If the output contains the GlobalTableVersion
attribute with a value of "2019.11.21", the table is a version 2019.11.21 (Current) global table
replica.

An example CLI command for describe-table:

aws dynamodb describe-table \
--table-name users \
--region us-east-2

The (abridged) output contains the GlobalTableVersion attribute with a value of "2019.11.21",
so this table is a version 2019.11.21 (Current) global table replica.

{
 "Table": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 },
 {
 "AttributeName": "name",
 "AttributeType": "S"
 }
],
 "TableName": "users",
 ...
 "GlobalTableVersion": "2019.11.21",
 "Replicas": [
 {
 "RegionName": "us-west-2",
 "ReplicaStatus": "ACTIVE",
 }
],
 ...
 }

Global tables versions API Version 2012-08-10 676

Amazon DynamoDB Developer Guide

}

Identifying a version 2017.11.29 (Legacy) global table replica

Global tables version 2017.11.29 (Legacy) uses a dedicated set of commands for global table
management. To determine if a table is a global tables version 2017.11.29 (Legacy) replica, invoke
the describe-global-table command for the table. If you receive a successful response,
the table is a version 2017.11.29 (Legacy) global table replica. If the describe-global-
table command returns a GlobalTableNotFoundException error, the table is not a version
2017.11.29 (Legacy) replica.

An example CLI command for describe-global-table:

aws dynamodb describe-global-table \
--table-name users \
--region us-east-2

The command returns a successful response, so this table is a version 2017.11.29 (Legacy) global
table replica.

{
 "GlobalTableDescription": {
 "ReplicationGroup": [
 {
 "RegionName": "us-west-2"
 },
 {
 "RegionName": "us-east-2"
 }
],
 "GlobalTableArn": "arn:aws:dynamodb::123456789012:global-table/users",
 "CreationDateTime": "2025-06-10T13:55:53.630000-04:00",
 "GlobalTableStatus": "ACTIVE",
 "GlobalTableName": "users"
 }
}

Determining the version using the DynamoDB Console

To identify the version of a global table replica, perform the following:

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/home.

Global tables versions API Version 2012-08-10 677

https://console.amazonaws.cn/dynamodb/home

Amazon DynamoDB Developer Guide

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose the table you want to identify the global tables version for.

4. Choose the Global Tables tab.

The Summary section displays the version of global tables in use.

Differences in behavior between Legacy and Current versions

The following list describes the differences in behavior between the Legacy and Current versions of
global tables.

• version 2019.11.21 (Current) consumes less write capacity for several DynamoDB operations
compared to version 2017.11.29 (Legacy), and therefore, is more cost-effective for most
customers. The differences for these DynamoDB operations are as follows:

• Invoking PutItem for a 1KB item in a Region and replicating to other Regions requires 2 rWRUs
per region for 2017.11.29 (Legacy), but only 1 rWRU for 2019.11.21 (Current).

• Invoking UpdateItem for a 1KB item requires 2 rWRUs in the source Region and 1 rWRU per
destination Region for 2017.11.29 (Legacy), but only 1 rWRU for both source and destination
Regions for 2019.11.21 (Current).

• Invoking DeleteItem for a 1KB item requires 1 rWRU in the source Region and 2 rWRUs per
destination Region for 2017.11.29 (Legacy), but only 1 rWRU for both source or destination
Region for 2019.11.21 (Current).

The following table shows the rWRU consumption of 2017.11.29 (Legacy) and 2019.11.21
(Current) tables for a 1KB item in two Regions.

Operation 2017.11.29 (Legacy) 2019.11.21
(Current)

Savings

PutItem 4 rWRUs 2 rWRUs 50%

UpdateItem 3 rWRUs 2 rWRUs 33%

DeleteItem 3 rWRUs 2 rWRUs 33%

• version 2017.11.29 (Legacy) is available in only 11 Amazon Web Services Regions. However,
version 2019.11.21 (Current) is available in all the Amazon Web Services Regions.

Global tables versions API Version 2012-08-10 678

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

• You create version 2017.11.29 (Legacy) global tables by first creating a set of empty Regional
tables, then invoking the CreateGlobalTable API to form the global table. You create version
2019.11.21 (Current) global tables by invoking the UpdateTable API to add a replica to an
existing Regional table.

• version 2017.11.29 (Legacy) requires you to empty all replicas in the table before adding a
replica in a new Region (including during creation). version 2019.11.21 (Current) supports you to
add and remove replicas to Regions on a table that already contains data.

• version 2017.11.29 (Legacy) uses the following dedicated set of control plane APIs for managing
replicas:

• CreateGlobalTable

• DescribeGlobalTable

• DescribeGlobalTableSettings

• ListGlobalTables

• UpdateGlobalTable

• UpdateGlobalTableSettings

version 2019.11.21 (Current) uses the DescribeTable and UpdateTable APIs to manage replicas.

• version 2017.11.29 (Legacy) publishes two DynamoDB Streams records for each write. version
2019.11.21 (Current) only publishes one DynamoDB Streams record for each write.

• version 2017.11.29 (Legacy) populates and updates the aws:rep:deleting,
aws:rep:updateregion, and aws:rep:updatetime attributes. version 2019.11.21 (Current)
does not populate or update these attributes.

• version 2017.11.29 (Legacy) does not synchronize Using time to live (TTL) in DynamoDB settings
across replicas. version 2019.11.21 (Current) synchronizes TTL settings across replicas.

• version 2017.11.29 (Legacy) does not replicate TTL deletes to other replicas. version 2019.11.21
(Current) replicates TTL deletes to all replicas.

• version 2017.11.29 (Legacy) does not synchronize auto scaling settings across replicas. version
2019.11.21 (Current) synchronizes auto scaling settings across replicas.

• version 2017.11.29 (Legacy) does not synchronize global secondary index (GSI) settings across
replicas. version 2019.11.21 (Current) synchronizes GSI settings across replicas.

• version 2017.11.29 (Legacy) does not synchronize encryption at rest settings across replicas.
version 2019.11.21 (Current) synchronizes encryption at rest settings across replicas.

• version 2017.11.29 (Legacy) publishes the PendingReplicationCount metric. version
2019.11.21 (Current) does not publish this metric.

Global tables versions API Version 2012-08-10 679

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeGlobalTableSettings.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListGlobalTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTableSettings.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

Upgrading to the current version

Required permissions for global tables upgrade

To upgrade to version 2019.11.21 (Current), you must have
dynamodb:UpdateGlobalTableversion permissions in all Regions with replicas. These
permissions are required in addition to the permissions needed for accessing the DynamoDB
console and viewing tables.

The following IAM policy grants permissions to upgrade any global table to version 2019.11.21
(Current).

{
 "version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:UpdateGlobalTableversion",
 "Resource": "*"
 }
]
}

The following IAM policy grants permissions to upgrade only the Music global table with replicas
in two Regions to version 2019.11.21 (Current).

{
 "version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:UpdateGlobalTableversion",
 "Resource": [
 "arn:aws-cn:dynamodb::123456789012:global-table/Music",
 "arn:aws-cn:dynamodb:ap-southeast-1:123456789012:table/Music",
 "arn:aws-cn:dynamodb:us-west-2:123456789012:table/Music"
]
 }
]
}

Global tables versions API Version 2012-08-10 680

Amazon DynamoDB Developer Guide

What to expect during the upgrade

• All global table replicas will continue to process read and write traffic while upgrading.

• The upgrade process requires between a few minutes to several hours depending on the table
size and number of replicas.

• During the upgrade process, the value of TableStatus will change from ACTIVE to UPDATING.
You can view the status of the table by invoking the DescribeTable API, or with the Tables view in
the DynamoDB console.

• Auto scaling will not adjust the provisioned capacity settings for a global table while the table
is being upgraded. We strongly recommend that you set the table to on-demand capacity mode
during the upgrade.

• If you choose to use provisioned capacity mode with auto scaling during the upgrade, you must
increase the minimum read and write throughput on your policies to accommodate any expected
increases in traffic to avoid throttling during the upgrade.

• The ReplicationLatency metric can temporarily report latency spikes or stop reporting
metric data during the upgrade process. See, the section called “ReplicationLatency”, for more
information.

• When the upgrade process is complete, your table status will change to ACTIVE.

DynamoDB Streams behavior before, during, and after upgrade

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

Timestamp
population
happens using
UpdateItem.

Timestamp
population
happens using
PutItem.

No customer
visible
timestamp is
generated.

Put or Update Source

Two Streams
records are
generated. The
first record
contains the
customer
written attribute

Two Streams
records are
generated. The
first record
contains the
customer
written attribute

A single Streams
record is
generated
containing the
customer-writen
attributes.

Global tables versions API Version 2012-08-10 681

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TableDescription.html#DDB-Type-TableDescription-TableStatus
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

s. The second
record contains
the aws:rep:*

 attributes.

s. The second
record contains
the aws:rep:*

 attributes.

Two rWCUs are
consumed for
each customer
write.

Two rWCUs are
consumed for
each customer
write.

One rWCU is
consumed for
each customer
write.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency

 metric is
published in
CloudWatch.

Replication
happens using
PutItem.

Replication
happens using
PutItem.

Replication
happens using
PutItem.

Destination

A single Streams
record is
generated,
which contains
both the
customer-
written attribute
s and the
aws:rep:*
attributes.

A single Streams
record is
generated,
which contains
both the
customer-
written attribute
s and the
aws:rep:*
attributes.

A single Streams
record is
generated,
which contains
the customer-
written attribute
s only and no
replication
attributes.

Global tables versions API Version 2012-08-10 682

Amazon DynamoDB Developer Guide

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

One rWCU is
consumed if the
item exists in
the destinati
on Region.
Two rWCUs are
consumed if the
item doesn't
exist in the
destination
Region.

One rWCU is
consumed if the
item exists in
the destinati
on Region.
Two rWCUs are
consumed if the
item doesn't
exist in the
destination
Region.

One rWCU is
consumed for
each customer
write.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency

 metric is
published in
CloudWatch.

Delete Source Delete any item
with smaller
timestamp using
DeleteItem.

Delete any item
with smaller
timestamp using
DeleteItem.

Delete any item
with smaller
timestamp using
DeleteItem.

Global tables versions API Version 2012-08-10 683

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

A single Streams
record is
generated,
which contains
both the
customer-
written attribute
s and the
aws:rep:*
attributes.

A single Streams
record is
generated,
which contains
both the
customer-
written attribute
s and the
aws:rep:*
attributes.

A single Streams
record is
generated,
which contains
the customer-
written attribute
s.

One rWCU is
consumed for
each customer
delete.

One rWCU is
consumed for
each customer
delete.

One rWCU is
consumed for
each customer
delete.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency

 metric is
published in
CloudWatch.

Global tables versions API Version 2012-08-10 684

Amazon DynamoDB Developer Guide

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

Two-phase
deletes take
place:

• In Phase 1,
UpdateIte
m sets the
deleting flag.

• In Phase 2,
DeleteItem
deletes the
item.

Deletes the item
using DeleteIte
m.

Deletes the item
using DeleteIte
m.

Two Streams
records are
generated. The
first record
contains the
change to the
aws:rep:d
eleting field.
The second
record contains
the customer-
written attribute
s and the
aws:rep:*
attributes.

A single Stream
record is
generated,
which contains
the customer-
written attribute
s.

A single Stream
record is
generated,
which contains
the customer-
written attribute
s.

Destination

Two rWCUs are
consumed for
each customer
delete.

One rWCU is
consumed for
each customer
delete.

One rWCU is
consumed for
each customer
delete.

Global tables versions API Version 2012-08-10 685

Amazon DynamoDB Developer Guide

Operation Replica Region Behavior before
upgrade

Behavior during
upgrade

Behavior after
upgrade

Replicati
onLatency
and PendingRe
plication
Count metrics
are published in
CloudWatch.

Replicati
onLatency

 metric is
published in
CloudWatch.

Replicati
onLatency

 metric is
published in
CloudWatch.

Upgrading to version 2019.11.21 (Current)

Perform the following steps to upgrade your version of DynamoDB global tables using the Amazon
Web Services Management Console.

To upgrade global tables to version 2019.11.21 (Current)

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/home.

2. In the navigation pane on the left side of the console, choose Tables, and then select the
global table that you want to upgrade to version 2019.11.21 (Current).

3. Choose the Global Tables tab.

4. Choose Update version.

5. Read and agree to the new requirements, and then choose Update version.

Global tables versions API Version 2012-08-10 686

https://console.amazonaws.cn/dynamodb/home

Amazon DynamoDB Developer Guide

6. After the upgrade process is complete, the global tables version that appears on the console
changes to 2019.11.21.

Best practices for global tables

The following sections describe best practices for deploying and using global tables.

Version

There are two versions of DynamoDB global tables available: version 2019.11.21 (Current) and
version 2017.11.29 (Legacy). You should use version 2019.11.21 (Current) whenever possible.

Deletion protection

You should enable deletion protection on global table replicas you want protected against
accidental deletion. You must enable deletion protection on each replica.

Using Amazon CloudFormation

Amazon CloudFormation does not currently support the coordination of multi-Region resources
like global tables across stacks. If you define each replica of a global table in a separate Regional
stack, you will encounter errors due to detected drift across stacks when performing replica
updates. To avoid this issue, you should choose one Region as the reference Region for deploying
your global tables and define all of your global table's replicas in that Region's stack.

Important

You cannot convert a resource of type AWS::DynamoDB::Table into a resource of type
AWS::DynamoDB::GlobalTable by changing its type in your template. Attempting to
convert a single-Region table to a global table by changing its CloudFormation resource
type may result in the deletion of your DynamoDB table.

You can use the AWS::DynamoDB::GlobalTable resource to create a table in a single Region.
This table will be deployed like any other single-Region table. If you later update the stack to add
other Regions to a resource, replicas will be added to the table and it will safely be converted to a
global table.

Global tables best practices API Version 2012-08-10 687

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/globaltables.V1.html

Amazon DynamoDB Developer Guide

If you have an existing AWS::DynamoDB::Table resource you want to convert to a
AWS::DynamoDB::GlobalTable resource, the recommended steps to convert the resource type
are:

1. Set the AWS::DynamoDB::Table deletion policy to retain.

2. Remove the table from the stack definition.

3. Add replicas to the single-Region table in the Amazon console, converting it to a global table.

4. Import the new global table as a new AWS::DynamoDB::GlobalTable resource to the stack.

Backups and Point-in-Time Recovery

Enabling automated backups and Point-in-Time Recovery (PITR) for one replica in a global table
may be sufficient to meet your disaster recovery objectives. Replica backups created with Amazon-
Backup can be automatically replicated across Regions for greater resilience. Consider your disaster
recovery plan goals in the context of multi-Region high availability when choosing your backup and
PITR enablement strategy.

Designing for multi-Region high availability

For prescriptive guidance on deploying global tables, see Best Practices for DynamoDB global table
design.

Working with items and attributes in DynamoDB

In Amazon DynamoDB, an item is a collection of attributes. Each attribute has a name and a value.
An attribute value can be a scalar, a set, or a document type. For more information, see Amazon
DynamoDB: How it works.

DynamoDB provides four operations for basic create, read, update, and delete (CRUD) functionality.
All these operations are atomic.

• PutItem — Create an item.

• GetItem — Read an item.

• UpdateItem — Update an item.

• DeleteItem — Delete an item.

Working with items API Version 2012-08-10 688

Amazon DynamoDB Developer Guide

Each of these operations requires that you specify the primary key of the item that you want to
work with. For example, to read an item using GetItem, you must specify the partition key and
sort key (if applicable) for that item.

In addition to the four basic CRUD operations, DynamoDB also provides the following:

• BatchGetItem — Read up to 100 items from one or more tables.

• BatchWriteItem — Create or delete up to 25 items in one or more tables.

These batch operations combine multiple CRUD operations into a single request. In addition, the
batch operations read and write items in parallel to minimize response latencies.

This section describes how to use these operations and includes related topics, such as conditional
updates and atomic counters. This section also includes example code that uses the Amazon SDKs.

Topics

• DynamoDB item sizes and formats

• Reading an item

• Writing an item

• Return values

• Batch operations

• Atomic counters

• Conditional writes

• Using expressions in DynamoDB

• Using time to live (TTL) in DynamoDB

• Querying tables in DynamoDB

• Scanning tables in DynamoDB

• PartiQL - a SQL-compatible query language for Amazon DynamoDB

• Working with items: Java

• Working with items: .NET

Working with items API Version 2012-08-10 689

Amazon DynamoDB Developer Guide

DynamoDB item sizes and formats

DynamoDB tables are schemaless, except for the primary key, so the items in a table can all have
different attributes, sizes, and data types.

The total size of an item is the sum of the lengths of its attribute names and values, plus any
applicable overhead as described below. You can use the following guidelines to estimate attribute
sizes:

• Strings are Unicode with UTF-8 binary encoding. The size of a string is (number of UTF-8-encoded
bytes of attribute name) + (number of UTF-8-encoded bytes).

• Numbers are variable length, with up to 38 significant digits. Leading and trailing zeroes are
trimmed. The size of a number is approximately (number of UTF-8-encoded bytes of attribute
name) + (1 byte per two significant digits) + (1 byte).

• A binary value must be encoded in base64 format before it can be sent to DynamoDB, but the
value's raw byte length is used for calculating size. The size of a binary attribute is (number of
UTF-8-encoded bytes of attribute name) + (number of raw bytes).

• The size of a null attribute or a Boolean attribute is (number of UTF-8-encoded bytes of attribute
name) + (1 byte).

• An attribute of type List or Map requires 3 bytes of overhead, regardless of its contents. The
size of a List or Map is (number of UTF-8-encoded bytes of attribute name) + sum (size of nested
elements) + (3 bytes) . The size of an empty List or Map is (number of UTF-8-encoded bytes of
attribute name) + (3 bytes).

• Each List or Map element also requires 1 byte of overhead.

Note

We recommend that you choose shorter attribute names rather than long ones. This helps
you reduce the amount of storage required, but also can lower the amount of RCU/WCUs
you use.

For storage billing purposes, each item includes a per-item storage overhead that depends on the
features you have enabled.

• All items in DynamoDB require 100 bytes of storage overhead for indexing.

Item sizes and formats API Version 2012-08-10 690

Amazon DynamoDB Developer Guide

• Some DynamoDB features (global tables, transactions, change data capture for Kinesis Data
Streams with DynamoDB) require additional storage overhead to account for system-created
attributes resulting from enabling those features. For example, global tables requires an
additional 48 bytes of storage overhead.

Reading an item

To read an item from a DynamoDB table, use the GetItem operation. You must provide the name
of the table, along with the primary key of the item you want.

Example

The following Amazon CLI example shows how to read an item from the ProductCatalog table.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}'

Note

With GetItem, you must specify the entire primary key, not just part of it. For example, if a
table has a composite primary key (partition key and sort key), you must supply a value for
the partition key and a value for the sort key.

A GetItem request performs an eventually consistent read by default. You can use the
ConsistentRead parameter to request a strongly consistent read instead. (This consumes
additional read capacity units, but it returns the most up-to-date version of the item.)

GetItem returns all of the item's attributes. You can use a projection expression to return only
some of the attributes. For more information, see Using projection expressions in DynamoDB.

To return the number of read capacity units consumed by GetItem, set the
ReturnConsumedCapacity parameter to TOTAL.

Example

The following Amazon Command Line Interface (Amazon CLI) example shows some of the optional
GetItem parameters.

Reading an item API Version 2012-08-10 691

Amazon DynamoDB Developer Guide

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}' \
 --consistent-read \
 --projection-expression "Description, Price, RelatedItems" \
 --return-consumed-capacity TOTAL

Writing an item

To create, update, or delete an item in a DynamoDB table, use one of the following operations:

• PutItem

• UpdateItem

• DeleteItem

For each of these operations, you must specify the entire primary key, not just part of it. For
example, if a table has a composite primary key (partition key and sort key), you must provide a
value for the partition key and a value for the sort key.

To return the number of write capacity units consumed by any of these operations, set the
ReturnConsumedCapacity parameter to one of the following:

• TOTAL — Returns the total number of write capacity units consumed.

• INDEXES — Returns the total number of write capacity units consumed, with subtotals for the
table and any secondary indexes that were affected by the operation.

• NONE — No write capacity details are returned. (This is the default.)

PutItem

PutItem creates a new item. If an item with the same key already exists in the table, it is replaced
with the new item.

Example

Write a new item to the Thread table. The primary key for Thread consists of ForumName
(partition key) and Subject (sort key).

aws dynamodb put-item \

Writing an item API Version 2012-08-10 692

Amazon DynamoDB Developer Guide

 --table-name Thread \
 --item file://item.json

The arguments for --item are stored in the item.json file.

{
 "ForumName": {"S": "Amazon DynamoDB"},
 "Subject": {"S": "New discussion thread"},
 "Message": {"S": "First post in this thread"},
 "LastPostedBy": {"S": "fred@example.com"},
 "LastPostDateTime": {"S": "201603190422"}
}

UpdateItem

If an item with the specified key does not exist, UpdateItem creates a new item. Otherwise, it
modifies an existing item's attributes.

You use an update expression to specify the attributes that you want to modify and their new
values. For more information, see Using update expressions in DynamoDB.

Within the update expression, you use expression attribute values as placeholders for the actual
values. For more information, see Using expression attribute values in DynamoDB.

Example

Modify various attributes in the Thread item. The optional ReturnValues parameter shows the
item as it appears after the update. For more information, see Return values.

aws dynamodb update-item \
 --table-name Thread \
 --key file://key.json \
 --update-expression "SET Answered = :zero, Replies = :zero, LastPostedBy
 = :lastpostedby" \
 --expression-attribute-values file://expression-attribute-values.json \
 --return-values ALL_NEW

The arguments for --key are stored in the key.json file.

{

Writing an item API Version 2012-08-10 693

Amazon DynamoDB Developer Guide

 "ForumName": {"S": "Amazon DynamoDB"},
 "Subject": {"S": "New discussion thread"}
}

The arguments for --expression-attribute-values are stored in the expression-
attribute-values.json file.

{
 ":zero": {"N":"0"},
 ":lastpostedby": {"S":"barney@example.com"}
}

DeleteItem

DeleteItem deletes the item with the specified key.

Example

The following Amazon CLI example shows how to delete the Thread item.

aws dynamodb delete-item \
 --table-name Thread \
 --key file://key.json

Return values

In some cases, you might want DynamoDB to return certain attribute values as they appeared
before or after you modified them. The PutItem, UpdateItem, and DeleteItem operations have
a ReturnValues parameter that you can use to return the attribute values before or after they are
modified.

The default value for ReturnValues is NONE, meaning that DynamoDB does not return any
information about attributes that were modified.

The following are the other valid settings for ReturnValues, organized by DynamoDB API
operation.

PutItem

• ReturnValues: ALL_OLD

Return values API Version 2012-08-10 694

Amazon DynamoDB Developer Guide

• If you overwrite an existing item, ALL_OLD returns the entire item as it appeared before the
overwrite.

• If you write a nonexistent item, ALL_OLD has no effect.

UpdateItem

The most common usage for UpdateItem is to update an existing item. However, UpdateItem
actually performs an upsert, meaning that it automatically creates the item if it doesn't already
exist.

• ReturnValues: ALL_OLD

• If you update an existing item, ALL_OLD returns the entire item as it appeared before the
update.

• If you update a nonexistent item (upsert), ALL_OLD has no effect.

• ReturnValues: ALL_NEW

• If you update an existing item, ALL_NEW returns the entire item as it appeared after the
update.

• If you update a nonexistent item (upsert), ALL_NEW returns the entire item.

• ReturnValues: UPDATED_OLD

• If you update an existing item, UPDATED_OLD returns only the updated attributes, as they
appeared before the update.

• If you update a nonexistent item (upsert), UPDATED_OLD has no effect.

• ReturnValues: UPDATED_NEW

• If you update an existing item, UPDATED_NEW returns only the affected attributes, as they
appeared after the update.

• If you update a nonexistent item (upsert), UPDATED_NEW returns only the updated attributes,
as they appear after the update.

DeleteItem

• ReturnValues: ALL_OLD

• If you delete an existing item, ALL_OLD returns the entire item as it appeared before you
deleted it.

Return values API Version 2012-08-10 695

Amazon DynamoDB Developer Guide

• If you delete a nonexistent item, ALL_OLD doesn't return any data.

Batch operations

For applications that need to read or write multiple items, DynamoDB provides the BatchGetItem
and BatchWriteItem operations. Using these operations can reduce the number of network
round trips from your application to DynamoDB. In addition, DynamoDB performs the individual
read or write operations in parallel. Your applications benefit from this parallelism without having
to manage concurrency or threading.

The batch operations are essentially wrappers around multiple read or write requests. For example,
if a BatchGetItem request contains five items, DynamoDB performs five GetItem operations on
your behalf. Similarly, if a BatchWriteItem request contains two put requests and four delete
requests, DynamoDB performs two PutItem and four DeleteItem requests.

In general, a batch operation does not fail unless all the requests in the batch fail. For example,
suppose that you perform a BatchGetItem operation, but one of the individual GetItem requests
in the batch fails. In this case, BatchGetItem returns the keys and data from the GetItem request
that failed. The other GetItem requests in the batch are not affected.

BatchGetItem

A single BatchGetItem operation can contain up to 100 individual GetItem requests and can
retrieve up to 16 MB of data. In addition, a BatchGetItem operation can retrieve items from
multiple tables.

Example

Retrieve two items from the Thread table, using a projection expression to return only some of the
attributes.

aws dynamodb batch-get-item \
 --request-items file://request-items.json

The arguments for --request-items are stored in the request-items.json file.

{
 "Thread": {
 "Keys": [

Batch operations API Version 2012-08-10 696

Amazon DynamoDB Developer Guide

 {
 "ForumName":{"S": "Amazon DynamoDB"},
 "Subject":{"S": "DynamoDB Thread 1"}
 },
 {
 "ForumName":{"S": "Amazon S3"},
 "Subject":{"S": "S3 Thread 1"}
 }
],
 "ProjectionExpression":"ForumName, Subject, LastPostedDateTime, Replies"
 }
}

BatchWriteItem

The BatchWriteItem operation can contain up to 25 individual PutItem and DeleteItem
requests and can write up to 16 MB of data. (The maximum size of an individual item is 400 KB.) In
addition, a BatchWriteItem operation can put or delete items in multiple tables.

Note

BatchWriteItem does not support UpdateItem requests.

Example

Write two items to the ProductCatalog table.

aws dynamodb batch-write-item \
 --request-items file://request-items.json

The arguments for --request-items are stored in the request-items.json file.

{
 "ProductCatalog": [
 {
 "PutRequest": {
 "Item": {
 "Id": { "N": "601" },
 "Description": { "S": "Snowboard" },
 "QuantityOnHand": { "N": "5" },

Batch operations API Version 2012-08-10 697

Amazon DynamoDB Developer Guide

 "Price": { "N": "100" }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": { "N": "602" },
 "Description": { "S": "Snow shovel" }
 }
 }
 }
]
}

Atomic counters

You can use the UpdateItem operation to implement an atomic counter—a numeric attribute that
is incremented, unconditionally, without interfering with other write requests. (All write requests
are applied in the order in which they were received.) With an atomic counter, the updates are
not idempotent. In other words, the numeric value increments or decrements each time you call
UpdateItem. If the increment value used to update the atomic counter is positive, then it can
cause overcounting. If the increment value is negative, then it can cause undercounting.

You might use an atomic counter to track the number of visitors to a website. In this case, your
application would increment a numeric value, regardless of its current value. If an UpdateItem
operation fails, the application could simply retry the operation. This would risk updating the
counter twice, but you could probably tolerate a slight overcounting or undercounting of website
visitors.

An atomic counter would not be appropriate where overcounting or undercounting can't be
tolerated (for example, in a banking application). In this case, it is safer to use a conditional update
instead of an atomic counter.

For more information, see Incrementing and decrementing numeric attributes.

Example

The following Amazon CLI example increments the Price of a product by 5. For this example, the
item was known to exist before the counter is updated. Because UpdateItem is not idempotent,
the Price increases every time you run this code.

Atomic counters API Version 2012-08-10 698

Amazon DynamoDB Developer Guide

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id": { "N": "601" }}' \
 --update-expression "SET Price = Price + :incr" \
 --expression-attribute-values '{":incr":{"N":"5"}}' \
 --return-values UPDATED_NEW

Conditional writes

By default, the DynamoDB write operations (PutItem, DeleteItem) are unconditional: Each
operation overwrites an existing item that has the specified primary key.

DynamoDB optionally supports conditional writes for these operations. A conditional write
succeeds only if the item attributes meet one or more expected conditions. Otherwise, it returns an
error.

Conditional writes check their conditions against the most recently updated version of the item.
Note that if the item did not previously exist or if the most recent successful operation against that
item was a delete, then the conditional write will find no previous item.

Conditional writes are helpful in many situations. For example, you might want a PutItem
operation to succeed only if there is not already an item with the same primary key. Or you could
prevent an UpdateItem operation from modifying an item if one of its attributes has a certain
value.

Conditional writes are helpful in cases where multiple users attempt to modify the same item.
Consider the following diagram, in which two users (Alice and Bob) are working with the same item
from a DynamoDB table.

Conditional writes API Version 2012-08-10 699

Amazon DynamoDB Developer Guide

Suppose that Alice uses the Amazon CLI to update the Price attribute to 8.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newval" \

Conditional writes API Version 2012-08-10 700

Amazon DynamoDB Developer Guide

 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the file expression-
attribute-values.json:

{
 ":newval":{"N":"8"}
}

Now suppose that Bob issues a similar UpdateItem request later, but changes the Price to 12.
For Bob, the --expression-attribute-values parameter looks like the following.

{
 ":newval":{"N":"12"}
}

Bob's request succeeds, but Alice's earlier update is lost.

To request a conditional PutItem, DeleteItem, or UpdateItem, you specify a condition
expression. A condition expression is a string containing attribute names, conditional operators, and
built-in functions. The entire expression must evaluate to true. Otherwise, the operation fails.

Now consider the following diagram, showing how conditional writes would prevent Alice's update
from being overwritten.

Conditional writes API Version 2012-08-10 701

Amazon DynamoDB Developer Guide

Alice first tries to update Price to 8, but only if the current Price is 10.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"1"}}' \
 --update-expression "SET Price = :newval" \
 --condition-expression "Price = :currval" \

Conditional writes API Version 2012-08-10 702

Amazon DynamoDB Developer Guide

 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the expression-
attribute-values.json file.

{
 ":newval":{"N":"8"},
 ":currval":{"N":"10"}
}

Alice's update succeeds because the condition evaluates to true.

Next, Bob attempts to update the Price to 12, but only if the current Price is 10. For Bob, the --
expression-attribute-values parameter looks like the following.

{
 ":newval":{"N":"12"},
 ":currval":{"N":"10"}
}

Because Alice has previously changed the Price to 8, the condition expression evaluates to false,
and Bob's update fails.

For more information, see DynamoDB condition expression CLI example.

Conditional write idempotence

Conditional writes can be idempotent if the conditional check is on the same attribute that is being
updated. This means that DynamoDB performs a given write request only if certain attribute values
in the item match what you expect them to be at the time of the request.

For example, suppose that you issue an UpdateItem request to increase the Price of an item by
3, but only if the Price is currently 20. After you send the request, but before you get the results
back, a network error occurs, and you don't know whether the request was successful. Because
this conditional write is idempotent, you can retry the same UpdateItem request, and DynamoDB
updates the item only if the Price is currently 20.

Capacity units consumed by conditional writes

If a ConditionExpression evaluates to false during a conditional write, DynamoDB still
consumes write capacity from the table. The amount consumed is dependent on the size of the

Conditional writes API Version 2012-08-10 703

Amazon DynamoDB Developer Guide

existing item (or a minimum of 1). For example, if an existing item is 300kb and the new item you
are trying to create or update is 310kb, the write capacity units consumed will be the 300 if the
condition fails, and 310 if the condition succeeds. If this is a new item (no existing item), then the
write capacity units consumed will be 1 if the condition fails and 310 if the condition succeeds.

Note

Write operations consume write capacity units only. They never consume read capacity
units.

A failed conditional write returns a ConditionalCheckFailedException. When this occurs, you
don't receive any information in the response about the write capacity that was consumed. .

To return the number of write capacity units consumed during a conditional write, you use the
ReturnConsumedCapacity parameter:

• TOTAL — Returns the total number of write capacity units consumed.

• INDEXES — Returns the total number of write capacity units consumed, with subtotals for the
table and any secondary indexes that were affected by the operation.

• NONE — No write capacity details are returned. (This is the default.)

Note

Unlike a global secondary index, a local secondary index shares its provisioned throughput
capacity with its table. Read and write activity on a local secondary index consumes
provisioned throughput capacity from the table.

Using expressions in DynamoDB

In Amazon DynamoDB, you can use expressions to specify which attributes to read from an item,
write data when a condition is met, specify how to update an item, define queries and filter the
results of a query.

This table describes the basic expression grammar and the available kinds of expressions.

Using expressions API Version 2012-08-10 704

Amazon DynamoDB Developer Guide

Expression type Description

Projection expression A projection expression identifies the attribute
s that you want to retrieve from an item when
you use operations such as GetItem, Query, or
Scan.

Condition expression A condition expression determines which
items should be modified when you use
the PutItem, UpdateItem, and DeleteItem
operations.

Update expression An update expression specifies how UpdateIte
m will modify the attributes of an item— for
example, setting a scalar value or removing
elements from a list or a map.

Key condition expression A key condition expression determines which
items a query will read from a table or index.

Filter expression A filter expression determines which items
among the Query results should be returned
to you. All the other results are discarded.

For information about expression syntax and more detailed information about each type of
expression, see the following sections.

Topics

• Referring to item attributes when using expressions in DynamoDB

• Expression attribute names (aliases) in DynamoDB

• Using expression attribute values in DynamoDB

• Using projection expressions in DynamoDB

• Using update expressions in DynamoDB

• Condition and filter expressions, operators, and functions in DynamoDB

• DynamoDB condition expression CLI example

Using expressions API Version 2012-08-10 705

Amazon DynamoDB Developer Guide

Note

For backward compatibility, DynamoDB also supports conditional parameters that do not
use expressions. For more information, see Legacy DynamoDB conditional parameters.
New applications should use expressions rather than the legacy parameters.

Referring to item attributes when using expressions in DynamoDB

This section describes how to refer to item attributes in an expression in Amazon DynamoDB. You
can work with any attribute, even if it is deeply nested within multiple lists and maps.

Topics

• Top-level attributes

• Nested attributes

• Document paths

A Sample Item: ProductCatalog

The examples on this page use the following sample item in the ProductCatalog table. (This
table is described in Example tables and data for use in DynamoDB.)

{
 "Id": 123,
 "Title": "Bicycle 123",
 "Description": "123 description",
 "BicycleType": "Hybrid",
 "Brand": "Brand-Company C",
 "Price": 500,
 "Color": ["Red", "Black"],
 "ProductCategory": "Bicycle",
 "InStock": true,
 "QuantityOnHand": null,
 "RelatedItems": [
 341,
 472,
 649
],
 "Pictures": {
 "FrontView": "http://example.com/products/123_front.jpg",

Using expressions API Version 2012-08-10 706

Amazon DynamoDB Developer Guide

 "RearView": "http://example.com/products/123_rear.jpg",
 "SideView": "http://example.com/products/123_left_side.jpg"
 },
 "ProductReviews": {
 "FiveStar": [
 "Excellent! Can't recommend it highly enough! Buy it!",
 "Do yourself a favor and buy this."
],
 "OneStar": [
 "Terrible product! Do not buy this."
]
 },
 "Comment": "This product sells out quickly during the summer",
 "Safety.Warning": "Always wear a helmet"
 }

Note the following:

• The partition key value (Id) is 123. There is no sort key.

• Most of the attributes have scalar data types, such as String, Number, Boolean, and Null.

• One attribute (Color) is a String Set.

• The following attributes are document data types:

• A list of RelatedItems. Each element is an Id for a related product.

• A map of Pictures. Each element is a short description of a picture, along with a URL for the
corresponding image file.

• A map of ProductReviews. Each element represents a rating and a list of reviews
corresponding to that rating. Initially, this map is populated with five-star and one-star
reviews.

Top-level attributes

An attribute is said to be top level if it is not embedded within another attribute. For the
ProductCatalog item, the top-level attributes are as follows:

• Id

• Title

• Description

• BicycleType

Using expressions API Version 2012-08-10 707

Amazon DynamoDB Developer Guide

• Brand

• Price

• Color

• ProductCategory

• InStock

• QuantityOnHand

• RelatedItems

• Pictures

• ProductReviews

• Comment

• Safety.Warning

All of these top-level attributes are scalars, except for Color (list), RelatedItems (list), Pictures
(map), and ProductReviews (map).

Nested attributes

An attribute is said to be nested if it is embedded within another attribute. To access a nested
attribute, you use dereference operators:

• [n] — for list elements

• . (dot) — for map elements

Accessing list elements

The dereference operator for a list element is [N], where n is the element number. List elements
are zero-based, so [0] represents the first element in the list, [1] represents the second, and so on.
Here are some examples:

• MyList[0]

• AnotherList[12]

• ThisList[5][11]

The element ThisList[5] is itself a nested list. Therefore, ThisList[5][11] refers to the 12th
element in that list.

Using expressions API Version 2012-08-10 708

Amazon DynamoDB Developer Guide

The number within the square brackets must be a non-negative integer. Therefore, the following
expressions are not valid:

• MyList[-1]

• MyList[0.4]

Accessing map elements

The dereference operator for a map element is . (a dot). Use a dot as a separator between elements
in a map:

• MyMap.nestedField

• MyMap.nestedField.deeplyNestedField

Document paths

In an expression, you use a document path to tell DynamoDB where to find an attribute. For a
top-level attribute, the document path is simply the attribute name. For a nested attribute, you
construct the document path using dereference operators.

The following are some examples of document paths. (Refer to the item shown in Referring to item
attributes when using expressions in DynamoDB.)

• A top-level scalar attribute.

Description

• A top-level list attribute. (This returns the entire list, not just some of the elements.)

RelatedItems

• The third element from the RelatedItems list. (Remember that list elements are zero-based.)

RelatedItems[2]

• The front-view picture of the product.

Pictures.FrontView

• All of the five-star reviews.

ProductReviews.FiveStar

Using expressions API Version 2012-08-10 709

Amazon DynamoDB Developer Guide

• The first of the five-star reviews.

ProductReviews.FiveStar[0]

Note

The maximum depth for a document path is 32. Therefore, the number of dereferences
operators in a path cannot exceed this limit.

You can use any attribute name in a document path as long as they meet these requirements:

• The first character is a-z or A-Z and or 0-9

• The second character (if present) is a-z, A-Z

Note

If an attribute name does not meet this requirement, you must define an expression
attribute name as a placeholder.

For more information, see Expression attribute names (aliases) in DynamoDB.

Expression attribute names (aliases) in DynamoDB

An expression attribute name is an alias (or placeholder) that you use in an Amazon DynamoDB
expression as an alternative to an actual attribute name. An expression attribute name must begin
with a pound sign (#) and be followed by one or more alphanumeric characters. The underscore (_)
character is also allowed.

This section describes several situations in which you must use expression attribute names.

Note

The examples in this section use the Amazon Command Line Interface (Amazon CLI).

Topics

Using expressions API Version 2012-08-10 710

Amazon DynamoDB Developer Guide

• Reserved words

• Attribute names containing special characters

• Nested attributes

• Repeatedly referencing attribute names

Reserved words

Sometimes you might need to write an expression containing an attribute name that conflicts
with a DynamoDB reserved word. (For a complete list of reserved words, see Reserved words in
DynamoDB.)

For example, the following Amazon CLI example would fail because COMMENT is a reserved word.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "Comment"

To work around this, you can replace Comment with an expression attribute name such as #c. The #
(pound sign) is required and indicates that this is a placeholder for an attribute name. The Amazon
CLI example would now look like the following.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#c" \
 --expression-attribute-names '{"#c":"Comment"}'

Note

If an attribute name begins with a number, contains a space or contains a reserved
word, you must use an expression attribute name to replace that attribute's name in the
expression.

Attribute names containing special characters

In an expression, a dot (".") is interpreted as a separator character in a document path. However,
DynamoDB also allows you to use a dot character and other special characters, such as a hyphen

Using expressions API Version 2012-08-10 711

Amazon DynamoDB Developer Guide

("-") as part of an attribute name. This can be ambiguous in some cases. To illustrate, suppose
that you wanted to retrieve the Safety.Warning attribute from a ProductCatalog item (see
Referring to item attributes when using expressions in DynamoDB).

Suppose that you wanted to access Safety.Warning using a projection expression.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "Safety.Warning"

DynamoDB would return an empty result, rather than the expected string ("Always wear a
helmet"). This is because DynamoDB interprets a dot in an expression as a document path
separator. In this case, you must define an expression attribute name (such as #sw) as a substitute
for Safety.Warning. You could then use the following projection expression.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#sw" \
 --expression-attribute-names '{"#sw":"Safety.Warning"}'

DynamoDB would then return the correct result.

Note

If an attribute name contains a dot (".") or a hyphen ("-"), you must use an expression
attribute name to replace that attribute's name in the expression.

Nested attributes

Suppose that you wanted to access the nested attribute ProductReviews.OneStar. In an
expression attribute name, DynamoDB treats the dot (".") as a character within an attribute's name.
To reference the nested attribute, define an expression attribute name for each element in the
document path:

• #pr — ProductReviews

• #1star — OneStar

Using expressions API Version 2012-08-10 712

Amazon DynamoDB Developer Guide

You could then use #pr.#1star for the projection expression.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#pr.#1star" \
 --expression-attribute-names '{"#pr":"ProductReviews", "#1star":"OneStar"}'

DynamoDB would then return the correct result.

Repeatedly referencing attribute names

Expression attribute names are helpful when you need to refer to the same attribute name
repeatedly. For example, consider the following expression for retrieving some of the reviews from
a ProductCatalog item.

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "ProductReviews.FiveStar, ProductReviews.ThreeStar,
 ProductReviews.OneStar"

To make this more concise, you can replace ProductReviews with an expression attribute name
such as #pr. The revised expression would now look like the following.

• #pr.FiveStar, #pr.ThreeStar, #pr.OneStar

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"123"}}' \
 --projection-expression "#pr.FiveStar, #pr.ThreeStar, #pr.OneStar" \
 --expression-attribute-names '{"#pr":"ProductReviews"}'

If you define an expression attribute name, you must use it consistently throughout the entire
expression. Also, you cannot omit the # symbol.

Using expression attribute values in DynamoDB

Expression attribute values in Amazon DynamoDB act as variables. They're substitutes for the actual
values that you want to compare—values that you might not know until runtime. An expression

Using expressions API Version 2012-08-10 713

Amazon DynamoDB Developer Guide

attribute value must begin with a colon (:) and be followed by one or more alphanumeric
characters.

For example, suppose that you wanted to return all of the ProductCatalog items that are
available in Black and cost 500 or less. You could use a Scan operation with a filter expression, as
in this Amazon Command Line Interface (Amazon CLI) example.

aws dynamodb scan \
 --table-name ProductCatalog \
 --filter-expression "contains(Color, :c) and Price <= :p" \
 --expression-attribute-values file://values.json

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":c": { "S": "Black" },
 ":p": { "N": "500" }
}

If you define an expression attribute value, you must use it consistently throughout the entire
expression. Also, you can't omit the : symbol.

Expression attribute values are used with key condition expressions, condition expressions, update
expressions, and filter expressions.

Using projection expressions in DynamoDB

To read data from a table, you use operations such as GetItem, Query, or Scan. Amazon
DynamoDB returns all the item attributes by default. To get only some, rather than all of the
attributes, use a projection expression.

A projection expression is a string that identifies the attributes that you want. To retrieve a single
attribute, specify its name. For multiple attributes, the names must be comma-separated.

The following are some examples of projection expressions, based on the ProductCatalog item
from Referring to item attributes when using expressions in DynamoDB:

• A single top-level attribute.

Title

Using expressions API Version 2012-08-10 714

Amazon DynamoDB Developer Guide

• Three top-level attributes. DynamoDB retrieves the entire Color set.

Title, Price, Color

• Four top-level attributes. DynamoDB returns the entire contents of RelatedItems and
ProductReviews.

Title, Description, RelatedItems, ProductReviews

Note

Projection expression has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, instead of the amount of data that
is returned to an application.

Reserved words and special characters

DynamoDB has reserved words and special characters. DynamoDB allows you to use these reserved
words and special characters for names, but we recommend that you avoid doing so because you
have to use aliases for them whenever you use these names in an expression. For a complete list,
see Reserved words in DynamoDB.

You'll need to use expression attribute names in place of the actual name if:

• The attribute name is on the list of reserved words in DynamoDB.

• The attribute name does not meet the requirement that the first character is a-z or A-Z and
that the second character (if present) is a-Z, A-Z, or 0-9.

• The attribute name contains a # (hash) or : (colon).

The following Amazon CLI example shows how to use a projection expression with a
GetItem operation. This projection expression retrieves a top-level scalar attribute
(Description), the first element in a list (RelatedItems[0]), and a list nested within a map
(ProductReviews.FiveStar).

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '"Id": { "N": "123" } \

Using expressions API Version 2012-08-10 715

Amazon DynamoDB Developer Guide

 --projection-expression "Description, RelatedItems[0], ProductReviews.FiveStar"

The following JSON would be returned for this example.

{
 "Item": {
 "Description": {
 "S": "123 description"
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "L": [
 {
 "S": "Excellent! Can't recommend it highly enough! Buy it!"
 },
 {
 "S": "Do yourself a favor and buy this."
 }
]
 }
 }
 },
 "RelatedItems": {
 "L": [
 {
 "N": "341"
 }
]
 }
 }
}

Using update expressions in DynamoDB

The UpdateItem operation updates an existing item, or adds a new item to the table if it does not
already exist. You must provide the key of the item that you want to update. You must also provide
an update expression, indicating the attributes that you want to modify and the values that you
want to assign to them.

An update expression specifies how UpdateItem will modify the attributes of an item—for
example, setting a scalar value or removing elements from a list or a map.

Using expressions API Version 2012-08-10 716

Amazon DynamoDB Developer Guide

The following is a syntax summary for update expressions.

update-expression ::=
 [SET action [, action] ...]
 [REMOVE action [, action] ...]
 [ADD action [, action] ...]
 [DELETE action [, action] ...]

An update expression consists of one or more clauses. Each clause begins with a SET, REMOVE, ADD,
or DELETE keyword. You can include any of these clauses in an update expression, in any order.
However, each action keyword can appear only once.

Within each clause, there are one or more actions separated by commas. Each action represents a
data modification.

The examples in this section are based on the ProductCatalog item shown in Using projection
expressions in DynamoDB.

The topics below cover some different use cases for the SET action.

Topics

• SET — modifying or adding item attributes

• REMOVE — deleting attributes from an item

• ADD — updating numbers and sets

• DELETE — removing elements from a set

• Using multiple update expressions

SET — modifying or adding item attributes

Use the SET action in an update expression to add one or more attributes to an item. If any of
these attributes already exists, they are overwritten by the new values. If you want to avoid
overwriting an existing attribute, you can use SET with the if_not_exists function. The
if_not_exists function is specific to the SET action and can only be used in an update
expression.

When you use SET to update a list element, the contents of that element are replaced with the
new data that you specify. If the element doesn't already exist, SET appends the new element at
the end of the list.

Using expressions API Version 2012-08-10 717

Amazon DynamoDB Developer Guide

If you add multiple elements in a single SET operation, the elements are sorted in order by
element number.

You can also use SET to add or subtract from an attribute that is of type Number. To perform
multiple SET actions, separate them with commas.

In the following syntax summary:

• The path element is the document path to the item.

• An operand element can be either a document path to an item or a function.

set-action ::=
 path = value

value ::=
 operand
 | operand '+' operand
 | operand '-' operand

operand ::=
 path | function

function ::=
 if_not_exists (path, value)

If the item does not contain an attribute at the specified path, if_not_exists evaluates to
value. Otherwise, it evaluates to path.

The following PutItem operation creates a sample item that the examples refer to.

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item file://item.json

The arguments for --item are stored in the item.json file. (For simplicity, only a few item
attributes are used.)

{
 "Id": {"N": "789"},
 "ProductCategory": {"S": "Home Improvement"},
 "Price": {"N": "52"},

Using expressions API Version 2012-08-10 718

Amazon DynamoDB Developer Guide

 "InStock": {"BOOL": true},
 "Brand": {"S": "Acme"}
}

Topics

• Modifying attributes

• Adding lists and maps

• Adding elements to a list

• Adding nested map attributes

• Incrementing and decrementing numeric attributes

• Appending elements to a list

• Preventing overwrites of an existing attribute

Modifying attributes

Example

Update the ProductCategory and Price attributes.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET ProductCategory = :c, Price = :p" \
 --expression-attribute-values file://values.json \
 --return-values ALL_NEW

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":c": { "S": "Hardware" },
 ":p": { "N": "60" }
}

Note

In the UpdateItem operation, --return-values ALL_NEW causes DynamoDB to return
the item as it appears after the update.

Using expressions API Version 2012-08-10 719

Amazon DynamoDB Developer Guide

Adding lists and maps

Example

Add a new list and a new map.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET RelatedItems = :ri, ProductReviews = :pr" \
 --expression-attribute-values file://values.json \
 --return-values ALL_NEW

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":ri": {
 "L": [
 { "S": "Hammer" }
]
 },
 ":pr": {
 "M": {
 "FiveStar": {
 "L": [
 { "S": "Best product ever!" }
]
 }
 }
 }
}

Adding elements to a list

Example

Add a new attribute to the RelatedItems list. (Remember that list elements are zero-based, so
[0] represents the first element in the list, [1] represents the second, and so on.)

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET RelatedItems[1] = :ri" \

Using expressions API Version 2012-08-10 720

Amazon DynamoDB Developer Guide

 --expression-attribute-values file://values.json \
 --return-values ALL_NEW

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":ri": { "S": "Nails" }
}

Note

When you use SET to update a list element, the contents of that element are replaced with
the new data that you specify. If the element doesn't already exist, SET appends the new
element at the end of the list.
If you add multiple elements in a single SET operation, the elements are sorted in order by
element number.

Adding nested map attributes

Example

Add some nested map attributes.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET #pr.#5star[1] = :r5, #pr.#3star = :r3" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-values ALL_NEW

The arguments for --expression-attribute-names are stored in the names.json file.

{
 "#pr": "ProductReviews",
 "#5star": "FiveStar",
 "#3star": "ThreeStar"
}

The arguments for --expression-attribute-values are stored in the values.json file.

Using expressions API Version 2012-08-10 721

Amazon DynamoDB Developer Guide

{
 ":r5": { "S": "Very happy with my purchase" },
 ":r3": {
 "L": [
 { "S": "Just OK - not that great" }
]
 }
}

Important

You cannot update nested map attributes if the parent map does not exist. If you attempt
to update a nested attribute (for example, ProductReviews.FiveStar) when the parent
map (ProductReviews) does not exist, DynamoDB returns a ValidationException
with the message "The document path provided in the update expression is invalid for
update."
When creating items that will have nested map attributes updated later, initialize empty
maps for the parent attributes. For example:

{
 "Id": {"N": "789"},
 "ProductReviews": {"M": {}},
 "Metadata": {"M": {}}
}

This allows you to update nested attributes like ProductReviews.FiveStar without
errors.

Incrementing and decrementing numeric attributes

You can add to or subtract from an existing numeric attribute. To do this, use the + (plus) and -
(minus) operators.

Example

Decrease the Price of an item.

aws dynamodb update-item \
 --table-name ProductCatalog \

Using expressions API Version 2012-08-10 722

Amazon DynamoDB Developer Guide

 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET Price = Price - :p" \
 --expression-attribute-values '{":p": {"N":"15"}}' \
 --return-values ALL_NEW

To increase the Price, you would use the + operator in the update expression.

Appending elements to a list

You can add elements to the end of a list. To do this, use SET with the list_append function.
(The function name is case sensitive.) The list_append function is specific to the SET action and
can only be used in an update expression. The syntax is as follows.

• list_append (list1, list2)

The function takes two lists as input and appends all elements from list2 to list1.

Example

In Adding elements to a list, you create the RelatedItems list and populate it with two elements:
Hammer and Nails. Now you append two more elements to the end of RelatedItems.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET #ri = list_append(#ri, :vals)" \
 --expression-attribute-names '{"#ri": "RelatedItems"}' \
 --expression-attribute-values file://values.json \
 --return-values ALL_NEW

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":vals": {
 "L": [
 { "S": "Screwdriver" },
 {"S": "Hacksaw" }
]
 }
}

Using expressions API Version 2012-08-10 723

Amazon DynamoDB Developer Guide

Finally, you append one more element to the beginning of RelatedItems. To do this, swap the
order of the list_append elements. (Remember that list_append takes two lists as input and
appends the second list to the first.)

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET #ri = list_append(:vals, #ri)" \
 --expression-attribute-names '{"#ri": "RelatedItems"}' \
 --expression-attribute-values '{":vals": {"L": [{ "S": "Chisel" }]}}' \
 --return-values ALL_NEW

The resulting RelatedItems attribute now contains five elements, in the following order:
Chisel, Hammer, Nails, Screwdriver, Hacksaw.

Preventing overwrites of an existing attribute

Example

Set the Price of an item, but only if the item does not already have a Price attribute. (If Price
already exists, nothing happens.)

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET Price = if_not_exists(Price, :p)" \
 --expression-attribute-values '{":p": {"N": "100"}}' \
 --return-values ALL_NEW

REMOVE — deleting attributes from an item

Use the REMOVE action in an update expression to remove one or more attributes from an item in
Amazon DynamoDB. To perform multiple REMOVE actions, separate them with commas.

The following is a syntax summary for REMOVE in an update expression. The only operand is the
document path for the attribute that you want to remove.

remove-action ::=
 path

Using expressions API Version 2012-08-10 724

Amazon DynamoDB Developer Guide

Example

Remove some attributes from an item. (If the attributes don't exist, nothing happens.)

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "REMOVE Brand, InStock, QuantityOnHand" \
 --return-values ALL_NEW

Removing elements from a list

You can use REMOVE to delete individual elements from a list.

Example

In Appending elements to a list, you modify a list attribute (RelatedItems) so that it contained
five elements:

• [0]—Chisel

• [1]—Hammer

• [2]—Nails

• [3]—Screwdriver

• [4]—Hacksaw

The following Amazon Command Line Interface (Amazon CLI) example deletes Hammer and Nails
from the list.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "REMOVE RelatedItems[1], RelatedItems[2]" \
 --return-values ALL_NEW

After Hammer and Nails are removed, the remaining elements are shifted. The list now contains
the following:

• [0]—Chisel

• [1]—Screwdriver

Using expressions API Version 2012-08-10 725

Amazon DynamoDB Developer Guide

• [2]—Hacksaw

ADD — updating numbers and sets

Note

In general, we recommend using SET rather than ADD to ensure idempotent operations.

Use the ADD action in an update expression to add a new attribute and its values to an item.

If the attribute already exists, the behavior of ADD depends on the attribute's data type:

• If the attribute is a number, and the value you are adding is also a number, the value is
mathematically added to the existing attribute. (If the value is a negative number, it is subtracted
from the existing attribute.)

• If the attribute is a set, and the value you are adding is also a set, the value is appended to the
existing set.

Note

The ADD action supports only number and set data types.

To perform multiple ADD actions, separate them with commas.

In the following syntax summary:

• The path element is the document path to an attribute. The attribute must be either a Number
or a set data type.

• The value element is a number that you want to add to the attribute (for Number data types),
or a set to append to the attribute (for set types).

add-action ::=
 path value

The topics below cover some different use cases for the ADD action.

Using expressions API Version 2012-08-10 726

Amazon DynamoDB Developer Guide

Topics

• Adding a number

• Adding elements to a set

Adding a number

Assume that the QuantityOnHand attribute does not exist. The following Amazon CLI example
sets QuantityOnHand to 5.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "ADD QuantityOnHand :q" \
 --expression-attribute-values '{":q": {"N": "5"}}' \
 --return-values ALL_NEW

Now that QuantityOnHand exists, you can rerun the example to increment QuantityOnHand by
5 each time.

Adding elements to a set

Assume that the Color attribute does not exist. The following Amazon CLI example sets Color to
a string set with two elements.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "ADD Color :c" \
 --expression-attribute-values '{":c": {"SS":["Orange", "Purple"]}}' \
 --return-values ALL_NEW

Now that Color exists, you can add more elements to it.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "ADD Color :c" \
 --expression-attribute-values '{":c": {"SS":["Yellow", "Green", "Blue"]}}' \
 --return-values ALL_NEW

Using expressions API Version 2012-08-10 727

Amazon DynamoDB Developer Guide

DELETE — removing elements from a set

Important

The DELETE action supports only Set data types.

Use the DELETE action in an update expression to remove one or more elements from a set. To
perform multiple DELETE actions, separate them with commas.

In the following syntax summary:

• The path element is the document path to an attribute. The attribute must be a set data type.

• The subset is one or more elements that you want to delete from path. You must specify
subset as a set type.

delete-action ::=
 path subset

Example

In Adding elements to a set, you create the Color string set. This example removes some of the
elements from that set.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "DELETE Color :p" \
 --expression-attribute-values '{":p": {"SS": ["Yellow", "Purple"]}}' \
 --return-values ALL_NEW

Using multiple update expressions

You can use multiple update expressions in a single statement.

Example

If you want to modify an attribute's value and completely remove another attribute, you could use
a SET and a REMOVE action in a single statement. This operation would reduce the Price value to
15 while also removing the InStock attribute from the item.

Using expressions API Version 2012-08-10 728

Amazon DynamoDB Developer Guide

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET Price = Price - :p REMOVE InStock" \
 --expression-attribute-values '{":p": {"N":"15"}}' \
 --return-values ALL_NEW

Example

If you want to add to a list while also changing another attribute's value, you could use two SET
actions in a single statement. This operation would add "Nails" to the RelatedItems list attribute
and also set the Price value to 21.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"789"}}' \
 --update-expression "SET RelatedItems[1] = :newValue, Price = :newPrice" \
 --expression-attribute-values '{":newValue": {"S":"Nails"}, ":newPrice":
 {"N":"21"}}' \
 --return-values ALL_NEW

Condition and filter expressions, operators, and functions in DynamoDB

To manipulate data in an DynamoDB table, you use the PutItem, UpdateItem, and DeleteItem
operations. For these data manipulation operations, you can specify a condition expression to
determine which items should be modified. If the condition expression evaluates to true, the
operation succeeds. Otherwise, the operation fails.

This section covers the built-in functions and keywords for writing filter expressions and condition
expressions in Amazon DynamoDB. For more detailed information on functions and programming
with DynamoDB, see Programming with DynamoDB and the Amazon SDKs and the DynamoDB API
Reference.

Topics

• Syntax for filter and condition expressions

• Making comparisons

• Functions

• Logical evaluations

• Parentheses

Using expressions API Version 2012-08-10 729

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

• Precedence in conditions

Syntax for filter and condition expressions

In the following syntax summary, an operand can be the following:

• A top-level attribute name, such as Id, Title, Description, or ProductCategory

• A document path that references a nested attribute

condition-expression ::=
 operand comparator operand
 | operand BETWEEN operand AND operand
 | operand IN (operand (',' operand (, ...)))
 | function
 | condition AND condition
 | condition OR condition
 | NOT condition
 | (condition)

comparator ::=
 =
 | <>
 | <
 | <=
 | >
 | >=

function ::=
 attribute_exists (path)
 | attribute_not_exists (path)
 | attribute_type (path, type)
 | begins_with (path, substr)
 | contains (path, operand)
 | size (path)

Making comparisons

Use these comparators to compare an operand against a single value:

• a = b – True if a is equal to b.

• a <> b – True if a is not equal to b.

Using expressions API Version 2012-08-10 730

Amazon DynamoDB Developer Guide

• a < b – True if a is less than b.

• a <= b – True if a is less than or equal to b.

• a > b – True if a is greater than b.

• a >= b – True if a is greater than or equal to b.

Use the BETWEEN and IN keywords to compare an operand against a range of values or an
enumerated list of values:

• a BETWEEN b AND c – True if a is greater than or equal to b, and less than or equal to c.

• a IN (b, c, d) – True if a is equal to any value in the list—for example, any of b, c, or d.
The list can contain up to 100 values, separated by commas.

Functions

Use the following functions to determine whether an attribute exists in an item, or to evaluate the
value of an attribute. These function names are case sensitive. For a nested attribute, you must
provide its full document path.

Function Description

attribute_exists (path) True if the item contains the attribute
specified by path.

Example: Check whether an item in the
Product table has a side view picture.

•
attribute_exists (#Picture
s.#SideView)

attribute_not_exists (path) True if the attribute specified by path does
not exist in the item.

Example: Check whether an item has a
Manufacturer attribute.

•

Using expressions API Version 2012-08-10 731

Amazon DynamoDB Developer Guide

Function Description

attribute_not_exists (Manufact
urer)

Using expressions API Version 2012-08-10 732

Amazon DynamoDB Developer Guide

Function Description

attribute_type (path, type) True if the attribute at the specified path is of
a particular data type. The type parameter
must be one of the following:

•
S – String

•
SS – String set

•
N – Number

•
NS – Number set

•
B – Binary

•
BS – Binary set

•
BOOL – Boolean

•
NULL – Null

•
L – List

•
M – Map

You must use an expression attribute value for
the type parameter.

Example: Check whether the QuantityO
nHand attribute is of type List. In this
example, :v_sub is a placeholder for the
string L.

•
 attribute_type (ProductR
eviews.FiveStar, :v_sub)

Using expressions API Version 2012-08-10 733

Amazon DynamoDB Developer Guide

Function Description

You must use an expression attribute value for
the type parameter.

begins_with (path, substr) True if the attribute specified by path begins
with a particular substring.

Example: Check whether the first few
characters of the front view picture URL are
http://.

•
begins_with (Pictures.FrontVie
w, :v_sub)

The expression attribute value :v_sub is a
 placeholder for http://.

Using expressions API Version 2012-08-10 734

Amazon DynamoDB Developer Guide

Function Description

contains (path, operand) True if the attribute specified by path is one
of the following:

•
A String that contains a particular substr
ing.

•
A Set that contains a particular element
within the set.

•
A List that contains a particular element
within the list.

If the attribute specified by path is a String,
the operand must be a String. If the
attribute specified by path is a Set, the
 operand must be the set's element type.

The path and the operand must be distinct.
That is, contains (a, a) returns an
error.

Example: Check whether the Brand attribute
contains the substring Company.

•
contains (Brand, :v_sub)

The expression attribute value :v_sub is a
 placeholder for Company.

Example: Check whether the product is
available in red.

•
contains (Color, :v_sub)

Using expressions API Version 2012-08-10 735

Amazon DynamoDB Developer Guide

Function Description

The expression attribute value :v_sub is a
 placeholder for Red.

Using expressions API Version 2012-08-10 736

Amazon DynamoDB Developer Guide

Function Description

size (path) Returns a number that represents an attribute
's size. The following are valid data types for
use with size.

If the attribute is of type String, size
returns the length of the string.

Example: Check whether the string Brand
is less than or equal to 20 characters. The
expression attribute value :v_sub is a
placeholder for 20.

•
size (Brand) <= :v_sub

If the attribute is of type Binary, size
returns the number of bytes in the attribute
value.

Example: Suppose that the ProductCa
talog item has a binary attribute named
VideoClip that contains a short video of
the product in use. The following expression
checks whether VideoClip exceeds 64,000
bytes. The expression attribute value :v_sub
is a placeholder for 64000.

•
size(VideoClip) > :v_sub

If the attribute is a Set data type, size
returns the number of elements in the set.

Using expressions API Version 2012-08-10 737

Amazon DynamoDB Developer Guide

Function Description

Example: Check whether the product is
available in more than one color. The
expression attribute value :v_sub is a
 placeholder for 1.

•
size (Color) < :v_sub

If the attribute is of type List or Map, size
returns the number of child elements.

Example: Check whether the number of
OneStar reviews has exceeded a certain
threshold. The expression attribute value
 :v_sub is a placeholder for 3.

•
size(ProductReviews.OneStar)
> :v_sub

Logical evaluations

Use the AND, OR, and NOT keywords to perform logical evaluations. In the following list, a and b
represent conditions to be evaluated.

• a AND b – True if a and b are both true.

• a OR b – True if either a or b (or both) are true.

• NOT a – True if a is false. False if a is true.

The following is a code example of AND in an operation.

dynamodb-local (*)> select * from exprtest where a > 3 and a < 5;

Using expressions API Version 2012-08-10 738

Amazon DynamoDB Developer Guide

Parentheses

Use parentheses to change the precedence of a logical evaluation. For example, suppose that
conditions a and b are true, and that condition c is false. The following expression evaluates to
true:

• a OR b AND c

However, if you enclose a condition in parentheses, it is evaluated first. For example, the following
evaluates to false:

• (a OR b) AND c

Note

You can nest parentheses in an expression. The innermost ones are evaluated first.

The following is a code example with parentheses in a logical evaluation.

dynamodb-local (*)> select * from exprtest where attribute_type(b, string)
or (a = 5 and c = “coffee”);

Precedence in conditions

DynamoDB evaluates conditions from left to right using the following precedence rules:

• = <> < <= > >=

• IN

• BETWEEN

• attribute_exists attribute_not_exists begins_with contains

• Parentheses

• NOT

• AND

• OR

Using expressions API Version 2012-08-10 739

Amazon DynamoDB Developer Guide

DynamoDB condition expression CLI example

The following are some Amazon Command Line Interface (Amazon CLI) examples of using
condition expressions. These examples are based on the ProductCatalog table, which was
introduced in Referring to item attributes when using expressions in DynamoDB. The partition
key for this table is Id; there is no sort key. The following PutItem operation creates a sample
ProductCatalog item that the examples refer to.

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item file://item.json

The arguments for --item are stored in the item.json file. (For simplicity, only a few item
attributes are used.)

{
 "Id": {"N": "456" },
 "ProductCategory": {"S": "Sporting Goods" },
 "Price": {"N": "650" }
}

Topics

• Conditional put

• Conditional deletes

• Conditional updates

• Conditional expression examples

Conditional put

The PutItem operation overwrites an item with the same primary key (if it exists). If you want to
avoid this, use a condition expression. This allows the write to proceed only if the item in question
does not already have the same primary key.

The following example uses attribute_not_exists() to check whether the primary key exists
in the table before attempting the write operation.

Using expressions API Version 2012-08-10 740

Amazon DynamoDB Developer Guide

Note

If your primary key consists of both a partition key(pk) and a sort key(sk), the parameter
will check whether attribute_not_exists(pk) AND attribute_not_exists(sk)
evaluate to true or false as an entire statement before attempting the write operation.

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item file://item.json \
 --condition-expression "attribute_not_exists(Id)"

If the condition expression evaluates to false, DynamoDB returns the following error message: The
conditional request failed.

Note

For more information about attribute_not_exists and other functions, see Condition
and filter expressions, operators, and functions in DynamoDB.

Conditional deletes

To perform a conditional delete, you use a DeleteItem operation with a condition expression. The
condition expression must evaluate to true in order for the operation to succeed; otherwise, the
operation fails.

Consider the item defined above.

Suppose that you wanted to delete the item, but only under the following conditions:

• The ProductCategory is either "Sporting Goods" or "Gardening Supplies."

• The Price is between 500 and 600.

The following example tries to delete the item.

aws dynamodb delete-item \
 --table-name ProductCatalog \

Using expressions API Version 2012-08-10 741

Amazon DynamoDB Developer Guide

 --key '{"Id":{"N":"456"}}' \
 --condition-expression "(ProductCategory IN (:cat1, :cat2)) and (Price between :lo
 and :hi)" \
 --expression-attribute-values file://values.json

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":cat1": {"S": "Sporting Goods"},
 ":cat2": {"S": "Gardening Supplies"},
 ":lo": {"N": "500"},
 ":hi": {"N": "600"}
}

Note

In the condition expression, the : (colon character) indicates an expression attribute value—
a placeholder for an actual value. For more information, see Using expression attribute
values in DynamoDB.
For more information about IN, AND, and other keywords, see Condition and filter
expressions, operators, and functions in DynamoDB.

In this example, the ProductCategory comparison evaluates to true, but the Price comparison
evaluates to false. This causes the condition expression to evaluate to false and the DeleteItem
operation to fail.

Conditional updates

To perform a conditional update, you use an UpdateItem operation with a condition expression.
The condition expression must evaluate to true in order for the operation to succeed; otherwise,
the operation fails.

Note

UpdateItem also supports update expressions, where you specify the modifications
you want to make to an item. For more information, see Using update expressions in
DynamoDB.

Using expressions API Version 2012-08-10 742

Amazon DynamoDB Developer Guide

Suppose that you started with the item defined above.

The following example performs an UpdateItem operation. It tries to reduce the Price of a
product by 75—but the condition expression prevents the update if the current Price is less than
or equal to 500.

aws dynamodb update-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --update-expression "SET Price = Price - :discount" \
 --condition-expression "Price > :limit" \
 --expression-attribute-values file://values.json

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":discount": { "N": "75"},
 ":limit": {"N": "500"}
}

If the starting Price is 650, the UpdateItem operation reduces the Price to 575. If you run the
UpdateItem operation again, the Price is reduced to 500. If you run it a third time, the condition
expression evaluates to false, and the update fails.

Note

In the condition expression, the : (colon character) indicates an expression attribute value—
a placeholder for an actual value. For more information, see Using expression attribute
values in DynamoDB.
For more information about ">" and other operators, see Condition and filter expressions,
operators, and functions in DynamoDB.

Conditional expression examples

For more information about the functions used in the following examples, see Condition and
filter expressions, operators, and functions in DynamoDB. If you want to know more about how
to specify different attribute types in an expression, see Referring to item attributes when using
expressions in DynamoDB.

Using expressions API Version 2012-08-10 743

Amazon DynamoDB Developer Guide

Checking for attributes in an item

You can check for the existence (or nonexistence) of any attribute. If the condition expression
evaluates to true, the operation succeeds; otherwise, it fails.

The following example uses attribute_not_exists to delete a product only if it does not have
a Price attribute.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "attribute_not_exists(Price)"

DynamoDB also provides an attribute_exists function. The following example deletes a
product only if it has received poor reviews.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "attribute_exists(ProductReviews.OneStar)"

Checking for attribute type

You can check the data type of an attribute value by using the attribute_type function. If the
condition expression evaluates to true, the operation succeeds; otherwise, it fails.

The following example uses attribute_type to delete a product only if it has a Color attribute
of type String Set.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "attribute_type(Color, :v_sub)" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the expression-attribute-
values.json file.

{
 ":v_sub":{"S":"SS"}

Using expressions API Version 2012-08-10 744

Amazon DynamoDB Developer Guide

}

Checking string starting value

You can check if a String attribute value begins with a particular substring by using the
begins_with function. If the condition expression evaluates to true, the operation succeeds;
otherwise, it fails.

The following example uses begins_with to delete a product only if the FrontView element of
the Pictures map starts with a specific value.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "begins_with(Pictures.FrontView, :v_sub)" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the expression-attribute-
values.json file.

{
 ":v_sub":{"S":"http://"}
}

Checking for an element in a set

You can check for an element in a set or look for a substring within a string by using the contains
function. If the condition expression evaluates to true, the operation succeeds; otherwise, it fails.

The following example uses contains to delete a product only if the Color String Set has an
element with a specific value.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "contains(Color, :v_sub)" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the expression-attribute-
values.json file.

Using expressions API Version 2012-08-10 745

Amazon DynamoDB Developer Guide

{
 ":v_sub":{"S":"Red"}
}

Checking the size of an attribute value

You can check for the size of an attribute value by using the size function. If the condition
expression evaluates to true, the operation succeeds; otherwise, it fails.

The following example uses size to delete a product only if the size of the VideoClip Binary
attribute is greater than 64000 bytes.

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "456"}}' \
 --condition-expression "size(VideoClip) > :v_sub" \
 --expression-attribute-values file://expression-attribute-values.json

The arguments for --expression-attribute-values are stored in the expression-attribute-
values.json file.

{
 ":v_sub":{"N":"64000"}
}

Using time to live (TTL) in DynamoDB

Time To Live (TTL) for DynamoDB is a cost-effective method for deleting items that are no longer
relevant. TTL allows you to define a per-item expiration timestamp that indicates when an item
is no longer needed. DynamoDB automatically deletes expired items within a few days of their
expiration time, without consuming write throughput.

To use TTL, first enable it on a table and then define a specific attribute to store the TTL expiration
timestamp. The timestamp must be stored in Unix epoch time format at the seconds granularity.
Each time an item is created or updated, you can compute the expiration time and save it in the
TTL attribute.

Items with valid, expired TTL attributes may be deleted by the system at any time, typically
within a few days of their expiration. You can still update the expired items that are pending
deletion, including changing or removing their TTL attributes. While updating an expired item,

Time to Live (TTL) API Version 2012-08-10 746

https://en.wikipedia.org/wiki/Unix_time

Amazon DynamoDB Developer Guide

we recommended that you use a condition expression to make sure the item has not been
subsequently deleted. Use filter expressions to remove expired items from Scan and Query results.

Deleted items work similarly to those deleted through typical delete operations. Once deleted,
items go into DynamoDB Streams as service deletions instead of user deletes, and are removed
from local secondary indexes and global secondary indexes just like other delete operations.

If you are using Global Tables version 2019.11.21 (Current) of global tables and you also use the
TTL feature, DynamoDB replicates TTL deletes to all replica tables. The initial TTL delete does not
consume Write Capacity Units (WCU) in the region in which the TTL expiry occurs. However, the
replicated TTL delete to the replica table(s) consumes a replicated Write Capacity Unit when using
provisioned capacity, or Replicated Write Unit when using on-demand capacity mode, in each of
the replica regions and applicable charges will apply.

For more information about TTL, see these topics:

Topics

• Enable time to live (TTL) in DynamoDB

• Computing time to live (TTL) in DynamoDB

• Working with expired items and time to live (TTL)

Enable time to live (TTL) in DynamoDB

Note

To assist in debugging and verification of proper operation of the TTL feature, the values
provided for the item TTL are logged in plaintext in DynamoDB diagnostic logs.

You can enable TTL in the Amazon DynamoDB Console, the Amazon Command Line Interface
(Amazon CLI), or using the Amazon DynamoDB API Reference with any of the supposed Amazon
SDKs. It takes approximately one hour to enable TTL across all partitions.

Enable DynamoDB TTL using the Amazon console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. Choose Tables, and then choose the table that you want to modify.

Time to Live (TTL) API Version 2012-08-10 747

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

3. In the Additional settings tab, in the Time to Live (TTL) section, choose Turn on to enable
TTL.

4. When enabling TTL on a table, DynamoDB requires you to identify a specific attribute name
that the service will look for when determining if an item is eligible for expiration. The TTL
attribute name, shown below, is case sensitive and must match the attribute defined in your
read and write operations. A mismatch will cause expired items to go undeleted. Renaming
the TTL attribute requires you to disable TTL and then re-enable it with the new attribute
going forward. TTL will continue to process deletions for approximately 30 minutes once it is
disabled. TTL must be reconfigured on restored tables.

5. (Optional) You can perform a test by simulating the date and time of the expiration and
matching a few items. This provides you with a sample list of items and confirms that there are
items containing the TTL attribute name provided along with the expiration time.

Time to Live (TTL) API Version 2012-08-10 748

Amazon DynamoDB Developer Guide

After TTL is enabled, the TTL attribute is marked TTL when you view items on the DynamoDB
console. You can view the date and time that an item expires by hovering your pointer over the
attribute.

Enable DynamoDB TTL using the API

Python

You can enable TTL with code, using the UpdateTimeToLive operation.

import boto3

def enable_ttl(table_name, ttl_attribute_name):
 """
 Enables TTL on DynamoDB table for a given attribute name
 on success, returns a status code of 200
 on error, throws an exception

 :param table_name: Name of the DynamoDB table
 :param ttl_attribute_name: The name of the TTL attribute being provided to the
 table.
 """
 try:
 dynamodb = boto3.client('dynamodb')

 # Enable TTL on an existing DynamoDB table
 response = dynamodb.update_time_to_live(
 TableName=table_name,
 TimeToLiveSpecification={
 'Enabled': True,
 'AttributeName': ttl_attribute_name
 }
)

 # In the returned response, check for a successful status code.
 if response['ResponseMetadata']['HTTPStatusCode'] == 200:
 print("TTL has been enabled successfully.")
 else:
 print(f"Failed to enable TTL, status code {response['ResponseMetadata']
['HTTPStatusCode']}")
 except Exception as ex:
 print("Couldn't enable TTL in table %s. Here's why: %s" % (table_name, ex))

Time to Live (TTL) API Version 2012-08-10 749

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb/client/update_time_to_live.html

Amazon DynamoDB Developer Guide

 raise

your values
enable_ttl('your-table-name', 'expirationDate')

You can confirm TTL is enabled by using the DescribeTimeToLive operation, which describes the
TTL status on a table. The TimeToLive status is either ENABLED or DISABLED.

create a DynamoDB client
dynamodb = boto3.client('dynamodb')

set the table name
table_name = 'YourTable'

describe TTL
response = dynamodb.describe_time_to_live(TableName=table_name)

JavaScript

You can enable TTL with code, using the UpdateTimeToLiveCommand operation.

import { DynamoDBClient, UpdateTimeToLiveCommand } from "@aws-sdk/client-dynamodb";

const enableTTL = async (tableName, ttlAttribute) => {

 const client = new DynamoDBClient({});

 const params = {
 TableName: tableName,
 TimeToLiveSpecification: {
 Enabled: true,
 AttributeName: ttlAttribute
 }
 };

 try {
 const response = await client.send(new UpdateTimeToLiveCommand(params));
 if (response.$metadata.httpStatusCode === 200) {
 console.log(`TTL enabled successfully for table ${tableName}, using
 attribute name ${ttlAttribute}.`);
 } else {

Time to Live (TTL) API Version 2012-08-10 750

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb/client/describe_time_to_live.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-client-dynamodb/Class/UpdateTimeToLiveCommand/

Amazon DynamoDB Developer Guide

 console.log(`Failed to enable TTL for table ${tableName}, response
 object: ${response}`);
 }
 return response;
 } catch (e) {
 console.error(`Error enabling TTL: ${e}`);
 throw e;
 }
};

// call with your own values
enableTTL('ExampleTable', 'exampleTtlAttribute');

Enable Time to Live using the Amazon CLI

1. Enable TTL on the TTLExample table.

aws dynamodb update-time-to-live --table-name TTLExample --time-to-live-
specification "Enabled=true, AttributeName=ttl"

2. Describe TTL on the TTLExample table.

aws dynamodb describe-time-to-live --table-name TTLExample
{
 "TimeToLiveDescription": {
 "AttributeName": "ttl",
 "TimeToLiveStatus": "ENABLED"
 }
}

3. Add an item to the TTLExample table with the Time to Live attribute set using the BASH shell
and the Amazon CLI.

EXP=`date -d '+5 days' +%s`
aws dynamodb put-item --table-name "TTLExample" --item '{"id": {"N": "1"}, "ttl":
 {"N": "'$EXP'"}}'

This example starts with the current date and adds 5 days to it to create an expiration time. Then,
it converts the expiration time to epoch time format to finally add an item to the "TTLExample"
table.

Time to Live (TTL) API Version 2012-08-10 751

Amazon DynamoDB Developer Guide

Note

One way to set expiration values for Time to Live is to calculate the number of seconds to
add to the expiration time. For example, 5 days is 432,000 seconds. However, it is often
preferable to start with a date and work from there.

It is fairly simple to get the current time in epoch time format, as in the following examples.

• Linux Terminal: date +%s

• Python: import time; int(time.time())

• Java: System.currentTimeMillis() / 1000L

• JavaScript: Math.floor(Date.now() / 1000)

Enable DynamoDB TTL using Amazon CloudFormation

AWSTemplateFormatVersion: "2010-09-09"
Resources:
 TTLExampleTable:
 Type: AWS::DynamoDB::Table
 Description: "A DynamoDB table with TTL Specification enabled"
 Properties:
 AttributeDefinitions:
 - AttributeName: "Album"
 AttributeType: "S"
 - AttributeName: "Artist"
 AttributeType: "S"
 KeySchema:
 - AttributeName: "Album"
 KeyType: "HASH"
 - AttributeName: "Artist"
 KeyType: "RANGE"
 ProvisionedThroughput:
 ReadCapacityUnits: "5"
 WriteCapacityUnits: "5"
 TimeToLiveSpecification:
 AttributeName: "TTLExampleAttribute"
 Enabled: true

Additional details on using TTL within your Amazon CloudFormation templates can be found here.

Time to Live (TTL) API Version 2012-08-10 752

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-properties-dynamodb-table-timetolivespecification.html

Amazon DynamoDB Developer Guide

Computing time to live (TTL) in DynamoDB

A common way to implement TTL is to set an expiration time for items based on when they were
created or last updated. This can be done by adding time to the createdAt and updatedAt
timestamps. For example, the TTL for newly created items can be set to createdAt + 90 days.
When the item is updated the TTL can be recalculated to updatedAt + 90 days.

The computed expiration time must be in epoch format, in seconds. To be considered for expiry
and deletion, the TTL can't be more than five years in the past. If you use any other format, the
TTL processes ignore the item. If you set the expiration date to sometime in the future when you
want the item to expire, the item will be expired after that time. For example, say that you set the
expiration date to 1724241326 (which is Monday, August 21st, 2024 11:55:26 (GMT)). The item
will be expired after the specified time.

Topics

• Create an item and set the Time to Live

• Update an item and refresh the Time to Live

Create an item and set the Time to Live

The following example demonstrates how to calculate the expiration time when creating a new
item, using expireAt as the TTL attribute name. An assignment statement obtains the current
time as a variable. In the example, the expiration time is calculated as 90 days from the current
time. The time is then converted to epoch format and saved as an integer data type in the TTL
attribute.

The following code examples show how to create an item with TTL.

Java

SDK for Java 2.x

package com.amazon.samplelib.ttl;

import com.amazon.samplelib.CodeSampleUtils;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

Time to Live (TTL) API Version 2012-08-10 753

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.PutItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.Optional;

/**
 * Creates an item in a DynamoDB table with TTL attributes.
 * This class demonstrates how to add TTL expiration timestamps to DynamoDB
 items.
 */
public class CreateTTL {

 private static final String USAGE =
 """
 Usage:
 <tableName> <primaryKey> <sortKey> <region>
 Where:
 tableName - The Amazon DynamoDB table being queried.
 primaryKey - The name of the primary key. Also known as the hash
 or partition key.
 sortKey - The name of the sort key. Also known as the range
 attribute.
 region (optional) - The AWS region that the Amazon DynamoDB table
 is located in. (Default: us-east-1)
 """;
 private static final int DAYS_TO_EXPIRE = 90;
 private static final int SECONDS_PER_DAY = 24 * 60 * 60;
 private static final String PRIMARY_KEY_ATTR = "primaryKey";
 private static final String SORT_KEY_ATTR = "sortKey";
 private static final String CREATION_DATE_ATTR = "creationDate";
 private static final String EXPIRE_AT_ATTR = "expireAt";
 private static final String SUCCESS_MESSAGE = "%s PutItem operation with TTL
 successful.";
 private static final String TABLE_NOT_FOUND_ERROR = "Error: The Amazon
 DynamoDB table \"%s\" can't be found.";

 private final DynamoDbClient dynamoDbClient;

 /**
 * Constructs a CreateTTL instance with the specified DynamoDB client.
 *

Time to Live (TTL) API Version 2012-08-10 754

Amazon DynamoDB Developer Guide

 * @param dynamoDbClient The DynamoDB client to use
 */
 public CreateTTL(final DynamoDbClient dynamoDbClient) {
 this.dynamoDbClient = dynamoDbClient;
 }

 /**
 * Constructs a CreateTTL with a default DynamoDB client.
 */
 public CreateTTL() {
 this.dynamoDbClient = null;
 }

 /**
 * Main method to demonstrate creating an item with TTL.
 *
 * @param args Command line arguments
 */
 public static void main(final String[] args) {
 try {
 int result = new CreateTTL().processArgs(args);
 System.exit(result);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Process command line arguments and create an item with TTL.
 *
 * @param args Command line arguments
 * @return 0 if successful, non-zero otherwise
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 * @throws IllegalArgumentException If arguments are invalid
 */
 public int processArgs(final String[] args) {
 // Argument validation (remove or replace this line when reusing this
 code)
 CodeSampleUtils.validateArgs(args, new int[] {3, 4}, USAGE);

 final String tableName = args[0];
 final String primaryKey = args[1];

Time to Live (TTL) API Version 2012-08-10 755

Amazon DynamoDB Developer Guide

 final String sortKey = args[2];
 final Region region = Optional.ofNullable(args.length > 3 ? args[3] :
 null)
 .map(Region::of)
 .orElse(Region.US_EAST_1);

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final CreateTTL createTTL = new CreateTTL(ddb);
 createTTL.createItemWithTTL(tableName, primaryKey, sortKey);
 return 0;
 } catch (Exception e) {
 throw e;
 }
 }

 /**
 * Creates an item in the specified table with TTL attributes.
 *
 * @param tableName The name of the table
 * @param primaryKeyValue The value for the primary key
 * @param sortKeyValue The value for the sort key
 * @return The response from the PutItem operation
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 */
 public PutItemResponse createItemWithTTL(
 final String tableName, final String primaryKeyValue, final String
 sortKeyValue) {
 // Get current time in epoch second format
 final long createDate = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = createDate + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 final Map<String, AttributeValue> itemMap = new HashMap<>();
 itemMap.put(
 PRIMARY_KEY_ATTR,
 AttributeValue.builder().s(primaryKeyValue).build());
 itemMap.put(SORT_KEY_ATTR,
 AttributeValue.builder().s(sortKeyValue).build());
 itemMap.put(
 CREATION_DATE_ATTR,

Time to Live (TTL) API Version 2012-08-10 756

Amazon DynamoDB Developer Guide

 AttributeValue.builder().n(String.valueOf(createDate)).build());
 itemMap.put(
 EXPIRE_AT_ATTR,
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

 final PutItemRequest request =
 PutItemRequest.builder().tableName(tableName).item(itemMap).build();

 try {
 final PutItemResponse response = dynamoDbClient.putItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

• For API details, see PutItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

import { DynamoDBClient, PutItemCommand } from "@aws-sdk/client-dynamodb";

export function createDynamoDBItem(table_name, region, partition_key, sort_key) {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 // Get the current time in epoch second format
 const current_time = Math.floor(new Date().getTime() / 1000);

 // Calculate the expireAt time (90 days from now) in epoch second format
 const expire_at = Math.floor((new Date().getTime() + 90 * 24 * 60 * 60 *
 1000) / 1000);

Time to Live (TTL) API Version 2012-08-10 757

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

 // Create DynamoDB item
 const item = {
 'partitionKey': {'S': partition_key},
 'sortKey': {'S': sort_key},
 'createdAt': {'N': current_time.toString()},
 'expireAt': {'N': expire_at.toString()}
 };

 const putItemCommand = new PutItemCommand({
 TableName: table_name,
 Item: item,
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 });

 client.send(putItemCommand, function(err, data) {
 if (err) {
 console.log("Exception encountered when creating item %s, here's what
 happened: ", data, err);
 throw err;
 } else {
 console.log("Item created successfully: %s.", data);
 return data;
 }
 });
}

// Example usage (commented out for testing)
// createDynamoDBItem('your-table-name', 'us-east-1', 'your-partition-key-value',
 'your-sort-key-value');

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

from datetime import datetime, timedelta

import boto3

Time to Live (TTL) API Version 2012-08-10 758

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand

Amazon DynamoDB Developer Guide

def create_dynamodb_item(table_name, region, primary_key, sort_key):
 """
 Creates a DynamoDB item with an attached expiry attribute.

 :param table_name: Table name for the boto3 resource to target when creating
 an item
 :param region: string representing the AWS region. Example: `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :return: Void (nothing)
 """
 try:
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Get the current time in epoch second format
 current_time = int(datetime.now().timestamp())

 # Calculate the expiration time (90 days from now) in epoch second format
 expiration_time = int((datetime.now() + timedelta(days=90)).timestamp())

 item = {
 "primaryKey": primary_key,
 "sortKey": sort_key,
 "creationDate": current_time,
 "expireAt": expiration_time,
 }
 response = table.put_item(Item=item)

 print("Item created successfully.")
 return response
 except Exception as e:
 print(f"Error creating item: {e}")
 raise e

Use your own values
create_dynamodb_item(
 "your-table-name", "us-west-2", "your-partition-key-value", "your-sort-key-
value"
)

Time to Live (TTL) API Version 2012-08-10 759

Amazon DynamoDB Developer Guide

• For API details, see PutItem in Amazon SDK for Python (Boto3) API Reference.

Update an item and refresh the Time to Live

This example is a continuation of the one from the previous section. The expiration time can be
recomputed if the item is updated. The following example recomputes the expireAt timestamp
to be 90 days from the current time.

The following code examples show how to update an item's TTL.

Java

SDK for Java 2.x

Update TTL on an existing DynamoDB item in a table.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;
import java.util.Optional;

 public UpdateItemResponse updateItemWithTTL(
 final String tableName, final String primaryKeyValue, final String
 sortKeyValue) {
 // Get current time in epoch second format
 final long currentTime = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = currentTime + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 // Create the key map for the item to update
 final Map<String, AttributeValue> keyMap = new HashMap<>();
 keyMap.put(PRIMARY_KEY_ATTR,
 AttributeValue.builder().s(primaryKeyValue).build());

Time to Live (TTL) API Version 2012-08-10 760

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

 keyMap.put(SORT_KEY_ATTR,
 AttributeValue.builder().s(sortKeyValue).build());

 // Create the expression attribute values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":c",
 AttributeValue.builder().n(String.valueOf(currentTime)).build());
 expressionAttributeValues.put(
 ":e",
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

 final UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(keyMap)
 .updateExpression(UPDATE_EXPRESSION)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final UpdateItemResponse response =
 dynamoDbClient.updateItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

Time to Live (TTL) API Version 2012-08-10 761

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

export const updateItem = async (tableName, partitionKey, sortKey, region = 'us-
east-1') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);
 const expireAt = Math.floor((Date.now() + 90 * 24 * 60 * 60 * 1000) / 1000);

 const params = {
 TableName: tableName,
 Key: marshall({
 partitionKey: partitionKey,
 sortKey: sortKey
 }),
 UpdateExpression: "SET updatedAt = :c, expireAt = :e",
 ExpressionAttributeValues: marshall({
 ":c": currentTime,
 ":e": expireAt
 }),
 };

 try {
 const data = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(data.Attributes);
 console.log("Item updated successfully: %s", responseData);
 return responseData;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
}

// Example usage (commented out for testing)
// updateItem('your-table-name', 'your-partition-key-value', 'your-sort-key-
value');

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Time to Live (TTL) API Version 2012-08-10 762

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

from datetime import datetime, timedelta

import boto3

def update_dynamodb_item(table_name, region, primary_key, sort_key):
 """
 Update an existing DynamoDB item with a TTL.
 :param table_name: Name of the DynamoDB table
 :param region: AWS Region of the table - example `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :return: Void (nothing)
 """
 try:
 # Create the DynamoDB resource.
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Get the current time in epoch second format
 current_time = int(datetime.now().timestamp())

 # Calculate the expireAt time (90 days from now) in epoch second format
 expire_at = int((datetime.now() + timedelta(days=90)).timestamp())

 table.update_item(
 Key={"partitionKey": primary_key, "sortKey": sort_key},
 UpdateExpression="set updatedAt=:c, expireAt=:e",
 ExpressionAttributeValues={":c": current_time, ":e": expire_at},
)

 print("Item updated successfully.")
 except Exception as e:
 print(f"Error updating item: {e}")

Replace with your own values
update_dynamodb_item(
 "your-table-name", "us-west-2", "your-partition-key-value", "your-sort-key-
value"

Time to Live (TTL) API Version 2012-08-10 763

Amazon DynamoDB Developer Guide

)

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

The TTL examples discussed in this introduction demonstrate a method to ensure only recently
updated items are kept in a table. Updated items have their lifespan extended, whereas items not
updated post-creation expire and are deleted at no cost, reducing storage and maintaining clean
tables.

Working with expired items and time to live (TTL)

Expired items that are pending deletion can be filtered from read and write operations. This
is useful in scenarios when expired data is no longer valid and should not be used. If they are
not filtered, they’ll continue to show in read and write operations until they are deleted by the
background process.

Note

These items still count towards storage and read costs until they are deleted.

TTL deletions can be identified in DynamoDB Streams, but only in the Region where the
deletion occurred. TTL deletions that are replicated to global table regions are not identifiable in
DynamoDB streams in the regions the deletion is replicated to.

Filter expired items from read operations

For read operations such as Scan and Query, a filter expression can filter out expired items that are
pending deletion. As shown in the following code snippet, the filter expression can filter out items
where the TTL time is equal to or less than the current time. For example, the Python SDK code
includes an assignment statement that obtains the current time as a variable (now), and converts it
into int for epoch time format.

The following code examples show how to query for TTL items.

Time to Live (TTL) API Version 2012-08-10 764

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.Map;
import java.util.Optional;

 final QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(FILTER_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final QueryResponse response = ddb.query(request);
 System.out.println("Query successful. Found " + response.count() + "
 items that have not expired yet.");

 // Print each item
 response.items().forEach(item -> {
 System.out.println("Item: " + item);
 });

 return 0;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());

Time to Live (TTL) API Version 2012-08-10 765

Amazon DynamoDB Developer Guide

 throw e;
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
JavaScript.

import { DynamoDBClient, QueryCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const queryFiltered = async (tableName, primaryKey, region = 'us-east-1')
 => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

 const params = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pk",
 FilterExpression: "#ea > :ea",
 ExpressionAttributeNames: {
 "#pk": "primaryKey",
 "#ea": "expireAt"
 },
 ExpressionAttributeValues: marshall({
 ":pk": primaryKey,
 ":ea": currentTime
 })
 };

 try {
 const { Items } = await client.send(new QueryCommand(params));
 Items.forEach(item => {
 console.log(unmarshall(item))

Time to Live (TTL) API Version 2012-08-10 766

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 });
 return Items;
 } catch (err) {
 console.error(`Error querying items: ${err}`);
 throw err;
 }
}

// Example usage (commented out for testing)
// queryFiltered('your-table-name', 'your-partition-key-value');

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
Python (Boto3).

from datetime import datetime

import boto3

def query_dynamodb_items(table_name, partition_key):
 """

 :param table_name: Name of the DynamoDB table
 :param partition_key:
 :return:
 """
 try:
 # Initialize a DynamoDB resource
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")

 # Specify your table
 table = dynamodb.Table(table_name)

 # Get the current time in epoch format
 current_time = int(datetime.now().timestamp())

Time to Live (TTL) API Version 2012-08-10 767

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 # Perform the query operation with a filter expression to exclude expired
 items
 # response = table.query(
 #
 KeyConditionExpression=boto3.dynamodb.conditions.Key('partitionKey').eq(partition_key),
 #
 FilterExpression=boto3.dynamodb.conditions.Attr('expireAt').gt(current_time)
 #)
 response = table.query(

 KeyConditionExpression=dynamodb.conditions.Key("partitionKey").eq(partition_key),

 FilterExpression=dynamodb.conditions.Attr("expireAt").gt(current_time),
)

 # Print the items that are not expired
 for item in response["Items"]:
 print(item)

 except Exception as e:
 print(f"Error querying items: {e}")

Call the function with your values
query_dynamodb_items("Music", "your-partition-key-value")

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Conditionally write to expired items

A condition expression can be used to avoid writes against expired items. The code snippet below
is a conditional update that checks whether the expiration time is greater than the current time. If
true, the write operation will continue.

The following code examples show how to conditionally update an item's TTL.

Java

SDK for Java 2.x

Update TTL on on an existing DynamoDB Item in a table, with a condition.

Time to Live (TTL) API Version 2012-08-10 768

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

package com.amazon.samplelib.ttl;

import com.amazon.samplelib.CodeSampleUtils;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import
 software.amazon.awssdk.services.dynamodb.model.ConditionalCheckFailedException;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.Map;
import java.util.Optional;

/**
 * Updates an item in a DynamoDB table with TTL attributes using a conditional
 expression.
 * This class demonstrates how to conditionally update TTL expiration timestamps.
 */
public class UpdateTTLConditional {

 private static final String USAGE =
 """
 Usage:
 <tableName> <primaryKey> <sortKey> <region>
 Where:
 tableName - The Amazon DynamoDB table being queried.
 primaryKey - The name of the primary key. Also known as the hash
 or partition key.
 sortKey - The name of the sort key. Also known as the range
 attribute.
 region (optional) - The AWS region that the Amazon DynamoDB table
 is located in. (Default: us-east-1)
 """;
 private static final int DAYS_TO_EXPIRE = 90;
 private static final int SECONDS_PER_DAY = 24 * 60 * 60;
 private static final String PRIMARY_KEY_ATTR = "primaryKey";
 private static final String SORT_KEY_ATTR = "sortKey";
 private static final String UPDATED_AT_ATTR = "updatedAt";
 private static final String EXPIRE_AT_ATTR = "expireAt";

Time to Live (TTL) API Version 2012-08-10 769

Amazon DynamoDB Developer Guide

 private static final String UPDATE_EXPRESSION = "SET " + UPDATED_AT_ATTR +
 "=:c, " + EXPIRE_AT_ATTR + "=:e";
 private static final String CONDITION_EXPRESSION = "attribute_exists(" +
 PRIMARY_KEY_ATTR + ")";
 private static final String SUCCESS_MESSAGE = "%s UpdateItem operation with
 TTL successful.";
 private static final String CONDITION_FAILED_MESSAGE = "Condition check
 failed. Item does not exist.";
 private static final String TABLE_NOT_FOUND_ERROR = "Error: The Amazon
 DynamoDB table \"%s\" can't be found.";

 private final DynamoDbClient dynamoDbClient;

 /**
 * Constructs an UpdateTTLConditional with a default DynamoDB client.
 */
 public UpdateTTLConditional() {
 this.dynamoDbClient = null;
 }

 /**
 * Constructs an UpdateTTLConditional with the specified DynamoDB client.
 *
 * @param dynamoDbClient The DynamoDB client to use
 */
 public UpdateTTLConditional(final DynamoDbClient dynamoDbClient) {
 this.dynamoDbClient = dynamoDbClient;
 }

 /**
 * Main method to demonstrate conditionally updating an item with TTL.
 *
 * @param args Command line arguments
 */
 public static void main(final String[] args) {
 try {
 int result = new UpdateTTLConditional().processArgs(args);
 System.exit(result);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Time to Live (TTL) API Version 2012-08-10 770

Amazon DynamoDB Developer Guide

 /**
 * Process command line arguments and conditionally update an item with TTL.
 *
 * @param args Command line arguments
 * @return 0 if successful, non-zero otherwise
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 * @throws IllegalArgumentException If arguments are invalid
 */
 public int processArgs(final String[] args) {
 // Argument validation (remove or replace this line when reusing this
 code)
 CodeSampleUtils.validateArgs(args, new int[] {3, 4}, USAGE);

 final String tableName = args[0];
 final String primaryKey = args[1];
 final String sortKey = args[2];
 final Region region = Optional.ofNullable(args.length > 3 ? args[3] :
 null)
 .map(Region::of)
 .orElse(Region.US_EAST_1);

 // Get current time in epoch second format
 final long currentTime = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = currentTime + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 // Create the key map for the item to update
 final Map<String, AttributeValue> keyMap = Map.of(
 PRIMARY_KEY_ATTR, AttributeValue.builder().s(primaryKey).build(),
 SORT_KEY_ATTR, AttributeValue.builder().s(sortKey).build());

 // Create the expression attribute values
 final Map<String, AttributeValue> expressionAttributeValues = Map.of(
 ":c",
 AttributeValue.builder().n(String.valueOf(currentTime)).build(),
 ":e",
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

 final UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(keyMap)
 .updateExpression(UPDATE_EXPRESSION)

Time to Live (TTL) API Version 2012-08-10 771

Amazon DynamoDB Developer Guide

 .conditionExpression(CONDITION_EXPRESSION)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final UpdateItemResponse response = ddb.updateItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return 0;
 } catch (ConditionalCheckFailedException e) {
 System.err.println(CONDITION_FAILED_MESSAGE);
 throw e;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Update TTL on on an existing DynamoDB Item in a table, with a condition.

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const updateItemConditional = async (tableName, partitionKey, sortKey,
 region = 'us-east-1', newAttribute = 'default-value') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

Time to Live (TTL) API Version 2012-08-10 772

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 const params = {
 TableName: tableName,
 Key: marshall({
 artist: partitionKey,
 album: sortKey
 }),
 UpdateExpression: "SET newAttribute = :newAttribute",
 ConditionExpression: "expireAt > :expiration",
 ExpressionAttributeValues: marshall({
 ':newAttribute': newAttribute,
 ':expiration': currentTime
 }),
 ReturnValues: "ALL_NEW"
 };

 try {
 const response = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(response.Attributes);
 console.log("Item updated successfully: ", responseData);
 return responseData;
 } catch (error) {
 if (error.name === "ConditionalCheckFailedException") {
 console.log("Condition check failed: Item's 'expireAt' is expired.");
 } else {
 console.error("Error updating item: ", error);
 }
 throw error;
 }
};

// Example usage (commented out for testing)
// updateItemConditional('your-table-name', 'your-partition-key-value', 'your-
sort-key-value');

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Update TTL on on an existing DynamoDB Item in a table, with a condition.

Time to Live (TTL) API Version 2012-08-10 773

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

from datetime import datetime, timedelta

import boto3
from botocore.exceptions import ClientError

def update_dynamodb_item_ttl(table_name, region, primary_key, sort_key,
 ttl_attribute):
 """
 Updates an existing record in a DynamoDB table with a new or updated TTL
 attribute.

 :param table_name: Name of the DynamoDB table
 :param region: AWS Region of the table - example `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :param ttl_attribute: name of the TTL attribute in the target DynamoDB table
 :return:
 """
 try:
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Generate updated TTL in epoch second format
 updated_expiration_time = int((datetime.now() +
 timedelta(days=90)).timestamp())

 # Define the update expression for adding/updating a new attribute
 update_expression = "SET newAttribute = :val1"

 # Define the condition expression for checking if 'expireAt' is not
 expired
 condition_expression = "expireAt > :val2"

 # Define the expression attribute values
 expression_attribute_values = {":val1": ttl_attribute, ":val2":
 updated_expiration_time}

 response = table.update_item(
 Key={"primaryKey": primary_key, "sortKey": sort_key},
 UpdateExpression=update_expression,
 ConditionExpression=condition_expression,
 ExpressionAttributeValues=expression_attribute_values,

Time to Live (TTL) API Version 2012-08-10 774

Amazon DynamoDB Developer Guide

)

 print("Item updated successfully.")
 return response["ResponseMetadata"]["HTTPStatusCode"] # Ideally a 200 OK
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 print("Condition check failed: Item's 'expireAt' is expired.")
 else:
 print(f"Error updating item: {e}")
 except Exception as e:
 print(f"Error updating item: {e}")

replace with your values
update_dynamodb_item_ttl(
 "your-table-name",
 "us-east-1",
 "your-partition-key-value",
 "your-sort-key-value",
 "your-ttl-attribute-value",
)

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

Identifying deleted items in DynamoDB Streams

The streams record contains a user identity field Records[<index>].userIdentity. Items that
are deleted by the TTL process have the following fields:

Records[<index>].userIdentity.type
"Service"

Records[<index>].userIdentity.principalId
"dynamodb.amazonaws.com"

The following JSON shows the relevant portion of a single streams record:

"Records": [
 {
 ...
 "userIdentity": {

Time to Live (TTL) API Version 2012-08-10 775

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 "type": "Service",
 "principalId": "dynamodb.amazonaws.com"
 }
 ...
 }
]

Querying tables in DynamoDB

You can use the Query API operation in Amazon DynamoDB to find items based on primary key
values.

You must provide the name of the partition key attribute and a single value for that attribute.
Query returns all items with that partition key value. Optionally, you can provide a sort key
attribute and use a comparison operator to refine the search results.

For more information on how to use Query, such as the request syntax, response parameters, and
additional examples, see Query in the Amazon DynamoDB API Reference.

Topics

• Key condition expressions for the Query operation in DynamoDB

• Filter expressions for the Query operation in DynamoDB

• Paginating table query results in DynamoDB

• Other aspects of working with the Query operation in DynamoDB

Key condition expressions for the Query operation in DynamoDB

You can use any attribute name in a key condition expression, provided that the first character
is a-z or A-Z and the rest of the characters (starting from the second character, if present) are
a-z, A-Z, or 0-9. In addition, the attribute name must not be a DynamoDB reserved word. (For
a complete list of these, see Reserved words in DynamoDB.) If an attribute name does not meet
these requirements, you must define an expression attribute name as a placeholder. For more
information, see Expression attribute names (aliases) in DynamoDB.

For items with a given partition key value, DynamoDB stores these items close together, in sorted
order by sort key value. In a Query operation, DynamoDB retrieves the items in sorted order, and
then processes the items using KeyConditionExpression and any FilterExpression that
might be present. Only then are the Query results sent back to the client.

Querying tables API Version 2012-08-10 776

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

A Query operation always returns a result set. If no matching items are found, the result set is
empty.

Query results are always sorted by the sort key value. If the data type of the sort key is Number,
the results are returned in numeric order. Otherwise, the results are returned in order of UTF-8
bytes. By default, the sort order is ascending. To reverse the order, set the ScanIndexForward
parameter to false.

A single Query operation can retrieve a maximum of 1 MB of data. This limit applies before any
FilterExpression or ProjectionExpression is applied to the results. If LastEvaluatedKey
is present in the response and is non-null, you must paginate the result set (see Paginating table
query results in DynamoDB).

Key condition expression examples

To specify the search criteria, you use a key condition expression—a string that determines the
items to be read from the table or index.

You must specify the partition key name and value as an equality condition. You cannot use a non-
key attribute in a key condition expression.

You can optionally provide a second condition for the sort key (if present). The sort key condition
must use one of the following comparison operators:

• a = b — true if the attribute a is equal to the value b

• a < b — true if a is less than b

• a <= b — true if a is less than or equal to b

• a > b — true if a is greater than b

• a >= b — true if a is greater than or equal to b

• a BETWEEN b AND c — true if a is greater than or equal to b, and less than or equal to c.

The following function is also supported:

• begins_with (a, substr)— true if the value of attribute a begins with a particular
substring.

The following Amazon Command Line Interface (Amazon CLI) examples demonstrate the use of
key condition expressions. These expressions use placeholders (such as :name and :sub) instead

Querying tables API Version 2012-08-10 777

Amazon DynamoDB Developer Guide

of actual values. For more information, see Expression attribute names (aliases) in DynamoDB and
Using expression attribute values in DynamoDB.

Example

Query the Thread table for a particular ForumName (partition key). All of the items with that
ForumName value are read by the query because the sort key (Subject) is not included in
KeyConditionExpression.

aws dynamodb query \
 --table-name Thread \
 --key-condition-expression "ForumName = :name" \
 --expression-attribute-values '{":name":{"S":"Amazon DynamoDB"}}'

Example

Query the Thread table for a particular ForumName (partition key), but this time return only the
items with a given Subject (sort key).

aws dynamodb query \
 --table-name Thread \
 --key-condition-expression "ForumName = :name and Subject = :sub" \
 --expression-attribute-values file://values.json

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":name":{"S":"Amazon DynamoDB"},
 ":sub":{"S":"DynamoDB Thread 1"}
}

Example

Query the Reply table for a particular Id (partition key), but return only those items whose
ReplyDateTime (sort key) begins with certain characters.

aws dynamodb query \
 --table-name Reply \
 --key-condition-expression "Id = :id and begins_with(ReplyDateTime, :dt)" \
 --expression-attribute-values file://values.json

Querying tables API Version 2012-08-10 778

Amazon DynamoDB Developer Guide

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":id":{"S":"Amazon DynamoDB#DynamoDB Thread 1"},
 ":dt":{"S":"2015-09"}
}

Filter expressions for the Query operation in DynamoDB

If you need to further refine the Query results, you can optionally provide a filter expression. A
filter expression determines which items within the Query results should be returned to you. All of
the other results are discarded.

A filter expression is applied after a Query finishes, but before the results are returned. Therefore,
a Query consumes the same amount of read capacity, regardless of whether a filter expression is
present.

A Query operation can retrieve a maximum of 1 MB of data. This limit applies before the filter
expression is evaluated.

A filter expression cannot contain partition key or sort key attributes. You need to specify those
attributes in the key condition expression, not the filter expression.

The syntax for a filter expression is similar to that of a key condition expression. Filter expressions
can use the same comparators, functions, and logical operators as a key condition expression. In
addition, filter expressions can use the not-equals operator (<>), the OR operator, the CONTAINS
operator, the IN operator, the BEGINS_WITH operator, the BETWEEN operator, the EXISTS
operator, and the SIZE operator. For more information, see Key condition expressions for the
Query operation in DynamoDB and Syntax for filter and condition expressions.

Example

The following Amazon CLI example queries the Thread table for a particular ForumName (partition
key) and Subject (sort key). Of the items that are found, only the most popular discussion threads
are returned—in other words, only those threads with more than a certain number of Views.

aws dynamodb query \
 --table-name Thread \
 --key-condition-expression "ForumName = :fn and Subject begins_with :sub" \
 --filter-expression "#v >= :num" \

Querying tables API Version 2012-08-10 779

Amazon DynamoDB Developer Guide

 --expression-attribute-names '{"#v": "Views"}' \
 --expression-attribute-values file://values.json

The arguments for --expression-attribute-values are stored in the values.json file.

{
 ":fn":{"S":"Amazon DynamoDB"},
 ":sub":{"S":"DynamoDB Thread 1"},
 ":num":{"N":"3"}
}

Note that Views is a reserved word in DynamoDB (see Reserved words in DynamoDB), so this
example uses #v as a placeholder. For more information, see Expression attribute names (aliases) in
DynamoDB.

Note

A filter expression removes items from the Query result set. If possible, avoid using Query
where you expect to retrieve a large number of items but also need to discard most of
those items.

Paginating table query results in DynamoDB

DynamoDB paginates the results from Query operations. With pagination, the Query results are
divided into "pages" of data that are 1 MB in size (or less). An application can process the first page
of results, then the second page, and so on.

A single Query only returns a result set that fits within the 1 MB size limit. To determine whether
there are more results, and to retrieve them one page at a time, applications should do the
following:

1. Examine the low-level Query result:

• If the result contains a LastEvaluatedKey element and it's non-null, proceed to step 2.

• If there is not a LastEvaluatedKey in the result, there are no more items to be retrieved.

2. Construct a Query with the same KeyConditionExpression. However, this time, take the
LastEvaluatedKey value from step 1 and use it as the ExclusiveStartKey parameter in the
new Query request.

Querying tables API Version 2012-08-10 780

Amazon DynamoDB Developer Guide

3. Run the new Query request.

4. Go to step 1.

In other words, the LastEvaluatedKey from a Query response should be used as the
ExclusiveStartKey for the next Query request. If there is not a LastEvaluatedKey element
in a Query response, then you have retrieved the final page of results. If LastEvaluatedKey is
not empty, it does not necessarily mean that there is more data in the result set. The only way to
know when you have reached the end of the result set is when LastEvaluatedKey is empty.

You can use the Amazon CLI to view this behavior. The Amazon CLI sends low-level Query requests
to DynamoDB repeatedly, until LastEvaluatedKey is no longer present in the results. Consider
the following Amazon CLI example that retrieves movie titles from a particular year.

aws dynamodb query --table-name Movies \
 --projection-expression "title" \
 --key-condition-expression "#y = :yyyy" \
 --expression-attribute-names '{"#y":"year"}' \
 --expression-attribute-values '{":yyyy":{"N":"1993"}}' \
 --page-size 5 \
 --debug

Ordinarily, the Amazon CLI handles pagination automatically. However, in this example, the
Amazon CLI --page-size parameter limits the number of items per page. The --debug
parameter prints low-level information about requests and responses.

If you run the example, the first response from DynamoDB looks similar to the following.

2017-07-07 11:13:15,603 - MainThread - botocore.parsers - DEBUG - Response body:
b'{"Count":5,"Items":[{"title":{"S":"A Bronx Tale"}},
{"title":{"S":"A Perfect World"}},{"title":{"S":"Addams Family Values"}},
{"title":{"S":"Alive"}},{"title":{"S":"Benny & Joon"}}],
"LastEvaluatedKey":{"year":{"N":"1993"},"title":{"S":"Benny & Joon"}},
"ScannedCount":5}'

The LastEvaluatedKey in the response indicates that not all of the items have been retrieved.
The Amazon CLI then issues another Query request to DynamoDB. This request and response
pattern continues, until the final response.

2017-07-07 11:13:16,291 - MainThread - botocore.parsers - DEBUG - Response body:

Querying tables API Version 2012-08-10 781

Amazon DynamoDB Developer Guide

b'{"Count":1,"Items":[{"title":{"S":"What\'s Eating Gilbert
 Grape"}}],"ScannedCount":1}'

The absence of LastEvaluatedKey indicates that there are no more items to retrieve.

Note

The Amazon SDKs handle the low-level DynamoDB responses (including the presence or
absence of LastEvaluatedKey) and provide various abstractions for paginating Query
results. For example, the SDK for Java document interface provides java.util.Iterator
support so that you can walk through the results one at a time.
For code examples in various programming languages, see the Amazon DynamoDB Getting
Started Guide and the Amazon SDK documentation for your language.

You can also reduce page size by limiting the number of items in the result set, with the Limit
parameter of the Query operation.

For more information about querying with DynamoDB, see Querying tables in DynamoDB.

Other aspects of working with the Query operation in DynamoDB

This section covers additional aspects of the DynamoDB Query operation, including limiting result
size, counting scanned vs. returned items, monitoring read capacity consumption, and controlling
read consistency.

Limiting the number of items in the result set

With the Query operation, you can limit the number of items that it reads. To do this, set the
Limit parameter to the maximum number of items that you want.

For example, suppose that you Query a table, with a Limit value of 6, and without a filter
expression. The Query result contains the first six items from the table that match the key
condition expression from the request.

Now suppose that you add a filter expression to the Query. In this case, DynamoDB reads up to six
items, and then returns only those that match the filter expression. The final Query result contains
six items or fewer, even if more items would have matched the filter expression if DynamoDB had
kept reading more items.

Querying tables API Version 2012-08-10 782

https://docs.amazonaws.cn/amazondynamodb/latest/gettingstartedguide/
https://docs.amazonaws.cn/amazondynamodb/latest/gettingstartedguide/

Amazon DynamoDB Developer Guide

Counting the items in the results

In addition to the items that match your criteria, the Query response contains the following
elements:

• ScannedCount — The number of items that matched the key condition expression before a
filter expression (if present) was applied.

• Count — The number of items that remain after a filter expression (if present) was applied.

Note

If you don't use a filter expression, ScannedCount and Count have the same value.

If the size of the Query result set is larger than 1 MB, ScannedCount and Count represent only a
partial count of the total items. You need to perform multiple Query operations to retrieve all the
results (see Paginating table query results in DynamoDB).

Each Query response contains the ScannedCount and Count for the items that were processed
by that particular Query request. To obtain grand totals for all of the Query requests, you could
keep a running tally of both ScannedCount and Count.

Capacity units consumed by query

You can Query any table or secondary index, as long as you provide the name of the partition key
attribute and a single value for that attribute. Query returns all items with that partition key value.
Optionally, you can provide a sort key attribute and use a comparison operator to refine the search
results. Query API operations consume read capacity units, as follows.

If you Query a... DynamoDB consumes read capacity units
from...

Table The table's provisioned read capacity.

Global secondary index The index's provisioned read capacity.

Local secondary index The base table's provisioned read capacity.

Querying tables API Version 2012-08-10 783

Amazon DynamoDB Developer Guide

By default, a Query operation does not return any data on how much read capacity it consumes.
However, you can specify the ReturnConsumedCapacity parameter in a Query request to obtain
this information. The following are the valid settings for ReturnConsumedCapacity:

• NONE — No consumed capacity data is returned. (This is the default.)

• TOTAL — The response includes the aggregate number of read capacity units consumed.

• INDEXES — The response shows the aggregate number of read capacity units consumed,
together with the consumed capacity for each table and index that was accessed.

DynamoDB calculates the number of read capacity units consumed based on the number of items
and the size of those items, not on the amount of data that is returned to an application. For
this reason, the number of capacity units consumed is the same whether you request all of the
attributes (the default behavior) or just some of them (using a projection expression). The number
is also the same whether or not you use a filter expression. Query consumes a minimum read
capacity unit to perform one strongly consistent read per second, or two eventually consistent
reads per second for an item up to 4 KB. If you need to read an item that is larger than 4 KB,
DynamoDB needs additional read request units. Empty tables and very large tables which have a
sparse amount of partition keys might see some additional RCUs charged beyond the amount of
data queried. This covers the cost of serving the Query request, even if no data exists.

Read consistency for query

A Query operation performs eventually consistent reads, by default. This means that the Query
results might not reflect changes due to recently completed PutItem or UpdateItem operations.
For more information, see DynamoDB read consistency.

If you require strongly consistent reads, set the ConsistentRead parameter to true in the Query
request.

Scanning tables in DynamoDB

A Scan operation in Amazon DynamoDB reads every item in a table or a secondary index. By
default, a Scan operation returns all of the data attributes for every item in the table or index. You
can use the ProjectionExpression parameter so that Scan only returns some of the attributes,
rather than all of them.

Scan always returns a result set. If no matching items are found, the result set is empty.

Scanning tables API Version 2012-08-10 784

Amazon DynamoDB Developer Guide

A single Scan request can retrieve a maximum of 1 MB of data. Optionally, DynamoDB can apply a
filter expression to this data, narrowing the results before they are returned to the user.

Topics

• Filter expressions for scan

• Limiting the number of items in the result set

• Paginating the results

• Counting the items in the results

• Capacity units consumed by scan

• Read consistency for scan

• Parallel scan

Filter expressions for scan

If you need to further refine the Scan results, you can optionally provide a filter expression. A filter
expression determines which items within the Scan results should be returned to you. All of the
other results are discarded.

A filter expression is applied after a Scan finishes but before the results are returned. Therefore,
a Scan consumes the same amount of read capacity, regardless of whether a filter expression is
present.

A Scan operation can retrieve a maximum of 1 MB of data. This limit applies before the filter
expression is evaluated.

With Scan, you can specify any attributes in a filter expression—including partition key and sort
key attributes.

The syntax for a filter expression is identical to that of a condition expression. Filter expressions
can use the same comparators, functions, and logical operators as a condition expression. See
Condition and filter expressions, operators, and functions in DynamoDB for more information
about logical operators.

Example

The following Amazon Command Line Interface (Amazon CLI) example scans the Thread table and
returns only the items that were last posted to by a particular user.

Scanning tables API Version 2012-08-10 785

Amazon DynamoDB Developer Guide

aws dynamodb scan \
 --table-name Thread \
 --filter-expression "LastPostedBy = :name" \
 --expression-attribute-values '{":name":{"S":"User A"}}'

Limiting the number of items in the result set

The Scan operation enables you to limit the number of items that it returns in the result. To do
this, set the Limit parameter to the maximum number of items that you want the Scan operation
to return, prior to filter expression evaluation.

For example, suppose that you Scan a table with a Limit value of 6 and without a filter
expression. The Scan result contains the first six items from the table.

Now suppose that you add a filter expression to the Scan. In this case, DynamoDB applies the filter
expression to the six items that were returned, discarding those that do not match. The final Scan
result contains six items or fewer, depending on the number of items that were filtered.

Paginating the results

DynamoDB paginates the results from Scan operations. With pagination, the Scan results are
divided into "pages" of data that are 1 MB in size (or less). An application can process the first page
of results, then the second page, and so on.

A single Scan only returns a result set that fits within the 1 MB size limit.

To determine whether there are more results and to retrieve them one page at a time, applications
should do the following:

1. Examine the low-level Scan result:

• If the result contains a LastEvaluatedKey element, proceed to step 2.

• If there is not a LastEvaluatedKey in the result, then there are no more items to be
retrieved.

2. Construct a new Scan request, with the same parameters as the previous one. However, this
time, take the LastEvaluatedKey value from step 1 and use it as the ExclusiveStartKey
parameter in the new Scan request.

3. Run the new Scan request.

4. Go to step 1.

Scanning tables API Version 2012-08-10 786

Amazon DynamoDB Developer Guide

In other words, the LastEvaluatedKey from a Scan response should be used as the
ExclusiveStartKey for the next Scan request. If there is not a LastEvaluatedKey element in
a Scan response, you have retrieved the final page of results. (The absence of LastEvaluatedKey
is the only way to know that you have reached the end of the result set.)

You can use the Amazon CLI to view this behavior. The Amazon CLI sends low-level Scan requests
to DynamoDB, repeatedly, until LastEvaluatedKey is no longer present in the results. Consider
the following Amazon CLI example that scans the entire Movies table but returns only the movies
from a particular genre.

aws dynamodb scan \
 --table-name Movies \
 --projection-expression "title" \
 --filter-expression 'contains(info.genres,:gen)' \
 --expression-attribute-values '{":gen":{"S":"Sci-Fi"}}' \
 --page-size 100 \
 --debug

Ordinarily, the Amazon CLI handles pagination automatically. However, in this example, the
Amazon CLI --page-size parameter limits the number of items per page. The --debug
parameter prints low-level information about requests and responses.

Note

Your pagination results will also differ based on the input parameters you pass.

• Using aws dynamodb scan --table-name Prices --max-items 1 returns a
NextToken

• Using aws dynamodb scan --table-name Prices --limit 1 returns a
LastEvaluatedKey.

Also be aware that using --starting-token in particular requires the NextToken value.

If you run the example, the first response from DynamoDB looks similar to the following.

2017-07-07 12:19:14,389 - MainThread - botocore.parsers - DEBUG - Response body:
b'{"Count":7,"Items":[{"title":{"S":"Monster on the Campus"}},{"title":{"S":"+1"}},

Scanning tables API Version 2012-08-10 787

Amazon DynamoDB Developer Guide

{"title":{"S":"100 Degrees Below Zero"}},{"title":{"S":"About Time"}},{"title":
{"S":"After Earth"}},
{"title":{"S":"Age of Dinosaurs"}},{"title":{"S":"Cloudy with a Chance of Meatballs
 2"}}],
"LastEvaluatedKey":{"year":{"N":"2013"},"title":{"S":"Curse of
 Chucky"}},"ScannedCount":100}'

The LastEvaluatedKey in the response indicates that not all of the items have been retrieved.
The Amazon CLI then issues another Scan request to DynamoDB. This request and response
pattern continues, until the final response.

2017-07-07 12:19:17,830 - MainThread - botocore.parsers - DEBUG - Response body:
b'{"Count":1,"Items":[{"title":{"S":"WarGames"}}],"ScannedCount":6}'

The absence of LastEvaluatedKey indicates that there are no more items to retrieve.

Note

The Amazon SDKs handle the low-level DynamoDB responses (including the presence or
absence of LastEvaluatedKey) and provide various abstractions for paginating Scan
results. For example, the SDK for Java document interface provides java.util.Iterator
support so that you can walk through the results one at a time.
For code examples in various programming languages, see the Amazon DynamoDB Getting
Started Guide and the Amazon SDK documentation for your language.

Counting the items in the results

In addition to the items that match your criteria, the Scan response contains the following
elements:

• ScannedCount — The number of items evaluated, before any ScanFilter is applied. A high
ScannedCount value with few, or no, Count results indicates an inefficient Scan operation. If
you did not use a filter in the request, ScannedCount is the same as Count.

• Count — The number of items that remain, after a filter expression (if present) was applied.

Scanning tables API Version 2012-08-10 788

https://docs.amazonaws.cn/amazondynamodb/latest/gettingstartedguide/
https://docs.amazonaws.cn/amazondynamodb/latest/gettingstartedguide/

Amazon DynamoDB Developer Guide

Note

If you do not use a filter expression, ScannedCount and Count have the same value.

If the size of the Scan result set is larger than 1 MB, ScannedCount and Count represent only a
partial count of the total items. You need to perform multiple Scan operations to retrieve all the
results (see Paginating the results).

Each Scan response contains the ScannedCount and Count for the items that were processed
by that particular Scan request. To get grand totals for all of the Scan requests, you could keep a
running tally of both ScannedCount and Count.

Capacity units consumed by scan

You can Scan any table or secondary index. Scan operations consume read capacity units, as
follows.

If you Scan a... DynamoDB consumes read capacity units
from...

Table The table's provisioned read capacity.

Global secondary index The index's provisioned read capacity.

Local secondary index The base table's provisioned read capacity.

Note

Cross-account access for secondary index scan operations is currently not supported with
resource-based policies.

By default, a Scan operation does not return any data on how much read capacity it consumes.
However, you can specify the ReturnConsumedCapacity parameter in a Scan request to obtain
this information. The following are the valid settings for ReturnConsumedCapacity:

• NONE — No consumed capacity data is returned. (This is the default.)

Scanning tables API Version 2012-08-10 789

Amazon DynamoDB Developer Guide

• TOTAL — The response includes the aggregate number of read capacity units consumed.

• INDEXES — The response shows the aggregate number of read capacity units consumed,
together with the consumed capacity for each table and index that was accessed.

DynamoDB calculates the number of read capacity units consumed based on the number of
items and the size of those items, not on the amount of data that is returned to an application.
For this reason, the number of capacity units consumed is the same whether you request all of
the attributes (the default behavior) or just some of them (using a projection expression). The
number is also the same whether or not you use a filter expression. Scan consumes a minimum
read capacity unit to perform one strongly consistent read per second, or two eventually consistent
reads per second for an item up to 4 KB. If you need to read an item that is larger than 4 KB,
DynamoDB needs additional read request units. Empty tables and very large tables which have a
sparse amount of partition keys might see some additional RCUs charged beyond the amount of
data scanned. This covers the cost of serving the Scan request, even if no data exists.

Read consistency for scan

A Scan operation performs eventually consistent reads, by default. This means that the Scan
results might not reflect changes due to recently completed PutItem or UpdateItem operations.
For more information, see DynamoDB read consistency.

If you require strongly consistent reads, as of the time that the Scan begins, set the
ConsistentRead parameter to true in the Scan request. This ensures that all of the write
operations that completed before the Scan began are included in the Scan response.

Setting ConsistentRead to true can be useful in table backup or replication scenarios, in
conjunction with DynamoDB Streams. You first use Scan with ConsistentRead set to true to
obtain a consistent copy of the data in the table. During the Scan, DynamoDB Streams records any
additional write activity that occurs on the table. After the Scan is complete, you can apply the
write activity from the stream to the table.

Note

A Scan operation with ConsistentRead set to true consumes twice as many read
capacity units as compared to leaving ConsistentRead at its default value (false).

Scanning tables API Version 2012-08-10 790

./Streams.html

Amazon DynamoDB Developer Guide

Parallel scan

By default, the Scan operation processes data sequentially. Amazon DynamoDB returns data to the
application in 1 MB increments, and an application performs additional Scan operations to retrieve
the next 1 MB of data.

The larger the table or index being scanned, the more time the Scan takes to complete. In
addition, a sequential Scan might not always be able to fully use the provisioned read throughput
capacity: Even though DynamoDB distributes a large table's data across multiple physical
partitions, a Scan operation can only read one partition at a time. For this reason, the throughput
of a Scan is constrained by the maximum throughput of a single partition.

To address these issues, the Scan operation can logically divide a table or secondary index into
multiple segments, with multiple application workers scanning the segments in parallel. Each
worker can be a thread (in programming languages that support multithreading) or an operating
system process. To perform a parallel scan, each worker issues its own Scan request with the
following parameters:

• Segment — A segment to be scanned by a particular worker. Each worker should use a different
value for Segment.

• TotalSegments — The total number of segments for the parallel scan. This value must be the
same as the number of workers that your application will use.

The following diagram shows how a multithreaded application performs a parallel Scan with three
degrees of parallelism.

Scanning tables API Version 2012-08-10 791

Amazon DynamoDB Developer Guide

In this diagram, the application spawns three threads and assigns each thread a number. (Segments
are zero-based, so the first number is always 0.) Each thread issues a Scan request, setting
Segment to its designated number and setting TotalSegments to 3. Each thread scans its

Scanning tables API Version 2012-08-10 792

Amazon DynamoDB Developer Guide

designated segment, retrieving data 1 MB at a time, and returns the data to the application's main
thread.

DynamoDB assigns items to segments by applying a hash function to each item's partition key.
For a given TotalSegments value, all items with the same partition key are always assigned
to the same Segment. This means that in a table where Item 1, Item 2, and Item 3 all share
pk="account#123" (but have different sort keys), these items will be processed by the same
worker, regardless of the sort key values or the size of the item collection.

Because segment assignment is based solely on the partition key hash, segments can be unevenly
distributed. Some segments might contain no items, while others might contain many partition
keys with large item collections. As a result, increasing the total number of segments does not
guarantee faster scan performance, particularly when partition keys are not uniformly distributed
across the keyspace.

The values for Segment and TotalSegments apply to individual Scan requests, and you can use
different values at any time. You might need to experiment with these values, and the number of
workers you use, until your application achieves its best performance.

Note

A parallel scan with a large number of workers can easily consume all of the provisioned
throughput for the table or index being scanned. It is best to avoid such scans if the table
or index is also incurring heavy read or write activity from other applications.
To control the amount of data returned per request, use the Limit parameter. This can
help prevent situations where one worker consumes all of the provisioned throughput, at
the expense of all other workers.

PartiQL - a SQL-compatible query language for Amazon DynamoDB

Amazon DynamoDB supports PartiQL, a SQL-compatible query language, to select, insert, update,
and delete data in Amazon DynamoDB. Using PartiQL, you can easily interact with DynamoDB
tables and run ad hoc queries using the Amazon Web Services Management Console, NoSQL
Workbench, Amazon Command Line Interface, and DynamoDB APIs for PartiQL.

PartiQL operations provide the same availability, latency, and performance as the other DynamoDB
data plane operations.

PartiQL query language API Version 2012-08-10 793

https://partiql.org/

Amazon DynamoDB Developer Guide

The following sections describe the DynamoDB implementation of PartiQL.

Topics

• What is PartiQL?

• PartiQL in Amazon DynamoDB

• Getting started with PartiQL for DynamoDB

• PartiQL data types for DynamoDB

• PartiQL statements for DynamoDB

• Use PartiQL functions with DynamoDB

• PartiQL arithmetic, comparison, and logical operators for DynamoDB

• Performing transactions with PartiQL for DynamoDB

• Running batch operations with PartiQL for DynamoDB

• IAM security policies with PartiQL for DynamoDB

What is PartiQL?

PartiQL provides SQL-compatible query access across multiple data stores containing structured
data, semistructured data, and nested data. It is widely used within Amazon and is now available as
part of many Amazon services, including DynamoDB.

For the PartiQL specification and a tutorial on the core query language, see the PartiQL
documentation.

Note

• Amazon DynamoDB supports a subset of the PartiQL query language.

• Amazon DynamoDB does not support the Amazon ion data format or Amazon Ion
literals.

PartiQL in Amazon DynamoDB

To run PartiQL queries in DynamoDB, you can use:

• The DynamoDB console

• The NoSQL Workbench

PartiQL query language API Version 2012-08-10 794

https://partiql.org/docs.html
https://partiql.org/docs.html
https://partiql.org/
http://amzn.github.io/ion-docs/

Amazon DynamoDB Developer Guide

• The Amazon Command Line Interface (Amazon CLI)

• The DynamoDB APIs

For information about using these methods to access DynamoDB, see Accessing DynamoDB.

Getting started with PartiQL for DynamoDB

This section describes how to use PartiQL for DynamoDB from the Amazon DynamoDB console, the
Amazon Command Line Interface (Amazon CLI), and DynamoDB APIs.

In the following examples, the DynamoDB table that is defined in the Getting started with
DynamoDB tutorial is a pre-requisite.

For information about using the DynamoDB console, Amazon Command Line Interface, or
DynamoDB APIs to access DynamoDB, see Accessing DynamoDB.

To download and use the NoSQL workbench to build PartiQL for DynamoDB statements choose
PartiQL operations at the top right corner of the NoSQL Workbench for DynamoDB Operation
builder.

Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB
console at https://console.amazonaws.cn/dynamodb/.

PartiQL query language API Version 2012-08-10 795

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AccessingDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AccessingDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.operationbuilder.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.operationbuilder.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

2. In the navigation pane on the left side of the console, choose PartiQL editor.

3. Choose the Music table.

4. Choose Query table. This action generates a query that will not result in a full table scan.

5. Replace partitionKeyValue with the string value Acme Band. Replace sortKeyValue
with the string value Happy Day.

6. Choose the Run button.

7. You can view the results of the query by choosing the Table view or the JSON view
buttons.

NoSQL workbench

1. Choose PartiQL statement.

PartiQL query language API Version 2012-08-10 796

Amazon DynamoDB Developer Guide

2. Enter the following PartiQL SELECT statement

SELECT *
FROM Music
WHERE Artist=? and SongTitle=?

3. To specify a value for the Artist and SongTitle parameters:

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Choose the attribute type string and value Acme Band.

d. Repeat steps b and c, and choose type string and value PartiQL Rocks.

4. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use
it in your application.

5. If you want the operation to be run immediately, choose Run.

Amazon CLI

1. Create an item in the Music table using the INSERT PartiQL statement.

aws dynamodb execute-statement --statement "INSERT INTO Music \
 VALUE \
 {'Artist':'Acme Band','SongTitle':'PartiQL Rocks'}"

2. Retrieve an item from the Music table using the SELECT PartiQL statement.

aws dynamodb execute-statement --statement "SELECT * FROM Music \
 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

3. Update an item in the Music table using the UPDATE PartiQL statement.

aws dynamodb execute-statement --statement "UPDATE Music \
 SET AwardsWon=1 \
 SET AwardDetail={'Grammys':[2020,
 2018]} \

PartiQL query language API Version 2012-08-10 797

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.select.html

Amazon DynamoDB Developer Guide

 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

Add a list value for an item in the Music table.

aws dynamodb execute-statement --statement "UPDATE Music \
 SET AwardDetail.Grammys
 =list_append(AwardDetail.Grammys,[2016]) \
 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

Remove a list value for an item in the Music table.

aws dynamodb execute-statement --statement "UPDATE Music \
 REMOVE AwardDetail.Grammys[2] \
 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

Add a new map member for an item in the Music table.

aws dynamodb execute-statement --statement "UPDATE Music \
 SET AwardDetail.BillBoard=[2020] \
 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

Add a new string set attribute for an item in the Music table.

aws dynamodb execute-statement --statement "UPDATE Music \
 SET BandMembers =<<'member1',
 'member2'>> \
 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

Update a string set attribute for an item in the Music table.

aws dynamodb execute-statement --statement "UPDATE Music \
 SET BandMembers
 =set_add(BandMembers, <<'newmember'>>) \

PartiQL query language API Version 2012-08-10 798

Amazon DynamoDB Developer Guide

 WHERE Artist='Acme Band' AND
 SongTitle='PartiQL Rocks'"

4. Delete an item from the Music table using the DELETE PartiQL statement.

aws dynamodb execute-statement --statement "DELETE FROM Music \
 WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'"

Java

import java.util.ArrayList;
import java.util.List;

import com.amazonaws.AmazonClientException;
import com.amazonaws.AmazonServiceException;
import software.amazon.dynamodb.AmazonDynamoDB;
import software.amazon.dynamodb.AmazonDynamoDBClientBuilder;
import software.amazon.dynamodb.model.AttributeValue;
import software.amazon.dynamodb.model.ConditionalCheckFailedException;
import software.amazon.dynamodb.model.ExecuteStatementRequest;
import software.amazon.dynamodb.model.ExecuteStatementResult;
import software.amazon.dynamodb.model.InternalServerErrorException;
import software.amazon.dynamodb.model.ItemCollectionSizeLimitExceededException;
import software.amazon.dynamodb.model.ProvisionedThroughputExceededException;
import software.amazon.dynamodb.model.RequestLimitExceededException;
import software.amazon.dynamodb.model.ResourceNotFoundException;
import software.amazon.dynamodb.model.TransactionConflictException;

public class DynamoDBPartiQGettingStarted {

 public static void main(String[] args) {
 // Create the DynamoDB Client with the region you want
 AmazonDynamoDB dynamoDB = createDynamoDbClient("us-west-1");

 try {
 // Create ExecuteStatementRequest
 ExecuteStatementRequest executeStatementRequest = new
 ExecuteStatementRequest();
 List<AttributeValue> parameters= getPartiQLParameters();

 //Create an item in the Music table using the INSERT PartiQL statement

PartiQL query language API Version 2012-08-10 799

Amazon DynamoDB Developer Guide

 processResults(executeStatementRequest(dynamoDB, "INSERT INTO Music
 value {'Artist':?,'SongTitle':?}", parameters));

 //Retrieve an item from the Music table using the SELECT PartiQL
 statement.
 processResults(executeStatementRequest(dynamoDB, "SELECT * FROM Music
 where Artist=? and SongTitle=?", parameters));

 //Update an item in the Music table using the UPDATE PartiQL statement.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music
 SET AwardsWon=1 SET AwardDetail={'Grammys':[2020, 2018]} where Artist=? and
 SongTitle=?", parameters));

 //Add a list value for an item in the Music table.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music SET
 AwardDetail.Grammys =list_append(AwardDetail.Grammys,[2016]) where Artist=? and
 SongTitle=?", parameters));

 //Remove a list value for an item in the Music table.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music REMOVE
 AwardDetail.Grammys[2] where Artist=? and SongTitle=?", parameters));

 //Add a new map member for an item in the Music table.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music set
 AwardDetail.BillBoard=[2020] where Artist=? and SongTitle=?", parameters));

 //Add a new string set attribute for an item in the Music table.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music
 SET BandMembers =<<'member1', 'member2'>> where Artist=? and SongTitle=?",
 parameters));

 //update a string set attribute for an item in the Music table.
 processResults(executeStatementRequest(dynamoDB, "UPDATE Music SET
 BandMembers =set_add(BandMembers, <<'newmember'>>) where Artist=? and SongTitle=?",
 parameters));

 //Retrieve an item from the Music table using the SELECT PartiQL
 statement.
 processResults(executeStatementRequest(dynamoDB, "SELECT * FROM Music
 where Artist=? and SongTitle=?", parameters));

 //delete an item from the Music Table
 processResults(executeStatementRequest(dynamoDB, "DELETE FROM Music
 where Artist=? and SongTitle=?", parameters));

PartiQL query language API Version 2012-08-10 800

Amazon DynamoDB Developer Guide

 } catch (Exception e) {
 handleExecuteStatementErrors(e);
 }
 }

 private static AmazonDynamoDB createDynamoDbClient(String region) {
 return AmazonDynamoDBClientBuilder.standard().withRegion(region).build();
 }

 private static List<AttributeValue> getPartiQLParameters() {
 List<AttributeValue> parameters = new ArrayList<AttributeValue>();
 parameters.add(new AttributeValue("Acme Band"));
 parameters.add(new AttributeValue("PartiQL Rocks"));
 return parameters;
 }

 private static ExecuteStatementResult executeStatementRequest(AmazonDynamoDB
 client, String statement, List<AttributeValue> parameters) {
 ExecuteStatementRequest request = new ExecuteStatementRequest();
 request.setStatement(statement);
 request.setParameters(parameters);
 return client.executeStatement(request);
 }

 private static void processResults(ExecuteStatementResult
 executeStatementResult) {
 System.out.println("ExecuteStatement successful: "+
 executeStatementResult.toString());

 }

 // Handles errors during ExecuteStatement execution. Use recommendations in
 error messages below to add error handling specific to
 // your application use-case.
 private static void handleExecuteStatementErrors(Exception exception) {
 try {
 throw exception;
 } catch (ConditionalCheckFailedException ccfe) {
 System.out.println("Condition check specified in the operation failed,
 review and update the condition " +
 "check before retrying. Error: " +
 ccfe.getErrorMessage());
 } catch (TransactionConflictException tce) {

PartiQL query language API Version 2012-08-10 801

Amazon DynamoDB Developer Guide

 System.out.println("Operation was rejected because there is an ongoing
 transaction for the item, generally " +
 "safe to retry with exponential back-off.
 Error: " + tce.getErrorMessage());
 } catch (ItemCollectionSizeLimitExceededException icslee) {
 System.out.println("An item collection is too large, you\'re using Local
 Secondary Index and exceeded " +
 "size limit of items per
 partition key. Consider using Global Secondary Index instead. Error: " +
 icslee.getErrorMessage());
 } catch (Exception e) {
 handleCommonErrors(e);
 }
 }

 private static void handleCommonErrors(Exception exception) {
 try {
 throw exception;
 } catch (InternalServerErrorException isee) {
 System.out.println("Internal Server Error, generally safe to retry with
 exponential back-off. Error: " + isee.getErrorMessage());
 } catch (RequestLimitExceededException rlee) {
 System.out.println("Throughput exceeds the current throughput limit for
 your account, increase account level throughput before " +
 "retrying. Error: " +
 rlee.getErrorMessage());
 } catch (ProvisionedThroughputExceededException ptee) {
 System.out.println("Request rate is too high. If you're using a custom
 retry strategy make sure to retry with exponential back-off. " +
 "Otherwise consider reducing frequency of
 requests or increasing provisioned capacity for your table or secondary index.
 Error: " +
 ptee.getErrorMessage());
 } catch (ResourceNotFoundException rnfe) {
 System.out.println("One of the tables was not found, verify table exists
 before retrying. Error: " + rnfe.getErrorMessage());
 } catch (AmazonServiceException ase) {
 System.out.println("An AmazonServiceException occurred, indicates that
 the request was correctly transmitted to the DynamoDB " +
 "service, but for some reason, the service
 was not able to process it, and returned an error response instead. Investigate and
 " +
 "configure retry strategy. Error type: " +
 ase.getErrorType() + ". Error message: " + ase.getErrorMessage());

PartiQL query language API Version 2012-08-10 802

Amazon DynamoDB Developer Guide

 } catch (AmazonClientException ace) {
 System.out.println("An AmazonClientException occurred, indicates that
 the client was unable to get a response from DynamoDB " +
 "service, or the client was unable to parse
 the response from the service. Investigate and configure retry strategy. "+
 "Error: " + ace.getMessage());
 } catch (Exception e) {
 System.out.println("An exception occurred, investigate and configure
 retry strategy. Error: " + e.getMessage());
 }
 }

}

PartiQL data types for DynamoDB

The following table lists the data types you can use with PartiQL for DynamoDB.

DynamoDB data type PartiQL representation Notes

Boolean TRUE | FALSE Not case sensitive.

Binary N/A Only supported via code.

List [value1, value2,...] There are no restrictions on
the data types that can be
stored in a List type, and the
elements in a List do not have
to be of the same type.

Map { 'name' : value } There are no restrictions on
the data types that can be
stored in a Map type, and the
elements in a Map do not
have to be of the same type.

Null NULL Not case sensitive.

Number 1, 1.0, 1e0 Numbers can be positive,
negative, or zero. Numbers

PartiQL query language API Version 2012-08-10 803

Amazon DynamoDB Developer Guide

DynamoDB data type PartiQL representation Notes

can have up to 38 digits of
precision.

Number Set <<number1, number2>> The elements in a number set
must be of type Number.

String Set <<'string1', 'string2'>> The elements in a string set
must be of type String.

String 'string value' Single quotes must be used to
specify String values.

Examples

The following statement demonstrates how to insert the following data types: String, Number,
Map, List, Number Set and String Set.

INSERT INTO TypesTable value {'primarykey':'1',
'NumberType':1,
'MapType' : {'entryname1': 'value', 'entryname2': 4},
'ListType': [1,'stringval'],
'NumberSetType':<<1,34,32,4.5>>,
'StringSetType':<<'stringval','stringval2'>>
}

The following statement demonstrates how to insert new elements into the Map, List, Number
Set and String Set types and change the value of a Number type.

UPDATE TypesTable
SET NumberType=NumberType + 100
SET MapType.NewMapEntry=[2020, 'stringvalue', 2.4]
SET ListType = LIST_APPEND(ListType, [4, <<'string1', 'string2'>>])
SET NumberSetType= SET_ADD(NumberSetType, <<345, 48.4>>)
SET StringSetType = SET_ADD(StringSetType, <<'stringsetvalue1', 'stringsetvalue2'>>)
WHERE primarykey='1'

The following statement demonstrates how to remove elements from the Map, List, Number Set
and String Set types and change the value of a Number type.

PartiQL query language API Version 2012-08-10 804

Amazon DynamoDB Developer Guide

UPDATE TypesTable
SET NumberType=NumberType - 1
REMOVE ListType[1]
REMOVE MapType.NewMapEntry
SET NumberSetType = SET_DELETE(NumberSetType, <<345>>)
SET StringSetType = SET_DELETE(StringSetType, <<'stringsetvalue1'>>)
WHERE primarykey='1'

For more information, see DynamoDB data types.

PartiQL statements for DynamoDB

Amazon DynamoDB supports the following PartiQL statements.

Note

DynamoDB does not support all PartiQL statements.
This reference provides basic syntax and usage examples of PartiQL statements that you
manually run using the Amazon CLI or APIs.

Data manipulation language (DML) is the set of PartiQL statements that you use to manage data in
DynamoDB tables. You use DML statements to add, modify, or delete data in a table.

The following DML and query language statements are supported:

• PartiQL select statements for DynamoDB

• PartiQL update statements for DynamoDB

• PartiQL insert statements for DynamoDB

• PartiQL delete statements for DynamoDB

Performing transactions with PartiQL for DynamoDB and Running batch operations with PartiQL
for DynamoDB are also supported by PartiQL for DynamoDB.

PartiQL select statements for DynamoDB

Use the SELECT statement to retrieve data from a table in Amazon DynamoDB.

Using the SELECT statement can result in a full table scan if an equality or IN condition with a
partition key is not provided in the WHERE clause. A scan operation examines every item for the

PartiQL query language API Version 2012-08-10 805

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes

Amazon DynamoDB Developer Guide

requested values and can use up the provisioned throughput for a large table or index in a single
operation.

If you want to avoid full table scan in PartiQL, you can:

• Author your SELECT statements to not result in full table scans by making sure your WHERE
clause condition is configured accordingly.

• Disable full table scans using the IAM policy specified at Example: Allow select statements and
deny full table scan statements in PartiQL for DynamoDB, in the DynamoDB developer guide.

For more information see Best practices for querying and scanning data, in the DynamoDB
developer guide.

Topics

• Syntax

• Parameters

• Examples

Syntax

SELECT expression [, ...]
FROM table[.index]
[WHERE condition] [[ORDER BY key [DESC|ASC] , ...]

Parameters

expression

(Required) A projection formed from the * wildcard or a projection list of one or more attribute
names or document paths from the result set. An expression can consist of calls to Use PartiQL
functions with DynamoDB or fields that are modified by PartiQL arithmetic, comparison, and
logical operators for DynamoDB .

table

(Required) The table name to query.

index

(Optional) The name of the index to query.

PartiQL query language API Version 2012-08-10 806

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.select.html#ql-reference.select.parameters
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.select.html#ql-reference.select.parameters
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-query-scan.html

Amazon DynamoDB Developer Guide

Note

You must add double quotation marks to the table name and index name when
querying an index.

SELECT *
FROM "TableName"."IndexName"

condition

(Optional) The selection criteria for the query.

Important

To ensure that a SELECT statement does not result in a full table scan, the WHERE clause
condition must specify a partition key. Use the equality or IN operator.
For example, if you have an Orders table with an OrderID partition key and other
non-key attributes, including an Address, the following statements would not result in
a full table scan:

SELECT *
FROM "Orders"
WHERE OrderID = 100

SELECT *
FROM "Orders"
WHERE OrderID = 100 and Address='some address'

SELECT *
FROM "Orders"
WHERE OrderID = 100 or OrderID = 200

SELECT *
FROM "Orders"
WHERE OrderID IN [100, 300, 234]

The following SELECT statements, however, will result in a full table scan:

SELECT *

PartiQL query language API Version 2012-08-10 807

Amazon DynamoDB Developer Guide

FROM "Orders"
WHERE OrderID > 1

SELECT *
FROM "Orders"
WHERE Address='some address'

SELECT *
FROM "Orders"
WHERE OrderID = 100 OR Address='some address'

key

(Optional) A hash key or a sort key to use to order returned results. The default order is
ascending (ASC) specify DESC if you want the results retuned in descending order.

Note

If you omit the WHERE clause, then all of the items in the table are retrieved.

Examples

The following query returns one item, if one exists, from the Orders table by specifying the
partition key, OrderID, and using the equality operator.

SELECT OrderID, Total
FROM "Orders"
WHERE OrderID = 1

The following query returns all items in the Orders table that have a specific partition key,
OrderID, values using the OR operator.

SELECT OrderID, Total
FROM "Orders"
WHERE OrderID = 1 OR OrderID = 2

PartiQL query language API Version 2012-08-10 808

Amazon DynamoDB Developer Guide

The following query returns all items in the Orders table that have a specific partition key,
OrderID, values using the IN operator. The returned results are in descending order, based on the
OrderID key attribute value.

SELECT OrderID, Total
FROM "Orders"
WHERE OrderID IN [1, 2, 3] ORDER BY OrderID DESC

The following query shows a full table scan that returns all items from the Orders table that have
a Total greater than 500, where Total is a non-key attribute.

SELECT OrderID, Total
FROM "Orders"
WHERE Total > 500

The following query shows a full table scan that returns all items from the Orders table within a
specific Total order range, using the IN operator and a non-key attribute Total.

SELECT OrderID, Total
FROM "Orders"
WHERE Total IN [500, 600]

The following query shows a full table scan that returns all items from the Orders table within a
specific Total order range, using the BETWEEN operator and a non-key attribute Total.

SELECT OrderID, Total
FROM "Orders"
WHERE Total BETWEEN 500 AND 600

The following query returns the first date a firestick device was used to watch by specifying
the partition key CustomerID and sort key MovieID in the WHERE clause condition and using
document paths in the SELECT clause.

SELECT Devices.FireStick.DateWatched[0]
FROM WatchList
WHERE CustomerID= 'C1' AND MovieID= 'M1'

The following query shows a full table scan that returns the list of items where a firestick device
was first used after 12/24/19 using document paths in the WHERE clause condition.

PartiQL query language API Version 2012-08-10 809

Amazon DynamoDB Developer Guide

SELECT Devices
FROM WatchList
WHERE Devices.FireStick.DateWatched[0] >= '12/24/19'

PartiQL update statements for DynamoDB

Use the UPDATE statement to modify the value of one or more attributes within an item in an
Amazon DynamoDB table.

Note

You can only update one item at a time; you cannot issue a single DynamoDB PartiQL
statement that updates multiple items. For information on updating multiple items, see
Performing transactions with PartiQL for DynamoDB or Running batch operations with
PartiQL for DynamoDB.

Topics

• Syntax

• Parameters

• Return value

• Examples

Syntax

UPDATE table
[SET | REMOVE] path [= data] […]
WHERE condition [RETURNING returnvalues]
<returnvalues> ::= [ALL OLD | MODIFIED OLD | ALL NEW | MODIFIED NEW] *

Parameters

table

(Required) The table containing the data to be modified.

path

(Required) An attribute name or document path to be created or modified.

PartiQL query language API Version 2012-08-10 810

Amazon DynamoDB Developer Guide

data

(Required) An attribute value or the result of an operation.

The supported operations to use with SET:

• LIST_APPEND: adds a value to a list type.

• SET_ADD: adds a value to a number or string set.

• SET_DELETE: removes a value from a number or string set.

condition

(Required) The selection criteria for the item to be modified. This condition must resolve to a
single primary key value.

returnvalues

(Optional) Use returnvalues if you want to get the item attributes as they appear before or
after they are updated. The valid values are:

• ALL OLD *- Returns all of the attributes of the item, as they appeared before the update
operation.

• MODIFIED OLD *- Returns only the updated attributes, as they appeared before the update
operation.

• ALL NEW *- Returns all of the attributes of the item, as they appear after the update
operation.

• MODIFIED NEW *- Returns only the updated attributes, as they appear after the
UpdateItem operation.

Return value

This statement does not return a value unless returnvalues parameter is specified.

Note

If the WHERE clause of the UPDATE statement does not evaluate to true for any item in the
DynamoDB table, ConditionalCheckFailedException is returned.

Examples

Update an attribute value in an existing item. If the attribute does not exist, it is created.

PartiQL query language API Version 2012-08-10 811

Amazon DynamoDB Developer Guide

The following query updates an item in the "Music" table by adding an attribute of type number
(AwardsWon) and an attribute of type map (AwardDetail).

UPDATE "Music"
SET AwardsWon=1
SET AwardDetail={'Grammys':[2020, 2018]}
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

You can add RETURNING ALL OLD * to return the attributes as they appeared before the Update
operation.

UPDATE "Music"
SET AwardsWon=1
SET AwardDetail={'Grammys':[2020, 2018]}
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'
RETURNING ALL OLD *

This returns the following:

{
 "Items": [
 {
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "PartiQL Rocks"
 }
 }
]
}

You can add RETURNING ALL NEW * to return the attributes as they appeared after the Update
operation.

UPDATE "Music"
SET AwardsWon=1
SET AwardDetail={'Grammys':[2020, 2018]}
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'
RETURNING ALL NEW *

PartiQL query language API Version 2012-08-10 812

Amazon DynamoDB Developer Guide

This returns the following:

{
 "Items": [
 {
 "AwardDetail": {
 "M": {
 "Grammys": {
 "L": [
 {
 "N": "2020"
 },
 {
 "N": "2018"
 }
]
 }
 }
 },
 "AwardsWon": {
 "N": "1"
 }
 }
]
}

The following query updates an item in the "Music" table by appending to a list
AwardDetail.Grammys.

UPDATE "Music"
SET AwardDetail.Grammys =list_append(AwardDetail.Grammys,[2016])
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

The following query updates an item in the "Music" table by removing from a list
AwardDetail.Grammys.

UPDATE "Music"
REMOVE AwardDetail.Grammys[2]
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

The following query updates an item in the "Music" table by adding BillBoard to the map
AwardDetail.

PartiQL query language API Version 2012-08-10 813

Amazon DynamoDB Developer Guide

UPDATE "Music"
SET AwardDetail.BillBoard=[2020]
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

The following query updates an item in the "Music" table by adding the string set attribute
BandMembers.

UPDATE "Music"
SET BandMembers =<<'member1', 'member2'>>
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

The following query updates an item in the "Music" table by adding newbandmember to the
string set BandMembers.

UPDATE "Music"
SET BandMembers =set_add(BandMembers, <<'newbandmember'>>)
WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'

PartiQL delete statements for DynamoDB

Use the DELETE statement to delete an existing item from your Amazon DynamoDB table.

Note

You can only delete one item at a time. You cannot issue a single DynamoDB PartiQL
statement that deletes multiple items. For information on deleting multiple items, see
Performing transactions with PartiQL for DynamoDB or Running batch operations with
PartiQL for DynamoDB.

Topics

• Syntax

• Parameters

• Return value

• Examples

PartiQL query language API Version 2012-08-10 814

Amazon DynamoDB Developer Guide

Syntax

DELETE FROM table
 WHERE condition [RETURNING returnvalues]
 <returnvalues> ::= ALL OLD *

Parameters

table

(Required) The DynamoDB table containing the item to be deleted.

condition

(Required) The selection criteria for the item to be deleted; this condition must resolve to a
single primary key value.

returnvalues

(Optional) Use returnvalues if you want to get the item attributes as they appeared before
they were deleted. The valid values are:

• ALL OLD *- The content of the old item is returned.

Return value

This statement does not return a value unless returnvalues parameter is specified.

Note

If the DynamoDB table does not have any item with the same primary key as that of the
item for which the DELETE is issued, SUCCESS is returned with 0 items deleted. If the table
has an item with same primary key, but the condition in the WHERE clause of the DELETE
statement evaluates to false, ConditionalCheckFailedException is returned.

Examples

The following query deletes an item in the "Music" table.

DELETE FROM "Music" WHERE "Artist" = 'Acme Band' AND "SongTitle" = 'PartiQL Rocks'

You can add the parameter RETURNING ALL OLD * to return the data that was deleted.

PartiQL query language API Version 2012-08-10 815

Amazon DynamoDB Developer Guide

DELETE FROM "Music" WHERE "Artist" = 'Acme Band' AND "SongTitle" = 'PartiQL Rocks'
 RETURNING ALL OLD *

The Delete statement now returns the following:

{
 "Items": [
 {
 "Artist": {
 "S": "Acme Band"
 },
 "SongTitle": {
 "S": "PartiQL Rocks"
 }
 }
]
}

PartiQL insert statements for DynamoDB

Use the INSERT statement to add an item to a table in Amazon DynamoDB.

Note

You can only insert one item at a time; you cannot issue a single DynamoDB PartiQL
statement that inserts multiple items. For information on inserting multiple items, see
Performing transactions with PartiQL for DynamoDB or Running batch operations with
PartiQL for DynamoDB.

Topics

• Syntax

• Parameters

• Return value

• Examples

Syntax

Insert a single item.

PartiQL query language API Version 2012-08-10 816

Amazon DynamoDB Developer Guide

INSERT INTO table VALUE item

Parameters

table

(Required) The table where you want to insert the data. The table must already exist.

item

(Required) A valid DynamoDB item represented as a PartiQL tuple. You must specify only one
item and each attribute name in the item is case-sensitive and can be denoted with single
quotation marks ('...') in PartiQL.

String values are also denoted with single quotation marks ('...') in PartiQL.

Return value

This statement does not return any values.

Note

If the DynamoDB table already has an item with the same primary key as the primary key
of the item being inserted, DuplicateItemException is returned.

Examples

INSERT INTO "Music" value {'Artist' : 'Acme Band','SongTitle' : 'PartiQL Rocks'}

Use PartiQL functions with DynamoDB

PartiQL in Amazon DynamoDB supports the following built-in variants of SQL standard functions.

Note

Any SQL functions that are not included in this list are not currently supported in
DynamoDB.

PartiQL query language API Version 2012-08-10 817

https://partiql.org/docs.html

Amazon DynamoDB Developer Guide

Aggregate functions

• Using the SIZE function with PartiQL for amazon DynamoDB

Conditional functions

• Using the EXISTS function with PartiQL for DynamoDB

• Using the ATTRIBUTE_TYPE function with PartiQL for DynamoDB

• Using the BEGINS_WITH function with PartiQL for DynamoDB

• Using the CONTAINS function with PartiQL for DynamoDB

• Using the MISSING function with PartiQL for DynamoDB

Using the EXISTS function with PartiQL for DynamoDB

You can use EXISTS to perform the same function as ConditionCheck does in the
TransactWriteItems API. The EXISTS function can only be used in transactions.

Given a value, returns TRUE if the value is a non-empty collection. Otherwise, returns FALSE.

Note

This function can only be used in transactional operations.

Syntax

EXISTS (statement)

Arguments

statement

(Required) The SELECT statement that the function evaluates.

Note

The SELECT statement must specify a full primary key and one other condition.

PartiQL query language API Version 2012-08-10 818

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transaction-apis.html#transaction-apis-txwriteitems

Amazon DynamoDB Developer Guide

Return type

bool

Examples

EXISTS(
 SELECT * FROM "Music"
 WHERE "Artist" = 'Acme Band' AND "SongTitle" = 'PartiQL Rocks')

Using the BEGINS_WITH function with PartiQL for DynamoDB

Returns TRUE if the attribute specified begins with a particular substring.

Syntax

begins_with(path, value)

Arguments

path

(Required) The attribute name or document path to use.

value

(Required) The string to search for.

Return type

bool

Examples

SELECT * FROM "Orders" WHERE "OrderID"=1 AND begins_with("Address", '7834 24th')

Using the MISSING function with PartiQL for DynamoDB

Returns TRUE if the item does not contain the attribute specified. Only equality and inequality
operators can be used with this function.

PartiQL query language API Version 2012-08-10 819

Amazon DynamoDB Developer Guide

Syntax

 attributename IS | IS NOT MISSING

Arguments

attributename

(Required) The attribute name to look for.

Return type

bool

Examples

SELECT * FROM Music WHERE "Awards" is MISSING

Using the ATTRIBUTE_TYPE function with PartiQL for DynamoDB

Returns TRUE if the attribute at the specified path is of a particular data type.

Syntax

attribute_type(attributename, type)

Arguments

attributename

(Required) The attribute name to use.

type

(Required) The attribute type to check for. For a list of valid values, see DynamoDB
attribute_type.

Return type

bool

PartiQL query language API Version 2012-08-10 820

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Functions

Amazon DynamoDB Developer Guide

Examples

SELECT * FROM "Music" WHERE attribute_type("Artist", 'S')

Using the CONTAINS function with PartiQL for DynamoDB

Returns TRUE if the attribute specified by the path is one of the following:

• A String that contains a particular substring.

• A Set that contains a particular element within the set.

For more information, see the DynamoDB contains function.

Syntax

contains(path, substring)

Arguments

path

(Required) The attribute name or document path to use.

substring

(Required) The attribute substring or set member to check for. For more information, see the
DynamoDB contains function.

Return type

bool

Examples

SELECT * FROM "Orders" WHERE "OrderID"=1 AND contains("Address", 'Kirkland')

Using the SIZE function with PartiQL for amazon DynamoDB

Returns a number representing an attribute's size in bytes. The following are valid data types for
use with size. For more information, see the DynamoDB size function.

PartiQL query language API Version 2012-08-10 821

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Functions
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Functions
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Functions

Amazon DynamoDB Developer Guide

Syntax

size(path)

Arguments

path

(Required) The attribute name or document path.

For supported types, see DynamoDB size function.

Return type

int

Examples

 SELECT * FROM "Orders" WHERE "OrderID"=1 AND size("Image") >300

PartiQL arithmetic, comparison, and logical operators for DynamoDB

PartiQL in Amazon DynamoDB supports the following SQL standard operators.

Note

Any SQL operators that are not included in this list are not currently supported in
DynamoDB.

Arithmetic operators

Operator Description

+ Add

- Subtract

PartiQL query language API Version 2012-08-10 822

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Expressions.OperatorsAndFunctions.html#Expressions.OperatorsAndFunctions.Functions
https://www.w3schools.com/sql/sql_operators.asp

Amazon DynamoDB Developer Guide

Comparison operators

Operator Description

= Equal to

<> Not Equal to

!= Not Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Logical operators

Operator Description

AND TRUE if all the conditions separated by AND
are TRUE

BETWEEN TRUE if the operand is within the range of
comparisons.

This operator is inclusive of the lower and
upper bound of the operands on which you
apply it.

IN TRUE if the operand is equal to one of a list of
expressions (at max 50 hash attribute values
or at max 100 non-key attribute values)

IS TRUE if the operand is a given, PartiQL data
type, including NULL or MISSING

PartiQL query language API Version 2012-08-10 823

Amazon DynamoDB Developer Guide

Operator Description

NOT Reverses the value of a given Boolean
expression

OR TRUE if any of the conditions separated by OR
are TRUE

For more information about using logical operators, see Making comparisons and Logical
evaluations.

Performing transactions with PartiQL for DynamoDB

This section describes how to use transactions with PartiQL for DynamoDB. PartiQL transactions
are limited to 100 total statements (actions).

For more information on DynamoDB transactions, see Managing complex workflows with
DynamoDB transactions.

Note

The entire transaction must consist of either read statements or write statements. You can't
mix both in one transaction. The EXISTS function is an exception. You can use it to check
the condition of specific attributes of the item in a similar manner to ConditionCheck in
the TransactWriteItems API operation.

Topics

• Syntax

• Parameters

• Return values

• Examples

Syntax

[

PartiQL query language API Version 2012-08-10 824

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transaction-apis.html#transaction-apis-txwriteitems

Amazon DynamoDB Developer Guide

 {
 "Statement":" statement ",
 "Parameters":[
 {
 " parametertype " : " parametervalue "
 }, ...]
 } , ...
]

Parameters

statement

(Required) A PartiQL for DynamoDB supported statement.

Note

The entire transaction must consist of either read statements or write statements. You
can't mix both in one transaction.

parametertype

(Optional) A DynamoDB type, if parameters were used when specifying the PartiQL statement.

parametervalue

(Optional) A parameter value if parameters were used when specifying the PartiQL statement.

Return values

This statement doesn't return any values for Write operations (INSERT, UPDATE, or DELETE).
However, it returns different values for Read operations (SELECT) based on the conditions specified
in the WHERE clause.

Note

If any of the singleton INSERT, UPDATE, or DELETE operations return an error, the
transactions are canceled with the TransactionCanceledException exception, and the
cancellation reason code includes the errors from the individual singleton operations.

PartiQL query language API Version 2012-08-10 825

Amazon DynamoDB Developer Guide

Examples

The following example runs multiple statements as a transaction.

Amazon CLI

1. Save the following JSON code to a file called partiql.json.

[
 {
 "Statement": "EXISTS(SELECT * FROM \"Music\" where Artist='No One You
 Know' and SongTitle='Call Me Today' and Awards is MISSING)"
 },
 {
 "Statement": "INSERT INTO Music value {'Artist':?,'SongTitle':'?'}",
 "Parameters": [{\"S\": \"Acme Band\"}, {\"S\": \"Best Song\"}]
 },
 {
 "Statement": "UPDATE \"Music\" SET AwardsWon=1 SET
 AwardDetail={'Grammys':[2020, 2018]} where Artist='Acme Band' and
 SongTitle='PartiQL Rocks'"
 }
]

2. Run the following command in a command prompt.

aws dynamodb execute-transaction --transact-statements file://partiql.json

Java

public class DynamoDBPartiqlTransaction {

 public static void main(String[] args) {
 // Create the DynamoDB Client with the region you want
 AmazonDynamoDB dynamoDB = createDynamoDbClient("us-west-2");

 try {
 // Create ExecuteTransactionRequest
 ExecuteTransactionRequest executeTransactionRequest =
 createExecuteTransactionRequest();
 ExecuteTransactionResult executeTransactionResult =
 dynamoDB.executeTransaction(executeTransactionRequest);

PartiQL query language API Version 2012-08-10 826

Amazon DynamoDB Developer Guide

 System.out.println("ExecuteTransaction successful.");
 // Handle executeTransactionResult

 } catch (Exception e) {
 handleExecuteTransactionErrors(e);
 }
 }

 private static AmazonDynamoDB createDynamoDbClient(String region) {
 return AmazonDynamoDBClientBuilder.standard().withRegion(region).build();
 }

 private static ExecuteTransactionRequest createExecuteTransactionRequest() {
 ExecuteTransactionRequest request = new ExecuteTransactionRequest();

 // Create statements
 List<ParameterizedStatement> statements = getPartiQLTransactionStatements();

 request.setTransactStatements(statements);
 return request;
 }

 private static List<ParameterizedStatement> getPartiQLTransactionStatements() {
 List<ParameterizedStatement> statements = new
 ArrayList<ParameterizedStatement>();

 statements.add(new ParameterizedStatement()
 .withStatement("EXISTS(SELECT * FROM "Music" where
 Artist='No One You Know' and SongTitle='Call Me Today' and Awards is MISSING)"));

 statements.add(new ParameterizedStatement()
 .withStatement("INSERT INTO "Music" value
 {'Artist':'?','SongTitle':'?'}")
 .withParameters(new AttributeValue("Acme Band"),new
 AttributeValue("Best Song")));

 statements.add(new ParameterizedStatement()
 .withStatement("UPDATE "Music" SET AwardsWon=1
 SET AwardDetail={'Grammys':[2020, 2018]} where Artist='Acme Band' and
 SongTitle='PartiQL Rocks'"));

 return statements;
 }

PartiQL query language API Version 2012-08-10 827

Amazon DynamoDB Developer Guide

 // Handles errors during ExecuteTransaction execution. Use recommendations in
 error messages below to add error handling specific to
 // your application use-case.
 private static void handleExecuteTransactionErrors(Exception exception) {
 try {
 throw exception;
 } catch (TransactionCanceledException tce) {
 System.out.println("Transaction Cancelled, implies a client issue, fix
 before retrying. Error: " + tce.getErrorMessage());
 } catch (TransactionInProgressException tipe) {
 System.out.println("The transaction with the given request token is
 already in progress, consider changing " +
 "retry strategy for this type of error. Error: " +
 tipe.getErrorMessage());
 } catch (IdempotentParameterMismatchException ipme) {
 System.out.println("Request rejected because it was retried with a
 different payload but with a request token that was already used, " +
 "change request token for this payload to be accepted. Error: " +
 ipme.getErrorMessage());
 } catch (Exception e) {
 handleCommonErrors(e);
 }
 }

 private static void handleCommonErrors(Exception exception) {
 try {
 throw exception;
 } catch (InternalServerErrorException isee) {
 System.out.println("Internal Server Error, generally safe to retry with
 exponential back-off. Error: " + isee.getErrorMessage());
 } catch (RequestLimitExceededException rlee) {
 System.out.println("Throughput exceeds the current throughput limit for
 your account, increase account level throughput before " +
 "retrying. Error: " + rlee.getErrorMessage());
 } catch (ProvisionedThroughputExceededException ptee) {
 System.out.println("Request rate is too high. If you're using a custom
 retry strategy make sure to retry with exponential back-off. " +
 "Otherwise consider reducing frequency of requests or increasing
 provisioned capacity for your table or secondary index. Error: " +
 ptee.getErrorMessage());
 } catch (ResourceNotFoundException rnfe) {
 System.out.println("One of the tables was not found, verify table exists
 before retrying. Error: " + rnfe.getErrorMessage());
 } catch (AmazonServiceException ase) {

PartiQL query language API Version 2012-08-10 828

Amazon DynamoDB Developer Guide

 System.out.println("An AmazonServiceException occurred, indicates that
 the request was correctly transmitted to the DynamoDB " +
 "service, but for some reason, the service was not able to process
 it, and returned an error response instead. Investigate and " +
 "configure retry strategy. Error type: " + ase.getErrorType() + ".
 Error message: " + ase.getErrorMessage());
 } catch (AmazonClientException ace) {
 System.out.println("An AmazonClientException occurred, indicates that
 the client was unable to get a response from DynamoDB " +
 "service, or the client was unable to parse the response from the
 service. Investigate and configure retry strategy. "+
 "Error: " + ace.getMessage());
 } catch (Exception e) {
 System.out.println("An exception occurred, investigate and configure
 retry strategy. Error: " + e.getMessage());
 }
 }

}

The following example shows the different return values when DynamoDB reads items with
different conditions specified in the WHERE clause.

Amazon CLI

1. Save the following JSON code to a file called partiql.json.

[
 // Item exists and projected attribute exists
 {
 "Statement": "SELECT * FROM "Music" WHERE Artist='No One You Know' and
 SongTitle='Call Me Today'"
 },
 // Item exists but projected attributes do not exist
 {
 "Statement": "SELECT non_existent_projected_attribute FROM "Music" WHERE
 Artist='No One You Know' and SongTitle='Call Me Today'"
 },
 // Item does not exist
 {
 "Statement": "SELECT * FROM "Music" WHERE Artist='No One I Know' and
 SongTitle='Call You Today'"

PartiQL query language API Version 2012-08-10 829

Amazon DynamoDB Developer Guide

 }
]

2. following command in a command prompt.

aws dynamodb execute-transaction --transact-statements file://partiql.json

3. The following response is returned:

{
 "Responses": [
 // Item exists and projected attribute exists
 {
 "Item": {
 "Artist":{
 "S": "No One You Know"
 },
 "SongTitle":{
 "S": "Call Me Today"
 }
 }
 },
 // Item exists but projected attributes do not exist
 {
 "Item": {}
 },
 // Item does not exist
 {}
]
}

Running batch operations with PartiQL for DynamoDB

This section describes how to use batch statements with PartiQL for DynamoDB.

Note

• The entire batch must consist of either read statements or write statements; you cannot
mix both in one batch.

PartiQL query language API Version 2012-08-10 830

Amazon DynamoDB Developer Guide

• BatchExecuteStatement and BatchWriteItem can perform no more than 25
statements per batch.

• BatchExecuteStatement makes use of BatchGetItem which takes a list of primary
keys in separate statements.

Topics

• Syntax

• Parameters

• Examples

Syntax

[
 {
 "Statement": "SELECT pk FROM ProblemSet WHERE pk = 'p#9StkWHYTxm7x2AqSXcrfu7' AND
 sk = 'info'"
 },
 {
 "Statement": "SELECT pk FROM ProblemSet WHERE pk = 'p#isC2ChceGbxHgESc4szoTE' AND
 sk = 'info'"
 }
]

[
 {
 "Statement":" statement ",
 "Parameters":[
 {
 " parametertype " : " parametervalue "
 }, ...]
 } , ...
]

Parameters

statement

(Required) A PartiQL for DynamoDB supported statement.

PartiQL query language API Version 2012-08-10 831

Amazon DynamoDB Developer Guide

Note

• The entire batch must consist of either read statements or write statements; you
cannot mix both in one batch.

• BatchExecuteStatement and BatchWriteItem can perform no more than 25
statements per batch.

parametertype

(Optional) A DynamoDB type, if parameters were used when specifying the PartiQL statement.

parametervalue

(Optional) A parameter value if parameters were used when specifying the PartiQL statement.

Examples

Amazon CLI

1. Save the following json to a file called partiql.json

[
 {
 "Statement": "INSERT INTO Music VALUE {'Artist':?,'SongTitle':?}",
 "Parameters": [{"S": "Acme Band"}, {"S": "Best Song"}]
 },
 {
 "Statement": "UPDATE Music SET AwardsWon=1, AwardDetail={'Grammys':[2020,
 2018]} WHERE Artist='Acme Band' AND SongTitle='PartiQL Rocks'"
 }
]

2. Run the following command in a command prompt.

aws dynamodb batch-execute-statement --statements file://partiql.json

Java

public class DynamoDBPartiqlBatch {

PartiQL query language API Version 2012-08-10 832

Amazon DynamoDB Developer Guide

 public static void main(String[] args) {
 // Create the DynamoDB Client with the region you want
 AmazonDynamoDB dynamoDB = createDynamoDbClient("us-west-2");

 try {
 // Create BatchExecuteStatementRequest
 BatchExecuteStatementRequest batchExecuteStatementRequest =
 createBatchExecuteStatementRequest();
 BatchExecuteStatementResult batchExecuteStatementResult =
 dynamoDB.batchExecuteStatement(batchExecuteStatementRequest);
 System.out.println("BatchExecuteStatement successful.");
 // Handle batchExecuteStatementResult

 } catch (Exception e) {
 handleBatchExecuteStatementErrors(e);
 }
 }

 private static AmazonDynamoDB createDynamoDbClient(String region) {

 return AmazonDynamoDBClientBuilder.standard().withRegion(region).build();
 }

 private static BatchExecuteStatementRequest createBatchExecuteStatementRequest()
 {
 BatchExecuteStatementRequest request = new BatchExecuteStatementRequest();

 // Create statements
 List<BatchStatementRequest> statements = getPartiQLBatchStatements();

 request.setStatements(statements);
 return request;
 }

 private static List<BatchStatementRequest> getPartiQLBatchStatements() {
 List<BatchStatementRequest> statements = new
 ArrayList<BatchStatementRequest>();

 statements.add(new BatchStatementRequest()
 .withStatement("INSERT INTO Music value
 {'Artist':'Acme Band','SongTitle':'PartiQL Rocks'}"));

 statements.add(new BatchStatementRequest()

PartiQL query language API Version 2012-08-10 833

Amazon DynamoDB Developer Guide

 .withStatement("UPDATE Music set
 AwardDetail.BillBoard=[2020] where Artist='Acme Band' and SongTitle='PartiQL
 Rocks'"));

 return statements;
 }

 // Handles errors during BatchExecuteStatement execution. Use recommendations in
 error messages below to add error handling specific to
 // your application use-case.
 private static void handleBatchExecuteStatementErrors(Exception exception) {
 try {
 throw exception;
 } catch (Exception e) {
 // There are no API specific errors to handle for BatchExecuteStatement,
 common DynamoDB API errors are handled below
 handleCommonErrors(e);
 }
 }

 private static void handleCommonErrors(Exception exception) {
 try {
 throw exception;
 } catch (InternalServerErrorException isee) {
 System.out.println("Internal Server Error, generally safe to retry with
 exponential back-off. Error: " + isee.getErrorMessage());
 } catch (RequestLimitExceededException rlee) {
 System.out.println("Throughput exceeds the current throughput limit for
 your account, increase account level throughput before " +
 "retrying. Error: " + rlee.getErrorMessage());
 } catch (ProvisionedThroughputExceededException ptee) {
 System.out.println("Request rate is too high. If you're using a custom
 retry strategy make sure to retry with exponential back-off. " +
 "Otherwise consider reducing frequency of requests or increasing
 provisioned capacity for your table or secondary index. Error: " +
 ptee.getErrorMessage());
 } catch (ResourceNotFoundException rnfe) {
 System.out.println("One of the tables was not found, verify table exists
 before retrying. Error: " + rnfe.getErrorMessage());
 } catch (AmazonServiceException ase) {
 System.out.println("An AmazonServiceException occurred, indicates that
 the request was correctly transmitted to the DynamoDB " +
 "service, but for some reason, the service was not able to process
 it, and returned an error response instead. Investigate and " +

PartiQL query language API Version 2012-08-10 834

Amazon DynamoDB Developer Guide

 "configure retry strategy. Error type: " + ase.getErrorType() + ".
 Error message: " + ase.getErrorMessage());
 } catch (AmazonClientException ace) {
 System.out.println("An AmazonClientException occurred, indicates that
 the client was unable to get a response from DynamoDB " +
 "service, or the client was unable to parse the response from the
 service. Investigate and configure retry strategy. "+
 "Error: " + ace.getMessage());
 } catch (Exception e) {
 System.out.println("An exception occurred, investigate and configure
 retry strategy. Error: " + e.getMessage());
 }
 }

}

IAM security policies with PartiQL for DynamoDB

The following permissions are required:

• To read items using PartiQL for DynamoDB, you must have dynamodb:PartiQLSelect
permission on the table or index.

• To insert items using PartiQL for DynamoDB, you must have dynamodb:PartiQLInsert
permission on the table or index.

• To update items using PartiQL for DynamoDB, you must have dynamodb:PartiQLUpdate
permission on the table or index.

• To delete items using PartiQL for DynamoDB, you must have dynamodb:PartiQLDelete
permission on the table or index.

Example: Allow all PartiQL for DynamoDB statements (Select/Insert/Update/Delete) on a table

The following IAM policy grants permissions to run all PartiQL for DynamoDB statements on a
table.

JSON

{
 "Version":"2012-10-17",

PartiQL query language API Version 2012-08-10 835

Amazon DynamoDB Developer Guide

 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:PartiQLInsert",
 "dynamodb:PartiQLUpdate",
 "dynamodb:PartiQLDelete",
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
]
 }
]
}

Example: Allow PartiQL for DynamoDB select statements on a table

The following IAM policy grants permissions to run the select statement on a specific table.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
]
 }
]
}

Example: Allow PartiQL for DynamoDB insert statements on an index

The following IAM policy grants permissions to run the insert statement on a specific index.

PartiQL query language API Version 2012-08-10 836

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:PartiQLInsert"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music/index/index1"
]
 }
]
}

Example: Allow PartiQL for DynamoDB transactional statements only on a table

The following IAM policy grants permissions to run only transactional statements on a specific
table.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:PartiQLInsert",
 "dynamodb:PartiQLUpdate",
 "dynamodb:PartiQLDelete",
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
],
 "Condition":{
 "StringEquals":{
 "dynamodb:EnclosingOperation":[

PartiQL query language API Version 2012-08-10 837

Amazon DynamoDB Developer Guide

 "ExecuteTransaction"
]
 }
 }
 }
]
}

Example: Allow PartiQL for DynamoDB non-transactional reads and writes and block PartiQL
transactional reads and writes transactional statements on a table.

The following IAM policy grants permissions to run PartiQL for DynamoDB non-transactional reads
and writes while blocking PartiQL for DynamoDB transactional reads and writes.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Deny",
 "Action":[
 "dynamodb:PartiQLInsert",
 "dynamodb:PartiQLUpdate",
 "dynamodb:PartiQLDelete",
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
],
 "Condition":{
 "StringEquals":{
 "dynamodb:EnclosingOperation":[
 "ExecuteTransaction"
]
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[

PartiQL query language API Version 2012-08-10 838

Amazon DynamoDB Developer Guide

 "dynamodb:PartiQLInsert",
 "dynamodb:PartiQLUpdate",
 "dynamodb:PartiQLDelete",
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
]
 }
]
}

Example: Allow select statements and deny full table scan statements in PartiQL for DynamoDB

The following IAM policy grants permissions to run the select statement on a specific table while
blocking select statements that result in a full table scan.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Deny",
 "Action":[
 "dynamodb:PartiQLSelect"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/WatchList"
],
 "Condition":{
 "Bool":{
 "dynamodb:FullTableScan":[
 "true"
]
 }
 }
 },
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:PartiQLSelect"

PartiQL query language API Version 2012-08-10 839

Amazon DynamoDB Developer Guide

],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/WatchList"
]
 }
]
}

Working with items: Java

You can use the Amazon SDK for Java Document API to perform typical create, read, update, and
delete (CRUD) operations on Amazon DynamoDB items in a table.

Note

The SDK for Java also provides an object persistence model, allowing you to map your
client-side classes to DynamoDB tables. This approach can reduce the amount of code that
you have to write. For more information, see Java 1.x: DynamoDBMapper.

This section contains Java examples to perform several Java Document API item actions and
several complete working examples.

Topics

• Putting an item

• Getting an item

• Batch write: Putting and deleting multiple items

• Batch get: Getting multiple items

• Updating an item

• Deleting an item

• Example: CRUD operations using the Amazon SDK for Java document API

• Example: Batch operations using Amazon SDK for Java document API

• Example: Handling binary type attributes using the Amazon SDK for Java document API

Working with items: Java API Version 2012-08-10 840

Amazon DynamoDB Developer Guide

Putting an item

The putItem method stores an item in a table. If the item exists, it replaces the entire item.
Instead of replacing the entire item, if you want to update only specific attributes, you can use the
updateItem method. For more information, see Updating an item.

Java v2

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.PutItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html
 *
 * To place items into an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client. See the EnhancedPutItem example.
 */
public class PutItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal> <albumtitle> <albumtitleval> <awards>
 <awardsval> <Songtitle> <songtitleval>

 Where:
 tableName - The Amazon DynamoDB table in which an item is placed
 (for example, Music3).
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).

Working with items: Java API Version 2012-08-10 841

Amazon DynamoDB Developer Guide

 keyval - The key value that represents the item to get (for
 example, Famous Band).
 albumTitle - The Album title (for example, AlbumTitle).
 AlbumTitleValue - The name of the album (for example, Songs
 About Life).
 Awards - The awards column (for example, Awards).
 AwardVal - The value of the awards (for example, 10).
 SongTitle - The song title (for example, SongTitle).
 SongTitleVal - The value of the song title (for example, Happy
 Day).
 Warning This program will place an item that you specify into a
 table!
 """;

 if (args.length != 9) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 String albumTitle = args[3];
 String albumTitleValue = args[4];
 String awards = args[5];
 String awardVal = args[6];
 String songTitle = args[7];
 String songTitleVal = args[8];

 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 putItemInTable(ddb, tableName, key, keyVal, albumTitle, albumTitleValue,
 awards, awardVal, songTitle,
 songTitleVal);
 System.out.println("Done!");
 ddb.close();
 }

 public static void putItemInTable(DynamoDbClient ddb,
 String tableName,
 String key,

Working with items: Java API Version 2012-08-10 842

Amazon DynamoDB Developer Guide

 String keyVal,
 String albumTitle,
 String albumTitleValue,
 String awards,
 String awardVal,
 String songTitle,
 String songTitleVal) {

 HashMap<String, AttributeValue> itemValues = new HashMap<>();
 itemValues.put(key, AttributeValue.builder().s(keyVal).build());
 itemValues.put(songTitle, AttributeValue.builder().s(songTitleVal).build());
 itemValues.put(albumTitle,
 AttributeValue.builder().s(albumTitleValue).build());
 itemValues.put(awards, AttributeValue.builder().s(awardVal).build());

 PutItemRequest request = PutItemRequest.builder()
 .tableName(tableName)
 .item(itemValues)
 .build();

 try {
 PutItemResponse response = ddb.putItem(request);
 System.out.println(tableName + " was successfully updated. The request
 id is "
 + response.responseMetadata().requestId());

 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 System.err.println("Be sure that it exists and that you've typed its
 name correctly!");
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

Java v1

Follow these steps:

1. Create an instance of the DynamoDB class.

Working with items: Java API Version 2012-08-10 843

Amazon DynamoDB Developer Guide

2. Create an instance of the Table class to represent the table you want to work with.

3. Create an instance of the Item class to represent the new item. You must specify the new
item's primary key and its attributes.

4. Call the putItem method of the Table object, using the Item that you created in the
preceding step.

The following Java code example demonstrates the preceding tasks. The code writes a new item
to the ProductCatalog table.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("ProductCatalog");

// Build a list of related items
List<Number> relatedItems = new ArrayList<Number>();
relatedItems.add(341);
relatedItems.add(472);
relatedItems.add(649);

//Build a map of product pictures
Map<String, String> pictures = new HashMap<String, String>();
pictures.put("FrontView", "http://example.com/products/123_front.jpg");
pictures.put("RearView", "http://example.com/products/123_rear.jpg");
pictures.put("SideView", "http://example.com/products/123_left_side.jpg");

//Build a map of product reviews
Map<String, List<String>> reviews = new HashMap<String, List<String>>();

List<String> fiveStarReviews = new ArrayList<String>();
fiveStarReviews.add("Excellent! Can't recommend it highly enough! Buy it!");
fiveStarReviews.add("Do yourself a favor and buy this");
reviews.put("FiveStar", fiveStarReviews);

List<String> oneStarReviews = new ArrayList<String>();
oneStarReviews.add("Terrible product! Do not buy this.");
reviews.put("OneStar", oneStarReviews);

// Build the item

Working with items: Java API Version 2012-08-10 844

Amazon DynamoDB Developer Guide

Item item = new Item()
 .withPrimaryKey("Id", 123)
 .withString("Title", "Bicycle 123")
 .withString("Description", "123 description")
 .withString("BicycleType", "Hybrid")
 .withString("Brand", "Brand-Company C")
 .withNumber("Price", 500)
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle")
 .withBoolean("InStock", true)
 .withNull("QuantityOnHand")
 .withList("RelatedItems", relatedItems)
 .withMap("Pictures", pictures)
 .withMap("Reviews", reviews);

// Write the item to the table
PutItemOutcome outcome = table.putItem(item);

In the preceding example, the item has attributes that are scalars (String, Number, Boolean,
Null), sets (String Set), and document types (List, Map).

Specifying optional parameters

Along with the required parameters, you can also specify optional parameters to the putItem
method. For example, the following Java code example uses an optional parameter to specify
a condition for uploading the item. If the condition you specify is not met, the Amazon SDK for
Java throws a ConditionalCheckFailedException. The code example specifies the following
optional parameters in the putItem method:

• A ConditionExpression that defines the conditions for the request. The code defines the
condition that the existing item with the same primary key is replaced only if it has an ISBN
attribute that equals a specific value.

• A map for ExpressionAttributeValues that is used in the condition. In this case, there is
only one substitution required: The placeholder :val in the condition expression is replaced at
runtime with the actual ISBN value to be checked.

The following example adds a new book item using these optional parameters.

Working with items: Java API Version 2012-08-10 845

Amazon DynamoDB Developer Guide

Example

Item item = new Item()
 .withPrimaryKey("Id", 104)
 .withString("Title", "Book 104 Title")
 .withString("ISBN", "444-4444444444")
 .withNumber("Price", 20)
 .withStringSet("Authors",
 new HashSet<String>(Arrays.asList("Author1", "Author2")));

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val", "444-4444444444");

PutItemOutcome outcome = table.putItem(
 item,
 "ISBN = :val", // ConditionExpression parameter
 null, // ExpressionAttributeNames parameter - we're not using it for this
 example
 expressionAttributeValues);

PutItem and JSON documents

You can store a JSON document as an attribute in a DynamoDB table. To do this, use the
withJSON method of Item. This method parses the JSON document and maps each element to a
native DynamoDB data type.

Suppose that you wanted to store the following JSON document, containing vendors that can
fulfill orders for a particular product.

Example

{
 "V01": {
 "Name": "Acme Books",
 "Offices": ["Seattle"]
 },
 "V02": {
 "Name": "New Publishers, Inc.",
 "Offices": ["London", "New York"
]
 },
 "V03": {
 "Name": "Better Buy Books",

Working with items: Java API Version 2012-08-10 846

Amazon DynamoDB Developer Guide

 "Offices": ["Tokyo", "Los Angeles", "Sydney"
]
 }
}

You can use the withJSON method to store this in the ProductCatalog table, in a Map attribute
named VendorInfo. The following Java code example demonstrates how to do this.

// Convert the document into a String. Must escape all double-quotes.
String vendorDocument = "{"
 + " \"V01\": {"
 + " \"Name\": \"Acme Books\","
 + " \"Offices\": [\"Seattle\"]"
 + " },"
 + " \"V02\": {"
 + " \"Name\": \"New Publishers, Inc.\","
 + " \"Offices\": [\"London\", \"New York\"" + "]" + "},"
 + " \"V03\": {"
 + " \"Name\": \"Better Buy Books\","
 + "\"Offices\": [\"Tokyo\", \"Los Angeles\", \"Sydney\""
 + "]"
 + " }"
 + " }";

Item item = new Item()
 .withPrimaryKey("Id", 210)
 .withString("Title", "Book 210 Title")
 .withString("ISBN", "210-2102102102")
 .withNumber("Price", 30)
 .withJSON("VendorInfo", vendorDocument);

PutItemOutcome outcome = table.putItem(item);

Getting an item

To retrieve a single item, use the getItem method of a Table object. Follow these steps:

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the table you want to work with.

3. Call the getItem method of the Table instance. You must specify the primary key of the item
that you want to retrieve.

Working with items: Java API Version 2012-08-10 847

Amazon DynamoDB Developer Guide

The following Java code example demonstrates the preceding steps. The code gets the item that
has the specified partition key.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("ProductCatalog");

Item item = table.getItem("Id", 210);

Specifying optional parameters

Along with the required parameters, you can also specify optional parameters for the getItem
method. For example, the following Java code example uses an optional method to retrieve only
a specific list of attributes and to specify strongly consistent reads. (To learn more about read
consistency, see DynamoDB read consistency.)

You can use a ProjectionExpression to retrieve only specific attributes or elements, rather
than an entire item. A ProjectionExpression can specify top-level or nested attributes using
document paths. For more information, see Using projection expressions in DynamoDB.

The parameters of the getItem method don't let you specify read consistency. However, you can
create a GetItemSpec, which provides full access to all of the inputs to the low-level GetItem
operation. The following code example creates a GetItemSpec and uses that spec as input to the
getItem method.

Example

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 206)
 .withProjectionExpression("Id, Title, RelatedItems[0], Reviews.FiveStar")
 .withConsistentRead(true);

Item item = table.getItem(spec);

System.out.println(item.toJSONPretty());

To print an Item in a human-readable format, use the toJSONPretty method. The output from
the previous example looks like the following.

{

Working with items: Java API Version 2012-08-10 848

Amazon DynamoDB Developer Guide

 "RelatedItems" : [341],
 "Reviews" : {
 "FiveStar" : ["Excellent! Can't recommend it highly enough! Buy it!", "Do yourself
 a favor and buy this"]
 },
 "Id" : 123,
 "Title" : "20-Bicycle 123"
}

GetItem and JSON documents

In the PutItem and JSON documents section, you store a JSON document in a Map attribute named
VendorInfo. You can use the getItem method to retrieve the entire document in JSON format.
Or you can use document path notation to retrieve only some of the elements in the document.
The following Java code example demonstrates these techniques.

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 210);

System.out.println("All vendor info:");
spec.withProjectionExpression("VendorInfo");
System.out.println(table.getItem(spec).toJSON());

System.out.println("A single vendor:");
spec.withProjectionExpression("VendorInfo.V03");
System.out.println(table.getItem(spec).toJSON());

System.out.println("First office location for this vendor:");
spec.withProjectionExpression("VendorInfo.V03.Offices[0]");
System.out.println(table.getItem(spec).toJSON());

The output from the previous example looks like the following.

All vendor info:
{"VendorInfo":{"V03":{"Name":"Better Buy Books","Offices":["Tokyo","Los
 Angeles","Sydney"]},"V02":{"Name":"New Publishers, Inc.","Offices":["London","New
 York"]},"V01":{"Name":"Acme Books","Offices":["Seattle"]}}}
A single vendor:
{"VendorInfo":{"V03":{"Name":"Better Buy Books","Offices":["Tokyo","Los
 Angeles","Sydney"]}}}
First office location for a single vendor:

Working with items: Java API Version 2012-08-10 849

Amazon DynamoDB Developer Guide

{"VendorInfo":{"V03":{"Offices":["Tokyo"]}}}

Note

You can use the toJSON method to convert any item (or its attributes) to a JSON-
formatted string. The following code retrieves several top-level and nested attributes and
prints the results as JSON.

GetItemSpec spec = new GetItemSpec()
 .withPrimaryKey("Id", 210)
 .withProjectionExpression("VendorInfo.V01, Title, Price");

Item item = table.getItem(spec);
System.out.println(item.toJSON());

The output looks like the following.

{"VendorInfo":{"V01":{"Name":"Acme Books","Offices":
["Seattle"]}},"Price":30,"Title":"Book 210 Title"}

Batch write: Putting and deleting multiple items

Batch write refers to putting and deleting multiple items in a batch. The batchWriteItem method
enables you to put and delete multiple items from one or more tables in a single call. The following
are the steps to put or delete multiple items using the Amazon SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the TableWriteItems class that describes all the put and delete
operations for a table. If you want to write to multiple tables in a single batch write operation,
you must create one TableWriteItems instance per table.

3. Call the batchWriteItem method by providing the TableWriteItems objects that you
created in the preceding step.

4. Process the response. You should check if there were any unprocessed request items returned
in the response. This could happen if you reach the provisioned throughput quota or some
other transient error. Also, DynamoDB limits the request size and the number of operations
you can specify in a request. If you exceed these limits, DynamoDB rejects the request. For
more information, see Quotas in Amazon DynamoDB.

Working with items: Java API Version 2012-08-10 850

Amazon DynamoDB Developer Guide

The following Java code example demonstrates the preceding steps. The example performs
a batchWriteItem operation on two tables: Forum and Thread. The corresponding
TableWriteItems objects define the following actions:

• Put an item in the Forum table.

• Put and delete an item in the Thread table.

The code then calls batchWriteItem to perform the operation.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

TableWriteItems forumTableWriteItems = new TableWriteItems("Forum")
 .withItemsToPut(
 new Item()
 .withPrimaryKey("Name", "Amazon RDS")
 .withNumber("Threads", 0));

TableWriteItems threadTableWriteItems = new TableWriteItems("Thread")
 .withItemsToPut(
 new Item()
 .withPrimaryKey("ForumName","Amazon RDS","Subject","Amazon RDS Thread 1")
 .withHashAndRangeKeysToDelete("ForumName","Some partition key value", "Amazon S3",
 "Some sort key value");

BatchWriteItemOutcome outcome = dynamoDB.batchWriteItem(forumTableWriteItems,
 threadTableWriteItems);

// Code for checking unprocessed items is omitted in this example

For a working example, see Example: Batch write operation using the Amazon SDK for Java
document API.

Batch get: Getting multiple items

The batchGetItem method enables you to retrieve multiple items from one or more tables. To
retrieve a single item, you can use the getItem method.

Follow these steps:

1. Create an instance of the DynamoDB class.

Working with items: Java API Version 2012-08-10 851

Amazon DynamoDB Developer Guide

2. Create an instance of the TableKeysAndAttributes class that describes a list of primary
key values to retrieve from a table. If you want to read from multiple tables in a single batch
get operation, you must create one TableKeysAndAttributes instance per table.

3. Call the batchGetItem method by providing the TableKeysAndAttributes objects that
you created in the preceding step.

The following Java code example demonstrates the preceding steps. The example retrieves two
items from the Forum table and three items from the Thread table.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

 TableKeysAndAttributes forumTableKeysAndAttributes = new
 TableKeysAndAttributes(forumTableName);
 forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name",
 "Amazon S3",
 "Amazon DynamoDB");

TableKeysAndAttributes threadTableKeysAndAttributes = new
 TableKeysAndAttributes(threadTableName);
threadTableKeysAndAttributes.addHashAndRangePrimaryKeys("ForumName", "Subject",
 "Amazon DynamoDB","DynamoDB Thread 1",
 "Amazon DynamoDB","DynamoDB Thread 2",
 "Amazon S3","S3 Thread 1");

BatchGetItemOutcome outcome = dynamoDB.batchGetItem(
 forumTableKeysAndAttributes, threadTableKeysAndAttributes);

for (String tableName : outcome.getTableItems().keySet()) {
 System.out.println("Items in table " + tableName);
 List<Item> items = outcome.getTableItems().get(tableName);
 for (Item item : items) {
 System.out.println(item);
 }
}

Specifying optional parameters

Along with the required parameters, you can also specify optional parameters when using
batchGetItem. For example, you can provide a ProjectionExpression with each

Working with items: Java API Version 2012-08-10 852

Amazon DynamoDB Developer Guide

TableKeysAndAttributes you define. This allows you to specify the attributes that you want to
retrieve from the table.

The following code example retrieves two items from the Forum table. The
withProjectionExpression parameter specifies that only the Threads attribute is to be
retrieved.

Example

TableKeysAndAttributes forumTableKeysAndAttributes = new
 TableKeysAndAttributes("Forum")
 .withProjectionExpression("Threads");

forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name",
 "Amazon S3",
 "Amazon DynamoDB");

BatchGetItemOutcome outcome = dynamoDB.batchGetItem(forumTableKeysAndAttributes);

Updating an item

The updateItem method of a Table object can update existing attribute values, add new
attributes, or delete attributes from an existing item.

The updateItem method behaves as follows:

• If an item does not exist (no item in the table with the specified primary key), updateItem adds
a new item to the table.

• If an item exists, updateItem performs the update as specified by the UpdateExpression
parameter.

Note

It is also possible to "update" an item using putItem. For example, if you call putItem
to add an item to the table, but there is already an item with the specified primary key,
putItem replaces the entire item. If there are attributes in the existing item that are not
specified in the input, putItem removes those attributes from the item.

Working with items: Java API Version 2012-08-10 853

Amazon DynamoDB Developer Guide

In general, we recommend that you use updateItem whenever you want to modify any
item attributes. The updateItem method only modifies the item attributes that you
specify in the input, and the other attributes in the item remain unchanged.

Follow these steps:

1. Create an instance of the Table class to represent the table that you want to work with.

2. Call the updateTable method of the Table instance. You must specify the primary key of
the item that you want to retrieve, along with an UpdateExpression that describes the
attributes to modify and how to modify them.

The following Java code example demonstrates the preceding tasks. The code updates a book item
in the ProductCatalog table. It adds a new author to the set of Authors and deletes the existing
ISBN attribute. It also reduces the price by one.

An ExpressionAttributeValues map is used in the UpdateExpression. The placeholders
:val1 and :val2 are replaced at runtime with the actual values for Authors and Price.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("ProductCatalog");

Map<String, String> expressionAttributeNames = new HashMap<String, String>();
expressionAttributeNames.put("#A", "Authors");
expressionAttributeNames.put("#P", "Price");
expressionAttributeNames.put("#I", "ISBN");

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val1",
 new HashSet<String>(Arrays.asList("Author YY","Author ZZ")));
expressionAttributeValues.put(":val2", 1); //Price

UpdateItemOutcome outcome = table.updateItem(
 "Id", // key attribute name
 101, // key attribute value
 "add #A :val1 set #P = #P - :val2 remove #I", // UpdateExpression
 expressionAttributeNames,
 expressionAttributeValues);

Working with items: Java API Version 2012-08-10 854

Amazon DynamoDB Developer Guide

Specifying optional parameters

Along with the required parameters, you can also specify optional parameters for the
updateItem method, including a condition that must be met in order for the update
is to occur. If the condition you specify is not met, the Amazon SDK for Java throws a
ConditionalCheckFailedException. For example, the following Java code example
conditionally updates a book item price to 25. It specifies a ConditionExpression stating that
the price should be updated only if the existing price is 20.

Example

Table table = dynamoDB.getTable("ProductCatalog");

Map<String, String> expressionAttributeNames = new HashMap<String, String>();
expressionAttributeNames.put("#P", "Price");

Map<String, Object> expressionAttributeValues = new HashMap<String, Object>();
expressionAttributeValues.put(":val1", 25); // update Price to 25...
expressionAttributeValues.put(":val2", 20); //...but only if existing Price is 20

UpdateItemOutcome outcome = table.updateItem(
 new PrimaryKey("Id",101),
 "set #P = :val1", // UpdateExpression
 "#P = :val2", // ConditionExpression
 expressionAttributeNames,
 expressionAttributeValues);

Atomic counter

You can use updateItem to implement an atomic counter, where you increment or decrement the
value of an existing attribute without interfering with other write requests. To increment an atomic
counter, use an UpdateExpression with a set action to add a numeric value to an existing
attribute of type Number.

The following example demonstrates this, incrementing the Quantity attribute by one.
It also demonstrates the use of the ExpressionAttributeNames parameter in an
UpdateExpression.

Table table = dynamoDB.getTable("ProductCatalog");

Map<String,String> expressionAttributeNames = new HashMap<String,String>();
expressionAttributeNames.put("#p", "PageCount");

Working with items: Java API Version 2012-08-10 855

Amazon DynamoDB Developer Guide

Map<String,Object> expressionAttributeValues = new HashMap<String,Object>();
expressionAttributeValues.put(":val", 1);

UpdateItemOutcome outcome = table.updateItem(
 "Id", 121,
 "set #p = #p + :val",
 expressionAttributeNames,
 expressionAttributeValues);

Deleting an item

The deleteItem method deletes an item from a table. You must provide the primary key of the
item that you want to delete.

Follow these steps:

1. Create an instance of the DynamoDB client.

2. Call the deleteItem method by providing the key of the item you want to delete.

The following Java example demonstrates these tasks.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("ProductCatalog");

DeleteItemOutcome outcome = table.deleteItem("Id", 101);

Specifying optional parameters

You can specify optional parameters for deleteItem. For example, the following Java code
example specifies a ConditionExpression, stating that a book item in ProductCatalog can
only be deleted if the book is no longer in publication (the InPublication attribute is false).

Example

Map<String,Object> expressionAttributeValues = new HashMap<String,Object>();
expressionAttributeValues.put(":val", false);

Working with items: Java API Version 2012-08-10 856

Amazon DynamoDB Developer Guide

DeleteItemOutcome outcome = table.deleteItem("Id",103,
 "InPublication = :val",
 null, // ExpressionAttributeNames - not used in this example
 expressionAttributeValues);

Example: CRUD operations using the Amazon SDK for Java document API

The following code example illustrates CRUD operations on an Amazon DynamoDB item. The
example creates an item, retrieves it, performs various updates, and finally deletes the item.

Note

The SDK for Java also provides an object persistence model, enabling you to map your
client-side classes to DynamoDB tables. This approach can reduce the amount of code that
you have to write. For more information, see Java 1.x: DynamoDBMapper.

Note

This code example assumes that you have already loaded data into DynamoDB for your
account by following the instructions in the Creating tables and loading data for code
examples in DynamoDB section.
For step-by-step instructions to run the following example, see Java code examples.

package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DeleteItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;

Working with items: Java API Version 2012-08-10 857

Amazon DynamoDB Developer Guide

import com.amazonaws.services.dynamodbv2.document.UpdateItemOutcome;
import com.amazonaws.services.dynamodbv2.document.spec.DeleteItemSpec;
import com.amazonaws.services.dynamodbv2.document.spec.UpdateItemSpec;
import com.amazonaws.services.dynamodbv2.document.utils.NameMap;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;
import com.amazonaws.services.dynamodbv2.model.ReturnValue;

public class DocumentAPIItemCRUDExample {

 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 static String tableName = "ProductCatalog";

 public static void main(String[] args) throws IOException {

 createItems();

 retrieveItem();

 // Perform various updates.
 updateMultipleAttributes();
 updateAddNewAttribute();
 updateExistingAttributeConditionally();

 // Delete the item.
 deleteItem();

 }

 private static void createItems() {

 Table table = dynamoDB.getTable(tableName);
 try {

 Item item = new Item().withPrimaryKey("Id", 120).withString("Title", "Book
 120 Title")
 .withString("ISBN", "120-1111111111")
 .withStringSet("Authors", new
 HashSet<String>(Arrays.asList("Author12", "Author22")))
 .withNumber("Price", 20).withString("Dimensions",
 "8.5x11.0x.75").withNumber("PageCount", 500)
 .withBoolean("InPublication", false).withString("ProductCategory",
 "Book");

Working with items: Java API Version 2012-08-10 858

Amazon DynamoDB Developer Guide

 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 121).withString("Title", "Book 121
 Title")
 .withString("ISBN", "121-1111111111")
 .withStringSet("Authors", new
 HashSet<String>(Arrays.asList("Author21", "Author 22")))
 .withNumber("Price", 20).withString("Dimensions",
 "8.5x11.0x.75").withNumber("PageCount", 500)
 .withBoolean("InPublication", true).withString("ProductCategory",
 "Book");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Create items failed.");
 System.err.println(e.getMessage());

 }
 }

 private static void retrieveItem() {
 Table table = dynamoDB.getTable(tableName);

 try {

 Item item = table.getItem("Id", 120, "Id, ISBN, Title, Authors", null);

 System.out.println("Printing item after retrieving it....");
 System.out.println(item.toJSONPretty());

 } catch (Exception e) {
 System.err.println("GetItem failed.");
 System.err.println(e.getMessage());
 }

 }

 private static void updateAddNewAttribute() {
 Table table = dynamoDB.getTable(tableName);

 try {

 UpdateItemSpec updateItemSpec = new UpdateItemSpec().withPrimaryKey("Id",
 121)

Working with items: Java API Version 2012-08-10 859

Amazon DynamoDB Developer Guide

 .withUpdateExpression("set #na = :val1").withNameMap(new
 NameMap().with("#na", "NewAttribute"))
 .withValueMap(new ValueMap().withString(":val1", "Some value"))
 .withReturnValues(ReturnValue.ALL_NEW);

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.
 System.out.println("Printing item after adding new attribute...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Failed to add new attribute in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void updateMultipleAttributes() {

 Table table = dynamoDB.getTable(tableName);

 try {

 UpdateItemSpec updateItemSpec = new UpdateItemSpec().withPrimaryKey("Id",
 120)
 .withUpdateExpression("add #a :val1 set #na=:val2")
 .withNameMap(new NameMap().with("#a", "Authors").with("#na",
 "NewAttribute"))
 .withValueMap(
 new ValueMap().withStringSet(":val1", "Author YY", "Author
 ZZ").withString(":val2",
 "someValue"))
 .withReturnValues(ReturnValue.ALL_NEW);

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.
 System.out.println("Printing item after multiple attribute update...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Failed to update multiple attributes in " + tableName);
 System.err.println(e.getMessage());

Working with items: Java API Version 2012-08-10 860

Amazon DynamoDB Developer Guide

 }
 }

 private static void updateExistingAttributeConditionally() {

 Table table = dynamoDB.getTable(tableName);

 try {

 // Specify the desired price (25.00) and also the condition (price =
 // 20.00)

 UpdateItemSpec updateItemSpec = new UpdateItemSpec().withPrimaryKey("Id",
 120)
 .withReturnValues(ReturnValue.ALL_NEW).withUpdateExpression("set #p
 = :val1")
 .withConditionExpression("#p = :val2").withNameMap(new
 NameMap().with("#p", "Price"))
 .withValueMap(new ValueMap().withNumber(":val1",
 25).withNumber(":val2", 20));

 UpdateItemOutcome outcome = table.updateItem(updateItemSpec);

 // Check the response.
 System.out.println("Printing item after conditional update to new
 attribute...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Error updating item in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void deleteItem() {

 Table table = dynamoDB.getTable(tableName);

 try {

 DeleteItemSpec deleteItemSpec = new DeleteItemSpec().withPrimaryKey("Id",
 120)
 .withConditionExpression("#ip = :val").withNameMap(new
 NameMap().with("#ip", "InPublication"))

Working with items: Java API Version 2012-08-10 861

Amazon DynamoDB Developer Guide

 .withValueMap(new ValueMap().withBoolean(":val",
 false)).withReturnValues(ReturnValue.ALL_OLD);

 DeleteItemOutcome outcome = table.deleteItem(deleteItemSpec);

 // Check the response.
 System.out.println("Printing item that was deleted...");
 System.out.println(outcome.getItem().toJSONPretty());

 } catch (Exception e) {
 System.err.println("Error deleting item in " + tableName);
 System.err.println(e.getMessage());
 }
 }
}

Example: Batch operations using Amazon SDK for Java document API

This section provides examples of batch write and batch get operations in Amazon DynamoDB
using the Amazon SDK for Java Document API.

Note

The SDK for Java also provides an object persistence model, enabling you to map your
client-side classes to DynamoDB tables. This approach can reduce the amount of code that
you have to write. For more information, see Java 1.x: DynamoDBMapper.

Topics

• Example: Batch write operation using the Amazon SDK for Java document API

• Example: Batch get operation using the Amazon SDK for Java document API

Example: Batch write operation using the Amazon SDK for Java document API

The following Java code example uses the batchWriteItem method to perform the following put
and delete operations:

• Put one item in the Forum table.

• Put one item and delete one item from the Thread table.

Working with items: Java API Version 2012-08-10 862

Amazon DynamoDB Developer Guide

You can specify any number of put and delete requests against one or more tables when creating
your batch write request. However, batchWriteItem limits the size of a batch write request and
the number of put and delete operations in a single batch write operation. If your request exceeds
these limits, your request is rejected. If your table does not have sufficient provisioned throughput
to serve this request, the unprocessed request items are returned in the response.

The following example checks the response to see if it has any unprocessed request items. If it
does, it loops back and resends the batchWriteItem request with unprocessed items in the
request. If you followed the examples in this guide, you should already have created the Forum
and Thread tables. You can also create these tables and upload sample data programmatically. For
more information, see Creating example tables and uploading data using the Amazon SDK for Java.

For step-by-step instructions for testing the following sample, see Java code examples.

Example

package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Map;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.BatchWriteItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.TableWriteItems;
import com.amazonaws.services.dynamodbv2.model.WriteRequest;

public class DocumentAPIBatchWrite {

 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 static String forumTableName = "Forum";
 static String threadTableName = "Thread";

 public static void main(String[] args) throws IOException {

Working with items: Java API Version 2012-08-10 863

Amazon DynamoDB Developer Guide

 writeMultipleItemsBatchWrite();

 }

 private static void writeMultipleItemsBatchWrite() {
 try {

 // Add a new item to Forum
 TableWriteItems forumTableWriteItems = new
 TableWriteItems(forumTableName) // Forum
 .withItemsToPut(new Item().withPrimaryKey("Name", "Amazon
 RDS").withNumber("Threads", 0));

 // Add a new item, and delete an existing item, from Thread
 // This table has a partition key and range key, so need to specify
 // both of them
 TableWriteItems threadTableWriteItems = new
 TableWriteItems(threadTableName)
 .withItemsToPut(
 new Item().withPrimaryKey("ForumName", "Amazon RDS",
 "Subject", "Amazon RDS Thread 1")
 .withString("Message", "ElastiCache Thread 1
 message")
 .withStringSet("Tags", new
 HashSet<String>(Arrays.asList("cache", "in-memory"))))
 .withHashAndRangeKeysToDelete("ForumName", "Subject", "Amazon S3",
 "S3 Thread 100");

 System.out.println("Making the request.");
 BatchWriteItemOutcome outcome =
 dynamoDB.batchWriteItem(forumTableWriteItems, threadTableWriteItems);

 do {

 // Check for unprocessed keys which could happen if you exceed
 // provisioned throughput

 Map<String, List<WriteRequest>> unprocessedItems =
 outcome.getUnprocessedItems();

 if (outcome.getUnprocessedItems().size() == 0) {
 System.out.println("No unprocessed items found");
 } else {

Working with items: Java API Version 2012-08-10 864

Amazon DynamoDB Developer Guide

 System.out.println("Retrieving the unprocessed items");
 outcome = dynamoDB.batchWriteItemUnprocessed(unprocessedItems);
 }

 } while (outcome.getUnprocessedItems().size() > 0);

 } catch (Exception e) {
 System.err.println("Failed to retrieve items: ");
 e.printStackTrace(System.err);
 }

 }

}

Example: Batch get operation using the Amazon SDK for Java document API

The following Java code example uses the batchGetItem method to retrieve multiple items
from the Forum and the Thread tables. The BatchGetItemRequest specifies the table names
and a list of keys for each item to get. The example processes the response by printing the items
retrieved.

Note

This code example assumes that you have already loaded data into DynamoDB for your
account by following the instructions in the Creating tables and loading data for code
examples in DynamoDB section.
For step-by-step instructions to run the following example, see Java code examples.

Example

package com.amazonaws.codesamples.document;

import java.io.IOException;
import java.util.List;
import java.util.Map;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;

Working with items: Java API Version 2012-08-10 865

Amazon DynamoDB Developer Guide

import com.amazonaws.services.dynamodbv2.document.BatchGetItemOutcome;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.TableKeysAndAttributes;
import com.amazonaws.services.dynamodbv2.model.KeysAndAttributes;

public class DocumentAPIBatchGet {
 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 static String forumTableName = "Forum";
 static String threadTableName = "Thread";

 public static void main(String[] args) throws IOException {
 retrieveMultipleItemsBatchGet();
 }

 private static void retrieveMultipleItemsBatchGet() {

 try {

 TableKeysAndAttributes forumTableKeysAndAttributes = new
 TableKeysAndAttributes(forumTableName);
 // Add a partition key
 forumTableKeysAndAttributes.addHashOnlyPrimaryKeys("Name", "Amazon S3",
 "Amazon DynamoDB");

 TableKeysAndAttributes threadTableKeysAndAttributes = new
 TableKeysAndAttributes(threadTableName);
 // Add a partition key and a sort key
 threadTableKeysAndAttributes.addHashAndRangePrimaryKeys("ForumName",
 "Subject", "Amazon DynamoDB",
 "DynamoDB Thread 1", "Amazon DynamoDB", "DynamoDB Thread 2",
 "Amazon S3", "S3 Thread 1");

 System.out.println("Making the request.");

 BatchGetItemOutcome outcome =
 dynamoDB.batchGetItem(forumTableKeysAndAttributes,
 threadTableKeysAndAttributes);

 Map<String, KeysAndAttributes> unprocessed = null;

 do {

Working with items: Java API Version 2012-08-10 866

Amazon DynamoDB Developer Guide

 for (String tableName : outcome.getTableItems().keySet()) {
 System.out.println("Items in table " + tableName);
 List<Item> items = outcome.getTableItems().get(tableName);
 for (Item item : items) {
 System.out.println(item.toJSONPretty());
 }
 }

 // Check for unprocessed keys which could happen if you exceed
 // provisioned
 // throughput or reach the limit on response size.
 unprocessed = outcome.getUnprocessedKeys();

 if (unprocessed.isEmpty()) {
 System.out.println("No unprocessed keys found");
 } else {
 System.out.println("Retrieving the unprocessed keys");
 outcome = dynamoDB.batchGetItemUnprocessed(unprocessed);
 }

 } while (!unprocessed.isEmpty());

 } catch (Exception e) {
 System.err.println("Failed to retrieve items.");
 System.err.println(e.getMessage());
 }

 }

}

Example: Handling binary type attributes using the Amazon SDK for Java
document API

The following Java code example illustrates handling binary type attributes. The example adds
an item to the Reply table. The item includes a binary type attribute (ExtendedMessage) that
stores compressed data. The example then retrieves the item and prints all the attribute values.
For illustration, the example uses the GZIPOutputStream class to compress a sample stream
and assign it to the ExtendedMessage attribute. When the binary attribute is retrieved, it is
decompressed using the GZIPInputStream class.

Working with items: Java API Version 2012-08-10 867

Amazon DynamoDB Developer Guide

Note

The SDK for Java also provides an object persistence model, enabling you to map your
client-side classes to DynamoDB tables. This approach can reduce the amount of code that
you have to write. For more information, see Java 1.x: DynamoDBMapper.

If you followed the Creating tables and loading data for code examples in DynamoDB section, you
should already have created the Reply table. You can also create this table programmatically. For
more information, see Creating example tables and uploading data using the Amazon SDK for Java.

For step-by-step instructions for testing the following sample, see Java code examples.

Example

package com.amazonaws.codesamples.document;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.TimeZone;
import java.util.zip.GZIPInputStream;
import java.util.zip.GZIPOutputStream;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.GetItemSpec;

public class DocumentAPIItemBinaryExample {

 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 static String tableName = "Reply";

Working with items: Java API Version 2012-08-10 868

Amazon DynamoDB Developer Guide

 static SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");

 public static void main(String[] args) throws IOException {
 try {

 // Format the primary key values
 String threadId = "Amazon DynamoDB#DynamoDB Thread 2";

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));
 String replyDateTime = dateFormatter.format(new Date());

 // Add a new reply with a binary attribute type
 createItem(threadId, replyDateTime);

 // Retrieve the reply with a binary attribute type
 retrieveItem(threadId, replyDateTime);

 // clean up by deleting the item
 deleteItem(threadId, replyDateTime);
 } catch (Exception e) {
 System.err.println("Error running the binary attribute type example: " +
 e);
 e.printStackTrace(System.err);
 }
 }

 public static void createItem(String threadId, String replyDateTime) throws
 IOException {

 Table table = dynamoDB.getTable(tableName);

 // Craft a long message
 String messageInput = "Long message to be compressed in a lengthy forum reply";

 // Compress the long message
 ByteBuffer compressedMessage = compressString(messageInput.toString());

 table.putItem(new Item().withPrimaryKey("Id",
 threadId).withString("ReplyDateTime", replyDateTime)
 .withString("Message", "Long message
 follows").withBinary("ExtendedMessage", compressedMessage)
 .withString("PostedBy", "User A"));
 }

Working with items: Java API Version 2012-08-10 869

Amazon DynamoDB Developer Guide

 public static void retrieveItem(String threadId, String replyDateTime) throws
 IOException {

 Table table = dynamoDB.getTable(tableName);

 GetItemSpec spec = new GetItemSpec().withPrimaryKey("Id", threadId,
 "ReplyDateTime", replyDateTime)
 .withConsistentRead(true);

 Item item = table.getItem(spec);

 // Uncompress the reply message and print
 String uncompressed =
 uncompressString(ByteBuffer.wrap(item.getBinary("ExtendedMessage")));

 System.out.println("Reply message:\n" + " Id: " + item.getString("Id") + "\n" +
 " ReplyDateTime: "
 + item.getString("ReplyDateTime") + "\n" + " PostedBy: " +
 item.getString("PostedBy") + "\n"
 + " Message: "
 + item.getString("Message") + "\n" + " ExtendedMessage (uncompressed):
 " + uncompressed + "\n");
 }

 public static void deleteItem(String threadId, String replyDateTime) {

 Table table = dynamoDB.getTable(tableName);
 table.deleteItem("Id", threadId, "ReplyDateTime", replyDateTime);
 }

 private static ByteBuffer compressString(String input) throws IOException {
 // Compress the UTF-8 encoded String into a byte[]
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 GZIPOutputStream os = new GZIPOutputStream(baos);
 os.write(input.getBytes("UTF-8"));
 os.close();
 baos.close();
 byte[] compressedBytes = baos.toByteArray();

 // The following code writes the compressed bytes to a ByteBuffer.
 // A simpler way to do this is by simply calling
 // ByteBuffer.wrap(compressedBytes);
 // However, the longer form below shows the importance of resetting the

Working with items: Java API Version 2012-08-10 870

Amazon DynamoDB Developer Guide

 // position of the buffer
 // back to the beginning of the buffer if you are writing bytes directly
 // to it, since the SDK
 // will consider only the bytes after the current position when sending
 // data to DynamoDB.
 // Using the "wrap" method automatically resets the position to zero.
 ByteBuffer buffer = ByteBuffer.allocate(compressedBytes.length);
 buffer.put(compressedBytes, 0, compressedBytes.length);
 buffer.position(0); // Important: reset the position of the ByteBuffer
 // to the beginning
 return buffer;
 }

 private static String uncompressString(ByteBuffer input) throws IOException {
 byte[] bytes = input.array();
 ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 GZIPInputStream is = new GZIPInputStream(bais);

 int chunkSize = 1024;
 byte[] buffer = new byte[chunkSize];
 int length = 0;
 while ((length = is.read(buffer, 0, chunkSize)) != -1) {
 baos.write(buffer, 0, length);
 }

 String result = new String(baos.toByteArray(), "UTF-8");

 is.close();
 baos.close();
 bais.close();

 return result;
 }
}

Working with items: .NET

You can use the Amazon SDK for .NET low-level API to perform typical create, read, update, and
delete (CRUD) operations on an item in a table. The following are the common steps that you
follow to perform data CRUD operations using the .NET low-level API:

Working with items: .NET API Version 2012-08-10 871

Amazon DynamoDB Developer Guide

1. Create an instance of the AmazonDynamoDBClient class (the client).

2. Provide the operation-specific required parameters in a corresponding request object.

For example, use the PutItemRequest request object when uploading an item and use the
GetItemRequest request object when retrieving an existing item.

You can use the request object to provide both the required and optional parameters.

3. Run the appropriate method provided by the client by passing in the request object that you
created in the preceding step.

The AmazonDynamoDBClient client provides PutItem, GetItem, UpdateItem, and
DeleteItem methods for the CRUD operations.

Topics

• Putting an item

• Getting an item

• Updating an item

• Atomic counter

• Deleting an item

• Batch write: Putting and deleting multiple items

• Batch get: Getting multiple items

• Example: CRUD operations using the Amazon SDK for .NET low-level API

• Example: Batch operations using the Amazon SDK for .NET low-level API

• Example: Handling binary type attributes using the Amazon SDK for .NET low-level API

Putting an item

The PutItem method uploads an item to a table. If the item exists, it replaces the entire item.

Note

Instead of replacing the entire item, if you want to update only specific attributes, you can
use the UpdateItem method. For more information, see Updating an item.

Working with items: .NET API Version 2012-08-10 872

Amazon DynamoDB Developer Guide

The following are the steps to upload an item using the low-level .NET SDK API:

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the PutItemRequest class.

To put an item, you must provide the table name and the item.

3. Run the PutItem method by providing the PutItemRequest object that you created in the
preceding step.

The following C# example demonstrates the preceding steps. The example uploads an item to the
ProductCatalog table.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new PutItemRequest
{
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = "201" }},
 { "Title", new AttributeValue { S = "Book 201 Title" }},
 { "ISBN", new AttributeValue { S = "11-11-11-11" }},
 { "Price", new AttributeValue { S = "20.00" }},
 {
 "Authors",
 new AttributeValue
 { SS = new List<string>{"Author1", "Author2"} }
 }
 }
};
client.PutItem(request);

In the preceding example, you upload a book item that has the Id, Title, ISBN, and Authors
attributes. Note that Id is a numeric type attribute, and all other attributes are of the string type.
Authors is a String set.

Working with items: .NET API Version 2012-08-10 873

Amazon DynamoDB Developer Guide

Specifying optional parameters

You can also provide optional parameters using the PutItemRequest object as shown in the
following C# example. The example specifies the following optional parameters:

• ExpressionAttributeNames, ExpressionAttributeValues, and ConditionExpression
specify that the item can be replaced only if the existing item has the ISBN attribute with a
specific value.

• ReturnValues parameter to request the old item in the response.

Example

var request = new PutItemRequest
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue { N = "104" }},
 { "Title", new AttributeValue { S = "Book 104 Title" }},
 { "ISBN", new AttributeValue { S = "444-4444444444" }},
 { "Authors",
 new AttributeValue { SS = new List<string>{"Author3"}}}
 },
 // Optional parameters.
 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#I", "ISBN"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":isbn",new AttributeValue {S = "444-4444444444"}}
 },
 ConditionExpression = "#I = :isbn"

};
var response = client.PutItem(request);

For more information, see PutItem.

Getting an item

The GetItem method retrieves an item.

Working with items: .NET API Version 2012-08-10 874

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

Note

To retrieve multiple items, you can use the BatchGetItem method. For more information,
see Batch get: Getting multiple items.

The following are the steps to retrieve an existing item using the low-level Amazon SDK for .NET
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the GetItemRequest class.

To get an item, you must provide the table name and primary key of the item.

3. Run the GetItem method by providing the GetItemRequest object that you created in the
preceding step.

The following C# example demonstrates the preceding steps. The example retrieves an item from
the ProductCatalog table.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "202" } } },
 };
 var response = client.GetItem(request);

// Check the response.
var result = response.GetItemResult;
var attributeMap = result.Item; // Attribute list in the response.

Specifying optional parameters

You can also provide optional parameters using the GetItemRequest object, as shown in the
following C# example. The sample specifies the following optional parameters:

• ProjectionExpression parameter to specify the attributes to retrieve.

Working with items: .NET API Version 2012-08-10 875

Amazon DynamoDB Developer Guide

• ConsistentRead parameter to perform a strongly consistent read. To learn more read
consistency, see DynamoDB read consistency.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "202" } } },
 // Optional parameters.
 ProjectionExpression = "Id, ISBN, Title, Authors",
 ConsistentRead = true
 };

 var response = client.GetItem(request);

// Check the response.
var result = response.GetItemResult;
var attributeMap = result.Item;

For more information, see GetItem.

Updating an item

The UpdateItem method updates an existing item if it is present. You can use the UpdateItem
operation to update existing attribute values, add new attributes, or delete attributes from the
existing collection. If the item that has the specified primary key is not found, it adds a new item.

The UpdateItem operation uses the following guidelines:

• If the item does not exist, UpdateItem adds a new item using the primary key that is specified in
the input.

• If the item exists, UpdateItem applies the updates as follows:

• Replaces the existing attribute values by the values in the update.

• If the attribute that you provide in the input does not exist, it adds a new attribute to the item.

• If the input attribute is null, it deletes the attribute, if it is present.

Working with items: .NET API Version 2012-08-10 876

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html

Amazon DynamoDB Developer Guide

• If you use ADD for the Action, you can add values to an existing set (string or number set),
or mathematically add (use a positive number) or subtract (use a negative number) from the
existing numeric attribute value.

Note

The PutItem operation also can perform an update. For more information, see Putting
an item. For example, if you call PutItem to upload an item and the primary key exists,
the PutItem operation replaces the entire item. If there are attributes in the existing item
and those attributes are not specified in the input, the PutItem operation deletes those
attributes. However, UpdateItem updates only the specified input attributes. Any other
existing attributes of that item remain unchanged.

The following are the steps to update an existing item using the low-level .NET SDK API:

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the UpdateItemRequest class.

This is the request object in which you describe all the updates, such as add attributes, update
existing attributes, or delete attributes. To delete an existing attribute, specify the attribute
name with null value.

3. Run the UpdateItem method by providing the UpdateItemRequest object that you created
in the preceding step.

The following C# code example demonstrates the preceding steps. The example updates a book
item in the ProductCatalog table. It adds a new author to the Authors collection, and deletes
the existing ISBN attribute. It also reduces the price by one.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "202" } } },

Working with items: .NET API Version 2012-08-10 877

Amazon DynamoDB Developer Guide

 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#A", "Authors"},
 {"#P", "Price"},
 {"#NA", "NewAttribute"},
 {"#I", "ISBN"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":auth",new AttributeValue { SS = {"Author YY","Author ZZ"}}},
 {":p",new AttributeValue {N = "1"}},
 {":newattr",new AttributeValue {S = "someValue"}},
 },

 // This expression does the following:
 // 1) Adds two new authors to the list
 // 2) Reduces the price
 // 3) Adds a new attribute to the item
 // 4) Removes the ISBN attribute from the item
 UpdateExpression = "ADD #A :auth SET #P = #P - :p, #NA = :newattr REMOVE #I"
};
var response = client.UpdateItem(request);

Specifying optional parameters

You can also provide optional parameters using the UpdateItemRequest object, as shown in the
following C# example. It specifies the following optional parameters:

• ExpressionAttributeValues and ConditionExpression to specify that the price can be
updated only if the existing price is 20.00.

• ReturnValues parameter to request the updated item in the response.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "202" } } },

Working with items: .NET API Version 2012-08-10 878

Amazon DynamoDB Developer Guide

 // Update price only if the current price is 20.00.
 ExpressionAttributeNames = new Dictionary<string,string>()
 {
 {"#P", "Price"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":newprice",new AttributeValue {N = "22"}},
 {":currprice",new AttributeValue {N = "20"}}
 },
 UpdateExpression = "SET #P = :newprice",
 ConditionExpression = "#P = :currprice",
 TableName = tableName,
 ReturnValues = "ALL_NEW" // Return all the attributes of the updated item.
};

var response = client.UpdateItem(request);

For more information, see UpdateItem.

Atomic counter

You can use updateItem to implement an atomic counter, where you increment or decrement the
value of an existing attribute without interfering with other write requests. To update an atomic
counter, use updateItem with an attribute of type Number in the UpdateExpression parameter,
and ADD as the Action.

The following example demonstrates this, incrementing the Quantity attribute by one.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new UpdateItemRequest
{
 Key = new Dictionary<string, AttributeValue>() { { "Id", new AttributeValue { N =
 "121" } } },
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#Q", "Quantity"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":incr",new AttributeValue {N = "1"}}

Working with items: .NET API Version 2012-08-10 879

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html

Amazon DynamoDB Developer Guide

 },
 UpdateExpression = "SET #Q = #Q + :incr",
 TableName = tableName
};

var response = client.UpdateItem(request);

Deleting an item

The DeleteItem method deletes an item from a table.

The following are the steps to delete an item using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the DeleteItemRequest class.

To delete an item, the table name and item's primary key are required.

3. Run the DeleteItem method by providing the DeleteItemRequest object that you created
in the preceding step.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "ProductCatalog";

var request = new DeleteItemRequest
{
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "201" } } },
};

var response = client.DeleteItem(request);

Specifying optional parameters

You can also provide optional parameters using the DeleteItemRequest object as shown in the
following C# code example. It specifies the following optional parameters:

• ExpressionAttributeValues and ConditionExpression to specify that the book item can
be deleted only if it is no longer in publication (the InPublication attribute value is false).

Working with items: .NET API Version 2012-08-10 880

Amazon DynamoDB Developer Guide

• ReturnValues parameter to request the deleted item in the response.

Example

var request = new DeleteItemRequest
{
 TableName = tableName,
 Key = new Dictionary<string,AttributeValue>() { { "Id", new AttributeValue { N =
 "201" } } },

 // Optional parameters.
 ReturnValues = "ALL_OLD",
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#IP", "InPublication"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":inpub",new AttributeValue {BOOL = false}}
 },
 ConditionExpression = "#IP = :inpub"
};

var response = client.DeleteItem(request);

For more information, see DeleteItem.

Batch write: Putting and deleting multiple items

Batch write refers to putting and deleting multiple items in a batch. The BatchWriteItem method
enables you to put and delete multiple items from one or more tables in a single call. The following
are the steps to retrieve multiple items using the low-level .NET SDK API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Describe all the put and delete operations by creating an instance of the
BatchWriteItemRequest class.

3. Run the BatchWriteItem method by providing the BatchWriteItemRequest object that
you created in the preceding step.

4. Process the response. You should check if there were any unprocessed request items returned
in the response. This could happen if you reach the provisioned throughput quota or some

Working with items: .NET API Version 2012-08-10 881

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

other transient error. Also, DynamoDB limits the request size and the number of operations
you can specify in a request. If you exceed these limits, DynamoDB rejects the request. For
more information, see BatchWriteItem.

The following C# code example demonstrates the preceding steps. The example creates a
BatchWriteItemRequest to perform the following write operations:

• Put an item in Forum table.

• Put and delete an item from Thread table.

The code runs BatchWriteItem to perform a batch operation.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";
string table2Name = "Thread";

var request = new BatchWriteItemRequest
 {
 RequestItems = new Dictionary<string, List<WriteRequest>>
 {
 {
 table1Name, new List<WriteRequest>
 {
 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string,AttributeValue>
 {
 { "Name", new AttributeValue { S = "Amazon S3 forum" } },
 { "Threads", new AttributeValue { N = "0" }}
 }
 }
 }
 }
 } ,
 {
 table2Name, new List<WriteRequest>
 {
 new WriteRequest

Working with items: .NET API Version 2012-08-10 882

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

Amazon DynamoDB Developer Guide

 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string,AttributeValue>
 {
 { "ForumName", new AttributeValue { S = "Amazon S3 forum" } },
 { "Subject", new AttributeValue { S = "My sample question" } },
 { "Message", new AttributeValue { S = "Message Text." } },
 { "KeywordTags", new AttributeValue { SS = new List<string> { "Amazon
 S3", "Bucket" } } }
 }
 }
 },
 new WriteRequest
 {
 DeleteRequest = new DeleteRequest
 {
 Key = new Dictionary<string,AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "Some forum name" } },
 { "Subject", new AttributeValue { S = "Some subject" } }
 }
 }
 }
 }
 }
 }
 };
response = client.BatchWriteItem(request);

For a working example, see Example: Batch operations using the Amazon SDK for .NET low-level
API.

Batch get: Getting multiple items

The BatchGetItem method enables you to retrieve multiple items from one or more tables.

Note

To retrieve a single item, you can use the GetItem method.

Working with items: .NET API Version 2012-08-10 883

Amazon DynamoDB Developer Guide

The following are the steps to retrieve multiple items using the low-level Amazon SDK for .NET
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required parameters by creating an instance of the BatchGetItemRequest class.

To retrieve multiple items, the table name and a list of primary key values are required.

3. Run the BatchGetItem method by providing the BatchGetItemRequest object that you
created in the preceding step.

4. Process the response. You should check if there were any unprocessed keys, which could
happen if you reach the provisioned throughput quota or some other transient error.

The following C# code example demonstrates the preceding steps. The example retrieves items
from two tables, Forum and Thread. The request specifies two items in the Forum and three items
in the Thread table. The response includes items from both of the tables. The code shows how you
can process the response.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";
string table2Name = "Thread";

var request = new BatchGetItemRequest
{
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "DynamoDB" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "Amazon S3" } }
 }
 }

Working with items: .NET API Version 2012-08-10 884

Amazon DynamoDB Developer Guide

 }
 },
 {
 table2Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "DynamoDB" } },
 { "Subject", new AttributeValue { S = "DynamoDB Thread 1" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "DynamoDB" } },
 { "Subject", new AttributeValue { S = "DynamoDB Thread 2" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue { S = "Amazon S3" } },
 { "Subject", new AttributeValue { S = "Amazon S3 Thread 1" } }
 }
 }
 }
 }
 }
};

var response = client.BatchGetItem(request);

// Check the response.
var result = response.BatchGetItemResult;
var responses = result.Responses; // The attribute list in the response.

var table1Results = responses[table1Name];
Console.WriteLine("Items in table {0}" + table1Name);
foreach (var item1 in table1Results.Items)
{
 PrintItem(item1);
}

var table2Results = responses[table2Name];
Console.WriteLine("Items in table {1}" + table2Name);

Working with items: .NET API Version 2012-08-10 885

Amazon DynamoDB Developer Guide

foreach (var item2 in table2Results.Items)
{
 PrintItem(item2);
}
// Any unprocessed keys? could happen if you exceed ProvisionedThroughput or some other
 error.
Dictionary<string, KeysAndAttributes> unprocessedKeys = result.UnprocessedKeys;
foreach (KeyValuePair<string, KeysAndAttributes> pair in unprocessedKeys)
{
 Console.WriteLine(pair.Key, pair.Value);
}

Specifying optional parameters

You can also provide optional parameters using the BatchGetItemRequest object as shown in
the following C# code example. The example retrieves two items from the Forum table. It specifies
the following optional parameter:

• ProjectionExpression parameter to specify the attributes to retrieve.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();

string table1Name = "Forum";

var request = new BatchGetItemRequest
{
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue>>()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "DynamoDB" } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue { S = "Amazon S3" } }

Working with items: .NET API Version 2012-08-10 886

Amazon DynamoDB Developer Guide

 }
 }
 },
 // Optional - name of an attribute to retrieve.
 ProjectionExpression = "Title"
 }
 }
};

var response = client.BatchGetItem(request);

For more information, see BatchGetItem.

Example: CRUD operations using the Amazon SDK for .NET low-level API

The following C# code example illustrates CRUD operations on an Amazon DynamoDB item. The
example adds an item to the ProductCatalog table, retrieves it, performs various updates, and
finally deletes the item. If you haven't created this table, you can also create it programmatically.
For more information, see Creating example tables and uploading data using the Amazon SDK
for .NET.

For step-by-step instructions for testing the following sample, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
{
 class LowLevelItemCRUDExample
 {
 private static string tableName = "ProductCatalog";
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {

Working with items: .NET API Version 2012-08-10 887

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html

Amazon DynamoDB Developer Guide

 CreateItem();
 RetrieveItem();

 // Perform various updates.
 UpdateMultipleAttributes();
 UpdateExistingAttributeConditionally();

 // Delete item.
 DeleteItem();
 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 }

 private static void CreateItem()
 {
 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 N = "1000"
 }},
 { "Title", new AttributeValue {
 S = "Book 201 Title"
 }},
 { "ISBN", new AttributeValue {
 S = "11-11-11-11"
 }},
 { "Authors", new AttributeValue {
 SS = new List<string>{"Author1", "Author2" }
 }},
 { "Price", new AttributeValue {
 N = "20.00"
 }},
 { "Dimensions", new AttributeValue {
 S = "8.5x11.0x.75"

Working with items: .NET API Version 2012-08-10 888

Amazon DynamoDB Developer Guide

 }},
 { "InPublication", new AttributeValue {
 BOOL = false
 } }
 }
 };
 client.PutItem(request);
 }

 private static void RetrieveItem()
 {
 var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 N = "1000"
 } }
 },
 ProjectionExpression = "Id, ISBN, Title, Authors",
 ConsistentRead = true
 };
 var response = client.GetItem(request);

 // Check the response.
 var attributeList = response.Item; // attribute list in the response.
 Console.WriteLine("\nPrinting item after retrieving it");
 PrintItem(attributeList);
 }

 private static void UpdateMultipleAttributes()
 {
 var request = new UpdateItemRequest
 {
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 N = "1000"
 } }
 },
 // Perform the following updates:
 // 1) Add two new authors to the list
 // 1) Set a new attribute

Working with items: .NET API Version 2012-08-10 889

Amazon DynamoDB Developer Guide

 // 2) Remove the ISBN attribute
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#A","Authors"},
 {"#NA","NewAttribute"},
 {"#I","ISBN"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":auth",new AttributeValue {
 SS = {"Author YY", "Author ZZ"}
 }},
 {":new",new AttributeValue {
 S = "New Value"
 }}
 },

 UpdateExpression = "ADD #A :auth SET #NA = :new REMOVE #I",

 TableName = tableName,
 ReturnValues = "ALL_NEW" // Give me all attributes of the updated item.
 };
 var response = client.UpdateItem(request);

 // Check the response.
 var attributeList = response.Attributes; // attribute list in the response.
 // print attributeList.
 Console.WriteLine("\nPrinting item after multiple attribute
 update");
 PrintItem(attributeList);
 }

 private static void UpdateExistingAttributeConditionally()
 {
 var request = new UpdateItemRequest
 {
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 N = "1000"
 } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>()
 {

Working with items: .NET API Version 2012-08-10 890

Amazon DynamoDB Developer Guide

 {"#P", "Price"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":newprice",new AttributeValue {
 N = "22.00"
 }},
 {":currprice",new AttributeValue {
 N = "20.00"
 }}
 },
 // This updates price only if current price is 20.00.
 UpdateExpression = "SET #P = :newprice",
 ConditionExpression = "#P = :currprice",

 TableName = tableName,
 ReturnValues = "ALL_NEW" // Give me all attributes of the updated item.
 };
 var response = client.UpdateItem(request);

 // Check the response.
 var attributeList = response.Attributes; // attribute list in the response.
 Console.WriteLine("\nPrinting item after updating price value
 conditionally");
 PrintItem(attributeList);
 }

 private static void DeleteItem()
 {
 var request = new DeleteItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 N = "1000"
 } }
 },

 // Return the entire item as it appeared before the update.
 ReturnValues = "ALL_OLD",
 ExpressionAttributeNames = new Dictionary<string, string>()
 {
 {"#IP", "InPublication"}

Working with items: .NET API Version 2012-08-10 891

Amazon DynamoDB Developer Guide

 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()
 {
 {":inpub",new AttributeValue {
 BOOL = false
 }}
 },
 ConditionExpression = "#IP = :inpub"
 };

 var response = client.DeleteItem(request);

 // Check the response.
 var attributeList = response.Attributes; // Attribute list in the response.
 // Print item.
 Console.WriteLine("\nPrinting item that was just deleted");
 PrintItem(attributeList);
 }

 private static void PrintItem(Dictionary<string, AttributeValue> attributeList)
 {
 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +
 (value.SS == null ? "" : "SS=[" + string.Join(",",
 value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
 value.NS.ToArray()) + "]")
);
 }
 Console.WriteLine("**");
 }
 }
}

Working with items: .NET API Version 2012-08-10 892

Amazon DynamoDB Developer Guide

Example: Batch operations using the Amazon SDK for .NET low-level API

Topics

• Example: Batch write operation using the Amazon SDK for .NET low-level API

• Example: Batch get operation using the Amazon SDK for .NET low-level API

This section provides examples of batch operations, batch write and batch get, that Amazon
DynamoDB supports.

Example: Batch write operation using the Amazon SDK for .NET low-level API

The following C# code example uses the BatchWriteItem method to perform the following put
and delete operations:

• Put one item in the Forum table.

• Put one item and delete one item from the Thread table.

You can specify any number of put and delete requests against one or more tables when creating
your batch write request. However, DynamoDB BatchWriteItem limits the size of a batch write
request and the number of put and delete operations in a single batch write operation. For more
information, see BatchWriteItem. If your request exceeds these limits, your request is rejected. If
your table does not have sufficient provisioned throughput to serve this request, the unprocessed
request items are returned in the response.

The following example checks the response to see if it has any unprocessed request items. If it
does, it loops back and resends the BatchWriteItem request with unprocessed items in the
request. You can also create these sample tables and upload sample data programmatically.
For more information, see Creating example tables and uploading data using the Amazon SDK
for .NET.

For step-by-step instructions for testing the following sample, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

Working with items: .NET API Version 2012-08-10 893

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

Amazon DynamoDB Developer Guide

namespace com.amazonaws.codesamples
{
 class LowLevelBatchWrite
 {
 private static string table1Name = "Forum";
 private static string table2Name = "Thread";
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {
 TestBatchWrite();
 }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }

 private static void TestBatchWrite()
 {
 var request = new BatchWriteItemRequest
 {
 ReturnConsumedCapacity = "TOTAL",
 RequestItems = new Dictionary<string, List<WriteRequest>>
 {
 {
 table1Name, new List<WriteRequest>
 {
 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string, AttributeValue>
 {
 { "Name", new AttributeValue {
 S = "S3 forum"
 } },
 { "Threads", new AttributeValue {
 N = "0"
 }}

Working with items: .NET API Version 2012-08-10 894

Amazon DynamoDB Developer Guide

 }
 }
 }
 }
 },
 {
 table2Name, new List<WriteRequest>
 {
 new WriteRequest
 {
 PutRequest = new PutRequest
 {
 Item = new Dictionary<string, AttributeValue>
 {
 { "ForumName", new AttributeValue {
 S = "S3 forum"
 } },
 { "Subject", new AttributeValue {
 S = "My sample question"
 } },
 { "Message", new AttributeValue {
 S = "Message Text."
 } },
 { "KeywordTags", new AttributeValue {
 SS = new List<string> { "S3", "Bucket" }
 } }
 }
 }
 },
 new WriteRequest
 {
 // For the operation to delete an item, if you provide a
 primary key value
 // that does not exist in the table, there is no error, it
 is just a no-op.
 DeleteRequest = new DeleteRequest
 {
 Key = new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Some partition key value"
 } },
 { "Subject", new AttributeValue {
 S = "Some sort key value"

Working with items: .NET API Version 2012-08-10 895

Amazon DynamoDB Developer Guide

 } }
 }
 }
 }
 }
 }
 }
 };

 CallBatchWriteTillCompletion(request);
 }

 private static void CallBatchWriteTillCompletion(BatchWriteItemRequest request)
 {
 BatchWriteItemResponse response;

 int callCount = 0;
 do
 {
 Console.WriteLine("Making request");
 response = client.BatchWriteItem(request);
 callCount++;

 // Check the response.

 var tableConsumedCapacities = response.ConsumedCapacity;
 var unprocessed = response.UnprocessedItems;

 Console.WriteLine("Per-table consumed capacity");
 foreach (var tableConsumedCapacity in tableConsumedCapacities)
 {
 Console.WriteLine("{0} - {1}", tableConsumedCapacity.TableName,
 tableConsumedCapacity.CapacityUnits);
 }

 Console.WriteLine("Unprocessed");
 foreach (var unp in unprocessed)
 {
 Console.WriteLine("{0} - {1}", unp.Key, unp.Value.Count);
 }
 Console.WriteLine();

 // For the next iteration, the request will have unprocessed items.
 request.RequestItems = unprocessed;

Working with items: .NET API Version 2012-08-10 896

Amazon DynamoDB Developer Guide

 } while (response.UnprocessedItems.Count > 0);

 Console.WriteLine("Total # of batch write API calls made: {0}", callCount);
 }
 }
}

Example: Batch get operation using the Amazon SDK for .NET low-level API

The following C# code example uses the BatchGetItem method to retrieve multiple items from
the Forum and the Thread tables in Amazon DynamoDB. The BatchGetItemRequest specifies
the table names and a list of primary keys for each table. The example processes the response by
printing the items retrieved.

For step-by-step instructions for testing the following sample, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

namespace com.amazonaws.codesamples
{
 class LowLevelBatchGet
 {
 private static string table1Name = "Forum";
 private static string table2Name = "Thread";
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {
 RetrieveMultipleItemsBatchGet();

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }

Working with items: .NET API Version 2012-08-10 897

Amazon DynamoDB Developer Guide

 }

 private static void RetrieveMultipleItemsBatchGet()
 {
 var request = new BatchGetItemRequest
 {
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon DynamoDB"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon S3"
 } }
 }
 }
 }},
 {
 table2Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 1"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {

Working with items: .NET API Version 2012-08-10 898

Amazon DynamoDB Developer Guide

 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 2"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon S3"
 } },
 { "Subject", new AttributeValue {
 S = "S3 Thread 1"
 } }
 }
 }
 }
 }
 }
 };

 BatchGetItemResponse response;
 do
 {
 Console.WriteLine("Making request");
 response = client.BatchGetItem(request);

 // Check the response.
 var responses = response.Responses; // Attribute list in the response.

 foreach (var tableResponse in responses)
 {
 var tableResults = tableResponse.Value;
 Console.WriteLine("Items retrieved from table {0}",
 tableResponse.Key);
 foreach (var item1 in tableResults)
 {
 PrintItem(item1);
 }
 }

 // Any unprocessed keys? could happen if you exceed
 ProvisionedThroughput or some other error.

Working with items: .NET API Version 2012-08-10 899

Amazon DynamoDB Developer Guide

 Dictionary<string, KeysAndAttributes> unprocessedKeys =
 response.UnprocessedKeys;
 foreach (var unprocessedTableKeys in unprocessedKeys)
 {
 // Print table name.
 Console.WriteLine(unprocessedTableKeys.Key);
 // Print unprocessed primary keys.
 foreach (var key in unprocessedTableKeys.Value.Keys)
 {
 PrintItem(key);
 }
 }

 request.RequestItems = unprocessedKeys;
 } while (response.UnprocessedKeys.Count > 0);
 }

 private static void PrintItem(Dictionary<string, AttributeValue> attributeList)
 {
 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +
 (value.SS == null ? "" : "SS=[" + string.Join(",",
 value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
 value.NS.ToArray()) + "]")
);
 }
 Console.WriteLine("**");
 }
 }
}

Working with items: .NET API Version 2012-08-10 900

Amazon DynamoDB Developer Guide

Example: Handling binary type attributes using the Amazon SDK for .NET low-
level API

The following C# code example illustrates the handling of binary type attributes. The example adds
an item to the Reply table. The item includes a binary type attribute (ExtendedMessage) that
stores compressed data. The example then retrieves the item and prints all the attribute values. For
illustration, the example uses the GZipStream class to compress a sample stream and assigns it to
the ExtendedMessage attribute, and decompresses it when printing the attribute value.

For step-by-step instructions for testing the following example, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using System.IO;
using System.IO.Compression;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

namespace com.amazonaws.codesamples
{
 class LowLevelItemBinaryExample
 {
 private static string tableName = "Reply";
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 // Reply table primary key.
 string replyIdPartitionKey = "Amazon DynamoDB#DynamoDB Thread 1";
 string replyDateTimeSortKey = Convert.ToString(DateTime.UtcNow);

 try
 {
 CreateItem(replyIdPartitionKey, replyDateTimeSortKey);
 RetrieveItem(replyIdPartitionKey, replyDateTimeSortKey);
 // Delete item.
 DeleteItem(replyIdPartitionKey, replyDateTimeSortKey);
 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }

Working with items: .NET API Version 2012-08-10 901

Amazon DynamoDB Developer Guide

 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message); }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }
 }

 private static void CreateItem(string partitionKey, string sortKey)
 {
 MemoryStream compressedMessage = ToGzipMemoryStream("Some long extended
 message to compress.");
 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 S = partitionKey
 }},
 { "ReplyDateTime", new AttributeValue {
 S = sortKey
 }},
 { "Subject", new AttributeValue {
 S = "Binary type "
 }},
 { "Message", new AttributeValue {
 S = "Some message about the binary type"
 }},
 { "ExtendedMessage", new AttributeValue {
 B = compressedMessage
 }}
 }
 };
 client.PutItem(request);
 }

 private static void RetrieveItem(string partitionKey, string sortKey)
 {
 var request = new GetItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 S = partitionKey
 } },

Working with items: .NET API Version 2012-08-10 902

Amazon DynamoDB Developer Guide

 { "ReplyDateTime", new AttributeValue {
 S = sortKey
 } }
 },
 ConsistentRead = true
 };
 var response = client.GetItem(request);

 // Check the response.
 var attributeList = response.Item; // attribute list in the response.
 Console.WriteLine("\nPrinting item after retrieving it");

 PrintItem(attributeList);
 }

 private static void DeleteItem(string partitionKey, string sortKey)
 {
 var request = new DeleteItemRequest
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>()
 {
 { "Id", new AttributeValue {
 S = partitionKey
 } },
 { "ReplyDateTime", new AttributeValue {
 S = sortKey
 } }
 }
 };
 var response = client.DeleteItem(request);
 }

 private static void PrintItem(Dictionary<string, AttributeValue> attributeList)
 {
 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +

Working with items: .NET API Version 2012-08-10 903

Amazon DynamoDB Developer Guide

 (value.SS == null ? "" : "SS=[" + string.Join(",",
 value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
 value.NS.ToArray()) + "]") +
 (value.B == null ? "" : "B=[" + FromGzipMemoryStream(value.B) +
 "]")
);
 }
 Console.WriteLine("**");
 }

 private static MemoryStream ToGzipMemoryStream(string value)
 {
 MemoryStream output = new MemoryStream();
 using (GZipStream zipStream = new GZipStream(output,
 CompressionMode.Compress, true))
 using (StreamWriter writer = new StreamWriter(zipStream))
 {
 writer.Write(value);
 }
 return output;
 }

 private static string FromGzipMemoryStream(MemoryStream stream)
 {
 using (GZipStream zipStream = new GZipStream(stream,
 CompressionMode.Decompress))
 using (StreamReader reader = new StreamReader(zipStream))
 {
 return reader.ReadToEnd();
 }
 }
 }
}

Improving data access with secondary indexes in DynamoDB

Amazon DynamoDB provides fast access to items in a table by specifying primary key values.
However, many applications might benefit from having one or more secondary (or alternate) keys
available, to allow efficient access to data with attributes other than the primary key. To address
this, you can create one or more secondary indexes on a table and issue Query or Scan requests
against these indexes.

Working with indexes API Version 2012-08-10 904

Amazon DynamoDB Developer Guide

A secondary index is a data structure that contains a subset of attributes from a table, along with
an alternate key to support Query operations. You can retrieve data from the index using a Query,
in much the same way as you use Query with a table. A table can have multiple secondary indexes,
which give your applications access to many different query patterns.

Note

You can also Scan an index, in much the same way as you would Scan a table.
Cross-account access for secondary index scan operations is currently not supported with
resource-based policies.

Every secondary index is associated with exactly one table, from which it obtains its data. This is
called the base table for the index. When you create an index, you define an alternate key for the
index (partition key and sort key). You also define the attributes that you want to be projected, or
copied, from the base table into the index. DynamoDB copies these attributes into the index, along
with the primary key attributes from the base table. You can then query or scan the index just as
you would query or scan a table.

Every secondary index is automatically maintained by DynamoDB. When you add, modify, or delete
items in the base table, any indexes on that table are also updated to reflect these changes.

DynamoDB supports two types of secondary indexes:

• Global secondary index — An index with a partition key and a sort key that can be different
from those on the base table. A global secondary index is considered "global" because queries
on the index can span all of the data in the base table, across all partitions. A global secondary
index is stored in its own partition space away from the base table and scales separately from the
base table.

• Local secondary index — An index that has the same partition key as the base table, but a
different sort key. A local secondary index is "local" in the sense that every partition of a local
secondary index is scoped to a base table partition that has the same partition key value.

For a comparison of global secondary indexes and local secondary indexes, see this video.

Making the right choice between GSI and LSI

Topics

Working with indexes API Version 2012-08-10 905

GSI.html
LSI.html
https://www.youtube.com/embed/BkEu7zBWge8

Amazon DynamoDB Developer Guide

• Using Global Secondary Indexes in DynamoDB

• Local secondary indexes

You should consider your application's requirements when you determine which type of index to
use. The following table shows the main differences between a global secondary index and a local
secondary index.

Characteristic Global secondary index Local secondary index

Key Schema The primary key of a global
secondary index can be either
simple (partition key) or
composite (partition key and
sort key).

The primary key of a local
secondary index must be
composite (partition key and
sort key).

Key Attributes The index partition key and
sort key (if present) can be
any base table attributes of
type string, number, or binary.

The partition key of the index
is the same attribute as the
partition key of the base
table. The sort key can be any
base table attribute of type
string, number, or binary.

Size Restrictions Per
Partition Key Value

There are no size restrictions
for global secondary indexes.

For each partition key value,
the total size of all indexed
items must be 10 GB or less.

Online Index Operations Global secondary indexes can
be created at the same time
that you create a table. You
can also add a new global
secondary index to an existing
table, or delete an existing
global secondary index.
For more information, see
Managing Global Secondary
Indexes in DynamoDB.

Local secondary indexes are
created at the same time that
you create a table. You cannot
add a local secondary index to
an existing table, nor can you
delete any local secondary
indexes that currently exist.

Working with indexes API Version 2012-08-10 906

Amazon DynamoDB Developer Guide

Characteristic Global secondary index Local secondary index

Queries and Partitions A global secondary index lets
you query over the entire
table, across all partitions.

A local secondary index
lets you query over a single
partition, as specified by the
partition key value in the
query.

Read Consistency Queries on global secondary
indexes support eventual
consistency only.

When you query a local
secondary index, you can
choose either eventual
consistency or strong
consistency.

Provisioned Throughput
Consumption

Every global secondary index
has its own provisioned
throughput settings for read
and write activity. Queries or
scans on a global secondary
index consume capacity
units from the index, not
from the base table. The
same holds true for global
secondary index updates
due to table writes. A global
secondary index associated
with global tables consumes
write capacity units.

Queries or scans on a local
secondary index consume
read capacity units from the
base table. When you write
to a table its local secondary
indexes are also updated, and
these updates consume write
capacity units from the base
table. A local secondary index
associated with global tables
consumes replicated write
capacity units.

Projected Attributes With global secondary index
queries or scans, you can only
request the attributes that
are projected into the index.
DynamoDB does not fetch
any attributes from the table.

If you query or scan a local
secondary index, you can
request attributes that are
not projected in to the index.
DynamoDB automatically
fetches those attributes from
the table.

Working with indexes API Version 2012-08-10 907

Amazon DynamoDB Developer Guide

If you want to create more than one table with secondary indexes, you must do so sequentially. For
example, you would create the first table and wait for it to become ACTIVE, create the next table
and wait for it to become ACTIVE, and so on. If you try to concurrently create more than one table
with a secondary index, DynamoDB returns a LimitExceededException.

Each secondary index uses the same table class and capacity mode as the base table it is associated
with. For each secondary index, you must specify the following:

• The type of index to be created – either a global secondary index or a local secondary index.

• A name for the index. The naming rules for indexes are the same as those for tables, as listed in
Quotas in Amazon DynamoDB. The name must be unique for the base table it is associated with,
but you can use the same name for indexes that are associated with different base tables.

• The key schema for the index. Every attribute in the index key schema must be a top-level
attribute of type String, Number, or Binary. Other data types, including documents and sets,
are not allowed. Other requirements for the key schema depend on the type of index:

• For a global secondary index, the partition key can be any scalar attribute of the base table. A
sort key is optional, and it too can be any scalar attribute of the base table.

• For a local secondary index, the partition key must be the same as the base table's partition
key, and the sort key must be a non-key base table attribute.

• Additional attributes, if any, to project from the base table into the index. These attributes are in
addition to the table's key attributes, which are automatically projected into every index. You can
project attributes of any data type, including scalars, documents, and sets.

• The provisioned throughput settings for the index, if necessary:

• For a global secondary index, you must specify read and write capacity unit settings. These
provisioned throughput settings are independent of the base table's settings.

• For a local secondary index, you do not need to specify read and write capacity unit settings.
Any read and write operations on a local secondary index draw from the provisioned
throughput settings of its base table.

For maximum query flexibility, you can create up to 20 global secondary indexes (default quota)
and up to 5 local secondary indexes per table.

To get a detailed listing of secondary indexes on a table, use the DescribeTable operation.
DescribeTable returns the name, storage size, and item counts for every secondary index on the
table. These values are not updated in real time, but they are refreshed approximately every six
hours.

Working with indexes API Version 2012-08-10 908

HowItWorks.TableClasses.html

Amazon DynamoDB Developer Guide

You can access the data in a secondary index using either the Query or Scan operation. You must
specify the name of the base table and the name of the index that you want to use, the attributes
to be returned in the results, and any condition expressions or filters that you want to apply.
DynamoDB can return the results in ascending or descending order.

When you delete a table, all of the indexes associated with that table are also deleted.

For best practices, see Best practices for using secondary indexes in DynamoDB.

Using Global Secondary Indexes in DynamoDB

Some applications might need to perform many kinds of queries, using a variety of different
attributes as query criteria. To support these requirements, you can create one or more global
secondary indexes and issue Query requests against these indexes in Amazon DynamoDB.

Topics

• Scenario: Using a Global Secondary Index

• Attribute projections

• Multi-attribute key schema

• Reading data from a Global Secondary Index

• Data synchronization between tables and Global Secondary Indexes

• Table classes with Global Secondary Index

• Provisioned throughput considerations for Global Secondary Indexes

• Storage considerations for Global Secondary Indexes

• Design patterns

• Managing Global Secondary Indexes in DynamoDB

• Detecting and correcting index key violations in DynamoDB

• Working with Global Secondary Indexes: Java

• Working with Global Secondary Indexes: .NET

• Working with Global Secondary Indexes in DynamoDB using Amazon CLI

Scenario: Using a Global Secondary Index

To illustrate, consider a table named GameScores that tracks users and scores for a mobile gaming
application. Each item in GameScores is identified by a partition key (UserId) and a sort key

Global secondary indexes API Version 2012-08-10 909

Amazon DynamoDB Developer Guide

(GameTitle). The following diagram shows how the items in the table would be organized. (Not
all of the attributes are shown.)

Now suppose that you wanted to write a leaderboard application to display top scores for each
game. A query that specified the key attributes (UserId and GameTitle) would be very efficient.
However, if the application needed to retrieve data from GameScores based on GameTitle only,
it would need to use a Scan operation. As more items are added to the table, scans of all the
data would become slow and inefficient. This makes it difficult to answer questions such as the
following:

• What is the top score ever recorded for the game Meteor Blasters?

• Which user had the highest score for Galaxy Invaders?

• What was the highest ratio of wins vs. losses?

To speed up queries on non-key attributes, you can create a global secondary index. A global
secondary index contains a selection of attributes from the base table, but they are organized by a
primary key that is different from that of the table. The index key does not need to have any of the
key attributes from the table. It doesn't even need to have the same key schema as a table.

Global secondary indexes API Version 2012-08-10 910

Amazon DynamoDB Developer Guide

For example, you could create a global secondary index named GameTitleIndex, with a partition
key of GameTitle and a sort key of TopScore. The base table's primary key attributes are always
projected into an index, so the UserId attribute is also present. The following diagram shows what
GameTitleIndex index would look like.

Now you can query GameTitleIndex and easily obtain the scores for Meteor Blasters. The results
are ordered by the sort key values, TopScore. If you set the ScanIndexForward parameter to
false, the results are returned in descending order, so the highest score is returned first.

Every global secondary index must have a partition key, and can have an optional sort key. The
index key schema can be different from the base table schema. You could have a table with a
simple primary key (partition key), and create a global secondary index with a composite primary
key (partition key and sort key)—or vice versa. The index key attributes can consist of any top-level
String, Number, or Binary attributes from the base table. Other scalar types, document types,
and set types are not allowed.

You can project other base table attributes into the index if you want. When you query the index,
DynamoDB can retrieve these projected attributes efficiently. However, global secondary index

Global secondary indexes API Version 2012-08-10 911

Amazon DynamoDB Developer Guide

queries cannot fetch attributes from the base table. For example, if you query GameTitleIndex
as shown in the previous diagram, the query could not access any non-key attributes other
than TopScore (although the key attributes GameTitle and UserId would automatically be
projected).

In a DynamoDB table, each key value must be unique. However, the key values in a global
secondary index do not need to be unique. To illustrate, suppose that a game named Comet
Quest is especially difficult, with many new users trying but failing to get a score above zero. The
following is some data that could represent this.

UserId GameTitle TopScore

123 Comet Quest 0

201 Comet Quest 0

301 Comet Quest 0

When this data is added to the GameScores table, DynamoDB propagates it to GameTitleIndex.
If we then query the index using Comet Quest for GameTitle and 0 for TopScore, the following
data is returned.

Only the items with the specified key values appear in the response. Within that set of data, the
items are in no particular order.

A global secondary index only tracks data items where its key attributes actually exist. For example,
suppose that you added another new item to the GameScores table, but only provided the
required primary key attributes.

Global secondary indexes API Version 2012-08-10 912

Amazon DynamoDB Developer Guide

UserId GameTitle

400 Comet Quest

Because you didn't specify the TopScore attribute, DynamoDB would not propagate this item to
GameTitleIndex. Thus, if you queried GameScores for all the Comet Quest items, you would get
the following four items.

A similar query on GameTitleIndex would still return three items, rather than four. This is
because the item with the nonexistent TopScore is not propagated to the index.

Attribute projections

A projection is the set of attributes that is copied from a table into a secondary index. The partition
key and sort key of the table are always projected into the index; you can project other attributes
to support your application's query requirements. When you query an index, Amazon DynamoDB
can access any attribute in the projection as if those attributes were in a table of their own.

When you create a secondary index, you need to specify the attributes that will be projected into
the index. DynamoDB provides three different options for this:

Global secondary indexes API Version 2012-08-10 913

Amazon DynamoDB Developer Guide

• KEYS_ONLY – Each item in the index consists only of the table partition key and sort key values,
plus the index key values. The KEYS_ONLY option results in the smallest possible secondary
index.

• INCLUDE – In addition to the attributes described in KEYS_ONLY, the secondary index will
include other non-key attributes that you specify.

• ALL – The secondary index includes all of the attributes from the source table. Because all of the
table data is duplicated in the index, an ALL projection results in the largest possible secondary
index.

In the previous diagram, GameTitleIndex has only one projected attribute: UserId. So while
an application can efficiently determine the UserId of the top scorers for each game using
GameTitle and TopScore in queries, it can't efficiently determine the highest ratio of wins vs.
losses for the top scorers. To do so, it would have to perform an additional query on the base table
to fetch the wins and losses for each of the top scorers. A more efficient way to support queries on
this data would be to project these attributes from the base table into the global secondary index,
as shown in this diagram.

Global secondary indexes API Version 2012-08-10 914

Amazon DynamoDB Developer Guide

Because the non-key attributes Wins and Losses are projected into the index, an application can
determine the wins vs. losses ratio for any game, or for any combination of game and user ID.

When you choose the attributes to project into a global secondary index, you must consider the
tradeoff between provisioned throughput costs and storage costs:

• If you need to access just a few attributes with the lowest possible latency, consider projecting
only those attributes into a global secondary index. The smaller the index, the less that it costs to
store it, and the less your write costs are.

• If your application frequently accesses some non-key attributes, you should consider projecting
those attributes into a global secondary index. The additional storage costs for the global
secondary index offset the cost of performing frequent table scans.

• If you need to access most of the non-key attributes on a frequent basis, you can project
these attributes—or even the entire base table— into a global secondary index. This gives you
maximum flexibility. However, your storage cost would increase, or even double.

• If your application needs to query a table infrequently, but must perform many writes or updates
against the data in the table, consider projecting KEYS_ONLY. The global secondary index would
be of minimal size, but would still be available when needed for query activity.

Multi-attribute key schema

Global Secondary Indexes support multi-attribute keys, allowing you to compose partition keys
and sort keys from multiple attributes. With multi-attribute keys, you can create a partition key
from up to four attributes and a sort key from up to four attributes, for a total of up to eight
attributes per key schema.

Multi-attribute keys simplify your data model by eliminating the need to manually
concatenate attributes into synthetic keys. Instead of creating composite strings like
TOURNAMENT#WINTER2024#REGION#NA-EAST, you can use the natural attributes from your
domain model directly. DynamoDB handles the composite key logic automatically, hashing
multiple partition key attributes together for data distribution and maintaining hierarchical sort
order across multiple sort key attributes.

For example, consider a gaming tournament system where you want to organize matches by
tournament and region. With multi-attribute keys, you can define your partition key as two
separate attributes: tournamentId and region. Similarly, you can define your sort key using
multiple attributes like round, bracket, and matchId to create a natural hierarchy. This approach
keeps your data typed and your code clean, without string manipulation or parsing.

Global secondary indexes API Version 2012-08-10 915

Amazon DynamoDB Developer Guide

When you query a global secondary index with multi-attribute keys, you must specify all partition
key attributes using equality conditions. For sort key attributes, you can query them left-to-right in
the order they're defined in the key schema. This means you can query the first sort key attribute
alone, the first two attributes together, or all attributes together, but you cannot skip attributes
in the middle. Inequality conditions such as >, <, BETWEEN, or begins_with() must be the last
condition in your query.

Multi-attribute keys work particularly well when creating global secondary indexes on existing
tables. You can use attributes that already exist in your table without backfilling synthetic keys
across your data. This makes it straightforward to add new query patterns to your application by
creating indexes that reorganize your data using different attribute combinations.

Each attribute in a multi-attribute key can have its own data type: String (S), Number (N), or
Binary (B). When choosing data types, consider that Number attributes sort numerically without
requiring zero-padding, while String attributes sort lexicographically. For example, if you use a
Number type for a score attribute, the values 5, 50, 500, and 1000 sort in natural numeric order.
The same values as String type would sort as "1000", "5", "50", "500" unless you pad them with
leading zeros.

When designing multi-attribute keys, order your attributes from most general to most specific. For
partition keys, combine attributes that are always queried together and that provide good data
distribution. For sort keys, place frequently queried attributes first in the hierarchy to maximize
query flexibility. This ordering allows you to query at any level of granularity that matches your
access patterns.

See the Multi-attribute keys for implementation examples.

Reading data from a Global Secondary Index

You can retrieve items from a global secondary index using the Query and Scan operations. The
GetItem and BatchGetItem operations can't be used on a global secondary index.

Querying a Global Secondary Index

You can use the Query operation to access one or more items in a global secondary index. The
query must specify the name of the base table and the name of the index that you want to use,
the attributes to be returned in the query results, and any query conditions that you want to apply.
DynamoDB can return the results in ascending or descending order.

Global secondary indexes API Version 2012-08-10 916

Amazon DynamoDB Developer Guide

Consider the following data returned from a Query that requests gaming data for a leaderboard
application.

{
 "TableName": "GameScores",
 "IndexName": "GameTitleIndex",
 "KeyConditionExpression": "GameTitle = :v_title",
 "ExpressionAttributeValues": {
 ":v_title": {"S": "Meteor Blasters"}
 },
 "ProjectionExpression": "UserId, TopScore",
 "ScanIndexForward": false
}

In this query:

• DynamoDB accesses GameTitleIndex, using the GameTitle partition key to locate the index items
for Meteor Blasters. All of the index items with this key are stored adjacent to each other for
rapid retrieval.

• Within this game, DynamoDB uses the index to access all of the user IDs and top scores for this
game.

• The results are returned, sorted in descending order because the ScanIndexForward parameter
is set to false.

Scanning a Global Secondary Index

You can use the Scan operation to retrieve all of the data from a global secondary index. You
must provide the base table name and the index name in the request. With a Scan, DynamoDB
reads all of the data in the index and returns it to the application. You can also request that only
some of the data be returned, and that the remaining data should be discarded. To do this, use
the FilterExpression parameter of the Scan operation. For more information, see Filter
expressions for scan.

Data synchronization between tables and Global Secondary Indexes

DynamoDB automatically synchronizes each global secondary index with its base table. When
an application writes or deletes items in a table, any global secondary indexes on that table are
updated asynchronously, using an eventually consistent model. Applications never write directly

Global secondary indexes API Version 2012-08-10 917

Amazon DynamoDB Developer Guide

to an index. However, it is important that you understand the implications of how DynamoDB
maintains these indexes.

Global secondary indexes inherit the read/write capacity mode from the base table. For more
information, see Considerations when switching capacity modes in DynamoDB.

When you create a global secondary index, you specify one or more index key attributes and their
data types. This means that whenever you write an item to the base table, the data types for
those attributes must match the index key schema's data types. In the case of GameTitleIndex,
the GameTitle partition key in the index is defined as a String data type. The TopScore
sort key in the index is of type Number. If you try to add an item to the GameScores table
and specify a different data type for either GameTitle or TopScore, DynamoDB returns a
ValidationException because of the data type mismatch.

When you put or delete items in a table, the global secondary indexes on that table are updated in
an eventually consistent fashion. Changes to the table data are propagated to the global secondary
indexes within a fraction of a second, under normal conditions. However, in some unlikely failure
scenarios, longer propagation delays might occur. Because of this, your applications need to
anticipate and handle situations where a query on a global secondary index returns results that are
not up to date.

If you write an item to a table, you don't have to specify the attributes for any global secondary
index sort key. Using GameTitleIndex as an example, you would not need to specify a value for
the TopScore attribute to write a new item to the GameScores table. In this case, DynamoDB
does not write any data to the index for this particular item.

A table with many global secondary indexes incurs higher costs for write activity than tables
with fewer indexes. For more information, see Provisioned throughput considerations for Global
Secondary Indexes.

Table classes with Global Secondary Index

A global secondary index will always use the same table class as its base table. Any time a new
global secondary index is added for a table, the new index will use the same table class as its base
table. When a table's table class is updated, all associated global secondary indexes are updated as
well.

Global secondary indexes API Version 2012-08-10 918

Amazon DynamoDB Developer Guide

Provisioned throughput considerations for Global Secondary Indexes

When you create a global secondary index on a provisioned mode table, you must specify read and
write capacity units for the expected workload on that index. The provisioned throughput settings
of a global secondary index are separate from those of its base table. A Query operation on a
global secondary index consumes read capacity units from the index, not the base table. When you
put, update or delete items in a table, the global secondary indexes on that table are also updated.
These index updates consume write capacity units from the index, not from the base table.

For example, if you Query a global secondary index and exceed its provisioned read capacity, your
request will be throttled. If you perform heavy write activity on the table, but a global secondary
index on that table has insufficient write capacity, the write activity on the table will be throttled.

Important

To avoid potential throttling, the provisioned write capacity for a global secondary index
should be equal or greater than the write capacity of the base table because new updates
write to both the base table and global secondary index.

To view the provisioned throughput settings for a global secondary index, use the DescribeTable
operation. Detailed information about all of the table's global secondary indexes is returned.

Read capacity units

Global secondary indexes support eventually consistent reads, each of which consume one half of
a read capacity unit. This means that a single global secondary index query can retrieve up to 2 × 4
KB = 8 KB per read capacity unit.

For global secondary index queries, DynamoDB calculates the provisioned read activity in the same
way as it does for queries against tables. The only difference is that the calculation is based on
the sizes of the index entries, rather than the size of the item in the base table. The number of
read capacity units is the sum of all projected attribute sizes across all of the items returned. The
result is then rounded up to the next 4 KB boundary. For more information about how DynamoDB
calculates provisioned throughput usage, see DynamoDB provisioned capacity mode.

The maximum size of the results returned by a Query operation is 1 MB. This includes the sizes of
all the attribute names and values across all of the items returned.

Global secondary indexes API Version 2012-08-10 919

Amazon DynamoDB Developer Guide

For example, consider a global secondary index where each item contains 2,000 bytes of data. Now
suppose that you Query this index and that the query's KeyConditionExpression matches
eight items. The total size of the matching items is 2,000 bytes × 8 items = 16,000 bytes. This
result is then rounded up to the nearest 4 KB boundary. Because global secondary index queries are
eventually consistent, the total cost is 0.5 × (16 KB / 4 KB), or 2 read capacity units.

Write capacity units

When an item in a table is added, updated, or deleted, and a global secondary index is affected by
this, the global secondary index consumes provisioned write capacity units for the operation. The
total provisioned throughput cost for a write consists of the sum of write capacity units consumed
by writing to the base table and those consumed by updating the global secondary indexes. If a
write to a table does not require a global secondary index update, no write capacity is consumed
from the index.

For a table write to succeed, the provisioned throughput settings for the table and all of its global
secondary indexes must have enough write capacity to accommodate the write. Otherwise, the
write to the table is throttled.

Important

When creating a Global Secondary Index (GSI), write operations to the base table can
be throttled if the GSI activity resulting from writes to the base table exceeds the GSI's
provisioned write capacity. This throttling affects all write operations, from indexing
process to potentially disrupting your production workloads. For more information, see
Troubleshooting throttling in Amazon DynamoDB.

The cost of writing an item to a global secondary index depends on several factors:

• If you write a new item to the table that defines an indexed attribute, or you update an existing
item to define a previously undefined indexed attribute, one write operation is required to put
the item into the index.

• If an update to the table changes the value of an indexed key attribute (from A to B), two writes
are required, one to delete the previous item from the index and another write to put the new
item into the index.

• If an item was present in the index, but a write to the table caused the indexed attribute to be
deleted, one write is required to delete the old item projection from the index.

Global secondary indexes API Version 2012-08-10 920

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TroubleshootingThrottling.html

Amazon DynamoDB Developer Guide

• If an item is not present in the index before or after the item is updated, there is no additional
write cost for the index.

• If an update to the table only changes the value of projected attributes in the index key schema,
but does not change the value of any indexed key attribute, one write is required to update the
values of the projected attributes into the index.

All of these factors assume that the size of each item in the index is less than or equal to the 1 KB
item size for calculating write capacity units. Larger index entries require additional write capacity
units. You can minimize your write costs by considering which attributes your queries will need to
return and projecting only those attributes into the index.

Storage considerations for Global Secondary Indexes

When an application writes an item to a table, DynamoDB automatically copies the correct
subset of attributes to any global secondary indexes in which those attributes should appear.
Your Amazon account is charged for storage of the item in the base table and also for storage of
attributes in any global secondary indexes on that table.

The amount of space used by an index item is the sum of the following:

• The size in bytes of the base table primary key (partition key and sort key)

• The size in bytes of the index key attribute

• The size in bytes of the projected attributes (if any)

• 100 bytes of overhead per index item

To estimate the storage requirements for a global secondary index, you can estimate the average
size of an item in the index and then multiply by the number of items in the base table that have
the global secondary index key attributes.

If a table contains an item where a particular attribute(s) is not defined, but that attribute is
defined as an index partition key or sort key, DynamoDB doesn't write any data for that item to the
index.

Design patterns

Design patterns provide proven solutions to common challenges when working with global
secondary indexes. These patterns help you build efficient, scalable applications by showing you
how to structure your indexes for specific use cases.

Global secondary indexes API Version 2012-08-10 921

Amazon DynamoDB Developer Guide

Each pattern includes a complete implementation guide with code examples, best practices, and
real-world use cases to help you apply the pattern to your own applications.

Topics

• Multi-attribute keys pattern

Multi-attribute keys pattern

Overview

Multi-attribute keys allow you to create Global Secondary Index (GSI) partition and sort keys
composed of up to four attributes each. This reduces client-side code and makes it easier to initially
model data and add new access patterns later.

Consider a common scenario: to create a GSI that queries items by multiple hierarchical attributes,
you would traditionally need to create synthetic keys by concatenating values. For example, in a
gaming app, to query tournament matches by tournament, region, and round, you might create a
synthetic GSI partition key like TOURNAMENT#WINTER2024#REGION#NA-EAST and a synthetic
sort key like ROUND#SEMIFINALS#BRACKET#UPPER. This approach works, but requires string
concatenation when writing data, parsing when reading, and backfilling synthetic keys across all
existing items if you're adding the GSI to an existing table. This makes code more cluttered and
challenging to maintain type safety on individual key components.

Multi-attribute keys solve this problem for GSIs. You define your GSI partition key using multiple
existing attributes like tournamentId and region. DynamoDB handles the composite key logic
automatically, hashing them together for data distribution. You write items using natural attributes
from your domain model, and the GSI automatically indexes them. No concatenation, no parsing,
no backfilling. Your code stays clean, your data stays typed, and your queries stay simple. This
approach is particularly useful when you have hierarchical data with natural attribute groupings
(like tournament → region → round, or organization → department → team).

Application example

This guide walks through building a tournament match tracking system for an esports platform.
The platform needs to efficiently query matches across multiple dimensions: by tournament and
region for bracket management, by player for match history, and by date for scheduling.

Global secondary indexes API Version 2012-08-10 922

Amazon DynamoDB Developer Guide

Data model

In this walkthrough, the tournament match tracking system supports three primary access
patterns, each requiring a different key structure:

Access pattern 1: Look up a specific match by its unique ID

• Solution: Base table with matchId as partition key

Access pattern 2: Query all matches for a specific tournament and region, optionally filtering by
round, bracket, or match

• Solution: Global Secondary Index with multi-attribute partition key (tournamentId + region)
and multi-attribute sort key (round + bracket + matchId)

• Example queries: "All WINTER2024 matches in NA-EAST region" or "All SEMIFINALS matches in
UPPER bracket for WINTER2024/NA-EAST"

Access pattern 3: Query a player's match history, optionally filtering by date range or tournament
round

• Solution: Global Secondary Index with single partition key (player1Id) and multi-attribute sort
key (matchDate + round)

• Example queries: "All matches for player 101" or "Player 101's matches in January 2024"

The key difference between traditional and multi-attribute approaches becomes clear when
examining the item structure:

Traditional Global Secondary Index approach (concatenated keys):

// Manual concatenation required for GSI keys
const item = {
 matchId: 'match-001', // Base table PK
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'SEMIFINALS',
 bracket: 'UPPER',
 player1Id: '101',
 // Synthetic keys needed for GSI
 GSI_PK: `TOURNAMENT#${tournamentId}#REGION#${region}`, // Must concatenate

Global secondary indexes API Version 2012-08-10 923

Amazon DynamoDB Developer Guide

 GSI_SK: `${round}#${bracket}#${matchId}`, // Must concatenate
 // ... other attributes
};

Multi-attribute Global Secondary Index approach (native keys):

// Use existing attributes directly - no concatenation needed
const item = {
 matchId: 'match-001', // Base table PK
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'SEMIFINALS',
 bracket: 'UPPER',
 player1Id: '101',
 matchDate: '2024-01-18',
 // No synthetic keys needed - GSI uses existing attributes directly
 // ... other attributes
};

With multi-attribute keys, you write items once with natural domain attributes. DynamoDB
automatically indexes them across multiple GSIs without requiring synthetic concatenated keys.

Base table schema:

• Partition key: matchId (1 attribute)

Global Secondary Index Schema (TournamentRegionIndex with multi-attribute keys):

• Partition key: tournamentId, region (2 attributes)

• Sort key: round, bracket, matchId (3 attributes)

Global Secondary Index Schema (PlayerMatchHistoryIndex with multi-attribute keys):

• Partition key: player1Id (1 attribute)

• Sort key: matchDate, round (2 attributes)

Global secondary indexes API Version 2012-08-10 924

Amazon DynamoDB Developer Guide

Base table: TournamentMatches

matchId
(PK)

tournamen
tId

region round bracket player1Idplayer2IdmatchDatewinner score

match-001WINTER202
4

NA-
EAST

FINALS CHAMPIONS
HIP

101 103 2024-01-2
0

101 3-1

match-002WINTER202
4

NA-
EAST

SEMIFINAL
S

UPPER 101 105 2024-01-1
8

101 3-2

match-003WINTER202
4

NA-
EAST

SEMIFINAL
S

UPPER 103 107 2024-01-1
8

103 3-0

match-004WINTER202
4

NA-
EAST

QUARTERFI
NALS

UPPER 101 109 2024-01-1
5

101 3-1

match-005WINTER202
4

NA-
WEST

FINALS CHAMPIONS
HIP

102 104 2024-01-2
0

102 3-2

match-006WINTER202
4

NA-
WEST

SEMIFINAL
S

UPPER 102 106 2024-01-1
8

102 3-1

match-007SPRING202
4

NA-
EAST

QUARTERFI
NALS

UPPER 101 108 2024-03-1
5

101 3-0

match-008SPRING202
4

NA-
EAST

QUARTERFI
NALS

LOWER 103 110 2024-03-1
5

103 3-2

GSI: TournamentRegionIndex (multi-attribute keys)

tournamen
tId
(PK)

region
(PK)

round
(SK)

bracket
(SK)

matchId
(SK)

player1Idplayer2IdmatchDatewinner score

WINTER202
4

NA-
EAST

FINALS CHAMPIONS
HIP

match-001101 103 2024-01-2
0

101 3-1

Global secondary indexes API Version 2012-08-10 925

Amazon DynamoDB Developer Guide

tournamen
tId
(PK)

region
(PK)

round
(SK)

bracket
(SK)

matchId
(SK)

player1Idplayer2IdmatchDatewinner score

WINTER202
4

NA-
EAST

QUARTERFI
NALS

UPPER match-004101 109 2024-01-1
5

101 3-1

WINTER202
4

NA-
EAST

SEMIFINAL
S

UPPER match-002101 105 2024-01-1
8

101 3-2

WINTER202
4

NA-
EAST

SEMIFINAL
S

UPPER match-003103 107 2024-01-1
8

103 3-0

WINTER202
4

NA-
WEST

FINALS CHAMPIONS
HIP

match-005102 104 2024-01-2
0

102 3-2

WINTER202
4

NA-
WEST

SEMIFINAL
S

UPPER match-006102 106 2024-01-1
8

102 3-1

SPRING202
4

NA-
EAST

QUARTERFI
NALS

LOWER match-008103 110 2024-03-1
5

103 3-2

SPRING202
4

NA-
EAST

QUARTERFI
NALS

UPPER match-007101 108 2024-03-1
5

101 3-0

GSI: PlayerMatchHistoryIndex (multi-attribute keys)

player1Id
(PK)

matchDate
(SK)

round
(SK)

tournamen
tId

region bracket matchId player2Idwinner score

101 2024-01-1
5

QUARTERFI
NALS

WINTER202
4

NA-
EAST

UPPER match-004109 101 3-1

101 2024-01-1
8

SEMIFINAL
S

WINTER202
4

NA-
EAST

UPPER match-002105 101 3-2

101 2024-01-2
0

FINALS WINTER202
4

NA-
EAST

CHAMPIONS
HIP

match-001103 101 3-1

Global secondary indexes API Version 2012-08-10 926

Amazon DynamoDB Developer Guide

player1Id
(PK)

matchDate
(SK)

round
(SK)

tournamen
tId

region bracket matchId player2Idwinner score

101 2024-03-1
5

QUARTERFI
NALS

SPRING202
4

NA-
EAST

UPPER match-007108 101 3-0

102 2024-01-1
8

SEMIFINAL
S

WINTER202
4

NA-
WEST

UPPER match-006106 102 3-1

102 2024-01-2
0

FINALS WINTER202
4

NA-
WEST

CHAMPIONS
HIP

match-005104 102 3-2

103 2024-01-1
8

SEMIFINAL
S

WINTER202
4

NA-
EAST

UPPER match-003107 103 3-0

103 2024-03-1
5

QUARTERFI
NALS

SPRING202
4

NA-
EAST

LOWER match-008110 103 3-2

Prerequisites

Before you begin, ensure you have:

Account and permissions

• An active Amazon account (create one here if needed)

• IAM permissions for DynamoDB operations:

• dynamodb:CreateTable

• dynamodb:DeleteTable

• dynamodb:DescribeTable

• dynamodb:PutItem

• dynamodb:Query

• dynamodb:BatchWriteItem

Global secondary indexes API Version 2012-08-10 927

https://aws.amazon.com/free/

Amazon DynamoDB Developer Guide

Note

Security Note: For production use, create a custom IAM policy with only the
permissions you need. For this tutorial, you can use the Amazon managed policy
AmazonDynamoDBFullAccessV2.

Development Environment

• Node.js installed on your machine

• Amazon credentials configured using one of these methods:

Option 1: Amazon CLI

aws configure

Option 2: Environment Variables

export AWS_ACCESS_KEY_ID=your_access_key_here
export AWS_SECRET_ACCESS_KEY=your_secret_key_here
export AWS_DEFAULT_REGION=us-east-1

Install Required Packages

npm install @aws-sdk/client-dynamodb @aws-sdk/lib-dynamodb

Implementation

Step 1: Create table with GSIs using multi-attribute keys

Create a table with a simple base key structure and GSIs that use multi-attribute keys.

Code example

import { DynamoDBClient, CreateTableCommand } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });

const response = await client.send(new CreateTableCommand({
 TableName: 'TournamentMatches',

Global secondary indexes API Version 2012-08-10 928

Amazon DynamoDB Developer Guide

 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'matchId', KeyType: 'HASH' } // Simple PK
],

 AttributeDefinitions: [
 { AttributeName: 'matchId', AttributeType: 'S' },
 { AttributeName: 'tournamentId', AttributeType: 'S' },
 { AttributeName: 'region', AttributeType: 'S' },
 { AttributeName: 'round', AttributeType: 'S' },
 { AttributeName: 'bracket', AttributeType: 'S' },
 { AttributeName: 'player1Id', AttributeType: 'S' },
 { AttributeName: 'matchDate', AttributeType: 'S' }
],

 // GSIs with multi-attribute keys
 GlobalSecondaryIndexes: [
 {
 IndexName: 'TournamentRegionIndex',
 KeySchema: [
 { AttributeName: 'tournamentId', KeyType: 'HASH' }, // GSI PK
 attribute 1
 { AttributeName: 'region', KeyType: 'HASH' }, // GSI PK
 attribute 2
 { AttributeName: 'round', KeyType: 'RANGE' }, // GSI SK
 attribute 1
 { AttributeName: 'bracket', KeyType: 'RANGE' }, // GSI SK
 attribute 2
 { AttributeName: 'matchId', KeyType: 'RANGE' } // GSI SK
 attribute 3
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'PlayerMatchHistoryIndex',
 KeySchema: [
 { AttributeName: 'player1Id', KeyType: 'HASH' }, // GSI PK
 { AttributeName: 'matchDate', KeyType: 'RANGE' }, // GSI SK
 attribute 1
 { AttributeName: 'round', KeyType: 'RANGE' } // GSI SK
 attribute 2
],
 Projection: { ProjectionType: 'ALL' }

Global secondary indexes API Version 2012-08-10 929

Amazon DynamoDB Developer Guide

 }
],

 BillingMode: 'PAY_PER_REQUEST'
}));

console.log("Table with multi-attribute GSI keys created successfully");

Key design decisions:

Base table: The base table uses a simple matchId partition key for direct match lookups, keeping
the base table structure straightforward while the GSIs provide the complex query patterns.

TournamentRegionIndex Global Secondary Index: The TournamentRegionIndex Global
Secondary Index uses tournamentId + region as a multi-attribute partition key, creating
tournament-region isolation where data is distributed by the hash of both attributes combined,
enabling efficient queries within a specific tournament-region context. The multi-attribute sort key
(round + bracket + matchId) provides hierarchical sorting that supports queries at any level of
the hierarchy with natural ordering from general (round) to specific (match ID).

PlayerMatchHistoryIndex Global Secondary Index: The PlayerMatchHistoryIndex Global
Secondary Index reorganizes data by player using player1Id as the partition key, enabling cross-
tournament queries for a specific player. The multi-attribute sort key (matchDate + round)
provides chronological ordering with the ability to filter by date ranges or specific tournament
rounds.

Step 2: Insert data with native attributes

Add tournament match data using natural attributes. The GSI will automatically index these
attributes without requiring synthetic keys.

Code example

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, PutCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

// Tournament match data - no synthetic keys needed for GSIs
const matches = [
 // Winter 2024 Tournament, NA-EAST region

Global secondary indexes API Version 2012-08-10 930

Amazon DynamoDB Developer Guide

 {
 matchId: 'match-001',
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'FINALS',
 bracket: 'CHAMPIONSHIP',
 player1Id: '101',
 player2Id: '103',
 matchDate: '2024-01-20',
 winner: '101',
 score: '3-1'
 },
 {
 matchId: 'match-002',
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'SEMIFINALS',
 bracket: 'UPPER',
 player1Id: '101',
 player2Id: '105',
 matchDate: '2024-01-18',
 winner: '101',
 score: '3-2'
 },
 {
 matchId: 'match-003',
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'SEMIFINALS',
 bracket: 'UPPER',
 player1Id: '103',
 player2Id: '107',
 matchDate: '2024-01-18',
 winner: '103',
 score: '3-0'
 },
 {
 matchId: 'match-004',
 tournamentId: 'WINTER2024',
 region: 'NA-EAST',
 round: 'QUARTERFINALS',
 bracket: 'UPPER',
 player1Id: '101',
 player2Id: '109',

Global secondary indexes API Version 2012-08-10 931

Amazon DynamoDB Developer Guide

 matchDate: '2024-01-15',
 winner: '101',
 score: '3-1'
 },

 // Winter 2024 Tournament, NA-WEST region
 {
 matchId: 'match-005',
 tournamentId: 'WINTER2024',
 region: 'NA-WEST',
 round: 'FINALS',
 bracket: 'CHAMPIONSHIP',
 player1Id: '102',
 player2Id: '104',
 matchDate: '2024-01-20',
 winner: '102',
 score: '3-2'
 },
 {
 matchId: 'match-006',
 tournamentId: 'WINTER2024',
 region: 'NA-WEST',
 round: 'SEMIFINALS',
 bracket: 'UPPER',
 player1Id: '102',
 player2Id: '106',
 matchDate: '2024-01-18',
 winner: '102',
 score: '3-1'
 },

 // Spring 2024 Tournament, NA-EAST region
 {
 matchId: 'match-007',
 tournamentId: 'SPRING2024',
 region: 'NA-EAST',
 round: 'QUARTERFINALS',
 bracket: 'UPPER',
 player1Id: '101',
 player2Id: '108',
 matchDate: '2024-03-15',
 winner: '101',
 score: '3-0'
 },

Global secondary indexes API Version 2012-08-10 932

Amazon DynamoDB Developer Guide

 {
 matchId: 'match-008',
 tournamentId: 'SPRING2024',
 region: 'NA-EAST',
 round: 'QUARTERFINALS',
 bracket: 'LOWER',
 player1Id: '103',
 player2Id: '110',
 matchDate: '2024-03-15',
 winner: '103',
 score: '3-2'
 }
];

// Insert all matches
for (const match of matches) {
 await docClient.send(new PutCommand({
 TableName: 'TournamentMatches',
 Item: match
 }));

 console.log(`Added: ${match.matchId} - ${match.tournamentId}/${match.region} -
 ${match.round} ${match.bracket}`);
}

console.log(`\nInserted ${matches.length} tournament matches`);
console.log("No synthetic keys created - GSIs use native attributes automatically");

Data structure explained:

Natural attribute usage: Each attribute represents a real tournament concept with no string
concatenation or parsing required, providing direct mapping to the domain model.

Automatic Global Secondary Index indexing: The GSIs automatically index items
using the existing attributes (tournamentId, region, round, bracket, matchId for
TournamentRegionIndex and player1Id, matchDate, round for PlayerMatchHistoryIndex)
without requiring synthetic concatenated keys.

No backfilling needed: When you add a new Global Secondary Index with multi-attribute keys to
an existing table, DynamoDB automatically indexes all existing items using their natural attributes
—no need to update items with synthetic keys.

Global secondary indexes API Version 2012-08-10 933

Amazon DynamoDB Developer Guide

Step 3: Query TournamentRegionIndex Global Secondary Index with all partition key attributes

This example queries the TournamentRegionIndex Global Secondary Index which has a multi-
attribute partition key (tournamentId + region). All partition key attributes must be specified
with equality conditions in queries—you cannot query with just tournamentId alone or use
inequality operators on partition key attributes.

Code example

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

// Query GSI: All matches for WINTER2024 tournament in NA-EAST region
const response = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region',
 ExpressionAttributeNames: {
 '#region': 'region', // 'region' is a reserved keyword
 '#tournament': 'tournament'
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST'
 }
}));

console.log(`Found ${response.Items.length} matches for WINTER2024/NA-EAST:\n`);
response.Items.forEach(match => {
 console.log(` ${match.round} | ${match.bracket} | ${match.matchId}`);
 console.log(` Players: ${match.player1Id} vs ${match.player2Id}`);
 console.log(` Winner: ${match.winner}, Score: ${match.score}\n`);
});

Expected output:

Found 4 matches for WINTER2024/NA-EAST:

 FINALS | CHAMPIONSHIP | match-001
 Players: 101 vs 103

Global secondary indexes API Version 2012-08-10 934

Amazon DynamoDB Developer Guide

 Winner: 101, Score: 3-1

 QUARTERFINALS | UPPER | match-004
 Players: 101 vs 109
 Winner: 101, Score: 3-1

 SEMIFINALS | UPPER | match-002
 Players: 101 vs 105
 Winner: 101, Score: 3-2

 SEMIFINALS | UPPER | match-003
 Players: 103 vs 107
 Winner: 103, Score: 3-0

Invalid queries:

// Missing region attribute
KeyConditionExpression: 'tournamentId = :tournament'

// Using inequality on partition key attribute
KeyConditionExpression: 'tournamentId = :tournament AND #region > :region'

Performance: Multi-attribute partition keys are hashed together, providing the same O(1) lookup
performance as single-attribute keys.

Step 4: Query Global Secondary Index sort keys left-to-right

Sort key attributes must be queried left-to-right in the order they're defined in the Global
Secondary Index. This example demonstrates querying the TournamentRegionIndex at different
hierarchy levels: filtering by just round, by round + bracket, or by all three sort key attributes.
You cannot skip attributes in the middle—for example, you cannot query by round and matchId
while skipping bracket.

Code example

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

// Query 1: Filter by first sort key attribute (round)

Global secondary indexes API Version 2012-08-10 935

Amazon DynamoDB Developer Guide

console.log("Query 1: All SEMIFINALS matches");
const query1 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 = :round',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'SEMIFINALS'
 }
}));
console.log(` Found ${query1.Items.length} matches\n`);

// Query 2: Filter by first two sort key attributes (round + bracket)
console.log("Query 2: SEMIFINALS UPPER bracket matches");
const query2 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 = :round AND bracket = :bracket',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'SEMIFINALS',
 ':bracket': 'UPPER'
 }
}));
console.log(` Found ${query2.Items.length} matches\n`);

// Query 3: Filter by all three sort key attributes (round + bracket + matchId)
console.log("Query 3: Specific match in SEMIFINALS UPPER bracket");
const query3 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 = :round AND bracket = :bracket AND matchId = :matchId',
 ExpressionAttributeNames: {

Global secondary indexes API Version 2012-08-10 936

Amazon DynamoDB Developer Guide

 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'SEMIFINALS',
 ':bracket': 'UPPER',
 ':matchId': 'match-002'
 }
}));
console.log(` Found ${query3.Items.length} matches\n`);

// Query 4: INVALID - skipping round
console.log("Query 4: Attempting to skip first sort key attribute (WILL FAIL)");
try {
 const query4 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND
 bracket = :bracket',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':bracket': 'UPPER'
 }
 }));
} catch (error) {
 console.log(` Error: ${error.message}`);
 console.log(` Cannot skip sort key attributes - must query left-to-right\n`);
}

Expected output:

Query 1: All SEMIFINALS matches
 Found 2 matches

Query 2: SEMIFINALS UPPER bracket matches
 Found 2 matches

Query 3: Specific match in SEMIFINALS UPPER bracket

Global secondary indexes API Version 2012-08-10 937

Amazon DynamoDB Developer Guide

 Found 1 matches

Query 4: Attempting to skip first sort key attribute (WILL FAIL)
 Error: Query key condition not supported
 Cannot skip sort key attributes - must query left-to-right

Left-to-right query rules: You must query attributes in order from left to right, without skipping
any.

Valid patterns:

• First attribute only: round = 'SEMIFINALS'

• First two attributes: round = 'SEMIFINALS' AND bracket = 'UPPER'

• All three attributes: round = 'SEMIFINALS' AND bracket = 'UPPER' AND matchId =
'match-002'

Invalid patterns:

• Skipping the first attribute: bracket = 'UPPER' (skips round)

• Querying out of order: matchId = 'match-002' AND round = 'SEMIFINALS'

• Leaving gaps: round = 'SEMIFINALS' AND matchId = 'match-002' (skips bracket)

Note

Design tip: Order sort key attributes from most general to most specific to maximize query
flexibility.

Step 5: Use inequality conditions on Global Secondary Index sort keys

Inequality conditions must be the last condition in your query. This example demonstrates using
comparison operators (>=, BETWEEN) and prefix matching (begins_with()) on sort key attributes.
Once you use an inequality operator, you cannot add any additional sort key conditions after it—
the inequality must be the final condition in your key condition expression.

Code example

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

Global secondary indexes API Version 2012-08-10 938

Amazon DynamoDB Developer Guide

import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

// Query 1: Round comparison (inequality on first sort key attribute)
console.log("Query 1: Matches from QUARTERFINALS onwards");
const query1 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 >= :round',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'QUARTERFINALS'
 }
}));
console.log(` Found ${query1.Items.length} matches\n`);

// Query 2: Round range with BETWEEN
console.log("Query 2: Matches between QUARTERFINALS and SEMIFINALS");
const query2 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 BETWEEN :start AND :end',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':start': 'QUARTERFINALS',
 ':end': 'SEMIFINALS'
 }
}));
console.log(` Found ${query2.Items.length} matches\n`);

// Query 3: Prefix matching with begins_with (treated as inequality)
console.log("Query 3: Matches in brackets starting with 'U'");

Global secondary indexes API Version 2012-08-10 939

Amazon DynamoDB Developer Guide

const query3 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND round
 = :round AND begins_with(bracket, :prefix)',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'SEMIFINALS',
 ':prefix': 'U'
 }
}));
console.log(` Found ${query3.Items.length} matches\n`);

// Query 4: INVALID - condition after inequality
console.log("Query 4: Attempting condition after inequality (WILL FAIL)");
try {
 const query4 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region AND
 round > :round AND bracket = :bracket',
 ExpressionAttributeNames: {
 '#region': 'region' // 'region' is a reserved keyword
 },
 ExpressionAttributeValues: {
 ':tournament': 'WINTER2024',
 ':region': 'NA-EAST',
 ':round': 'QUARTERFINALS',
 ':bracket': 'UPPER'
 }
 }));
} catch (error) {
 console.log(` Error: ${error.message}`);
 console.log(` Cannot add conditions after inequality - it must be last\n`);
}

Inequality operator rules: You can use comparison operators (>, >=, <, <=), BETWEEN for range
queries, and begins_with() for prefix matching. The inequality must be the last condition in
your query.

Global secondary indexes API Version 2012-08-10 940

Amazon DynamoDB Developer Guide

Valid patterns:

• Equality conditions followed by inequality: round = 'SEMIFINALS' AND bracket =
'UPPER' AND matchId > 'match-001'

• Inequality on first attribute: round BETWEEN 'QUARTERFINALS' AND 'SEMIFINALS'

• Prefix matching as final condition: round = 'SEMIFINALS' AND begins_with(bracket,
'U')

Invalid patterns:

• Adding conditions after an inequality: round > 'QUARTERFINALS' AND bracket =
'UPPER'

• Using multiple inequalities: round > 'QUARTERFINALS' AND bracket > 'L'

Important

begins_with() is treated as an inequality condition, so no additional sort key conditions
can follow it.

Step 6: Query PlayerMatchHistoryIndex Global Secondary Index with multi-attribute sort key

This example queries the PlayerMatchHistoryIndex which has a single partition key (player1Id)
and a multi-attribute sort key (matchDate + round). This enables cross-tournament analysis by
querying all matches for a specific player without knowing tournament IDs—whereas the base
table would require separate queries per tournament-region combination.

Code example

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, QueryCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

// Query 1: All matches for Player 101 across all tournaments
console.log("Query 1: All matches for Player 101");
const query1 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',

Global secondary indexes API Version 2012-08-10 941

Amazon DynamoDB Developer Guide

 IndexName: 'PlayerMatchHistoryIndex',
 KeyConditionExpression: 'player1Id = :player',
 ExpressionAttributeValues: {
 ':player': '101'
 }
}));

console.log(` Found ${query1.Items.length} matches for Player 101:`);
query1.Items.forEach(match => {
 console.log(` ${match.tournamentId}/${match.region} - ${match.matchDate} -
 ${match.round}`);
});
console.log();

// Query 2: Player 101 matches on specific date
console.log("Query 2: Player 101 matches on 2024-01-18");
const query2 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'PlayerMatchHistoryIndex',
 KeyConditionExpression: 'player1Id = :player AND matchDate = :date',
 ExpressionAttributeValues: {
 ':player': '101',
 ':date': '2024-01-18'
 }
}));

console.log(` Found ${query2.Items.length} matches\n`);

// Query 3: Player 101 SEMIFINALS matches on specific date
console.log("Query 3: Player 101 SEMIFINALS matches on 2024-01-18");
const query3 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'PlayerMatchHistoryIndex',
 KeyConditionExpression: 'player1Id = :player AND matchDate = :date AND round
 = :round',
 ExpressionAttributeValues: {
 ':player': '101',
 ':date': '2024-01-18',
 ':round': 'SEMIFINALS'
 }
}));

console.log(` Found ${query3.Items.length} matches\n`);

Global secondary indexes API Version 2012-08-10 942

Amazon DynamoDB Developer Guide

// Query 4: Player 101 matches in date range
console.log("Query 4: Player 101 matches in January 2024");
const query4 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'PlayerMatchHistoryIndex',
 KeyConditionExpression: 'player1Id = :player AND matchDate BETWEEN :start
 AND :end',
 ExpressionAttributeValues: {
 ':player': '101',
 ':start': '2024-01-01',
 ':end': '2024-01-31'
 }
}));

console.log(` Found ${query4.Items.length} matches\n`);

Pattern variations

Time-series data with multi-attribute keys

Optimize for time-series queries with hierarchical time attributes

Code example

{
 TableName: 'IoTReadings',
 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'readingId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'readingId', AttributeType: 'S' },
 { AttributeName: 'deviceId', AttributeType: 'S' },
 { AttributeName: 'locationId', AttributeType: 'S' },
 { AttributeName: 'year', AttributeType: 'S' },
 { AttributeName: 'month', AttributeType: 'S' },
 { AttributeName: 'day', AttributeType: 'S' },
 { AttributeName: 'timestamp', AttributeType: 'S' }
],
 // GSI with multi-attribute keys for time-series queries
 GlobalSecondaryIndexes: [{
 IndexName: 'DeviceLocationTimeIndex',
 KeySchema: [
 { AttributeName: 'deviceId', KeyType: 'HASH' },

Global secondary indexes API Version 2012-08-10 943

Amazon DynamoDB Developer Guide

 { AttributeName: 'locationId', KeyType: 'HASH' },
 { AttributeName: 'year', KeyType: 'RANGE' },
 { AttributeName: 'month', KeyType: 'RANGE' },
 { AttributeName: 'day', KeyType: 'RANGE' },
 { AttributeName: 'timestamp', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 }],
 BillingMode: 'PAY_PER_REQUEST'
}

// Query patterns enabled via GSI:
// - All readings for device in location
// - Readings for specific year
// - Readings for specific month in year
// - Readings for specific day
// - Readings in time range

Benefits: Natural time hierarchy (year → month → day → timestamp) enables efficient queries at
any time granularity without date parsing or manipulation. Global Secondary Index automatically
indexes all readings using their natural time attributes.

E-commerce orders with multi-attribute keys

Track orders with multiple dimensions

Code example

{
 TableName: 'Orders',
 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'orderId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'orderId', AttributeType: 'S' },
 { AttributeName: 'sellerId', AttributeType: 'S' },
 { AttributeName: 'region', AttributeType: 'S' },
 { AttributeName: 'orderDate', AttributeType: 'S' },
 { AttributeName: 'category', AttributeType: 'S' },
 { AttributeName: 'customerId', AttributeType: 'S' },
 { AttributeName: 'orderStatus', AttributeType: 'S' }
],

Global secondary indexes API Version 2012-08-10 944

Amazon DynamoDB Developer Guide

 GlobalSecondaryIndexes: [
 {
 IndexName: 'SellerRegionIndex',
 KeySchema: [
 { AttributeName: 'sellerId', KeyType: 'HASH' },
 { AttributeName: 'region', KeyType: 'HASH' },
 { AttributeName: 'orderDate', KeyType: 'RANGE' },
 { AttributeName: 'category', KeyType: 'RANGE' },
 { AttributeName: 'orderId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'CustomerOrdersIndex',
 KeySchema: [
 { AttributeName: 'customerId', KeyType: 'HASH' },
 { AttributeName: 'orderDate', KeyType: 'RANGE' },
 { AttributeName: 'orderStatus', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 }
],
 BillingMode: 'PAY_PER_REQUEST'
}

// SellerRegionIndex GSI queries:
// - Orders by seller and region
// - Orders by seller, region, and date
// - Orders by seller, region, date, and category

// CustomerOrdersIndex GSI queries:
// - Customer's orders
// - Customer's orders by date
// - Customer's orders by date and status

Hierarchical organization data

Model organizational hierarchies

Code example

{
 TableName: 'Employees',
 // Base table: Simple partition key

Global secondary indexes API Version 2012-08-10 945

Amazon DynamoDB Developer Guide

 KeySchema: [
 { AttributeName: 'employeeId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'employeeId', AttributeType: 'S' },
 { AttributeName: 'companyId', AttributeType: 'S' },
 { AttributeName: 'divisionId', AttributeType: 'S' },
 { AttributeName: 'departmentId', AttributeType: 'S' },
 { AttributeName: 'teamId', AttributeType: 'S' },
 { AttributeName: 'skillCategory', AttributeType: 'S' },
 { AttributeName: 'skillLevel', AttributeType: 'S' },
 { AttributeName: 'yearsExperience', AttributeType: 'N' }
],
 GlobalSecondaryIndexes: [
 {
 IndexName: 'OrganizationIndex',
 KeySchema: [
 { AttributeName: 'companyId', KeyType: 'HASH' },
 { AttributeName: 'divisionId', KeyType: 'HASH' },
 { AttributeName: 'departmentId', KeyType: 'RANGE' },
 { AttributeName: 'teamId', KeyType: 'RANGE' },
 { AttributeName: 'employeeId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'SkillsIndex',
 KeySchema: [
 { AttributeName: 'skillCategory', KeyType: 'HASH' },
 { AttributeName: 'skillLevel', KeyType: 'RANGE' },
 { AttributeName: 'yearsExperience', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'INCLUDE', NonKeyAttributes: ['employeeId',
 'name'] }
 }
],
 BillingMode: 'PAY_PER_REQUEST'
}

// OrganizationIndex GSI query patterns:
// - All employees in company/division
// - Employees in specific department
// - Employees in specific team

Global secondary indexes API Version 2012-08-10 946

Amazon DynamoDB Developer Guide

// SkillsIndex GSI query patterns:
// - Employees by skill and experience level

Sparse multi-attribute keys

Combine multi-attribute keys to make a sparse GSI

Code example

{
 TableName: 'Products',
 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'productId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'productId', AttributeType: 'S' },
 { AttributeName: 'categoryId', AttributeType: 'S' },
 { AttributeName: 'subcategoryId', AttributeType: 'S' },
 { AttributeName: 'averageRating', AttributeType: 'N' },
 { AttributeName: 'reviewCount', AttributeType: 'N' }
],
 GlobalSecondaryIndexes: [
 {
 IndexName: 'CategoryIndex',
 KeySchema: [
 { AttributeName: 'categoryId', KeyType: 'HASH' },
 { AttributeName: 'subcategoryId', KeyType: 'HASH' },
 { AttributeName: 'productId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'ReviewedProductsIndex',
 KeySchema: [
 { AttributeName: 'categoryId', KeyType: 'HASH' },
 { AttributeName: 'averageRating', KeyType: 'RANGE' }, // Optional
 attribute
 { AttributeName: 'reviewCount', KeyType: 'RANGE' } // Optional
 attribute
],
 Projection: { ProjectionType: 'ALL' }
 }
],

Global secondary indexes API Version 2012-08-10 947

Amazon DynamoDB Developer Guide

 BillingMode: 'PAY_PER_REQUEST'
}

// Only products with reviews appear in ReviewedProductsIndex GSI
// Automatic filtering without application logic
// Multi-attribute sort key enables rating and count queries

SaaS multi-tenancy

Multi-tenant SaaS platform with customer isolation

Code example

// Table design
{
 TableName: 'SaasData',
 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'resourceId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'resourceId', AttributeType: 'S' },
 { AttributeName: 'tenantId', AttributeType: 'S' },
 { AttributeName: 'customerId', AttributeType: 'S' },
 { AttributeName: 'resourceType', AttributeType: 'S' }
],
 // GSI with multi-attribute keys for tenant-customer isolation
 GlobalSecondaryIndexes: [{
 IndexName: 'TenantCustomerIndex',
 KeySchema: [
 { AttributeName: 'tenantId', KeyType: 'HASH' },
 { AttributeName: 'customerId', KeyType: 'HASH' },
 { AttributeName: 'resourceType', KeyType: 'RANGE' },
 { AttributeName: 'resourceId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 }],
 BillingMode: 'PAY_PER_REQUEST'
}

// Query GSI: All resources for tenant T001, customer C001
const resources = await docClient.send(new QueryCommand({
 TableName: 'SaasData',
 IndexName: 'TenantCustomerIndex',

Global secondary indexes API Version 2012-08-10 948

Amazon DynamoDB Developer Guide

 KeyConditionExpression: 'tenantId = :tenant AND customerId = :customer',
 ExpressionAttributeValues: {
 ':tenant': 'T001',
 ':customer': 'C001'
 }
}));

// Query GSI: Specific resource type for tenant/customer
const documents = await docClient.send(new QueryCommand({
 TableName: 'SaasData',
 IndexName: 'TenantCustomerIndex',
 KeyConditionExpression: 'tenantId = :tenant AND customerId = :customer AND
 resourceType = :type',
 ExpressionAttributeValues: {
 ':tenant': 'T001',
 ':customer': 'C001',
 ':type': 'document'
 }
}));

Benefits: Efficient queries within tenant-customer context and natural data organization.

Financial transactions

Banking system tracking account transactions using GSIs

Code example

// Table design
{
 TableName: 'BankTransactions',
 // Base table: Simple partition key
 KeySchema: [
 { AttributeName: 'transactionId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'transactionId', AttributeType: 'S' },
 { AttributeName: 'accountId', AttributeType: 'S' },
 { AttributeName: 'year', AttributeType: 'S' },
 { AttributeName: 'month', AttributeType: 'S' },
 { AttributeName: 'day', AttributeType: 'S' },
 { AttributeName: 'transactionType', AttributeType: 'S' }
],
 GlobalSecondaryIndexes: [

Global secondary indexes API Version 2012-08-10 949

Amazon DynamoDB Developer Guide

 {
 IndexName: 'AccountTimeIndex',
 KeySchema: [
 { AttributeName: 'accountId', KeyType: 'HASH' },
 { AttributeName: 'year', KeyType: 'RANGE' },
 { AttributeName: 'month', KeyType: 'RANGE' },
 { AttributeName: 'day', KeyType: 'RANGE' },
 { AttributeName: 'transactionId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'TransactionTypeIndex',
 KeySchema: [
 { AttributeName: 'accountId', KeyType: 'HASH' },
 { AttributeName: 'transactionType', KeyType: 'RANGE' },
 { AttributeName: 'year', KeyType: 'RANGE' },
 { AttributeName: 'month', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 }
],
 BillingMode: 'PAY_PER_REQUEST'
}

// Query AccountTimeIndex GSI: All transactions for account in 2023
const yearTransactions = await docClient.send(new QueryCommand({
 TableName: 'BankTransactions',
 IndexName: 'AccountTimeIndex',
 KeyConditionExpression: 'accountId = :account AND #year = :year',
 ExpressionAttributeNames: { '#year': 'year' },
 ExpressionAttributeValues: {
 ':account': 'ACC-12345',
 ':year': '2023'
 }
}));

// Query AccountTimeIndex GSI: Transactions in specific month
const monthTransactions = await docClient.send(new QueryCommand({
 TableName: 'BankTransactions',
 IndexName: 'AccountTimeIndex',
 KeyConditionExpression: 'accountId = :account AND #year = :year AND #month
 = :month',
 ExpressionAttributeNames: { '#year': 'year', '#month': 'month' },

Global secondary indexes API Version 2012-08-10 950

Amazon DynamoDB Developer Guide

 ExpressionAttributeValues: {
 ':account': 'ACC-12345',
 ':year': '2023',
 ':month': '11'
 }
}));

// Query TransactionTypeIndex GSI: Deposits in 2023
const deposits = await docClient.send(new QueryCommand({
 TableName: 'BankTransactions',
 IndexName: 'TransactionTypeIndex',
 KeyConditionExpression: 'accountId = :account AND transactionType = :type AND #year
 = :year',
 ExpressionAttributeNames: { '#year': 'year' },
 ExpressionAttributeValues: {
 ':account': 'ACC-12345',
 ':type': 'deposit',
 ':year': '2023'
 }
}));

Complete example

The following example demonstrates multi-attribute keys from setup to cleanup:

Code example

import {
 DynamoDBClient,
 CreateTableCommand,
 DeleteTableCommand,
 waitUntilTableExists
} from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 PutCommand,
 QueryCommand
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({ region: 'us-west-2' });
const docClient = DynamoDBDocumentClient.from(client);

async function multiAttributeKeysDemo() {
 console.log("Starting Multi-Attribute GSI Keys Demo\n");

Global secondary indexes API Version 2012-08-10 951

Amazon DynamoDB Developer Guide

 // Step 1: Create table with GSIs using multi-attribute keys
 console.log("1. Creating table with multi-attribute GSI keys...");
 await client.send(new CreateTableCommand({
 TableName: 'TournamentMatches',
 KeySchema: [
 { AttributeName: 'matchId', KeyType: 'HASH' }
],
 AttributeDefinitions: [
 { AttributeName: 'matchId', AttributeType: 'S' },
 { AttributeName: 'tournamentId', AttributeType: 'S' },
 { AttributeName: 'region', AttributeType: 'S' },
 { AttributeName: 'round', AttributeType: 'S' },
 { AttributeName: 'bracket', AttributeType: 'S' },
 { AttributeName: 'player1Id', AttributeType: 'S' },
 { AttributeName: 'matchDate', AttributeType: 'S' }
],
 GlobalSecondaryIndexes: [
 {
 IndexName: 'TournamentRegionIndex',
 KeySchema: [
 { AttributeName: 'tournamentId', KeyType: 'HASH' },
 { AttributeName: 'region', KeyType: 'HASH' },
 { AttributeName: 'round', KeyType: 'RANGE' },
 { AttributeName: 'bracket', KeyType: 'RANGE' },
 { AttributeName: 'matchId', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 },
 {
 IndexName: 'PlayerMatchHistoryIndex',
 KeySchema: [
 { AttributeName: 'player1Id', KeyType: 'HASH' },
 { AttributeName: 'matchDate', KeyType: 'RANGE' },
 { AttributeName: 'round', KeyType: 'RANGE' }
],
 Projection: { ProjectionType: 'ALL' }
 }
],
 BillingMode: 'PAY_PER_REQUEST'
 }));

 await waitUntilTableExists({ client, maxWaitTime: 120 }, { TableName:
 'TournamentMatches' });

Global secondary indexes API Version 2012-08-10 952

Amazon DynamoDB Developer Guide

 console.log("Table created\n");

 // Step 2: Insert tournament matches
 console.log("2. Inserting tournament matches...");
 const matches = [
 { matchId: 'match-001', tournamentId: 'WINTER2024', region: 'NA-EAST', round:
 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '101', player2Id: '103', matchDate:
 '2024-01-20', winner: '101', score: '3-1' },
 { matchId: 'match-002', tournamentId: 'WINTER2024', region: 'NA-EAST', round:
 'SEMIFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '105', matchDate:
 '2024-01-18', winner: '101', score: '3-2' },
 { matchId: 'match-003', tournamentId: 'WINTER2024', region: 'NA-WEST', round:
 'FINALS', bracket: 'CHAMPIONSHIP', player1Id: '102', player2Id: '104', matchDate:
 '2024-01-20', winner: '102', score: '3-2' },
 { matchId: 'match-004', tournamentId: 'SPRING2024', region: 'NA-EAST', round:
 'QUARTERFINALS', bracket: 'UPPER', player1Id: '101', player2Id: '108', matchDate:
 '2024-03-15', winner: '101', score: '3-0' }
];

 for (const match of matches) {
 await docClient.send(new PutCommand({ TableName: 'TournamentMatches', Item:
 match }));
 }
 console.log(`Inserted ${matches.length} tournament matches\n`);

 // Step 3: Query GSI with multi-attribute partition key
 console.log("3. Query TournamentRegionIndex GSI: WINTER2024/NA-EAST matches");
 const gsiQuery1 = await docClient.send(new QueryCommand({
 TableName: 'TournamentMatches',
 IndexName: 'TournamentRegionIndex',
 KeyConditionExpression: 'tournamentId = :tournament AND #region = :region',
 ExpressionAttributeNames: { '#region': 'region' },
 ExpressionAttributeValues: { ':tournament': 'WINTER2024', ':region': 'NA-
EAST' }
 }));

 console.log(` Found ${gsiQuery1.Items.length} matches:`);
 gsiQuery1.Items.forEach(match => {
 console.log(` ${match.round} - ${match.bracket} - ${match.winner} won`);
 });

 // Step 4: Query GSI with multi-attribute sort key
 console.log("\n4. Query PlayerMatchHistoryIndex GSI: All matches for Player 101");
 const gsiQuery2 = await docClient.send(new QueryCommand({

Global secondary indexes API Version 2012-08-10 953

Amazon DynamoDB Developer Guide

 TableName: 'TournamentMatches',
 IndexName: 'PlayerMatchHistoryIndex',
 KeyConditionExpression: 'player1Id = :player',
 ExpressionAttributeValues: { ':player': '101' }
 }));

 console.log(` Found ${gsiQuery2.Items.length} matches for Player 101:`);
 gsiQuery2.Items.forEach(match => {
 console.log(` ${match.tournamentId}/${match.region} - ${match.matchDate} -
 ${match.round}`);
 });

 console.log("\nDemo complete");
 console.log("No synthetic keys needed - GSIs use native attributes automatically");
}

async function cleanup() {
 console.log("Deleting table...");
 await client.send(new DeleteTableCommand({ TableName: 'TournamentMatches' }));
 console.log("Table deleted");
}

// Run demo
multiAttributeKeysDemo().catch(console.error);

// Uncomment to cleanup:
// cleanup().catch(console.error);

Minimal code scaffold

Code example

// 1. Create table with GSI using multi-attribute keys
await client.send(new CreateTableCommand({
 TableName: 'MyTable',
 KeySchema: [
 { AttributeName: 'id', KeyType: 'HASH' } // Simple base table PK
],
 AttributeDefinitions: [
 { AttributeName: 'id', AttributeType: 'S' },
 { AttributeName: 'attr1', AttributeType: 'S' },
 { AttributeName: 'attr2', AttributeType: 'S' },
 { AttributeName: 'attr3', AttributeType: 'S' },
 { AttributeName: 'attr4', AttributeType: 'S' }

Global secondary indexes API Version 2012-08-10 954

Amazon DynamoDB Developer Guide

],
 GlobalSecondaryIndexes: [{
 IndexName: 'MyGSI',
 KeySchema: [
 { AttributeName: 'attr1', KeyType: 'HASH' }, // GSI PK attribute 1
 { AttributeName: 'attr2', KeyType: 'HASH' }, // GSI PK attribute 2
 { AttributeName: 'attr3', KeyType: 'RANGE' }, // GSI SK attribute 1
 { AttributeName: 'attr4', KeyType: 'RANGE' } // GSI SK attribute 2
],
 Projection: { ProjectionType: 'ALL' }
 }],
 BillingMode: 'PAY_PER_REQUEST'
}));

// 2. Insert items with native attributes (no concatenation needed for GSI)
await docClient.send(new PutCommand({
 TableName: 'MyTable',
 Item: {
 id: 'item-001',
 attr1: 'value1',
 attr2: 'value2',
 attr3: 'value3',
 attr4: 'value4',
 // ... other attributes
 }
}));

// 3. Query GSI with all partition key attributes
await docClient.send(new QueryCommand({
 TableName: 'MyTable',
 IndexName: 'MyGSI',
 KeyConditionExpression: 'attr1 = :v1 AND attr2 = :v2',
 ExpressionAttributeValues: {
 ':v1': 'value1',
 ':v2': 'value2'
 }
}));

// 4. Query GSI with sort key attributes (left-to-right)
await docClient.send(new QueryCommand({
 TableName: 'MyTable',
 IndexName: 'MyGSI',
 KeyConditionExpression: 'attr1 = :v1 AND attr2 = :v2 AND attr3 = :v3',
 ExpressionAttributeValues: {

Global secondary indexes API Version 2012-08-10 955

Amazon DynamoDB Developer Guide

 ':v1': 'value1',
 ':v2': 'value2',
 ':v3': 'value3'
 }
}));

// Note: If any attribute name is a DynamoDB reserved keyword, use
 ExpressionAttributeNames:
// KeyConditionExpression: 'attr1 = :v1 AND #attr2 = :v2'
// ExpressionAttributeNames: { '#attr2': 'attr2' }

Additional resources

• DynamoDB Best Practices

• Working with Tables and Data

• Global Secondary Indexes

• Query and Scan Operations

Managing Global Secondary Indexes in DynamoDB

This section describes how to create, modify, and delete global secondary indexes in Amazon
DynamoDB.

Topics

• Creating a table with Global Secondary Indexes

• Describing the Global Secondary Indexes on a table

• Adding a Global Secondary Index to an existing table

• Deleting a Global Secondary Index

• Modifying a Global Secondary Index during creation

Creating a table with Global Secondary Indexes

To create a table with one or more global secondary indexes, use the CreateTable operation with
the GlobalSecondaryIndexes parameter. For maximum query flexibility, you can create up to
20 global secondary indexes (default quota) per table.

You must specify one attribute to act as the index partition key. You can optionally specify another
attribute for the index sort key. It is not necessary for either of these key attributes to be the

Global secondary indexes API Version 2012-08-10 956

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/best-practices.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

same as a key attribute in the table. For example, in the GameScores table (see Using Global
Secondary Indexes in DynamoDB), neither TopScore nor TopScoreDateTime are key attributes.
You could create a global secondary index with a partition key of TopScore and a sort key of
TopScoreDateTime. You might use such an index to determine whether there is a correlation
between high scores and the time of day a game is played.

Each index key attribute must be a scalar of type String, Number, or Binary. (It cannot be a
document or a set.) You can project attributes of any data type into a global secondary index. This
includes scalars, documents, and sets. For a complete list of data types, see Data types.

If using provisioned mode, you must provide ProvisionedThroughput settings for the index,
consisting of ReadCapacityUnits and WriteCapacityUnits. These provisioned throughput
settings are separate from those of the table, but behave in similar ways. For more information, see
Provisioned throughput considerations for Global Secondary Indexes.

Global secondary indexes inherit the read/write capacity mode from the base table. For more
information, see Considerations when switching capacity modes in DynamoDB.

Note

When creating a new GSI, it can be important to check if your choice of partition key
is producing uneven or narrowed distribution of data or traffic across the new index’s
partition key values. If this occurs, you could be seeing backfill and write operations
occurring at the same time and throttling writes to the base table. The service takes
measures to minimize the potential for this scenario, but has no insight into the shape
of customer data with respect to the index partition key, the chosen projection, or the
sparseness of the index primary key.
If you suspect that your new global secondary index might have narrow or skewed data or
traffic distribution across partition key values, consider the following before adding new
indexes to operationally important tables.

• It might be safest to add the index at a time when your application is driving the least
amount of traffic.

• Consider enabling CloudWatch Contributor Insights on your base table and indexes. This
will give you valuable insight into your traffic distribution.

• Watch WriteThrottleEvents, ThrottledRequests, and
OnlineIndexPercentageProgress CloudWatch metrics throughout the process.
Adjust the provisioned write capacity as required to complete the backfill in a

Global secondary indexes API Version 2012-08-10 957

Amazon DynamoDB Developer Guide

reasonable time without any significant throttling effects on your ongoing operations.
OnlineIndexConsumedWriteCapacity and OnlineThrottleEvents are expected
to show 0 during index backfill.

• Be prepared to cancel the index creation if you experience operational impact due to
write throttling.

Describing the Global Secondary Indexes on a table

To view the status of all the global secondary indexes on a table, use the DescribeTable
operation. The GlobalSecondaryIndexes portion of the response shows all of the indexes on
the table, along with the current status of each (IndexStatus).

The IndexStatus for a global secondary index will be one of the following:

• CREATING — The index is currently being created, and is not yet available for use.

• ACTIVE — The index is ready for use, and applications can perform Query operations on the
index.

• UPDATING — The provisioned throughput settings of the index are being changed.

• DELETING — The index is currently being deleted, and can no longer be used.

When DynamoDB has finished building a global secondary index, the index status changes from
CREATING to ACTIVE.

Adding a Global Secondary Index to an existing table

To add a global secondary index to an existing table, use the UpdateTable operation with the
GlobalSecondaryIndexUpdates parameter. You must provide the following:

• An index name. The name must be unique among all the indexes on the table.

• The key schema of the index. You must specify one attribute for the index partition key; you can
optionally specify another attribute for the index sort key. It is not necessary for either of these
key attributes to be the same as a key attribute in the table. The data types for each schema
attribute must be scalar: String, Number, or Binary.

• The attributes to be projected from the table into the index:

• KEYS_ONLY — Each item in the index consists only of the table partition key and sort key
values, plus the index key values.

Global secondary indexes API Version 2012-08-10 958

Amazon DynamoDB Developer Guide

• INCLUDE — In addition to the attributes described in KEYS_ONLY, the secondary index
includes other non-key attributes that you specify.

• ALL — The index includes all of the attributes from the source table.

• The provisioned throughput settings for the index, consisting of ReadCapacityUnits
and WriteCapacityUnits. These provisioned throughput settings are separate from those of
the table.

You can only create one global secondary index per UpdateTable operation.

Phases of index creation

When you add a new global secondary index to an existing table, the table continues to be
available while the index is being built. However, the new index is not available for Query
operations until its status changes from CREATING to ACTIVE.

Note

Global secondary index creation does not use Application Auto Scaling. Increasing the
MIN Application Auto Scaling capacity will not decrease the creation time of the global
secondary index.

Behind the scenes, DynamoDB builds the index in two phases:

Resource Allocation

DynamoDB allocates the compute and storage resources that are needed for building the index.

During the resource allocation phase, the IndexStatus attribute is CREATING and the
Backfilling attribute is false. Use the DescribeTable operation to retrieve the status of a
table and all of its secondary indexes.

While the index is in the resource allocation phase, you can't delete the index or delete its
parent table. You also can't modify the provisioned throughput of the index or the table. You
cannot add or delete other indexes on the table. However, you can modify the provisioned
throughput of these other indexes.

Global secondary indexes API Version 2012-08-10 959

Amazon DynamoDB Developer Guide

Backfilling

For each item in the table, DynamoDB determines which set of attributes to write to the index
based on its projection (KEYS_ONLY, INCLUDE, or ALL). It then writes these attributes to the
index. During the backfill phase, DynamoDB tracks the items that are being added, deleted, or
updated in the table. The attributes from these items are also added, deleted, or updated in the
index as appropriate.

During the backfilling phase, the IndexStatus attribute is set to CREATING, and the
Backfilling attribute is true. Use the DescribeTable operation to retrieve the status of a
table and all of its secondary indexes.

While the index is backfilling, you cannot delete its parent table. However, you can still delete
the index or modify the provisioned throughput of the table and any of its global secondary
indexes.

Note

During the backfilling phase, some writes of violating items might succeed while others
are rejected. After backfilling, all writes to items that violate the new index's key schema
are rejected. We recommend that you run the Violation Detector tool after the backfill
phase finishes to detect and resolve any key violations that might have occurred. For
more information, see Detecting and correcting index key violations in DynamoDB.

While the resource allocation and backfilling phases are in progress, the index is in the CREATING
state. During this time, DynamoDB performs read operations on the table. You are not charged for
read operations from the base table to populate the global secondary index.

When the index build is complete, its status changes to ACTIVE. You can't Query or Scan the index
until it is ACTIVE.

Note

In some cases, DynamoDB can't write data from the table to the index because of index key
violations. This can occur if:

• The data type of an attribute value does not match the data type of an index key schema
data type.

Global secondary indexes API Version 2012-08-10 960

Amazon DynamoDB Developer Guide

• The size of an attribute exceeds the maximum length for an index key attribute.

• An index key attribute has an empty String or empty Binary attribute value.

Index key violations do not interfere with global secondary index creation. However, when
the index becomes ACTIVE, the violating keys are not present in the index.
DynamoDB provides a standalone tool for finding and resolving these issues. For more
information, see Detecting and correcting index key violations in DynamoDB.

Adding a Global Secondary Index to a large table

The time required for building a global secondary index depends on several factors, such as the
following:

• The size of the table

• The number of items in the table that qualify for inclusion in the index

• The number of attributes projected into the index

• Write activity on the main table during index builds

If you are adding a global secondary index to a very large table, it might take a long time for the
creation process to complete. To monitor progress and determine whether the index has sufficient
write capacity, consult the following Amazon CloudWatch metrics:

• OnlineIndexPercentageProgress

For more information about CloudWatch metrics related to DynamoDB, see DynamoDB metrics.

Important

You may need to allowlist very large tables before creating or updating a Global Secondary
Index. Please reach out to Amazon Support to allowlist your tables.

While an index is being backfilled, DynamoDB uses internal system capacity to read from the table.
This is to minimize the impact of the index creation and to assure that your table does not run out
of read capacity.

Global secondary indexes API Version 2012-08-10 961

Amazon DynamoDB Developer Guide

Deleting a Global Secondary Index

If you no longer need a global secondary index, you can delete it using the UpdateTable
operation.

You can delete only one global secondary index per UpdateTable operation.

While the global secondary index is being deleted, there is no effect on any read or write activity in
the parent table. While the deletion is in progress, you can still modify the provisioned throughput
on other indexes.

Note

• When you delete a table using the DeleteTable action, all of the global secondary
indexes on that table are also deleted.

• Your account will not be charged for the delete operation of the global secondary index.

Modifying a Global Secondary Index during creation

While an index is being built, you can use the DescribeTable operation to determine what
phase it is in. The description for the index includes a Boolean attribute, Backfilling, to indicate
whether DynamoDB is currently loading the index with items from the table. If Backfilling is
true, the resource allocation phase is complete and the index is now backfilling.

During the backfilling phase, you can delete the index that is being created. During this phase, you
can't add or delete other indexes on the table.

Note

For indexes that were created as part of a CreateTable operation, the Backfilling
attribute does not appear in the DescribeTable output. For more information, see
Phases of index creation.

Detecting and correcting index key violations in DynamoDB

During the backfill phase of global secondary index creation, Amazon DynamoDB examines each
item in the table to determine whether it is eligible for inclusion in the index. Some items might

Global secondary indexes API Version 2012-08-10 962

Amazon DynamoDB Developer Guide

not be eligible because they would cause index key violations. In these cases, the items remain in
the table, but the index doesn't have a corresponding entry for that item.

An index key violation occurs in the following situations:

• There is a data type mismatch between an attribute value and the index key schema data type.
For example, suppose that one of the items in the GameScores table had a TopScore value of
type String. If you added a global secondary index with a partition key of TopScore, of type
Number, the item from the table would violate the index key.

• An attribute value from the table exceeds the maximum length for an index key attribute. The
maximum length of a partition key is 2048 bytes, and the maximum length of a sort key is 1024
bytes. If any of the corresponding attribute values in the table exceed these limits, the item from
the table would violate the index key.

Note

If a String or Binary attribute value is set for an attribute that is used as an index key, then
the attribute value must have a length greater than zero;, otherwise, the item from the
table would violate the index key.
This tool does not flag this index key violation, at this time.

If an index key violation occurs, the backfill phase continues without interruption. However, any
violating items are not included in the index. After the backfill phase completes, all writes to items
that violate the new index's key schema will be rejected.

To identify and fix attribute values in a table that violate an index key, use the Violation Detector
tool. To run Violation Detector, you create a configuration file that specifies the name of a table
to be scanned, the names and data types of the global secondary index partition key and sort key,
and what actions to take if any index key violations are found. Violation Detector can run in one of
two different modes:

• Detection mode — Detect index key violations. Use detection mode to report the items in the
table that would cause key violations in a global secondary index. (You can optionally request
that these violating table items be deleted immediately when they are found.) The output from
detection mode is written to a file, which you can use for further analysis.

Global secondary indexes API Version 2012-08-10 963

Amazon DynamoDB Developer Guide

• Correction mode — Correct index key violations. In correction mode, Violation Detector reads
an input file with the same format as the output file from detection mode. Correction mode
reads the records from the input file and, for each record, it either deletes or updates the
corresponding items in the table. (Note that if you choose to update the items, you must edit the
input file and set appropriate values for these updates.)

Downloading and running Violation Detector

Violation Detector is available as an executable Java Archive (.jar file), and runs on Windows,
macOS, or Linux computers. Violation Detector requires Java 1.7 (or later) and Apache Maven.

• Download violation detector from GitHub

Follow the instructions in the README.md file to download and install Violation Detector using
Maven.

To start Violation Detector, go to the directory where you have built ViolationDetector.java
and enter the following command.

java -jar ViolationDetector.jar [options]

The Violation Detector command line accepts the following options:

• -h | --help — Prints a usage summary and options for Violation Detector.

• -p | --configFilePath value — The fully qualified name of a Violation Detector
configuration file. For more information, see The Violation Detector configuration file.

• -t | --detect value — Detect index key violations in the table, and write them to the
Violation Detector output file. If the value of this parameter is set to keep, items with key
violations are not modified. If the value is set to delete, items with key violations are deleted
from the table.

• -c | --correct value — Read index key violations from an input file, and take corrective
actions on the items in the table. If the value of this parameter is set to update, items with key
violations are updated with new, non-violating values. If the value is set to delete, items with
key violations are deleted from the table.

Global secondary indexes API Version 2012-08-10 964

https://github.com/awslabs/dynamodb-online-index-violation-detector

Amazon DynamoDB Developer Guide

The Violation Detector configuration file

At runtime, the Violation Detector tool requires a configuration file. The parameters in this
file determine which DynamoDB resources that Violation Detector can access, and how much
provisioned throughput it can consume. The following table describes these parameters.

Parameter name Description Required?

awsCredentialsFile The fully qualified name of a
file containing your Amazon
credentials. The credentials
file must be in the following
 format:

accessKey = access_ke
y_id_goes_here
secretKey = secret_ke
y_goes_here

Yes

dynamoDBRegion The Amazon Region in
which the table resides. For
example: us-west-2 .

Yes

tableName The name of the DynamoDB
table to be scanned.

Yes

gsiHashKeyName The name of the index
partition key.

Yes

gsiHashKeyType The data type of the index
partition key—String,
Number, or Binary:

S | N | B

Yes

gsiRangeKeyName The name of the index sort
key. Do not specify this
parameter if the index only

No

Global secondary indexes API Version 2012-08-10 965

Amazon DynamoDB Developer Guide

Parameter name Description Required?

has a simple primary key
(partition key).

gsiRangeKeyType The data type of the index
sort key—String, Number,
or Binary:

S | N | B

Do not specify this parameter
if the index only has a simple
primary key (partition key).

No

recordDetails Whether to write the full
details of index key violation
s to the output file. If set
to true (the default), full
information about the
violating items is reported.
If set to false, only the
number of violations is
reported.

No

recordGsiValueInVi
olationRecord

Whether to write the values
of the violating index keys to
the output file. If set to true
(default), the key values are
reported. If set to false, the
key values are not reported.

No

Global secondary indexes API Version 2012-08-10 966

Amazon DynamoDB Developer Guide

Parameter name Description Required?

detectionOutputPath The full path of the Violation
Detector output file. This
parameter supports writing
to a local directory or to
Amazon Simple Storage
Service (Amazon S3). The
following are examples:

detectionOutputPat
h = //local/path/
filename.csv

detection
OutputPath =
s3://bucket/filename.
csv

Information in the output
file appears in comma-sep
arated values (CSV) format.
If you don't set detection
OutputPath , the output
file is named violation
_detection.csv and
is written to your current
working directory.

No

Global secondary indexes API Version 2012-08-10 967

Amazon DynamoDB Developer Guide

Parameter name Description Required?

numOfSegments The number of parallel
scan segments to be used
when Violation Detector
scans the table. The default
value is 1, meaning that
the table is scanned in a
sequential manner. If the
value is 2 or higher, then
Violation Detector divides the
table into that many logical
segments and an equal
number of scan threads.

The maximum setting for
numOfSegments is 4096.

For larger tables, a parallel
scan is generally faster than
a sequential scan. In addition,
if the table is large enough
to span multiple partitions,
a parallel scan distributes its
read activity evenly across
multiple partitions.
For more information about
parallel scans in DynamoDB,
see Parallel scan.

No

Global secondary indexes API Version 2012-08-10 968

Amazon DynamoDB Developer Guide

Parameter name Description Required?

numOfViolations The upper limit of index
key violations to write to
the output file. If set to -1
(the default), the entire
table is scanned. If set to
a positive integer, then
Violation Detector stops after
it encounters that number of
violations.

No

numOfRecords The number of items in the
table to be scanned. If set to
-1 (the default), the entire
table is scanned. If set to a
positive integer, Violation
Detector stops after it scans
that many items in the table.

No

readWriteIOPSPercent Regulates the percentage
of provisioned read capacity
units that are consumed
during the table scan. Valid
values range from 1 to 100.
The default value (25) means
that Violation Detector will
consume no more than 25%
of the table's provisioned read
throughput.

No

Global secondary indexes API Version 2012-08-10 969

Amazon DynamoDB Developer Guide

Parameter name Description Required?

correctionInputPath The full path of the Violation
Detector correction input
file. If you run Violation
Detector in correction mode,
the contents of this file are
used to modify or delete data
items in the table that violate
the global secondary index.

The format of the
correctionInputPath
file is the same as that of the
detectionOutputPath
file. This lets you process the
output from detection mode
as input in correction mode.

No

Global secondary indexes API Version 2012-08-10 970

Amazon DynamoDB Developer Guide

Parameter name Description Required?

correctionOutputPath The full path of the Violation
Detector correction output
file. This file is created only if
there are update errors.

This parameter supports
writing to a local directory or
to Amazon S3. The following
are examples:

correctionOutputPa
th = //local/path/
filename.csv

correctio
nOutputPath =
s3://bucket/filename.
csv

Information in the output
file appears in CSV format.
If you don't set correctio
nOutputPath , the output
file is named violation
_update_errors.csv
and is written to your current
working directory.

No

Detection

To detect index key violations, use Violation Detector with the --detect command line option. To
show how this option works, consider the ProductCatalog table. The following is a list of items
in the table. Only the primary key (Id) and the Price attribute are shown.

Global secondary indexes API Version 2012-08-10 971

Amazon DynamoDB Developer Guide

Id (primary key) Price

101 5

102 20

103 200

201 100

202 200

203 300

204 400

205 500

All of the values for Price are of type Number. However, because DynamoDB is schemaless, it is
possible to add an item with a non-numeric Price. For example, suppose that you add another
item to the ProductCatalog table.

Id (primary key) Price

999 "Hello"

The table now has a total of nine items.

Now you add a new global secondary index to the table: PriceIndex. The primary key for
this index is a partition key, Price, which is of type Number. After the index has been built, it
will contain eight items—but the ProductCatalog table has nine items. The reason for this
discrepancy is that the value "Hello" is of type String, but PriceIndex has a primary key of
type Number. The String value violates the global secondary index key, so it is not present in the
index.

To use Violation Detector in this scenario, you first create a configuration file such as the following.

Global secondary indexes API Version 2012-08-10 972

Amazon DynamoDB Developer Guide

Properties file for violation detection tool configuration.
Parameters that are not specified will use default values.

awsCredentialsFile = /home/alice/credentials.txt
dynamoDBRegion = us-west-2
tableName = ProductCatalog
gsiHashKeyName = Price
gsiHashKeyType = N
recordDetails = true
recordGsiValueInViolationRecord = true
detectionOutputPath = ./gsi_violation_check.csv
correctionInputPath = ./gsi_violation_check.csv
numOfSegments = 1
readWriteIOPSPercent = 40

Next, you run Violation Detector as in the following example.

$ java -jar ViolationDetector.jar --configFilePath config.txt --detect keep

Violation detection started: sequential scan, Table name: ProductCatalog, GSI name:
 PriceIndex
Progress: Items scanned in total: 9, Items scanned by this thread: 9, Violations
 found by this thread: 1, Violations deleted by this thread: 0
Violation detection finished: Records scanned: 9, Violations found: 1, Violations
 deleted: 0, see results at: ./gsi_violation_check.csv

If the recordDetails config parameter is set to true, Violation Detector writes details of each
violation to the output file, as in the following example.

Table Hash Key,GSI Hash Key Value,GSI Hash Key Violation Type,GSI Hash Key Violation
 Description,GSI Hash Key Update Value(FOR USER),Delete Blank Attributes When Updating?
(Y/N)

999,"{""S"":""Hello""}",Type Violation,Expected: N Found: S,,

The output file is in CSV format. The first line in the file is a header, followed by one record per
item that violates the index key. The fields of these violation records are as follows:

• Table hash key — The partition key value of the item in the table.

• Table range key — The sort key value of the item in the table.

• GSI hash key value — The partition key value of the global secondary index.

Global secondary indexes API Version 2012-08-10 973

Amazon DynamoDB Developer Guide

• GSI hash key violation type — Either Type Violation or Size Violation.

• GSI hash key violation description — The cause of the violation.

• GSI hash key update Value(FOR USER) — In correction mode, a new user-supplied value for the
attribute.

• GSI range key value — The sort key value of the global secondary index.

• GSI range key violation type — Either Type Violation or Size Violation.

• GSI range key violation description — The cause of the violation.

• GSI range key update Value(FOR USER) — In correction mode, a new user-supplied value for
the attribute.

• Delete blank attribute when Updating(Y/N) — In correction mode, determines whether to
delete (Y) or keep (N) the violating item in the table—but only if either of the following fields are
blank:

• GSI Hash Key Update Value(FOR USER)

• GSI Range Key Update Value(FOR USER)

If either of these fields are non-blank, then Delete Blank Attribute When Updating(Y/
N) has no effect.

Note

The output format might vary, depending on the configuration file and command line
options. For example, if the table has a simple primary key (without a sort key), no sort key
fields will be present in the output.
The violation records in the file might not be in sorted order.

Correction

To correct index key violations, use Violation Detector with the --correct command
line option. In correction mode, Violation Detector reads the input file specified by the
correctionInputPath parameter. This file has the same format as the detectionOutputPath
file, so that you can use the output from detection as input for correction.

Violation Detector provides two different ways to correct index key violations:

• Delete violations — Delete the table items that have violating attribute values.

Global secondary indexes API Version 2012-08-10 974

Amazon DynamoDB Developer Guide

• Update violations — Update the table items, replacing the violating attributes with non-
violating values.

In either case, you can use the output file from detection mode as input for correction mode.

Continuing with the ProductCatalog example, suppose that you want to delete the violating
item from the table. To do this, you use the following command line.

$ java -jar ViolationDetector.jar --configFilePath config.txt --correct delete

At this point, you are asked to confirm whether you want to delete the violating items.

Are you sure to delete all violations on the table?y/n
y
Confirmed, will delete violations on the table...
Violation correction from file started: Reading records from file: ./
gsi_violation_check.csv, will delete these records from table.
Violation correction from file finished: Violations delete: 1, Violations Update: 0

Now both ProductCatalog and PriceIndex have the same number of items.

Working with Global Secondary Indexes: Java

You can use the Amazon SDK for Java Document API to create an Amazon DynamoDB table with
one or more global secondary indexes, describe the indexes on the table, and perform queries
using the indexes.

The following are the common steps for table operations.

1. Create an instance of the DynamoDB class.

2. Provide the required and optional parameters for the operation by creating the corresponding
request objects.

3. Call the appropriate method provided by the client that you created in the preceding step.

Topics

• Create a table with a Global Secondary Index

• Describe a table with a Global Secondary Index

• Query a Global Secondary Index

Global secondary indexes API Version 2012-08-10 975

Amazon DynamoDB Developer Guide

• Example: Global Secondary Indexes using the Amazon SDK for Java document API

Create a table with a Global Secondary Index

You can create global secondary indexes at the same time that you create a table. To do this, use
CreateTable and provide your specifications for one or more global secondary indexes. The
following Java code example creates a table to hold information about weather data. The partition
key is Location and the sort key is Date. A global secondary index named PrecipIndex allows
fast access to precipitation data for various locations.

The following are the steps to create a table with a global secondary index, using the DynamoDB
document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values.
For the global secondary index, you must provide the index name, its provisioned throughput
settings, the attribute definitions for the index sort key, the key schema for the index, and the
attribute projection.

3. Call the createTable method by providing the request object as a parameter.

The following Java code example demonstrates the preceding steps. The code creates a table
(WeatherData) with a global secondary index (PrecipIndex). The index partition key is Date
and its sort key is Precipitation. All of the table attributes are projected into the index. Users
can query this index to obtain weather data for a particular date, optionally sorting the data by
precipitation amount.

Because Precipitation is not a key attribute for the table, it is not required. However,
WeatherData items without Precipitation do not appear in PrecipIndex.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

// Attribute definitions
ArrayList<AttributeDefinition> attributeDefinitions = new
 ArrayList<AttributeDefinition>();

attributeDefinitions.add(new AttributeDefinition()

Global secondary indexes API Version 2012-08-10 976

Amazon DynamoDB Developer Guide

 .withAttributeName("Location")
 .withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Date")
 .withAttributeType("S"));
attributeDefinitions.add(new AttributeDefinition()
 .withAttributeName("Precipitation")
 .withAttributeType("N"));

// Table key schema
ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaElement>();
tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("Location")
 .withKeyType(KeyType.HASH)); //Partition key
tableKeySchema.add(new KeySchemaElement()
 .withAttributeName("Date")
 .withKeyType(KeyType.RANGE)); //Sort key

// PrecipIndex
GlobalSecondaryIndex precipIndex = new GlobalSecondaryIndex()
 .withIndexName("PrecipIndex")
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 10)
 .withWriteCapacityUnits((long) 1))
 .withProjection(new Projection().withProjectionType(ProjectionType.ALL));

ArrayList<KeySchemaElement> indexKeySchema = new ArrayList<KeySchemaElement>();

indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("Date")
 .withKeyType(KeyType.HASH)); //Partition key
indexKeySchema.add(new KeySchemaElement()
 .withAttributeName("Precipitation")
 .withKeyType(KeyType.RANGE)); //Sort key

precipIndex.setKeySchema(indexKeySchema);

CreateTableRequest createTableRequest = new CreateTableRequest()
 .withTableName("WeatherData")
 .withProvisionedThroughput(new ProvisionedThroughput()
 .withReadCapacityUnits((long) 5)
 .withWriteCapacityUnits((long) 1))
 .withAttributeDefinitions(attributeDefinitions)
 .withKeySchema(tableKeySchema)

Global secondary indexes API Version 2012-08-10 977

Amazon DynamoDB Developer Guide

 .withGlobalSecondaryIndexes(precipIndex);

Table table = dynamoDB.createTable(createTableRequest);
System.out.println(table.getDescription());

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table.

Describe a table with a Global Secondary Index

To get information about global secondary indexes on a table, use DescribeTable. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access global secondary index information a table.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the index you want to work with.

3. Call the describe method on the Table object.

The following Java code example demonstrates the preceding steps.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("WeatherData");
TableDescription tableDesc = table.describe();

Iterator<GlobalSecondaryIndexDescription> gsiIter =
 tableDesc.getGlobalSecondaryIndexes().iterator();
while (gsiIter.hasNext()) {
 GlobalSecondaryIndexDescription gsiDesc = gsiIter.next();
 System.out.println("Info for index "
 + gsiDesc.getIndexName() + ":");

 Iterator<KeySchemaElement> kseIter = gsiDesc.getKeySchema().iterator();
 while (kseIter.hasNext()) {
 KeySchemaElement kse = kseIter.next();
 System.out.printf("\t%s: %s\n", kse.getAttributeName(), kse.getKeyType());
 }

Global secondary indexes API Version 2012-08-10 978

Amazon DynamoDB Developer Guide

 Projection projection = gsiDesc.getProjection();
 System.out.println("\tThe projection type is: "
 + projection.getProjectionType());
 if (projection.getProjectionType().toString().equals("INCLUDE")) {
 System.out.println("\t\tThe non-key projected attributes are: "
 + projection.getNonKeyAttributes());
 }
}

Query a Global Secondary Index

You can use Query on a global secondary index, in much the same way you Query a table. You
need to specify the index name, the query criteria for the index partition key and sort key (if
present), and the attributes that you want to return. In this example, the index is PrecipIndex,
which has a partition key of Date and a sort key of Precipitation. The index query returns all of
the weather data for a particular date, where the precipitation is greater than zero.

The following are the steps to query a global secondary index using the Amazon SDK for Java
Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class to represent the index you want to work with.

3. Create an instance of the Index class for the index you want to query.

4. Call the query method on the Index object.

The attribute name Date is a DynamoDB reserved word. Therefore, you must use an expression
attribute name as a placeholder in the KeyConditionExpression.

The following Java code example demonstrates the preceding steps.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

Table table = dynamoDB.getTable("WeatherData");
Index index = table.getIndex("PrecipIndex");

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("#d = :v_date and Precipitation = :v_precip")
 .withNameMap(new NameMap()

Global secondary indexes API Version 2012-08-10 979

Amazon DynamoDB Developer Guide

 .with("#d", "Date"))
 .withValueMap(new ValueMap()
 .withString(":v_date","2013-08-10")
 .withNumber(":v_precip",0));

ItemCollection<QueryOutcome> items = index.query(spec);
Iterator<Item> iter = items.iterator();
while (iter.hasNext()) {
 System.out.println(iter.next().toJSONPretty());
}

Example: Global Secondary Indexes using the Amazon SDK for Java document API

The following Java code example shows how to work with global secondary indexes. The example
creates a table named Issues, which might be used in a simple bug tracking system for software
development. The partition key is IssueId and the sort key is Title. There are three global
secondary indexes on this table:

• CreateDateIndex — The partition key is CreateDate and the sort key is IssueId. In addition
to the table keys, the attributes Description and Status are projected into the index.

• TitleIndex — The partition key is Title and the sort key is IssueId. No attributes other
than the table keys are projected into the index.

• DueDateIndex — The partition key is DueDate, and there is no sort key. All of the table
attributes are projected into the index.

After the Issues table is created, the program loads the table with data representing software
bug reports. It then queries the data using the global secondary indexes. Finally, the program
deletes the Issues table.

For step-by-step instructions for testing the following example, see Java code examples.

Example

package com.amazonaws.codesamples.document;

import java.util.ArrayList;
import java.util.Iterator;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;

Global secondary indexes API Version 2012-08-10 980

Amazon DynamoDB Developer Guide

import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Index;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;
import com.amazonaws.services.dynamodbv2.document.utils.ValueMap;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.GlobalSecondaryIndex;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.Projection;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;

public class DocumentAPIGlobalSecondaryIndexExample {

 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 public static String tableName = "Issues";

 public static void main(String[] args) throws Exception {

 createTable();
 loadData();

 queryIndex("CreateDateIndex");
 queryIndex("TitleIndex");
 queryIndex("DueDateIndex");

 deleteTable(tableName);

 }

 public static void createTable() {

 // Attribute definitions
 ArrayList<AttributeDefinition> attributeDefinitions = new
 ArrayList<AttributeDefinition>();

Global secondary indexes API Version 2012-08-10 981

Amazon DynamoDB Developer Guide

 attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("IssueId").withAttributeType("S"));
 attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("Title").withAttributeType("S"));
 attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("CreateDate").withAttributeType("S"));
 attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("DueDate").withAttributeType("S"));

 // Key schema for table
 ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaElement>();
 tableKeySchema.add(new
 KeySchemaElement().withAttributeName("IssueId").withKeyType(KeyType.HASH)); //
 Partition

 // key
 tableKeySchema.add(new
 KeySchemaElement().withAttributeName("Title").withKeyType(KeyType.RANGE)); // Sort

 // key

 // Initial provisioned throughput settings for the indexes
 ProvisionedThroughput ptIndex = new
 ProvisionedThroughput().withReadCapacityUnits(1L)
 .withWriteCapacityUnits(1L);

 // CreateDateIndex
 GlobalSecondaryIndex createDateIndex = new
 GlobalSecondaryIndex().withIndexName("CreateDateIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new
 KeySchemaElement().withAttributeName("CreateDate").withKeyType(KeyType.HASH), //
 Partition

 // key
 new
 KeySchemaElement().withAttributeName("IssueId").withKeyType(KeyType.RANGE)) // Sort

 // key
 .withProjection(
 new
 Projection().withProjectionType("INCLUDE").withNonKeyAttributes("Description",
 "Status"));

Global secondary indexes API Version 2012-08-10 982

Amazon DynamoDB Developer Guide

 // TitleIndex
 GlobalSecondaryIndex titleIndex = new
 GlobalSecondaryIndex().withIndexName("TitleIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new
 KeySchemaElement().withAttributeName("Title").withKeyType(KeyType.HASH), // Partition

 // key
 new
 KeySchemaElement().withAttributeName("IssueId").withKeyType(KeyType.RANGE)) // Sort

 // key
 .withProjection(new Projection().withProjectionType("KEYS_ONLY"));

 // DueDateIndex
 GlobalSecondaryIndex dueDateIndex = new
 GlobalSecondaryIndex().withIndexName("DueDateIndex")
 .withProvisionedThroughput(ptIndex)
 .withKeySchema(new
 KeySchemaElement().withAttributeName("DueDate").withKeyType(KeyType.HASH)) //
 Partition

 // key
 .withProjection(new Projection().withProjectionType("ALL"));

 CreateTableRequest createTableRequest = new
 CreateTableRequest().withTableName(tableName)
 .withProvisionedThroughput(
 new ProvisionedThroughput().withReadCapacityUnits((long)
 1).withWriteCapacityUnits((long) 1))

 .withAttributeDefinitions(attributeDefinitions).withKeySchema(tableKeySchema)
 .withGlobalSecondaryIndexes(createDateIndex, titleIndex, dueDateIndex);

 System.out.println("Creating table " + tableName + "...");
 dynamoDB.createTable(createTableRequest);

 // Wait for table to become active
 System.out.println("Waiting for " + tableName + " to become ACTIVE...");
 try {
 Table table = dynamoDB.getTable(tableName);
 table.waitForActive();
 } catch (InterruptedException e) {
 e.printStackTrace();

Global secondary indexes API Version 2012-08-10 983

Amazon DynamoDB Developer Guide

 }
 }

 public static void queryIndex(String indexName) {

 Table table = dynamoDB.getTable(tableName);

 System.out.println("\n***\n");
 System.out.print("Querying index " + indexName + "...");

 Index index = table.getIndex(indexName);

 ItemCollection<QueryOutcome> items = null;

 QuerySpec querySpec = new QuerySpec();

 if (indexName == "CreateDateIndex") {
 System.out.println("Issues filed on 2013-11-01");
 querySpec.withKeyConditionExpression("CreateDate = :v_date and
 begins_with(IssueId, :v_issue)")
 .withValueMap(new ValueMap().withString(":v_date",
 "2013-11-01").withString(":v_issue", "A-"));
 items = index.query(querySpec);
 } else if (indexName == "TitleIndex") {
 System.out.println("Compilation errors");
 querySpec.withKeyConditionExpression("Title = :v_title and
 begins_with(IssueId, :v_issue)")
 .withValueMap(
 new ValueMap().withString(":v_title", "Compilation
 error").withString(":v_issue", "A-"));
 items = index.query(querySpec);
 } else if (indexName == "DueDateIndex") {
 System.out.println("Items that are due on 2013-11-30");
 querySpec.withKeyConditionExpression("DueDate = :v_date")
 .withValueMap(new ValueMap().withString(":v_date", "2013-11-30"));
 items = index.query(querySpec);
 } else {
 System.out.println("\nNo valid index name provided");
 return;
 }

 Iterator<Item> iterator = items.iterator();

Global secondary indexes API Version 2012-08-10 984

Amazon DynamoDB Developer Guide

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 public static void deleteTable(String tableName) {

 System.out.println("Deleting table " + tableName + "...");

 Table table = dynamoDB.getTable(tableName);
 table.delete();

 // Wait for table to be deleted
 System.out.println("Waiting for " + tableName + " to be deleted...");
 try {
 table.waitForDelete();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public static void loadData() {

 System.out.println("Loading data into table " + tableName + "...");

 // IssueId, Title,
 // Description,
 // CreateDate, LastUpdateDate, DueDate,
 // Priority, Status

 putItem("A-101", "Compilation error", "Can't compile Project X - bad version
 number. What does this mean?",
 "2013-11-01", "2013-11-02", "2013-11-10", 1, "Assigned");

 putItem("A-102", "Can't read data file", "The main data file is missing, or the
 permissions are incorrect",
 "2013-11-01", "2013-11-04", "2013-11-30", 2, "In progress");

 putItem("A-103", "Test failure", "Functional test of Project X produces
 errors", "2013-11-01", "2013-11-02",
 "2013-11-10", 1, "In progress");

Global secondary indexes API Version 2012-08-10 985

Amazon DynamoDB Developer Guide

 putItem("A-104", "Compilation error", "Variable 'messageCount' was not
 initialized.", "2013-11-15",
 "2013-11-16", "2013-11-30", 3, "Assigned");

 putItem("A-105", "Network issue", "Can't ping IP address 127.0.0.1. Please fix
 this.", "2013-11-15",
 "2013-11-16", "2013-11-19", 5, "Assigned");

 }

 public static void putItem(

 String issueId, String title, String description, String createDate, String
 lastUpdateDate, String dueDate,
 Integer priority, String status) {

 Table table = dynamoDB.getTable(tableName);

 Item item = new Item().withPrimaryKey("IssueId", issueId).withString("Title",
 title)
 .withString("Description", description).withString("CreateDate",
 createDate)
 .withString("LastUpdateDate", lastUpdateDate).withString("DueDate",
 dueDate)
 .withNumber("Priority", priority).withString("Status", status);

 table.putItem(item);
 }

}

Working with Global Secondary Indexes: .NET

You can use the Amazon SDK for .NET low-level API to create an Amazon DynamoDB table with
one or more global secondary indexes, describe the indexes on the table, and perform queries
using the indexes. These operations map to the corresponding DynamoDB operations. For more
information, see the Amazon DynamoDB API Reference.

The following are the common steps for table operations using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

Global secondary indexes API Version 2012-08-10 986

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

2. Provide the required and optional parameters for the operation by creating the corresponding
request objects.

For example, create a CreateTableRequest object to create a table and QueryRequest
object to query a table or an index.

3. Run the appropriate method provided by the client that you created in the preceding step.

Topics

• Create a table with a Global Secondary Index

• Describe a table with a Global Secondary Index

• Query a Global Secondary Index

• Example: Global Secondary Indexes using the Amazon SDK for .NET low-level API

Create a table with a Global Secondary Index

You can create global secondary indexes at the same time that you create a table. To do this, use
CreateTable and provide your specifications for one or more global secondary indexes. The
following C# code example creates a table to hold information about weather data. The partition
key is Location and the sort key is Date. A global secondary index named PrecipIndex allows
fast access to precipitation data for various locations.

The following are the steps to create a table with a global secondary index, using the .NET low-
level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values.
For the global secondary index, you must provide the index name, its provisioned throughput
settings, the attribute definitions for the index sort key, the key schema for the index, and the
attribute projection.

3. Run the CreateTable method by providing the request object as a parameter.

The following C# code example demonstrates the preceding steps. The code creates a table
(WeatherData) with a global secondary index (PrecipIndex). The index partition key is Date
and its sort key is Precipitation. All of the table attributes are projected into the index. Users

Global secondary indexes API Version 2012-08-10 987

Amazon DynamoDB Developer Guide

can query this index to obtain weather data for a particular date, optionally sorting the data by
precipitation amount.

Because Precipitation is not a key attribute for the table, it is not required. However,
WeatherData items without Precipitation do not appear in PrecipIndex.

client = new AmazonDynamoDBClient();
string tableName = "WeatherData";

// Attribute definitions
var attributeDefinitions = new List<AttributeDefinition>()
{
 {new AttributeDefinition{
 AttributeName = "Location",
 AttributeType = "S"}},
 {new AttributeDefinition{
 AttributeName = "Date",
 AttributeType = "S"}},
 {new AttributeDefinition(){
 AttributeName = "Precipitation",
 AttributeType = "N"}
 }
};

// Table key schema
var tableKeySchema = new List<KeySchemaElement>()
{
 {new KeySchemaElement {
 AttributeName = "Location",
 KeyType = "HASH"}}, //Partition key
 {new KeySchemaElement {
 AttributeName = "Date",
 KeyType = "RANGE"} //Sort key
 }
};

// PrecipIndex
var precipIndex = new GlobalSecondaryIndex
{
 IndexName = "PrecipIndex",
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)10,

Global secondary indexes API Version 2012-08-10 988

Amazon DynamoDB Developer Guide

 WriteCapacityUnits = (long)1
 },
 Projection = new Projection { ProjectionType = "ALL" }
};

var indexKeySchema = new List<KeySchemaElement> {
 {new KeySchemaElement { AttributeName = "Date", KeyType = "HASH"}}, //Partition
 key
 {new KeySchemaElement{AttributeName = "Precipitation",KeyType = "RANGE"}} //Sort
 key
};

precipIndex.KeySchema = indexKeySchema;

CreateTableRequest createTableRequest = new CreateTableRequest
{
 TableName = tableName,
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)5,
 WriteCapacityUnits = (long)1
 },
 AttributeDefinitions = attributeDefinitions,
 KeySchema = tableKeySchema,
 GlobalSecondaryIndexes = { precipIndex }
};

CreateTableResponse response = client.CreateTable(createTableRequest);
Console.WriteLine(response.CreateTableResult.TableDescription.TableName);
Console.WriteLine(response.CreateTableResult.TableDescription.TableStatus);

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table.

Describe a table with a Global Secondary Index

To get information about global secondary indexes on a table, use DescribeTable. For each
index, you can access its name, key schema, and projected attributes.

The following are the steps to access global secondary index information for a table using the .NET
low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

Global secondary indexes API Version 2012-08-10 989

Amazon DynamoDB Developer Guide

2. Run the describeTable method by providing the request object as a parameter.

Create an instance of the DescribeTableRequest class to provide the request information.
You must provide the table name.

3.

The following C# code example demonstrates the preceding steps.

Example

client = new AmazonDynamoDBClient();
string tableName = "WeatherData";

DescribeTableResponse response = client.DescribeTable(new DescribeTableRequest
 { TableName = tableName});

List<GlobalSecondaryIndexDescription> globalSecondaryIndexes =
response.DescribeTableResult.Table.GlobalSecondaryIndexes;

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.

foreach (GlobalSecondaryIndexDescription gsiDescription in globalSecondaryIndexes) {
 Console.WriteLine("Info for index " + gsiDescription.IndexName + ":");

 foreach (KeySchemaElement kse in gsiDescription.KeySchema) {
 Console.WriteLine("\t" + kse.AttributeName + ": key type is " + kse.KeyType);
 }

 Projection projection = gsiDescription.Projection;
 Console.WriteLine("\tThe projection type is: " + projection.ProjectionType);

 if (projection.ProjectionType.ToString().Equals("INCLUDE")) {
 Console.WriteLine("\t\tThe non-key projected attributes are: "
 + projection.NonKeyAttributes);
 }
}

Query a Global Secondary Index

You can use Query on a global secondary index, in much the same way you Query a table. You
need to specify the index name, the query criteria for the index partition key and sort key (if

Global secondary indexes API Version 2012-08-10 990

Amazon DynamoDB Developer Guide

present), and the attributes that you want to return. In this example, the index is PrecipIndex,
which has a partition key of Date and a sort key of Precipitation. The index query returns all of
the weather data for a particular date, where the precipitation is greater than zero.

The following are the steps to query a global secondary index using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the QueryRequest class to provide the request information.

3. Run the query method by providing the request object as a parameter.

The attribute name Date is a DynamoDB reserved word. Therefore, you must use an expression
attribute name as a placeholder in the KeyConditionExpression.

The following C# code example demonstrates the preceding steps.

Example

client = new AmazonDynamoDBClient();

QueryRequest queryRequest = new QueryRequest
{
 TableName = "WeatherData",
 IndexName = "PrecipIndex",
 KeyConditionExpression = "#dt = :v_date and Precipitation > :v_precip",
 ExpressionAttributeNames = new Dictionary<String, String> {
 {"#dt", "Date"}
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
 {":v_date", new AttributeValue { S = "2013-08-01" }},
 {":v_precip", new AttributeValue { N = "0" }}
 },
 ScanIndexForward = true
};

var result = client.Query(queryRequest);

var items = result.Items;
foreach (var currentItem in items)
{
 foreach (string attr in currentItem.Keys)
 {
 Console.Write(attr + "---> ");

Global secondary indexes API Version 2012-08-10 991

Amazon DynamoDB Developer Guide

 if (attr == "Precipitation")
 {
 Console.WriteLine(currentItem[attr].N);
 }
 else
 {
 Console.WriteLine(currentItem[attr].S);
 }

 }
 Console.WriteLine();
}

Example: Global Secondary Indexes using the Amazon SDK for .NET low-level API

The following C# code example shows how to work with global secondary indexes. The example
creates a table named Issues, which might be used in a simple bug tracking system for software
development. The partition key is IssueId and the sort key is Title. There are three global
secondary indexes on this table:

• CreateDateIndex — The partition key is CreateDate and the sort key is IssueId. In addition
to the table keys, the attributes Description and Status are projected into the index.

• TitleIndex — The partition key is Title and the sort key is IssueId. No attributes other
than the table keys are projected into the index.

• DueDateIndex — The partition key is DueDate, and there is no sort key. All of the table
attributes are projected into the index.

After the Issues table is created, the program loads the table with data representing software
bug reports. It then queries the data using the global secondary indexes. Finally, the program
deletes the Issues table.

For step-by-step instructions for testing the following sample, see .NET code examples.

Example

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;

Global secondary indexes API Version 2012-08-10 992

Amazon DynamoDB Developer Guide

using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
{
 class LowLevelGlobalSecondaryIndexExample
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();
 public static String tableName = "Issues";

 public static void Main(string[] args)
 {
 CreateTable();
 LoadData();

 QueryIndex("CreateDateIndex");
 QueryIndex("TitleIndex");
 QueryIndex("DueDateIndex");

 DeleteTable(tableName);

 Console.WriteLine("To continue, press enter");
 Console.Read();
 }

 private static void CreateTable()
 {
 // Attribute definitions
 var attributeDefinitions = new List<AttributeDefinition>()
 {
 {new AttributeDefinition {
 AttributeName = "IssueId", AttributeType = "S"
 }},
 {new AttributeDefinition {
 AttributeName = "Title", AttributeType = "S"
 }},
 {new AttributeDefinition {
 AttributeName = "CreateDate", AttributeType = "S"
 }},
 {new AttributeDefinition {
 AttributeName = "DueDate", AttributeType = "S"
 }}

Global secondary indexes API Version 2012-08-10 993

Amazon DynamoDB Developer Guide

 };

 // Key schema for table
 var tableKeySchema = new List<KeySchemaElement>() {
 {
 new KeySchemaElement {
 AttributeName= "IssueId",
 KeyType = "HASH" //Partition key
 }
 },
 {
 new KeySchemaElement {
 AttributeName = "Title",
 KeyType = "RANGE" //Sort key
 }
 }
 };

 // Initial provisioned throughput settings for the indexes
 var ptIndex = new ProvisionedThroughput
 {
 ReadCapacityUnits = 1L,
 WriteCapacityUnits = 1L
 };

 // CreateDateIndex
 var createDateIndex = new GlobalSecondaryIndex()
 {
 IndexName = "CreateDateIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "CreateDate", KeyType = "HASH" //Partition key
 },
 new KeySchemaElement {
 AttributeName = "IssueId", KeyType = "RANGE" //Sort key
 }
 },
 Projection = new Projection
 {
 ProjectionType = "INCLUDE",
 NonKeyAttributes = {
 "Description", "Status"
 }

Global secondary indexes API Version 2012-08-10 994

Amazon DynamoDB Developer Guide

 }
 };

 // TitleIndex
 var titleIndex = new GlobalSecondaryIndex()
 {
 IndexName = "TitleIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "Title", KeyType = "HASH" //Partition key
 },
 new KeySchemaElement {
 AttributeName = "IssueId", KeyType = "RANGE" //Sort key
 }
 },
 Projection = new Projection
 {
 ProjectionType = "KEYS_ONLY"
 }
 };

 // DueDateIndex
 var dueDateIndex = new GlobalSecondaryIndex()
 {
 IndexName = "DueDateIndex",
 ProvisionedThroughput = ptIndex,
 KeySchema = {
 new KeySchemaElement {
 AttributeName = "DueDate",
 KeyType = "HASH" //Partition key
 }
 },
 Projection = new Projection
 {
 ProjectionType = "ALL"
 }
 };

 var createTableRequest = new CreateTableRequest
 {
 TableName = tableName,

Global secondary indexes API Version 2012-08-10 995

Amazon DynamoDB Developer Guide

 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = (long)1,
 WriteCapacityUnits = (long)1
 },
 AttributeDefinitions = attributeDefinitions,
 KeySchema = tableKeySchema,
 GlobalSecondaryIndexes = {
 createDateIndex, titleIndex, dueDateIndex
 }
 };

 Console.WriteLine("Creating table " + tableName + "...");
 client.CreateTable(createTableRequest);

 WaitUntilTableReady(tableName);
 }

 private static void LoadData()
 {
 Console.WriteLine("Loading data into table " + tableName + "...");

 // IssueId, Title,
 // Description,
 // CreateDate, LastUpdateDate, DueDate,
 // Priority, Status

 putItem("A-101", "Compilation error",
 "Can't compile Project X - bad version number. What does this mean?",
 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "Assigned");

 putItem("A-102", "Can't read data file",
 "The main data file is missing, or the permissions are incorrect",
 "2013-11-01", "2013-11-04", "2013-11-30",
 2, "In progress");

 putItem("A-103", "Test failure",
 "Functional test of Project X produces errors",
 "2013-11-01", "2013-11-02", "2013-11-10",
 1, "In progress");

 putItem("A-104", "Compilation error",
 "Variable 'messageCount' was not initialized.",

Global secondary indexes API Version 2012-08-10 996

Amazon DynamoDB Developer Guide

 "2013-11-15", "2013-11-16", "2013-11-30",
 3, "Assigned");

 putItem("A-105", "Network issue",
 "Can't ping IP address 127.0.0.1. Please fix this.",
 "2013-11-15", "2013-11-16", "2013-11-19",
 5, "Assigned");
 }

 private static void putItem(
 String issueId, String title,
 String description,
 String createDate, String lastUpdateDate, String dueDate,
 Int32 priority, String status)
 {
 Dictionary<String, AttributeValue> item = new Dictionary<string,
 AttributeValue>();

 item.Add("IssueId", new AttributeValue
 {
 S = issueId
 });
 item.Add("Title", new AttributeValue
 {
 S = title
 });
 item.Add("Description", new AttributeValue
 {
 S = description
 });
 item.Add("CreateDate", new AttributeValue
 {
 S = createDate
 });
 item.Add("LastUpdateDate", new AttributeValue
 {
 S = lastUpdateDate
 });
 item.Add("DueDate", new AttributeValue
 {
 S = dueDate
 });
 item.Add("Priority", new AttributeValue
 {

Global secondary indexes API Version 2012-08-10 997

Amazon DynamoDB Developer Guide

 N = priority.ToString()
 });
 item.Add("Status", new AttributeValue
 {
 S = status
 });

 try
 {
 client.PutItem(new PutItemRequest
 {
 TableName = tableName,
 Item = item
 });
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }

 private static void QueryIndex(string indexName)
 {
 Console.WriteLine
 ("\n***\n");
 Console.WriteLine("Querying index " + indexName + "...");

 QueryRequest queryRequest = new QueryRequest
 {
 TableName = tableName,
 IndexName = indexName,
 ScanIndexForward = true
 };

 String keyConditionExpression;
 Dictionary<string, AttributeValue> expressionAttributeValues = new
 Dictionary<string, AttributeValue>();

 if (indexName == "CreateDateIndex")
 {
 Console.WriteLine("Issues filed on 2013-11-01\n");

Global secondary indexes API Version 2012-08-10 998

Amazon DynamoDB Developer Guide

 keyConditionExpression = "CreateDate = :v_date and
 begins_with(IssueId, :v_issue)";
 expressionAttributeValues.Add(":v_date", new AttributeValue
 {
 S = "2013-11-01"
 });
 expressionAttributeValues.Add(":v_issue", new AttributeValue
 {
 S = "A-"
 });
 }
 else if (indexName == "TitleIndex")
 {
 Console.WriteLine("Compilation errors\n");

 keyConditionExpression = "Title = :v_title and
 begins_with(IssueId, :v_issue)";
 expressionAttributeValues.Add(":v_title", new AttributeValue
 {
 S = "Compilation error"
 });
 expressionAttributeValues.Add(":v_issue", new AttributeValue
 {
 S = "A-"
 });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";
 }
 else if (indexName == "DueDateIndex")
 {
 Console.WriteLine("Items that are due on 2013-11-30\n");

 keyConditionExpression = "DueDate = :v_date";
 expressionAttributeValues.Add(":v_date", new AttributeValue
 {
 S = "2013-11-30"
 });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";
 }
 else
 {

Global secondary indexes API Version 2012-08-10 999

Amazon DynamoDB Developer Guide

 Console.WriteLine("\nNo valid index name provided");
 return;
 }

 queryRequest.KeyConditionExpression = keyConditionExpression;
 queryRequest.ExpressionAttributeValues = expressionAttributeValues;

 var result = client.Query(queryRequest);
 var items = result.Items;
 foreach (var currentItem in items)
 {
 foreach (string attr in currentItem.Keys)
 {
 if (attr == "Priority")
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].N);
 }
 else
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].S);
 }
 }
 Console.WriteLine();
 }
 }

 private static void DeleteTable(string tableName)
 {
 Console.WriteLine("Deleting table " + tableName + "...");
 client.DeleteTable(new DeleteTableRequest
 {
 TableName = tableName
 });
 WaitForTableToBeDeleted(tableName);
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try

Global secondary indexes API Version 2012-08-10 1000

Amazon DynamoDB Developer Guide

 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential exception.
 }
 } while (status != "ACTIVE");
 }

 private static void WaitForTableToBeDeleted(string tableName)
 {
 bool tablePresent = true;

 while (tablePresent)
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 }
 catch (ResourceNotFoundException)
 {
 tablePresent = false;
 }
 }
 }
 }

Global secondary indexes API Version 2012-08-10 1001

Amazon DynamoDB Developer Guide

}

Working with Global Secondary Indexes in DynamoDB using Amazon CLI

You can use the Amazon CLI to create an Amazon DynamoDB table with one or more global
secondary indexes, describe the indexes on the table, and perform queries using the indexes.

Topics

• Create a table with a Global Secondary Index

• Add a Global Secondary Index to an existing table

• Describe a table with a Global Secondary Index

• Query a Global Secondary Index

Create a table with a Global Secondary Index

Global secondary indexes may be created at the same time you create a table. To do this, use
the create-table parameter and provide your specifications for one or more global secondary
indexes. The following example creates a table named GameScores with a global secondary
index called GameTitleIndex. The base table has a partition key of UserId and a sort key of
GameTitle, allowing you to find an individual user's best score for a specific game efficiently,
whereas the GSI has a partition key of GameTitle and a sort key of TopScore, allowing you to
quickly find the overall highest score for a particular game.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-definitions AttributeName=UserId,AttributeType=S \
 AttributeName=GameTitle,AttributeType=S \
 AttributeName=TopScore,AttributeType=N \
 --key-schema AttributeName=UserId,KeyType=HASH \
 AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"GameTitleIndex\",
 \"KeySchema\": [{\"AttributeName\":\"GameTitle\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"TopScore\",\"KeyType\":\"RANGE
\"}],

Global secondary indexes API Version 2012-08-10 1002

Amazon DynamoDB Developer Guide

 \"Projection\":{
 \"ProjectionType\":\"INCLUDE\",
 \"NonKeyAttributes\":[\"UserId\"]
 },
 \"ProvisionedThroughput\": {
 \"ReadCapacityUnits\": 10,
 \"WriteCapacityUnits\": 5
 }
 }
]"

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table. You can use describe-table to determine the status
of the table creation.

Add a Global Secondary Index to an existing table

Global secondary indexes may also be added or modified after table creation. To do this, use the
update-table parameter and provide your specifications for one or more global secondary
indexes. The following example uses the same schema as the previous example, but assumes that
the table has already been created and we're adding the GSI later.

aws dynamodb update-table \
 --table-name GameScores \
 --attribute-definitions AttributeName=TopScore,AttributeType=N \
 --global-secondary-index-updates \
 "[
 {
 \"Create\": {
 \"IndexName\": \"GameTitleIndex\",
 \"KeySchema\": [{\"AttributeName\":\"GameTitle\",\"KeyType\":\"HASH
\"},
 {\"AttributeName\":\"TopScore\",\"KeyType\":\"RANGE
\"}],
 \"Projection\":{
 \"ProjectionType\":\"INCLUDE\",
 \"NonKeyAttributes\":[\"UserId\"]
 }
 }
 }
]"

Global secondary indexes API Version 2012-08-10 1003

https://docs.amazonaws.cn/cli/latest/reference/dynamodb/describe-table.html

Amazon DynamoDB Developer Guide

Describe a table with a Global Secondary Index

To get information about Global Secondary Indexes on a table, use the describe-table
parameter. For each index, you can access its name, key schema, and projected attributes.

aws dynamodb describe-table --table-name GameScores

Query a Global Secondary Index

You can use the query operation on a global secondary index in much the same way that you
query a table. You must specify the index name, the query criteria for the index sort key, and the
attributes that you want to return. In this example, the index is GameTitleIndex and the index
sort key is GameTitle.

The only attributes returned are those that have been projected into the index. You could modify
this query to select non-key attributes too, but this would require table fetch activity that is
relatively expensive. For more information about table fetches, see Attribute projections.

aws dynamodb query --table-name GameScores\
 --index-name GameTitleIndex \
 --key-condition-expression "GameTitle = :v_game" \
 --expression-attribute-values '{":v_game":{"S":"Alien Adventure"} }'

Local secondary indexes

Some applications only need to query data using the base table's primary key. However, there
might be situations where an alternative sort key would be helpful. To give your application a
choice of sort keys, you can create one or more local secondary indexes on an Amazon DynamoDB
table and issue Query or Scan requests against these indexes.

Topics

• Scenario: Using a Local Secondary Index

• Attribute projections

• Creating a Local Secondary Index

• Reading data from a Local Secondary Index

• Item writes and Local Secondary Indexes

• Provisioned throughput considerations for Local Secondary Indexes

• Storage considerations for Local Secondary Indexes

Local secondary indexes API Version 2012-08-10 1004

Amazon DynamoDB Developer Guide

• Item collections in Local Secondary Indexes

• Working with Local Secondary Indexes: Java

• Working with Local Secondary Indexes: .NET

• Working with Local Secondary Indexes in DynamoDB Amazon CLI

Scenario: Using a Local Secondary Index

As an example, consider the Thread table. This table is useful for an application such as the
Amazon discussion forums. The following diagram shows how the items in the table would be
organized. (Not all of the attributes are shown.)

DynamoDB stores all of the items with the same partition key value continuously. In this example,
given a particular ForumName, a Query operation could immediately locate all of the threads for
that forum. Within a group of items with the same partition key value, the items are sorted by sort
key value. If the sort key (Subject) is also provided in the query, DynamoDB can narrow down the
results that are returned—for example, returning all of the threads in the "S3" forum that have a
Subject beginning with the letter "a".

Some requests might require more complex data access patterns. For example:

• Which forum threads get the most views and replies?

• Which thread in a particular forum has the largest number of messages?

• How many threads were posted in a particular forum within a particular time period?

Local secondary indexes API Version 2012-08-10 1005

https://forums.aws.csdn.net/

Amazon DynamoDB Developer Guide

To answer these questions, the Query action would not be sufficient. Instead, you would have to
Scan the entire table. For a table with millions of items, this would consume a large amount of
provisioned read throughput and take a long time to complete.

However, you can specify one or more local secondary indexes on non-key attributes, such as
Replies or LastPostDateTime.

A local secondary index maintains an alternate sort key for a given partition key value. A local
secondary index also contains a copy of some or all of the attributes from its base table. You
specify which attributes are projected into the local secondary index when you create the table.
The data in a local secondary index is organized by the same partition key as the base table, but
with a different sort key. This lets you access data items efficiently across this different dimension.
For greater query or scan flexibility, you can create up to five local secondary indexes per table.

Suppose that an application needs to find all of the threads that have been posted within the last
three months in a particular forum. Without a local secondary index, the application would have to
Scan the entire Thread table and discard any posts that were not within the specified time frame.
With a local secondary index, a Query operation could use LastPostDateTime as a sort key and
find the data quickly.

The following diagram shows a local secondary index named LastPostIndex. Note that the
partition key is the same as that of the Thread table, but the sort key is LastPostDateTime.

Local secondary indexes API Version 2012-08-10 1006

Amazon DynamoDB Developer Guide

Every local secondary index must meet the following conditions:

• The partition key is the same as that of its base table.

• The sort key consists of exactly one scalar attribute.

• The sort key of the base table is projected into the index, where it acts as a non-key attribute.

In this example, the partition key is ForumName and the sort key of the local secondary index
is LastPostDateTime. In addition, the sort key value from the base table (in this example,
Subject) is projected into the index, but it is not a part of the index key. If an application needs
a list that is based on ForumName and LastPostDateTime, it can issue a Query request against
LastPostIndex. The query results are sorted by LastPostDateTime, and can be returned in
ascending or descending order. The query can also apply key conditions, such as returning only
items that have a LastPostDateTime within a particular time span.

Every local secondary index automatically contains the partition and sort keys from its base table;
you can optionally project non-key attributes into the index. When you query the index, DynamoDB
can retrieve these projected attributes efficiently. When you query a local secondary index, the

Local secondary indexes API Version 2012-08-10 1007

Amazon DynamoDB Developer Guide

query can also retrieve attributes that are not projected into the index. DynamoDB automatically
fetches these attributes from the base table, but at a greater latency and with higher provisioned
throughput costs.

For any local secondary index, you can store up to 10 GB of data per distinct partition key value.
This figure includes all of the items in the base table, plus all of the items in the indexes, that
have the same partition key value. For more information, see Item collections in Local Secondary
Indexes.

Attribute projections

With LastPostIndex, an application could use ForumName and LastPostDateTime as query
criteria. However, to retrieve any additional attributes, DynamoDB must perform additional read
operations against the Thread table. These extra reads are known as fetches, and they can increase
the total amount of provisioned throughput required for a query.

Suppose that you wanted to populate a webpage with a list of all the threads in "S3" and the
number of replies for each thread, sorted by the last reply date/time beginning with the most
recent reply. To populate this list, you would need the following attributes:

• Subject

• Replies

• LastPostDateTime

The most efficient way to query this data and to avoid fetch operations would be to project the
Replies attribute from the table into the local secondary index, as shown in this diagram.

Local secondary indexes API Version 2012-08-10 1008

Amazon DynamoDB Developer Guide

A projection is the set of attributes that is copied from a table into a secondary index. The partition
key and sort key of the table are always projected into the index; you can project other attributes
to support your application's query requirements. When you query an index, Amazon DynamoDB
can access any attribute in the projection as if those attributes were in a table of their own.

When you create a secondary index, you need to specify the attributes that will be projected into
the index. DynamoDB provides three different options for this:

• KEYS_ONLY – Each item in the index consists only of the table partition key and sort key values,
plus the index key values. The KEYS_ONLY option results in the smallest possible secondary
index.

• INCLUDE – In addition to the attributes described in KEYS_ONLY, the secondary index will
include other non-key attributes that you specify.

• ALL – The secondary index includes all of the attributes from the source table. Because all of the
table data is duplicated in the index, an ALL projection results in the largest possible secondary
index.

Local secondary indexes API Version 2012-08-10 1009

Amazon DynamoDB Developer Guide

In the previous diagram, the non-key attribute Replies is projected into LastPostIndex. An
application can query LastPostIndex instead of the full Thread table to populate a webpage
with Subject, Replies, and LastPostDateTime. If any other non-key attributes are requested,
DynamoDB would need to fetch those attributes from the Thread table.

From an application's point of view, fetching additional attributes from the base table is automatic
and transparent, so there is no need to rewrite any application logic. However, such fetching can
greatly reduce the performance advantage of using a local secondary index.

When you choose the attributes to project into a local secondary index, you must consider the
tradeoff between provisioned throughput costs and storage costs:

• If you need to access just a few attributes with the lowest possible latency, consider projecting
only those attributes into a local secondary index. The smaller the index, the less that it costs
to store it, and the less your write costs are. If there are attributes that you occasionally need to
fetch, the cost for provisioned throughput may well outweigh the longer-term cost of storing
those attributes.

• If your application frequently accesses some non-key attributes, you should consider projecting
those attributes into a local secondary index. The additional storage costs for the local secondary
index offset the cost of performing frequent table scans.

• If you need to access most of the non-key attributes on a frequent basis, you can project these
attributes—or even the entire base table— into a local secondary index. This gives you maximum
flexibility and lowest provisioned throughput consumption, because no fetching would be
required. However, your storage cost would increase, or even double if you are projecting all
attributes.

• If your application needs to query a table infrequently, but must perform many writes or updates
against the data in the table, consider projecting KEYS_ONLY. The local secondary index would
be of minimal size, but would still be available when needed for query activity.

Creating a Local Secondary Index

To create one or more local secondary indexes on a table, use the LocalSecondaryIndexes
parameter of the CreateTable operation. Local secondary indexes on a table are created when
the table is created. When you delete a table, any local secondary indexes on that table are also
deleted.

Local secondary indexes API Version 2012-08-10 1010

Amazon DynamoDB Developer Guide

You must specify one non-key attribute to act as the sort key of the local secondary index. The
attribute that you choose must be a scalar String, Number, or Binary. Other scalar types,
document types, and set types are not allowed. For a complete list of data types, see Data types.

Important

For tables with local secondary indexes, there is a 10 GB size limit per partition key value.
A table with local secondary indexes can store any number of items, as long as the total
size for any one partition key value does not exceed 10 GB. For more information, see Item
collection size limit.

You can project attributes of any data type into a local secondary index. This includes scalars,
documents, and sets. For a complete list of data types, see Data types.

Reading data from a Local Secondary Index

You can retrieve items from a local secondary index using the Query and Scan operations. The
GetItem and BatchGetItem operations can't be used on a local secondary index.

Querying a Local Secondary Index

In a DynamoDB table, the combined partition key value and sort key value for each item must be
unique. However, in a local secondary index, the sort key value does not need to be unique for a
given partition key value. If there are multiple items in the local secondary index that have the
same sort key value, a Query operation returns all of the items that have the same partition key
value. In the response, the matching items are not returned in any particular order.

You can query a local secondary index using either eventually consistent or strongly consistent
reads. To specify which type of consistency you want, use the ConsistentRead parameter of
the Query operation. A strongly consistent read from a local secondary index always returns the
latest updated values. If the query needs to fetch additional attributes from the base table, those
attributes will be consistent with respect to the index.

Example

Consider the following data returned from a Query that requests data from the discussion threads
in a particular forum.

{
 "TableName": "Thread",

Local secondary indexes API Version 2012-08-10 1011

Amazon DynamoDB Developer Guide

 "IndexName": "LastPostIndex",
 "ConsistentRead": false,
 "ProjectionExpression": "Subject, LastPostDateTime, Replies, Tags",
 "KeyConditionExpression":
 "ForumName = :v_forum and LastPostDateTime between :v_start and :v_end",
 "ExpressionAttributeValues": {
 ":v_start": {"S": "2015-08-31T00:00:00.000Z"},
 ":v_end": {"S": "2015-11-31T00:00:00.000Z"},
 ":v_forum": {"S": "EC2"}
 }
}

In this query:

• DynamoDB accesses LastPostIndex, using the ForumName partition key to locate the index
items for "EC2". All of the index items with this key are stored adjacent to each other for rapid
retrieval.

• Within this forum, DynamoDB uses the index to look up the keys that match the specified
LastPostDateTime condition.

• Because the Replies attribute is projected into the index, DynamoDB can retrieve this attribute
without consuming any additional provisioned throughput.

• The Tags attribute is not projected into the index, so DynamoDB must access the Thread table
and fetch this attribute.

• The results are returned, sorted by LastPostDateTime. The index entries are sorted by
partition key value and then by sort key value, and Query returns them in the order they are
stored. (You can use the ScanIndexForward parameter to return the results in descending
order.)

Because the Tags attribute is not projected into the local secondary index, DynamoDB must
consume additional read capacity units to fetch this attribute from the base table. If you need to
run this query often, you should project Tags into LastPostIndex to avoid fetching from the
base table. However, if you needed to access Tags only occasionally, the additional storage cost for
projecting Tags into the index might not be worthwhile.

Scanning a Local Secondary Index

You can use Scan to retrieve all of the data from a local secondary index. You must provide
the base table name and the index name in the request. With a Scan, DynamoDB reads all of

Local secondary indexes API Version 2012-08-10 1012

Amazon DynamoDB Developer Guide

the data in the index and returns it to the application. You can also request that only some
of the data be returned, and that the remaining data should be discarded. To do this, use the
FilterExpression parameter of the Scan API. For more information, see Filter expressions for
scan.

Item writes and Local Secondary Indexes

DynamoDB automatically keeps all local secondary indexes synchronized with their respective base
tables. Applications never write directly to an index. However, it is important that you understand
the implications of how DynamoDB maintains these indexes.

When you create a local secondary index, you specify an attribute to serve as the sort key for
the index. You also specify a data type for that attribute. This means that whenever you write an
item to the base table, if the item defines an index key attribute, its type must match the index
key schema's data type. In the case of LastPostIndex, the LastPostDateTime sort key in
the index is defined as a String data type. If you try to add an item to the Thread table and
specify a different data type for LastPostDateTime (such as Number), DynamoDB returns a
ValidationException because of the data type mismatch.

There is no requirement for a one-to-one relationship between the items in a base table and the
items in a local secondary index. In fact, this behavior can be advantageous for many applications.

A table with many local secondary indexes incurs higher costs for write activity than tables
with fewer indexes. For more information, see Provisioned throughput considerations for Local
Secondary Indexes.

Important

For tables with local secondary indexes, there is a 10 GB size limit per partition key value.
A table with local secondary indexes can store any number of items, as long as the total
size for any one partition key value does not exceed 10 GB. For more information, see Item
collection size limit.

Provisioned throughput considerations for Local Secondary Indexes

When you create a table in DynamoDB, you provision read and write capacity units for the table's
expected workload. That workload includes read and write activity on the table's local secondary
indexes.

Local secondary indexes API Version 2012-08-10 1013

Amazon DynamoDB Developer Guide

To view the current rates for provisioned throughput capacity, see Amazon DynamoDB pricing.

Read capacity units

When you query a local secondary index, the number of read capacity units consumed depends on
how the data is accessed.

As with table queries, an index query can use either eventually consistent or strongly consistent
reads depending on the value of ConsistentRead. One strongly consistent read consumes one
read capacity unit; an eventually consistent read consumes only half of that. Thus, by choosing
eventually consistent reads, you can reduce your read capacity unit charges.

For index queries that request only index keys and projected attributes, DynamoDB calculates the
provisioned read activity in the same way as it does for queries against tables. The only difference
is that the calculation is based on the sizes of the index entries, rather than the size of the item
in the base table. The number of read capacity units is the sum of all projected attribute sizes
across all of the items returned; the result is then rounded up to the next 4 KB boundary. For
more information about how DynamoDB calculates provisioned throughput usage, see DynamoDB
provisioned capacity mode.

For index queries that read attributes that are not projected into the local secondary index,
DynamoDB needs to fetch those attributes from the base table, in addition to reading the
projected attributes from the index. These fetches occur when you include any non-projected
attributes in the Select or ProjectionExpression parameters of the Query operation.
Fetching causes additional latency in query responses, and it also incurs a higher provisioned
throughput cost: In addition to the reads from the local secondary index described previously, you
are charged for read capacity units for every base table item fetched. This charge is for reading
each entire item from the table, not just the requested attributes.

The maximum size of the results returned by a Query operation is 1 MB. This includes the sizes
of all the attribute names and values across all of the items returned. However, if a Query against
a local secondary index causes DynamoDB to fetch item attributes from the base table, the
maximum size of the data in the results might be lower. In this case, the result size is the sum of:

• The size of the matching items in the index, rounded up to the next 4 KB.

• The size of each matching item in the base table, with each item individually rounded up to the
next 4 KB.

Using this formula, the maximum size of the results returned by a Query operation is still 1 MB.

Local secondary indexes API Version 2012-08-10 1014

http://www.amazonaws.cn/dynamodb/pricing

Amazon DynamoDB Developer Guide

For example, consider a table where the size of each item is 300 bytes. There is a local secondary
index on that table, but only 200 bytes of each item is projected into the index. Now suppose
that you Query this index, that the query requires table fetches for each item, and that the query
returns 4 items. DynamoDB sums up the following:

• The size of the matching items in the index: 200 bytes × 4 items = 800 bytes; this is then
rounded up to 4 KB.

• The size of each matching item in the base table: (300 bytes, rounded up to 4 KB) × 4 items = 16
KB.

The total size of the data in the result is therefore 20 KB.

Write capacity units

When an item in a table is added, updated, or deleted, updating the local secondary indexes
consumes provisioned write capacity units for the table. The total provisioned throughput cost for
a write is the sum of write capacity units consumed by writing to the table and those consumed by
updating the local secondary indexes.

The cost of writing an item to a local secondary index depends on several factors:

• If you write a new item to the table that defines an indexed attribute, or you update an existing
item to define a previously undefined indexed attribute, one write operation is required to put
the item into the index.

• If an update to the table changes the value of an indexed key attribute (from A to B), two writes
are required: one to delete the previous item from the index and another write to put the new
item into the index.

• If an item was present in the index, but a write to the table caused the indexed attribute to be
deleted, one write is required to delete the old item projection from the index.

• If an item is not present in the index before or after the item is updated, there is no additional
write cost for the index.

All of these factors assume that the size of each item in the index is less than or equal to the 1 KB
item size for calculating write capacity units. Larger index entries require additional write capacity
units. You can minimize your write costs by considering which attributes your queries need to
return and projecting only those attributes into the index.

Local secondary indexes API Version 2012-08-10 1015

Amazon DynamoDB Developer Guide

Storage considerations for Local Secondary Indexes

When an application writes an item to a table, DynamoDB automatically copies the correct subset
of attributes to any local secondary indexes in which those attributes should appear. Your Amazon
account is charged for storage of the item in the base table and also for storage of attributes in any
local secondary indexes on that table.

The amount of space used by an index item is the sum of the following:

• The size in bytes of the base table primary key (partition key and sort key)

• The size in bytes of the index key attribute

• The size in bytes of the projected attributes (if any)

• 100 bytes of overhead per index item

To estimate the storage requirements for a local secondary index, you can estimate the average
size of an item in the index and then multiply by the number of items in the index.

If a table contains an item where a particular attribute is not defined, but that attribute is defined
as an index sort key, then DynamoDB does not write any data for that item to the index.

Item collections in Local Secondary Indexes

Note

This section pertains only to tables that have local secondary indexes.

In DynamoDB, an item collection is any group of items that have the same partition key value in
a table and all of its local secondary indexes. In the examples used throughout this section, the
partition key for the Thread table is ForumName, and the partition key for LastPostIndex is also
ForumName. All the table and index items with the same ForumName are part of the same item
collection. For example, in the Thread table and the LastPostIndex local secondary index, there
is an item collection for forum EC2 and a different item collection for forum RDS.

The following diagram shows the item collection for forum S3.

Local secondary indexes API Version 2012-08-10 1016

Amazon DynamoDB Developer Guide

Local secondary indexes API Version 2012-08-10 1017

Amazon DynamoDB Developer Guide

In this diagram, the item collection consists of all the items in Thread and LastPostIndex where
the ForumName partition key value is "S3". If there were other local secondary indexes on the table,
any items in those indexes with ForumName equal to "S3" would also be part of the item collection.

You can use any of the following operations in DynamoDB to return information about item
collections:

• BatchWriteItem

• DeleteItem

• PutItem

• UpdateItem

• TransactWriteItems

Each of these operations supports the ReturnItemCollectionMetrics parameter. When you
set this parameter to SIZE, you can view information about the size of each item collection in the
index.

Example

The following is an example from the output of an UpdateItem operation on the Thread
table, with ReturnItemCollectionMetrics set to SIZE. The item that was updated had a
ForumName value of "EC2", so the output includes information about that item collection.

{
 ItemCollectionMetrics: {
 ItemCollectionKey: {
 ForumName: "EC2"
 },
 SizeEstimateRangeGB: [0.0, 1.0]
 }
}

The SizeEstimateRangeGB object shows that the size of this item collection is between 0 and
1 GB. DynamoDB periodically updates this size estimate, so the numbers might be different next
time the item is modified.

Local secondary indexes API Version 2012-08-10 1018

Amazon DynamoDB Developer Guide

Item collection size limit

The maximum size of any item collection for a table which has one or more local secondary indexes
is 10 GB. This does not apply to item collections in tables without local secondary indexes, and also
does not apply to item collections in global secondary indexes. Only tables that have one or more
local secondary indexes are affected.

If an item collection exceeds the 10 GB limit, DynamoDB returns an
ItemCollectionSizeLimitExceededException, and you won't be able to add more items
to the item collection or increase the sizes of items that are in the item collection. (Read and write
operations that shrink the size of the item collection are still allowed.) You can still add items to
other item collections.

To reduce the size of an item collection, you can do one of the following:

• Delete any unnecessary items with the partition key value in question. When you delete these
items from the base table, DynamoDB also removes any index entries that have the same
partition key value.

• Update the items by removing attributes or by reducing the size of the attributes. If these
attributes are projected into any local secondary indexes, DynamoDB also reduces the size of the
corresponding index entries.

• Create a new table with the same partition key and sort key, and then move items from the
old table to the new table. This might be a good approach if a table has historical data that is
infrequently accessed. You might also consider archiving this historical data to Amazon Simple
Storage Service (Amazon S3).

When the total size of the item collection drops below 10 GB, you can once again add items with
the same partition key value.

We recommend as a best practice that you instrument your application to monitor the sizes of
your item collections. One way to do so is to set the ReturnItemCollectionMetrics parameter
to SIZE whenever you use BatchWriteItem, DeleteItem, PutItem, or UpdateItem. Your
application should examine the ReturnItemCollectionMetrics object in the output and log
an error message whenever an item collection exceeds a user-defined limit (8 GB, for example).
Setting a limit that is less than 10 GB would provide an early warning system so you know that an
item collection is approaching the limit in time to do something about it.

Local secondary indexes API Version 2012-08-10 1019

Amazon DynamoDB Developer Guide

Item collections and partitions

In a table with one or more local secondary indexes, each item collection is stored in one partition.
The total size of such an item collection is limited to the capability of that partition: 10 GB. For an
application where the data model includes item collections which are unbounded in size, or where
you might reasonably expect some item collections to grow beyond 10 GB in the future, you should
consider using a global secondary index instead.

You should design your applications so that table data is evenly distributed across distinct partition
key values. For tables with local secondary indexes, your applications should not create "hot spots"
of read and write activity within a single item collection on a single partition.

Working with Local Secondary Indexes: Java

You can use the Amazon SDK for Java Document API to create an Amazon DynamoDB table with
one or more local secondary indexes, describe the indexes on the table, and perform queries using
the indexes.

The following are the common steps for table operations using the Amazon SDK for Java
Document API.

1. Create an instance of the DynamoDB class.

2. Provide the required and optional parameters for the operation by creating the corresponding
request objects.

3. Call the appropriate method provided by the client that you created in the preceding step.

Topics

• Create a table with a Local Secondary Index

• Describe a table with a Local Secondary Index

• Query a Local Secondary Index

• Example: Local Secondary Indexes using the Java document API

Create a table with a Local Secondary Index

Local secondary indexes must be created at the same time you create a table. To do this, use
the createTable method and provide your specifications for one or more local secondary

Local secondary indexes API Version 2012-08-10 1020

Amazon DynamoDB Developer Guide

indexes. The following Java code example creates a table to hold information about songs in a
music collection. The partition key is Artist and the sort key is SongTitle. A secondary index,
AlbumTitleIndex, facilitates queries by album title.

The following are the steps to create a table with a local secondary index, using the DynamoDB
document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For
the local secondary index, you must provide the index name, the name and data type for the
index sort key, the key schema for the index, and the attribute projection.

3. Call the createTable method by providing the request object as a parameter.

The following Java code example demonstrates the preceding steps. The code creates a table
(Music) with a secondary index on the AlbumTitle attribute. The table partition key and sort key,
plus the index sort key, are the only attributes projected into the index.

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

String tableName = "Music";

CreateTableRequest createTableRequest = new
 CreateTableRequest().withTableName(tableName);

//ProvisionedThroughput
createTableRequest.setProvisionedThroughput(new
 ProvisionedThroughput().withReadCapacityUnits((long)5).withWriteCapacityUnits((long)5));

//AttributeDefinitions
ArrayList<AttributeDefinition> attributeDefinitions= new
 ArrayList<AttributeDefinition>();
attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("Artist").withAttributeType("S"));
attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("SongTitle").withAttributeType("S"));
attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("AlbumTitle").withAttributeType("S"));

Local secondary indexes API Version 2012-08-10 1021

Amazon DynamoDB Developer Guide

createTableRequest.setAttributeDefinitions(attributeDefinitions);

//KeySchema
ArrayList<KeySchemaElement> tableKeySchema = new ArrayList<KeySchemaElement>();
tableKeySchema.add(new
 KeySchemaElement().withAttributeName("Artist").withKeyType(KeyType.HASH)); //
Partition key
tableKeySchema.add(new
 KeySchemaElement().withAttributeName("SongTitle").withKeyType(KeyType.RANGE)); //Sort
 key

createTableRequest.setKeySchema(tableKeySchema);

ArrayList<KeySchemaElement> indexKeySchema = new ArrayList<KeySchemaElement>();
indexKeySchema.add(new
 KeySchemaElement().withAttributeName("Artist").withKeyType(KeyType.HASH)); //
Partition key
indexKeySchema.add(new
 KeySchemaElement().withAttributeName("AlbumTitle").withKeyType(KeyType.RANGE)); //
Sort key

Projection projection = new Projection().withProjectionType(ProjectionType.INCLUDE);
ArrayList<String> nonKeyAttributes = new ArrayList<String>();
nonKeyAttributes.add("Genre");
nonKeyAttributes.add("Year");
projection.setNonKeyAttributes(nonKeyAttributes);

LocalSecondaryIndex localSecondaryIndex = new LocalSecondaryIndex()

 .withIndexName("AlbumTitleIndex").withKeySchema(indexKeySchema).withProjection(projection);

ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new
 ArrayList<LocalSecondaryIndex>();
localSecondaryIndexes.add(localSecondaryIndex);
createTableRequest.setLocalSecondaryIndexes(localSecondaryIndexes);

Table table = dynamoDB.createTable(createTableRequest);
System.out.println(table.getDescription());

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table.

Local secondary indexes API Version 2012-08-10 1022

Amazon DynamoDB Developer Guide

Describe a table with a Local Secondary Index

To get information about local secondary indexes on a table, use the describeTable method. For
each index, you can access its name, key schema, and projected attributes.

The following are the steps to access local secondary index information of a table using the
Amazon SDK for Java Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class. You must provide the table name.

3. Call the describeTable method on the Table object.

The following Java code example demonstrates the preceding steps.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

String tableName = "Music";

Table table = dynamoDB.getTable(tableName);

TableDescription tableDescription = table.describe();

List<LocalSecondaryIndexDescription> localSecondaryIndexes
 = tableDescription.getLocalSecondaryIndexes();

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.

Iterator<LocalSecondaryIndexDescription> lsiIter = localSecondaryIndexes.iterator();
while (lsiIter.hasNext()) {

 LocalSecondaryIndexDescription lsiDescription = lsiIter.next();
 System.out.println("Info for index " + lsiDescription.getIndexName() + ":");
 Iterator<KeySchemaElement> kseIter = lsiDescription.getKeySchema().iterator();
 while (kseIter.hasNext()) {
 KeySchemaElement kse = kseIter.next();
 System.out.printf("\t%s: %s\n", kse.getAttributeName(), kse.getKeyType());
 }
 Projection projection = lsiDescription.getProjection();

Local secondary indexes API Version 2012-08-10 1023

Amazon DynamoDB Developer Guide

 System.out.println("\tThe projection type is: " + projection.getProjectionType());
 if (projection.getProjectionType().toString().equals("INCLUDE")) {
 System.out.println("\t\tThe non-key projected attributes are: " +
 projection.getNonKeyAttributes());
 }
}

Query a Local Secondary Index

You can use the Query operation on a local secondary index in much the same way that you
Query a table. You must specify the index name, the query criteria for the index sort key, and the
attributes that you want to return. In this example, the index is AlbumTitleIndex and the index
sort key is AlbumTitle.

The only attributes returned are those that have been projected into the index. You could modify
this query to select non-key attributes too, but this would require table fetch activity that is
relatively expensive. For more information about table fetches, see Attribute projections.

The following are the steps to query a local secondary index using the Amazon SDK for Java
Document API.

1. Create an instance of the DynamoDB class.

2. Create an instance of the Table class. You must provide the table name.

3. Create an instance of the Index class. You must provide the index name.

4. Call the query method of the Index class.

The following Java code example demonstrates the preceding steps.

Example

AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
DynamoDB dynamoDB = new DynamoDB(client);

String tableName = "Music";

Table table = dynamoDB.getTable(tableName);
Index index = table.getIndex("AlbumTitleIndex");

QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("Artist = :v_artist and AlbumTitle = :v_title")
 .withValueMap(new ValueMap()

Local secondary indexes API Version 2012-08-10 1024

Amazon DynamoDB Developer Guide

 .withString(":v_artist", "Acme Band")
 .withString(":v_title", "Songs About Life"));

ItemCollection<QueryOutcome> items = index.query(spec);

Iterator<Item> itemsIter = items.iterator();

while (itemsIter.hasNext()) {
 Item item = itemsIter.next();
 System.out.println(item.toJSONPretty());
}

Example: Local Secondary Indexes using the Java document API

The following Java code example shows how to work with local secondary indexes in Amazon
DynamoDB. The example creates a table named CustomerOrders with a partition key of
CustomerId and a sort key of OrderId. There are two local secondary indexes on this table:

• OrderCreationDateIndex — The sort key is OrderCreationDate, and the following
attributes are projected into the index:

• ProductCategory

• ProductName

• OrderStatus

• ShipmentTrackingId

• IsOpenIndex — The sort key is IsOpen, and all of the table attributes are projected into the
index.

After the CustomerOrders table is created, the program loads the table with data representing
customer orders. It then queries the data using the local secondary indexes. Finally, the program
deletes the CustomerOrders table.

For step-by-step instructions for testing the following sample, see Java code examples.

Example

package com.example.dynamodb;

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

Local secondary indexes API Version 2012-08-10 1025

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.*;
import software.amazon.awssdk.services.dynamodb.waiters.DynamoDbWaiter;

import java.util.HashMap;
import java.util.Map;

public class DocumentAPILocalSecondaryIndexExample {

 static DynamoDbClient client = DynamoDbClient.create();
 public static String tableName = "CustomerOrders";

 public static void main(String[] args) {
 createTable();
 loadData();
 query(null);
 query("IsOpenIndex");
 query("OrderCreationDateIndex");
 deleteTable(tableName);
 }

 public static void createTable() {
 CreateTableRequest request = CreateTableRequest.builder()
 .tableName(tableName)
 .provisionedThroughput(ProvisionedThroughput.builder()
 .readCapacityUnits(1L)
 .writeCapacityUnits(1L)
 .build())
 .attributeDefinitions(

 AttributeDefinition.builder().attributeName("CustomerId").attributeType(ScalarAttributeType.S).build(),

 AttributeDefinition.builder().attributeName("OrderId").attributeType(ScalarAttributeType.N).build(),

 AttributeDefinition.builder().attributeName("OrderCreationDate").attributeType(ScalarAttributeType.N).build(),

 AttributeDefinition.builder().attributeName("IsOpen").attributeType(ScalarAttributeType.N).build())
 .keySchema(

 KeySchemaElement.builder().attributeName("CustomerId").keyType(KeyType.HASH).build(),

 KeySchemaElement.builder().attributeName("OrderId").keyType(KeyType.RANGE).build())
 .localSecondaryIndexes(
 LocalSecondaryIndex.builder()
 .indexName("OrderCreationDateIndex")

Local secondary indexes API Version 2012-08-10 1026

Amazon DynamoDB Developer Guide

 .keySchema(

 KeySchemaElement.builder().attributeName("CustomerId").keyType(KeyType.HASH).build(),

 KeySchemaElement.builder().attributeName("OrderCreationDate").keyType(KeyType.RANGE).build())
 .projection(Projection.builder()
 .projectionType(ProjectionType.INCLUDE)
 .nonKeyAttributes("ProductCategory", "ProductName")
 .build())
 .build(),
 LocalSecondaryIndex.builder()
 .indexName("IsOpenIndex")
 .keySchema(

 KeySchemaElement.builder().attributeName("CustomerId").keyType(KeyType.HASH).build(),

 KeySchemaElement.builder().attributeName("IsOpen").keyType(KeyType.RANGE).build())
 .projection(Projection.builder()
 .projectionType(ProjectionType.ALL)
 .build())
 .build())
 .build();

 System.out.println("Creating table " + tableName + "...");
 client.createTable(request);

 try (DynamoDbWaiter waiter = client.waiter()) {
 WaiterResponse<DescribeTableResponse> response =
 waiter.waitUntilTableExists(r -> r.tableName(tableName));
 response.matched().response().ifPresent(System.out::println);
 }
 }

 public static void query(String indexName) {

 System.out.println("\n***\n");
 System.out.println("Querying table " + tableName + "...");

 if ("IsOpenIndex".equals(indexName)) {
 System.out.println("\nUsing index: '" + indexName + "': Bob's orders that
 are open.");
 System.out.println("Only a user-specified list of attributes are returned
\n");

Local secondary indexes API Version 2012-08-10 1027

Amazon DynamoDB Developer Guide

 Map<String, AttributeValue> values = new HashMap<>();
 values.put(":v_custid",
 AttributeValue.builder().s("bob@example.com").build());
 values.put(":v_isopen", AttributeValue.builder().n("1").build());

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .indexName(indexName)
 .keyConditionExpression("CustomerId = :v_custid and IsOpen
 = :v_isopen")
 .expressionAttributeValues(values)
 .projectionExpression("OrderCreationDate, ProductCategory, ProductName,
 OrderStatus")
 .build();

 System.out.println("Query: printing results...");
 client.query(request).items().forEach(System.out::println);

 } else if ("OrderCreationDateIndex".equals(indexName)) {
 System.out.println("\nUsing index: '" + indexName + "': Bob's orders that
 were placed after 01/31/2015.");
 System.out.println("Only the projected attributes are returned\n");

 Map<String, AttributeValue> values = new HashMap<>();
 values.put(":v_custid",
 AttributeValue.builder().s("bob@example.com").build());
 values.put(":v_orddate", AttributeValue.builder().n("20150131").build());

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .indexName(indexName)
 .keyConditionExpression("CustomerId = :v_custid and OrderCreationDate
 >= :v_orddate")
 .expressionAttributeValues(values)
 .select(Select.ALL_PROJECTED_ATTRIBUTES)
 .build();

 System.out.println("Query: printing results...");
 client.query(request).items().forEach(System.out::println);

 } else {
 System.out.println("\nNo index: All of Bob's orders, by OrderId:\n");

 Map<String, AttributeValue> values = new HashMap<>();

Local secondary indexes API Version 2012-08-10 1028

Amazon DynamoDB Developer Guide

 values.put(":v_custid",
 AttributeValue.builder().s("bob@example.com").build());

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression("CustomerId = :v_custid")
 .expressionAttributeValues(values)
 .build();

 System.out.println("Query: printing results...");
 client.query(request).items().forEach(System.out::println);
 }
 }

 public static void deleteTable(String tableName) {
 System.out.println("Deleting table " + tableName + "...");
 client.deleteTable(DeleteTableRequest.builder().tableName(tableName).build());

 try (DynamoDbWaiter waiter = client.waiter()) {
 waiter.waitUntilTableNotExists(r -> r.tableName(tableName));
 }
 }

 public static void loadData() {
 System.out.println("Loading data into table " + tableName + "...");

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("alice@example.com").build(),
 "OrderId", AttributeValue.builder().n("1").build(),
 "IsOpen", AttributeValue.builder().n("1").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150101").build(),
 "ProductCategory", AttributeValue.builder().s("Book").build(),
 "ProductName", AttributeValue.builder().s("The Great Outdoors").build(),
 "OrderStatus", AttributeValue.builder().s("PACKING ITEMS").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("alice@example.com").build(),
 "OrderId", AttributeValue.builder().n("2").build(),
 "IsOpen", AttributeValue.builder().n("1").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150221").build(),
 "ProductCategory", AttributeValue.builder().s("Bike").build(),
 "ProductName", AttributeValue.builder().s("Super Mountain").build(),
 "OrderStatus", AttributeValue.builder().s("ORDER RECEIVED").build()));

Local secondary indexes API Version 2012-08-10 1029

Amazon DynamoDB Developer Guide

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("alice@example.com").build(),
 "OrderId", AttributeValue.builder().n("3").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150304").build(),
 "ProductCategory", AttributeValue.builder().s("Music").build(),
 "ProductName", AttributeValue.builder().s("A Quiet Interlude").build(),
 "OrderStatus", AttributeValue.builder().s("IN TRANSIT").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("176493").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("1").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150111").build(),
 "ProductCategory", AttributeValue.builder().s("Movie").build(),
 "ProductName", AttributeValue.builder().s("Calm Before The Storm").build(),
 "OrderStatus", AttributeValue.builder().s("SHIPPING DELAY").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("859323").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("2").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150124").build(),
 "ProductCategory", AttributeValue.builder().s("Music").build(),
 "ProductName", AttributeValue.builder().s("E-Z Listening").build(),
 "OrderStatus", AttributeValue.builder().s("DELIVERED").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("756943").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("3").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150221").build(),
 "ProductCategory", AttributeValue.builder().s("Music").build(),
 "ProductName", AttributeValue.builder().s("Symphony 9").build(),
 "OrderStatus", AttributeValue.builder().s("DELIVERED").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("645193").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("4").build(),
 "IsOpen", AttributeValue.builder().n("1").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150222").build(),
 "ProductCategory", AttributeValue.builder().s("Hardware").build(),
 "ProductName", AttributeValue.builder().s("Extra Heavy Hammer").build(),
 "OrderStatus", AttributeValue.builder().s("PACKING ITEMS").build()));

Local secondary indexes API Version 2012-08-10 1030

Amazon DynamoDB Developer Guide

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("5").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150309").build(),
 "ProductCategory", AttributeValue.builder().s("Book").build(),
 "ProductName", AttributeValue.builder().s("How To Cook").build(),
 "OrderStatus", AttributeValue.builder().s("IN TRANSIT").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("440185").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("6").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150318").build(),
 "ProductCategory", AttributeValue.builder().s("Luggage").build(),
 "ProductName", AttributeValue.builder().s("Really Big Suitcase").build(),
 "OrderStatus", AttributeValue.builder().s("DELIVERED").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("893927").build()));

 putItem(Map.of(
 "CustomerId", AttributeValue.builder().s("bob@example.com").build(),
 "OrderId", AttributeValue.builder().n("7").build(),
 "OrderCreationDate", AttributeValue.builder().n("20150324").build(),
 "ProductCategory", AttributeValue.builder().s("Golf").build(),
 "ProductName", AttributeValue.builder().s("PGA Pro II").build(),
 "OrderStatus", AttributeValue.builder().s("OUT FOR DELIVERY").build(),
 "ShipmentTrackingId", AttributeValue.builder().s("383283").build()));
 }

 private static void putItem(Map<String, AttributeValue> item) {

 client.putItem(PutItemRequest.builder().tableName(tableName).item(item).build());
 }
}

Working with Local Secondary Indexes: .NET

Topics

• Create a table with a Local Secondary Index

• Describe a table with a Local Secondary Index

• Query a Local Secondary Index

Local secondary indexes API Version 2012-08-10 1031

Amazon DynamoDB Developer Guide

• Example: Local Secondary Indexes using the Amazon SDK for .NET low-level API

You can use the Amazon SDK for .NET low-level API to create an Amazon DynamoDB table with
one or more local secondary indexes, describe the indexes on the table, and perform queries using
the indexes. These operations map to the corresponding low-level DynamoDB API actions. For
more information, see .NET code examples.

The following are the common steps for table operations using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Provide the required and optional parameters for the operation by creating the corresponding
request objects.

For example, create a CreateTableRequest object to create a table and an QueryRequest
object to query a table or an index.

3. Run the appropriate method provided by the client that you created in the preceding step.

Create a table with a Local Secondary Index

Local secondary indexes must be created at the same time that you create a table. To do this,
use CreateTable and provide your specifications for one or more local secondary indexes.
The following C# code example creates a table to hold information about songs in a music
collection. The partition key is Artist and the sort key is SongTitle. A secondary index,
AlbumTitleIndex, facilitates queries by album title.

The following are the steps to create a table with a local secondary index, using the .NET low-level
API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the CreateTableRequest class to provide the request information.

You must provide the table name, its primary key, and the provisioned throughput values. For
the local secondary index, you must provide the index name, the name and data type of the
index sort key, the key schema for the index, and the attribute projection.

3. Run the CreateTable method by providing the request object as a parameter.

Local secondary indexes API Version 2012-08-10 1032

Amazon DynamoDB Developer Guide

The following C# code example demonstrates the preceding steps. The code creates a table
(Music) with a secondary index on the AlbumTitle attribute. The table partition key and sort key,
plus the index sort key, are the only attributes projected into the index.

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "Music";

CreateTableRequest createTableRequest = new CreateTableRequest()
{
 TableName = tableName
};

//ProvisionedThroughput
createTableRequest.ProvisionedThroughput = new ProvisionedThroughput()
{
 ReadCapacityUnits = (long)5,
 WriteCapacityUnits = (long)5
};

//AttributeDefinitions
List<AttributeDefinition> attributeDefinitions = new List<AttributeDefinition>();

attributeDefinitions.Add(new AttributeDefinition()
{
 AttributeName = "Artist",
 AttributeType = "S"
});

attributeDefinitions.Add(new AttributeDefinition()
 {
 AttributeName = "SongTitle",
 AttributeType = "S"
 });

attributeDefinitions.Add(new AttributeDefinition()
 {
 AttributeName = "AlbumTitle",
 AttributeType = "S"
 });

createTableRequest.AttributeDefinitions = attributeDefinitions;

//KeySchema

Local secondary indexes API Version 2012-08-10 1033

Amazon DynamoDB Developer Guide

List<KeySchemaElement> tableKeySchema = new List<KeySchemaElement>();

tableKeySchema.Add(new KeySchemaElement() { AttributeName = "Artist", KeyType =
 "HASH" }); //Partition key
tableKeySchema.Add(new KeySchemaElement() { AttributeName = "SongTitle", KeyType =
 "RANGE" }); //Sort key

createTableRequest.KeySchema = tableKeySchema;

List<KeySchemaElement> indexKeySchema = new List<KeySchemaElement>();
indexKeySchema.Add(new KeySchemaElement() { AttributeName = "Artist", KeyType =
 "HASH" }); //Partition key
indexKeySchema.Add(new KeySchemaElement() { AttributeName = "AlbumTitle", KeyType =
 "RANGE" }); //Sort key

Projection projection = new Projection() { ProjectionType = "INCLUDE" };

List<string> nonKeyAttributes = new List<string>();
nonKeyAttributes.Add("Genre");
nonKeyAttributes.Add("Year");
projection.NonKeyAttributes = nonKeyAttributes;

LocalSecondaryIndex localSecondaryIndex = new LocalSecondaryIndex()
{
 IndexName = "AlbumTitleIndex",
 KeySchema = indexKeySchema,
 Projection = projection
};

List<LocalSecondaryIndex> localSecondaryIndexes = new List<LocalSecondaryIndex>();
localSecondaryIndexes.Add(localSecondaryIndex);
createTableRequest.LocalSecondaryIndexes = localSecondaryIndexes;

CreateTableResponse result = client.CreateTable(createTableRequest);
Console.WriteLine(result.CreateTableResult.TableDescription.TableName);
Console.WriteLine(result.CreateTableResult.TableDescription.TableStatus);

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table.

Local secondary indexes API Version 2012-08-10 1034

Amazon DynamoDB Developer Guide

Describe a table with a Local Secondary Index

To get information about local secondary indexes on a table, use the DescribeTable API. For
each index, you can access its name, key schema, and projected attributes.

The following are the steps to access local secondary index information a table using the .NET low-
level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the DescribeTableRequest class to provide the request information.
You must provide the table name.

3. Run the describeTable method by providing the request object as a parameter.

4.

The following C# code example demonstrates the preceding steps.

Example

AmazonDynamoDBClient client = new AmazonDynamoDBClient();
string tableName = "Music";

DescribeTableResponse response = client.DescribeTable(new DescribeTableRequest()
 { TableName = tableName });
List<LocalSecondaryIndexDescription> localSecondaryIndexes =
 response.DescribeTableResult.Table.LocalSecondaryIndexes;

// This code snippet will work for multiple indexes, even though
// there is only one index in this example.
foreach (LocalSecondaryIndexDescription lsiDescription in localSecondaryIndexes)
{
 Console.WriteLine("Info for index " + lsiDescription.IndexName + ":");

 foreach (KeySchemaElement kse in lsiDescription.KeySchema)
 {
 Console.WriteLine("\t" + kse.AttributeName + ": key type is " + kse.KeyType);
 }

 Projection projection = lsiDescription.Projection;

 Console.WriteLine("\tThe projection type is: " + projection.ProjectionType);

Local secondary indexes API Version 2012-08-10 1035

Amazon DynamoDB Developer Guide

 if (projection.ProjectionType.ToString().Equals("INCLUDE"))
 {
 Console.WriteLine("\t\tThe non-key projected attributes are:");

 foreach (String s in projection.NonKeyAttributes)
 {
 Console.WriteLine("\t\t" + s);
 }

 }
}

Query a Local Secondary Index

You can use Query on a local secondary index in much the same way you Query a table. You must
specify the index name, the query criteria for the index sort key, and the attributes that you want
to return. In this example, the index is AlbumTitleIndex, and the index sort key is AlbumTitle.

The only attributes returned are those that have been projected into the index. You could modify
this query to select non-key attributes too, but this would require table fetch activity that is
relatively expensive. For more information about table fetches, see Attribute projections

The following are the steps to query a local secondary index using the .NET low-level API.

1. Create an instance of the AmazonDynamoDBClient class.

2. Create an instance of the QueryRequest class to provide the request information.

3. Run the query method by providing the request object as a parameter.

The following C# code example demonstrates the preceding steps.

Example

QueryRequest queryRequest = new QueryRequest
{
 TableName = "Music",
 IndexName = "AlbumTitleIndex",
 Select = "ALL_ATTRIBUTES",
 ScanIndexForward = true,
 KeyConditionExpression = "Artist = :v_artist and AlbumTitle = :v_title",
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>()

Local secondary indexes API Version 2012-08-10 1036

Amazon DynamoDB Developer Guide

 {
 {":v_artist",new AttributeValue {S = "Acme Band"}},
 {":v_title",new AttributeValue {S = "Songs About Life"}}
 },
};

QueryResponse response = client.Query(queryRequest);

foreach (var attribs in response.Items)
{
 foreach (var attrib in attribs)
 {
 Console.WriteLine(attrib.Key + " ---> " + attrib.Value.S);
 }
 Console.WriteLine();
}

Example: Local Secondary Indexes using the Amazon SDK for .NET low-level API

The following C# code example shows how to work with local secondary indexes in Amazon
DynamoDB. The example creates a table named CustomerOrders with a partition key of
CustomerId and a sort key of OrderId. There are two local secondary indexes on this table:

• OrderCreationDateIndex — The sort key is OrderCreationDate, and the following
attributes are projected into the index:

• ProductCategory

• ProductName

• OrderStatus

• ShipmentTrackingId

• IsOpenIndex — The sort key is IsOpen, and all of the table attributes are projected into the
index.

After the CustomerOrders table is created, the program loads the table with data representing
customer orders. It then queries the data using the local secondary indexes. Finally, the program
deletes the CustomerOrders table.

For step-by-step instructions for testing the following example, see .NET code examples.

Local secondary indexes API Version 2012-08-10 1037

Amazon DynamoDB Developer Guide

Example

using System;
using System.Collections.Generic;
using System.Linq;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
{
 class LowLevelLocalSecondaryIndexExample
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();
 private static string tableName = "CustomerOrders";

 static void Main(string[] args)
 {
 try
 {
 CreateTable();
 LoadData();

 Query(null);
 Query("IsOpenIndex");
 Query("OrderCreationDateIndex");

 DeleteTable(tableName);

 Console.WriteLine("To continue, press Enter");
 Console.ReadLine();
 }
 catch (AmazonDynamoDBException e) { Console.WriteLine(e.Message); }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }
 }

 private static void CreateTable()
 {
 var createTableRequest =
 new CreateTableRequest()

Local secondary indexes API Version 2012-08-10 1038

Amazon DynamoDB Developer Guide

 {
 TableName = tableName,
 ProvisionedThroughput =
 new ProvisionedThroughput()
 {
 ReadCapacityUnits = (long)1,
 WriteCapacityUnits = (long)1
 }
 };

 var attributeDefinitions = new List<AttributeDefinition>()
 {
 // Attribute definitions for table primary key
 { new AttributeDefinition() {
 AttributeName = "CustomerId", AttributeType = "S"
 } },
 { new AttributeDefinition() {
 AttributeName = "OrderId", AttributeType = "N"
 } },
 // Attribute definitions for index primary key
 { new AttributeDefinition() {
 AttributeName = "OrderCreationDate", AttributeType = "N"
 } },
 { new AttributeDefinition() {
 AttributeName = "IsOpen", AttributeType = "N"
 }}
 };

 createTableRequest.AttributeDefinitions = attributeDefinitions;

 // Key schema for table
 var tableKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {
 AttributeName = "CustomerId", KeyType = "HASH"
 } }, //Partition key
 { new KeySchemaElement() {
 AttributeName = "OrderId", KeyType = "RANGE"
 } } //Sort key
 };

 createTableRequest.KeySchema = tableKeySchema;

 var localSecondaryIndexes = new List<LocalSecondaryIndex>();

Local secondary indexes API Version 2012-08-10 1039

Amazon DynamoDB Developer Guide

 // OrderCreationDateIndex
 LocalSecondaryIndex orderCreationDateIndex = new LocalSecondaryIndex()
 {
 IndexName = "OrderCreationDateIndex"
 };

 // Key schema for OrderCreationDateIndex
 var indexKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {
 AttributeName = "CustomerId", KeyType = "HASH"
 } }, //Partition key
 { new KeySchemaElement() {
 AttributeName = "OrderCreationDate", KeyType = "RANGE"
 } } //Sort key
 };

 orderCreationDateIndex.KeySchema = indexKeySchema;

 // Projection (with list of projected attributes) for
 // OrderCreationDateIndex
 var projection = new Projection()
 {
 ProjectionType = "INCLUDE"
 };

 var nonKeyAttributes = new List<string>()
 {
 "ProductCategory",
 "ProductName"
 };
 projection.NonKeyAttributes = nonKeyAttributes;

 orderCreationDateIndex.Projection = projection;

 localSecondaryIndexes.Add(orderCreationDateIndex);

 // IsOpenIndex
 LocalSecondaryIndex isOpenIndex
 = new LocalSecondaryIndex()
 {
 IndexName = "IsOpenIndex"
 };

Local secondary indexes API Version 2012-08-10 1040

Amazon DynamoDB Developer Guide

 // Key schema for IsOpenIndex
 indexKeySchema = new List<KeySchemaElement>()
 {
 { new KeySchemaElement() {
 AttributeName = "CustomerId", KeyType = "HASH"
 }}, //Partition key
 { new KeySchemaElement() {
 AttributeName = "IsOpen", KeyType = "RANGE"
 }} //Sort key
 };

 // Projection (all attributes) for IsOpenIndex
 projection = new Projection()
 {
 ProjectionType = "ALL"
 };

 isOpenIndex.KeySchema = indexKeySchema;
 isOpenIndex.Projection = projection;

 localSecondaryIndexes.Add(isOpenIndex);

 // Add index definitions to CreateTable request
 createTableRequest.LocalSecondaryIndexes = localSecondaryIndexes;

 Console.WriteLine("Creating table " + tableName + "...");
 client.CreateTable(createTableRequest);
 WaitUntilTableReady(tableName);
 }

 public static void Query(string indexName)
 {

 Console.WriteLine("\n***\n");
 Console.WriteLine("Querying table " + tableName + "...");

 QueryRequest queryRequest = new QueryRequest()
 {
 TableName = tableName,
 ConsistentRead = true,
 ScanIndexForward = true,
 ReturnConsumedCapacity = "TOTAL"
 };

Local secondary indexes API Version 2012-08-10 1041

Amazon DynamoDB Developer Guide

 String keyConditionExpression = "CustomerId = :v_customerId";
 Dictionary<string, AttributeValue> expressionAttributeValues = new
 Dictionary<string, AttributeValue> {
 {":v_customerId", new AttributeValue {
 S = "bob@example.com"
 }}
 };

 if (indexName == "IsOpenIndex")
 {
 Console.WriteLine("\nUsing index: '" + indexName
 + "': Bob's orders that are open.");
 Console.WriteLine("Only a user-specified list of attributes are
 returned\n");
 queryRequest.IndexName = indexName;

 keyConditionExpression += " and IsOpen = :v_isOpen";
 expressionAttributeValues.Add(":v_isOpen", new AttributeValue
 {
 N = "1"
 });

 // ProjectionExpression
 queryRequest.ProjectionExpression = "OrderCreationDate,
 ProductCategory, ProductName, OrderStatus";
 }
 else if (indexName == "OrderCreationDateIndex")
 {
 Console.WriteLine("\nUsing index: '" + indexName
 + "': Bob's orders that were placed after 01/31/2013.");
 Console.WriteLine("Only the projected attributes are returned\n");
 queryRequest.IndexName = indexName;

 keyConditionExpression += " and OrderCreationDate > :v_Date";
 expressionAttributeValues.Add(":v_Date", new AttributeValue
 {
 N = "20130131"
 });

 // Select
 queryRequest.Select = "ALL_PROJECTED_ATTRIBUTES";

Local secondary indexes API Version 2012-08-10 1042

Amazon DynamoDB Developer Guide

 }
 else
 {
 Console.WriteLine("\nNo index: All of Bob's orders, by OrderId:\n");
 }
 queryRequest.KeyConditionExpression = keyConditionExpression;
 queryRequest.ExpressionAttributeValues = expressionAttributeValues;

 var result = client.Query(queryRequest);
 var items = result.Items;
 foreach (var currentItem in items)
 {
 foreach (string attr in currentItem.Keys)
 {
 if (attr == "OrderId" || attr == "IsOpen"
 || attr == "OrderCreationDate")
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].N);
 }
 else
 {
 Console.WriteLine(attr + "---> " + currentItem[attr].S);
 }
 }
 Console.WriteLine();
 }
 Console.WriteLine("\nConsumed capacity: " +
 result.ConsumedCapacity.CapacityUnits + "\n");
 }

 private static void DeleteTable(string tableName)
 {
 Console.WriteLine("Deleting table " + tableName + "...");
 client.DeleteTable(new DeleteTableRequest()
 {
 TableName = tableName
 });
 WaitForTableToBeDeleted(tableName);
 }

 public static void LoadData()
 {
 Console.WriteLine("Loading data into table " + tableName + "...");

Local secondary indexes API Version 2012-08-10 1043

Amazon DynamoDB Developer Guide

 Dictionary<string, AttributeValue> item = new Dictionary<string,
 AttributeValue>();

 item["CustomerId"] = new AttributeValue
 {
 S = "alice@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "1"
 };
 item["IsOpen"] = new AttributeValue
 {
 N = "1"
 };
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130101"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Book"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "The Great Outdoors"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "PACKING ITEMS"
 };
 /* no ShipmentTrackingId attribute */
 PutItemRequest putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "alice@example.com"

Local secondary indexes API Version 2012-08-10 1044

Amazon DynamoDB Developer Guide

 };
 item["OrderId"] = new AttributeValue
 {
 N = "2"
 };
 item["IsOpen"] = new AttributeValue
 {
 N = "1"
 };
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130221"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Bike"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "Super Mountain"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "ORDER RECEIVED"
 };
 /* no ShipmentTrackingId attribute */
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "alice@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "3"
 };
 /* no IsOpen attribute */

Local secondary indexes API Version 2012-08-10 1045

Amazon DynamoDB Developer Guide

 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130304"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Music"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "A Quiet Interlude"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "IN TRANSIT"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "176493"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "1"
 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130111"
 };
 item["ProductCategory"] = new AttributeValue
 {

Local secondary indexes API Version 2012-08-10 1046

Amazon DynamoDB Developer Guide

 S = "Movie"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "Calm Before The Storm"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "SHIPPING DELAY"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "859323"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "2"
 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130124"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Music"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "E-Z Listening"
 };

Local secondary indexes API Version 2012-08-10 1047

Amazon DynamoDB Developer Guide

 item["OrderStatus"] = new AttributeValue
 {
 S = "DELIVERED"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "756943"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "3"
 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130221"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Music"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "Symphony 9"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "DELIVERED"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {

Local secondary indexes API Version 2012-08-10 1048

Amazon DynamoDB Developer Guide

 S = "645193"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "4"
 };
 item["IsOpen"] = new AttributeValue
 {
 N = "1"
 };
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130222"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Hardware"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "Extra Heavy Hammer"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "PACKING ITEMS"
 };
 /* no ShipmentTrackingId attribute */
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,

Local secondary indexes API Version 2012-08-10 1049

Amazon DynamoDB Developer Guide

 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "5"
 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130309"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Book"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "How To Cook"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "IN TRANSIT"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "440185"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue

Local secondary indexes API Version 2012-08-10 1050

Amazon DynamoDB Developer Guide

 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "6"
 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130318"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Luggage"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "Really Big Suitcase"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "DELIVERED"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "893927"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);

 item = new Dictionary<string, AttributeValue>();
 item["CustomerId"] = new AttributeValue
 {
 S = "bob@example.com"
 };
 item["OrderId"] = new AttributeValue
 {
 N = "7"

Local secondary indexes API Version 2012-08-10 1051

Amazon DynamoDB Developer Guide

 };
 /* no IsOpen attribute */
 item["OrderCreationDate"] = new AttributeValue
 {
 N = "20130324"
 };
 item["ProductCategory"] = new AttributeValue
 {
 S = "Golf"
 };
 item["ProductName"] = new AttributeValue
 {
 S = "PGA Pro II"
 };
 item["OrderStatus"] = new AttributeValue
 {
 S = "OUT FOR DELIVERY"
 };
 item["ShipmentTrackingId"] = new AttributeValue
 {
 S = "383283"
 };
 putItemRequest = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 ReturnItemCollectionMetrics = "SIZE"
 };
 client.PutItem(putItemRequest);
 }

 private static void WaitUntilTableReady(string tableName)
 {
 string status = null;
 // Let us wait until table is created. Call DescribeTable.
 do
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

Local secondary indexes API Version 2012-08-10 1052

Amazon DynamoDB Developer Guide

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found. So we handle the potential exception.
 }
 } while (status != "ACTIVE");
 }

 private static void WaitForTableToBeDeleted(string tableName)
 {
 bool tablePresent = true;

 while (tablePresent)
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });

 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 }
 catch (ResourceNotFoundException)
 {
 tablePresent = false;
 }
 }
 }
 }
}

Local secondary indexes API Version 2012-08-10 1053

Amazon DynamoDB Developer Guide

Working with Local Secondary Indexes in DynamoDB Amazon CLI

You can use the Amazon CLI to create an Amazon DynamoDB table with one or more Local
Secondary Indexes, describe the indexes on the table, and perform queries using the indexes.

Topics

• Create a table with a Local Secondary Index

• Describe a table with a Local Secondary Index

• Query a Local Secondary Index

Create a table with a Local Secondary Index

Local Secondary Indexes must be created at the same time you create a table. To do this, use
the create-table parameter and provide your specifications for one or more Local Secondary
Indexes. The following example creates a table (Music) to hold information about songs in a
music collection. The partition key is Artist and the sort key is SongTitle. A secondary index,
AlbumTitleIndex on the AlbumTitle attribute facilitates queries by album title.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions AttributeName=Artist,AttributeType=S
 AttributeName=SongTitle,AttributeType=S \
 AttributeName=AlbumTitle,AttributeType=S \
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --local-secondary-indexes \
 "[{\"IndexName\": \"AlbumTitleIndex\",
 \"KeySchema\":[{\"AttributeName\":\"Artist\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"AlbumTitle\",\"KeyType\":\"RANGE\"}],
 \"Projection\":{\"ProjectionType\":\"INCLUDE\", \"NonKeyAttributes\":[\"Genre
\", \"Year\"]}}]"

You must wait until DynamoDB creates the table and sets the table status to ACTIVE. After that,
you can begin putting data items into the table. You can use describe-table to determine the status
of the table creation.

Local secondary indexes API Version 2012-08-10 1054

https://docs.amazonaws.cn/cli/latest/reference/dynamodb/describe-table.html

Amazon DynamoDB Developer Guide

Describe a table with a Local Secondary Index

To get information about local secondary indexes on a table, use the describe-table parameter.
For each index, you can access its name, key schema, and projected attributes.

aws dynamodb describe-table --table-name Music

Query a Local Secondary Index

You can use the query operation on a Local Secondary Index in much the same way that you
query a table. You must specify the index name, the query criteria for the index sort key, and the
attributes that you want to return. In this example, the index is AlbumTitleIndex and the index
sort key is AlbumTitle.

The only attributes returned are those that have been projected into the index. You could modify
this query to select non-key attributes too, but this would require table fetch activity that is
relatively expensive. For more information about table fetches, see Attribute projections.

aws dynamodb query \
 --table-name Music \
 --index-name AlbumTitleIndex \
 --key-condition-expression "Artist = :v_artist and AlbumTitle = :v_title" \
 --expression-attribute-values '{":v_artist":{"S":"Acme Band"},":v_title":
{"S":"Songs About Life"} }'

Managing complex workflows with DynamoDB transactions

Amazon DynamoDB transactions simplify the developer experience of making coordinated, all-or-
nothing changes to multiple items both within and across tables. Transactions provide atomicity,
consistency, isolation, and durability (ACID) in DynamoDB, helping you to maintain data correctness
in your applications.

You can use the DynamoDB transactional read and write APIs to manage complex business
workflows that require adding, updating, or deleting multiple items as a single, all-or-nothing
operation. For example, a video game developer can ensure that players’ profiles are updated
correctly when they exchange items in a game or make in-game purchases.

With the transaction write API, you can group multiple Put, Update, Delete, and
ConditionCheck actions. You can then submit the actions as a single TransactWriteItems

Working with transactions API Version 2012-08-10 1055

Amazon DynamoDB Developer Guide

operation that either succeeds or fails as a unit. The same is true for multiple Get actions, which
you can group and submit as a single TransactGetItems operation.

There is no additional cost to enable transactions for your DynamoDB tables. You pay only for
the reads or writes that are part of your transaction. DynamoDB performs two underlying reads
or writes of every item in the transaction: one to prepare the transaction and one to commit the
transaction. These two underlying read/write operations are visible in your Amazon CloudWatch
metrics.

To get started with DynamoDB transactions, download the latest Amazon SDK or the Amazon
Command Line Interface (Amazon CLI). Then follow the DynamoDB transactions example.

The following sections provide a detailed overview of the transaction APIs and how you can use
them in DynamoDB.

Topics

• Amazon DynamoDB Transactions: How it works

• Using IAM with DynamoDB transactions

• DynamoDB transactions example

Amazon DynamoDB Transactions: How it works

With Amazon DynamoDB transactions, you can group multiple actions together and submit them
as a single all-or-nothing TransactWriteItems or TransactGetItems operation. The following
sections describe API operations, capacity management, best practices, and other details about
using transactional operations in DynamoDB.

Topics

• TransactWriteItems API

• TransactGetItems API

• Isolation levels for DynamoDB transactions

• Transaction conflict handling in DynamoDB

• Using transactional APIs in DynamoDB Accelerator (DAX)

• Capacity management for transactions

• Best practices for transactions

• Using transactional APIs with global tables

How it works API Version 2012-08-10 1056

Amazon DynamoDB Developer Guide

• DynamoDB Transactions vs. the AWSLabs transactions client library

TransactWriteItems API

TransactWriteItems is a synchronous and idempotent write operation that groups up to 100
write actions in a single all-or-nothing operation. These actions can target up to 100 distinct items
in one or more DynamoDB tables within the same Amazon account and in the same Region. The
aggregate size of the items in the transaction cannot exceed 4 MB. The actions are completed
atomically so that either all of them succeed or none of them succeeds.

Note

• A TransactWriteItems operation differs from a BatchWriteItem operation in that
all the actions it contains must be completed successfully, or no changes are made at all.
With a BatchWriteItem operation, it is possible that only some of the actions in the
batch succeed while the others do not.

• Transactions cannot be performed using indexes.

You can't target the same item with multiple operations within the same transaction. For example,
you can't perform a ConditionCheck and also an Update action on the same item in the same
transaction.

You can add the following types of actions to a transaction:

• Put — Initiates a PutItem operation to create a new item or replace an old item with a new
item, conditionally or without specifying any condition.

• Update — Initiates an UpdateItem operation to edit an existing item's attributes or add a new
item to the table if it does not already exist. Use this action to add, delete, or update attributes
on an existing item conditionally or without a condition.

• Delete — Initiates a DeleteItem operation to delete a single item in a table identified by its
primary key.

• ConditionCheck — Checks that an item exists or checks the condition of specific attributes of
the item.

How it works API Version 2012-08-10 1057

Amazon DynamoDB Developer Guide

When a transaction completes in DynamoDB, its changes start propagating to global secondary
indexes (GSIs), streams, and backups. This propagation occurs gradually: stream records from the
same transaction might appear at different times and could be interleaved with records from other
transactions. Stream consumers shouldn't assume transaction atomicity or ordering guarantees.

To ensure an atomic snapshot of items modified in a transaction, use the TransactGetItems
operation to read all relevant items together. This operation provides a consistent view of the data,
ensuring you see either all changes from a completed transaction or none at all.

Because propagation isn't immediate, if a table is restored from backup (RestoreTableFromBackup)
or exported to a point in time (ExportTableToPointInTime) mid-propagation,, it can contain only
some of the changes made during a recent transaction.

Idempotency

You can optionally include a client token when you make a TransactWriteItems call to ensure
that the request is idempotent. Making your transactions idempotent helps prevent application
errors if the same operation is submitted multiple times due to a connection time-out or other
connectivity issue.

If the original TransactWriteItems call was successful, then subsequent TransactWriteItems
calls with the same client token return successfully without making any changes. If the
ReturnConsumedCapacity parameter is set, the initial TransactWriteItems call
returns the number of write capacity units consumed in making the changes. Subsequent
TransactWriteItems calls with the same client token return the number of read capacity units
consumed in reading the item.

Important points about idempotency

• A client token is valid for 10 minutes after the request that uses it finishes. After 10 minutes, any
request that uses the same client token is treated as a new request. You should not reuse the
same client token for the same request after 10 minutes.

• If you repeat a request with the same client token within the 10-minute idempotency
window but change some other request parameter, DynamoDB returns an
IdempotentParameterMismatch exception.

Error handling for writing

Write transactions don't succeed under the following circumstances:

How it works API Version 2012-08-10 1058

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableFromBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExportTableToPointInTime.html

Amazon DynamoDB Developer Guide

• When a condition in one of the condition expressions is not met.

• When a transaction validation error occurs because more than one action in the same
TransactWriteItems operation targets the same item.

• When a TransactWriteItems request conflicts with an ongoing TransactWriteItems
operation on one or more items in the TransactWriteItems request. In this case, the request
fails with a TransactionCanceledException.

• When there is insufficient provisioned capacity for the transaction to be completed.

• When an item size becomes too large (larger than 400 KB), or a local secondary index (LSI)
becomes too large, or a similar validation error occurs because of changes made by the
transaction.

• When there is a user error, such as an invalid data format.

For more information about how conflicts with TransactWriteItems operations are handled, see
Transaction conflict handling in DynamoDB.

TransactGetItems API

TransactGetItems is a synchronous read operation that groups up to 100 Get actions together.
These actions can target up to 100 distinct items in one or more DynamoDB tables within the same
Amazon account and Region. The aggregate size of the items in the transaction can't exceed 4 MB.

The Get actions are performed atomically so that either all of them succeed or all of them fail:

• Get — Initiates a GetItem operation to retrieve a set of attributes for the item with the given
primary key. If no matching item is found, Get does not return any data.

Error handling for reading

Read transactions don't succeed under the following circumstances:

• When a TransactGetItems request conflicts with an ongoing TransactWriteItems
operation on one or more items in the TransactGetItems request. In this case, the request
fails with a TransactionCanceledException.

• When there is insufficient provisioned capacity for the transaction to be completed.

• When there is a user error, such as an invalid data format.

How it works API Version 2012-08-10 1059

Amazon DynamoDB Developer Guide

For more information about how conflicts with TransactGetItems operations are handled, see
Transaction conflict handling in DynamoDB.

Isolation levels for DynamoDB transactions

The isolation levels of transactional operations (TransactWriteItems or TransactGetItems)
and other operations are as follows.

SERIALIZABLE

Serializable isolation ensures that the results of multiple concurrent operations are the same as if
no operation begins until the previous one has finished.

There is serializable isolation between the following types of operation:

• Between any transactional operation and any standard write operation (PutItem, UpdateItem,
or DeleteItem).

• Between any transactional operation and any standard read operation (GetItem).

• Between a TransactWriteItems operation and a TransactGetItems operation.

Although there is serializable isolation between transactional operations, and each individual
standard write in a BatchWriteItem operation, there is no serializable isolation between the
transaction and the BatchWriteItem operation as a unit.

Similarly, the isolation level between a transactional operation and individual GetItems in a
BatchGetItem operation is serializable. But the isolation level between the transaction and the
BatchGetItem operation as a unit is read-committed.

A single GetItem request is serializable with respect to a TransactWriteItems request in
one of two ways, either before or after the TransactWriteItems request. Multiple GetItem
requests, against keys in a concurrent TransactWriteItems requests can be run in any order, and
therefore the results are read-committed.

For example, if GetItem requests for item A and item B are run concurrently with a
TransactWriteItems request that modifies both item A and item B, there are four possibilities:

• Both GetItem requests are run before the TransactWriteItems request.

• Both GetItem requests are run after the TransactWriteItems request.

How it works API Version 2012-08-10 1060

Amazon DynamoDB Developer Guide

• GetItem request for item A is run before the TransactWriteItems request. For item B the
GetItem is run after TransactWriteItems.

• GetItem request for item B is run before the TransactWriteItems request. For item A the
GetItem is run after TransactWriteItems.

You should use TransactGetItems if you prefer serializable isolation level for multiple GetItem
requests.

If a non-transactional read is made on multiple items that were part of the same transaction write
request in-flight, it's possible that you'll be able to read the new state of some of the items and the
old state of the other items. You'll be able to read the new state of all items that were part of the
transaction write request only when a successful response is received for the transactional write,
indicating that the transaction has been completed.

Once the transaction is successfully completed and a response is received, subsequent eventually
consistent read operations may still return the old state for a short period due to DynamoDB's
eventual consistency model. To guarantee reading the most up-to-date data immediately after a
transaction, you should use strongly consistent reads by setting ConsistentRead to true.

READ-COMMITTED

Read-committed isolation ensures that read operations always return committed values for an item
- the read will never present a view to the item representing a state from a transactional write
which did not ultimately succeed. Read-committed isolation does not prevent modifications of the
item immediately after the read operation.

The isolation level is read-committed between any transactional operation and any read operation
that involves multiple standard reads (BatchGetItem, Query, or Scan). If a transactional write
updates an item in the middle of a BatchGetItem, Query, or Scan operation, the subsequent
part of the read operation returns the newly committed value (with ConsistentRead) or possibly
a prior committed value (eventually consistent reads).

Operation summary

To summarize, the following table shows the isolation levels between a transaction operation
(TransactWriteItems or TransactGetItems) and other operations.

How it works API Version 2012-08-10 1061

Amazon DynamoDB Developer Guide

Operation Isolation Level

DeleteItem Serializable

PutItem Serializable

UpdateItem Serializable

GetItem Serializable

BatchGetItem Read-committed*

BatchWriteItem NOT Serializable*

Query Read-committed

Scan Read-committed

Other transactional operation Serializable

Levels marked with an asterisk (*) apply to the operation as a unit. However, individual actions
within those operations have a serializable isolation level.

Transaction conflict handling in DynamoDB

A transactional conflict can occur during concurrent item-level requests on an item within a
transaction. Transaction conflicts can occur in the following scenarios:

• A PutItem, UpdateItem, or DeleteItem request for an item conflicts with an ongoing
TransactWriteItems request that includes the same item.

• An item within a TransactWriteItems request is part of another ongoing
TransactWriteItems request.

• An item within a TransactGetItems request is part of an ongoing TransactWriteItems,
BatchWriteItem, PutItem, UpdateItem, or DeleteItem request.

How it works API Version 2012-08-10 1062

Amazon DynamoDB Developer Guide

Note

• When a PutItem, UpdateItem, or DeleteItem request is rejected, the request fails
with a TransactionConflictException.

• If any item-level request within TransactWriteItems or TransactGetItems is
rejected, the request fails with a TransactionCanceledException. If that request
fails, Amazon SDKs do not retry the request.

If you are using the Amazon SDK for Java, the exception contains the list of
CancellationReasons, ordered according to the list of items in the TransactItems
request parameter. For other languages, a string representation of the list is included in
the exception’s error message.

• If an ongoing TransactWriteItems or TransactGetItems operation conflicts with a
concurrent GetItem request, both operations can succeed.

The TransactionConflict CloudWatch metric is incremented for each failed item-level request.

Using transactional APIs in DynamoDB Accelerator (DAX)

TransactWriteItems and TransactGetItems are both supported in DynamoDB Accelerator
(DAX) with the same isolation levels as in DynamoDB.

TransactWriteItems writes through DAX. DAX passes a TransactWriteItems call
to DynamoDB and returns the response. To populate the cache after the write, DAX calls
TransactGetItems in the background for each item in the TransactWriteItems operation,
which consumes additional read capacity units. (For more information, see Capacity management
for transactions.) This functionality enables you to keep your application logic simple and use DAX
for both transactional operations and nontransactional ones.

TransactGetItems calls are passed through DAX without the items being cached locally. This is
the same behavior as for strongly consistent read APIs in DAX.

Capacity management for transactions

There is no additional cost to enable transactions for your DynamoDB tables. You pay only for
the reads or writes that are part of your transaction. DynamoDB performs two underlying reads
or writes of every item in the transaction: one to prepare the transaction and one to commit the

How it works API Version 2012-08-10 1063

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CancellationReason.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html

Amazon DynamoDB Developer Guide

transaction. The two underlying read/write operations are visible in your Amazon CloudWatch
metrics.

Plan for the additional reads and writes that are required by transactional APIs when you are
provisioning capacity to your tables. For example, suppose that your application runs one
transaction per second, and each transaction writes three 500-byte items in your table. Each item
requires two write capacity units (WCUs): one to prepare the transaction and one to commit the
transaction. Therefore, you would need to provision six WCUs to the table.

If you were using DynamoDB Accelerator (DAX) in the previous example, you would also use two
read capacity units (RCUs) for each item in the TransactWriteItems call. So you would need to
provision six additional RCUs to the table.

Similarly, if your application runs one read transaction per second, and each transaction reads three
500-byte items in your table, you would need to provision six read capacity units (RCUs) to the
table. Reading each item requires two RCUs: one to prepare the transaction and one to commit the
transaction.

Also, default SDK behavior is to retry transactions in case of a
TransactionInProgressException exception. Plan for the additional read-capacity units
(RCUs) that these retries consume. The same is true if you are retrying transactions in your own
code using a ClientRequestToken.

Best practices for transactions

Consider the following recommended practices when using DynamoDB transactions.

• Enable automatic scaling on your tables, or ensure that you have provisioned enough throughput
capacity to perform the two read or write operations for every item in your transaction.

• If you are not using an Amazon provided SDK, include a ClientRequestToken attribute when
you make a TransactWriteItems call to ensure that the request is idempotent.

• Don't group operations together in a transaction if it's not necessary. For example, if a
single transaction with 10 operations can be broken up into multiple transactions without
compromising the application correctness, we recommend splitting up the transaction. Simpler
transactions improve throughput and are more likely to succeed.

• Multiple transactions updating the same items simultaneously can cause conflicts that cancel the
transactions. We recommend following DynamoDB best practices for data modeling to minimize
such conflicts.

How it works API Version 2012-08-10 1064

Amazon DynamoDB Developer Guide

• If a set of attributes is often updated across multiple items as part of a single transaction,
consider grouping the attributes into a single item to reduce the scope of the transaction.

• Avoid using transactions for ingesting data in bulk. For bulk writes, it is better to use
BatchWriteItem.

Using transactional APIs with global tables

Transactional operations provide atomicity, consistency, isolation, and durability (ACID) guarantees
only within the Amazon Region where the write API was invoked. Transactions aren't supported
across Regions in global tables. For example, suppose that you have a global table with replicas
in the US East (Ohio) and US West (Oregon) Regions and you perform a TransactWriteItems
operation in the US East (N. Virginia) Region. You may observe partially completed transactions in
the US West (Oregon) Region as changes are replicated. Changes are replicated to other Regions
only after they've been committed in the source Region.

DynamoDB Transactions vs. the AWSLabs transactions client library

DynamoDB transactions provide a more cost-effective, robust, and performant replacement for
the AWSLabs transactions client library. We suggest that you update your applications to use the
native, server-side transaction APIs.

Using IAM with DynamoDB transactions

You can use Amazon Identity and Access Management (IAM) to restrict the actions that
transactional operations can perform in Amazon DynamoDB. For more information about using
IAM policies in DynamoDB, see Identity-based policies for DynamoDB.

Permissions for Put, Update, Delete, and Get actions are governed by the permissions used
for the underlying PutItem, UpdateItem, DeleteItem, and GetItem operations. For the
ConditionCheck action, you can use the dynamodb:ConditionCheckItem permission in IAM
policies.

The following are examples of IAM policies that you can use to configure the DynamoDB
transactions.

Using IAM with transactions API Version 2012-08-10 1065

https://github.com/awslabs

Amazon DynamoDB Developer Guide

Example 1: Allow transactional operations

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem"
],
 "Resource": [
 "arn:aws:dynamodb:*:*:table/table04"
]
 }
]
}

Example 2: Allow only transactional operations

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem"
],
 "Resource": [

Using IAM with transactions API Version 2012-08-10 1066

Amazon DynamoDB Developer Guide

 "arn:aws:dynamodb:*:*:table/table04"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "dynamodb:EnclosingOperation": [
 "TransactWriteItems",
 "TransactGetItems"
]
 }
 }
 }
]
}

Example 3: Allow nontransactional reads and writes, and block transactional
reads and writes

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem"
],
 "Resource": [
 "arn:aws:dynamodb:*:*:table/table04"
],
 "Condition": {
 "ForAnyValue:StringEquals": {
 "dynamodb:EnclosingOperation": [
 "TransactWriteItems",
 "TransactGetItems"
]
 }

Using IAM with transactions API Version 2012-08-10 1067

Amazon DynamoDB Developer Guide

 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:UpdateItem"
],
 "Resource": [
 "arn:aws:dynamodb:*:*:table/table04"
]
 }
]
}

Example 4: Prevent information from being returned on a ConditionCheck failure

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/table01",
 "Condition": {
 "StringEqualsIfExists": {
 "dynamodb:ReturnValues": "NONE"
 }
 }
 }
]

Using IAM with transactions API Version 2012-08-10 1068

Amazon DynamoDB Developer Guide

}

DynamoDB transactions example

As an example of a situation in which Amazon DynamoDB transactions can be useful, consider this
sample Java application for an online marketplace.

The application has three DynamoDB tables in the backend:

• Customers — This table stores details about the marketplace customers. Its primary key is a
CustomerId unique identifier.

• ProductCatalog — This table stores details such as price and availability about the products
for sale in the marketplace. Its primary key is a ProductId unique identifier.

• Orders — This table stores details about orders from the marketplace. Its primary key is an
OrderId unique identifier.

Making an order

The following code snippets illustrate how to use DynamoDB transactions to coordinate the
multiple steps that are required to create and process an order. Using a single all-or-nothing
operation ensures that if any part of the transaction fails, no actions in the transaction are run and
no changes are made.

In this example, you set up an order from a customer whose customerId is 09e8e9c8-ec48. You
then run it as a single transaction using the following simple order-processing workflow:

1. Determine that the customer ID is valid.

2. Make sure that the product is IN_STOCK, and update the product status to SOLD.

3. Make sure that the order does not already exist, and create the order.

Validate the customer

First, define an action to verify that a customer with customerId equal to 09e8e9c8-ec48 exists
in the customer table.

final String CUSTOMER_TABLE_NAME = "Customers";
final String CUSTOMER_PARTITION_KEY = "CustomerId";

Example code API Version 2012-08-10 1069

Amazon DynamoDB Developer Guide

final String customerId = "09e8e9c8-ec48";
final HashMap<String, AttributeValue> customerItemKey = new HashMap<>();
customerItemKey.put(CUSTOMER_PARTITION_KEY, new AttributeValue(customerId));

ConditionCheck checkCustomerValid = new ConditionCheck()
 .withTableName(CUSTOMER_TABLE_NAME)
 .withKey(customerItemKey)
 .withConditionExpression("attribute_exists(" + CUSTOMER_PARTITION_KEY + ")");

Update the product status

Next, define an action to update the product status to SOLD if the condition that the product status
is currently set to IN_STOCK is true. Setting the ReturnValuesOnConditionCheckFailure
parameter returns the item if the item's product status attribute was not equal to IN_STOCK.

final String PRODUCT_TABLE_NAME = "ProductCatalog";
final String PRODUCT_PARTITION_KEY = "ProductId";
HashMap<String, AttributeValue> productItemKey = new HashMap<>();
productItemKey.put(PRODUCT_PARTITION_KEY, new AttributeValue(productKey));

Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
expressionAttributeValues.put(":new_status", new AttributeValue("SOLD"));
expressionAttributeValues.put(":expected_status", new AttributeValue("IN_STOCK"));

Update markItemSold = new Update()
 .withTableName(PRODUCT_TABLE_NAME)
 .withKey(productItemKey)
 .withUpdateExpression("SET ProductStatus = :new_status")
 .withExpressionAttributeValues(expressionAttributeValues)
 .withConditionExpression("ProductStatus = :expected_status")

 .withReturnValuesOnConditionCheckFailure(ReturnValuesOnConditionCheckFailure.ALL_OLD);

Create the order

Lastly, create the order as long as an order with that OrderId does not already exist.

final String ORDER_PARTITION_KEY = "OrderId";
final String ORDER_TABLE_NAME = "Orders";

HashMap<String, AttributeValue> orderItem = new HashMap<>();
orderItem.put(ORDER_PARTITION_KEY, new AttributeValue(orderId));
orderItem.put(PRODUCT_PARTITION_KEY, new AttributeValue(productKey));

Example code API Version 2012-08-10 1070

Amazon DynamoDB Developer Guide

orderItem.put(CUSTOMER_PARTITION_KEY, new AttributeValue(customerId));
orderItem.put("OrderStatus", new AttributeValue("CONFIRMED"));
orderItem.put("OrderTotal", new AttributeValue("100"));

Put createOrder = new Put()
 .withTableName(ORDER_TABLE_NAME)
 .withItem(orderItem)

 .withReturnValuesOnConditionCheckFailure(ReturnValuesOnConditionCheckFailure.ALL_OLD)
 .withConditionExpression("attribute_not_exists(" + ORDER_PARTITION_KEY + ")");

Run the transaction

The following example illustrates how to run the actions defined previously as a single all-or-
nothing operation.

 Collection<TransactWriteItem> actions = Arrays.asList(
 new TransactWriteItem().withConditionCheck(checkCustomerValid),
 new TransactWriteItem().withUpdate(markItemSold),
 new TransactWriteItem().withPut(createOrder));

 TransactWriteItemsRequest placeOrderTransaction = new TransactWriteItemsRequest()
 .withTransactItems(actions)
 .withReturnConsumedCapacity(ReturnConsumedCapacity.TOTAL);

 // Run the transaction and process the result.
 try {
 client.transactWriteItems(placeOrderTransaction);
 System.out.println("Transaction Successful");

 } catch (ResourceNotFoundException rnf) {
 System.err.println("One of the table involved in the transaction is not found"
 + rnf.getMessage());
 } catch (InternalServerErrorException ise) {
 System.err.println("Internal Server Error" + ise.getMessage());
 } catch (TransactionCanceledException tce) {
 System.out.println("Transaction Canceled " + tce.getMessage());
 }

Reading the order details

The following example shows how to read the completed order transactionally across the Orders
and ProductCatalog tables.

Example code API Version 2012-08-10 1071

Amazon DynamoDB Developer Guide

HashMap<String, AttributeValue> productItemKey = new HashMap<>();
productItemKey.put(PRODUCT_PARTITION_KEY, new AttributeValue(productKey));

HashMap<String, AttributeValue> orderKey = new HashMap<>();
orderKey.put(ORDER_PARTITION_KEY, new AttributeValue(orderId));

Get readProductSold = new Get()
 .withTableName(PRODUCT_TABLE_NAME)
 .withKey(productItemKey);
Get readCreatedOrder = new Get()
 .withTableName(ORDER_TABLE_NAME)
 .withKey(orderKey);

Collection<TransactGetItem> getActions = Arrays.asList(
 new TransactGetItem().withGet(readProductSold),
 new TransactGetItem().withGet(readCreatedOrder));

TransactGetItemsRequest readCompletedOrder = new TransactGetItemsRequest()
 .withTransactItems(getActions)
 .withReturnConsumedCapacity(ReturnConsumedCapacity.TOTAL);

// Run the transaction and process the result.
try {
 TransactGetItemsResult result = client.transactGetItems(readCompletedOrder);
 System.out.println(result.getResponses());
} catch (ResourceNotFoundException rnf) {
 System.err.println("One of the table involved in the transaction is not found" +
 rnf.getMessage());
} catch (InternalServerErrorException ise) {
 System.err.println("Internal Server Error" + ise.getMessage());
} catch (TransactionCanceledException tce) {
 System.err.println("Transaction Canceled" + tce.getMessage());
}

Change data capture with Amazon DynamoDB

Many applications benefit from capturing changes to items stored in a DynamoDB table, at the
point in time when such changes occur. The following are some example use cases:

• A popular mobile app modifies data in a DynamoDB table, at the rate of thousands of updates
per second. Another application captures and stores data about these updates, providing near-
real-time usage metrics for the mobile app.

Working with streams API Version 2012-08-10 1072

Amazon DynamoDB Developer Guide

• A financial application modifies stock market data in a DynamoDB table. Different applications
running in parallel track these changes in real time, compute value-at-risk, and automatically
rebalance portfolios based on stock price movements.

• Sensors in transportation vehicles and industrial equipment send data to a DynamoDB table.
Different applications monitor performance and send messaging alerts when a problem is
detected, predict any potential defects by applying machine learning algorithms, and compress
and archive data to Amazon Simple Storage Service (Amazon S3).

• An application automatically sends notifications to the mobile devices of all friends in a group as
soon as one friend uploads a new picture.

• A new customer adds data to a DynamoDB table. This event invokes another application that
sends a welcome email to the new customer.

DynamoDB supports streaming of item-level change data capture records in near-real time. You
can build applications that consume these streams and take action based on the contents.

Note

Adding tags to DynamoDB Streams and using attribute-based access control (ABAC) with
DynamoDB Streams aren't supported.

The following video will give you an introductory look at the change data capture concept.

Table capacity modes

Topics

• Streaming options for change data capture

• Using Kinesis Data Streams to capture changes to DynamoDB

• Change data capture for DynamoDB Streams

Streaming options for change data capture

DynamoDB offers two streaming models for change data capture: Kinesis Data Streams for
DynamoDB and DynamoDB Streams.

To help you choose the right solution for your application, the following table summarizes the
features of each streaming model.

Options API Version 2012-08-10 1073

https://www.youtube.com/embed/VVv_-mZ5Ge8

Amazon DynamoDB Developer Guide

Properties Kinesis Data Streams for
DynamoDB

DynamoDB Streams

Data retention Up to 1 year. 24 hours.

Kinesis Client Library (KCL)
support

Supports KCL versions 1.X,
2.X, and 3.X.

Supports KCL versions 1.X
and 2.X.

Number of consumers Up to 5 simultaneous
consumers per shard, or up to
20 simultaneous consumers
per shard with enhanced fan-
out.

Up to 2 simultaneous
consumers per shard.

Throughput quotas Unlimited. Subject to throughput quotas
by DynamoDB table and
Amazon Region.

Record delivery model Pull model over HTTP
using GetRecords and with
enhanced fan-out, Kinesis
Data Streams pushes the
records over HTTP/2 by using
SubscribeToShard.

Pull model over HTTP using
GetRecords.

Ordering of records The timestamp attribute on
each stream record can be
used to identify the actual
order in which changes
occurred in the DynamoDB
table.

For each item that is modified
in a DynamoDB table, the
stream records appear in the
same sequence as the actual
modifications to the item.

Duplicate records Duplicate records might
occasionally appear in the
stream.

No duplicate records appear
in the stream.

Stream processing options Process stream records using
Amazon Lambda, Amazon

Process stream records
using Amazon Lambda or

Options API Version 2012-08-10 1074

https://docs.amazonaws.cn/streams/latest/dev/kinesis-extended-retention.html
https://docs.amazonaws.cn/streams/latest/dev/custom-kcl-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/custom-kcl-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/custom-kcl-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/custom-kcl-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/service-sizes-and-limits.html
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Limits.html#limits-dynamodb-streams
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Limits.html#limits-dynamodb-streams
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_GetRecords.html
https://docs.amazonaws.cn/streams/latest/dev/enhanced-consumers.html
https://docs.amazonaws.cn/kinesis/latest/APIReference/API_SubscribeToShard.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/lambda/latest/dg/with-kinesis.html
https://docs.amazonaws.cn/kinesisanalytics/latest/dev/what-is.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.Lambda.html

Amazon DynamoDB Developer Guide

Properties Kinesis Data Streams for
DynamoDB

DynamoDB Streams

Managed Service for Apache
Flink, Kinesis data firehose ,
or Amazon Glue streaming
 ETL.

DynamoDB Streams Kinesis
adapter.

Durability level Availability zones to provide
automatic failover without
interruption.

Availability zones to provide
automatic failover without
interruption.

You can enable both streaming models on the same DynamoDB table.

The following video talks more about the differences between the two options.

DynamoDB Streams vs Kinesis Data Streams

Using Kinesis Data Streams to capture changes to DynamoDB

You can use Amazon Kinesis Data Streams to capture changes to Amazon DynamoDB.

Kinesis Data Streams captures item-level modifications in any DynamoDB table and replicates them
to a Kinesis data stream. Your applications can access this stream and view item-level changes
in near-real time. You can continuously capture and store terabytes of data per hour. You can
take advantage of longer data retention time—and with enhanced fan-out capability, you can
simultaneously reach two or more downstream applications. Other benefits include additional
audit and security transparency.

Kinesis Data Streams also gives you access to Amazon Data Firehose and Amazon Managed Service
for Apache Flink. These services can help you build applications that power real-time dashboards,
generate alerts, implement dynamic pricing and advertising, and implement sophisticated data
analytics and machine learning algorithms.

Note

Using Kinesis data streams for DynamoDB is subject to both Kinesis Data Streams pricing
for the data stream and DynamoDB pricing for the source table.

Working with Kinesis Data Streams API Version 2012-08-10 1075

https://docs.amazonaws.cn/kinesisanalytics/latest/dev/what-is.html
https://docs.amazonaws.cn/kinesisanalytics/latest/dev/what-is.html
https://docs.amazonaws.cn/firehose/latest/dev/what-is-this-service.html
https://docs.amazonaws.cn/glue/latest/dg/add-job-streaming.html
https://docs.amazonaws.cn/glue/latest/dg/add-job-streaming.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.KCLAdapter.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.KCLAdapter.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/disaster-recovery-resiliency.html
https://www.youtube.com/embed/UgG17Wh2y0g
https://docs.amazonaws.cn/streams/latest/dev/introduction.html
https://docs.amazonaws.cn/firehose/latest/dev/what-is-this-service.html
https://docs.amazonaws.cn/kinesisanalytics/latest/dev/what-is.html
https://docs.amazonaws.cn/kinesisanalytics/latest/dev/what-is.html
https://aws.amazon.com/kinesis/data-streams/pricing/
https://aws.amazon.com/dynamodb/pricing/

Amazon DynamoDB Developer Guide

How Kinesis Data Streams works with DynamoDB

When a Kinesis data stream is enabled for a DynamoDB table, the table sends out a data record
that captures any changes to that table’s data. This data record includes:

• The specific time any item was recently created, updated, or deleted

• That item’s primary key

• A snapshot of the record before the modification

• A snapshot of the record after the modification

These data records are captured and published in near-real time. After they are written to the
Kinesis data stream, they can be read just like any other record. You can use the Kinesis Client
Library, use Amazon Lambda, call the Kinesis Data Streams API, and use other connected services.
For more information, see Reading Data from Amazon Kinesis Data Streams in the Amazon Kinesis
Data Streams Developer Guide.

These changes to data are also captured asynchronously. Kinesis has no performance impact on
a table that it’s streaming from. The stream records stored in your Kinesis data stream are also
encrypted at rest. For more information, see Data Protection in Amazon Kinesis Data Streams.

The Kinesis data stream records might appear in a different order than when the item changes
occurred. The same item notifications might also appear more than once in the stream. You
can check the ApproximateCreationDateTime attribute to identify the order that the item
modifications occurred in, and to identify duplicate records.

When you enable a Kinesis data stream as a streaming destination of a DynamoDB table, you can
configure the precision of ApproximateCreationDateTime values in either milliseconds or
microseconds. By default, ApproximateCreationDateTime indicates the time of the change in
milliseconds. Additionally, you can change this value on an active streaming destination. After such
an update, stream records written to Kinesis will have ApproximateCreationDateTime values of
the desired precision.

Binary values written to DynamoDB must be encoded in base64-encoded format . However, when
data records are written to a Kinesis data stream, these encoded binary values are encoded with
base64-encoding a second time. When reading these records from a Kinesis data stream, in order
to retrieve the raw binary values, applications must decode these values twice.

Working with Kinesis Data Streams API Version 2012-08-10 1076

https://docs.amazonaws.cn/streams/latest/dev/building-consumers.html
https://docs.amazonaws.cn/streams/latest/dev/server-side-encryption.html

Amazon DynamoDB Developer Guide

DynamoDB charges for using Kinesis Data Streams in change data capture units. 1 KB of change
per single item counts as one change data capture unit. The KB of change in each item is calculated
by the larger of the “before” and “after” images of the item written to the stream, using the same
logic as capacity unit consumption for write operations. Similar to how DynamoDB on-demand
mode works, you don't need to provision capacity throughput for change data capture units.

Turning on a Kinesis data stream for your DynamoDB table

You can enable or disable streaming to Kinesis from your existing DynamoDB table by using the
Amazon Web Services Management Console, the Amazon SDK, or the Amazon Command Line
Interface (Amazon CLI).

• You can only stream data from DynamoDB to Kinesis Data Streams in the same Amazon account
and Amazon Region as your table.

• You can only stream data from a DynamoDB table to one Kinesis data stream.

Making changes to a Kinesis Data Streams destination on your DynamoDB table

By default, all Kinesis data stream records include an ApproximateCreationDateTime
attribute. This attribute represents a timestamp in milliseconds of the approximate time when
each record was created. You can change the precision of these values by using the https://
console.amazonaws.cn/kinesis, the SDK or the Amazon CLI

Getting started with Kinesis Data Streams for Amazon DynamoDB

This section describes how to use Kinesis Data Streams for Amazon DynamoDB tables with the
Amazon DynamoDB console, the Amazon Command Line Interface (Amazon CLI), and the API.

Creating an active Amazon Kinesis data stream

All of these examples use the Music DynamoDB table that was created as part of the Getting
started with DynamoDB tutorial.

To learn more about how to build consumers and connect your Kinesis data stream to other
Amazon services, see Reading data from Kinesis Data Streams in the Amazon Kinesis Data Streams
developer guide.

Working with Kinesis Data Streams API Version 2012-08-10 1077

https://console.amazonaws.cn/kinesis
https://console.amazonaws.cn/kinesis
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/streams/latest/dev/building-consumers.html

Amazon DynamoDB Developer Guide

Note

When you're first using KDS shards, we recommend setting your shards to scale up and
down with usage patterns. After you have accumulated more data on usage patterns, you
can adjust the shards in your stream to match.

Console

1. Sign in to the Amazon Web Services Management Console and open the Kinesis console at
https://console.aws.amazon.com/kinesis/.

2. Choose Create data stream and follow the instructions to create a stream called
samplestream.

3. Open the DynamoDB console at https://console.aws.amazon.com/dynamodb/.

4. In the navigation pane on the left side of the console, choose Tables.

5. Choose the Music table.

6. Choose the Exports and streams tab.

7. (Optional) Under Amazon Kinesis data stream details, you can change the record
timestamp precision from microsecond (default) to millisecond.

8. Choose samplestream from the dropdown list.

9. Choose the Turn On button.

Amazon CLI

1. Create a Kinesis Data Streams named samplestream by using the create-stream
command.

aws kinesis create-stream --stream-name samplestream --shard-count 3

See Shard management considerations for Kinesis Data Streams before setting the number
of shards for the Kinesis data stream.

2. Check that the Kinesis stream is active and ready for use by using the describe-stream
command.

aws kinesis describe-stream --stream-name samplestream

Working with Kinesis Data Streams API Version 2012-08-10 1078

https://console.aws.amazon.com/kinesis/
https://console.aws.amazon.com/dynamodb/
https://docs.amazonaws.cn/cli/latest/reference/kinesis/create-stream.html
https://docs.amazonaws.cn/cli/latest/reference/kinesis/create-stream.html
https://docs.amazonaws.cn/cli/latest/reference/kinesis/describe-stream.html
https://docs.amazonaws.cn/cli/latest/reference/kinesis/describe-stream.html

Amazon DynamoDB Developer Guide

3. Enable Kinesis streaming on the DynamoDB table by using the DynamoDB enable-
kinesis-streaming-destination command. Replace the stream-arn value with
the one that was returned by describe-stream in the previous step. Optionally, enable
streaming with a more granular (microsecond) precision of timestamp values returned on
each record.

Enable streaming with microsecond timestamp precision:

aws dynamodb enable-kinesis-streaming-destination \
 --table-name Music \
 --stream-arn arn:aws:kinesis:us-west-2:12345678901:stream/samplestream
 --enable-kinesis-streaming-configuration
 ApproximateCreationDateTimePrecision=MICROSECOND

Or enable streaming with default timestamp precision (millisecond):

aws dynamodb enable-kinesis-streaming-destination \
 --table-name Music \
 --stream-arn arn:aws:kinesis:us-west-2:12345678901:stream/samplestream

4. Check if Kinesis streaming is active on the table by using the DynamoDB describe-
kinesis-streaming-destination command.

aws dynamodb describe-kinesis-streaming-destination --table-name Music

5. Write data to the DynamoDB table by using the put-item command, as described in the
DynamoDB Developer Guide.

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "No One You Know"}, "SongTitle": {"S": "Call Me
 Today"}, "AlbumTitle": {"S": "Somewhat Famous"}, "Awards": {"N": "1"}}'

aws dynamodb put-item \
 --table-name Music \
 --item \
 '{"Artist": {"S": "Acme Band"}, "SongTitle": {"S": "Happy Day"},
 "AlbumTitle": {"S": "Songs About Life"}, "Awards": {"N": "10"} }'

Working with Kinesis Data Streams API Version 2012-08-10 1079

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/getting-started-step-2.html

Amazon DynamoDB Developer Guide

6. Use the Kinesis get-records CLI command to retrieve the Kinesis stream contents. Then use
the following code snippet to deserialize the stream content.

/**
 * Takes as input a Record fetched from Kinesis and does arbitrary processing as
 an example.
 */
public void processRecord(Record kinesisRecord) throws IOException {
 ByteBuffer kdsRecordByteBuffer = kinesisRecord.getData();
 JsonNode rootNode = OBJECT_MAPPER.readTree(kdsRecordByteBuffer.array());
 JsonNode dynamoDBRecord = rootNode.get("dynamodb");
 JsonNode oldItemImage = dynamoDBRecord.get("OldImage");
 JsonNode newItemImage = dynamoDBRecord.get("NewImage");
 Instant recordTimestamp = fetchTimestamp(dynamoDBRecord);

 /**
 * Say for example our record contains a String attribute named "stringName"
 and we want to fetch the value
 * of this attribute from the new item image. The following code fetches
 this value.
 */
 JsonNode attributeNode = newItemImage.get("stringName");
 JsonNode attributeValueNode = attributeNode.get("S"); // Using DynamoDB "S"
 type attribute
 String attributeValue = attributeValueNode.textValue();
 System.out.println(attributeValue);
}

private Instant fetchTimestamp(JsonNode dynamoDBRecord) {
 JsonNode timestampJson = dynamoDBRecord.get("ApproximateCreationDateTime");
 JsonNode timestampPrecisionJson =
 dynamoDBRecord.get("ApproximateCreationDateTimePrecision");
 if (timestampPrecisionJson != null &&
 timestampPrecisionJson.equals("MICROSECOND")) {
 return Instant.EPOCH.plus(timestampJson.longValue(), ChronoUnit.MICROS);
 }
 return Instant.ofEpochMilli(timestampJson.longValue());
}

Working with Kinesis Data Streams API Version 2012-08-10 1080

https://docs.amazonaws.cn/cli/latest/reference/kinesis/get-records.html

Amazon DynamoDB Developer Guide

Java

1. Follow the instructions in the Kinesis Data Streams developer guide to create a Kinesis data
stream named samplestream using Java.

See Shard management considerations for Kinesis Data Streams before setting the number
of shards for the Kinesis data stream.

2. Use the following code snippet to enable Kinesis streaming on the DynamoDB table.
Optionally, enable streaming with a more granular (microsecond) precision of timestamp
values returned on each record.

Enable streaming with microsecond timestamp precision:

EnableKinesisStreamingConfiguration enableKdsConfig =
 EnableKinesisStreamingConfiguration.builder()

 .approximateCreationDateTimePrecision(ApproximateCreationDateTimePrecision.MICROSECOND)
 .build();

EnableKinesisStreamingDestinationRequest enableKdsRequest =
 EnableKinesisStreamingDestinationRequest.builder()
 .tableName(tableName)
 .streamArn(kdsArn)
 .enableKinesisStreamingConfiguration(enableKdsConfig)
 .build();

EnableKinesisStreamingDestinationResponse enableKdsResponse =
 ddbClient.enableKinesisStreamingDestination(enableKdsRequest);

Or enable streaming with default timestamp precision (millisecond):

EnableKinesisStreamingDestinationRequest enableKdsRequest =
 EnableKinesisStreamingDestinationRequest.builder()
 .tableName(tableName)
 .streamArn(kdsArn)
 .build();

EnableKinesisStreamingDestinationResponse enableKdsResponse =
 ddbClient.enableKinesisStreamingDestination(enableKdsRequest);

Working with Kinesis Data Streams API Version 2012-08-10 1081

https://docs.amazonaws.cn/streams/latest/dev/kinesis-using-sdk-java-create-stream.html

Amazon DynamoDB Developer Guide

3. Follow the instructions in the Kinesis Data Streams developer guide to read from the created
data stream.

4. Use the following code snippet to deserialize the stream content

/**
 * Takes as input a Record fetched from Kinesis and does arbitrary processing as
 an example.
 */
public void processRecord(Record kinesisRecord) throws IOException {
 ByteBuffer kdsRecordByteBuffer = kinesisRecord.getData();
 JsonNode rootNode = OBJECT_MAPPER.readTree(kdsRecordByteBuffer.array());
 JsonNode dynamoDBRecord = rootNode.get("dynamodb");
 JsonNode oldItemImage = dynamoDBRecord.get("OldImage");
 JsonNode newItemImage = dynamoDBRecord.get("NewImage");
 Instant recordTimestamp = fetchTimestamp(dynamoDBRecord);

 /**
 * Say for example our record contains a String attribute named "stringName"
 and we wanted to fetch the value
 * of this attribute from the new item image, the below code would fetch
 this.
 */
 JsonNode attributeNode = newItemImage.get("stringName");
 JsonNode attributeValueNode = attributeNode.get("S"); // Using DynamoDB "S"
 type attribute
 String attributeValue = attributeValueNode.textValue();
 System.out.println(attributeValue);
}

private Instant fetchTimestamp(JsonNode dynamoDBRecord) {
 JsonNode timestampJson = dynamoDBRecord.get("ApproximateCreationDateTime");
 JsonNode timestampPrecisionJson =
 dynamoDBRecord.get("ApproximateCreationDateTimePrecision");
 if (timestampPrecisionJson != null &&
 timestampPrecisionJson.equals("MICROSECOND")) {
 return Instant.EPOCH.plus(timestampJson.longValue(), ChronoUnit.MICROS);
 }
 return Instant.ofEpochMilli(timestampJson.longValue());
}

Working with Kinesis Data Streams API Version 2012-08-10 1082

https://docs.amazonaws.cn/streams/latest/dev/building-consumers.html

Amazon DynamoDB Developer Guide

Making changes to an active Amazon Kinesis data stream

This section describes how to make changes to an active Kinesis Data Streams for DynamoDB setup
by using the console, Amazon CLI and the API.

Amazon Web Services Management Console

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/

2. Go to your table.

3. Choose Exports and Streams.

Amazon CLI

1. Call describe-kinesis-streaming-destination to confirm that the stream is ACTIVE.

2. Call UpdateKinesisStreamingDestination, such as in this example:

aws dynamodb update-kinesis-streaming-destination --table-name
 enable_test_table --stream-arn arn:aws:kinesis:us-east-1:12345678901:stream/
enable_test_stream --update-kinesis-streaming-configuration
 ApproximateCreationDateTimePrecision=MICROSECOND

3. Call describe-kinesis-streaming-destination to confirm that the stream is
UPDATING.

4. Call describe-kinesis-streaming-destination periodically until the streaming status
is ACTIVE again. It typically takes up to 5 minutes for the timestamp precision updates to
take effect. Once this status updates, that indicates that the update is complete and the new
precision value will be applied on future records.

5. Write to the table using putItem.

6. Use the Kinesis get-records command to get the stream contents.

7. Confirm that the ApproximateCreationDateTime of the writes have the desired precision.

Java API

1. Provide a code snippet that constructs an UpdateKinesisStreamingDestination request
and an UpdateKinesisStreamingDestination response.

2. Provide a code snippet that constructs a DescribeKinesisStreamingDestination
request and a DescribeKinesisStreamingDestination response.

Working with Kinesis Data Streams API Version 2012-08-10 1083

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

3. Call describe-kinesis-streaming-destination periodically until the streaming status
is ACTIVE again, indicating that the update is complete and the new precision value will be
applied on future records.

4. Perform writes to the table.

5. Read from the stream and deserialize the stream content.

6. Confirm that the ApproximateCreationDateTime of the writes have the desired precision.

Using shards and metrics with DynamoDB Streams and Kinesis Data Streams

Shard management considerations for Kinesis Data Streams

A Kinesis data stream counts its throughput in shards. In Amazon Kinesis Data streams, you can
choose between an on-demand mode and a provisioned mode for your data streams.

We recommend using on-demand mode for your Kinesis Data Stream if your DynamoDB write
workload is highly variable and unpredictable. With on-demand mode, there is no capacity
planning required as Kinesis Data Streams automatically manages the shards in order to provide
the necessary throughput.

For predictable workloads, you can use provisioned mode for your Kinesis Data Stream. With
provisioned mode, you must specify the number of shards for the data stream to accommodate the
change data capture records from DynamoDB. To determine the number of shards that the Kinesis
data stream will need to support your DynamoDB table, you need the following input values:

• The average size of your DynamoDB table’s record in bytes
(average_record_size_in_bytes).

• The maximum number of write operations that your DynamoDB table will perform
per second. This includes create, delete, and update operations performed by your
applications, as well as automatically generated operations like Time to Live generated delete
operations(write_throughput).

• The percentage of update and overwrite operations that you perform on your table, as compared
to create or delete operations (percentage_of_updates). Keep in mind that update and
overwrite operations replicate both the old and new images of the modified item to the stream.
This generates twice the DynamoDB item size.

You can calculate the number of shards (number_of_shards) that your Kinesis data stream needs
by using the input values in the following formula:

Working with Kinesis Data Streams API Version 2012-08-10 1084

https://docs.amazonaws.cn/streams/latest/dev/key-concepts.html

Amazon DynamoDB Developer Guide

number_of_shards = ceiling(max(((write_throughput * (4+percentage_of_updates) *
 average_record_size_in_bytes) / 1024 / 1024), (write_throughput/1000)), 1)

For example, you might have a maximum throughput of 1040 write operations
per second (write_throughput) with an average record size of 800 bytes
(average_record_size_in_bytes). If 25 percent of those write operations are update
operations (percentage_of_updates), then you will need two shards (number_of_shards) to
accommodate your DynamoDB streaming throughput:

ceiling(max(((1040 * (4+25/100) * 800)/ 1024 / 1024), (1040/1000)), 1).

Consider the following before using the formula to calculate the number of shards required with
provisioned mode for Kinesis data streams:

• This formula helps estimate the number of shards that will be required to accommodate your
DynamoDB change data records. It doesn't represent the total number of shards needed in your
Kinesis data stream, such as the number of shards required to support additional Kinesis data
stream consumers.

• You may still experience read and write throughput exceptions in the provisioned mode if
you don't configure your data stream to handle your peak throughput. In this case, you must
manually scale your data stream to accommodate your data traffic.

• This formula takes into consideration the additional bloat generated by DynamoDB before
streaming the change logs data records to Kinesis Data Stream.

To learn more about capacity modes on Kinesis Data Stream see Choosing the Data Stream
Capacity Mode. To learn more about pricing difference between different capacity modes, see
Amazon Kinesis Data Streams pricing .

Monitoring change data capture with Kinesis Data Streams

DynamoDB provides several Amazon CloudWatch metrics to help you monitor the replication of
change data capture to Kinesis. For a full list of CloudWatch metrics, see DynamoDB Metrics and
dimensions.

To determine whether your stream has sufficient capacity, we recommend that you monitor the
following items both during stream enabling and in production:

Working with Kinesis Data Streams API Version 2012-08-10 1085

https://docs.amazonaws.cn/streams/latest/dev/how-do-i-size-a-stream.html
https://docs.amazonaws.cn/streams/latest/dev/how-do-i-size-a-stream.html
https://www.amazonaws.cn/kinesis/data-streams/pricing/

Amazon DynamoDB Developer Guide

• ThrottledPutRecordCount: The number of records that were throttled by your Kinesis
data stream because of insufficient Kinesis data stream capacity. You might experience some
throttling during exceptional usage peaks, but the ThrottledPutRecordCount should remain
as low as possible. DynamoDB retries sending throttled records to the Kinesis data stream, but
this might result in higher replication latency.

If you experience excessive and regular throttling, you might need to increase the number of
Kinesis stream shards proportionally to the observed write throughput of your table. To learn
more about determining the size of a Kinesis data stream, see Determining the Initial Size of a
Kinesis Data Stream.

• AgeOfOldestUnreplicatedRecord: The elapsed time since the oldest item-level change
yet to replicate to the Kinesis data stream appeared in the DynamoDB table. Under normal
operation, AgeOfOldestUnreplicatedRecord should be in the order of milliseconds. This
number grows based on unsuccessful replication attempts when these are caused by customer-
controlled configuration choices.

If AgeOfOldestUnreplicatedRecord metric exceeds 168 hours, replication of item-level
changes from the DynamoDB table to Kinesis data stream will be automatically disabled.

Customer-controlled configuration examples that leads to unsuccessful replication attempts are
an under-provisioned Kinesis data stream capacity that leads to excessive throttling, or a manual
update to your Kinesis data stream’s access policies that prevents DynamoDB from adding data
to your data stream. To keep this metric as low as possible, you might need to ensure the right
provisioning of your Kinesis data stream capacity, and make sure that DynamoDB’s permissions
are unchanged.

• FailedToReplicateRecordCount: The number of records that DynamoDB failed to replicate
to your Kinesis data stream. Certain items larger than 34 KB might expand in size to change data
records that are larger than the 1 MB item size limit of Kinesis Data Streams. This size expansion
occurs when these larger than 34 KB items include a large number of Boolean or empty attribute
values. Boolean and empty attribute values are stored as 1 byte in DynamoDB, but expand up
to 5 bytes when they’re serialized using standard JSON for Kinesis Data Streams replication.
DynamoDB can’t replicate such change records to your Kinesis data stream. DynamoDB skips
these change data records, and automatically continues replicating subsequent records.

Working with Kinesis Data Streams API Version 2012-08-10 1086

https://docs.amazonaws.cn/streams/latest/dev/amazon-kinesis-streams.html#how-do-i-size-a-stream
https://docs.amazonaws.cn/streams/latest/dev/amazon-kinesis-streams.html#how-do-i-size-a-stream

Amazon DynamoDB Developer Guide

You can create Amazon CloudWatch alarms that send an Amazon Simple Notification Service
(Amazon SNS) message for notification when any of the preceding metrics exceed a specific
threshold.

Using IAM policies for Amazon Kinesis Data Streams and Amazon DynamoDB

The first time that you enable Amazon Kinesis Data Streams for Amazon DynamoDB, DynamoDB
automatically creates an Amazon Identity and Access Management (IAM) service-linked role for
you. This role, AWSServiceRoleForDynamoDBKinesisDataStreamsReplication, allows
DynamoDB to manage the replication of item-level changes to Kinesis Data Streams on your
behalf. Don't delete this service-linked role.

For more information about service-linked roles, see Using service-linked roles in the IAM User
Guide.

Note

DynamoDB does not support tag-based conditions for IAM policies.

To enable Amazon Kinesis Data Streams for Amazon DynamoDB, you must have the following
permissions on the table:

• dynamodb:EnableKinesisStreamingDestination

• kinesis:ListStreams

• kinesis:PutRecords

• kinesis:DescribeStream

To describe Amazon Kinesis Data Streams for Amazon DynamoDB for a given DynamoDB table, you
must have the following permissions on the table.

• dynamodb:DescribeKinesisStreamingDestination

• kinesis:DescribeStreamSummary

• kinesis:DescribeStream

To disable Amazon Kinesis Data Streams for Amazon DynamoDB, you must have the following
permissions on the table.

Working with Kinesis Data Streams API Version 2012-08-10 1087

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

• dynamodb:DisableKinesisStreamingDestination

To update Amazon Kinesis Data Streams for Amazon DynamoDB, you must have the following
permissions on the table.

• dynamodb:UpdateKinesisStreamingDestination

The following examples show how to use IAM policies to grant permissions for Amazon Kinesis
Data Streams for Amazon DynamoDB.

Example: Enable Amazon Kinesis Data Streams for Amazon DynamoDB

The following IAM policy grants permissions to enable Amazon Kinesis Data Streams for Amazon
DynamoDB for the Music table. It does not grant permissions to disable, update or describe
Kinesis Data Streams for DynamoDB for the Music table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-
service-role/kinesisreplication.dynamodb.amazonaws.com/
AWSServiceRoleForDynamoDBKinesisDataStreamsReplication",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":
 "kinesisreplication.dynamodb.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:EnableKinesisStreamingDestination"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Music"
 }

Working with Kinesis Data Streams API Version 2012-08-10 1088

Amazon DynamoDB Developer Guide

]
}

Example: Update Amazon Kinesis Data Streams for Amazon DynamoDB

The following IAM policy grants permissions to update Amazon Kinesis Data Streams for Amazon
DynamoDB for the Music table. It does not grant permissions to enable, disable or describe
Amazon Kinesis Data Streams for Amazon DynamoDB for the Music table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateKinesisStreamingDestination"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Music"
 }
]
}

Example: Disable Amazon Kinesis Data Streams for Amazon DynamoDB

The following IAM policy grants permissions to disable Amazon Kinesis Data Streams for Amazon
DynamoDB for the Music table. It does not grant permissions to enable, update or describe
Amazon Kinesis Data Streams for Amazon DynamoDB for the Music table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DisableKinesisStreamingDestination"

Working with Kinesis Data Streams API Version 2012-08-10 1089

Amazon DynamoDB Developer Guide

],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Music"
 }
]
}

Example: Selectively apply permissions for Amazon Kinesis Data Streams for Amazon
DynamoDB based on resource

The following IAM policy grants permissions to enable and describe Amazon Kinesis Data Streams
for Amazon DynamoDB for the Music table, and denies permissions to disable Amazon Kinesis
Data Streams for Amazon DynamoDB for the Orders table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:EnableKinesisStreamingDestination",
 "dynamodb:DescribeKinesisStreamingDestination"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Music"
 },
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:DisableKinesisStreamingDestination"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Orders"
 }
]
}

Using service-linked roles for Kinesis Data Streams for DynamoDB

Amazon Kinesis Data Streams for Amazon DynamoDB uses Amazon Identity and Access
Management (IAM) service-linked roles. A service-linked role is a unique type of IAM role that

Working with Kinesis Data Streams API Version 2012-08-10 1090

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon DynamoDB Developer Guide

is linked directly to Kinesis Data Streams for DynamoDB. Service-linked roles are predefined by
Kinesis Data Streams for DynamoDB and include all the permissions that the service requires to call
other Amazon services on your behalf.

A service-linked role makes setting up Kinesis Data Streams for DynamoDB easier because you
don’t have to manually add the necessary permissions. Kinesis Data Streams for DynamoDB defines
the permissions of its service-linked roles, and unless defined otherwise, only Kinesis Data Streams
for DynamoDB can assume its roles. The defined permissions include the trust policy and the
permissions policy, and that permissions policy cannot be attached to any other IAM entity.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Kinesis Data Streams for DynamoDB

Kinesis Data Streams for DynamoDB uses the service-linked role named
AWSServiceRoleForDynamoDBKinesisDataStreamsReplication. The purpose of the service-linked
role is to allow Amazon DynamoDB to manage the replication of item-level changes to Kinesis Data
Streams, on your behalf.

The AWSServiceRoleForDynamoDBKinesisDataStreamsReplication service-linked role
trusts the following services to assume the role:

• kinesisreplication.dynamodb.amazonaws.com

The role permissions policy allows Kinesis Data Streams for DynamoDB to complete the following
actions on the specified resources:

• Action: Put records and describe on Kinesis stream

• Action: Generate data keys on Amazon KMS in order to put data on Kinesis streams that are
encrypted using User-Generated Amazon KMS keys.

For the exact contents of the policy document, see DynamoDBKinesisReplicationServiceRolePolicy.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Working with Kinesis Data Streams API Version 2012-08-10 1091

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://console.amazonaws.cn/iam/home#policies/arn:aws:iam::aws:policy/aws-service-role/DynamoDBKinesisReplicationServiceRolePolicy
https://docs.amazonaws.cn/IAM/latest/UserGuide/contributorinsights-service-linked-roles.html#service-linked-role-permissions

Amazon DynamoDB Developer Guide

Creating a service-linked role for Kinesis Data Streams for DynamoDB

You don't need to manually create a service-linked role. When you enable Kinesis Data Streams for
DynamoDB in the Amazon Web Services Management Console, the Amazon CLI, or the Amazon
API, Kinesis Data Streams for DynamoDB creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you enable Kinesis Data Streams for DynamoDB, Kinesis
Data Streams for DynamoDB creates the service-linked role for you again.

Editing a service-linked role for Kinesis Data Streams for DynamoDB

Kinesis Data Streams for DynamoDB does not allow you to edit the
AWSServiceRoleForDynamoDBKinesisDataStreamsReplication service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Kinesis Data Streams for DynamoDB

You can also use the IAM console, the Amazon CLI or the Amazon API to manually delete the
service-linked role. To do this, you must first manually clean up the resources for your service-
linked role and then you can manually delete it.

Note

If the Kinesis Data Streams for DynamoDB service is using the role when you try to delete
the resources, then the deletion might fail. If that happens, wait for a few minutes and try
the operation again.

To manually delete the service-linked role using IAM

Use the IAM console, the Amazon CLI, or the Amazon API to delete the
AWSServiceRoleForDynamoDBKinesisDataStreamsReplication service-linked role. For
more information, see Deleting a Service-Linked Role in the IAM User Guide.

Change data capture for DynamoDB Streams

DynamoDB Streams captures a time-ordered sequence of item-level modifications in any
DynamoDB table and stores this information in a log for up to 24 hours. Applications can access

Working with DynamoDB Streams API Version 2012-08-10 1092

https://docs.amazonaws.cn/IAM/latest/UserGuide/contributorinsights-service-linked-roles.html#edit-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

this log and view the data items as they appeared before and after they were modified, in near-real
time.

Encryption at rest encrypts the data in DynamoDB streams. For more information, see DynamoDB
encryption at rest.

A DynamoDB stream is an ordered flow of information about changes to items in a DynamoDB
table. When you enable a stream on a table, DynamoDB captures information about every
modification to data items in the table.

Whenever an application creates, updates, or deletes items in the table, DynamoDB Streams
writes a stream record with the primary key attributes of the items that were modified. A stream
record contains information about a data modification to a single item in a DynamoDB table. You
can configure the stream so that the stream records capture additional information, such as the
"before" and "after" images of modified items.

DynamoDB Streams helps ensure the following:

• Each stream record appears exactly once in the stream.

• For each item that is modified in a DynamoDB table, the stream records appear in the same
sequence as the actual modifications to the item.

DynamoDB Streams writes stream records in near-real time so that you can build applications that
consume these streams and take action based on the contents.

Topics

• Endpoints for DynamoDB Streams

• Enabling a stream

• Reading and processing a stream

• DynamoDB Streams and Time to Live

• Using the DynamoDB Streams Kinesis adapter to process stream records

• DynamoDB Streams low-level API: Java example

• DynamoDB Streams and Amazon Lambda triggers

• DynamoDB Streams and Apache Flink

Working with DynamoDB Streams API Version 2012-08-10 1093

Amazon DynamoDB Developer Guide

Endpoints for DynamoDB Streams

Amazon maintains separate endpoints for DynamoDB and DynamoDB Streams. To work with
database tables and indexes, your application must access a DynamoDB endpoint. To read and
process DynamoDB Streams records, your application must access a DynamoDB Streams endpoint
in the same Region.

Note

For a complete list of DynamoDB and DynamoDB Streams Regions and endpoints, see
Regions and endpoints in the Amazon Web Services General Reference.

The Amazon SDKs provide separate clients for DynamoDB and DynamoDB Streams. Depending
on your requirements, your application can access a DynamoDB endpoint, a DynamoDB Streams
endpoint, or both at the same time. To connect to both endpoints, your application must
instantiate two clients—one for DynamoDB and one for DynamoDB Streams.

Enabling a stream

You can enable a stream on a new table when you create it using the Amazon CLI or one of the
Amazon SDKs. You can also enable or disable a stream on an existing table, or change the settings
of a stream. DynamoDB Streams operates asynchronously, so there is no performance impact on a
table if you enable a stream.

The easiest way to manage DynamoDB Streams is by using the Amazon Web Services Management
Console.

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. On the DynamoDB console dashboard, choose Tables and select an existing table.

3. Choose the Exports and streams tab.

4. In the DynamoDB stream details section, choose Turn on.

5. On the Turn on DynamoDB stream page, choose the information that will be written to the
stream whenever the data in the table is modified:

• Key attributes only — Only the key attributes of the modified item.

Working with DynamoDB Streams API Version 2012-08-10 1094

https://docs.amazonaws.cn/general/latest/gr/rande.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

• New image — The entire item, as it appears after it was modified.

• Old image — The entire item, as it appeared before it was modified.

• New and old images — Both the new and the old images of the item.

When the settings are as you want them, choose Turn on stream.

6. (Optional) To disable an existing stream, choose Turn off under DynamoDB stream details.

You can also use the CreateTable or UpdateTable API operations to enable or modify a stream.
The StreamSpecification parameter determines how the stream is configured:

• StreamEnabled — Specifies whether a stream is enabled (true) or disabled (false) for the
table.

• StreamViewType — Specifies the information that will be written to the stream whenever data
in the table is modified:

• KEYS_ONLY — Only the key attributes of the modified item.

• NEW_IMAGE — The entire item, as it appears after it was modified.

• OLD_IMAGE — The entire item, as it appeared before it was modified.

• NEW_AND_OLD_IMAGES — Both the new and the old images of the item.

You can enable or disable a stream at any time. However, you receive a ValidationException
if you try to enable a stream on a table that already has a stream. You also receive a
ValidationException if you try to disable a stream on a table that doesn't have a stream.

When you set StreamEnabled to true, DynamoDB creates a new stream with a unique stream
descriptor assigned to it. If you disable and then re-enable a stream on the table, a new stream is
created with a different stream descriptor.

Every stream is uniquely identified by an Amazon Resource Name (ARN). The following is an
example ARN for a stream on a DynamoDB table named TestTable.

arn:aws-cn:dynamodb:us-west-2:111122223333:table/TestTable/
stream/2015-05-11T21:21:33.291

To determine the latest stream descriptor for a table, issue a DynamoDB DescribeTable request
and look for the LatestStreamArn element in the response.

Working with DynamoDB Streams API Version 2012-08-10 1095

Amazon DynamoDB Developer Guide

Note

It is not possible to edit a StreamViewType once a stream has been setup. If you need to
make changes to a stream after it has been setup, you must disable the current stream and
create a new one.

Reading and processing a stream

To read and process a stream, your application must connect to a DynamoDB Streams endpoint
and issue API requests.

A stream consists of stream records. Each stream record represents a single data modification in the
DynamoDB table to which the stream belongs. Each stream record is assigned a sequence number,
reflecting the order in which the record was published to the stream.

Stream records are organized into groups, or shards. Each shard acts as a container for multiple
stream records, and contains information required for accessing and iterating through these
records. The stream records within a shard are removed automatically after 24 hours.

Shards are ephemeral: They are created and deleted automatically, as needed. Any shard can also
split into multiple new shards; this also occurs automatically. (It's also possible for a parent shard
to have just one child shard.) A shard might split in response to high levels of write activity on its
parent table, so that applications can process records from multiple shards in parallel.

If you disable a stream, any shards that are open will be closed. The data in the stream will
continue to be readable for 24 hours.

Because shards have a lineage (parent and children), an application must always process a parent
shard before it processes a child shard. This helps ensure that the stream records are also processed
in the correct order. (If you use the DynamoDB Streams Kinesis Adapter, this is handled for you.
Your application processes the shards and stream records in the correct order. It automatically
handles new or expired shards, in addition to shards that split while the application is running. For
more information, see Using the DynamoDB Streams Kinesis adapter to process stream records.)

The following diagram shows the relationship between a stream, shards in the stream, and stream
records in the shards.

Working with DynamoDB Streams API Version 2012-08-10 1096

Amazon DynamoDB Developer Guide

Note

If you perform a PutItem or UpdateItem operation that does not change any data in an
item, DynamoDB Streams does not write a stream record for that operation.

To access a stream and process the stream records within, you must do the following:

• Determine the unique ARN of the stream that you want to access.

• Determine which shards in the stream contain the stream records that you are interested in.

• Access the shards and retrieve the stream records that you want.

Note

No more than two processes at most should be reading from the same stream's shard at
the same time. Having more than two readers per shard can result in throttling.

The DynamoDB Streams API provides the following actions for use by application programs:

• ListStreams — Returns a list of stream descriptors for the current account and endpoint. You
can optionally request just the stream descriptors for a particular table name.

Working with DynamoDB Streams API Version 2012-08-10 1097

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_ListStreams.html

Amazon DynamoDB Developer Guide

• DescribeStream — Returns information about a stream, including the current status of the
stream, its Amazon Resource Name (ARN), the composition of its shards, and its corresponding
DynamoDB table. You can optionally use the ShardFilter field to retrieve the existing child
shard associated with the parent shard.

• GetShardIterator — Returns a shard iterator, which describes a location within a shard. You
can request that the iterator provide access to the oldest point, the newest point, or a particular
point in the stream.

• GetRecords — Returns the stream records from within a given shard. You must provide the
shard iterator returned from a GetShardIterator request.

For complete descriptions of these API operations, including example requests and responses, see
the Amazon DynamoDB Streams API Reference.

Shard discovery

Discover new shards in your DynamoDB stream with two powerful methods. As a Amazon
DynamoDB Streams user, you have two effective ways to track and identify new shards:

Polling the entire stream topology

Use the DescribeStream API to regularly poll the stream. This returns all shards in the stream,
including any new shards that have been created. By comparing results over time, you can
detect newly added shards.

Discovering child shards

Use the DescribeStream API with the ShardFilter parameter to find a subset of shards.
By specifying a parent shard in the request, DynamoDB Streams will return its immediate child
shards. This approach is useful when you only need to track shard lineage without scanning the
entire stream.

Applications consuming data from DynamoDB Streams can efficiently transition from reading
a closed shard to its child shard using this ShardFilter parameter, avoiding repeated calls
to the DescribeStream API to retrieve and traverse the shard map for all closed and open
shards. This helps to quickly discover child shards after a parent shard has been closed, making
your stream processing applications more responsive and cost-effective.

Working with DynamoDB Streams API Version 2012-08-10 1098

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Streams.html

Amazon DynamoDB Developer Guide

Both methods empower you to stay on top of your DynamoDB Streams' evolving structure,
ensuring you never miss critical data updates or shard modifications.

Data retention limit for DynamoDB Streams

All data in DynamoDB Streams is subject to a 24-hour lifetime. You can retrieve and analyze the
last 24 hours of activity for any given table. However, data that is older than 24 hours is susceptible
to trimming (removal) at any moment.

If you disable a stream on a table, the data in the stream continues to be readable for 24 hours.
After this time, the data expires and the stream records are automatically deleted. There is no
mechanism for manually deleting an existing stream. You must wait until the retention limit
expires (24 hours), and all the stream records will be deleted.

DynamoDB Streams and Time to Live

You can back up, or otherwise process, items that are deleted by Time to Live (TTL) by enabling
Amazon DynamoDB Streams on the table and processing the streams records of the expired items.
For more information, see Reading and processing a stream.

The streams record contains a user identity field Records[<index>].userIdentity.

Items that are deleted by the Time to Live process after expiration have the following fields:

• Records[<index>].userIdentity.type

"Service"

• Records[<index>].userIdentity.principalId

"dynamodb.amazonaws.com"

Note

When you use TTL in a global table, the region the TTL was performed in will have the
userIdentity field set. This field won't be set in other regions when the delete is
replicated.

The following JSON shows the relevant portion of a single streams record.

Working with DynamoDB Streams API Version 2012-08-10 1099

Amazon DynamoDB Developer Guide

"Records": [
 {
 ...

 "userIdentity": {
 "type": "Service",
 "principalId": "dynamodb.amazonaws.com"
 }

 ...

 }
]

Using DynamoDB Streams and Lambda to archive TTL deleted items

Combining DynamoDB Time to Live (TTL), DynamoDB Streams, and Amazon Lambda can help
simplify archiving data, reduce DynamoDB storage costs, and reduce code complexity. Using
Lambda as the stream consumer provides many advantages, most notably the cost reduction
compared to other consumers such as Kinesis Client Library (KCL). You aren’t charged for
GetRecords API calls on your DynamoDB stream when using Lambda to consume events, and
Lambda can provide event filtering by identifying JSON patterns in a stream event. With event-
pattern content filtering, you can define up to five different filters to control which events are sent
to Lambda for processing. This helps reduce invocations of your Lambda functions, simplifies code,
and reduces overall cost.

While DynamoDB Streams contains all data modifications, such as Create, Modify, and Remove
actions, this can result in unwanted invocations of your archive Lambda function. For example, say
you have a table with 2 million data modifications per hour flowing into the stream, but less than 5
percent of these are item deletes that will expire through the TTL process and need to be archived.
With Lambda event source filters, the Lambda function will only invoke 100,000 times per hour.
The result with event filtering is that you’re charged only for the needed invocations instead of the
2 million invocations you would have without event filtering.

Event filtering is applied to the Lambda event source mapping, which is a resource that reads
from a chosen event—the DynamoDB stream—and invokes a Lambda function. In the following
diagram, you can see how a Time to Live deleted item is consumed by a Lambda function using
streams and event filters.

Working with DynamoDB Streams API Version 2012-08-10 1100

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TTL.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html
https://www.amazonaws.cn/lambda/
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventsourcemapping.html

Amazon DynamoDB Developer Guide

DynamoDB Time to Live event filter pattern

Adding the following JSON to your event source mapping filter criteria allows invocation of your
Lambda function only for TTL deleted items:

{
 "Filters": [
 {
 "Pattern": { "userIdentity": { "type": ["Service"], "principalId":
 ["dynamodb.amazonaws.com"] } }
 }
]
}

Create an Amazon Lambda event source mapping

Use the following code snippets to create a filtered event source mapping which you can connect
to a table's DynamoDB stream. Each code block includes the event filter pattern.

Amazon CLI

aws lambda create-event-source-mapping \
--event-source-arn 'arn:aws:dynamodb:eu-west-1:012345678910:table/test/
stream/2021-12-10T00:00:00.000' \
--batch-size 10 \
--enabled \
--function-name test_func \
--starting-position LATEST \
--filter-criteria '{"Filters": [{"Pattern": "{\"userIdentity\":{\"type\":[\"Service
\"],\"principalId\":[\"dynamodb.amazonaws.com\"]}}"}]}'

Java

LambdaClient client = LambdaClient.builder()
 .region(Region.EU_WEST_1)

Working with DynamoDB Streams API Version 2012-08-10 1101

https://docs.amazonaws.cn/lambda/latest/dg/API_FilterCriteria.html

Amazon DynamoDB Developer Guide

 .build();

Filter userIdentity = Filter.builder()
 .pattern("{\"userIdentity\":{\"type\":[\"Service\"],\"principalId\":
[\"dynamodb.amazonaws.com\"]}}")
 .build();

FilterCriteria filterCriteria = FilterCriteria.builder()
 .filters(userIdentity)
 .build();

CreateEventSourceMappingRequest mappingRequest =
 CreateEventSourceMappingRequest.builder()
 .eventSourceArn("arn:aws:dynamodb:eu-west-1:012345678910:table/test/
stream/2021-12-10T00:00:00.000")
 .batchSize(10)
 .enabled(Boolean.TRUE)
 .functionName("test_func")
 .startingPosition("LATEST")
 .filterCriteria(filterCriteria)
 .build();

try{
 CreateEventSourceMappingResponse eventSourceMappingResponse =
 client.createEventSourceMapping(mappingRequest);
 System.out.println("The mapping ARN is
 "+eventSourceMappingResponse.eventSourceArn());

}catch (ServiceException e){
 System.out.println(e.getMessage());
}

Node

const client = new LambdaClient({ region: "eu-west-1" });

const input = {
 EventSourceArn: "arn:aws:dynamodb:eu-west-1:012345678910:table/test/
stream/2021-12-10T00:00:00.000",
 BatchSize: 10,
 Enabled: true,
 FunctionName: "test_func",

Working with DynamoDB Streams API Version 2012-08-10 1102

Amazon DynamoDB Developer Guide

 StartingPosition: "LATEST",
 FilterCriteria: { "Filters": [{ "Pattern": "{\"userIdentity\":{\"type\":
[\"Service\"],\"principalId\":[\"dynamodb.amazonaws.com\"]}}" }] }
}

const command = new CreateEventSourceMappingCommand(input);

try {
 const results = await client.send(command);
 console.log(results);
} catch (err) {
 console.error(err);
}

Python

session = boto3.session.Session(region_name = 'eu-west-1')
client = session.client('lambda')

try:
 response = client.create_event_source_mapping(
 EventSourceArn='arn:aws:dynamodb:eu-west-1:012345678910:table/test/
stream/2021-12-10T00:00:00.000',
 BatchSize=10,
 Enabled=True,
 FunctionName='test_func',
 StartingPosition='LATEST',
 FilterCriteria={
 'Filters': [
 {
 'Pattern': "{\"userIdentity\":{\"type\":[\"Service\"],
\"principalId\":[\"dynamodb.amazonaws.com\"]}}"
 },
]
 }
)
 print(response)
except Exception as e:
 print(e)

JSON

{

Working with DynamoDB Streams API Version 2012-08-10 1103

Amazon DynamoDB Developer Guide

 "userIdentity": {
 "type": ["Service"],
 "principalId": ["dynamodb.amazonaws.com"]
 }
}

Using the DynamoDB Streams Kinesis adapter to process stream records

Using the Amazon Kinesis Adapter is the recommended way to consume streams from Amazon
DynamoDB. The DynamoDB Streams API is intentionally similar to that of Kinesis Data Streams. In
both services, data streams are composed of shards, which are containers for stream records. Both
services' APIs contain ListStreams, DescribeStream, GetShards, and GetShardIterator
operations. (Although these DynamoDB Streams actions are similar to their counterparts in Kinesis
Data Streams, they are not 100 percent identical.)

As a DynamoDB Streams user, you can use the design patterns found within the KCL to process
DynamoDB Streams shards and stream records. To do this, you use the DynamoDB Streams Kinesis
Adapter. The Kinesis Adapter implements the Kinesis Data Streams interface so that the KCL can be
used for consuming and processing records from DynamoDB Streams. For instructions on how to
set up and install the DynamoDB Streams Kinesis Adapter, see the GitHub repository.

You can write applications for Kinesis Data Streams using the Kinesis Client Library (KCL). The KCL
simplifies coding by providing useful abstractions above the low-level Kinesis Data Streams API. For
more information about the KCL, see the Developing consumers using the Kinesis client library in
the Amazon Kinesis Data Streams Developer Guide.

DynamoDB recommends using KCL version 3.x with Amazon SDK for Java v2.x. The current
DynamoDB Streams Kinesis Adapter version 1.x with Amazon SDK for Amazon SDK for Java v1.x
will continue to be fully supported throughout its lifecycle as intended during the transitional
period in alignment with Amazon SDKs and Tools maintenance policy.

Note

Amazon Kinesis Client Library (KCL) versions 1.x and 2.x are outdated. KCL 1.x will reach
end-of-support on January 30, 2026. We strongly recommend that you migrate your
KCL applications using version 1.x to the latest KCL version before January 30, 2026. To
find the latest KCL version, see the Amazon Kinesis Client Library page on GitHub. For

Working with DynamoDB Streams API Version 2012-08-10 1104

https://github.com/awslabs/dynamodb-streams-kinesis-adapter
https://docs.amazonaws.cn/kinesis/latest/dev/developing-consumers-with-kcl.html
https://docs.amazonaws.cn/sdkref/latest/guide/maint-policy.html
https://github.com/awslabs/amazon-kinesis-client

Amazon DynamoDB Developer Guide

information about the latest KCL versions, see Use Kinesis Client Library. For information
about migrating from KCL 1.x to KCL 3.x, see Migrating from KCL 1.x to KCL 3.x.

The following diagram shows how these libraries interact with one another.

With the DynamoDB Streams Kinesis Adapter in place, you can begin developing against the KCL
interface, with the API calls seamlessly directed at the DynamoDB Streams endpoint.

Working with DynamoDB Streams API Version 2012-08-10 1105

https://docs.aws.amazon.com/streams/latest/dev/kcl.html

Amazon DynamoDB Developer Guide

When your application starts, it calls the KCL to instantiate a worker. You must provide the worker
with configuration information for the application, such as the stream descriptor and Amazon
credentials, and the name of a record processor class that you provide. As it runs the code in the
record processor, the worker performs the following tasks:

• Connects to the stream

• Enumerates the shards within the stream

• Checks and enumerates child shards of a closed parent shard within the stream

• Coordinates shard associations with other workers (if any)

• Instantiates a record processor for every shard it manages

• Pulls records from the stream

• Scales GetRecords API calling rate during high throughput (if catch-up mode is configured)

• Pushes the records to the corresponding record processor

• Checkpoints processed records

• Balances shard-worker associations when the worker instance count changes

• Balances shard-worker associations when shards are split

The KCL adapter supports catch-up mode, an automatic calling rate adjustment feature for
handling temporary throughput increases. When stream processing lag exceeds a configurable
threshold (default one minute), catch-up mode scales GetRecords API calling frequency by a
configurable value (default 3x) to retrieve records faster, then returns to normal once the lag
drops. This is valuable during high-throughput periods where DynamoDB write activity can
overwhelm consumers using default polling rates. Catch-up mode can be enabled through the
catchupEnabled configuration parameter (default false).

Note

For a description of the KCL concepts listed here, see Developing consumers using the
Kinesis client library in the Amazon Kinesis Data Streams Developer Guide.
For more information on using streams with Amazon Lambda see DynamoDB Streams and
Amazon Lambda triggers

Working with DynamoDB Streams API Version 2012-08-10 1106

https://docs.amazonaws.cn/kinesis/latest/dev/developing-consumers-with-kcl.html
https://docs.amazonaws.cn/kinesis/latest/dev/developing-consumers-with-kcl.html

Amazon DynamoDB Developer Guide

Migrating from KCL 1.x to KCL 3.x

Overview

This guide provides instructions for migrating your consumer application from KCL 1.x to KCL 3.x.
Due to architectural differences between KCL 1.x and KCL 3.x, migration requires updating several
components to ensure compatibility.

KCL 1.x uses different classes and interfaces compared to KCL 3.x. You must migrate the record
processor, record processor factory, and worker classes to the KCL 3.x compatible format first, and
follow the migration steps for KCL 1.x to KCL 3.x migration.

Migration steps

Topics

• Step 1: Migrate the record processor

• Step 2: Migrate the record processor factory

• Step 3: Migrate the worker

• Step 4: KCL 3.x configuration overview and recommendations

• Step 5: Migrate from KCL 2.x to KCL 3.x

Step 1: Migrate the record processor

The following example shows a record processor implemented for KCL 1.x DynamoDB Streams
Kinesis adapter:

package com.amazonaws.kcl;

import com.amazonaws.services.kinesis.clientlibrary.exceptions.InvalidStateException;
import com.amazonaws.services.kinesis.clientlibrary.exceptions.ShutdownException;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.IRecordProcessorCheckpointer;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware;
import com.amazonaws.services.kinesis.clientlibrary.lib.worker.ShutdownReason;
import com.amazonaws.services.kinesis.clientlibrary.types.InitializationInput;
import com.amazonaws.services.kinesis.clientlibrary.types.ProcessRecordsInput;
import com.amazonaws.services.kinesis.clientlibrary.types.ShutdownInput;

Working with DynamoDB Streams API Version 2012-08-10 1107

Amazon DynamoDB Developer Guide

public class StreamsRecordProcessor implements IRecordProcessor,
 IShutdownNotificationAware {
 @Override
 public void initialize(InitializationInput initializationInput) {
 //
 // Setup record processor
 //
 }

 @Override
 public void processRecords(ProcessRecordsInput processRecordsInput) {
 for (Record record : processRecordsInput.getRecords()) {
 String data = new String(record.getData().array(),
 Charset.forName("UTF-8"));
 System.out.println(data);
 if (record instanceof RecordAdapter) {
 // record processing and checkpointing logic
 }
 }
 }

 @Override
 public void shutdown(ShutdownInput shutdownInput) {
 if (shutdownInput.getShutdownReason() == ShutdownReason.TERMINATE) {
 try {
 shutdownInput.getCheckpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 throw new RuntimeException(e);
 }
 }
 }

 @Override
 public void shutdownRequested(IRecordProcessorCheckpointer checkpointer) {
 try {
 checkpointer.checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow exception
 //
 e.printStackTrace();
 }
 }

Working with DynamoDB Streams API Version 2012-08-10 1108

Amazon DynamoDB Developer Guide

}

To migrate the RecordProcessor class

1. Change the interfaces from
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor
and
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware
to
com.amazonaws.services.dynamodbv2.streamsadapter.processor.DynamoDBStreamsShardRecordProcessor
as follows:

// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IShutdownNotificationAware;

import
 com.amazonaws.services.dynamodbv2.streamsadapter.processor.DynamoDBStreamsShardRecordProcessor;

2. Update import statements for the initialize and processRecords methods:

// import com.amazonaws.services.kinesis.clientlibrary.types.InitializationInput;
import software.amazon.kinesis.lifecycle.events.InitializationInput;

// import com.amazonaws.services.kinesis.clientlibrary.types.ProcessRecordsInput;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.model.DynamoDBStreamsProcessRecordsInput;

3. Replace the shutdownRequested method with the following new methods: leaseLost,
shardEnded, and shutdownRequested.

// @Override
// public void shutdownRequested(IRecordProcessorCheckpointer checkpointer) {
// //
// // This is moved to shardEnded(...) and
 shutdownRequested(ShutdownReauestedInput)
// //
// try {
// checkpointer.checkpoint();
// } catch (ShutdownException | InvalidStateException e) {

Working with DynamoDB Streams API Version 2012-08-10 1109

Amazon DynamoDB Developer Guide

// //
// // Swallow exception
// //
// e.printStackTrace();
// }
// }

 @Override
 public void leaseLost(LeaseLostInput leaseLostInput) {

 }

 @Override
 public void shardEnded(ShardEndedInput shardEndedInput) {
 try {
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }

 @Override
 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 try {
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }

The following is the updated version of the record processor class:

package com.amazonaws.codesamples;

import software.amazon.kinesis.exceptions.InvalidStateException;
import software.amazon.kinesis.exceptions.ShutdownException;

Working with DynamoDB Streams API Version 2012-08-10 1110

Amazon DynamoDB Developer Guide

import software.amazon.kinesis.lifecycle.events.InitializationInput;
import software.amazon.kinesis.lifecycle.events.LeaseLostInput;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.model.DynamoDBStreamsProcessRecordsInput;
import software.amazon.kinesis.lifecycle.events.ShardEndedInput;
import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput;
import
 software.amazon.dynamodb.streamsadapter.processor.DynamoDBStreamsShardRecordProcessor;
import
 software.amazon.dynamodb.streamsadapter.adapter.DynamoDBStreamsKinesisClientRecord;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.processor.DynamoDBStreamsShardRecordProcessor;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.adapter.DynamoDBStreamsClientRecord;
import software.amazon.awssdk.services.dynamodb.model.Record;

public class StreamsRecordProcessor implements DynamoDBStreamsShardRecordProcessor {

 @Override
 public void initialize(InitializationInput initializationInput) {

 }

 @Override
 public void processRecords(DynamoDBStreamsProcessRecordsInput processRecordsInput)
 {
 for (DynamoDBStreamsKinesisClientRecord record: processRecordsInput.records())
 Record ddbRecord = record.getRecord();
 // processing and checkpointing logic for the ddbRecord
 }
 }

 @Override
 public void leaseLost(LeaseLostInput leaseLostInput) {

 }

 @Override
 public void shardEnded(ShardEndedInput shardEndedInput) {
 try {
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception

Working with DynamoDB Streams API Version 2012-08-10 1111

Amazon DynamoDB Developer Guide

 //
 e.printStackTrace();
 }
 }

 @Override
 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 try {
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 //
 // Swallow the exception
 //
 e.printStackTrace();
 }
 }
}

Note

DynamoDB Streams Kinesis Adapter now uses SDKv2 Record model. In SDKv2, complex
AttributeValue objects (BS, NS, M, L, SS) never return null. Use hasBs(), hasNs(),
hasM(), hasL(), hasSs() methods to verify if these values exist.

Step 2: Migrate the record processor factory

The record processor factory is responsible for creating record processors when a lease is acquired.
The following is an example of a KCL 1.x factory:

package com.amazonaws.codesamples;

import software.amazon.dynamodb.AmazonDynamoDB;
import com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory;

public class StreamsRecordProcessorFactory implements IRecordProcessorFactory {

 @Override
 public IRecordProcessor createProcessor() {
 return new StreamsRecordProcessor(dynamoDBClient, tableName);

Working with DynamoDB Streams API Version 2012-08-10 1112

Amazon DynamoDB Developer Guide

 }
}

To migrate the RecordProcessorFactory

• Change the implemented interface from
com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory
to software.amazon.kinesis.processor.ShardRecordProcessorFactory, as
follows:

// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessor;

// import
 com.amazonaws.services.kinesis.clientlibrary.interfaces.v2.IRecordProcessorFactory;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

// public class TestRecordProcessorFactory implements IRecordProcessorFactory {
public class StreamsRecordProcessorFactory implements ShardRecordProcessorFactory {

Change the return signature for createProcessor.

// public IRecordProcessor createProcessor() {
public ShardRecordProcessor shardRecordProcessor() {

The following is an example of the record processor factory in 3.0:

package com.amazonaws.codesamples;

import software.amazon.kinesis.processor.ShardRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

public class StreamsRecordProcessorFactory implements ShardRecordProcessorFactory {

 @Override
 public ShardRecordProcessor shardRecordProcessor() {
 return new StreamsRecordProcessor();
 }
}

Working with DynamoDB Streams API Version 2012-08-10 1113

Amazon DynamoDB Developer Guide

Step 3: Migrate the worker

In version 3.0 of the KCL, a new class, called Scheduler, replaces the Worker class. The following is
an example of a KCL 1.x worker:

final KinesisClientLibConfiguration config = new KinesisClientLibConfiguration(...)
final IRecordProcessorFactory recordProcessorFactory = new RecordProcessorFactory();
final Worker worker = StreamsWorkerFactory.createDynamoDbStreamsWorker(
 recordProcessorFactory,
 workerConfig,
 adapterClient,
 amazonDynamoDB,
 amazonCloudWatchClient);

To migrate the worker

1. Change the import statement for the Worker class to the import statements for the
Scheduler and ConfigsBuilder classes.

// import com.amazonaws.services.kinesis.clientlibrary.lib.worker.Worker;
import software.amazon.kinesis.coordinator.Scheduler;
import software.amazon.kinesis.common.ConfigsBuilder;

2. Import StreamTracker and change import of StreamsWorkerFactory to
StreamsSchedulerFactory.

import software.amazon.kinesis.processor.StreamTracker;
// import software.amazon.dynamodb.streamsadapter.StreamsWorkerFactory;
import software.amazon.dynamodb.streamsadapter.StreamsSchedulerFactory;

3. Choose the position from which to start the application. It can be TRIM_HORIZON or LATEST.

import software.amazon.kinesis.common.InitialPositionInStream;
import software.amazon.kinesis.common.InitialPositionInStreamExtended;

4. Create a StreamTracker instance.

StreamTracker streamTracker = StreamsSchedulerFactory.createSingleStreamTracker(
 streamArn,

 InitialPositionInStreamExtended.newInitialPosition(InitialPositionInStream.TRIM_HORIZON)

Working with DynamoDB Streams API Version 2012-08-10 1114

Amazon DynamoDB Developer Guide

);

5. Create the AmazonDynamoDBStreamsAdapterClient object.

import software.amazon.dynamodb.streamsadapter.AmazonDynamoDBStreamsAdapterClient;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;

...

AwsCredentialsProvider credentialsProvider = DefaultCredentialsProvider.create();

AmazonDynamoDBStreamsAdapterClient adapterClient = new
 AmazonDynamoDBStreamsAdapterClient(
 credentialsProvider, awsRegion);

6. Create the ConfigsBuilder object.

import software.amazon.kinesis.common.ConfigsBuilder;

...
ConfigsBuilder configsBuilder = new ConfigsBuilder(
 streamTracker,
 applicationName,
 adapterClient,
 dynamoDbAsyncClient,
 cloudWatchAsyncClient,
 UUID.randomUUID().toString(),
 new StreamsRecordProcessorFactory());

7. Create the Scheduler using ConfigsBuilder as shown in the following example:

import java.util.UUID;

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient;
import software.amazon.awssdk.services.kinesis.KinesisAsyncClient;

import software.amazon.kinesis.common.KinesisClientUtil;
import software.amazon.kinesis.coordinator.Scheduler;

Working with DynamoDB Streams API Version 2012-08-10 1115

Amazon DynamoDB Developer Guide

...

DynamoDbAsyncClient dynamoClient =
 DynamoDbAsyncClient.builder().region(region).build();
CloudWatchAsyncClient cloudWatchClient =
 CloudWatchAsyncClient.builder().region(region).build();

DynamoDBStreamsPollingConfig pollingConfig = new
 DynamoDBStreamsPollingConfig(adapterClient);
pollingConfig.idleTimeBetweenReadsInMillis(idleTimeBetweenReadsInMillis);

// Use ConfigsBuilder to configure settings
RetrievalConfig retrievalConfig = configsBuilder.retrievalConfig();
retrievalConfig.retrievalSpecificConfig(pollingConfig);

CoordinatorConfig coordinatorConfig = configsBuilder.coordinatorConfig();
coordinatorConfig.clientVersionConfig(CoordinatorConfig.ClientVersionConfig.CLIENT_VERSION_CONFIG_COMPATIBLE_WITH_2X);

Scheduler scheduler = StreamsSchedulerFactory.createScheduler(
 configsBuilder.checkpointConfig(),
 coordinatorConfig,
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 retrievalConfig,
 adapterClient
);

Important

The CLIENT_VERSION_CONFIG_COMPATIBLE_WITH_2X setting maintains compatibility
between DynamoDB Streams Kinesis Adapter for KCL v3 and KCL v1, not between KCL v2
and v3.

Working with DynamoDB Streams API Version 2012-08-10 1116

Amazon DynamoDB Developer Guide

Step 4: KCL 3.x configuration overview and recommendations

For a detailed description of the configurations introduced post KCL 1.x that are relevant in KCL 3.x
see KCL configurations and KCL migration client configuration.

Important

Instead of directly creating objects of checkpointConfig, coordinatorConfig,
leaseManagementConfig, metricsConfig, processorConfig and
retrievalConfig, we recommend using ConfigsBuilder to set configurations in KCL
3.x and later versions to avoid Scheduler initialization issues. ConfigsBuilder provides a
more flexible and maintainable way to configure your KCL application.

Configurations with update default value in KCL 3.x

billingMode

In KCL version 1.x, the default value for billingMode is set to PROVISIONED. However, with
KCL version 3.x, the default billingMode is PAY_PER_REQUEST (on-demand mode). We
recommend that you use the on-demand capacity mode for your lease table to automatically
adjust the capacity based on your usage. For guidance on using provisioned capacity for your
lease tables, see Best practices for the lease table with provisioned capacity mode.

idleTimeBetweenReadsInMillis

In KCL version 1.x, the default value for idleTimeBetweenReadsInMillis is set to is 1,000
(or 1 second). KCL version 3.x sets the default value for idleTimeBetweenReadsInMillis to
1,500 (or 1.5 seconds), but Amazon DynamoDB Streams Kinesis Adapter overrides the default
value to 1,000 (or 1 second).

New configurations in KCL 3.x

leaseAssignmentIntervalMillis

This configuration defines the time interval before newly discovered shards begin processing,
and is calculated as 1.5 × leaseAssignmentIntervalMillis. If this setting isn't explicitly
configured, the time interval defaults to 1.5 × failoverTimeMillis. Processing new shards
involves scanning the lease table and querying a global secondary index (GSI) on the lease

Working with DynamoDB Streams API Version 2012-08-10 1117

https://docs.amazonaws.cn//streams/latest/dev/kcl-configuration.html
https://docs.amazonaws.cn//streams/latest/dev/kcl-migration.html#client-configuration
https://docs.amazonaws.cn//streams/latest/dev/kcl-migration-lease-table.html

Amazon DynamoDB Developer Guide

table. Lowering the leaseAssignmentIntervalMillis increases the frequency of these
scan and query operations, resulting in higher DynamoDB costs. We recommend setting this
value to 2000 (or 2 seconds) to minimize the delay in processing new shards.

shardConsumerDispatchPollIntervalMillis

This configuration defines the interval between successive polls by the shard consumer
to trigger state transitions. In KCL version 1.x, this behavior was controlled by the
idleTimeInMillis parameter, which was not exposed as a configurable setting.
With KCL version 3.x, we recommend setting this config to match the value used for
idleTimeInMillis in your KCL version 1.x setup.

Step 5: Migrate from KCL 2.x to KCL 3.x

To ensure a smooth transition and compatibility with the latest Kinesis Client Library (KCL) version,
follow steps 5-8 in the migration guide's instructions for upgrading from KCL 2.x to KCL 3.x.

For common KCL 3.x troubleshooting issues, see Troubleshooting KCL consumer applications.

Roll back to the previous KCL version

This topic explains how to roll back your consumer application to the previous KCL version. The
roll-back process consists of two steps:

1. Run the KCL Migration Tool.

2. Redeploy previous KCL version code.

Step 1: Run the KCL Migration Tool

When you need to roll back to the previous KCL version, you must run the KCL Migration Tool. The
tool performs two important tasks:

• It removes a metadata table called worker metrics table and global secondary index on the lease
table in DynamoDB. These artifacts are created by KCL 3.x but aren't needed when you roll back
to the previous version.

• It makes all workers run in a mode compatible with KCL 1.x and start using the load balancing
algorithm used in previous KCL versions. If you have issues with the new load balancing
algorithm in KCL 3.x, this will mitigate the issue immediately.

Working with DynamoDB Streams API Version 2012-08-10 1118

https://docs.amazonaws.cn//streams/latest/dev/kcl-migration-from-2-3.html#kcl-migration-from-2-3-worker-metrics
https://docs.amazonaws.cn//streams/latest/dev/troubleshooting-consumers.html
https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client/scripts/KclMigrationTool.py

Amazon DynamoDB Developer Guide

Important

The coordinator state table in DynamoDB must exist and must not be deleted during the
migration, rollback, and rollforward process.

Note

It's important that all workers in your consumer application use the same load balancing
algorithm at a given time. The KCL Migration Tool makes sure that all workers in your KCL
3.x consumer application switch to the KCL 1.x compatible mode so that all workers run the
same load balancing algorithm during the application rollback to the previous KCL version.

You can download the KCL Migration Tool in the scripts directory of the KCL GitHub repository.
Run the script from a worker or host with appropriate permissions to write to the coordinator state
table, worker metrics table, and lease table. Ensure the appropriate IAM permissions are configured
for KCL consumer applications. Run the script only once per KCL application using the specified
command:

python3 ./KclMigrationTool.py --region region --mode rollback [--
application_name applicationName] [--lease_table_name leaseTableName]
 [--coordinator_state_table_name coordinatorStateTableName] [--
worker_metrics_table_name workerMetricsTableName]

Parameters

--region

Replace region with your Amazon Web Services Region.

--application_name

This parameter is required if you're using default names for your DynamoDB metadata tables
(lease table, coordinator state table, and worker metrics table). If you have specified custom
names for these tables, you can omit this parameter. Replace applicationName with your
actual KCL application name. The tool uses this name to derive the default table names if
custom names are not provided.

Working with DynamoDB Streams API Version 2012-08-10 1119

https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client/scripts/KclMigrationTool.py
https://github.com/awslabs/amazon-kinesis-client/tree/master
https://docs.aws.amazon.com/streams/latest/dev/kcl-iam-permissions.html

Amazon DynamoDB Developer Guide

--lease_table_name

This parameter is needed when you have set a custom name for the lease table in your KCL
configuration. If you're using the default table name, you can omit this parameter. Replace
leaseTableName with the custom table name you specified for your lease table.

--coordinator_state_table_name

This parameter is needed when you have set a custom name for the coordinator state table in
your KCL configuration. If you're using the default table name, you can omit this parameter.
Replace coordinatorStateTableName with the custom table name you specified for your
coordinator state table.

--worker_metrics_table_name

This parameter is needed when you have set a custom name for the worker metrics table in
your KCL configuration. If you're using the default table name, you can omit this parameter.
Replace workerMetricsTableName with the custom table name you specified for your worker
metrics table.

Step 2: Redeploy the code with the previous KCL version

Important

Any mention of version 2.x in the output generated by the KCL Migration Tool should be
interpreted as referring to KCL version 1.x. Running the script does not perform a complete
rollback, it only switches the load balancing algorithm to the one used in KCL version 1.x.

After running the KCL Migration Tool for a rollback, you'll see one of these messages:

Message 1

"Rollback completed. Your application was running 2x compatible functionality. Please rollback
to your previous application binaries by deploying the code with your previous KCL version."

Required action: This means that your workers were running in the KCL 1.x compatible mode.
Redeploy the code with the previous KCL version to your workers.

Working with DynamoDB Streams API Version 2012-08-10 1120

Amazon DynamoDB Developer Guide

Message 2

"Rollback completed. Your KCL Application was running 3x functionality and will rollback to 2x
compatible functionality. If you don't see mitigation after a short period of time, please rollback
to your previous application binaries by deploying the code with your previous KCL version."

Required action: This means that your workers were running in KCL 3.x mode and the KCL
Migration Tool switched all workers to KCL 1.x compatible mode. Redeploy the code with the
previous KCL version to your workers.

Message 3

"Application was already rolled back. Any KCLv3 resources that could be deleted were cleaned
up to avoid charges until the application can be rolled forward with migration."

Required action: This means that your workers were already rolled back to run in the KCL 1.x
compatible mode. Redeploy the code with the previous KCL version to your workers.

Roll forward to KCL 3.x after a rollback

This topic explains how to roll forward your consumer application to KCL 3.x after a rollback. When
you need to roll forward, you must complete a two-step process:

1. Run the KCL Migration Tool.

2. Deploy the code with KCL 3.x.

Step 1: Run the KCL Migration Tool

Run the KCL Migration Tool with the following command to roll forward to KCL 3.x:

python3 ./KclMigrationTool.py --region region --mode rollforward [--
application_name applicationName] [--
coordinator_state_table_name coordinatorStateTableName]

Parameters

--region

Replace region with your Amazon Web Services Region.

Working with DynamoDB Streams API Version 2012-08-10 1121

https://github.com/awslabs/amazon-kinesis-client/blob/master/amazon-kinesis-client/scripts/KclMigrationTool.py

Amazon DynamoDB Developer Guide

--application_name

This parameter is required if you're using default names for your coordinator state table. If
you have specified custom names for the coordinator state table, you can omit this parameter.
Replace applicationName with your actual KCL application name. The tool uses this name to
derive the default table names if custom names are not provided.

--coordinator_state_table_name

This parameter is needed when you have set a custom name for the coordinator state table in
your KCL configuration. If you're using the default table name, you can omit this parameter.
Replace coordinatorStateTableName with the custom table name you specified for your
coordinator state table.

After you run the migration tool in roll-forward mode, KCL creates the following DynamoDB
resources required for KCL 3.x:

• A Global Secondary Index on the lease table

• A worker metrics table

Step 2: Deploy the code with KCL 3.x

After running the KCL Migration Tool for a roll forward, deploy your code with KCL 3.x to your
workers. To complete your migration, see Step 8: Complete the migration.

Walkthrough: DynamoDB Streams Kinesis adapter

This section is a walkthrough of a Java application that uses the Amazon Kinesis Client Library
and the Amazon DynamoDB Streams Kinesis Adapter. The application shows an example of data
replication, in which write activity from one table is applied to a second table, with both tables'
contents staying in sync. For the source code, see Complete program: DynamoDB Streams Kinesis
adapter.

The program does the following:

1. Creates two DynamoDB tables named KCL-Demo-src and KCL-Demo-dst. Each of these tables
has a stream enabled on it.

2. Generates update activity in the source table by adding, updating, and deleting items. This
causes data to be written to the table's stream.

Working with DynamoDB Streams API Version 2012-08-10 1122

https://docs.aws.amazon.com/streams/latest/dev/kcl-migration-from-2-3.html#kcl-migration-from-2-3-finish

Amazon DynamoDB Developer Guide

3. Reads the records from the stream, reconstructs them as DynamoDB requests, and applies the
requests to the destination table.

4. Scans the source and destination tables to ensure that their contents are identical.

5. Cleans up by deleting the tables.

These steps are described in the following sections, and the complete application is shown at the
end of the walkthrough.

Topics

• Step 1: Create DynamoDB tables

• Step 2: Generate update activity in source table

• Step 3: Process the stream

• Step 4: Ensure that both tables have identical contents

• Step 5: Clean up

• Complete program: DynamoDB Streams Kinesis adapter

Step 1: Create DynamoDB tables

The first step is to create two DynamoDB tables—a source table and a destination table. The
StreamViewType on the source table's stream is NEW_IMAGE. This means that whenever an item
is modified in this table, the item's "after" image is written to the stream. In this way, the stream
keeps track of all write activity on the table.

The following example shows the code that is used for creating both tables.

java.util.List<AttributeDefinition> attributeDefinitions = new
 ArrayList<AttributeDefinition>();
attributeDefinitions.add(new
 AttributeDefinition().withAttributeName("Id").withAttributeType("N"));

java.util.List<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();
keySchema.add(new
 KeySchemaElement().withAttributeName("Id").withKeyType(KeyType.HASH)); // Partition

 // key

Working with DynamoDB Streams API Version 2012-08-10 1123

Amazon DynamoDB Developer Guide

ProvisionedThroughput provisionedThroughput = new
 ProvisionedThroughput().withReadCapacityUnits(2L)
 .withWriteCapacityUnits(2L);

StreamSpecification streamSpecification = new StreamSpecification();
streamSpecification.setStreamEnabled(true);
streamSpecification.setStreamViewType(StreamViewType.NEW_IMAGE);
CreateTableRequest createTableRequest = new
 CreateTableRequest().withTableName(tableName)
 .withAttributeDefinitions(attributeDefinitions).withKeySchema(keySchema)

 .withProvisionedThroughput(provisionedThroughput).withStreamSpecification(streamSpecification);

Step 2: Generate update activity in source table

The next step is to generate some write activity on the source table. While this activity is taking
place, the source table's stream is also updated in near-real time.

The application defines a helper class with methods that call the PutItem, UpdateItem, and
DeleteItem API operations for writing the data. The following code example shows how these
methods are used.

StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "101", "test1");
StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "101", "test2");
StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "101");
StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName, "102", "demo3");
StreamsAdapterDemoHelper.updateItem(dynamoDBClient, tableName, "102", "demo4");
StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName, "102");

Step 3: Process the stream

Now the program begins processing the stream. The DynamoDB Streams Kinesis Adapter acts
as a transparent layer between the KCL and the DynamoDB Streams endpoint, so that the code
can fully use KCL rather than having to make low-level DynamoDB Streams calls. The program
performs the following tasks:

• It defines a record processor class, StreamsRecordProcessor, with methods that comply
with the KCL interface definition: initialize, processRecords, and shutdown. The
processRecords method contains the logic required for reading from the source table's stream
and writing to the destination table.

Working with DynamoDB Streams API Version 2012-08-10 1124

Amazon DynamoDB Developer Guide

• It defines a class factory for the record processor class (StreamsRecordProcessorFactory).
This is required for Java programs that use the KCL.

• It instantiates a new KCL Worker, which is associated with the class factory.

• It shuts down the Worker when record processing is complete.

Optionally, enable catch-up mode in your Streams KCL Adapter configuration to automatically
scale GetRecords API calling rate by 3x (default) when stream processing lag exceeds one minute
(default), helping your stream consumer handle high throughput spikes in your table.

To learn more about the KCL interface definition, see Developing consumers using the Kinesis client
library in the Amazon Kinesis Data Streams Developer Guide.

The following code example shows the main loop in StreamsRecordProcessor. The case
statement determines what action to perform, based on the OperationType that appears in the
stream record.

for (Record record : records) {
 String data = new String(record.getData().array(), Charset.forName("UTF-8"));
 System.out.println(data);
 if (record instanceof RecordAdapter) {
 software.amazon.dynamodb.model.Record streamRecord = ((RecordAdapter)
 record)
 .getInternalObject();

 switch (streamRecord.getEventName()) {
 case "INSERT":
 case "MODIFY":
 StreamsAdapterDemoHelper.putItem(dynamoDBClient, tableName,
 streamRecord.getDynamodb().getNewImage());
 break;
 case "REMOVE":
 StreamsAdapterDemoHelper.deleteItem(dynamoDBClient, tableName,
 streamRecord.getDynamodb().getKeys().get("Id").getN());
 }
 }
 checkpointCounter += 1;
 if (checkpointCounter % 10 == 0) {
 try {
 checkpointer.checkpoint();
 }

Working with DynamoDB Streams API Version 2012-08-10 1125

https://docs.amazonaws.cn/kinesis/latest/dev/developing-consumers-with-kcl.html
https://docs.amazonaws.cn/kinesis/latest/dev/developing-consumers-with-kcl.html

Amazon DynamoDB Developer Guide

 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Step 4: Ensure that both tables have identical contents

At this point, the source and destination tables' contents are in sync. The application issues Scan
requests against both tables to verify that their contents are, in fact, identical.

The DemoHelper class contains a ScanTable method that calls the low-level Scan API. The
following example shows how this is used.

if (StreamsAdapterDemoHelper.scanTable(dynamoDBClient, srcTable).getItems()
 .equals(StreamsAdapterDemoHelper.scanTable(dynamoDBClient, destTable).getItems()))
 {
 System.out.println("Scan result is equal.");
}
else {
 System.out.println("Tables are different!");
}

Step 5: Clean up

The demo is complete, so the application deletes the source and destination tables. See the
following code example. Even after the tables are deleted, their streams remain available for up to
24 hours, after which they are automatically deleted.

dynamoDBClient.deleteTable(new DeleteTableRequest().withTableName(srcTable));
dynamoDBClient.deleteTable(new DeleteTableRequest().withTableName(destTable));

Complete program: DynamoDB Streams Kinesis adapter

The following is the complete Java program that performs the tasks described in Walkthrough:
DynamoDB Streams Kinesis adapter. When you run it, you should see output similar to the
following.

Creating table KCL-Demo-src
Creating table KCL-Demo-dest

Working with DynamoDB Streams API Version 2012-08-10 1126

Amazon DynamoDB Developer Guide

Table is active.
Creating worker for stream: arn:aws:dynamodb:us-west-2:111122223333:table/KCL-Demo-src/
stream/2015-05-19T22:48:56.601
Starting worker...
Scan result is equal.
Done.

Important

To run this program, ensure that the client application has access to DynamoDB and
Amazon CloudWatch using policies. For more information, see Identity-based policies for
DynamoDB.

The source code consists of four .java files:

• StreamsAdapterDemo.java

• StreamsRecordProcessor.java

• StreamsRecordProcessorFactory.java

• StreamsAdapterDemoHelper.java

StreamsAdapterDemo.java

package com.amazonaws.codesamples;

import
 com.amazonaws.services.dynamodbv2.streamsadapter.AmazonDynamoDBStreamsAdapterClient;
import com.amazonaws.services.dynamodbv2.streamsadapter.StreamsSchedulerFactory;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.polling.DynamoDBStreamsPollingConfig;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cloudwatch.CloudWatchAsyncClient;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;
import software.amazon.kinesis.common.ConfigsBuilder;
import software.amazon.kinesis.common.InitialPositionInStream;
import software.amazon.kinesis.common.InitialPositionInStreamExtended;

Working with DynamoDB Streams API Version 2012-08-10 1127

Amazon DynamoDB Developer Guide

import software.amazon.kinesis.coordinator.Scheduler;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;
import software.amazon.kinesis.processor.StreamTracker;
import software.amazon.kinesis.retrieval.RetrievalConfig;

public class StreamsAdapterDemo {

 private static DynamoDbAsyncClient dynamoDbAsyncClient;
 private static CloudWatchAsyncClient cloudWatchAsyncClient;
 private static AmazonDynamoDBStreamsAdapterClient
 amazonDynamoDbStreamsAdapterClient;

 private static String tablePrefix = "KCL-Demo";
 private static String streamArn;

 private static Region region = Region.US_EAST_1;
 private static AwsCredentialsProvider credentialsProvider =
 DefaultCredentialsProvider.create();

 public static void main(String[] args) throws Exception {
 System.out.println("Starting demo...");
 dynamoDbAsyncClient = DynamoDbAsyncClient.builder()
 .credentialsProvider(credentialsProvider)
 .region(region)
 .build();
 cloudWatchAsyncClient = CloudWatchAsyncClient.builder()
 .credentialsProvider(credentialsProvider)
 .region(region)
 .build();
 amazonDynamoDbStreamsAdapterClient = new
 AmazonDynamoDBStreamsAdapterClient(credentialsProvider, region);

 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";

 setUpTables();

 StreamTracker streamTracker =
 StreamsSchedulerFactory.createSingleStreamTracker(streamArn,

 InitialPositionInStreamExtended.newInitialPosition(InitialPositionInStream.TRIM_HORIZON));

 ShardRecordProcessorFactory shardRecordProcessorFactory =
 new StreamsAdapterDemoProcessorFactory(dynamoDbAsyncClient, destTable);

Working with DynamoDB Streams API Version 2012-08-10 1128

Amazon DynamoDB Developer Guide

 ConfigsBuilder configsBuilder = new ConfigsBuilder(
 streamTracker,
 "streams-adapter-demo",
 amazonDynamoDbStreamsAdapterClient,
 dynamoDbAsyncClient,
 cloudWatchAsyncClient,
 "streams-demo-worker",
 shardRecordProcessorFactory
);

 DynamoDBStreamsPollingConfig pollingConfig = new
 DynamoDBStreamsPollingConfig(amazonDynamoDbStreamsAdapterClient);
 RetrievalConfig retrievalConfig = configsBuilder.retrievalConfig();
 retrievalConfig.retrievalSpecificConfig(pollingConfig);

 System.out.println("Creating scheduler for stream " + streamArn);
 Scheduler scheduler = StreamsSchedulerFactory.createScheduler(
 configsBuilder.checkpointConfig(),
 configsBuilder.coordinatorConfig(),
 configsBuilder.leaseManagementConfig(),
 configsBuilder.lifecycleConfig(),
 configsBuilder.metricsConfig(),
 configsBuilder.processorConfig(),
 retrievalConfig,
 amazonDynamoDbStreamsAdapterClient
);

 System.out.println("Starting scheduler...");
 Thread t = new Thread(scheduler);
 t.start();

 Thread.sleep(250000);

 System.out.println("Stopping scheduler...");
 scheduler.shutdown();
 t.join();

 if (StreamsAdapterDemoHelper.scanTable(dynamoDbAsyncClient, srcTable).items()
 .equals(StreamsAdapterDemoHelper.scanTable(dynamoDbAsyncClient,
 destTable).items())) {
 System.out.println("Scan result is equal.");
 } else {
 System.out.println("Tables are different!");

Working with DynamoDB Streams API Version 2012-08-10 1129

Amazon DynamoDB Developer Guide

 }

 System.out.println("Done.");
 cleanupAndExit(0);
 }

 private static void setUpTables() {
 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";
 streamArn = StreamsAdapterDemoHelper.createTable(dynamoDbAsyncClient,
 srcTable);
 StreamsAdapterDemoHelper.createTable(dynamoDbAsyncClient, destTable);

 awaitTableCreation(srcTable);

 performOps(srcTable);
 }

 private static void awaitTableCreation(String tableName) {
 Integer retries = 0;
 Boolean created = false;
 while (!created && retries < 100) {
 DescribeTableResponse result =
 StreamsAdapterDemoHelper.describeTable(dynamoDbAsyncClient, tableName);
 created = result.table().tableStatusAsString().equals("ACTIVE");
 if (created) {
 System.out.println("Table is active.");
 return;
 } else {
 retries++;
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // do nothing
 }
 }
 }
 System.out.println("Timeout after table creation. Exiting...");
 cleanupAndExit(1);
 }

 private static void performOps(String tableName) {
 StreamsAdapterDemoHelper.putItem(dynamoDbAsyncClient, tableName, "101",
 "test1");

Working with DynamoDB Streams API Version 2012-08-10 1130

Amazon DynamoDB Developer Guide

 StreamsAdapterDemoHelper.updateItem(dynamoDbAsyncClient, tableName, "101",
 "test2");
 StreamsAdapterDemoHelper.deleteItem(dynamoDbAsyncClient, tableName, "101");
 StreamsAdapterDemoHelper.putItem(dynamoDbAsyncClient, tableName, "102",
 "demo3");
 StreamsAdapterDemoHelper.updateItem(dynamoDbAsyncClient, tableName, "102",
 "demo4");
 StreamsAdapterDemoHelper.deleteItem(dynamoDbAsyncClient, tableName, "102");
 }

 private static void cleanupAndExit(Integer returnValue) {
 String srcTable = tablePrefix + "-src";
 String destTable = tablePrefix + "-dest";

 dynamoDbAsyncClient.deleteTable(DeleteTableRequest.builder().tableName(srcTable).build());

 dynamoDbAsyncClient.deleteTable(DeleteTableRequest.builder().tableName(destTable).build());
 System.exit(returnValue);
 }
}

StreamsRecordProcessor.java

package com.amazonaws.codesamples;

import
 com.amazonaws.services.dynamodbv2.streamsadapter.adapter.DynamoDBStreamsClientRecord;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.model.DynamoDBStreamsProcessRecordsInput;
import
 com.amazonaws.services.dynamodbv2.streamsadapter.processor.DynamoDBStreamsShardRecordProcessor;
import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.dynamodb.model.Record;
import software.amazon.kinesis.exceptions.InvalidStateException;
import software.amazon.kinesis.exceptions.ShutdownException;
import software.amazon.kinesis.lifecycle.events.InitializationInput;
import software.amazon.kinesis.lifecycle.events.LeaseLostInput;
import software.amazon.kinesis.lifecycle.events.ShardEndedInput;
import software.amazon.kinesis.lifecycle.events.ShutdownRequestedInput;

import java.nio.charset.Charset;
import java.nio.charset.StandardCharsets;

Working with DynamoDB Streams API Version 2012-08-10 1131

Amazon DynamoDB Developer Guide

public class StreamsRecordProcessor implements DynamoDBStreamsShardRecordProcessor {

 private Integer checkpointCounter;

 private final DynamoDbAsyncClient dynamoDbAsyncClient;
 private final String tableName;

 public StreamsRecordProcessor(DynamoDbAsyncClient dynamoDbAsyncClient, String
 tableName) {
 this.dynamoDbAsyncClient = dynamoDbAsyncClient;
 this.tableName = tableName;
 }

 @Override
 public void initialize(InitializationInput initializationInput) {
 this.checkpointCounter = 0;
 }

 @Override
 public void processRecords(DynamoDBStreamsProcessRecordsInput
 dynamoDBStreamsProcessRecordsInput) {
 for (DynamoDBStreamsClientRecord record:
 dynamoDBStreamsProcessRecordsInput.records()) {
 String data = new String(record.data().array(), StandardCharsets.UTF_8);
 System.out.println(data);
 Record streamRecord = record.getRecord();

 switch (streamRecord.eventName()) {
 case INSERT:
 case MODIFY:
 StreamsAdapterDemoHelper.putItem(dynamoDbAsyncClient, tableName,
 streamRecord.dynamodb().newImage());
 case REMOVE:
 StreamsAdapterDemoHelper.deleteItem(dynamoDbAsyncClient, tableName,
 streamRecord.dynamodb().keys().get("Id").n());
 }
 checkpointCounter += 1;
 if (checkpointCounter % 10 == 0) {
 try {
 dynamoDBStreamsProcessRecordsInput.checkpointer().checkpoint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Working with DynamoDB Streams API Version 2012-08-10 1132

Amazon DynamoDB Developer Guide

 }
 }

 @Override
 public void leaseLost(LeaseLostInput leaseLostInput) {
 System.out.println("Lease Lost");
 }

 @Override
 public void shardEnded(ShardEndedInput shardEndedInput) {
 try {
 shardEndedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void shutdownRequested(ShutdownRequestedInput shutdownRequestedInput) {
 try {
 shutdownRequestedInput.checkpointer().checkpoint();
 } catch (ShutdownException | InvalidStateException e) {
 e.printStackTrace();
 }
 }
}

StreamsRecordProcessorFactory.java

package com.amazonaws.codesamples;

import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.kinesis.processor.ShardRecordProcessor;
import software.amazon.kinesis.processor.ShardRecordProcessorFactory;

public class StreamsAdapterDemoProcessorFactory implements ShardRecordProcessorFactory
 {
 private final String tableName;
 private final DynamoDbAsyncClient dynamoDbAsyncClient;

 public StreamsAdapterDemoProcessorFactory(DynamoDbAsyncClient asyncClient, String
 tableName) {
 this.tableName = tableName;

Working with DynamoDB Streams API Version 2012-08-10 1133

Amazon DynamoDB Developer Guide

 this.dynamoDbAsyncClient = asyncClient;
 }

 @Override
 public ShardRecordProcessor shardRecordProcessor() {
 return new StreamsRecordProcessor(dynamoDbAsyncClient, tableName);
 }
}

StreamsAdapterDemoHelper.java

package com.amazonaws.codesamples;

import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.BillingMode;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DeleteItemRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.OnDemandThroughput;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.ResourceInUseException;
import software.amazon.awssdk.services.dynamodb.model.ScanRequest;
import software.amazon.awssdk.services.dynamodb.model.ScanResponse;
import software.amazon.awssdk.services.dynamodb.model.StreamSpecification;
import software.amazon.awssdk.services.dynamodb.model.StreamViewType;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class StreamsAdapterDemoHelper {

 /**
 * @return StreamArn
 */

Working with DynamoDB Streams API Version 2012-08-10 1134

Amazon DynamoDB Developer Guide

 public static String createTable(DynamoDbAsyncClient client, String tableName) {
 List<AttributeDefinition> attributeDefinitions = new ArrayList<>();
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("Id")
 .attributeType("N")
 .build());

 List<KeySchemaElement> keySchema = new ArrayList<>();
 keySchema.add(KeySchemaElement.builder()
 .attributeName("Id")
 .keyType(KeyType.HASH) // Partition key
 .build());

 StreamSpecification streamSpecification = StreamSpecification.builder()
 .streamEnabled(true)
 .streamViewType(StreamViewType.NEW_IMAGE)
 .build();

 CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(attributeDefinitions)
 .keySchema(keySchema)
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .streamSpecification(streamSpecification)
 .build();

 try {
 System.out.println("Creating table " + tableName);
 CreateTableResponse result = client.createTable(createTableRequest).join();
 return result.tableDescription().latestStreamArn();
 } catch (Exception e) {
 if (e.getCause() instanceof ResourceInUseException) {
 System.out.println("Table already exists.");
 return describeTable(client, tableName).table().latestStreamArn();
 }
 throw e;
 }
 }

 public static DescribeTableResponse describeTable(DynamoDbAsyncClient client,
 String tableName) {
 return client.describeTable(DescribeTableRequest.builder()
 .tableName(tableName)
 .build())

Working with DynamoDB Streams API Version 2012-08-10 1135

Amazon DynamoDB Developer Guide

 .join();
 }

 public static ScanResponse scanTable(DynamoDbAsyncClient dynamoDbClient, String
 tableName) {
 return dynamoDbClient.scan(ScanRequest.builder()
 .tableName(tableName)
 .build())
 .join();
 }

 public static void putItem(DynamoDbAsyncClient dynamoDbClient, String tableName,
 String id, String val) {
 Map<String, AttributeValue> item = new HashMap<>();
 item.put("Id", AttributeValue.builder().n(id).build());
 item.put("attribute-1", AttributeValue.builder().s(val).build());

 putItem(dynamoDbClient, tableName, item);
 }

 public static void putItem(DynamoDbAsyncClient dynamoDbClient, String tableName,
 Map<String, AttributeValue> items) {
 PutItemRequest putItemRequest = PutItemRequest.builder()
 .tableName(tableName)
 .item(items)
 .build();
 dynamoDbClient.putItem(putItemRequest).join();
 }

 public static void updateItem(DynamoDbAsyncClient dynamoDbClient, String tableName,
 String id, String val) {
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Id", AttributeValue.builder().n(id).build());

 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#attr2", "attribute-2");

 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
 expressionAttributeValues.put(":val", AttributeValue.builder().s(val).build());

 UpdateItemRequest updateItemRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attr2 = :val")

Working with DynamoDB Streams API Version 2012-08-10 1136

Amazon DynamoDB Developer Guide

 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 dynamoDbClient.updateItem(updateItemRequest).join();
 }

 public static void deleteItem(DynamoDbAsyncClient dynamoDbClient, String tableName,
 String id) {
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Id", AttributeValue.builder().n(id).build());

 DeleteItemRequest deleteItemRequest = DeleteItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .build();
 dynamoDbClient.deleteItem(deleteItemRequest).join();
 }
}

DynamoDB Streams low-level API: Java example

Note

The code on this page is not exhaustive and does not handle all scenarios for consuming
Amazon DynamoDB Streams. The recommended way to consume stream records from
DynamoDB is through the Amazon Kinesis Adapter using the Kinesis Client Library (KCL), as
described in Using the DynamoDB Streams Kinesis adapter to process stream records.

This section contains a Java program that shows DynamoDB Streams in action. The program does
the following:

1. Creates a DynamoDB table with a stream enabled.

2. Describes the stream settings for this table.

3. Modifies data in the table.

4. Describes the shards in the stream.

5. Reads the stream records from the shards.

6. Fetches child shards and continues reading records.

Working with DynamoDB Streams API Version 2012-08-10 1137

Amazon DynamoDB Developer Guide

7. Cleans up.

When you run the program, you will see output similar to the following.

Testing Streams Demo
Creating an Amazon DynamoDB table TestTableForStreams with a simple primary key: Id
Waiting for TestTableForStreams to be created...
Current stream ARN for TestTableForStreams: arn:aws:dynamodb:us-
east-2:123456789012:table/TestTableForStreams/stream/2018-03-20T16:49:55.208
Stream enabled: true
Update view type: NEW_AND_OLD_IMAGES

Performing write activities on TestTableForStreams
Processing item 1 of 100
Processing item 2 of 100
Processing item 3 of 100
...
Processing item 100 of 100
Shard: {ShardId: shardId-1234567890-...,SequenceNumberRange: {StartingSequenceNumber:
 100002572486797508907,},}
 Shard iterator: EjYFEkX2a26eVTWe...
 StreamRecord(ApproximateCreationDateTime=2025-04-09T13:11:58Z,
 Keys={Id=AttributeValue(S=4)}, NewImage={Message=AttributeValue(S=New Item!),
 Id=AttributeValue(S=4)}, SequenceNumber=2000001584047545833909, SizeBytes=22,
 StreamViewType=NEW_AND_OLD_IMAGES)
 StreamRecord(ApproximateCreationDateTime=2025-04-09T13:11:58Z,
 Keys={Id=AttributeValue(S=4)}, NewImage={Message=AttributeValue(S=This is an updated
 item), Id=AttributeValue(S=4)}, OldImage={Message=AttributeValue(S=New Item!),
 Id=AttributeValue(S=4)}, SequenceNumber=2100003604869767892701, SizeBytes=55,
 StreamViewType=NEW_AND_OLD_IMAGES)
 StreamRecord(ApproximateCreationDateTime=2025-04-09T13:11:58Z,
 Keys={Id=AttributeValue(S=4)}, OldImage={Message=AttributeValue(S=This is an updated
 item), Id=AttributeValue(S=4)}, SequenceNumber=2200001099771112898434, SizeBytes=36,
 StreamViewType=NEW_AND_OLD_IMAGES)
...
Deleting the table...
Table StreamsDemoTable deleted.
Demo complete

Example Example

import java.util.HashMap;

Working with DynamoDB Streams API Version 2012-08-10 1138

Amazon DynamoDB Developer Guide

import java.util.List;
import java.util.Map;

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeAction;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.AttributeValueUpdate;
import software.amazon.awssdk.services.dynamodb.model.BillingMode;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DeleteItemRequest;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeStreamRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeStreamResponse;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetRecordsRequest;
import software.amazon.awssdk.services.dynamodb.model.GetRecordsResponse;
import software.amazon.awssdk.services.dynamodb.model.GetShardIteratorRequest;
import software.amazon.awssdk.services.dynamodb.model.GetShardIteratorResponse;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.Record;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.model.Shard;
import software.amazon.awssdk.services.dynamodb.model.ShardFilter;
import software.amazon.awssdk.services.dynamodb.model.ShardFilterType;
import software.amazon.awssdk.services.dynamodb.model.ShardIteratorType;
import software.amazon.awssdk.services.dynamodb.model.StreamSpecification;
import software.amazon.awssdk.services.dynamodb.model.TableDescription;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.streams.DynamoDbStreamsClient;
import software.amazon.awssdk.services.dynamodb.waiters.DynamoDbWaiter;

public class StreamsLowLevelDemo {

 public static void main(String[] args) {
 final String usage = "Testing Streams Demo";

Working with DynamoDB Streams API Version 2012-08-10 1139

Amazon DynamoDB Developer Guide

 try {
 System.out.println(usage);

 String tableName = "StreamsDemoTable";
 String key = "Id";
 System.out.println("Creating an Amazon DynamoDB table " + tableName + "
 with a simple primary key: " + key);
 Region region = Region.US_WEST_2;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 DynamoDbStreamsClient ddbStreams = DynamoDbStreamsClient.builder()
 .region(region)
 .build();
 DescribeTableRequest describeTableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();
 TableDescription tableDescription = null;
 try{
 tableDescription = ddb.describeTable(describeTableRequest).table();
 }catch (Exception e){
 System.out.println("Table " + tableName + " does not exist.");
 tableDescription = createTable(ddb, tableName, key);
 }

 // Print the stream settings for the table
 String streamArn = tableDescription.latestStreamArn();

 StreamSpecification streamSpec = tableDescription.streamSpecification();
 System.out.println("Current stream ARN for " + tableDescription.tableName()
 + ": " +
 streamArn);
 System.out.println("Stream enabled: " + streamSpec.streamEnabled());
 System.out.println("Update view type: " + streamSpec.streamViewType());
 System.out.println();
 // Generate write activity in the table
 System.out.println("Performing write activities on " + tableName);
 int maxItemCount = 100;
 for (Integer i = 1; i <= maxItemCount; i++) {
 System.out.println("Processing item " + i + " of " + maxItemCount);
 // Write a new item
 putItemInTable(key, i, tableName, ddb);
 // Update the item

Working with DynamoDB Streams API Version 2012-08-10 1140

Amazon DynamoDB Developer Guide

 updateItemInTable(key, i, tableName, ddb);
 // Delete the item
 deleteDynamoDBItem(key, i, tableName, ddb);
 }

 // Process Stream
 processStream(streamArn, maxItemCount, ddb, ddbStreams, tableName);

 // Delete the table
 System.out.println("Deleting the table...");
 DeleteTableRequest deleteTableRequest = DeleteTableRequest.builder()
 .tableName(tableName)
 .build();
 ddb.deleteTable(deleteTableRequest);
 System.out.println("Table " + tableName + " deleted.");
 System.out.println("Demo complete");
 ddb.close();
 } catch (Exception e) {
 System.out.println("Error: " + e.getMessage());
 }
 }

 private static void processStream(String streamArn, int maxItemCount,
 DynamoDbClient ddb, DynamoDbStreamsClient ddbStreams, String tableName) {
 // Get all the shard IDs from the stream. Note that DescribeStream returns
 // the shard IDs one page at a time.
 String lastEvaluatedShardId = null;
 do {
 DescribeStreamRequest describeStreamRequest =
 DescribeStreamRequest.builder()
 .streamArn(streamArn)
 .exclusiveStartShardId(lastEvaluatedShardId).build();
 DescribeStreamResponse describeStreamResponse =
 ddbStreams.describeStream(describeStreamRequest);

 List<Shard> shards = describeStreamResponse.streamDescription().shards();

 // Process each shard on this page

 fetchShardsAndReadRecords(streamArn, maxItemCount, ddbStreams, shards);

 // If LastEvaluatedShardId is set, then there is
 // at least one more page of shard IDs to retrieve

Working with DynamoDB Streams API Version 2012-08-10 1141

Amazon DynamoDB Developer Guide

 lastEvaluatedShardId =
 describeStreamResponse.streamDescription().lastEvaluatedShardId();

 } while (lastEvaluatedShardId != null);

 }

 private static void fetchShardsAndReadRecords(String streamArn, int maxItemCount,
 DynamoDbStreamsClient ddbStreams, List<Shard> shards) {
 for (Shard shard : shards) {
 String shardId = shard.shardId();
 System.out.println("Shard: " + shard);

 // Get an iterator for the current shard
 GetShardIteratorRequest shardIteratorRequest =
 GetShardIteratorRequest.builder()
 .streamArn(streamArn).shardId(shardId)
 .shardIteratorType(ShardIteratorType.TRIM_HORIZON).build();

 GetShardIteratorResponse getShardIteratorResult =
 ddbStreams.getShardIterator(shardIteratorRequest);

 String currentShardIter = getShardIteratorResult.shardIterator();

 // Shard iterator is not null until the Shard is sealed (marked as
 READ_ONLY).
 // To prevent running the loop until the Shard is sealed, we process only
 the
 // items that were written into DynamoDB and then exit.
 int processedRecordCount = 0;
 while (currentShardIter != null && processedRecordCount < maxItemCount) {
 // Use the shard iterator to read the stream records
 GetRecordsRequest getRecordsRequest = GetRecordsRequest.builder()
 .shardIterator(currentShardIter).build();
 GetRecordsResponse getRecordsResult =
 ddbStreams.getRecords(getRecordsRequest);
 List<Record> records = getRecordsResult.records();
 for (Record record : records) {
 System.out.println(" " + record.dynamodb());
 }
 processedRecordCount += records.size();
 currentShardIter = getRecordsResult.nextShardIterator();
 }
 if (currentShardIter == null){

Working with DynamoDB Streams API Version 2012-08-10 1142

Amazon DynamoDB Developer Guide

 System.out.println("Shard has been fully processed. Shard iterator is
 null.");
 System.out.println("Fetch the child shard to continue processing
 instead of bulk fetching all shards");
 DescribeStreamRequest describeStreamRequestForChildShards =
 DescribeStreamRequest.builder()
 .streamArn(streamArn)
 .shardFilter(ShardFilter.builder()
 .type(ShardFilterType.CHILD_SHARDS)
 .shardId(shardId).build())
 .build();
 DescribeStreamResponse describeStreamResponseChildShards =
 ddbStreams.describeStream(describeStreamRequestForChildShards);
 fetchShardsAndReadRecords(streamArn, maxItemCount, ddbStreams,
 describeStreamResponseChildShards.streamDescription().shards());
 }
 }
 }

 private static void putItemInTable(String key, Integer i, String tableName,
 DynamoDbClient ddb) {
 Map<String, AttributeValue> item = new HashMap<>();
 item.put(key, AttributeValue.builder()
 .s(i.toString())
 .build());
 item.put("Message", AttributeValue.builder()
 .s("New Item!")
 .build());
 PutItemRequest request = PutItemRequest.builder()
 .tableName(tableName)
 .item(item)
 .build();
 ddb.putItem(request);
 }

 private static void updateItemInTable(String key, Integer i, String tableName,
 DynamoDbClient ddb) {

 HashMap<String, AttributeValue> itemKey = new HashMap<>();
 itemKey.put(key, AttributeValue.builder()
 .s(i.toString())
 .build());

Working with DynamoDB Streams API Version 2012-08-10 1143

Amazon DynamoDB Developer Guide

 HashMap<String, AttributeValueUpdate> updatedValues = new HashMap<>();
 updatedValues.put("Message", AttributeValueUpdate.builder()
 .value(AttributeValue.builder().s("This is an updated item").build())
 .action(AttributeAction.PUT)
 .build());

 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(itemKey)
 .attributeUpdates(updatedValues)
 .build();
 ddb.updateItem(request);
 }

 public static void deleteDynamoDBItem(String key, Integer i, String tableName,
 DynamoDbClient ddb) {
 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put(key, AttributeValue.builder()
 .s(i.toString())
 .build());

 DeleteItemRequest deleteReq = DeleteItemRequest.builder()
 .tableName(tableName)
 .key(keyToGet)
 .build();
 ddb.deleteItem(deleteReq);
 }

 public static TableDescription createTable(DynamoDbClient ddb, String tableName,
 String key) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 StreamSpecification streamSpecification = StreamSpecification.builder()
 .streamEnabled(true)
 .streamViewType("NEW_AND_OLD_IMAGES")
 .build();
 CreateTableRequest request = CreateTableRequest.builder()
 .attributeDefinitions(AttributeDefinition.builder()
 .attributeName(key)
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(KeySchemaElement.builder()
 .attributeName(key)
 .keyType(KeyType.HASH)
 .build())

Working with DynamoDB Streams API Version 2012-08-10 1144

Amazon DynamoDB Developer Guide

 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .tableName(tableName)
 .streamSpecification(streamSpecification)
 .build();

 TableDescription newTable;
 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 System.out.println("Waiting for " + tableName + " to be created...");

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 newTable = response.tableDescription();
 return newTable;

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return null;
 }

}

DynamoDB Streams and Amazon Lambda triggers

Amazon DynamoDB is integrated with Amazon Lambda so that you can create triggers—pieces
of code that automatically respond to events in DynamoDB Streams. With triggers, you can build
applications that react to data modifications in DynamoDB tables.

Topics

• Tutorial #1: Using filters to process all events with Amazon DynamoDB and Amazon Lambda
using the Amazon CLI

Working with DynamoDB Streams API Version 2012-08-10 1145

Amazon DynamoDB Developer Guide

• Tutorial #2: Using filters to process some events with DynamoDB and Lambda

• Best practices using DynamoDB Streams with Lambda

If you enable DynamoDB Streams on a table, you can associate the stream Amazon Resource Name
(ARN) with an Amazon Lambda function that you write. All mutation actions to that DynamoDB
table can then be captured as an item on the stream. For example, you can set a trigger so that
when an item in a table is modified a new record immediately appears in that table's stream.

Note

If you subscribe more than two Lambda functions to one DynamoDB stream, read
throttling might occur.

The Amazon Lambda service polls the stream for new records four times per second. When new
stream records are available, your Lambda function is synchronously invoked. You can subscribe up
to two Lambda functions to the same DynamoDB stream. If you subscribe more than two Lambda
functions to the same DynamoDB stream, read throttling might occur.

The Lambda function can send a notification, initiate a workflow, or perform many other actions
that you specify. You can write a Lambda function to simply copy each stream record to persistent
storage, such as Amazon S3 File Gateway (Amazon S3), and create a permanent audit trail of write
activity in your table. Or suppose that you have a mobile gaming app that writes to a GameScores
table. Whenever the TopScore attribute of the GameScores table is updated, a corresponding
stream record is written to the table's stream. This event could then trigger a Lambda function that
posts a congratulatory message on a social media network. This function could also be written
to ignore any stream records that are not updates to GameScores, or that do not modify the
TopScore attribute.

If your function returns an error, Lambda retries the batch until it processes successfully or the data
expires. You can also configure Lambda to retry with a smaller batch, limit the number of retries,
discard records once they become too old, and other options.

As performance best practices, the Lambda function needs to be short lived. To avoid introducing
unnecessary processing delays, it also should not execute complex logic. For a high velocity stream
in particular, it is better to trigger an asynchronous post-processing step function workflows than
synchronous long running Lambdas.

Working with DynamoDB Streams API Version 2012-08-10 1146

https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html

Amazon DynamoDB Developer Guide

You can use Lambda triggers across different Amazon accounts by configuring a resource-based
policy on the DynamoDB stream to grant the cross-account read access to Lambda function. To
learn more about how to configure your stream to allow cross-account access, see Share access
with cross-account Amazon Lambda functions in the DynamoDB Developer Guide.

For more information about Amazon Lambda, see the Amazon Lambda Developer Guide.

Tutorial #1: Using filters to process all events with Amazon DynamoDB and Amazon Lambda
using the Amazon CLI

In this tutorial, you will create an Amazon Lambda trigger to process a stream from a DynamoDB
table.

Topics

• Step 1: Create a DynamoDB table with a stream enabled

• Step 2: Create a Lambda execution role

• Step 3: Create an Amazon SNS topic

• Step 4: Create and test a Lambda function

• Step 5: Create and test a trigger

The scenario for this tutorial is Woofer, a simple social network. Woofer users communicate using
barks (short text messages) that are sent to other Woofer users. The following diagram shows the
components and workflow for this application.

Working with DynamoDB Streams API Version 2012-08-10 1147

https://docs.amazonaws.cn/lambda/latest/dg/

Amazon DynamoDB Developer Guide

1. A user writes an item to a DynamoDB table (BarkTable). Each item in the table represents a
bark.

2. A new stream record is written to reflect that a new item has been added to BarkTable.

3. The new stream record triggers an Amazon Lambda function (publishNewBark).

4. If the stream record indicates that a new item was added to BarkTable, the Lambda function
reads the data from the stream record and publishes a message to a topic in Amazon Simple
Notification Service (Amazon SNS).

5. The message is received by subscribers to the Amazon SNS topic. (In this tutorial, the only
subscriber is an email address.)

Before You Begin

This tutorial uses the Amazon Command Line Interface Amazon CLI. If you have not done so
already, follow the instructions in the Amazon Command Line Interface User Guide to install and
configure the Amazon CLI.

Working with DynamoDB Streams API Version 2012-08-10 1148

https://docs.amazonaws.cn/cli/latest/userguide/

Amazon DynamoDB Developer Guide

Step 1: Create a DynamoDB table with a stream enabled

In this step, you create a DynamoDB table (BarkTable) to store all of the barks from Woofer users.
The primary key is composed of Username (partition key) and Timestamp (sort key). Both of these
attributes are of type string.

BarkTable has a stream enabled. Later in this tutorial, you create a trigger by associating an
Amazon Lambda function with the stream.

1. Enter the following command to create the table.

aws dynamodb create-table \
 --table-name BarkTable \
 --attribute-definitions AttributeName=Username,AttributeType=S
 AttributeName=Timestamp,AttributeType=S \
 --key-schema AttributeName=Username,KeyType=HASH
 AttributeName=Timestamp,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES

2. In the output, look for the LatestStreamArn.

...
"LatestStreamArn": "arn:aws-cn:dynamodb:region:accountID:table/BarkTable/
stream/timestamp
...

Make a note of the region and the accountID, because you need them for the other steps in
this tutorial.

Step 2: Create a Lambda execution role

In this step, you create an Amazon Identity and Access Management (IAM) role
(WooferLambdaRole) and assign permissions to it. This role is used by the Lambda function that
you create in Step 4: Create and test a Lambda function.

You also create a policy for the role. The policy contains all of the permissions that the Lambda
function needs at runtime.

1. Create a file named trust-relationship.json with the following contents.

Working with DynamoDB Streams API Version 2012-08-10 1149

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

2. Enter the following command to create WooferLambdaRole.

aws iam create-role --role-name WooferLambdaRole \
 --path "/service-role/" \
 --assume-role-policy-document file://trust-relationship.json

3. Create a file named role-policy.json with the following contents. (Replace region and
accountID with your Amazon Region and account ID.)

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws-cn:logs:us-east-1:111122223333:*"
 },
 {
 "Effect": "Allow",

Working with DynamoDB Streams API Version 2012-08-10 1150

Amazon DynamoDB Developer Guide

 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:ListStreams"
],
 "Resource": "arn:aws-cn:dynamodb:us-east-1:111122223333:table/
BarkTable/stream/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "*"
]
 }
]
}

The policy has four statements that allow WooferLambdaRole to do the following:

• Run a Lambda function (publishNewBark). You create the function later in this tutorial.

• Access Amazon CloudWatch Logs. The Lambda function writes diagnostics to CloudWatch
Logs at runtime.

• Read data from the DynamoDB stream for BarkTable.

• Publish messages to Amazon SNS.

4. Enter the following command to attach the policy to WooferLambdaRole.

aws iam put-role-policy --role-name WooferLambdaRole \
 --policy-name WooferLambdaRolePolicy \
 --policy-document file://role-policy.json

Step 3: Create an Amazon SNS topic

In this step, you create an Amazon SNS topic (wooferTopic) and subscribe an email address to it.
Your Lambda function uses this topic to publish new barks from Woofer users.

Working with DynamoDB Streams API Version 2012-08-10 1151

Amazon DynamoDB Developer Guide

1. Enter the following command to create a new Amazon SNS topic.

aws sns create-topic --name wooferTopic

2. Enter the following command to subscribe an email address to wooferTopic. (Replace
region and accountID with your Amazon Region and account ID, and replace
example@example.com with a valid email address.)

aws sns subscribe \
 --topic-arn arn:aws:sns:region:accountID:wooferTopic \
 --protocol email \
 --notification-endpoint example@example.com

3. Amazon SNS sends a confirmation message to your email address. Choose the Confirm
subscription link in that message to complete the subscription process.

Step 4: Create and test a Lambda function

In this step, you create an Amazon Lambda function (publishNewBark) to process stream records
from BarkTable.

The publishNewBark function processes only the stream events that correspond to new items in
BarkTable. The function reads data from such an event, and then invokes Amazon SNS to publish
it.

1. Create a file named publishNewBark.js with the following contents. Replace region and
accountID with your Amazon Region and account ID.

'use strict';
var AWS = require("aws-sdk");
var sns = new AWS.SNS();

exports.handler = (event, context, callback) => {

 event.Records.forEach((record) => {
 console.log('Stream record: ', JSON.stringify(record, null, 2));

 if (record.eventName == 'INSERT') {
 var who = JSON.stringify(record.dynamodb.NewImage.Username.S);
 var when = JSON.stringify(record.dynamodb.NewImage.Timestamp.S);
 var what = JSON.stringify(record.dynamodb.NewImage.Message.S);

Working with DynamoDB Streams API Version 2012-08-10 1152

Amazon DynamoDB Developer Guide

 var params = {
 Subject: 'A new bark from ' + who,
 Message: 'Woofer user ' + who + ' barked the following at ' + when
 + ':\n\n ' + what,
 TopicArn: 'arn:aws:sns:region:accountID:wooferTopic'
 };
 sns.publish(params, function(err, data) {
 if (err) {
 console.error("Unable to send message. Error JSON:",
 JSON.stringify(err, null, 2));
 } else {
 console.log("Results from sending message: ",
 JSON.stringify(data, null, 2));
 }
 });
 }
 });
 callback(null, `Successfully processed ${event.Records.length} records.`);
};

2. Create a zip file to contain publishNewBark.js. If you have the zip command-line utility,
you can enter the following command to do this.

zip publishNewBark.zip publishNewBark.js

3. When you create the Lambda function, you specify the Amazon Resource Name (ARN) for
WooferLambdaRole, which you created in Step 2: Create a Lambda execution role. Enter the
following command to retrieve this ARN.

aws iam get-role --role-name WooferLambdaRole

In the output, look for the ARN for WooferLambdaRole.

...
"Arn": "arn:aws-cn:iam::region:role/service-role/WooferLambdaRole"
...

Enter the following command to create the Lambda function. Replace roleARN with the ARN
for WooferLambdaRole.

Working with DynamoDB Streams API Version 2012-08-10 1153

Amazon DynamoDB Developer Guide

aws lambda create-function \
 --region region \
 --function-name publishNewBark \
 --zip-file fileb://publishNewBark.zip \
 --role roleARN \
 --handler publishNewBark.handler \
 --timeout 5 \
 --runtime nodejs16.x

4. Now test publishNewBark to verify that it works. To do this, you provide input that
resembles a real record from DynamoDB Streams.

Create a file named payload.json with the following contents. Replace region and
accountID with your Amazon Web Services Region and account ID.

{
 "Records": [
 {
 "eventID": "7de3041dd709b024af6f29e4fa13d34c",
 "eventName": "INSERT",
 "eventVersion": "1.1",
 "eventSource": "aws:dynamodb",
 "awsRegion": "region",
 "dynamodb": {
 "ApproximateCreationDateTime": 1479499740,
 "Keys": {
 "Timestamp": {
 "S": "2016-11-18:12:09:36"
 },
 "Username": {
 "S": "John Doe"
 }
 },
 "NewImage": {
 "Timestamp": {
 "S": "2016-11-18:12:09:36"
 },
 "Message": {
 "S": "This is a bark from the Woofer social network"
 },
 "Username": {
 "S": "John Doe"
 }

Working with DynamoDB Streams API Version 2012-08-10 1154

Amazon DynamoDB Developer Guide

 },
 "SequenceNumber": "13021600000000001596893679",
 "SizeBytes": 112,
 "StreamViewType": "NEW_IMAGE"
 },
 "eventSourceARN": "arn:aws-cn:dynamodb:region:account ID:table/
BarkTable/stream/2016-11-16T20:42:48.104"
 }
]
}

Enter the following command to test the publishNewBark function.

aws lambda invoke --function-name publishNewBark --payload file://payload.json --
cli-binary-format raw-in-base64-out output.txt

If the test was successful, you will see the following output.

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}

In addition, the output.txt file will contain the following text.

"Successfully processed 1 records."

You will also receive a new email message within a few minutes.

Note

Amazon Lambda writes diagnostic information to Amazon CloudWatch Logs. If
you encounter errors with your Lambda function, you can use these diagnostics for
troubleshooting purposes:

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Logs.

3. Choose the following log group: /aws/lambda/publishNewBark

Working with DynamoDB Streams API Version 2012-08-10 1155

https://console.amazonaws.cn/cloudwatch/

Amazon DynamoDB Developer Guide

4. Choose the latest log stream to view the output (and errors) from the function.

Step 5: Create and test a trigger

In Step 4: Create and test a Lambda function, you tested the Lambda function to ensure that it ran
correctly. In this step, you create a trigger by associating the Lambda function (publishNewBark)
with an event source (the BarkTable stream).

1. When you create the trigger, you need to specify the ARN for the BarkTable stream. Enter
the following command to retrieve this ARN.

aws dynamodb describe-table --table-name BarkTable

In the output, look for the LatestStreamArn.

...
 "LatestStreamArn": "arn:aws-cn:dynamodb:region:accountID:table/BarkTable/
stream/timestamp
...

2. Enter the following command to create the trigger. Replace streamARN with the actual stream
ARN.

aws lambda create-event-source-mapping \
 --region region \
 --function-name publishNewBark \
 --event-source streamARN \
 --batch-size 1 \
 --starting-position TRIM_HORIZON

3. Test the trigger. Enter the following command to add an item to BarkTable.

aws dynamodb put-item \
 --table-name BarkTable \
 --item Username={S="Jane
 Doe"},Timestamp={S="2016-11-18:14:32:17"},Message={S="Testing...1...2...3"}

You should receive a new email message within a few minutes.

Working with DynamoDB Streams API Version 2012-08-10 1156

Amazon DynamoDB Developer Guide

4. Open the DynamoDB console and add a few more items to BarkTable. You must specify
values for the Username and Timestamp attributes. (You should also specify a value for
Message, even though it is not required.) You should receive a new email message for each
item you add to BarkTable.

The Lambda function processes only new items that you add to BarkTable. If you update or
delete an item in the table, the function does nothing.

Note

Amazon Lambda writes diagnostic information to Amazon CloudWatch Logs. If
you encounter errors with your Lambda function, you can use these diagnostics for
troubleshooting purposes.

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Logs.

3. Choose the following log group: /aws/lambda/publishNewBark

4. Choose the latest log stream to view the output (and errors) from the function.

Tutorial #2: Using filters to process some events with DynamoDB and Lambda

In this tutorial, you will create an Amazon Lambda trigger to process only some events in a stream
from a DynamoDB table.

Topics

• Putting it all together - Amazon CloudFormation

• Putting it all together - CDK

With Lambda event filtering you can use filter expressions to control which events Lambda sends
to your function for processing. You can configure up to 5 different filters per DynamoDB streams.
If you are using batching windows, Lambda applies the filter criteria to each new event to see if it
should be included in the current batch.

Filters are applied via structures called FilterCriteria. The 3 main attributes of
FilterCriteria are metadata properties, data properties and filter patterns.

Working with DynamoDB Streams API Version 2012-08-10 1157

https://console.amazonaws.cn/cloudwatch/
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html

Amazon DynamoDB Developer Guide

Here is an example structure of a DynamoDB Streams event:

{
 "eventID": "c9fbe7d0261a5163fcb6940593e41797",
 "eventName": "INSERT",
 "eventVersion": "1.1",
 "eventSource": "aws:dynamodb",
 "awsRegion": "us-east-2",
 "dynamodb": {
 "ApproximateCreationDateTime": 1664559083.0,
 "Keys": {
 "SK": { "S": "PRODUCT#CHOCOLATE#DARK#1000" },
 "PK": { "S": "COMPANY#1000" }
 },
 "NewImage": {
 "quantity": { "N": "50" },
 "company_id": { "S": "1000" },
 "fabric": { "S": "Florida Chocolates" },
 "price": { "N": "15" },
 "stores": { "N": "5" },
 "product_id": { "S": "1000" },
 "SK": { "S": "PRODUCT#CHOCOLATE#DARK#1000" },
 "PK": { "S": "COMPANY#1000" },
 "state": { "S": "FL" },
 "type": { "S": "" }
 },
 "SequenceNumber": "700000000000888747038",
 "SizeBytes": 174,
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN": "arn:aws-cn:dynamodb:us-west-2:111122223333:table/chocolate-table-
StreamsSampleDDBTable-LUOI6UXQY7J1/stream/2022-09-30T17:05:53.209"
}

The metadata properties are the fields of the event object. In the case of DynamoDB Streams,
the metadata properties are fields like dynamodb or eventName.

The data properties are the fields of the event body. To filter on data properties, make
sure to contain them in FilterCriteria within the proper key. For DynamoDB event sources, the
data key is NewImage or OldImage.

Finally, the filter rules will define the filter expression that you want to apply to a specific property.
Here are some examples:

Working with DynamoDB Streams API Version 2012-08-10 1158

Amazon DynamoDB Developer Guide

Comparison operator Example Rule syntax (Partial)

Null Product Type is null { "product_type":
{ "S": null } }

Empty Product name is empty { "product_name":
{ "S": [""] } }

Equals State equals Florida { "state": { "S":
["FL"] } }

And Product state equals Florida
and product category
Chocolate

{ "state": { "S":
["FL"] } , "category
": { "S": ["CHOCOLAT
E"] } }

Or Product state is Florida or
California

{ "state": { "S":
["FL","CA"] } }

Not Product state is not Florida {"state": {"S":
[{"anything-but":
["FL"]}]}}

Exists Product Homemade exists {"homemade": {"S":
[{"exists": true}]}}

Does not exist Product Homemade does not
exist

{"homemade": {"S":
[{"exists": false}]}}

Begins with PK begins with COMPANY {"PK": {"S": [{"prefix
": "COMPANY"}]}}

You can specify up to 5 event filtering patterns for a Lambda function. Notice that each one
of those 5 events will be evaluated as a logical OR. So if you configure two filters named
Filter_One and Filter_Two, the Lambda function will execute Filter_One OR Filter_Two.

Working with DynamoDB Streams API Version 2012-08-10 1159

Amazon DynamoDB Developer Guide

Note

In the Lambda event filtering page there are some options to filter and compare numeric
values, however in the case of DynamoDB filter events it doesn’t apply because numbers in
DynamoDB are stored as strings. For example "quantity": { "N": "50" }, we know
its a number because of the "N" property.

Putting it all together - Amazon CloudFormation

To show event filtering functionality in practice, here is a sample CloudFormation template. This
template will generate a Simple DynamoDB table with a Partition Key PK and a Sort Key SK with
Amazon DynamoDB Streams enabled. It will create a lambda function and a simple Lambda
Execution role that will allow write logs to Amazon Cloudwatch, and read the events from the
Amazon DynamoDB Stream. It will also add the event source mapping between the DynamoDB
Streams and the Lambda function, so the function can be executed every time there is an event in
the Amazon DynamoDB Stream.

AWSTemplateFormatVersion: "2010-09-09"

Description: Sample application that presents AWS Lambda event source filtering
with Amazon DynamoDB Streams.

Resources:
 StreamsSampleDDBTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: "PK"
 AttributeType: "S"
 - AttributeName: "SK"
 AttributeType: "S"
 KeySchema:
 - AttributeName: "PK"
 KeyType: "HASH"
 - AttributeName: "SK"
 KeyType: "RANGE"
 StreamSpecification:
 StreamViewType: "NEW_AND_OLD_IMAGES"
 ProvisionedThroughput:
 ReadCapacityUnits: 5

Working with DynamoDB Streams API Version 2012-08-10 1160

https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html

Amazon DynamoDB Developer Guide

 WriteCapacityUnits: 5

 LambdaExecutionRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17",
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - lambda.amazonaws.com
 Action:
 - sts:AssumeRole
 Path: "/"
 Policies:
 - PolicyName: root
 PolicyDocument:
 Version: "2012-10-17",
 Statement:
 - Effect: Allow
 Action:
 - logs:CreateLogGroup
 - logs:CreateLogStream
 - logs:PutLogEvents
 Resource: arn:aws:logs:*:*:*
 - Effect: Allow
 Action:
 - dynamodb:DescribeStream
 - dynamodb:GetRecords
 - dynamodb:GetShardIterator
 - dynamodb:ListStreams
 Resource: !GetAtt StreamsSampleDDBTable.StreamArn

 EventSourceDDBTableStream:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: True
 EventSourceArn: !GetAtt StreamsSampleDDBTable.StreamArn
 FunctionName: !GetAtt ProcessEventLambda.Arn
 StartingPosition: LATEST

 ProcessEventLambda:

Working with DynamoDB Streams API Version 2012-08-10 1161

Amazon DynamoDB Developer Guide

 Type: AWS::Lambda::Function
 Properties:
 Runtime: python3.7
 Timeout: 300
 Handler: index.handler
 Role: !GetAtt LambdaExecutionRole.Arn
 Code:
 ZipFile: |
 import logging

 LOGGER = logging.getLogger()
 LOGGER.setLevel(logging.INFO)

 def handler(event, context):
 LOGGER.info('Received Event: %s', event)
 for rec in event['Records']:
 LOGGER.info('Record: %s', rec)

Outputs:
 StreamsSampleDDBTable:
 Description: DynamoDB Table ARN created for this example
 Value: !GetAtt StreamsSampleDDBTable.Arn
 StreamARN:
 Description: DynamoDB Table ARN created for this example
 Value: !GetAtt StreamsSampleDDBTable.StreamArn

After you deploy this cloud formation template you can insert the following Amazon DynamoDB
Item:

{
 "PK": "COMPANY#1000",
 "SK": "PRODUCT#CHOCOLATE#DARK",
 "company_id": "1000",
 "type": "",
 "state": "FL",
 "stores": 5,
 "price": 15,
 "quantity": 50,
 "fabric": "Florida Chocolates"
}

Thanks to the simple lambda function included inline in this cloud formation template, you will see
the events in the Amazon CloudWatch log groups for the lambda function as follows:

Working with DynamoDB Streams API Version 2012-08-10 1162

Amazon DynamoDB Developer Guide

{
 "eventID": "c9fbe7d0261a5163fcb6940593e41797",
 "eventName": "INSERT",
 "eventVersion": "1.1",
 "eventSource": "aws:dynamodb",
 "awsRegion": "us-west-2",
 "dynamodb": {
 "ApproximateCreationDateTime": 1664559083.0,
 "Keys": {
 "SK": { "S": "PRODUCT#CHOCOLATE#DARK#1000" },
 "PK": { "S": "COMPANY#1000" }
 },
 "NewImage": {
 "quantity": { "N": "50" },
 "company_id": { "S": "1000" },
 "fabric": { "S": "Florida Chocolates" },
 "price": { "N": "15" },
 "stores": { "N": "5" },
 "product_id": { "S": "1000" },
 "SK": { "S": "PRODUCT#CHOCOLATE#DARK#1000" },
 "PK": { "S": "COMPANY#1000" },
 "state": { "S": "FL" },
 "type": { "S": "" }
 },
 "SequenceNumber": "700000000000888747038",
 "SizeBytes": 174,
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "eventSourceARN": "arn:aws-cn:dynamodb:us-west-2:111122223333:table/chocolate-table-
StreamsSampleDDBTable-LUOI6UXQY7J1/stream/2022-09-30T17:05:53.209"
}

Filter Examples

• Only products that matches a given state

This example modifies the CloudFormation template to include a filter to match all products which
come from Florida, with the abbreviation “FL”.

EventSourceDDBTableStream:
 Type: AWS::Lambda::EventSourceMapping
 Properties:

Working with DynamoDB Streams API Version 2012-08-10 1163

Amazon DynamoDB Developer Guide

 BatchSize: 1
 Enabled: True
 FilterCriteria:
 Filters:
 - Pattern: '{ "dynamodb": { "NewImage": { "state": { "S": ["FL"] } } } }'
 EventSourceArn: !GetAtt StreamsSampleDDBTable.StreamArn
 FunctionName: !GetAtt ProcessEventLambda.Arn
 StartingPosition: LATEST

Once you redeploy the stack, you can add the following DynamoDB item to the table. Note that it
will not appear in the Lambda function logs, because the product in this example is from California.

{
 "PK": "COMPANY#1000",
 "SK": "PRODUCT#CHOCOLATE#DARK#1000",
 "company_id": "1000",
 "fabric": "Florida Chocolates",
 "price": 15,
 "product_id": "1000",
 "quantity": 50,
 "state": "CA",
 "stores": 5,
 "type": ""
}

• Only the items that starts with some values in the PK and SK

This example modifies the CloudFormation template to include the following condition:

EventSourceDDBTableStream:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: True
 FilterCriteria:
 Filters:
 - Pattern: '{"dynamodb": {"Keys": {"PK": { "S": [{ "prefix":
 "COMPANY" }] },"SK": { "S": [{ "prefix": "PRODUCT" }] }}}}'
 EventSourceArn: !GetAtt StreamsSampleDDBTable.StreamArn
 FunctionName: !GetAtt ProcessEventLambda.Arn
 StartingPosition: LATEST

Working with DynamoDB Streams API Version 2012-08-10 1164

Amazon DynamoDB Developer Guide

Notice the AND condition requires the condition to be inside the pattern, where Keys PK and SK are
in the same expression separated by comma.

Either start with some values on PK and SK or is from certain state.

This example modifies the CloudFormation template to include the following conditions:

 EventSourceDDBTableStream:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: True
 FilterCriteria:
 Filters:
 - Pattern: '{"dynamodb": {"Keys": {"PK": { "S": [{ "prefix":
 "COMPANY" }] },"SK": { "S": [{ "prefix": "PRODUCT" }] }}}}'
 - Pattern: '{ "dynamodb": { "NewImage": { "state": { "S": ["FL"] } } } }'
 EventSourceArn: !GetAtt StreamsSampleDDBTable.StreamArn
 FunctionName: !GetAtt ProcessEventLambda.Arn
 StartingPosition: LATEST

Notice the OR condition is added by introducing new patterns in the filter section.

Putting it all together - CDK

The following sample CDK project formation template walks through event filtering functionality.
Before working with this CDK project you will need to install the pre-requisites including running
preparation scripts.

Create a CDK project

First create a new Amazon CDK project, by invoking cdk init in an empty directory.

mkdir ddb_filters
cd ddb_filters
cdk init app --language python

The cdk init command uses the name of the project folder to name various elements of the
project, including classes, subfolders, and files. Any hyphens in the folder name are converted to
underscores. The name should otherwise follow the form of a Python identifier. For example, it
should not start with a number or contain spaces.

Working with DynamoDB Streams API Version 2012-08-10 1165

https://docs.aws.amazon.com/cdk/v2/guide/work-with.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html

Amazon DynamoDB Developer Guide

To work with the new project, activate its virtual environment. This allows the project's
dependencies to be installed locally in the project folder, instead of globally.

source .venv/bin/activate
python -m pip install -r requirements.txt

Note

You may recognize this as the Mac/Linux command to activate a virtual environment. The
Python templates include a batch file, source.bat, that allows the same command to be
used on Windows. The traditional Windows command .venv\Scripts\activate.bat
works too. If you initialized your Amazon CDK project using Amazon CDK Toolkit v1.70.0 or
earlier, your virtual environment is in the .env directory instead of .venv.

Base Infrastructure

Open the file ./ddb_filters/ddb_filters_stack.py with your preferred text editor. This file
was auto generated when you created the Amazon CDK project.

Next, add the functions _create_ddb_table and _set_ddb_trigger_function. These
functions will create a DynamoDB table with partition key PK and sort key SK in provision mode
on-demand mode, with Amazon DynamoDB Streams enabled by default to show New and Old
images.

The Lambda function will be stored in the folder lambda under the file app.py. This file will be
created later. It will include an environment variable APP_TABLE_NAME, which will be the name
of the Amazon DynamoDB Table created by this stack. In the same function we will grant stream
read permissions to the Lambda function. Finally, it will subscribe to the DynamoDB Streams as the
event source for the lambda function.

At the end of the file in the __init__ method, you will call the respective constructs to initialize
them in the stack. For bigger projects that require additional components and services, it might be
best to define these constructs outside the base stack.

import os
import json

import aws_cdk as cdk
from aws_cdk import (

Working with DynamoDB Streams API Version 2012-08-10 1166

Amazon DynamoDB Developer Guide

 Stack,
 aws_lambda as _lambda,
 aws_dynamodb as dynamodb,
)
from constructs import Construct

class DdbFiltersStack(Stack):

 def _create_ddb_table(self):
 dynamodb_table = dynamodb.Table(
 self,
 "AppTable",
 partition_key=dynamodb.Attribute(
 name="PK", type=dynamodb.AttributeType.STRING
),
 sort_key=dynamodb.Attribute(
 name="SK", type=dynamodb.AttributeType.STRING),
 billing_mode=dynamodb.BillingMode.PAY_PER_REQUEST,
 stream=dynamodb.StreamViewType.NEW_AND_OLD_IMAGES,
 removal_policy=cdk.RemovalPolicy.DESTROY,
)

 cdk.CfnOutput(self, "AppTableName", value=dynamodb_table.table_name)
 return dynamodb_table

 def _set_ddb_trigger_function(self, ddb_table):
 events_lambda = _lambda.Function(
 self,
 "LambdaHandler",
 runtime=_lambda.Runtime.PYTHON_3_9,
 code=_lambda.Code.from_asset("lambda"),
 handler="app.handler",
 environment={
 "APP_TABLE_NAME": ddb_table.table_name,
 },
)

 ddb_table.grant_stream_read(events_lambda)

 event_subscription = _lambda.CfnEventSourceMapping(
 scope=self,
 id="companyInsertsOnlyEventSourceMapping",
 function_name=events_lambda.function_name,

Working with DynamoDB Streams API Version 2012-08-10 1167

Amazon DynamoDB Developer Guide

 event_source_arn=ddb_table.table_stream_arn,
 maximum_batching_window_in_seconds=1,
 starting_position="LATEST",
 batch_size=1,
)

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 ddb_table = self._create_ddb_table()
 self._set_ddb_trigger_function(ddb_table)

Now we will create a very simple lambda function that will print the logs into Amazon CloudWatch.
To do this, create a new folder called lambda.

mkdir lambda
touch app.py

Using your favorite text editor, add the following content to the app.py file:

import logging

LOGGER = logging.getLogger()
LOGGER.setLevel(logging.INFO)

def handler(event, context):
 LOGGER.info('Received Event: %s', event)
 for rec in event['Records']:
 LOGGER.info('Record: %s', rec)

Ensuring you are in the /ddb_filters/ folder, type the following command to create the sample
application:

cdk deploy

At some point you will be asked to confirm if you want to deploy the solution. Accept the changes
by typing Y.

###

Working with DynamoDB Streams API Version 2012-08-10 1168

Amazon DynamoDB Developer Guide

+ # ${LambdaHandler/ServiceRole} # arn:${AWS::Partition}:iam::aws:policy/service-
role/AWSLambdaBasicExecutionRole #
###

Do you wish to deploy these changes (y/n)? y

...

Deployment time: 67.73s

Outputs:
DdbFiltersStack.AppTableName = DdbFiltersStack-AppTable815C50BC-1M1W7209V5YPP
Stack ARN:
arn:aws:cloudformation:us-east-2:111122223333:stack/
DdbFiltersStack/66873140-40f3-11ed-8e93-0a74f296a8f6

Once the changes are deployed, open your Amazon console and add one item to your table.

{
 "PK": "COMPANY#1000",
 "SK": "PRODUCT#CHOCOLATE#DARK",
 "company_id": "1000",
 "type": "",
 "state": "FL",
 "stores": 5,
 "price": 15,
 "quantity": 50,
 "fabric": "Florida Chocolates"
}

The CloudWatch logs should now contain all the information from this entry.

Filter Examples

• Only products that matches a given state

Open the file ddb_filters/ddb_filters/ddb_filters_stack.py, and modify it to include
the filter that matches all the products that are equals to “FL”. This can be revised just below the
event_subscription in line 45.

event_subscription.add_property_override(
 property_path="FilterCriteria",

Working with DynamoDB Streams API Version 2012-08-10 1169

Amazon DynamoDB Developer Guide

 value={
 "Filters": [
 {
 "Pattern": json.dumps(
 {"dynamodb": {"NewImage": {"state": {"S": ["FL"]}}}}
)
 },
]
 },
)

• Only the items that starts with some values in the PK and SK

Modify the python script to include the following condition:

event_subscription.add_property_override(
 property_path="FilterCriteria",
 value={
 "Filters": [
 {
 "Pattern": json.dumps(
 {
 {
 "dynamodb": {
 "Keys": {
 "PK": {"S": [{"prefix": "COMPANY"}]},
 "SK": {"S": [{"prefix": "PRODUCT"}]},
 }
 }
 }
 }
)
 },
]
 },

• Either start with some values on PK and SK or is from certain state.

Modify the python script to include the following conditions:

event_subscription.add_property_override(

Working with DynamoDB Streams API Version 2012-08-10 1170

Amazon DynamoDB Developer Guide

 property_path="FilterCriteria",
 value={
 "Filters": [
 {
 "Pattern": json.dumps(
 {
 {
 "dynamodb": {
 "Keys": {
 "PK": {"S": [{"prefix": "COMPANY"}]},
 "SK": {"S": [{"prefix": "PRODUCT"}]},
 }
 }
 }
 }
)
 },
 {
 "Pattern": json.dumps(
 {"dynamodb": {"NewImage": {"state": {"S": ["FL"]}}}}
)
 },
]
 },
)

Notice that the OR condition is added by adding more elements to the Filters array.

Cleanup

Locate the filter stack in the base of your working directory, and execute cdk destroy. You will
be asked to confirm the resource deletion:

cdk destroy
Are you sure you want to delete: DdbFiltersStack (y/n)? y

Best practices using DynamoDB Streams with Lambda

An Amazon Lambda function runs within a container—an execution environment that is isolated
from other functions. When you run a function for the first time, Amazon Lambda creates a new
container and begins executing the function's code.

Working with DynamoDB Streams API Version 2012-08-10 1171

Amazon DynamoDB Developer Guide

A Lambda function has a handler that is run once per invocation. The handler contains the main
business logic for the function. For example, the Lambda function shown in Step 4: Create and test
a Lambda function has a handler that can process records in a DynamoDB stream.

You can also provide initialization code that runs one time only—after the container is created, but
before Amazon Lambda runs the handler for the first time. The Lambda function shown in Step 4:
Create and test a Lambda function has initialization code that imports the SDK for JavaScript in
Node.js, and creates a client for Amazon SNS. These objects should only be defined once, outside
of the handler.

After the function runs, Amazon Lambda might opt to reuse the container for subsequent
invocations of the function. In this case, your function handler might be able to reuse the resources
that you defined in your initialization code. (You cannot control how long Amazon Lambda will
retain the container, or whether the container will be reused at all.)

For DynamoDB triggers using Amazon Lambda, we recommend the following:

• Amazon service clients should be instantiated in the initialization code, not in the handler.
This allows Amazon Lambda to reuse existing connections, for the duration of the container's
lifetime.

• In general, you do not need to explicitly manage connections or implement connection pooling
because Amazon Lambda manages this for you.

A Lambda consumer for a DynamoDB stream doesn't guarantee exactly once delivery and may
lead to occasional duplicates. Make sure your Lambda function code is idempotent to prevent
unexpected issues from arising because of duplicate processing.

For more information, see Best practices for working with Amazon Lambda functions in the
Amazon Lambda Developer Guide.

DynamoDB Streams and Apache Flink

You can consume Amazon DynamoDB Streams records with Apache Flink. With Amazon Managed
Service for Apache Flink, you can transform and analyze streaming data in real time using Apache
Flink. Apache Flink is an open-source stream processing framework for processing real-time data.
The Amazon DynamoDB Streams connector for Apache Flink simplifies building and managing
Apache Flink workloads and allows you to integrate applications with other Amazon Web Services
services.

Working with DynamoDB Streams API Version 2012-08-10 1172

https://docs.amazonaws.cn/lambda/latest/dg/best-practices.html
https://aws.amazon.com/managed-service-apache-flink/
https://aws.amazon.com/managed-service-apache-flink/

Amazon DynamoDB Developer Guide

Amazon Managed Service for Apache Flink helps you to quickly build end-to-end stream processing
applications for log analytics, clickstream analytics, Internet of Things (IoT), ad tech, gaming, and
more. The four most common use cases are streaming extract-transform-load (ETL), event driven
applications, responsive real-time analytics, and interactive querying of data streams. For more
information on writing to Apache Flink from Amazon DynamoDB Streams, see Amazon DynamoDB
Streams Connector.

Working with DynamoDB Streams API Version 2012-08-10 1173

https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/dynamodb/
https://nightlies.apache.org/flink/flink-docs-master/docs/connectors/datastream/dynamodb/

Amazon DynamoDB Developer Guide

In-memory acceleration with DynamoDB Accelerator
(DAX)

Amazon DynamoDB is designed for scale and performance. In most cases, the DynamoDB response
times can be measured in single-digit milliseconds. However, there are certain use cases that
require response times in microseconds. For these use cases, DynamoDB Accelerator (DAX) delivers
fast response times for accessing eventually consistent data.

DAX is a DynamoDB-compatible caching service that enables you to benefit from fast in-memory
performance for demanding applications. DAX addresses three core scenarios:

1. As an in-memory cache, DAX reduces the response times of eventually consistent read
workloads by an order of magnitude from single-digit milliseconds to microseconds.

2. DAX reduces operational and application complexity by providing a managed service that is API-
compatible with DynamoDB. Therefore, it requires only minimal functional changes to use with
an existing application.

3. For read-heavy or bursty workloads, DAX provides increased throughput and potential
operational cost savings by reducing the need to overprovision read capacity units. This is
especially beneficial for applications that require repeated reads for individual keys.

DAX supports server-side encryption. With encryption at rest, the data persisted by DAX on disk
will be encrypted. DAX writes data to disk as part of propagating changes from the primary node
to read replicas. For more information, see DAX encryption at rest.

DAX also supports encryption in transit, ensuring that all requests and responses between your
application and the cluster are encrypted by transport level security (TLS), and connections to the
cluster can be authenticated by verification of a cluster x509 certificate. For more information, see
DAX encryption in transit.

Topics

• Use cases for DAX

• DAX usage notes

• DAX: How it works

• DAX cluster components

• Creating a DAX cluster

API Version 2012-08-10 1174

Amazon DynamoDB Developer Guide

• DAX and DynamoDB consistency models

• Developing with the DynamoDB Accelerator (DAX) client

• Managing DAX clusters

• Monitoring DynamoDB Accelerator

• DAX T3/T2 burstable instances

• DAX access control

• DAX encryption at rest

• DAX encryption in transit

• Using service-linked IAM roles for DAX

• Accessing DAX across Amazon accounts

• DAX cluster sizing guide

Use cases for DAX

DAX provides access to eventually consistent data from DynamoDB tables, with microsecond
latency. A Multi-AZ DAX cluster can serve millions of requests per second.

DAX is ideal for the following types of applications:

• Applications that require the fastest possible response time for reads. Some examples include
real-time bidding, social gaming, and trading applications. DAX delivers fast, in-memory read
performance for these use cases.

• Applications that read a small number of items more frequently than others. For example,
consider an ecommerce system that has a one-day sale on a popular product. During the sale,
demand for that product (and its data in DynamoDB) would sharply increase, compared to all of
the other products. To mitigate the impacts of a "hot" key and a non-uniform traffic distribution,
you could offload the read activity to a DAX cache until the one-day sale is over.

• Applications that are read-intensive, but are also cost-sensitive. With DynamoDB, you provision
the number of reads per second that your application requires. If read activity increases, you can
increase your tables' provisioned read throughput (at an additional cost). Or, you can offload the
activity from your application to a DAX cluster, and reduce the number of read capacity units
that you need to purchase otherwise.

• Applications that require repeated reads against a large set of data. Such an application
could potentially divert database resources from other applications. For example, a long-

Use cases for DAX API Version 2012-08-10 1175

Amazon DynamoDB Developer Guide

running analysis of regional weather data could temporarily consume all the read capacity in a
DynamoDB table. This situation would negatively impact other applications that need to access
the same data. With DAX, the weather analysis could be performed against cached data instead.

DAX is not ideal for the following types of applications:

• Applications that require strongly consistent reads (or that cannot tolerate eventually consistent
reads).

• Applications that do not require microsecond response times for reads, or that do not need to
offload repeated read activity from underlying tables.

• Applications that are write-intensive. High volume of writes lead to increased replication across
DAX nodes in a cluster. This causes an increased consumption of resources and risk of availability
issues.

• Applications without many repeated reads. DAX performs best when cache hit rates exceed 90%.
Lower cache hit rates increase cache misses, which consumes more resources across the DAX
cluster.

DAX usage notes

• For a list of Amazon Regions where DAX is available, see Amazon DynamoDB pricing.

• DAX supports applications written in Go, Java, Node.js, Python, and .NET, using Amazon-
provided clients for those programming languages.

• DAX is only available for the EC2-VPC platform.

• The DAX cluster service role policy must allow the dynamodb:DescribeTable action in order
to maintain metadata about the DynamoDB table.

• DAX clusters maintain metadata about the attribute names of items they store. That metadata
is maintained indefinitely (even after the item has expired or been evicted from the cache).
Applications that use an unbounded number of attribute names can, over time, cause memory
exhaustion in the DAX cluster. This limitation applies only to top-level attribute names, not
nested attribute names. Examples of problematic top-level attribute names include timestamps,
UUIDs, and session IDs.

This limitation applies only to attribute names, not their values. Items like the following are not a
problem.

DAX usage notes API Version 2012-08-10 1176

http://www.amazonaws.cn/dynamodb/pricing

Amazon DynamoDB Developer Guide

{
 "Id": 123,
 "Title": "Bicycle 123",
 "CreationDate": "2017-10-24T01:02:03+00:00"
}

But items like the following are a problem if there are enough of them and they each have a
different timestamp.

{
 "Id": 123,
 "Title": "Bicycle 123",
 "2017-10-24T01:02:03+00:00": "created"
}

DAX: How it works

Amazon DynamoDB Accelerator (DAX) is designed to run within an Amazon Virtual Private Cloud
(Amazon VPC) environment. The Amazon VPC service defines a virtual network that closely
resembles a traditional data center. With a VPC, you have control over its IP address range, subnets,
routing tables, network gateways, and security settings. You can launch a DAX cluster in your
virtual network and control access to the cluster by using Amazon VPC security groups.

Note

If you created your Amazon account after December 4, 2013, you already have a default
VPC in each Amazon Region. The VPC is ready for you to use immediately—without having
to perform any additional configuration steps.
For more information, see Default VPC and default subnets in the Amazon VPC User Guide.

The following diagram shows a high-level overview of DAX.

How it works API Version 2012-08-10 1177

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html

Amazon DynamoDB Developer Guide

To create a DAX cluster, you use the Amazon Web Services Management Console. Unless you
specify otherwise, your DAX cluster runs within your default VPC. To run your application, you
launch an Amazon EC2 instance into your Amazon VPC. You then deploy your application (with the
DAX client) on the EC2 instance.

At runtime, the DAX client directs all of your application's DynamoDB API requests to the DAX
cluster. If DAX can process one of these API requests directly, it does so. Otherwise, it passes the
request through to DynamoDB.

Finally, the DAX cluster returns the results to your application.

Topics

• How DAX processes requests

• Item cache

• Query cache

How it works API Version 2012-08-10 1178

Amazon DynamoDB Developer Guide

How DAX processes requests

A DAX cluster consists of one or more nodes. Each node runs its own instance of the DAX caching
software. One of the nodes serves as the primary node for the cluster. Additional nodes (if present)
serve as read replicas. For more information, see Nodes.

Your application can access DAX by specifying the endpoint for the DAX cluster. The DAX client
software works with the cluster endpoint to perform intelligent load balancing and routing.

Read operations

DAX can respond to the following API calls:

• GetItem

• BatchGetItem

• Query

• Scan

If the request specifies eventually consistent reads (the default behavior), it tries to read the item
from DAX:

• If DAX has the item available (a cache hit), DAX returns the item to the application without
accessing DynamoDB.

• If DAX does not have the item available (a cache miss), DAX passes the request through to
DynamoDB. When it receives the response from DynamoDB, DAX returns the results to the
application. But it also writes the results to the cache on the primary node.

Note

If there are any read replicas in the cluster, DAX automatically keeps the replicas in sync
with the primary node. For more information, see Clusters.

If the request specifies strongly consistent reads, DAX passes the request through to DynamoDB.
The results from DynamoDB are not cached in DAX. Instead, they are simply returned to the
application.

How DAX processes requests API Version 2012-08-10 1179

Amazon DynamoDB Developer Guide

Write operations

The following DAX API operations are considered "write-through":

• BatchWriteItem

• UpdateItem

• DeleteItem

• PutItem

With these operations, data is first written to the DynamoDB table, and then to the DAX cluster.
The operation is successful only if the data is successfully written to both the table and to DAX.

Other operations

DAX does not recognize any DynamoDB operations for managing tables (such as CreateTable,
UpdateTable, and so on). If your application needs to perform these operations, it must access
DynamoDB directly rather than using DAX.

For detailed information about DAX and DynamoDB consistency, see DAX and DynamoDB
consistency models.

For information about how transactions work in DAX, see Using transactional APIs in DynamoDB
Accelerator (DAX).

Request rate limiting

If the number of requests sent to DAX exceeds the capacity of a node, DAX limits the rate at which
it accepts additional requests by returning a ThrottlingException. DAX continuously evaluates your
CPU utilization to determine the volume of requests it can process while maintaining a healthy
cluster state.

You can monitor the ThrottledRequestCount metric that DAX publishes to Amazon CloudWatch. If
you see these exceptions regularly, you should consider scaling up your cluster.

Item cache

DAX maintains an item cache to store the results from GetItem and BatchGetItem operations.
The items in the cache represent eventually consistent data from DynamoDB, and are stored by
their primary key values.

Item cache API Version 2012-08-10 1180

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/CommonErrors.html#CommonErrors-ThrottlingException

Amazon DynamoDB Developer Guide

When an application sends a GetItem or BatchGetItem request, DAX tries to read the items
directly from the item cache using the specified key values. If the items are found (cache hit), DAX
returns them to the application immediately. If the items are not found (cache miss), DAX sends
the request to DynamoDB. DynamoDB processes the requests using eventually consistent reads
and returns the items to DAX. DAX stores them in the item cache and then returns them to the
application.

The item cache has a Time to Live (TTL) setting, which is 5 minutes by default. DAX assigns a
timestamp to every item that it writes to the item cache. An item expires if it has remained in the
cache for longer than the TTL setting. If you issue a GetItem request on an expired item, this is
considered a cache miss, and DAX sends the GetItem request to DynamoDB.

Note

You can specify the TTL setting for the item cache when you create a new DAX cluster. For
more information, see Managing DAX clusters .

DAX also maintains a least recently used (LRU) list for the item cache. The LRU list tracks when an
item was first written to the cache, and when the item was last read from the cache. If the item
cache becomes full, DAX evicts older items (even if they haven't expired yet) to make room for new
items. The LRU algorithm is always enabled for the item cache and is not user-configurable.

If you specify zero as the item cache TTL setting, items in the item cache will only be refreshed due
to an LRU eviction or a "write-through" operation.

For detailed information about the consistency of the item cache in DAX, see DAX item cache
behavior.

Query cache

DAX also maintains a query cache to store the results from Query and Scan operations. The items
in this cache represent result sets from queries and scans on DynamoDB tables. These result sets
are stored by their parameter values.

When an application sends a Query or Scan request, DAX tries to read a matching result set from
the query cache using the specified parameter values. If the result set is found (cache hit), DAX
returns it to the application immediately. If the result set is not found (cache miss), DAX sends
the request to DynamoDB. DynamoDB processes the requests using eventually consistent reads

Query cache API Version 2012-08-10 1181

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.concepts.html#DAX.concepts.request-processing-write

Amazon DynamoDB Developer Guide

and returns the result set to DAX. DAX stores it in the query cache and then returns it to the
application.

Note

You can specify the TTL setting for the query cache when you create a new DAX cluster. For
more information, see Managing DAX clusters .

DAX also maintains an LRU list for the query cache. The list tracks when a result set was first
written to the cache, and when the result was last read from the cache. If the query cache becomes
full, DAX evicts older result sets (even if they have not expired yet) to make room for new result
sets. The LRU algorithm is always enabled for the query cache, and is not user-configurable.

If you specify zero as the query cache TTL setting, the query response will not be cached.

For detailed information about the consistency of the query cache in DAX, see DAX query cache
behavior.

DAX cluster components

An Amazon DynamoDB Accelerator (DAX) cluster consists of Amazon infrastructure components.
This section describes these components and how they work together.

Topics

• Nodes

• Clusters

• Regions and availability zones

• Parameter groups

• Security groups

• Cluster ARN

• Cluster endpoint

• Node endpoints

• Subnet groups

• Events

DAX cluster components API Version 2012-08-10 1182

Amazon DynamoDB Developer Guide

• Maintenance window

Nodes

A node is the smallest building block of a DAX cluster. Each node runs an instance of the DAX
software, and maintains a single replica of the cached data.

You can scale your DAX cluster in one of two ways:

• By adding more nodes to the cluster. This increases the overall read throughput of the cluster.

• By using a larger node type. Larger node types provide more capacity and can increase
throughput. (You must create a new cluster with the new node type.)

Every node within a cluster is of the same node type and runs the same DAX caching software. For
a list of available node types, see Amazon DynamoDB pricing.

Clusters

A cluster is a logical grouping of one or more nodes that DAX manages as a unit. One of the nodes
in the cluster is designated as the primary node, and the other nodes (if any) are read replicas.

The primary node is responsible for the following:

• Fulfilling application requests for cached data.

• Handling write operations to DynamoDB.

• Evicting data from the cache according to the cluster's eviction policy.

When changes are made to cached data on the primary node, DAX propagates the changes to all
of the read replica nodes using replication logs. After the confirmation is received from all read
replicas, DynamoDB deletes the replication logs from the primary node.

A DAX cluster can support up to 11 nodes per cluster (the primary node plus a maximum of 10 read
replicas).

Read replicas are responsible for the following:

• Fulfilling application requests for cached data.

• Evicting data from the cache according to the cluster's eviction policy.

Nodes API Version 2012-08-10 1183

http://www.amazonaws.cn/dynamodb/pricing

Amazon DynamoDB Developer Guide

However, unlike the primary node, read replicas don't write to DynamoDB.

Read replicas serve two additional purposes:

• Scalability. If you have a large number of application clients that need to access DAX
concurrently, you can add more replicas for read-scaling. DAX spreads the load evenly across all
the nodes in the cluster. (Another way to increase throughput is to use larger cache node types.)

• High availability. In the event of a primary node failure, DAX automatically fails over to a
read replica and designates it as the new primary. If a replica node fails, other nodes in the
DAX cluster can still serve requests until the failed node can be recovered. For maximum fault
tolerance, you should deploy read replicas in separate Availability Zones. This configuration
ensures that your DAX cluster can continue to function, even if an entire Availability Zone
becomes unavailable.

Important

For production usage, we strongly recommend using DAX with at least three nodes, where
each node is placed in different Availability Zones. Three nodes are required for a DAX
cluster to be fault-tolerant.
A DAX cluster can be deployed with one or two nodes for development or test workloads.
One-node and two-node clusters are not fault-tolerant, and we don't recommend using
fewer than three nodes for production use. If a one-node or two-node cluster encounters
software or hardware errors, the cluster can become unavailable or lose cached data.

Important

A DAX cluster supports a maximum of 500 DynamoDB tables. If you go beyond 500 tables,
your cluster may experience degradation in availability and performance.

Regions and availability zones

A DAX cluster in an Amazon Region can only interact with DynamoDB tables that are in the same
Region. For this reason, ensure that you launch your DAX cluster in the correct Region. If you have
DynamoDB tables in other Regions, you must launch DAX clusters in those Regions too.

Regions and availability zones API Version 2012-08-10 1184

Amazon DynamoDB Developer Guide

Each Region is designed to be completely isolated from the other Regions. Within each Region are
multiple Availability Zones. By launching your nodes in different Availability Zones, you can achieve
the greatest possible fault tolerance.

Important

Don't place all of your cluster's nodes in a single Availability Zone. In this configuration,
your DAX cluster becomes unavailable if there is an Availability Zone failure.
For production usage, we strongly recommend using DAX with at least three nodes, where
each node is placed in different Availability Zones. Three nodes are required for a DAX
cluster to be fault-tolerant.
A DAX cluster can be deployed with one or two nodes for development or test workloads.
One- and two-node clusters are not fault-tolerant, and we don't recommend using fewer
than three nodes for production use. If a one- or two-node cluster encounters software or
hardware errors, the cluster can become unavailable or lose cached data.

Parameter groups

Parameter groups are used to manage runtime settings for DAX clusters. DAX has several
parameters that you can use to optimize performance (such as defining a TTL policy for cached
data). A parameter group is a named set of parameters that you can apply to a cluster. You can
thereby ensure that all the nodes in that cluster are configured in exactly the same way.

Security groups

A DAX cluster runs in an Amazon Virtual Private Cloud (Amazon VPC) environment. This
environment is a virtual network that is dedicated to your Amazon account and is isolated from
other VPCs. A security group acts as a virtual firewall for your VPC, allowing you to control inbound
and outbound network traffic.

When you launch a cluster in your VPC, you add an ingress rule to your security group to allow
incoming network traffic. The ingress rule specifies the protocol (TCP) and port number (8111) for
your cluster. After you add this rule to your security group, the applications that are running within
your VPC can access the DAX cluster.

Cluster ARN

Every DAX cluster is assigned an Amazon Resource Name (ARN). The ARN format is as follows.

Parameter groups API Version 2012-08-10 1185

Amazon DynamoDB Developer Guide

arn:aws:dax:region:accountID:cache/clusterName

You use the cluster ARN in an IAM policy to define permissions for DAX API operations. For more
information, see DAX access control.

Cluster endpoint

Every DAX cluster provides a cluster endpoint for use by your application. By accessing the cluster
using its endpoint, your application does not need to know the hostnames and port numbers of
individual nodes in the cluster. Your application automatically "knows" all the nodes in the cluster,
even if you add or remove read replicas.

The following is an example of a cluster endpoint in the us-east-1 region that is not configured to
use encryption in transit.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

The following is an example of a cluster endpoint in the same region that is configured to use
encryption in transit.

daxs://my-encrypted-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

Node endpoints

Each of the individual nodes in a DAX cluster has its own hostname and port number. The following
is an example of a node endpoint.

myDAXcluster-a.2cmrwl.clustercfg.dax.use1.cache.amazonaws.com:8111

Your application can access a node directly by using its endpoint. However, we recommend that you
treat the DAX cluster as a single unit and access it using the cluster endpoint instead. The cluster
endpoint insulates your application from having to maintain a list of nodes and keep that list up to
date when you add or remove nodes from the cluster.

Subnet groups

Access to DAX cluster nodes is restricted to applications running on Amazon EC2 instances within
an Amazon VPC environment. You can use subnet groups to grant cluster access from Amazon EC2
instances running on specific subnets. A subnet group is a collection of subnets (typically private)
that you can designate for your clusters running in an Amazon VPC environment.

Cluster endpoint API Version 2012-08-10 1186

Amazon DynamoDB Developer Guide

When you create a DAX cluster, you must specify a subnet group. DAX uses that subnet group to
select a subnet and IP addresses within that subnet to associate with your nodes.

Events

DAX records significant events within your clusters, such as a failure to add a node, success
in adding a node, or changes to security groups. By monitoring key events, you can know the
current state of your clusters and, depending upon the event, be able to take corrective action.
You can access these events using the Amazon Web Services Management Console or the
DescribeEvents action in the DAX management API.

You can also request that notifications be sent to a specific Amazon Simple Notification Service
(Amazon SNS) topic. Then you will know immediately when an event occurs in your DAX cluster.

Maintenance window

Every cluster has a weekly maintenance window to apply system changes. As changes are applied
sequentially, an existing node is replaced and a new node with the applied changes is added to the
cluster. During this period, your application might observe transient errors or throttles. Therefore,
we recommend that you schedule the maintenance window during your lowest usage time and
adjust this schedule periodically as needed. You can specify a time range of up to 24 hours in
duration during which any maintenance activities that you request should occur.

If you don't specify a preferred maintenance window when you create or modify a cache cluster,
DAX assigns a 60-minute maintenance window on a random weekday. This 60-minute maintenance
window is randomly selected from an 8-hour block of time for each Amazon Web Services Region.
The following table lists the time blocks for each Region from which the default maintenance
windows are assigned.

Region code Region name Maintenance window

ap-northeast-1 Asia Pacific (Tokyo) Region 13:00–21:00 UTC

ap-southeast-1 Asia Pacific (Singapore)
Region

14:00–22:00 UTC

ap-southeast-2 Asia Pacific (Sydney) Region 12:00–20:00 UTC

ap-south-1 Asia Pacific (Mumbai) Region 17:30–1:30 UTC

Events API Version 2012-08-10 1187

Amazon DynamoDB Developer Guide

Region code Region name Maintenance window

cn-northwest-1 China (Ningxia) Region 23:00–07:00 UTC

cn-north-1 China (Beijing) Region 14:00–22:00 UTC

eu-central-1 Europe (Frankfurt) Region 23:00–07:00 UTC

eu-north-1 Europe (Stockholm) Region 01:00–09:00 UTC

eu-south-2 Europe (Spain) Region 21:00–05:00 UTC

eu-west-1 Europe (Ireland) Region 22:00–06:00 UTC

eu-west-2 Europe (London) Region 23:00–07:00 UTC

eu-west-3 Europe (Paris) Region 23:00–07:00 UTC

sa-east-1 South America (São Paulo)
Region

01:00–09:00 UTC

us-east-1 US East (N. Virginia) Region 03:00–11:00 UTC

us-east-2 US East (Ohio) Region 23:00–07:00 UTC

us-west-1 US West (N. California) Region 06:00–14:00 UTC

us-west-2 US West (Oregon) Region 06:00–14:00 UTC

Creating a DAX cluster

This section walks you through the first-time setup and usage of Amazon DynamoDB Accelerator
(DAX) in your default Amazon Virtual Private Cloud (Amazon VPC) environment. You can create
your first DAX cluster using either the Amazon Command Line Interface (Amazon CLI) or the
Amazon Web Services Management Console.

After you create your DAX cluster, you can access it from an Amazon EC2 instance running in the
same VPC. You can then use your DAX cluster with an application program. For more information,
see Developing with the DynamoDB Accelerator (DAX) client.

Creating a DAX cluster API Version 2012-08-10 1188

Amazon DynamoDB Developer Guide

Topics

• Creating an IAM service role for DAX to access DynamoDB

• Creating a DAX cluster using the Amazon CLI

• Creating a DAX cluster using the Amazon Web Services Management Console

Creating an IAM service role for DAX to access DynamoDB

For your DAX cluster to access DynamoDB tables on your behalf, you must create a service role. A
service role is an Amazon Identity and Access Management (IAM) role that authorizes an Amazon
service to act on your behalf. The service role allows DAX to access your DynamoDB tables, as if you
were accessing those tables yourself. You must create the service role before you can create the
DAX cluster.

If you are using the console, the workflow for creating a cluster checks for the presence of a pre-
existing DAX service role. If none is found, the console creates a new service role for you. For more
information, see the section called “Step 2: Create a DAX cluster”.

If you are using the Amazon CLI, you must specify a DAX service role that you have created
previously. Otherwise, you need to create a new service role beforehand. For more information, see
Step 1: Create an IAM service role for DAX to access DynamoDB using the Amazon CLI.

Permissions required to create a service role

The AWS managed AdministratorAccess policy provides all the permissions needed for
creating a DAX cluster and a service role. If your user has AdministratorAccess attached, no
further action is needed.

Otherwise, you must add the following permissions to your IAM policy so that your user can create
the service role:

• iam:CreateRole

• iam:CreatePolicy

• iam:AttachRolePolicy

• iam:PassRole

Attach these permissions to the user who is trying to perform the action.

Creating an IAM service role for DAX to access DynamoDB API Version 2012-08-10 1189

Amazon DynamoDB Developer Guide

Note

The iam:CreateRole, iam:CreatePolicy, iam:AttachRolePolicy, and
iam:PassRole permissions are not included in the Amazon managed policies for
DynamoDB. This is by design because these permissions provide the possibility of privilege
escalation: That is, a user could use these permissions to create a new administrator policy
and then attach that policy to an existing role. For this reason, you (the administrator of
your DAX cluster) must explicitly add these permissions to your policy.

Troubleshooting

If your user policy is missing the iam:CreateRole, iam:CreatePolicy, and
iam:AttachPolicy permissions, you will get error messages. The following table lists these
messages and describes how to correct the problems.

If you see this error message... Do the following:

User: arn:aws:iam:: accountID
:user/userName is not authorize

d to perform: iam:CreateRole on
resource: arn:aws:iam:: accountID
:role/service-role/ roleName

Add iam:CreateRole to your user policy.

User: arn:aws:iam:: accountID
:user/userName is not authorize

d to perform: iam:CreatePolicy on
resource: policy policyName

Add iam:CreatePolicy to your user policy.

User: arn:aws:iam:: accountID
:user/userName is not authorized

to perform: iam:AttachRolePolicy
on resource: role daxServiceRole

Add iam:AttachRolePolicy to your user
policy.

For more information about the IAM policies required for DAX cluster administration, see DAX
access control.

Creating an IAM service role for DAX to access DynamoDB API Version 2012-08-10 1190

Amazon DynamoDB Developer Guide

Creating a DAX cluster using the Amazon CLI

This section describes how to create an Amazon DynamoDB Accelerator (DAX) cluster using the
Amazon Command Line Interface (Amazon CLI). If you haven't already done so, you must install
and configure the Amazon CLI. To do this, see the following instructions in the Amazon Command
Line Interface User Guide:

• Installing the Amazon CLI

• Configuring the Amazon CLI

Important

To manage DAX clusters using the Amazon CLI, install or upgrade to version 1.11.110 or
higher.

All of the Amazon CLI examples use the us-west-2 Region and fictitious account IDs.

Topics

• Step 1: Create an IAM service role for DAX to access DynamoDB using the Amazon CLI

• Step 2: Create a subnet group

• Step 3: Create a DAX cluster using the Amazon CLI

• Step 4: Configure security group inbound rules using the Amazon CLI

Step 1: Create an IAM service role for DAX to access DynamoDB using the Amazon
CLI

Before you can create an Amazon DynamoDB Accelerator (DAX) cluster, you must create a service
role for it. A service role is an Amazon Identity and Access Management (IAM) role that authorizes
an Amazon service to act on your behalf. The service role allows DAX to access your DynamoDB
tables as if you were accessing those tables yourself.

In this step, you create an IAM policy and then attach that policy to an IAM role. This enables you to
assign the role to a DAX cluster so that it can perform DynamoDB operations on your behalf.

Using the Amazon CLI API Version 2012-08-10 1191

https://docs.amazonaws.cn/cli/latest/userguide/installing.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-chap-getting-started.html

Amazon DynamoDB Developer Guide

To create an IAM service role for DAX

1. Create a file named service-trust-relationship.json with the following contents.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "dax.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create the service role.

aws iam create-role \
 --role-name DAXServiceRoleForDynamoDBAccess \
 --assume-role-policy-document file://service-trust-relationship.json

3. Create a file named service-role-policy.json with the following contents.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:Query",
 "dynamodb:Scan",

Using the Amazon CLI API Version 2012-08-10 1192

Amazon DynamoDB Developer Guide

 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dynamodb:us-west-2:111122223333:*"
]
 }
]
}

Replace accountID with your Amazon account ID. To find your Amazon account ID, in the
upper-right corner of the console, choose your login ID. Your Amazon account ID appears in
the drop-down menu.

In the Amazon Resource Name (ARN) in the example, accountID must be a 12-digit number.
Don't use hyphens or any other punctuation.

4. Create an IAM policy for the service role.

aws iam create-policy \
 --policy-name DAXServicePolicyForDynamoDBAccess \
 --policy-document file://service-role-policy.json

In the output, note the ARN for the policy that you created, as in the following example.

arn:aws:iam::123456789012:policy/DAXServicePolicyForDynamoDBAccess

5. Attach the policy to the service role. Replace arn in the following code with the actual role
ARN from the previous step.

aws iam attach-role-policy \
 --role-name DAXServiceRoleForDynamoDBAccess \
 --policy-arn arn

Next, you specify a subnet group for your default VPC. A subnet group is a collection of one or more
subnets within your VPC. See Step 2: Create a subnet group.

Using the Amazon CLI API Version 2012-08-10 1193

Amazon DynamoDB Developer Guide

Step 2: Create a subnet group

Follow this procedure to create a subnet group for your Amazon DynamoDB Accelerator (DAX)
cluster using the Amazon Command Line Interface (Amazon CLI).

Note

If you already created a subnet group for your default VPC, you can skip this step.

DAX is designed to run within an Amazon Virtual Private Cloud environment (Amazon VPC). If you
created your Amazon account after December 4, 2013, you already have a default VPC in each
Amazon Region. For more information, see Default VPC and default subnets in the Amazon VPC
User Guide.

To create a subnet group

1. To determine the identifier for your default VPC, enter the following command.

aws ec2 describe-vpcs

In the output, note the identifier for your default VPC, as in the following example.

vpc-12345678

2. Determine the subnet IDs associated with your default VPC. Replace vpcID with your actual
VPC ID—for example, vpc-12345678.

aws ec2 describe-subnets \
 --filters "Name=vpc-id,Values=vpcID" \
 --query "Subnets[*].SubnetId"

In the output, note the subnet identifiers—for example, subnet-11111111.

3. Create the subnet group. Ensure that you specify at least one subnet ID in the --subnet-ids
parameter.

aws dax create-subnet-group \
 --subnet-group-name my-subnet-group \
 --subnet-ids subnet-11111111 subnet-22222222 subnet-33333333 subnet-44444444

Using the Amazon CLI API Version 2012-08-10 1194

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html

Amazon DynamoDB Developer Guide

To create the cluster, see Step 3: Create a DAX cluster using the Amazon CLI.

Step 3: Create a DAX cluster using the Amazon CLI

Follow this procedure to use the Amazon Command Line Interface (Amazon CLI) to create an
Amazon DynamoDB Accelerator (DAX) cluster in your default Amazon VPC.

To create a DAX cluster

1. Get the Amazon Resource Name (ARN) for your service role.

aws iam get-role \
 --role-name DAXServiceRoleForDynamoDBAccess \
 --query "Role.Arn" --output text

In the output, note the service role ARN, as in the following example.

arn:aws:iam::123456789012:role/DAXServiceRoleForDynamoDBAccess

2. Create the DAX cluster. Replace roleARN with the ARN from the previous step.

aws dax create-cluster \
 --cluster-name mydaxcluster \
 --node-type dax.r4.large \
 --replication-factor 3 \
 --iam-role-arn roleARN \
 --subnet-group my-subnet-group \
 --sse-specification Enabled=true \
 --region us-west-2

All of the nodes in the cluster are of type dax.r4.large (--node-type). There are three
nodes (--replication-factor)—one primary node and two replicas.

Note

Since sudo and grep are reserved keywords, you cannot create a DAX cluster with
these words in the cluster name. For example, sudo and sudocluster are invalid
cluster names.

To view the cluster status, enter the following command.

Using the Amazon CLI API Version 2012-08-10 1195

Amazon DynamoDB Developer Guide

aws dax describe-clusters

The status is shown in the output—for example, "Status": "creating".

Note

Creating the cluster takes several minutes. When the cluster is ready, its status changes to
available. In the meantime, proceed to Step 4: Configure security group inbound rules
using the Amazon CLI and follow the instructions there.

Step 4: Configure security group inbound rules using the Amazon CLI

The nodes in your Amazon DynamoDB Accelerator (DAX) cluster use the default security group
for your Amazon VPC. For the default security group, you must authorize inbound traffic on TCP
port 8111 for unencrypted clusters or port 9111 for encrypted clusters. This allows Amazon EC2
instances in your Amazon VPC to access your DAX cluster.

Note

If you launched your DAX cluster with a different security group (other than default), you
must perform this procedure for that group instead.

To configure security group inbound rules

1. To determine the default security group identifier, enter the following command. Replace
vpcID with your actual VPC ID (from Step 2: Create a subnet group).

aws ec2 describe-security-groups \
 --filters Name=vpc-id,Values=vpcID Name=group-name,Values=default \
 --query "SecurityGroups[*].{GroupName:GroupName,GroupId:GroupId}"

In the output, note the security group identifier—for example, sg-01234567.

2. Then enter the following. Replace sgID with your actual security group identifier. Use port
8111 for unencrypted clusters and 9111 for encrypted clusters.

aws ec2 authorize-security-group-ingress \

Using the Amazon CLI API Version 2012-08-10 1196

Amazon DynamoDB Developer Guide

 --group-id sgID --protocol tcp --port 8111

Creating a DAX cluster using the Amazon Web Services Management
Console

This section describes how to create an Amazon DynamoDB Accelerator (DAX) cluster using the
Amazon Web Services Management Console.

Topics

• Step 1: Create a subnet group using the Amazon Web Services Management Console

• Step 2: Create a DAX cluster using the Amazon Web Services Management Console

• Step 3: Configure security group inbound rules using the Amazon Web Services Management
Console

Step 1: Create a subnet group using the Amazon Web Services Management
Console

Follow this procedure to create a subnet group for your Amazon DynamoDB Accelerator (DAX)
cluster using the Amazon Web Services Management Console.

Note

If you already created a subnet group for your default VPC, you can skip this step.

DAX is designed to run within an Amazon Virtual Private Cloud (Amazon VPC) environment. If you
created your Amazon account after December 4, 2013, you already have a default VPC in each
Amazon Region. For more information, see Default VPC and default subnets in the Amazon VPC
User Guide.

As part of the creation process for a DAX cluster, you must specify a subnet group. A subnet group
is a collection of one or more subnets within your VPC. When you create your DAX cluster, the
nodes are deployed to the subnets within the subnet group.

Using the console API Version 2012-08-10 1197

https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html

Amazon DynamoDB Developer Guide

Note

The VPC having this DAX cluster can contain other resources and even VPC endpoints for
the other services except VPC endpoint for ElastiCache and can result in error for the DAX
cluster operations.

To create a subnet group

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, under DAX, choose Subnet groups.

3. Choose Create subnet group.

4. In the Create subnet group window, do the following:

a. Name—Enter a short name for the subnet group.

b. Description—Enter a description for the subnet group.

c. VPC ID—Choose the identifier for your Amazon VPC environment.

d. Subnets—Choose one or more subnets from the list.

Note

The subnets are distributed among multiple Availability Zones. If you plan to
create a multi-node DAX cluster (a primary node and one or more read replicas),
we recommend that you choose multiple subnet IDs. Then DAX can deploy the
cluster nodes into multiple Availability Zones. If an Availability Zone becomes
unavailable, DAX automatically fails over to a surviving Availability Zone. Your DAX
cluster will continue to function without interruption.

When the settings are as you want them, choose Create subnet group.

To create the cluster, see Step 2: Create a DAX cluster using the Amazon Web Services Management
Console.

Using the console API Version 2012-08-10 1198

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Step 2: Create a DAX cluster using the Amazon Web Services Management
Console

Follow this procedure to create an Amazon DynamoDB Accelerator (DAX) cluster in your default
Amazon VPC.

To create a DAX cluster

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, under DAX, choose Clusters.

3. Choose Create cluster.

4. In the Create cluster window, do the following:

a. Cluster name—Enter a short name for your DAX cluster.

Note

Since sudo and grep are reserved keywords, you cannot create a DAX cluster with
these words in the cluster name. For example, sudo and sudocluster are invalid
cluster names.

b. Cluster description—Enter a description for the cluster.

c. Node types—Choose the node type for all of the nodes in the cluster.

d. Cluster size—Choose the number of nodes in the cluster. A cluster consists of one primary
node and up to nine read replicas.

Note

If you want to create a single-node cluster, choose 1. Your cluster will consist of
one primary node.
If you want to create a multi-node cluster, choose a number between 3 (one
primary and two read replicas) and 10 (one primary and nine read replicas).

Important

For production usage, we strongly recommend using DAX with at least
three nodes, where each node is placed in a different Availability Zone.
Three nodes are required for a DAX cluster to be fault-tolerant.

Using the console API Version 2012-08-10 1199

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

A DAX cluster can be deployed with one or two nodes for development
or test workloads. One- and two-node clusters are not fault-tolerant, and
we don't recommend using fewer than three nodes for production use. If
a one- or two-node cluster encounters software or hardware errors, the
cluster can become unavailable or lose cached data.

e. Choose Next.

f. Subnet group—Select Choose existing and choose the subnet group that you created in
Step 1: Create a subnet group using the Amazon Web Services Management Console.

g. Access control—Choose the default security group.

h. Availability Zones (AZ)—Choose Automatic.

i. Choose next.

j. IAM service role for DynamoDB access—Choose Create new, and enter the following
information:

• IAM role name—Enter a name for an IAM role, for example, DAXServiceRole. The
console creates a new IAM role, and your DAX cluster assumes this role at runtime.

• Select the box next to Create policy.

• IAM role policy—Choose Read/Write. This allows the DAX cluster to perform read and
write operations in DynamoDB.

• New IAM policy name—This field will populate as you enter the IAM role name. You
can also enter a name for an IAM policy, for example, DAXServicePolicy. The console
creates a new IAM policy and attaches the policy to the IAM role.

• Access to DynamoDB tables—Choose All tables.

k. Encryption—Choose Turn on encryption at rest and Turn on encryption in transit For
more information, see DAX encryption at rest and DAX encryption in transit.

A separate service role for DAX to access Amazon EC2 is also required. DAX automatically
creates this service role for you. For more information, see Using service-linked roles for DAX.

5. When the settings are as you want them, choose Next.

6. Parameter group—Choose Choose existing.

Using the console API Version 2012-08-10 1200

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

7. Maintenance window—Choose No preference if you don't have a preference when software
upgrades are applied, or choose Specify time window and provide the Weekday, Time(UTC)
and Start within (hours) options to schedule your maintenance window.

8. Tags—Choose Add new tag to enter a key/value pair for tagging purposes.

9. Choose Next.

On the Review and create screen, you can review all of the settings. If you are ready to create the
cluster, choose Create cluster.

On the Clusters screen, your DAX cluster will be listed with a status of Creating.

Note

Creating the cluster takes several minutes. When the cluster is ready, its status changes to
Available.
In the meantime, proceed to Step 3: Configure security group inbound rules using the
Amazon Web Services Management Console and follow the instructions there.

Step 3: Configure security group inbound rules using the Amazon Web Services
Management Console

Your Amazon DynamoDB Accelerator (DAX) cluster communicates via TCP port 8111 (for
unencrypted clusters) or 9111 (for encrypted clusters), so you must authorize inbound traffic on
that port. This allows Amazon EC2 instances in your Amazon VPC to access your DAX cluster.

Note

If you launched your DAX cluster with a different security group (other than default), you
must perform this procedure for that group instead.

To configure security group inbound rules

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. In the navigation pane, choose Security Groups.

3. Choose the default security group. On the Actions menu, choose Edit inbound rules.

Using the console API Version 2012-08-10 1201

https://console.amazonaws.cn/ec2/

Amazon DynamoDB Developer Guide

4. Choose Add Rule, and enter the following information:

• Port Range—Enter 8111 (if your cluster is unencrypted) or 9111 (if your cluster is
encrypted).

• Source—Leave this as Custom, and choose the search field to the right. A drop-down menu
will be displayed. Choose the identifier for your default security group.

5. Choose Save rules to save your changes.

6. To update the name in the console, go to the Name property and choose the Edit option that
is displayed.

DAX and DynamoDB consistency models

Amazon DynamoDB Accelerator (DAX) is a write-through caching service that is designed to
simplify the process of adding a cache to DynamoDB tables. Because DAX operates separately
from DynamoDB, it is important that you understand the consistency models of both DAX and
DynamoDB to ensure that your applications behave as you expect.

In many use cases, the way that your application uses DAX affects the consistency of data within
the DAX cluster, and the consistency of data between DAX and DynamoDB.

Topics

• Consistency among DAX cluster nodes

• DAX item cache behavior

• DAX query cache behavior

• Strongly consistent and transactional reads

• Negative caching

• Strategies for writes

Consistency among DAX cluster nodes

To achieve high availability for your application, we recommend that you provision your DAX
cluster with at least three nodes. Then place those nodes in multiple Availability Zones within a
Region.

When your DAX cluster is running, it replicates the data among all of the nodes in the cluster
(assuming that you provisioned more than one node). Consider an application that performs a

Consistency models API Version 2012-08-10 1202

Amazon DynamoDB Developer Guide

successful UpdateItem using DAX. This action causes the item cache in the primary node to be
modified with the new value. That value is then replicated to all the other nodes in the cluster. This
replication is eventually consistent and usually takes less than one second to complete.

In this scenario, it's possible for two clients to read the same key from the same DAX cluster
but receive different values, depending on the node that each client accessed. The nodes are all
consistent when the update has been fully replicated throughout all the nodes in the cluster. (This
behavior is similar to the eventually consistent nature of DynamoDB.)

If you are building an application that uses DAX, that application should be designed so that it can
tolerate eventually consistent data.

DAX item cache behavior

Every DAX cluster has two distinct caches—an item cache and a query cache. For more information,
see DAX: How it works.

This section addresses the consistency implications of reading from and writing to the DAX item
cache.

Consistency of reads

With DynamoDB, the GetItem operation performs an eventually consistent read by default.
Suppose that you use UpdateItem with the DynamoDB client. If you then try to read the same
item immediately afterward, you might see the data as it appeared before the update. This is due
to propagation delay across all the DynamoDB storage locations. Consistency is usually reached
within seconds. So if you retry the read, you will likely see the updated item.

When you use GetItem with the DAX client, the operation (in this case, an eventually consistent
read) proceeds as shown following.

DAX item cache behavior API Version 2012-08-10 1203

Amazon DynamoDB Developer Guide

1. The DAX client issues a GetItem request. DAX tries to read the requested item from the item
cache. If the item is in the cache (cache hit), DAX returns it to the application.

2. If the item is not available (cache miss), DAX performs an eventually consistent GetItem
operation against DynamoDB.

3. DynamoDB returns the requested item, and DAX stores it in the item cache.

4. DAX returns the item to the application.

5. (Not shown) If the DAX cluster contains more than one node, the item is replicated to all the
other nodes in the cluster.

The item remains in the DAX item cache, subject to the Time to Live (TTL) setting and the least
recently used (LRU) algorithm for the cache. For more information, see DAX: How it works.

However, during this period, DAX doesn't re-read the item from DynamoDB. If someone else
updates the item using a DynamoDB client, bypassing DAX entirely, a GetItem request using the
DAX client yields different results from the same GetItem request using the DynamoDB client. In
this scenario, DAX and DynamoDB hold inconsistent values for the same key until the TTL for the
DAX item expires.

DAX item cache behavior API Version 2012-08-10 1204

Amazon DynamoDB Developer Guide

If an application modifies data in an underlying DynamoDB table, bypassing DAX, the application
needs to anticipate and tolerate data inconsistencies that might arise.

Note

In addition to GetItem, the DAX client also supports BatchGetItem requests.
BatchGetItem is essentially a wrapper around one or more GetItem requests, so DAX
treats each of these as an individual GetItem operation.

Consistency of writes

DAX is a write-through cache, which simplifies the process of keeping the DAX item cache
consistent with the underlying DynamoDB tables.

The DAX client supports the same write API operations as DynamoDB (PutItem, UpdateItem,
DeleteItem, BatchWriteItem, and TransactWriteItems). When you use these operations
with the DAX client, the items are modified in both DAX and DynamoDB. DAX updates the items in
its item cache, regardless of the TTL value for these items.

For example, suppose that you issue a GetItem request from the DAX client to read an item from
the ProductCatalog table. (The partition key is Id, and there is no sort key.) You retrieve the
item whose Id is 101. The QuantityOnHand value for that item is 42. DAX stores the item in
its item cache with a specific TTL. For this example, assume that the TTL is 10 minutes. Then,
3 minutes later, another application uses the DAX client to update the same item so that its
QuantityOnHand value is now 41. Assuming that the item is not updated again, any subsequent
reads of the same item during the next 10 minutes return the cached value for QuantityOnHand
(41).

How DAX processes writes

DAX is intended for applications that require high-performance reads. As a write-through
cache, DAX passes your writes through to DynamoDB synchronously, then automatically and
asynchronously replicates resulting updates to your item cache across all nodes in the cluster. You
don't need to manage cache invalidation logic because DAX handles it for you.

DAX supports the following write operations: PutItem, UpdateItem, DeleteItem,
BatchWriteItem, and TransactWriteItems.

DAX item cache behavior API Version 2012-08-10 1205

Amazon DynamoDB Developer Guide

When you send a PutItem, UpdateItem, DeleteItem, or BatchWriteItem request to DAX, the
following occurs:

• DAX sends the request to DynamoDB.

• DynamoDB replies to DAX, confirming that the write succeeded.

• DAX writes the item to its item cache.

• DAX returns success to the requester.

When you send a TransactWriteItems request to DAX, the following occurs:

• DAX sends the request to DynamoDB.

• DynamoDB replies to DAX, confirming that the transaction completed.

• DAX returns success to the requester.

• In the background, DAX makes a TransactGetItems request for each item in the
TransactWriteItems request to store the item in the item cache. TransactGetItems is used
to ensure serializable isolation.

If a write to DynamoDB fails for any reason, including throttling, the item is not cached in DAX. The
exception for the failure is returned to the requester. This ensures that data is not written to the
DAX cache unless it is first written successfully to DynamoDB.

Note

Every write to DAX alters the state of the item cache. However, writes to the item cache
don't affect the query cache. (The DAX item cache and query cache serve different
purposes, and operate independently from one another.)

DAX query cache behavior

DAX caches the results from Query and Scan requests in its query cache. However, these results
don't affect the item cache at all. When your application issues a Query or Scan request with
DAX, the result set is saved in the query cache—not in the item cache. You can't "warm up" the
item cache by performing a Scan operation because the item cache and query cache are separate
entities.

DAX query cache behavior API Version 2012-08-10 1206

Amazon DynamoDB Developer Guide

Consistency of query-update-query

Updates to the item cache, or to the underlying DynamoDB table, do not invalidate or modify the
results stored in the query cache.

To illustrate, consider the following scenario. An application is working with the
DocumentRevisions table, which has DocId as its partition key and RevisionNumber as its sort
key.

1. A client issues a Query for DocId 101, for all items with RevisionNumber greater than or
equal to 5. DAX stores the result set in the query cache and returns the result set to the user.

2. The client issues a PutItem request for DocId 101 with a RevisionNumber value of 20.

3. The client issues the same Query as described in step 1 (DocId 101 and RevisionNumber >=
5).

In this scenario, the cached result set for the Query issued in step 3 is identical to the result set
that was cached in step 1. The reason is that DAX does not invalidate Query or Scan result sets
based on updates to individual items. The PutItem operation from step 2 is only reflected in the
DAX query cache when the TTL for the Query expires.

Your application should consider the TTL value for the query cache and how long your application
can tolerate inconsistent results between the query cache and the item cache.

Strongly consistent and transactional reads

To perform a strongly consistent GetItem, BatchGetItem, Query, or Scan request, you set
the ConsistentRead parameter to true. DAX passes strongly consistent read requests to
DynamoDB. When it receives a response from DynamoDB, DAX returns the results to the client, but
it does not cache the results. DAX can't serve strongly consistent reads by itself because it's not
tightly coupled to DynamoDB. For this reason, any subsequent reads from DAX would have to be
eventually consistent reads. And any subsequent strongly consistent reads would have to be passed
through to DynamoDB.

DAX handles TransactGetItems requests the same way it handles strongly consistent reads.
DAX passes all TransactGetItems requests to DynamoDB. When it receives a response from
DynamoDB, DAX returns the results to the client, but it doesn't cache the results.

Strongly consistent and transactional reads API Version 2012-08-10 1207

Amazon DynamoDB Developer Guide

Negative caching

DAX supports negative cache entries in both the item cache and the query cache. A negative cache
entry occurs when DAX can't find requested items in an underlying DynamoDB table. Instead of
generating an error, DAX caches an empty result and returns that result to the user.

For example, suppose that an application sends a GetItem request to a DAX cluster, and that there
is no matching item in the DAX item cache. This causes DAX to read the corresponding item from
the underlying DynamoDB table. If the item doesn't exist in DynamoDB, DAX stores an empty item
in its item cache and returns the empty item to the application. Now suppose that the application
sends another GetItem request for the same item. DAX finds the empty item in the item cache
and returns it to the application immediately. It does not consult DynamoDB at all.

A negative cache entry remains in the DAX item cache until its item TTL has expired, its LRU is
invoked, or the item is modified using PutItem, UpdateItem, or DeleteItem.

The DAX query cache handles negative cache results in a similar way. If an application performs a
Query or Scan, and the DAX query cache doesn't contain a cached result, DAX sends the request
to DynamoDB. If there are no matching items in the result set, DAX stores an empty result set in
the query cache and returns the empty result set to the application. Subsequent Query or Scan
requests yield the same (empty) result set, until the TTL for that result set has expired.

Strategies for writes

The write-through behavior of DAX is appropriate for many application patterns. However, there
are some application patterns where a write-through model might not be appropriate.

For applications that are sensitive to latency, writing through DAX incurs an extra network hop. So
a write to DAX is a little slower than a write directly to DynamoDB. If your application is sensitive
to write latency, you can reduce the latency by writing directly to DynamoDB instead. For more
information, see Write-around.

For write-intensive applications (such as those that perform bulk data loading), you might not
want to write all of the data through DAX because only a small percentage of that data is ever
read by the application. When you write large amounts of data through DAX, it must invoke
its LRU algorithm to make room in the cache for the new items to be read. This diminishes the
effectiveness of DAX as a read cache.

When you write an item to DAX, the item cache state is altered to accommodate the new item. (For
example, DAX might need to evict older data from the item cache to make room for the new item.)

Negative caching API Version 2012-08-10 1208

Amazon DynamoDB Developer Guide

The new item remains in the item cache, subject to the cache's LRU algorithm and the TTL setting
for the cache. As long as the item persists in the item cache, DAX doesn't re-read the item from
DynamoDB.

Write-through

The DAX item cache implements a write-through policy. For more information, see How DAX
processes writes.

When you write an item, DAX ensures that the cached item is synchronized with the item as it
exists in DynamoDB. This is helpful for applications that need to re-read an item immediately after
writing it. However, if other applications write directly to a DynamoDB table, the item in the DAX
item cache is no longer in sync with DynamoDB.

To illustrate, consider two users (Alice and Bob), who are working with the ProductCatalog
table. Alice accesses the table using DAX, but Bob bypasses DAX and accesses the table directly in
DynamoDB.

1. Alice updates an item in the ProductCatalog table. DAX forwards the request to DynamoDB,
and the update succeeds. DAX then writes the item to its item cache and returns a successful
response to Alice. From that point on, until the item is ultimately evicted from the cache, any
user who reads the item from DAX sees the item with Alice's update.

Strategies for writes API Version 2012-08-10 1209

Amazon DynamoDB Developer Guide

2. A short time later, Bob updates the same ProductCatalog item that Alice wrote. However, Bob
updates the item directly in DynamoDB. DAX does not automatically refresh its item cache in
response to updates via DynamoDB. Therefore, DAX users don't see Bob's update.

3. Alice reads the item from DAX again. The item is in the item cache, so DAX returns it to Alice
without accessing the DynamoDB table.

In this scenario, Alice and Bob see different representations of the same ProductCatalog item.
This is the case until DAX evicts the item from the item cache, or until another user updates the
same item again using DAX.

Write-around

If your application needs to write large quantities of data (such as a bulk data load), it might
make sense to bypass DAX and write the data directly to DynamoDB. Such a write-around strategy
reduces write latency. However, the item cache doesn't remain in sync with the data in DynamoDB.

If you decide to use a write-around strategy, remember that DAX populates its item cache
whenever applications use the DAX client to read data. This can be advantageous in some cases
because it ensures that only the most frequently read data is cached (as opposed to the most
frequently written data).

For example, consider a user (Charlie) who wants to work with a different table, the GameScores
table, using DAX. The partition key for GameScores is UserId, so all of Charlie's scores would have
the same UserId.

Strategies for writes API Version 2012-08-10 1210

Amazon DynamoDB Developer Guide

1. Charlie wants to retrieve all of his scores, so he sends a Query to DAX. Assuming that this query
has not been issued before, DAX forwards the query to DynamoDB for processing. It stores the
results in the DAX query cache, and then returns the results to Charlie. The result set remains
available in the query cache until it is evicted.

2. Now suppose that Charlie plays the Meteor Blasters game and achieves a high score. Charlie
sends an UpdateItem request to DynamoDB, modifying an item in the GameScores table.

3. Finally, Charlie decides to rerun his earlier Query to retrieve all of his data from GameScores.
Charlie does not see his high score for Meteor Blasters in the results. This is because the query
results come from the query cache, not the item cache. The two caches are independent from
one another, so a change in one cache does not affect the other cache.

DAX does not refresh result sets in the query cache with the most current data from DynamoDB.
Each result set in the query cache is current as of the time that the Query or Scan operation was
performed. Thus, Charlie's Query results don't reflect his PutItem operation. This is the case until
DAX evicts the result set from the query cache.

Strategies for writes API Version 2012-08-10 1211

Amazon DynamoDB Developer Guide

Developing with the DynamoDB Accelerator (DAX) client

To use DAX from an application, you use the DAX client for your programming language. The DAX
client is designed for minimal disruption to your existing Amazon DynamoDB applications—with
only a few simple code modifications needed.

Note

DAX clients for various programming languages are available on the following site:

• http://dax-sdk.s3-website-us-west-2.amazonaws.com

This section demonstrates how to launch an Amazon EC2 instance in your default Amazon VPC,
connect to the instance, and run a sample application. It also provides information about how to
modify your existing application so that it can use your DAX cluster.

Topics

• Tutorial: Running a sample application using DynamoDB Accelerator (DAX)

• Modifying an existing application to use DAX

Tutorial: Running a sample application using DynamoDB Accelerator
(DAX)

This tutorial demonstrates how to launch an Amazon EC2 instance in your default virtual private
cloud (VPC), connect to the instance, and run a sample application that uses Amazon DynamoDB
Accelerator (DAX).

Note

To complete this tutorial, you must have a DAX cluster running in your default VPC. If you
haven't created a DAX cluster, see Creating a DAX cluster for instructions.

Topics

• Step 1: Launch an Amazon EC2 instance

Developing with the DAX client API Version 2012-08-10 1212

http://dax-sdk.s3-website-us-west-2.amazonaws.com

Amazon DynamoDB Developer Guide

• Step 2: Create a user and policy

• Step 3: Configure an Amazon EC2 instance

• Step 4: Run a sample application

Step 1: Launch an Amazon EC2 instance

When your Amazon DynamoDB Accelerator (DAX) cluster is available, you can launch an Amazon
EC2 instance in your default Amazon Virtual Private Cloud (Amazon VPC). You can then install and
run DAX client software on that instance.

To launch an EC2 instance

1. Sign in to the Amazon Web Services Management Console and open the Amazon EC2 console
at https://console.amazonaws.cn/ec2/.

2. Choose Launch Instance, and do the following:

Step 1: Choose an Amazon Machine Image (AMI)

1. In the list of AMIs, find the Amazon Linux AMI, and choose Select.

Step 2: Choose an Instance Type

1. In the list of instance types, choose t2.micro.

2. Choose Next: Configure Instance Details.

Step 3: Configure Instance Details

1. For Network, choose your default VPC.

2. Choose Next: Add Storage.

Step 4: Add Storage

1. Skip this step by choosing Next: Add Tags.

Step 5: Add Tags

1. Skip this step by choosing Next: Configure Security Group.

Tutorial: Running a sample application API Version 2012-08-10 1213

https://console.amazonaws.cn/ec2/

Amazon DynamoDB Developer Guide

Step 6: Configure Security Group

1. Choose Select an existing security group.

2. In the list of security groups, choose default. This is the default security group for your VPC.

3. Choose Next: Review and Launch.

Step 7: Review Instance Launch

1. Choose Launch.

3. In the Select an existing key pair or create a new key pair window, do one of the following:

• If you don't have an Amazon EC2 key pair, choose Create a new key pair and follow the
instructions. You are asked to download a private key file (.pem file). You need this file later
when you log in to your Amazon EC2 instance.

• If you already have an existing Amazon EC2 key pair, go to Select a key pair and choose
your key pair from the list. You must already have the private key file (.pem file) available in
order to log in to your Amazon EC2 instance.

4. After configuring your key pair, choose Launch Instances.

5. In the console navigation pane, choose EC2 Dashboard, and then choose the instance that you
launched. In the lower pane, on the Description tab, find the Public DNS for your instance, for
example: ec2-11-22-33-44.us-west-2.compute.amazonaws.com. Make a note of this
public DNS name because you need it for Step 3: Configure an Amazon EC2 instance.

Note

It takes a few minutes for your Amazon EC2 instance to become available. In the meantime,
proceed to Step 2: Create a user and policy and follow the instructions there.

Step 2: Create a user and policy

In this step, you create a user with a policy that grants access to your Amazon DynamoDB
Accelerator (DAX) cluster and to DynamoDB using Amazon Identity and Access Management. You
can then run applications that interact with your DAX cluster.

Tutorial: Running a sample application API Version 2012-08-10 1214

Amazon DynamoDB Developer Guide

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

To provide access, add permissions to your users, groups, or roles:

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

Tutorial: Running a sample application API Version 2012-08-10 1215

http://www.amazonaws.cn/
http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn//IAM/latest/UserGuide/id_roles_create_for-user.html

Amazon DynamoDB Developer Guide

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

To use the JSON policy editor to create a policy

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. At the top of the page, choose Create policy.

4. In the Policy editor section, choose the JSON option.

5. Enter or paste a JSON policy document. For details about the IAM policy language, see IAM
JSON policy reference.

6. Resolve any security warnings, errors, or general warnings generated during policy validation,
and then choose Next.

Note

You can switch between the Visual and JSON editor options anytime. However, if you
make changes or choose Next in the Visual editor, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring in the
IAM User Guide.

7. (Optional) When you create or edit a policy in the Amazon Web Services Management
Console, you can generate a JSON or YAML policy template that you can use in Amazon
CloudFormation templates.

To do this, in the Policy editor choose Actions, and then choose Generate CloudFormation
template. To learn more about Amazon CloudFormation, see Amazon Identity and Access
Management resource type reference in the Amazon CloudFormation User Guide.

8. When you are finished adding permissions to the policy, choose Next.

9. On the Review and create page, enter a Policy name and a Description (optional) for the
policy that you are creating. Review Permissions defined in this policy to see the permissions
that are granted by your policy.

Tutorial: Running a sample application API Version 2012-08-10 1216

https://docs.amazonaws.cn//IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://console.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/troubleshoot_policies.html#troubleshoot_viseditor-restructure
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_IAM.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_IAM.html

Amazon DynamoDB Developer Guide

10. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more
information about using tags in IAM, see Tags for Amazon Identity and Access Management
resources in the IAM User Guide.

11. Choose Create policy to save your new policy.

Policy document – Copy and paste the following document to create the JSON policy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "dax:*"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 },
 {
 "Action": [
 "dynamodb:*"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Step 3: Configure an Amazon EC2 instance

When your Amazon EC2 instance is available, you can log in to the instance and prepare it for use.

Tutorial: Running a sample application API Version 2012-08-10 1217

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_tags.html

Amazon DynamoDB Developer Guide

Note

The following steps assume that you are connecting to your Amazon EC2 instance from a
computer running Linux. For other ways to connect, see Connect to Your Linux Instance in
the Amazon EC2 User Guide.

To configure the EC2 instance

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Use the ssh command to log in to your Amazon EC2 instance, as shown in the following
example.

ssh -i my-keypair.pem ec2-user@public-dns-name

You need to specify your private key file (.pem file) and the public DNS name of your instance.
(See Step 1: Launch an Amazon EC2 instance.)

The login ID is ec2-user. No password is required.

3. After you log in to your EC2 instance, configure your Amazon credentials as shown following.
Enter your Amazon access key ID and secret key (from Step 2: Create a user and policy), and set
the default Region name to your current Region. (In the following example, the default Region
name is us-west-2.)

aws configure

Amazon Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
Amazon Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-west-2
Default output format [None]:

After launching and configuring your Amazon EC2 instance, you can test the functionality of DAX
using one of the available sample applications. For more information, see Step 4: Run a sample
application.

Tutorial: Running a sample application API Version 2012-08-10 1218

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html
https://console.amazonaws.cn/ec2/

Amazon DynamoDB Developer Guide

Step 4: Run a sample application

To help you test Amazon DynamoDB Accelerator (DAX) functionality, you can run one of the
available sample applications on your Amazon EC2 instance.

Topics

• Node.js and DAX

• DAX SDK for Go

• Java and DAX

• .NET and DAX

• Python and DAX

Node.js and DAX

Default client configuration for Node.js

When configuring the DAX JavaScript SDK client, you can customize various parameters to
optimize performance, connection handling, and error resilience. The following table outlines the
default configuration settings that control how your client interacts with the DAX cluster, including
timeout values, retry mechanisms, credential management, and health monitoring options. For
more information, see DynamoDBClient Operations.

DAX JS SDK client defaults

Parameter Type Description

region

optional

string The Amazon Web Services
Region to use for the DAX
client (example - 'us-east-1').
This is a required parameter
if not provided through the
environment variable.

endpoint

required

string The endpoint of the Cluster to
which the SDK connects.

Examples:

Tutorial: Running a sample application API Version 2012-08-10 1219

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/dynamodb/

Amazon DynamoDB Developer Guide

Parameter Type Description

Non-encrypted – dax-cluster-
name.region.amazonaws.com

Encrypted – daxs://my-
cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

requestTimeout

default 6000 ms

number This defines the maximum
time the client will wait for a
response from DAX.

writeRetries

default 1

number The number of retries to
attempt for write requests
that fail.

readRetries

default 1

number The number of retries to
attempt for read requests
that fail.

maxRetries

default 1

number The maximum number of
retries to attempt on failed
requests.

If readRetries/writeRetries
are set, then the configura
tion set in readRetries and
writeRetries take priority over
maxRetries.

connectTimeout

default 10000 ms

number The timeout (in milliseconds)
for establishing a connection
to any of the cluster nodes.

maxConcurrentConne
ctions

default 100

number Limits the total number of
concurrent connections that a
client instance can create per
node in a DAX cluster.

Tutorial: Running a sample application API Version 2012-08-10 1220

Amazon DynamoDB Developer Guide

Parameter Type Description

maxRetryDelay

default 7000 ms

number When the DAX server
indicates recover is needed
by setting waitForRe
coveryBeforeRetryi
ng flag to true, the client
will pause before retry
attempts. During these
recovery periods, the
maxRetryDelay parameter
determines the maximum
waiting time between
retries. This recovery-specific
configuration only applies
when the DAX server is in
recovery mode. For all other
scenarios, retry behavior
follows one of two patterns:
 either an exponential delay
based on the retry count
(governed by writeRetr
ies , readRetries , or
maxRetries parameter
s), or an immediate retry
depending on the exception
type.

Tutorial: Running a sample application API Version 2012-08-10 1221

Amazon DynamoDB Developer Guide

Parameter Type Description

credentials

optional

AwsCredentialIdent
ity | AwsCreden
tialIdentityProvid
er

The Amazon credentia
ls to use for authentic
ating requests. This can be
provided as an AwsCreden
tialIdentity or an AwsCreden
tialIdentityProvider. If not
provided, the Amazon SDK
will automatically use the
default credentials provider
chain. Example: `{ accessKey
Id: 'AKIA...', secretAccessKey:
'...', sessionToken: '...' }`
* @default Uses default
Amazon credentials provider
chain.

healthCheckInterval

default 5000 ms

number The interval (in milliseco
nds) between cluster health
checks. A lower interval will
check more frequently.

healthCheckTimeout

default 1000 ms

number The timeout (in milliseco
nds) for the health check to
complete.

Tutorial: Running a sample application API Version 2012-08-10 1222

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/

Amazon DynamoDB Developer Guide

Parameter Type Description

skipHostnameVerifi
cation

default false

boolean Skip hostname verification
of TLS connections. This has
no impact on un-encrypted
clusters. The default is to
perform hostname verificat
ion, setting this to True will
skip verification. Be sure you
understand the implication
of turning it off, which is the
inability to authenticate the
cluster that you are connectin
g to.

unhealthyConsecuti
veErrorCount

default 5

number Sets the number of consecuti
ve errors required to signal
node unhealthy within health
check interval.

clusterUpdateInter
val

default 4000 ms

number Returns the interval between
polling of cluster members
for membership changes.

clusterUpdateThres
hold

default 125

number Returns the threshold below
which the cluster will not
be polled for membership
changes.

credentailProvider

optional | default null

AwsCredentialIdent
ityProvider

User Defined Provider for
Amazon credentials used to
authenticate requests to DAX.

Tutorial: Running a sample application API Version 2012-08-10 1223

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-credential-providers/

Amazon DynamoDB Developer Guide

Pagination configuration for DaxDocument

Name Type Detail

client DaxDocument Instance of DaxDocument
type.

pageSize number Determines the number of
items per page.

startingToken

Optional

any LastEvaluatedKey from
previous response can be
used for subsequent requests.

For usage of pagination, see the section called “TryDax.js”.

Migrating to DAX Node.js SDK V3

This migration guide will help you transition your existing DAX Node.js applications. The new SDK
requires Node.js 18 or higher and introduces several important changes in how you'll structure your
DynamoDB Accelerator code. This guide will walk you through the key differences, including syntax
changes, new import methods, and updated asynchronous programming patterns.

V2 Node.js DAX usage

const AmazonDaxClient = require('amazon-dax-client');
const AWS = require('aws-sdk');

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var client = new AWS.DynamoDB.DocumentClient();

if (process.argv.length > 2) {
 var dax = new AmazonDaxClient({
 endpoints: [process.argv[2]],
 region: region,
 });

Tutorial: Running a sample application API Version 2012-08-10 1224

Amazon DynamoDB Developer Guide

 client = new AWS.DynamoDB.DocumentClient({ service: dax });
}

// Make Get Call using Dax
var params = {
 TableName: 'TryDaxTable',
 pk: 1,
 sk: 1
}
client.get(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to read item. Error JSON:",
 JSON.stringify(err, null, 2)
);
 } else {
 console.log(data);
 }
});

V3 Node.js DAX usage

For Using DAX Node.js V3 Node version 18 or above is the preferred version. To move to Node 18,
use the following:

// Import AWS DAX V3
import { DaxDocument } from '@amazon-dax-sdk/lib-dax';

// Import AWS SDK V3 DynamoDBDocument ~ DocumentClient in V2
import { DynamoDBDocument } from '@aws-sdk/lib-dynamodb';
import { DynamoDBClient } from '@aws-sdk/client-dyanmodb';

// Create DynamoDBDocument
var client = DynamoDBDocument.from(new DynamoDB({region: 'us-west-2'});

// Override DynamoDBDocument Client with DaxDocument
if (process.argv.length > 2) {
 client = new DaxDocument({
 endpoints: [process.argv[2]],
 region: 'us-west-2',
 });
}

Tutorial: Running a sample application API Version 2012-08-10 1225

Amazon DynamoDB Developer Guide

var params = {
 TableName: 'TryDaxTable',
 pk: 1,
 sk: 1
}
// Dax Shifted it's API Calls to await/promise
try {
 const results = await client.get(params);
 console.log(results);
} catch (err) {
 console.error(err)
}

The DAX SDK for Node.js v3.x is compatible with Amazon SDK for Node.js v3.x. The DAX SDK for
Node.js v3.x supports the use of aggregated clients. Please note that DAX doesn't support the
creation of bare-bones clients. For more details on unsupported features, see the section called
“Features not in parity with Amazon SDK V3”.

Follow these steps to run the Node.js sample application on your Amazon EC2 instance.

To run the Node.js sample for DAX

1. Set up Node.js on your Amazon EC2 instance, as follows:

a. Install node version manager (nvm).

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.1/install.sh | bash

b. Use nvm to install Node.js.

nvm install 18

c. Use nvm to use Node 18

nvm use 18

d. Test that Node.js is installed and running correctly.

node -e "console.log('Running Node.js ' + process.version)"

This should display the following message.

Tutorial: Running a sample application API Version 2012-08-10 1226

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/#high-level-concepts

Amazon DynamoDB Developer Guide

Running Node.js v18.x.x

2. Install the DaxDocument Node.js client using the node package manager (npm).

npm install @amazon-dax-sdk/lib-dax

TryDax sample code

To evaluate the performance benefits of DynamoDB Accelerator (DAX), follow these steps to run a
sample test that compares read operation times between standard DynamoDB and a DAX cluster.

1. After you've set up your workspace and installed the lib-dax as a dependency, copy the
section called “TryDax.js” into your project.

2. Run the program against your DAX cluster. To determine the endpoint for your DAX cluster,
choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

3. Now run the program by specifying the cluster endpoint as a command line parameter.

node TryDax.js dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

You should see output similar to the following:

Tutorial: Running a sample application API Version 2012-08-10 1227

Amazon DynamoDB Developer Guide

Attempting to create table; please wait...
Successfully created table. Table status: ACTIVE
Writing data to the table...
Writing 20 items for partition key: 1
Writing 20 items for partition key: 2
Writing 20 items for partition key: 3
...
Running GetItem Test
 Total time: 153555.10 µs - Avg time: 383.89 µs
 Total time: 44679.96 µs - Avg time: 111.70 µs
 Total time: 36885.86 µs - Avg time: 92.21 µs
 Total time: 32467.25 µs - Avg time: 81.17 µs
 Total time: 32202.60 µs - Avg time: 80.51 µs
Running Query Test
 Total time: 14869.25 µs - Avg time: 2973.85 µs
 Total time: 3036.31 µs - Avg time: 607.26 µs
 Total time: 2468.92 µs - Avg time: 493.78 µs
 Total time: 2062.53 µs - Avg time: 412.51 µs
 Total time: 2178.22 µs - Avg time: 435.64 µs
Running Scan Test
 Total time: 2395.88 µs - Avg time: 479.18 µs
 Total time: 2207.16 µs - Avg time: 441.43 µs
 Total time: 2443.14 µs - Avg time: 488.63 µs
 Total time: 2038.24 µs - Avg time: 407.65 µs
 Total time: 1972.17 µs - Avg time: 394.43 µs
Running Pagination Test
Scan Pagination
[
 { pk: 1, sk: 1, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 2, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 3, someData: 'XXXXXXXXXX' }
]
[
 { pk: 1, sk: 4, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 5, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 6, someData: 'XXXXXXXXXX' }
]
...
Query Pagination
[
 { pk: 1, sk: 1, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 2, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 3, someData: 'XXXXXXXXXX' }

Tutorial: Running a sample application API Version 2012-08-10 1228

Amazon DynamoDB Developer Guide

]
[
 { pk: 1, sk: 4, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 5, someData: 'XXXXXXXXXX' },
 { pk: 1, sk: 6, someData: 'XXXXXXXXXX' }
]
...
Attempting to delete table; please wait...
Successfully deleted table.

Take note of the timing information. The number of microseconds required for the
GetItem,Query,Scan tests.

4. In this case, you ran the programs against the DAX cluster. Now, you'll run the program again,
this time against DynamoDB.

5. Now run the program again, but this time, without the cluster endpoint URL as a command
line parameter.

node TryDax.js

Look at the output and take note of the timing information. The elapsed times for GetItem,
Query, and Scan should be significantly lower with DAX as compared to DynamoDB.

Features not in parity with Amazon SDK V3

• Bare-bones clients – Dax Node.js V3 doesn’t support bare-bones clients.

const dynamoDBClient = new DynamoDBClient({ region: 'us-west-2' });
const regularParams = {
 TableName: 'TryDaxTable',
 Key: {
 pk: 1,
 sk: 1
 }
};
// The DynamoDB client supports the send operation.
const dynamoResult = await dynamoDBClient.send(new GetCommand(regularParams));

// However, the DaxDocument client does not support the send operation.
const daxClient = new DaxDocument({
 endpoints: ['your-dax-endpoint'],

Tutorial: Running a sample application API Version 2012-08-10 1229

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/introduction/#high-level-concepts

Amazon DynamoDB Developer Guide

 region: 'us-west-2',
});

const params = {
 TableName: 'TryDaxTable',
 Key: {
 pk: 1,
 sk: 1
 }
};

// This will throw an error - send operation is not supported for DAX. Please refer
 to documentation.
const result = await daxClient.send(new GetCommand(params));
console.log(result);

• Middleware Stack – Dax Node.js V3 doesn’t support using Middleware functions.

const dynamoDBClient = new DynamoDBClient({ region: 'us-west-2' });
// The DynamoDB client supports the middlewareStack.
dynamoDBClient.middlewareStack.add(
 (next, context) =>> async (args) => {
 console.log("Before operation:", args);
 const result = await next(args);
 console.log("After operation:", result);
 return result;
 },
 {
 step: "initialize", // or "build", "finalizeRequest", "deserialize"
 name: "loggingMiddleware",
 }
);

// However, the DaxDocument client does not support the middlewareStack.
const daxClient = new DaxDocument({
 endpoints: ['your-dax-endpoint'],
 region: 'us-west-2',
});

// This will throw an error - custom middleware and middlewareStacks are not
 supported for DAX. Please refer to documentation.
daxClient.middlewareStack.add(

Tutorial: Running a sample application API Version 2012-08-10 1230

https://aws.amazon.com/blogs/developer/middleware-stack-modular-aws-sdk-js/

Amazon DynamoDB Developer Guide

 (next, context) => async (args) => {
 console.log("Before operation:", args);
 const result = await next(args);
 console.log("After operation:", result);
 return result;
 },
 {
 step: "initialize", // or "build", "finalizeRequest", "deserialize"
 name: "loggingMiddleware",
 }
);

TryDax.js

import { DynamoDB, waitUntilTableExists, waitUntilTableNotExists } from "@aws-sdk/
client-dynamodb";
import { DaxDocument, daxPaginateScan, daxPaginateQuery } from "@amazon-dax-sdk/lib-
dax";
import { DynamoDBDocument, paginateQuery, paginateScan } from "@aws-sdk/lib-dynamodb";

const region = "us-east-1";
const tableName = "TryDaxTable";

// Determine the client (DynamoDB or DAX)
let client = DynamoDBDocument.from(new DynamoDB({ region }));
if (process.argv.length > 2) {
 client = new DaxDocument({ region, endpoint: process.argv[2] });
}

// Function to create table
async function createTable() {
 const dynamodb = new DynamoDB({ region });
 const params = {
 TableName: tableName,
 KeySchema: [
 { AttributeName: "pk", KeyType: "HASH" },
 { AttributeName: "sk", KeyType: "RANGE" },
],
 AttributeDefinitions: [
 { AttributeName: "pk", AttributeType: "N" },
 { AttributeName: "sk", AttributeType: "N" },

Tutorial: Running a sample application API Version 2012-08-10 1231

Amazon DynamoDB Developer Guide

],
 ProvisionedThroughput: { ReadCapacityUnits: 25, WriteCapacityUnits: 25 },
 };

 try {
 console.log("Attempting to create table; please wait...");
 await dynamodb.createTable(params);
 await waitUntilTableExists({ client: dynamodb, maxWaitTime: 30 }, { TableName:
 tableName });
 console.log("Successfully created table. Table status: ACTIVE");
 } catch (err) {
 console.error("Error in table creation:", err);
 }
}

// Function to insert data
async function writeData() {
 console.log("Writing data to the table...");
 const someData = "X".repeat(10);
 for (let ipk = 1; ipk <= 20; ipk++) {
 console.log("Writing 20 items for partition key: ", ipk)
 for (let isk = 1; isk <= 20; isk++) {
 try {
 await client.put({ TableName: tableName, Item: { pk: ipk, sk: isk,
 someData } });
 } catch (err) {
 console.error("Error inserting data:", err);
 }
 }
 }
}

// Function to test GetItem
async function getItemTest() {
 console.log("Running GetItem Test");
 for (let i = 0; i < 5; i++) {
 const startTime = performance.now();
 const promises = [];
 for (let ipk = 1; ipk <= 20; ipk++) {
 for (let isk = 1; isk <= 20; isk++) {
 promises.push(client.get({ TableName: tableName, Key: { pk: ipk, sk: isk } }));
 }
 }
 await Promise.all(promises);

Tutorial: Running a sample application API Version 2012-08-10 1232

Amazon DynamoDB Developer Guide

 const endTime = performance.now();
 const iterTime = (endTime - startTime) * 1000;
 const totalTime = iterTime.toFixed(2).padStart(3, ' ');
 const avgTime = (iterTime / 400).toFixed(2).padStart(3, ' ');
 console.log(`\tTotal time: ${totalTime} \u00B5s - Avg time: ${avgTime} \u00B5s`);
 }
}

// Function to test Query
async function queryTest() {
 console.log("Running Query Test");
 for (let i = 0; i < 5; i++) {
 const startTime = performance.now();
 const promises = [];
 for (let pk = 1; pk <= 5; pk++) {
 const params = {
 TableName: tableName,
 KeyConditionExpression: "pk = :pkval and sk between :skval1 and :skval2",
 ExpressionAttributeValues: { ":pkval": pk, ":skval1": 1, ":skval2": 2 },
 };
 promises.push(client.query(params));
 }
 await Promise.all(promises);
 const endTime = performance.now();
 const iterTime = (endTime - startTime) * 1000;
 const totalTime = iterTime.toFixed(2).padStart(3, ' ');
 const avgTime = (iterTime / 5).toFixed(2).padStart(3, ' ');
 console.log(`\tTotal time: ${totalTime} \u00B5s - Avg time: ${avgTime} \u00B5s`);
 }
}

// Function to test Scan
async function scanTest() {
 console.log("Running Scan Test");
 for (let i = 0; i < 5; i++) {
 const startTime = performance.now();
 const promises = [];
 for (let pk = 1; pk <= 5; pk++) {
 const params = {
 TableName: tableName,
 FilterExpression: "pk = :pkval and sk between :skval1 and :skval2",
 ExpressionAttributeValues: { ":pkval": pk, ":skval1": 1, ":skval2": 2 },
 };
 promises.push(client.scan(params));

Tutorial: Running a sample application API Version 2012-08-10 1233

Amazon DynamoDB Developer Guide

 }
 await Promise.all(promises);
 const endTime = performance.now();
 const iterTime = (endTime - startTime) * 1000;
 const totalTime = iterTime.toFixed(2).padStart(3, ' ');
 const avgTime = (iterTime / 5).toFixed(2).padStart(3, ' ');
 console.log(`\tTotal time: ${totalTime} \u00B5s - Avg time: ${avgTime} \u00B5s`);
 }
}

// Function to test Pagination
async function paginationTest() {
 console.log("Running Pagination Test");
 console.log("Scan Pagination");
 const scanParams = { TableName: tableName };
 const paginator = process.argv.length > 2 ? daxPaginateScan : paginateScan;
 for await (const page of paginator({ client, pageSize: 3 }, scanParams)) {
 console.log(page.Items);
 }

 console.log("Query Pagination");
 const queryParams = {
 TableName: tableName,
 KeyConditionExpression: "pk = :pkval and sk between :skval1 and :skval2",
 ExpressionAttributeValues: { ":pkval": 1, ":skval1": 1, ":skval2": 10 },
 };
 const queryPaginator = process.argv.length > 2 ? daxPaginateQuery : paginateQuery;
 for await (const page of queryPaginator({ client, pageSize: 3 }, queryParams)) {
 console.log(page.Items);
 }
}

// Function to delete the table
async function deleteTable() {
 const dynamodb = new DynamoDB({ region });
 console.log("Attempting to delete table; please wait...")
 try {
 await dynamodb.deleteTable({ TableName: tableName });
 await waitUntilTableNotExists({ client: dynamodb, maxWaitTime: 30 }, { TableName:
 tableName });
 console.log("Successfully deleted table.");
 } catch (err) {
 console.error("Error deleting table:", err);
 }

Tutorial: Running a sample application API Version 2012-08-10 1234

Amazon DynamoDB Developer Guide

}

// Execute functions sequentially
(async function () {
 await createTable();
 await writeData();
 await getItemTest();
 await queryTest();
 await scanTest();
 await paginationTest();
 await deleteTable();
})();

DAX SDK for Go

Follow this procedure to run the Amazon DynamoDB Accelerator (DAX) SDK for Go sample
application on your Amazon EC2 instance.

To run the SDK for Go sample for DAX

1. Set up the SDK for Go on your Amazon EC2 instance:

a. Install the Go programming language (Golang).

sudo yum install -y golang

b. Test that Golang is installed and running correctly.

go version

A message like this should appear.

go version go1.23.4 linux/amd64

2. Install the sample Golang application.

go get github.com/aws-samples/sample-aws-dax-go-v2

3. Run the following Golang programs. The first program creates a DynamoDB table named
TryDaxGoTable. The second program writes data to the table.

Tutorial: Running a sample application API Version 2012-08-10 1235

Amazon DynamoDB Developer Guide

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command create-table

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command put-item

4. Run the following Golang programs.

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command get-item

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command query

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command scan

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

5. In the previous step, you ran the programs against the DynamoDB endpoint. Now, run the
programs again, but this time, the GetItem, Query, and Scan operations are processed by
your DAX cluster.

To determine the endpoint for your DAX cluster, choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{

Tutorial: Running a sample application API Version 2012-08-10 1236

Amazon DynamoDB Developer Guide

 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Now run the programs again, but this time, specify the cluster endpoint as a command line
parameter.

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command get-item -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command query -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command scan -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command paginated-scan -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command paginated-query -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go
 -service dax -command paginated-batch-get -endpoint my-cluster.l6fzcv.dax-
clusters.us-east-1.amazonaws.com:8111

Look at the rest of the output, and take note of the timing information. The elapsed times for
GetItem, Query, and Scan should be significantly lower with DAX than with DynamoDB.

6. Run the following Golang program to delete TryDaxGoTable.

Tutorial: Running a sample application API Version 2012-08-10 1237

Amazon DynamoDB Developer Guide

go run ~/go/pkg/mod/github.com/aws-samples/sample-aws-dax-go-v2@v1.0.0/try_dax.go -
service dynamodb -command delete-table

Features not in parity with Amazon SDK for Go V2

Middleware Stack – DAX Go V2 doesn’t support the use of Middleware Stacks through APIoptions.
For more information, see Customizing the Amazon SDK for Go v2 Client Requests with
Middleware.

Example:

// Custom middleware implementation
type customSerializeMiddleware struct{}
// ID returns the identifier for the middleware
func (m *customSerializeMiddleware) ID() string {
 return "CustomMiddleware"
}
// HandleSerialize implements the serialize middleware handler
func (m *customSerializeMiddleware) HandleSerialize(
 ctx context.Context,
 in middleware.SerializeInput,
 next middleware.SerializeHandler,
) (
 out middleware.SerializeOutput,
 metadata middleware.Metadata,
 err error,
) {
 // Add your custom logic here before the request is serialized
 fmt.Printf("Executing custom middleware for request: %v\n", in)
 // Call the next handler in the middleware chain
 return next.HandleSerialize(ctx, in)
}

func executeGetItem(ctx context.Context) error {
 client, err := initItemClient(ctx)
 if err != nil {
 os.Stderr.WriteString(fmt.Sprintf("failed to initialize client: %v\n", err))
 return err
 }

 st := time.Now()

Tutorial: Running a sample application API Version 2012-08-10 1238

https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/middleware.html#:~:text=You%20can%20customize%20AWS%20SDK,step's%20input%20and%20output%20types
https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/middleware.html#:~:text=You%20can%20customize%20AWS%20SDK,step's%20input%20and%20output%20types

Amazon DynamoDB Developer Guide

 for c := 0; c < iterations; c++ {
 for i := 0; i < pkMax; i++ {
 for j := 0; j < skMax; j++ {
 // Create key using attributevalue.Marshal for type safety
 pk, err := attributevalue.Marshal(fmt.Sprintf("%s_%d", keyPrefix, i))
 if err != nil {
 return fmt.Errorf("error marshaling pk: %v", err)
 }
 sk, err := attributevalue.Marshal(fmt.Sprintf("%d", j))
 if err != nil {
 return fmt.Errorf("error marshaling sk: %v", err)
 }
 key := map[string]types.AttributeValue{
 "pk": pk,
 "sk": sk,
 }
 in := &dynamodb.GetItemInput{
 TableName: aws.String(table),
 Key: key,
 }

 // Custom middleware option
 customMiddleware := func(o *dynamodb.Options) {
 o.APIOptions = append(o.APIOptions, func(stack *middleware.Stack)
 error {
 // Add custom middleware to the stack
 return stack.Serialize.Add(&customSerializeMiddleware{},
 middleware.After)
 })
 }

 // Apply options to the GetItem call
 out, err := client.GetItem(ctx, in, customMiddleware)
 if err != nil {
 return err
 }
 writeVerbose(out)
 }
 }
 }
 d := time.Since(st)
 os.Stdout.WriteString(fmt.Sprintf("Total Time: %v, Avg Time: %v\n", d, d/
iterations))
 return nil

Tutorial: Running a sample application API Version 2012-08-10 1239

Amazon DynamoDB Developer Guide

}

Output:

failed to execute command: custom middleware through APIOptions is not supported in DAX
 client
exit status 1

Default client configuration for Go

This guide will walk you through the configuration options that allow you to fine-tune your DAX
client's performance, connection management, and logging behavior. By understanding the default
settings and how to customize them, you can optimize your Go application's interaction with DAX.

In this section

• DAX Go SDK Client Defaults

• Client creation

DAX Go SDK Client Defaults

Parameter Type Description

Region

required

string The Amazon Web Services
Region to use for the DAX
client (example- 'us-east-1').
This is a required parameter
if not provided through the
environment.

HostPorts

required

[] string List of DAX cluster endpoints
to which SDK connects.

For example:

Non-Encrypted – dax://my-
cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

Tutorial: Running a sample application API Version 2012-08-10 1240

Amazon DynamoDB Developer Guide

Parameter Type Description

Encrypted – daxs://my-
cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

MaxPendingConnecti
onsPerHost

default 10

number Number of concurren
t connection attempts.
 (Connections can be in the
process of being established
concurrently.)

ClusterUpdateThres
hold

default 125 * time.Millisecond

time.Duration The minimum time that
must elapse between cluster
refreshes.

ClusterUpdateInter
val

default 4 * time.Second

time.Duration The interval at which the
client will automatically
refresh the DAX cluster
information.

IdleConnectionsRea
pDelay

default 30 * time.Second

time.Duration The interval at which the
client will close idle connectio
ns in the DAX client.

ClientHealthCheckI
nterval

default 5 * time.Second

time.Duration The interval at which the
client will perform health
checks on the DAX cluster
endpoints.

Credentials

default

aws.CredentialsPro
vider

The Amazon credentials
used by the DAX client to
authenticate requests to the
DAX service. See Credentials
and Credential Providers.

Tutorial: Running a sample application API Version 2012-08-10 1241

https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/migrate-gosdk.html#credentials--credential-providers
https://docs.aws.amazon.com/sdk-for-go/v2/developer-guide/migrate-gosdk.html#credentials--credential-providers

Amazon DynamoDB Developer Guide

Parameter Type Description

DialContext

default

func A custom function used by
the DAX client to establish
connections to the DAX
cluster.

SkipHostnameVerifi
cation

default false

bool Skip hostname verification
of TLS connections. This
setting only affects encrypted
clusters. When set to True, it
disables hostname verificat
ion. Disabling verification
means you can't authentic
ate the identity of the cluster
you're connecting to, which
poses security risks. By
default, hostname verification
is enabled.

RouteManagerEnabled

default false

bool This flag is used to remove
routes facing network errors.

RequestTimeout

default 60 * time.Second

time.Duration This defines the maximum
time the client will wait for a
response from DAX.

Priority: Context timeout (if
set) > RequestTimmeout (if
set) > Default 60s RequestTi
meout .

WriteRetries

default 2

number The number of retries to
attempt for write requests
that fail.

Tutorial: Running a sample application API Version 2012-08-10 1242

Amazon DynamoDB Developer Guide

Parameter Type Description

ReadRetries

default 2

number The number of retries to
attempt for read requests
that fail.

RetryDelay

default 0

time.Duration The delay for non-throttled
errors (in seconds) for retry
attempts when a request fails.

Logger

optional

logging.Logger Logger is an interface for
logging entries at certain
classifications.

LogLevel

default utils.LogOff

number This loglevel is defined for
DAX only. It can be imported
using github.com/aws/aws-
dax-go-v2/tree/main/dax/ut
ils.

const (
 LogOff LogLevelType =
 0
 LogDebug LogLevelType
 = 1
 LogDebugWithReques
tRetries
 LogLevelType = 2
)

Note

For time.Duration, the default unit is nanosecond. If we don’t specify any unit for any
parameter then it will consider that as nano seconds: daxCfg.ClusterUpdateInterval
= 10 means 10 nano seconds. (daxCfg.ClusterUpdateInterval = 10 *
time.Millisecond means 10 milliseconds).

Tutorial: Running a sample application API Version 2012-08-10 1243

https://github.com/aws/aws-dax-go-v2/tree/main/dax/utils
https://github.com/aws/aws-dax-go-v2/tree/main/dax/utils
https://github.com/aws/aws-dax-go-v2/tree/main/dax/utils

Amazon DynamoDB Developer Guide

Client creation

To create a DAX client:

• Create DAX config, then create DAX client using DAX config. Using this, you can overwrite a DAX
configuration if required.

import (
"github.com/aws/aws-dax-go-v2/dax/utils"
"github.com/aws/aws-dax-go-v2/dax"
)

// Non - Encrypted : 'dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com'.
// Encrypted : daxs://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com'.

config := dax.DefaultConfig()
config.HostPorts = []string{endpoint}
config.Region = region
config.LogLevel = utils.LogDebug
daxClient, err := dax.New(config)

Migrating to DAX Go SDK V2

This migration guide will help you transition your existing DAX Go applications.

V1 DAX Go SDK usage

package main

import (
 "fmt"
 "os"

 "github.com/aws/aws-dax-go/dax"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/dynamodb"
)

func main() {
 region := "us-west-2"
 endpoint := "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"

Tutorial: Running a sample application API Version 2012-08-10 1244

Amazon DynamoDB Developer Guide

 // Create session
 sess, err := session.NewSession(&aws.Config{
 Region: aws.String(region),
 })
 if err != nil {
 fmt.Printf("Failed to create session: %v\n", err)
 os.Exit(1)
 }

 // Configure DAX client
 cfg := dax.DefaultConfig()
 cfg.HostPorts = []string{endpoint}
 cfg.Region = region

 // Create DAX client
 daxClient, err := dax.New(cfg)
 if err != nil {
 fmt.Printf("Failed to create DAX client: %v\n", err)
 os.Exit(1)
 }
 defer daxClient.Close() // Don't forget to close the client

 // Create GetItem input
 input := &dynamodb.GetItemInput{
 TableName: aws.String("TryDaxTable"),
 Key: map[string]*dynamodb.AttributeValue{
 "pk": {
 N: aws.String("1"),
 },
 "sk": {
 N: aws.String("1"),
 },
 },
 }

 // Make the GetItem call
 result, err := daxClient.GetItem(input)
 if err != nil {
 fmt.Printf("Failed to get item: %v\n", err)
 os.Exit(1)
 }

 // Print the result

Tutorial: Running a sample application API Version 2012-08-10 1245

Amazon DynamoDB Developer Guide

 fmt.Printf("GetItem succeeded: %+v\n", result)
}

V2 DAX Go SDK usage

package main

import (
 "context"
 "fmt"
 "os"

 "github.com/aws/aws-dax-go-v2/dax"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/aws"
)

func main() {
 ctx := context.Background()
 region := "us-west-2"
 endpoint := "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"

 // Create DAX config
 config := dax.DefaultConfig()
 // Specify Endpoint and Region
 config.HostPorts = []string{endpoint}
 config.Region = region
 // Enabling logging
 config.LogLevel = utils.LogDebug
 // Create DAX client
 daxClient, err := dax.New(config)
 if err != nil {
 fmt.Printf("Failed to create DAX client: %v\n", err)
 os.Exit(1)
 }
 defer daxClient.Close() // Don't forget to close the client

 // Create key using attributevalue.Marshal for type safety
 pk, err := attributevalue.Marshal(fmt.Sprintf("%s_%d", keyPrefix, i))
 if err != nil {

Tutorial: Running a sample application API Version 2012-08-10 1246

Amazon DynamoDB Developer Guide

 return fmt.Errorf("error marshaling pk: %v", err)
 }
 sk, err := attributevalue.Marshal(fmt.Sprintf("%d", j))
 if err != nil {
 return fmt.Errorf("error marshaling sk: %v", err)
 }

 // Create GetItem input
 input := &dynamodb.GetItemInput{
 TableName: aws.String("TryDaxTable"),
 Key: map[string]types.AttributeValue{
 "pk": pk,
 "sk": sk,
 },
 }

 // Make the GetItem call
 result, err := daxClient.GetItem(ctx, input)
 if err != nil {
 fmt.Printf("Failed to get item: %v\n", err)
 os.Exit(1)
 }

 // Print the result
 fmt.Printf("GetItem succeeded: %+v\n", result)
}

For more API usage details, see Amazon samples.

Java and DAX

DAX SDK for Java 2.x is compatible with Amazon SDK for Java 2.x. It's built on top of Java 8+ and
includes support for non-blocking I/O. For information about using DAX with Amazon SDK for Java
1.x, see Using DAX with Amazon SDK for Java 1.x.

Using the client as a Maven dependency

Follow these steps to use the client for the DAX SDK for Java in your application as a dependency.

1. Download and install Apache Maven. For more information, see Downloading Apache Maven
and Installing Apache Maven.

2. Add the client Maven dependency to your application's Project Object Model (POM) file. In this
example, replace x.x.x with the actual version number of the client.

Tutorial: Running a sample application API Version 2012-08-10 1247

https://github.com/aws-samples/sample-aws-dax-go-v2
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

Amazon DynamoDB Developer Guide

<!--Dependency:-->
<dependencies>
 <dependency>
 <groupId>software.amazon.dax</groupId>
 <artifactId>amazon-dax-client</artifactId>
 <version>x.x.x</version>
 </dependency>
</dependencies>

TryDax sample code

After you've set up your workspace and added the DAX SDK as a dependency, copy TryDax.java into
your project.

Run the code using this command.

java -cp classpath TryDax

You should see output similar to the following.

Creating a DynamoDB client

Attempting to create table; please wait...
Successfully created table. Table status: ACTIVE
Writing data to the table...
Writing 10 items for partition key: 1
Writing 10 items for partition key: 2
Writing 10 items for partition key: 3
...

Running GetItem and Query tests...
First iteration of each test will result in cache misses
Next iterations are cache hits

GetItem test - partition key 1-100 and sort keys 1-10
 Total time: 4390.240 ms - Avg time: 4.390 ms
 Total time: 3097.089 ms - Avg time: 3.097 ms
 Total time: 3273.463 ms - Avg time: 3.273 ms
 Total time: 3353.739 ms - Avg time: 3.354 ms
 Total time: 3533.314 ms - Avg time: 3.533 ms

Tutorial: Running a sample application API Version 2012-08-10 1248

Amazon DynamoDB Developer Guide

Query test - partition key 1-100 and sort keys between 2 and 9
 Total time: 475.868 ms - Avg time: 4.759 ms
 Total time: 423.333 ms - Avg time: 4.233 ms
 Total time: 460.271 ms - Avg time: 4.603 ms
 Total time: 397.859 ms - Avg time: 3.979 ms
 Total time: 466.644 ms - Avg time: 4.666 ms

Attempting to delete table; please wait...
Successfully deleted table.

Take note of the timing information—the number of milliseconds required for the GetItem and
Query tests. In this case, you ran the program against the DynamoDB endpoint. Now you'll run the
program again, this time against your DAX cluster.

To determine the endpoint of your DAX cluster, choose one of the following:

• In the DynamoDB console, select your DAX cluster. The cluster endpoint is shown in the console,
as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI, enter the following command:

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint address, port, and URL are shown in the output, as in the following
example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Now run the program again, but this time, specify the cluster endpoint URL as a command line
parameter.

java -cp classpath TryDax dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

Tutorial: Running a sample application API Version 2012-08-10 1249

Amazon DynamoDB Developer Guide

Look at the output and take note of the timing information. The elapsed times for GetItemand
Query should be significantly lower with DAX than with DynamoDB.

SDK metrics

With DAX SDK for Java 2.x, you can collect metrics about the service clients in your application and
analyze the output in Amazon CloudWatch. See Enabling SDK metrics for more information.

Note

The DAX SDK for Java only collects ApiCallSuccessful and ApiCallDuration metrics.

TryDax.java

import java.util.Map;

import software.amazon.awssdk.services.dynamodb.DynamoDbAsyncClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.BillingMode;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.dax.ClusterDaxAsyncClient;
import software.amazon.dax.Configuration;

public class TryDax {
 public static void main(String[] args) throws Exception {
 DynamoDbAsyncClient ddbClient = DynamoDbAsyncClient.builder()
 .build();

 DynamoDbAsyncClient daxClient = null;
 if (args.length >= 1) {
 daxClient = ClusterDaxAsyncClient.builder()
 .overrideConfiguration(Configuration.builder()

Tutorial: Running a sample application API Version 2012-08-10 1250

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/metrics.html

Amazon DynamoDB Developer Guide

 .url(args[0]) // e.g. dax://my-cluster.l6fzcv.dax-
clusters.us-east-1.amazonaws.com
 .build())
 .build();
 }

 String tableName = "TryDaxTable";

 System.out.println("Creating table...");
 createTable(tableName, ddbClient);

 System.out.println("Populating table...");
 writeData(tableName, ddbClient, 100, 10);

 DynamoDbAsyncClient testClient = null;
 if (daxClient != null) {
 testClient = daxClient;
 } else {
 testClient = ddbClient;
 }

 System.out.println("Running GetItem and Query tests...");
 System.out.println("First iteration of each test will result in cache misses");
 System.out.println("Next iterations are cache hits\n");

 // GetItem
 getItemTest(tableName, testClient, 100, 10, 5);

 // Query
 queryTest(tableName, testClient, 100, 2, 9, 5);

 System.out.println("Deleting table...");
 deleteTable(tableName, ddbClient);
 }

 private static void createTable(String tableName, DynamoDbAsyncClient client) {
 try {
 System.out.println("Attempting to create table; please wait...");

 client.createTable(CreateTableRequest.builder()
 .tableName(tableName)
 .keySchema(KeySchemaElement.builder()
 .keyType(KeyType.HASH)
 .attributeName("pk")

Tutorial: Running a sample application API Version 2012-08-10 1251

Amazon DynamoDB Developer Guide

 .build(), KeySchemaElement.builder()
 .keyType(KeyType.RANGE)
 .attributeName("sk")
 .build())
 .attributeDefinitions(AttributeDefinition.builder()
 .attributeName("pk")
 .attributeType(ScalarAttributeType.N)
 .build(), AttributeDefinition.builder()
 .attributeName("sk")
 .attributeType(ScalarAttributeType.N)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .build()).get();
 client.waiter().waitUntilTableExists(DescribeTableRequest.builder()
 .tableName(tableName)
 .build()).get();
 System.out.println("Successfully created table.");

 } catch (Exception e) {
 System.err.println("Unable to create table: ");
 e.printStackTrace();
 }
 }

 private static void deleteTable(String tableName, DynamoDbAsyncClient client) {
 try {
 System.out.println("\nAttempting to delete table; please wait...");
 client.deleteTable(DeleteTableRequest.builder()
 .tableName(tableName)
 .build()).get();
 client.waiter().waitUntilTableNotExists(DescribeTableRequest.builder()
 .tableName(tableName)
 .build()).get();
 System.out.println("Successfully deleted table.");

 } catch (Exception e) {
 System.err.println("Unable to delete table: ");
 e.printStackTrace();
 }
 }

 private static void writeData(String tableName, DynamoDbAsyncClient client, int
 pkmax, int skmax) {
 System.out.println("Writing data to the table...");

Tutorial: Running a sample application API Version 2012-08-10 1252

Amazon DynamoDB Developer Guide

 int stringSize = 1000;
 StringBuilder sb = new StringBuilder(stringSize);
 for (int i = 0; i < stringSize; i++) {
 sb.append('X');
 }
 String someData = sb.toString();

 try {
 for (int ipk = 1; ipk <= pkmax; ipk++) {
 System.out.println(("Writing " + skmax + " items for partition key: " +
 ipk));
 for (int isk = 1; isk <= skmax; isk++) {
 client.putItem(PutItemRequest.builder()
 .tableName(tableName)
 .item(Map.of("pk", attr(ipk), "sk", attr(isk), "someData",
 attr(someData)))
 .build()).get();
 }
 }
 } catch (Exception e) {
 System.err.println("Unable to write item:");
 e.printStackTrace();
 }
 }

 private static AttributeValue attr(int n) {
 return AttributeValue.builder().n(String.valueOf(n)).build();
 }

 private static AttributeValue attr(String s) {
 return AttributeValue.builder().s(s).build();
 }

 private static void getItemTest(String tableName, DynamoDbAsyncClient client, int
 pk, int sk, int iterations) {
 long startTime, endTime;
 System.out.println("GetItem test - partition key 1-" + pk + " and sort keys 1-"
 + sk);

 for (int i = 0; i < iterations; i++) {
 startTime = System.nanoTime();
 try {
 for (int ipk = 1; ipk <= pk; ipk++) {

Tutorial: Running a sample application API Version 2012-08-10 1253

Amazon DynamoDB Developer Guide

 for (int isk = 1; isk <= sk; isk++) {
 client.getItem(GetItemRequest.builder()
 .tableName(tableName)
 .key(Map.of("pk", attr(ipk), "sk", attr(isk)))
 .build()).get();
 }
 }
 } catch (Exception e) {
 System.err.println("Unable to get item:");
 e.printStackTrace();
 }
 endTime = System.nanoTime();
 printTime(startTime, endTime, pk * sk);
 }
 }

 private static void queryTest(String tableName, DynamoDbAsyncClient client, int pk,
 int sk1, int sk2, int iterations) {
 long startTime, endTime;
 System.out.println("Query test - partition key 1-" + pk + " and sort keys
 between " + sk1 + " and " + sk2);

 for (int i = 0; i < iterations; i++) {
 startTime = System.nanoTime();
 for (int ipk = 1; ipk <= pk; ipk++) {
 try {
 // Pagination API for Query.
 client.queryPaginator(QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression("pk = :pkval and sk between :skval1
 and :skval2")
 .expressionAttributeValues(Map.of(":pkval", attr(ipk),
 ":skval1", attr(sk1), ":skval2", attr(sk2)))
 .build()).items().subscribe((item) -> {
 }).get();
 } catch (Exception e) {
 System.err.println("Unable to query table:");
 e.printStackTrace();
 }
 }
 endTime = System.nanoTime();
 printTime(startTime, endTime, pk);
 }
 }

Tutorial: Running a sample application API Version 2012-08-10 1254

Amazon DynamoDB Developer Guide

 private static void printTime(long startTime, long endTime, int iterations) {
 System.out.format("\tTotal time: %.3f ms - ", (endTime - startTime) /
 (1000000.0));
 System.out.format("Avg time: %.3f ms\n", (endTime - startTime) / (iterations *
 1000000.0));
 }
}

.NET and DAX

Follow these steps to run the .NET sample on your Amazon EC2 instance.

Note

This tutorial uses the .NET 9 SDK. It shows how you can run a program in your default
Amazon VPC to access your Amazon DynamoDB Accelerator (DAX) cluster. It works with
the Amazon SDK v4 for .NET . For details about changes in V4 and information about
migrating, see Migrating to version 4 of the Amazon SDK for .NET. If you prefer, you can
use the Amazon Toolkit for Visual Studio to write a .NET application and deploy it into your
VPC.
For more information, see Creating and Deploying Elastic Beanstalk Applications in .NET
Using Amazon Toolkit for Visual Studio in the Amazon Elastic Beanstalk Developer Guide.

To run the .NET sample for DAX

1. Go to the Microsoft Downloads page and download the latest .NET 9 SDK for Linux. The
downloaded file is dotnet-sdk-N.N.N-linux-x64.tar.gz.

2. Extract the SDK files.

mkdir dotnet
tar zxvf dotnet-sdk-N.N.N-linux-x64.tar.gz -C dotnet

Replace N.N.N with the actual version number of the .NET SDK (for example: 9.0.305).

3. Verify the installation.

alias dotnet=$HOME/dotnet/dotnet
dotnet --version

Tutorial: Running a sample application API Version 2012-08-10 1255

https://docs.amazonaws.cn/sdk-for-net/v4/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-net/v4/developer-guide/net-dg-v4.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_NET.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create_deploy_NET.html
https://www.microsoft.com/net/download?initial-os=linux

Amazon DynamoDB Developer Guide

This should print the version number of the .NET SDK.

Note

Instead of the version number, you might receive the following error:
error: libunwind.so.8: cannot open shared object file: No such file or directory
To resolve the error, install the libunwind package.

sudo yum install -y libunwind

After you do this, you should be able to run the dotnet --version command
without any errors.

4. Create a new .NET project.

dotnet new console -o myApp

This requires a few minutes to perform a one-time-only setup. When it is complete, run the
sample project.

dotnet run --project myApp

You should receive the following message: Hello World!

5. The myApp/myApp.csproj file contains metadata about your project. To use the DAX client in
your application, modify the file so that it looks like the following.

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="AWSSDK.DAX.Client" Version="*" />
 </ItemGroup>
</Project>

6. Download the sample program source code (.zip file).

Tutorial: Running a sample application API Version 2012-08-10 1256

Amazon DynamoDB Developer Guide

wget http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
TryDax.zip

When the download is complete, extract the source files.

unzip TryDax.zip

7. Now run the sample programs of dotNet, one at a time. For each program, copy its contents
into the myApp/Program.cs, and then run the MyApp project.

Run the following .NET programs. The first program creates a DynamoDB table named
TryDaxTable. The second program writes data to the table.

cp TryDax/dotNet/01-CreateTable.cs myApp/Program.cs
dotnet run --project myApp

cp TryDax/dotNet/02-Write-Data.cs myApp/Program.cs
dotnet run --project myApp

8. Next, run some programs to perform GetItem, Query, and Scan operations on your DAX
cluster. To determine the endpoint for your DAX cluster, choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Tutorial: Running a sample application API Version 2012-08-10 1257

Amazon DynamoDB Developer Guide

Now run the following programs, specifying your cluster endpoint as a command line
parameter. (Replace the sample endpoint with your actual DAX cluster endpoint.)

cp TryDax/dotNet/03-GetItem-Test.cs myApp/Program.cs
dotnet run --project myApp dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

cp TryDax/dotNet/04-Query-Test.cs myApp/Program.cs
dotnet run --project myApp dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

cp TryDax/dotNet/05-Scan-Test.cs myApp/Program.cs
dotnet run --project myApp dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

9. Run the following .NET program to delete TryDaxTable.

cp TryDax/dotNet/06-DeleteTable.cs myApp/Program.cs
dotnet run --project myApp

For more information about these programs, see the following sections:

• 01-CreateTable.cs

• 02-Write-Data.cs

• 03-GetItem-Test.cs

• 04-Query-Test.cs

• 05-Scan-Test.cs

• 06-DeleteTable.cs

01-CreateTable.cs

The 01-CreateTable.cs program creates a table (TryDaxTable). The remaining .NET programs
in this section depend on this table.

Tutorial: Running a sample application API Version 2012-08-10 1258

Amazon DynamoDB Developer Guide

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 var tableName = "TryDaxTable";

 var request = new CreateTableRequest()
 {
 TableName = tableName,
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement{ AttributeName = "pk",KeyType = "HASH"},
 new KeySchemaElement{ AttributeName = "sk",KeyType = "RANGE"}
 },
 AttributeDefinitions = new List<AttributeDefinition>() {
 new AttributeDefinition{ AttributeName = "pk",AttributeType = "N"},
 new AttributeDefinition{ AttributeName = "sk",AttributeType = "N"}
 },
 ProvisionedThroughput = new ProvisionedThroughput()
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 10
 }
 };

 var response = await client.CreateTableAsync(request);

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

Tutorial: Running a sample application API Version 2012-08-10 1259

Amazon DynamoDB Developer Guide

02-Write-Data.cs

The 02-Write-Data.cs program writes test data to TryDaxTable.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 var tableName = "TryDaxTable";

 string someData = new string('X', 1000);
 var pkmax = 10;
 var skmax = 10;

 for (var ipk = 1; ipk <= pkmax; ipk++)
 {
 Console.WriteLine($"Writing {skmax} items for partition key: {ipk}");
 for (var isk = 1; isk <= skmax; isk++)
 {
 var request = new PutItemRequest()
 {
 TableName = tableName,
 Item = new Dictionary<string, AttributeValue>()
 {
 { "pk", new AttributeValue{N = ipk.ToString() } },
 { "sk", new AttributeValue{N = isk.ToString() } },
 { "someData", new AttributeValue{S = someData } }
 }
 };

 var response = await client.PutItemAsync(request);

Tutorial: Running a sample application API Version 2012-08-10 1260

Amazon DynamoDB Developer Guide

 }
 }

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

03-GetItem-Test.cs

The 03-GetItem-Test.cs program performs GetItem operations on TryDaxTable.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.DAX;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 string endpointUri = args[0];
 Console.WriteLine($"Using DAX client - endpointUri={endpointUri}");

 var clientConfig = new DaxClientConfig(endpointUri)
 {
 AwsCredentials = FallbackCredentialsFactory.GetCredentials()
 };
 var client = new ClusterDaxClient(clientConfig);

 var tableName = "TryDaxTable";

 var pk = 1;
 var sk = 10;
 var iterations = 5;

 var startTime = System.DateTime.Now;

Tutorial: Running a sample application API Version 2012-08-10 1261

Amazon DynamoDB Developer Guide

 for (var i = 0; i < iterations; i++)
 {
 for (var ipk = 1; ipk <= pk; ipk++)
 {
 for (var isk = 1; isk <= sk; isk++)
 {
 var request = new GetItemRequest()
 {
 TableName = tableName,
 Key = new Dictionary<string, AttributeValue>() {
 {"pk", new AttributeValue {N = ipk.ToString()} },
 {"sk", new AttributeValue {N = isk.ToString() } }
 }
 };
 var response = await client.GetItemAsync(request);
 Console.WriteLine($"GetItem succeeded for pk: {ipk},sk:
 {isk}");
 }
 }
 }

 var endTime = DateTime.Now;
 TimeSpan timeSpan = endTime - startTime;
 Console.WriteLine($"Total time: {timeSpan.TotalMilliseconds}
 milliseconds");

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

04-Query-Test.cs

The 04-Query-Test.cs program performs Query operations on TryDaxTable.

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Amazon.Runtime;
using Amazon.DAX;

Tutorial: Running a sample application API Version 2012-08-10 1262

Amazon DynamoDB Developer Guide

using Amazon.DynamoDBv2.Model;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 string endpointUri = args[0];
 Console.WriteLine($"Using DAX client - endpointUri={endpointUri}");

 var clientConfig = new DaxClientConfig(endpointUri)
 {
 AwsCredentials = FallbackCredentialsFactory.GetCredentials()
 };
 var client = new ClusterDaxClient(clientConfig);

 var tableName = "TryDaxTable";

 var pk = 5;
 var sk1 = 2;
 var sk2 = 9;
 var iterations = 5;

 var startTime = DateTime.Now;

 for (var i = 0; i < iterations; i++)
 {
 var request = new QueryRequest()
 {
 TableName = tableName,
 KeyConditionExpression = "pk = :pkval and sk between :skval1
 and :skval2",
 ExpressionAttributeValues = new Dictionary<string,
 AttributeValue>() {
 {":pkval", new AttributeValue {N = pk.ToString()} },
 {":skval1", new AttributeValue {N = sk1.ToString()} },
 {":skval2", new AttributeValue {N = sk2.ToString()} }
 }
 };
 var response = await client.QueryAsync(request);
 Console.WriteLine($"{i}: Query succeeded");

Tutorial: Running a sample application API Version 2012-08-10 1263

Amazon DynamoDB Developer Guide

 }

 var endTime = DateTime.Now;
 TimeSpan timeSpan = endTime - startTime;
 Console.WriteLine($"Total time: {timeSpan.TotalMilliseconds}
 milliseconds");

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

05-Scan-Test.cs

The 05-Scan-Test.cs program performs Scan operations on TryDaxTable.

using System;
using System.Threading.Tasks;
using Amazon.Runtime;
using Amazon.DAX;
using Amazon.DynamoDBv2.Model;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 string endpointUri = args[0];
 Console.WriteLine($"Using DAX client - endpointUri={endpointUri}");

 var clientConfig = new DaxClientConfig(endpointUri)
 {
 AwsCredentials = FallbackCredentialsFactory.GetCredentials()
 };
 var client = new ClusterDaxClient(clientConfig);

 var tableName = "TryDaxTable";

 var iterations = 5;

Tutorial: Running a sample application API Version 2012-08-10 1264

Amazon DynamoDB Developer Guide

 var startTime = DateTime.Now;

 for (var i = 0; i < iterations; i++)
 {
 var request = new ScanRequest()
 {
 TableName = tableName
 };
 var response = await client.ScanAsync(request);
 Console.WriteLine($"{i}: Scan succeeded");
 }

 var endTime = DateTime.Now;
 TimeSpan timeSpan = endTime - startTime;
 Console.WriteLine($"Total time: {timeSpan.TotalMilliseconds}
 milliseconds");

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

06-DeleteTable.cs

The 06-DeleteTable.cs program deletes TryDaxTable. Run this program after you have
finished testing.

using System;
using System.Threading.Tasks;
using Amazon.DynamoDBv2.Model;
using Amazon.DynamoDBv2;

namespace ClientTest
{
 class Program
 {
 public static async Task Main(string[] args)
 {
 AmazonDynamoDBClient client = new AmazonDynamoDBClient();

Tutorial: Running a sample application API Version 2012-08-10 1265

Amazon DynamoDB Developer Guide

 var tableName = "TryDaxTable";

 var request = new DeleteTableRequest()
 {
 TableName = tableName
 };

 var response = await client.DeleteTableAsync(request);

 Console.WriteLine("Hit <enter> to continue...");
 Console.ReadLine();
 }
 }
}

Python and DAX

Follow this procedure to run the Python sample application on your Amazon EC2 instance.

To run the Python sample for DAX

1. Install the DAX Python client using the pip utility.

pip install amazon-dax-client

2. Download the sample program source code (.zip file).

wget http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
TryDax.zip

When the download is complete, extract the source files.

unzip TryDax.zip

3. Run the following Python programs. The first program creates an Amazon DynamoDB table
named TryDaxTable. The second program writes data to the table.

python 01-create-table.py
python 02-write-data.py

4. Run the following Python programs.

Tutorial: Running a sample application API Version 2012-08-10 1266

Amazon DynamoDB Developer Guide

python 03-getitem-test.py
python 04-query-test.py
python 05-scan-test.py

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

5. In the previous step, you ran the programs against the DynamoDB endpoint. Now run the
programs again, but this time, the GetItem, Query, and Scan operations are processed by
your DAX cluster.

To determine the endpoint for your DAX cluster, choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in this example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Run the programs again, but this time, specify the cluster endpoint as a command line
parameter.

python 03-getitem-test.py dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com
python 04-query-test.py dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com
python 05-scan-test.py dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

Tutorial: Running a sample application API Version 2012-08-10 1267

Amazon DynamoDB Developer Guide

Look at the rest of the output, and take note of the timing information. The elapsed times for
GetItem, Query, and Scan should be significantly lower with DAX than with DynamoDB.

6. Run the following Python program to delete TryDaxTable.

python 06-delete-table.py

For more information about these programs, see the following sections:

• 01-create-table.py

• 02-write-data.py

• 03-getitem-test.py

• 04-query-test.py

• 05-scan-test.py

• 06-delete-table.py

01-create-table.py

The 01-create-table.py program creates a table (TryDaxTable). The remaining Python
programs in this section depend on this table.

import boto3

def create_dax_table(dyn_resource=None):
 """
 Creates a DynamoDB table.

 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The newly created table.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table_name = "TryDaxTable"
 params = {
 "TableName": table_name,
 "KeySchema": [

Tutorial: Running a sample application API Version 2012-08-10 1268

Amazon DynamoDB Developer Guide

 {"AttributeName": "partition_key", "KeyType": "HASH"},
 {"AttributeName": "sort_key", "KeyType": "RANGE"},
],
 "AttributeDefinitions": [
 {"AttributeName": "partition_key", "AttributeType": "N"},
 {"AttributeName": "sort_key", "AttributeType": "N"},
],
 "BillingMode": "PAY_PER_REQUEST",
 }
 table = dyn_resource.create_table(**params)
 print(f"Creating {table_name}...")
 table.wait_until_exists()
 return table

if __name__ == "__main__":
 dax_table = create_dax_table()
 print(f"Created table.")

02-write-data.py

The 02-write-data.py program writes test data to TryDaxTable.

import boto3

def write_data_to_dax_table(key_count, item_size, dyn_resource=None):
 """
 Writes test data to the demonstration table.

 :param key_count: The number of partition and sort keys to use to populate the
 table. The total number of items is key_count * key_count.
 :param item_size: The size of non-key data for each test item.
 :param dyn_resource: Either a Boto3 or DAX resource.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 some_data = "X" * item_size

 for partition_key in range(1, key_count + 1):
 for sort_key in range(1, key_count + 1):
 table.put_item(

Tutorial: Running a sample application API Version 2012-08-10 1269

Amazon DynamoDB Developer Guide

 Item={
 "partition_key": partition_key,
 "sort_key": sort_key,
 "some_data": some_data,
 }
)
 print(f"Put item ({partition_key}, {sort_key}) succeeded.")

if __name__ == "__main__":
 write_key_count = 10
 write_item_size = 1000
 print(
 f"Writing {write_key_count*write_key_count} items to the table. "
 f"Each item is {write_item_size} characters."
)
 write_data_to_dax_table(write_key_count, write_item_size)

03-getitem-test.py

The 03-getitem-test.py program performs GetItem operations on TryDaxTable. This
example is given for the Region eu-west-1.

import argparse
import sys
import time
import amazondax
import boto3

def get_item_test(key_count, iterations, dyn_resource=None):
 """
 Gets items from the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param key_count: The number of items to get from the table in each iteration.
 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:

Tutorial: Running a sample application API Version 2012-08-10 1270

Amazon DynamoDB Developer Guide

 dyn_resource = boto3.resource('dynamodb')

 table = dyn_resource.Table('TryDaxTable')
 start = time.perf_counter()
 for _ in range(iterations):
 for partition_key in range(1, key_count + 1):
 for sort_key in range(1, key_count + 1):
 table.get_item(Key={
 'partition_key': partition_key,
 'sort_key': sort_key
 })
 print('.', end='')
 sys.stdout.flush()
 print()
 end = time.perf_counter()
 return start, end

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument(
 'endpoint_url', nargs='?',
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.")
 args = parser.parse_args()

 test_key_count = 10
 test_iterations = 50
 if args.endpoint_url:
 print(f"Getting each item from the table {test_iterations} times, "
 f"using the DAX client.")
 # Use a with statement so the DAX client closes the cluster after completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url,
 region_name='eu-west-1') as dax:
 test_start, test_end = get_item_test(
 test_key_count, test_iterations, dyn_resource=dax)
 else:
 print(f"Getting each item from the table {test_iterations} times, "
 f"using the Boto3 client.")
 test_start, test_end = get_item_test(
 test_key_count, test_iterations)
 print(f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/ test_iterations}.")

Tutorial: Running a sample application API Version 2012-08-10 1271

Amazon DynamoDB Developer Guide

04-query-test.py

The 04-query-test.py program performs Query operations on TryDaxTable.

import argparse
import time
import sys
import amazondax
import boto3
from boto3.dynamodb.conditions import Key

def query_test(partition_key, sort_keys, iterations, dyn_resource=None):
 """
 Queries the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param partition_key: The partition key value to use in the query. The query
 returns items that have partition keys equal to this value.
 :param sort_keys: The range of sort key values for the query. The query returns
 items that have sort key values between these two values.
 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 key_condition_expression = Key("partition_key").eq(partition_key) & Key(
 "sort_key"
).between(*sort_keys)

 start = time.perf_counter()
 for _ in range(iterations):
 table.query(KeyConditionExpression=key_condition_expression)
 print(".", end="")
 sys.stdout.flush()
 print()
 end = time.perf_counter()
 return start, end

Tutorial: Running a sample application API Version 2012-08-10 1272

Amazon DynamoDB Developer Guide

if __name__ == "__main__":
 # pylint: disable=not-context-manager
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "endpoint_url",
 nargs="?",
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.",
)
 args = parser.parse_args()

 test_partition_key = 5
 test_sort_keys = (2, 9)
 test_iterations = 100
 if args.endpoint_url:
 print(f"Querying the table {test_iterations} times, using the DAX client.")
 # Use a with statement so the DAX client closes the cluster after completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url) as dax:
 test_start, test_end = query_test(
 test_partition_key, test_sort_keys, test_iterations, dyn_resource=dax
)
 else:
 print(f"Querying the table {test_iterations} times, using the Boto3 client.")
 test_start, test_end = query_test(
 test_partition_key, test_sort_keys, test_iterations
)

 print(
 f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/test_iterations}."
)

05-scan-test.py

The 05-scan-test.py program performs Scan operations on TryDaxTable.

import argparse
import time
import sys
import amazondax
import boto3

def scan_test(iterations, dyn_resource=None):
 """

Tutorial: Running a sample application API Version 2012-08-10 1273

Amazon DynamoDB Developer Guide

 Scans the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 start = time.perf_counter()
 for _ in range(iterations):
 table.scan()
 print(".", end="")
 sys.stdout.flush()
 print()
 end = time.perf_counter()
 return start, end

if __name__ == "__main__":
 # pylint: disable=not-context-manager
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "endpoint_url",
 nargs="?",
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not used.",
)
 args = parser.parse_args()

 test_iterations = 100
 if args.endpoint_url:
 print(f"Scanning the table {test_iterations} times, using the DAX client.")
 # Use a with statement so the DAX client closes the cluster after completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url) as dax:
 test_start, test_end = scan_test(test_iterations, dyn_resource=dax)
 else:
 print(f"Scanning the table {test_iterations} times, using the Boto3 client.")
 test_start, test_end = scan_test(test_iterations)
 print(
 f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/test_iterations}."

Tutorial: Running a sample application API Version 2012-08-10 1274

Amazon DynamoDB Developer Guide

)

06-delete-table.py

The 06-delete-table.py program deletes TryDaxTable. Run this program after you have
finished testing Amazon DynamoDB Accelerator (DAX) functionality.

import boto3

def delete_dax_table(dyn_resource=None):
 """
 Deletes the demonstration table.

 :param dyn_resource: Either a Boto3 or DAX resource.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 table.delete()

 print(f"Deleting {table.name}...")
 table.wait_until_not_exists()

if __name__ == "__main__":
 delete_dax_table()
 print("Table deleted!")

Modifying an existing application to use DAX

If you already have a Java application that uses Amazon DynamoDB, you can modify it so that
it can access your DynamoDB Accelerator (DAX) cluster. You don't have to rewrite the entire
application because the DAX Java client is similar to the DynamoDB low-level client included in the
Amazon SDK for Java 2.x. See Working with items in DynamoDB for details.

Note

This example uses Amazon SDK for Java 2.x. For the legacy SDK for Java 1.x version, see
Modifying an existing SDK for Java 1.x application to use DAX.

Modifying an existing application to use DAX API Version 2012-08-10 1275

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/examples-dynamodb-items.html

Amazon DynamoDB Developer Guide

To modify your program, replace the DynamoDB client with a DAX client.

Region region = Region.US_EAST_1;

// Create an asynchronous DynamoDB client
DynamoDbAsyncClient client = DynamoDbAsyncClient.builder()
 .region(region)
 .build();

// Create an asynchronous DAX client
DynamoDbAsyncClient client = ClusterDaxAsyncClient.builder()
 .overrideConfiguration(Configuration.builder()
 .url(<cluster url>) // for example, "dax://my-cluster.l6fzcv.dax-
clusters.us-east-1.amazonaws.com"
 .region(region)
 .addMetricPublisher(cloudWatchMetricsPub) // optionally enable SDK
 metric collection
 .build())
 .build();

You can also use the high-level library that is part of the Amazon SDK for Java 2.x, replacing the
DynamoDB client with a DAX client.

Region region = Region.US_EAST_1;
DynamoDbAsyncClient dax = ClusterDaxAsyncClient.builder()
 .overrideConfiguration(Configuration.builder()
 .url(<cluster url>) // for example, "dax://my-cluster.l6fzcv.dax-
clusters.us-east-1.amazonaws.com"
 .region(region)
 .build())
 .build();

DynamoDbEnhancedAsyncClient enhancedClient = DynamoDbEnhancedAsyncClient.builder()
 .dynamoDbClient(dax)
 .build();

For more information, see Mapping items in DynamoDB tables.

Managing DAX clusters

This section addresses some of the common management tasks for Amazon DynamoDB
Accelerator (DAX) clusters.

Managing DAX clusters API Version 2012-08-10 1276

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/examples-dynamodb-enhanced.html

Amazon DynamoDB Developer Guide

Topics

• IAM permissions for managing a DAX cluster

• Scaling a DAX cluster

• Customizing DAX cluster settings

• Configuring TTL settings

• Tagging support for DAX

• Amazon CloudTrail integration

• Deleting a DAX cluster

IAM permissions for managing a DAX cluster

When you administer a DAX cluster using the Amazon Web Services Management Console or the
Amazon Command Line Interface (Amazon CLI), we strongly recommend that you narrow the scope
of actions that users can perform. By doing so, you help mitigate risk while following the principle
of least privilege.

The following discussion focuses on access control for the DAX management APIs. For more
information, see Amazon DynamoDB accelerator in the Amazon DynamoDB API Reference.

Note

For more detailed information about managing Amazon Identity and Access Management
(IAM) permissions, see the following:

• IAM and creating DAX clusters: Creating a DAX cluster.

• IAM and DAX data plane operations: DAX access control.

For the DAX management APIs, you can't scope API actions to a specific resource. The Resource
element must be set to "*". This is different from DAX data plane API operations, such as
GetItem, Query, and Scan. Data plane operations are exposed through the DAX client, and those
operations can be scoped to specific resources.

To illustrate, consider the following IAM policy document.

IAM permissions for managing a DAX cluster API Version 2012-08-10 1277

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Accelerator_(DAX).html

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "dax:*"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
]
 }
]
}

Suppose that the intent of this policy is to allow DAX management API calls for the cluster
DAXCluster01— and only that cluster.

Now suppose that a user issues the following Amazon CLI command.

aws dax describe-clusters

This command fails with a Not Authorized exception because the underlying DescribeClusters
API call can't be scoped to a specific cluster. Even though the policy is syntactically valid, the
command fails because the Resource element must be set to "*". However, if the user runs a
program that sends DAX data plane calls (such as GetItem or Query) to DAXCluster01, those
calls do succeed. This is because DAX data plane APIs can be scoped to specific resources (in this
case, DAXCluster01).

If you want to write a single comprehensive IAM policy to encompass both DAX management
APIs and DAX data plane APIs, we suggest that you include two distinct statements in the policy
document. One of these statements should address the DAX data plane APIs, while the other
statement addresses the DAX management APIs.

The following example policy shows this approach. Note how the DAXDataAPIs statement is
scoped to the DAXCluster01 resource, but the resource for DAXManagementAPIs must be "*".

IAM permissions for managing a DAX cluster API Version 2012-08-10 1278

Amazon DynamoDB Developer Guide

The actions shown in each statement are for illustration only. You can customize them as needed
for your application.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DAXDataAPIs",
 "Action": [
 "dax:GetItem",
 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan",
 "dax:PutItem",
 "dax:UpdateItem",
 "dax:DeleteItem",
 "dax:BatchWriteItem"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
]},
 {
 "Sid": "DAXManagementAPIs",
 "Action": [
 "dax:CreateParameterGroup",
 "dax:CreateSubnetGroup",
 "dax:DecreaseReplicationFactor",
 "dax:DeleteCluster",
 "dax:DeleteParameterGroup",
 "dax:DeleteSubnetGroup",
 "dax:DescribeClusters",
 "dax:DescribeDefaultParameters",
 "dax:DescribeEvents",
 "dax:DescribeParameterGroups",
 "dax:DescribeParameters",
 "dax:DescribeSubnetGroups",
 "dax:IncreaseReplicationFactor",
 "dax:ListTags",
 "dax:RebootNode",
 "dax:TagResource",

IAM permissions for managing a DAX cluster API Version 2012-08-10 1279

Amazon DynamoDB Developer Guide

 "dax:UntagResource",
 "dax:UpdateCluster",
 "dax:UpdateParameterGroup",
 "dax:UpdateSubnetGroup"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Scaling a DAX cluster

There are two options available for scaling a DAX cluster. The first option is horizontal scaling,
where you add read replicas to the cluster. The second option is vertical scaling, where you select
different node types. For advice on how to approach choosing an appropriate cluster size and node
type for your application, see DAX cluster sizing guide.

Horizontal scaling

With horizontal scaling, you can improve throughput for read operations by adding more read
replicas to the cluster. A single DAX cluster supports up to 10 read replicas, and you can add or
remove replicas while the cluster is running.

When you add a new node, you must synchronize the cache data from a peer node. Therefore,
the addition time varies based on cache size and your application workload. As a best practice, we
recommend that you pre-scale your cluster to meet expected traffic peaks. For information about
right-sizing guidelines and monitoring recommendations, see DAX cluster sizing guide.

The following Amazon CLI examples show how to increase or decrease the number of nodes. The
--new-replication-factor argument specifies the total number of nodes in the cluster. One
of the nodes is the primary node, and the other nodes are read replicas.

aws dax increase-replication-factor \
 --cluster-name MyNewCluster \
 --new-replication-factor 5

aws dax decrease-replication-factor \

Scaling a DAX cluster API Version 2012-08-10 1280

Amazon DynamoDB Developer Guide

 --cluster-name MyNewCluster \
 --new-replication-factor 3

Note

The cluster status changes to modifying when you modify the replication factor. The
status changes to available when the modification is complete.

Vertical scaling

If you have a large working set of data, your application might benefit from using larger node
types. Larger nodes can enable the cluster to store more data in memory, reducing cache misses
and improving overall application performance of the application. (All of the nodes in a DAX cluster
must be of the same type.)

If your DAX cluster has a high rate of write operations or cache misses, your application might also
benefit from using larger node types. Write operations and cache misses consume resources on the
cluster's primary node. Therefore, using larger node types might increase the performance of the
primary node and thereby allow a higher throughput for these types of operations.

You can't modify the node types on a running DAX cluster. Instead, you must create a new cluster
with the desired node type. For a list of supported node types, see Nodes.

You can create a new DAX cluster using the Amazon Web Services Management Console, Amazon
CloudFormation, the Amazon CLI, or the Amazon SDK. (For the Amazon CLI, use the --node-type
parameter to specify the node type.)

Customizing DAX cluster settings

When you create a DAX cluster, the following default settings are used:

• Automatic cache eviction enabled with Time to Live (TTL) of 5 minutes

• No preference for Availability Zones

• No preference for maintenance windows

• Notifications disabled

For new clusters, you can customize the settings at creation time. To do this in the Amazon Web
Services Management Console, clear Use default settings to modify the following settings:

Customizing DAX cluster settings API Version 2012-08-10 1281

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dax-cluster.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dax-cluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Accelerator_(DAX).html

Amazon DynamoDB Developer Guide

• Network and Security—Allows you to run individual DAX cluster nodes in different Availability
Zones within the current Amazon Region. If you choose No Preference, the nodes are distributed
among Availability Zones automatically.

• Parameter Group—A named set of parameters that are applied to every node in the cluster. You
can use a parameter group to specify cache TTL behavior. You can change the value of any given
parameter within a parameter group (except default parameter group default.dax.1.0) at
any time.

• Maintenance Window—A weekly time period during which software upgrades and patches are
applied to the nodes in the cluster. You can choose the start day, start time, and duration of
the maintenance window. If you choose No Preference, the maintenance window is selected
at random from an 8-hour block of time per Region. For more information, see Maintenance
window.

Note

Parameter Group and Maintenance Window can also be changed at any time on a running
cluster.

When a maintenance event occurs, DAX can notify you using Amazon Simple Notification Service
(Amazon SNS). To configure notifications, choose an option from the Topic for SNS notification
selector. You can create a new Amazon SNS topic, or use an existing topic.

For more information about setting up and subscribing to an Amazon SNS topic, see Getting
started with Amazon SNS in the Amazon Simple Notification Service Developer Guide.

Configuring TTL settings

DAX maintains two caches for data that it reads from DynamoDB:

• Item cache—For items retrieved using GetItem or BatchGetItem.

• Query cache—For result sets retrieved using Query or Scan.

For more information, see Item cache and Query cache.

Configuring TTL settings API Version 2012-08-10 1282

https://docs.amazonaws.cn/sns/latest/dg/GettingStarted.html
https://docs.amazonaws.cn/sns/latest/dg/GettingStarted.html

Amazon DynamoDB Developer Guide

The default TTL for each of these caches is 5 minutes. If you want to use different TTL settings, you
can launch a DAX cluster using a custom parameter group. To do this on the console, choose DAX |
Parameter groups in the navigation pane.

You can also perform these tasks using the Amazon CLI. The following example shows how to
launch a new DAX cluster using a custom parameter group. In this example, the item cache TTL is
set to 10 minutes, and the query cache TTL is set to 3 minutes.

1. Create a new parameter group.

aws dax create-parameter-group \
 --parameter-group-name custom-ttl

2. Set the item cache TTL to 10 minutes (600000 milliseconds).

aws dax update-parameter-group \
 --parameter-group-name custom-ttl \
 --parameter-name-values "ParameterName=record-ttl-millis,ParameterValue=600000"

3. Set the query cache TTL to 3 minutes (180000 milliseconds).

aws dax update-parameter-group \
 --parameter-group-name custom-ttl \
 --parameter-name-values "ParameterName=query-ttl-millis,ParameterValue=180000"

4. Verify that the parameters have been set correctly.

aws dax describe-parameters --parameter-group-name custom-ttl \
 --query "Parameters[*].[ParameterName,Description,ParameterValue]"

You can now launch a new DAX cluster with this parameter group.

aws dax create-cluster \
 --cluster-name MyNewCluster \
 --node-type dax.r3.large \
 --replication-factor 3 \
 --iam-role-arn arn:aws:iam::123456789012:role/DAXServiceRole \
 --parameter-group custom-ttl

Configuring TTL settings API Version 2012-08-10 1283

Amazon DynamoDB Developer Guide

Note

You can't modify a parameter group that is being used by a running DAX instance.

Tagging support for DAX

Many Amazon services, including DynamoDB, support tagging—the ability to label resources with
user-defined names. You can assign tags to DAX clusters, allowing you to quickly identify all of
your Amazon resources that have the same tag, or to categorize your Amazon bills by the tags you
assign.

For more information, see Adding tags and labels to resources in DynamoDB.

Using the Amazon Web Services Management Console

To manage DAX cluster tags

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, under DAX, choose Clusters.

3. Choose the cluster that you want to work with.

4. Choose the Tags tab. You can add, list, edit, or delete your tags here.

When the settings are as you want them, choose Apply Changes.

Using the Amazon CLI

When you use the Amazon CLI to manage DAX cluster tags, you must first determine the Amazon
Resource Name (ARN) for the cluster. The following example shows how to determine the ARN for
a cluster named MyDAXCluster.

aws dax describe-clusters \
 --cluster-name MyDAXCluster \
 --query "Clusters[*].ClusterArn"

In the output, the ARN will look similar to this: arn:aws:dax:us-
west-2:123456789012:cache/MyDAXCluster

Tagging support for DAX API Version 2012-08-10 1284

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

The following example shows how to tag the cluster.

aws dax tag-resource \
 --resource-name arn:aws:dax:us-west-2:123456789012:cache/MyDAXCluster \
 --tags="Key=ClusterUsage,Value=prod"

List all the tags for a cluster.

aws dax list-tags \
 --resource-name arn:aws:dax:us-west-2:123456789012:cache/MyDAXCluster

To remove a tag, specify its key.

aws dax untag-resource \
 --resource-name arn:aws:dax:us-west-2:123456789012:cache/MyDAXCluster \
 --tag-keys ClusterUsage

Amazon CloudTrail integration

DAX is integrated with Amazon CloudTrail, allowing you to audit DAX cluster activities. You can
use CloudTrail logs to view all the changes that have been made at the cluster level. You can also
see changes to cluster components such as nodes, subnet groups, and parameter groups. For more
information, see Logging DynamoDB operations by using Amazon CloudTrail.

Deleting a DAX cluster

If you are no longer using a DAX cluster, you should delete it to avoid being charged for unused
resources.

You can delete a DAX cluster using the console or the Amazon CLI. The following is an example.

aws dax delete-cluster --cluster-name mydaxcluster

Monitoring DynamoDB Accelerator

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon DynamoDB Accelerator (DAX) and your Amazon solutions. You should collect monitoring

Amazon CloudTrail integration API Version 2012-08-10 1285

Amazon DynamoDB Developer Guide

data from all parts of your Amazon solution so that you can more easily debug a multi-point
failure, if one occurs.

Before you start monitoring DAX, you should create a monitoring plan that includes answers to the
following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Topics

• Monitoring tools for DynamoDB Accelerator

• Monitoring with Amazon CloudWatch

• Logging DAX operations using Amazon CloudTrail

Monitoring tools for DynamoDB Accelerator

Amazon provides tools that you can use to monitor Amazon DynamoDB Accelerator (DAX). You can
configure some of these tools to do the monitoring for you, and some require manual intervention.
We recommend that you automate monitoring tasks as much as possible.

Topics

• Automated monitoring tools

• Manual monitoring tools

Automated monitoring tools

You can use the following automated monitoring tools to watch DAX and report when something
is wrong:

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over

DAX monitoring tools API Version 2012-08-10 1286

Amazon DynamoDB Developer Guide

a number of time periods. The action is a notification sent to an Amazon Simple Notification
Service (Amazon SNS) topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not
invoke actions simply because they are in a particular state; the state must have changed and
been maintained for a specified number of periods. For more information, see Monitoring
metrics in DynamoDB with Amazon CloudWatch.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from Amazon CloudTrail or
other sources. For more information, see Monitoring Log Files in the Amazon CloudWatch User
Guide.

• Amazon CloudWatch Events – Match events and route them to one or more target functions
or streams to make changes, capture state information, and take corrective action. For more
information, see What is Amazon CloudWatch Events in the Amazon CloudWatch User Guide.

• Amazon CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail
log files in real time by sending them to CloudWatch Logs, write log processing applications in
Java, and validate that your log files have not changed after delivery by CloudTrail. For more
information, see Working with CloudTrail Log Files in the Amazon CloudTrail User Guide.

Manual monitoring tools

Another important part of monitoring DAX involves manually monitoring those items that the
CloudWatch alarms don't cover. The DAX, CloudWatch, Trusted Advisor, and other Amazon Web
Services Management Console dashboards provide an at-a-glance view of the state of your
Amazon environment. We recommend that you also check the log files on DAX.

• The DAX dashboard shows the following:

• Service health

• The CloudWatch home page shows the following:

• Current alarms and status

• Graphs of alarms and resources

• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services that you care about.

• Graph metric data to troubleshoot issues and discover trends.

• Search and browse all of your Amazon resource metrics.

• Create and edit alarms to be notified of problems.

DAX monitoring tools API Version 2012-08-10 1287

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchEvents.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html

Amazon DynamoDB Developer Guide

Monitoring with Amazon CloudWatch

You can monitor DynamoDB Accelerator (DAX) using Amazon CloudWatch, which collects and
processes raw data from DAX into readable, near real-time metrics. These statistics are recorded for
a period of two weeks. You can then access historical information for a better perspective on how
your web application or service is performing. By default, DAX metric data is sent to CloudWatch
automatically. For more information, see What Is Amazon CloudWatch? in the Amazon CloudWatch
User Guide.

Topics

• How do I use DAX metrics?

• Viewing DAX metrics and dimensions

• Creating CloudWatch alarms to monitor DAX

• Production monitoring

How do I use DAX metrics?

The metrics reported by DAX provide information that you can analyze in different ways. The
following list shows some common uses for the metrics. These are suggestions to get you started,
and not a comprehensive list.

How Can I? Relevant Metrics

Determine if any system
errors occurred

Monitor FaultRequestCount to determine if any requests
resulted in an HTTP 500 (server error) code. This can indicate
a DAX internal service error or an HTTP 500 in the underlying
table's SystemErrors metric.

Determine if any user errors
occurred

Monitor ErrorRequestCount to determine if any requests
resulted in an HTTP 400 (client error) code. If you see the error
count growing, you might want to investigate and make sure
you are sending correct client requests.

Determine if any cache misses
occurred

Monitor ItemCacheMisses to determine the number of
times an item was not found in the cache, and QueryCach

Monitoring with CloudWatch API Version 2012-08-10 1288

https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html

Amazon DynamoDB Developer Guide

How Can I? Relevant Metrics

eMisses and ScanCacheMisses to determine the number
of times a query or scan result was not found in the cache.

Monitor cache hit rates Use CloudWatch Metric Math to define a cache hit rate metric
using math expressions.

For example, for the item cache, you can use the expression
m1/SUM([m1, m2])*100, where m1 is the ItemCacheHits
metric and m2 is the ItemCacheMisses metric for your
cluster. For the query and scan caches, you can follow the same
pattern using the corresponding query and scan cache metric.

Viewing DAX metrics and dimensions

When you interact with Amazon DynamoDB, it sends metrics and dimensions to Amazon
CloudWatch. You can use the following procedures to view the metrics for DynamoDB Accelerator
(DAX).

To view metrics (console)

Metrics are grouped first by the service namespace, and then by the various dimension
combinations within each namespace.

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Select the DAX namespace.

To view metrics (Amazon CLI)

• At a command prompt, use the following command.

aws cloudwatch list-metrics --namespace "AWS/DAX"

DAX metrics and dimensions

The following sections contain the metrics and dimensions that DAX sends to CloudWatch.

Monitoring with CloudWatch API Version 2012-08-10 1289

http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://console.amazonaws.cn/cloudwatch/

Amazon DynamoDB Developer Guide

DAX Metrics

The following metrics are available from DAX. DAX sends metrics to CloudWatch only when they
have a non-zero value.

Note

CloudWatch aggregates the following DAX metrics at one-minute intervals:

• CPUUtilization

• CacheMemoryUtilization

• NetworkBytesIn

• NetworkBytesOut

• BaselineNetworkBytesInUtilization

• BaselineNetworkBytesOutUtilization

• NetworkPacketsIn

• NetworkPacketsOut

• GetItemRequestCount

• BatchGetItemRequestCount

• BatchWriteItemRequestCount

• DeleteItemRequestCount

• PutItemRequestCount

• UpdateItemRequestCount

• TransactWriteItemsCount

• TransactGetItemsCount

• ItemCacheHits

• ItemCacheMisses

• QueryCacheHits

• QueryCacheMisses

• ScanCacheHits

• ScanCacheMisses

• TotalRequestCount

• ErrorRequestCount
Monitoring with CloudWatch API Version 2012-08-10 1290

Amazon DynamoDB Developer Guide

• FaultRequestCount

• FailedRequestCount

• QueryRequestCount

• ScanRequestCount

• ClientConnections

• EstimatedDbSize

• EvictedSize

• CPUCreditUsage

• CPUCreditBalance

• CPUSurplusCreditBalance

• CPUSurplusCreditsCharged

Not all statistics, such as Average or Sum, are applicable for every metric. However, all of these
values are available through the DAX console, or by using the CloudWatch console, Amazon CLI, or
Amazon SDKs for all metrics. In the following table, each metric has a list of valid statistics that are
applicable to that metric.

Metric Description

CPUUtilization The percentage of CPU utilization of the node or cluster.

Units: Percent

Valid Statistics:

• Minimum

• Maximum

• Average

CacheMemoryUtiliza
tion

The percentage of available cache memory that is in use
by the item cache and query cache on the node or cluster.
Cached data starts to be evicted prior to memory utilization
reaching 100% (see EvictedSize metric). If CacheMemo
ryUtilization reaches 100% on any node, write

Monitoring with CloudWatch API Version 2012-08-10 1291

Amazon DynamoDB Developer Guide

Metric Description

requests will be throttled and you should consider switching
to a cluster with a larger node type.

Units: Percent

Valid Statistics:

• Minimum

• Maximum

• Average

NetworkBytesIn The number of bytes received on all network interfaces by the
node or cluster.

Units: Bytes

Valid Statistics:

• Minimum

• Maximum

• Average

NetworkBytesOut The number of bytes sent out on all network interfaces by the
node or cluster. This metric identifies the volume of outgoing
traffic in terms of the number of bytes on a single node or
cluster.

Units: Bytes

Valid Statistics:

• Minimum

• Maximum

• Average

Monitoring with CloudWatch API Version 2012-08-10 1292

Amazon DynamoDB Developer Guide

Metric Description

BaselineNetworkByt
esInUtilization

The percentage of the consumed baseline network bandwidth
at a given time for ingress traffic. For reference, 50% means
half of the available network bandwidth for ingress traffic is
being used.

Units: Percent

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

BaselineNetworkByt
esOutUtilization

The percentage of the consumed baseline network bandwidth
at a given time for egress traffic. For reference, 50% means
half of the available network bandwidth for egress traffic is
being used.

Units: Percent

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1293

Amazon DynamoDB Developer Guide

Metric Description

NetworkPacketsIn The number of packets received on all network interfaces by
the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

NetworkPacketsOut The number of packets sent out on all network interfaces
by the node or cluster. This metric identifies the volume of
outgoing traffic in terms of the number of packets on a single
node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

GetItemRequestCount The number of GetItem requests handled by the node or
cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1294

Amazon DynamoDB Developer Guide

Metric Description

BatchGetItemReques
tCount

The number of BatchGetItem requests handled by the
node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

BatchWriteItemRequ
estCount

The number of BatchWriteItem requests handled by the
node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1295

Amazon DynamoDB Developer Guide

Metric Description

DeleteItemRequestC
ount

The number of DeleteItem requests handled by the node
or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

PutItemRequestCount The number of PutItem requests handled by the node or
cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1296

Amazon DynamoDB Developer Guide

Metric Description

UpdateItemRequestC
ount

The number of UpdateItem requests handled by the node
or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

TransactWriteItems
Count

The number of TransactWriteItems requests handled
by the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1297

Amazon DynamoDB Developer Guide

Metric Description

TransactGetItemsCount The number of TransactGetItems requests handled by
the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ItemCacheHits The number of times an item was returned from the cache by
the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1298

Amazon DynamoDB Developer Guide

Metric Description

ItemCacheMisses The number of times an item was not in the node or cluster
cache, and had to be retrieved from DynamoDB.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

QueryCacheHits The number of times a query result was returned from the
node or cluster cache.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1299

Amazon DynamoDB Developer Guide

Metric Description

QueryCacheMisses The number of times a query result was not in the node or
cluster cache, and had to be retrieved from DynamoDB.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ScanCacheHits The number of times a scan result was returned from the
node or cluster cache.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1300

Amazon DynamoDB Developer Guide

Metric Description

ScanCacheMisses The number of times a scan result was not in the node or
cluster cache, and had to be retrieved from DynamoDB.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

TotalRequestCount Total number of requests handled by the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1301

Amazon DynamoDB Developer Guide

Metric Description

ErrorRequestCount Total number of requests that resulted in a user error
reported by the node or cluster. Requests that were throttled
by the node or cluster are included.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ThrottledRequestCount Total number of requests throttled by the node or cluster.
Requests that were throttled by DynamoDB are not included,
and can be monitored using DynamoDB Metrics.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1302

Amazon DynamoDB Developer Guide

Metric Description

FaultRequestCount Total number of requests that resulted in an internal error
reported by the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

FailedRequestCount Total number of requests that resulted in an error reported by
the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1303

Amazon DynamoDB Developer Guide

Metric Description

QueryRequestCount The number of query requests handled by the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ScanRequestCount The number of scan requests handled by the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1304

Amazon DynamoDB Developer Guide

Metric Description

ClientConnections The number of simultaneous connections made by clients to
the node or cluster.

Units: Count

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

EstimatedDbSize An approximation of the amount of data cached in the item
cache and the query cache by the node or cluster.

Units: Bytes

Valid Statistics:

• Minimum

• Maximum

• Average

Monitoring with CloudWatch API Version 2012-08-10 1305

Amazon DynamoDB Developer Guide

Metric Description

EvictedSize The amount of data that was evicted by the node or cluster to
make room for newly requested data. If the miss rate goes up,
and you see this metric also growing, it probably means that
your working set has increased. You should consider switching
to a cluster with a larger node type.

Units: Bytes

Valid Statistics:

• Minimum

• Maximum

• Average

• Sum

CPUCreditUsage The number of CPU credits spent by the node for CPU utilizati
on. One CPU credit equals one vCPU running at 100% utilizati
on for one minute or an equivalent combination of vCPUs,
utilization, and time (for example, one vCPU running at 50%
utilization for two minutes or two vCPUs running at 25%
utilization for two minutes).

CPU credit metrics are available at a five-minute frequency
only. If you specify a period greater than five minutes, use the
Sum statistic instead of the Average.

Units: Credits (vCPU-minutes)

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1306

Amazon DynamoDB Developer Guide

Metric Description

CPUCreditBalance The number of earned CPU credits that a node has accrued
since it was launched or started.

Credits are accrued in the credit balance after they are earned,
and removed from the credit balance when they are spent.
The credit balance has a maximum limit, determined by the
DAX node size. After the limit is reached, any new credits that
are earned are discarded.

The credits in the CPUCreditBalance are available for the
node to spend to burst beyond its baseline CPU utilization.

Units: Credits (vCPU-minutes)

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1307

Amazon DynamoDB Developer Guide

Metric Description

CPUSurplusCreditBa
lance

The number of surplus credits that have been spent by a DAX
node when its CPUCreditBalance value is zero.

The CPUSurplusCreditBalance value is paid down by
earned CPU credits. If the number of surplus credits exceeds
the maximum number of credits that the node can earn in a
24-hour period, the spent surplus credits above the maximum
incur an additional charge.

Units: Credits (vCPU-minutes)

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Monitoring with CloudWatch API Version 2012-08-10 1308

Amazon DynamoDB Developer Guide

Metric Description

CPUSurplusCreditsC
harged

The number of spent surplus credits that are not paid down
by earned CPU credits, and which thus incur an additional
charge.

Spent surplus credits are charged when the spent surplus
credits exceed the maximum number of credits that the node
can earn in a 24-hour period. Spent surplus credits above the
maximum are charged at the end of the hour or when the
node is terminated.

Units: Credits (vCPU-minutes)

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

Note

The CPUCreditUsage, CPUCreditBalance, CPUSurplusCreditBalance, and
CPUSurplusCreditsCharged metrics are available only for T3 nodes.

Dimensions for DAX Metrics

The metrics for DAX are qualified by the values for the account, cluster ID, or cluster ID and node
ID combination. You can use the CloudWatch console to retrieve DAX data along any of the
dimensions in the following table.

Monitoring with CloudWatch API Version 2012-08-10 1309

Amazon DynamoDB Developer Guide

Dimension CloudWatc
h
Metric
Namespace

Description

Account DAX
Metrics
Provides aggregated statistics across
all nodes in an account.

ClusterId Cluster
Metrics
Limits the data to a cluster.

ClusterId, NodeId ClusterId
,
NodeId

Limits the data to a node within a
cluster.

Creating CloudWatch alarms to monitor DAX

You can create an Amazon CloudWatch alarm that sends an Amazon Simple Notification Service
(Amazon SNS) message when the alarm changes state. An alarm watches a single metric over a
time period that you specify. It performs one or more actions based on the value of the metric
relative to a given threshold over a number of time periods. The action is a notification that is sent
to an Amazon SNS topic or Auto Scaling policy. Alarms invoke actions for sustained state changes
only. CloudWatch alarms do not invoke actions simply because they are in a particular state. The
state must have changed and been maintained for a specified number of periods.

How can I be notified of query cache misses?

1. Create an Amazon SNS topic, arn:aws:sns:us-
west-2:522194210714:QueryMissAlarm.

For more information, see Set Up Amazon Simple Notification Service in the Amazon
CloudWatch User Guide.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name QueryCacheMissesAlarm \
 --alarm-description "Alarm over query cache misses" \
 --namespace AWS/DAX \

Monitoring with CloudWatch API Version 2012-08-10 1310

http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html

Amazon DynamoDB Developer Guide

 --metric-name QueryCacheMisses \
 --dimensions Name=ClusterID,Value=myCluster \
 --statistic Sum \
 --threshold 8 \
 --comparison-operator GreaterThanOrEqualToThreshold \
 --period 60 \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-west-2:522194210714:QueryMissAlarm

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name QueryCacheMissesAlarm --state-reason
 "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name QueryCacheMissesAlarm --state-reason
 "initializing" --state-value ALARM

Note

You can increase or decrease the threshold to one that makes sense for your application.
You can also use CloudWatch Metric Math to define a cache miss rate metric and set an
alarm over that metric.

How can I be notified if requests cause an internal error in the cluster?

1. Create an Amazon SNS topic, arn:aws:sns:us-west-2:123456789012:notify-on-
system-errors.

For more information, see Set Up Amazon Simple Notification Service in the Amazon
CloudWatch User Guide.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name FaultRequestCountAlarm \
 --alarm-description "Alarm when a request causes an internal error" \
 --namespace AWS/DAX \
 --metric-name FaultRequestCount \
 --dimensions Name=ClusterID,Value=myCluster \

Monitoring with CloudWatch API Version 2012-08-10 1311

http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/using-metric-math.html
http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html

Amazon DynamoDB Developer Guide

 --statistic Sum \
 --threshold 0 \
 --comparison-operator GreaterThanThreshold \
 --period 60 \
 --unit Count \
 --evaluation-periods 1 \
 --alarm-actions arn:aws:sns:us-east-1:123456789012:notify-on-system-errors

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name FaultRequestCountAlarm --state-reason
 "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name FaultRequestCountAlarm --state-reason
 "initializing" --state-value ALARM

Production monitoring

You should establish a baseline for normal DAX performance in your environment, by measuring
performance at various times and under different load conditions. As you monitor DAX, you should
consider storing historical monitoring data. This stored data gives you a baseline from which
to compare current performance data, identify normal performance patterns and performance
anomalies, and devise methods to address issues.

To establish a baseline, you should, at minimum, monitor the following items both during load
testing and in production.

• CPU utilization and throttled requests, so that you can determine whether you might need to
use a larger node type in your cluster. The CPU utilization of your cluster is available through the
CPUUtilization CloudWatch metric. The average stat on this metric provides an average CPU
utilization view across all the nodes in your cluster. For cluster scaling decisions, we recommend
that you use the maximum stat which is the maximum utilization across all the nodes.

Note

Amazon has improved the CPUUtilization metric's granularity. You might observe
changes to the metric starting from 2024-05-17 to 2024-06-22.

Monitoring with CloudWatch API Version 2012-08-10 1312

Amazon DynamoDB Developer Guide

• Operation latency (as measure on the client side) should remain consistent within your
application's latency requirements.

• Error rates should remain low, as seen from the ErrorRequestCount, FaultRequestCount,
and FailedRequestCount CloudWatch metrics.

• Network bytes consumption, so that you can determine if you should use more nodes
or a larger node type in your cluster. To monitor consumption, you can set alerts on
BaselineNetworkBytesInUtilization and BaselineNetworkBytesOutUtilization
metrics available in CloudWatch, which indicates percentage consumption of available network
bandwidth for your instance type, for ingress and egress traffic respectively.

• Cache memory utilization and evicted size, so that you can determine whether the cluster's node
type has sufficient memory to hold your working set, and if not, switch to a larger node type.

Note

In case of a large number of cache misses and writes, cache memory utilization can
increase up to 100% and may cause availability downtime.

• Client connections, so that you can monitor for any unexplained spikes in connections to the
cluster.

Logging DAX operations using Amazon CloudTrail

Amazon DynamoDB Accelerator (DAX) is integrated with Amazon CloudTrail, a service that provides
a record of actions taken by a user, role, or an Amazon service in DAX.

To learn more about DAX and CloudTrail, see the DynamoDB Accelerator (DAX) section in Logging
DynamoDB operations by using Amazon CloudTrail.

DAX T3/T2 burstable instances

DAX allows you to choose between fixed performance instances (such as R4, R5, and R7) and
burstable performance instances (such as T2 and T3). Burstable performance instances provide a
baseline level of CPU performance with the ability to burst above the baseline when needed.

Baseline performance and the ability to burst above it are governed by CPU credits. Burstable
performance instances accumulate CPU credits continuously, at a rate determined by the instance
size, when the workload is below the baseline threshold. These credits may then be consumed

Logging DAX operations using Amazon CloudTrail API Version 2012-08-10 1313

Amazon DynamoDB Developer Guide

when the workload increases. A CPU credit provides the performance of a full CPU core for one
minute.

Many workloads don’t need consistently high levels of CPU, but benefit significantly from
having full access to very fast CPUs when they need them. Burstable performance instances are
engineered specifically for these use cases. If you need consistently high CPU performance for your
database, we recommend you use fixed performance instances.

DAX T2 instance family

DAX T2 instances are burstable general-purpose performance instances that provide a baseline
level of CPU performance with the ability to burst above the baseline. T2 instances are a good
choice for test and development workloads which need price predictability. DAX T2 instances are
configured for standard mode, which means that if the instance is running low on accrued credits,
CPU utilization is gradually lowered to the baseline level. For more information on standard mode,
refer to Standard mode for burstable performance instances in the Amazon EC2 User Guide.

DAX T3 instance family

DAX T3 instances are the next generation burstable general-purpose instance type, providing a
baseline level of CPU performance with the ability to burst CPU usage at any time for as long as
required. T3 instances offer a balance of compute, memory, and network resources and are ideal
for workloads with moderate CPU usage that experience temporary spikes in use. DAX T3 instances
are configured for unlimited mode, which means they can burst beyond the baseline over a 24-
hour window for an additional charge. For more information on unlimited mode, refer to Unlimited
mode for burstable performance instances in the Amazon EC2 User Guide.

DAX T3 instances can sustain high CPU performance for as long as a workload requires it. For most
general-purpose workloads, T3 instances will provide ample performance without any additional
charges. The hourly T3 instance price automatically covers all interim spikes in usage when the
average CPU utilization of a T3 instance is at or less than the baseline over a 24-hour window.

For example, a dax.t3.small instance receives credits continuously at a rate of 24 CPU credits
per hour. This capability provides baseline performance equivalent to 20% of a CPU core (20% ×
60 minutes = 12 minutes). If the instance does not use the credits it receives, they are stored in
its CPU credit balance up to a maximum of 576 CPU credits. When the t3.small instance needs
to burst to more than 20% of a core, it draws from its CPU credit balance to handle this surge
automatically.

DAX T2 instance family API Version 2012-08-10 1314

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-performance-instances-unlimited-mode.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-performance-instances-unlimited-mode.html

Amazon DynamoDB Developer Guide

While DAX T2 instances are restricted to baseline performance once the CPU credit balance is
drawn down to zero, DAX T3 instances can burst above the baseline even when their CPU credit
balance is zero. For the vast majority of workloads, where the average CPU utilization is at or
below the baseline performance, the basic hourly price for t3.small covers all CPU bursts. If the
instance happens to run at an average 25% CPU utilization (5% above baseline) over a period of 24
hours after its CPU credit balance is drawn to zero, it will be charged an additional 11.52 cents (9.6
cents/vCPU-hour × 1 vCPU × 5% × 24 hours). See Amazon DynamoDB Pricing for pricing details.

DAX access control

DynamoDB Accelerator (DAX) is designed to work together with DynamoDB, to seamlessly add
a caching layer to your applications. However, DAX and DynamoDB have separate access control
mechanisms. Both services use Amazon Identity and Access Management (IAM) to implement their
respective security policies, but the security models for DAX and DynamoDB are different.

We highly recommend that you understand both security models, so that you can implement proper
security measures for your applications that use DAX.

This section describes the access control mechanisms provided by DAX and provides sample IAM
policies that you can tailor to your needs.

With DynamoDB, you can create IAM policies that limit the actions a user can perform on individual
DynamoDB resources. For example, you can create a user role that only allows the user to perform
read-only actions on a particular DynamoDB table. (For more information, see Identity and Access
Management for Amazon DynamoDB.) By comparison, the DAX security model focuses on cluster
security, and the ability of the cluster to perform DynamoDB API actions on your behalf.

Warning

If you are currently using IAM roles and policies to restrict access to DynamoDB tables
data, then the use of DAX can subvert those policies. For example, a user could have access
to a DynamoDB table via DAX but not have explicit access to the same table accessing
DynamoDB directly. For more information, see Identity and Access Management for
Amazon DynamoDB.
DAX does not enforce user-level separation on data in DynamoDB. Instead, users inherit
the permissions of the DAX cluster's IAM policy when they access that cluster. Thus, when
accessing DynamoDB tables via DAX, the only access controls that are in effect are the
permissions in the DAX cluster's IAM policy. No other permissions are recognized.

DAX access control API Version 2012-08-10 1315

https://aws.amazon.com/dynamodb/pricing/on-demand/

Amazon DynamoDB Developer Guide

If you require isolation, we recommend that you create additional DAX clusters and scope
the IAM policy for each cluster accordingly. For example, you could create multiple DAX
clusters and allow each cluster to access only a single table.

IAM service role for DAX

When you create a DAX cluster, you must associate the cluster with an IAM role. This is known as
the service role for the cluster.

Suppose that you wanted to create a new DAX cluster named DAXCluster01. You could create
a service role named DAXServiceRole, and associate the role with DAXCluster01. The policy
for DAXServiceRole would define the DynamoDB actions that DAXCluster01 could perform, on
behalf of the users who interact with DAXCluster01.

When you create a service role, you must specify a trust relationship between DAXServiceRole and
the DAX service itself. A trust relationship determines which entities can assume a role and make
use of its permissions. The following is an example trust relationship document for DAXServiceRole:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "dax.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

This trust relationship allows a DAX cluster to assume DAXServiceRole and perform DynamoDB API
calls on your behalf.

The DynamoDB API actions that are allowed are described in an IAM policy document, which you
attach to DAXServiceRole. The following is an example policy document.

IAM service role for DAX API Version 2012-08-10 1316

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DaxAccessPolicy",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:PutItem",
 "dynamodb:GetItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
]
 }
]
}

This policy allows DAX to perform necessary DynamoDB API actions on a DynamoDB table. The
dynamodb:DescribeTable action is required for DAX to maintain metadata about the table, and
the others are read and write actions performed on items in the table. The table, named Books, is
in the us-west-2 Region and is owned by AWS account ID 123456789012.

Note

DAX supports mechanisms to prevent the confused deputy problem during cross-Service
access. For more information, see The confused deputy problem in the IAM User Guide.

IAM service role for DAX API Version 2012-08-10 1317

https://docs.amazonaws.cn/IAM/latest/UserGuide/confused-deputy.html

Amazon DynamoDB Developer Guide

IAM policy to allow DAX cluster access

After you create a DAX cluster, you need to grant permissions to a user so that the user can access
the DAX cluster.

For example, suppose that you want to grant access to DAXCluster01 to a user named Alice. You
would first create an IAM policy (AliceAccessPolicy) that defines the DAX clusters and DAX API
actions that the recipient can access. You would then confer access by attaching this policy to user
Alice.

The following policy document gives the recipient full access on DAXCluster01.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Action": [
 "dax:*"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
]
 }
]
}

The policy document allows access to the DAX cluster, but it does not grant any DynamoDB
permissions. (The DynamoDB permissions are conferred by the DAX service role.)

For user Alice, you would first create AliceAccessPolicy with the policy document shown
previously. You would then attach the policy to Alice.

Note

Instead of attaching the policy to a user, you could attach it to an IAM role. That way, all of
the users who assume that role would have the permissions that you defined in the policy.

IAM policy to allow DAX cluster access API Version 2012-08-10 1318

Amazon DynamoDB Developer Guide

The user policy, together with the DAX service role, determine the DynamoDB resources and API
actions that the recipient can access via DAX.

Case study: Accessing DynamoDB and DAX

The following scenario can help further your understanding of IAM policies for use with DAX. (This
scenario is referred to throughout the rest of this section.) The following diagram shows a high-
level overview of the scenario.

In this scenario, there are the following entities:

• A user (Bob).

• An IAM role (BobUserRole). Bob assumes this role at runtime.

• An IAM policy (BobAccessPolicy). This policy is attached to BobUserRole.
BobAccessPolicy defines the DynamoDB and DAX resources that BobUserRole is allowed to
access.

• A DAX cluster (DAXCluster01).

• An IAM service role (DAXServiceRole). This role allows DAXCluster01 to access DynamoDB.

• An IAM policy (DAXAccessPolicy). This policy is attached to DAXServiceRole.
DAXAccessPolicy defines the DynamoDB APIs and resources that DAXCluster01 is allowed to
access.

Case study: Accessing DynamoDB and DAX API Version 2012-08-10 1319

Amazon DynamoDB Developer Guide

• A DynamoDB table (Books).

The combination of policy statements in BobAccessPolicy and DAXAccessPolicy determine
what Bob can do with the Books table. For example, Bob might be able to access Books directly
(using the DynamoDB endpoint), indirectly (using the DAX cluster), or both. Bob might also be able
to read data from Books, write data to Books, or both.

Access to DynamoDB, but no access with DAX

It is possible to allow direct access to a DynamoDB table, while preventing indirect access using a
DAX cluster. For direct access to DynamoDB, the permissions for BobUserRole are determined by
BobAccessPolicy (which is attached to the role).

Read-only access to DynamoDB (only)

Bob can access DynamoDB with BobUserRole. The IAM policy attached to this role
(BobAccessPolicy) determines the DynamoDB tables that BobUserRole can access, and what
APIs that BobUserRole can invoke.

Consider the following policy document for BobAccessPolicy.

Access to DynamoDB, but no access with DAX API Version 2012-08-10 1320

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

When this document is attached to BobAccessPolicy, it allows BobUserRole to access the
DynamoDB endpoint and perform read-only operations on the Books table.

DAX does not appear in this policy, so access via DAX is denied.

Read/write access to DynamoDB (only)

If BobUserRole requires read/write access to DynamoDB, the following policy would work.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan",

Access to DynamoDB, but no access with DAX API Version 2012-08-10 1321

Amazon DynamoDB Developer Guide

 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Again, DAX does not appear in this policy, so access via DAX is denied.

Access to DynamoDB and to DAX

To allow access to a DAX cluster, you must include DAX-specific actions in an IAM policy.

The following DAX-specific actions correspond to their similarly named counterparts in the
DynamoDB API:

• dax:GetItem

• dax:BatchGetItem

• dax:Query

Access to DynamoDB and to DAX API Version 2012-08-10 1322

Amazon DynamoDB Developer Guide

• dax:Scan

• dax:PutItem

• dax:UpdateItem

• dax:DeleteItem

• dax:BatchWriteItem

• dax:ConditionCheckItem

The same is true for the dax:EnclosingOperation condition key.

Read-only access to DynamoDB and read-only access to DAX

Suppose that Bob requires read-only access to the Books table, from DynamoDB and from DAX.
The following policy (attached to BobUserRole) confers this access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DAXAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",
 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan"
],
 "Resource": "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
 },
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],

Access to DynamoDB and to DAX API Version 2012-08-10 1323

Amazon DynamoDB Developer Guide

 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

The policy has a statement for DAX access (DAXAccessStmt) and another statement
for DynamoDBaccess (DynamoDBAccessStmt). These statements allow Bob to
send GetItem, BatchGetItem, Query, and Scan requests to DAXCluster01.

However, the service role for DAXCluster01 would also require read-only access to the Books
table in DynamoDB. The following IAM policy, attached to DAXServiceRole, would fulfill this
requirement.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Read/write access to DynamoDB and read-only with DAX

For a given user role, you can provide read/write access to a DynamoDB table, while also allowing
read-only access via DAX.

For Bob, the IAM policy for BobUserRole would need to allow DynamoDB read and write actions
on the Books table, while also supporting read-only actions via DAXCluster01.

Access to DynamoDB and to DAX API Version 2012-08-10 1324

Amazon DynamoDB Developer Guide

The following example policy document for BobUserRole confers this access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DAXAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",
 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan"
],
 "Resource": "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
 },
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:DescribeTable",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

In addition, DAXServiceRole would require an IAM policy that allows DAXCluster01 to perform
read-only actions on the Books table.

Access to DynamoDB and to DAX API Version 2012-08-10 1325

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:DescribeTable"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Read/write access to DynamoDB and read/write access to DAX

Now suppose that Bob required read/write access to the Books table, directly from DynamoDB or
indirectly from DAXCluster01. The following policy document, attached to BobAccessPolicy,
confers this access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DAXAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",
 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan",
 "dax:PutItem",

Access to DynamoDB and to DAX API Version 2012-08-10 1326

Amazon DynamoDB Developer Guide

 "dax:UpdateItem",
 "dax:DeleteItem",
 "dax:BatchWriteItem",
 "dax:ConditionCheckItem"
],
 "Resource": "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
 },
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:DescribeTable",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

In addition, DAXServiceRole would require an IAM policy that allows DAXCluster01 to perform
read/write actions on the Books table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",

Access to DynamoDB and to DAX API Version 2012-08-10 1327

Amazon DynamoDB Developer Guide

 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:DescribeTable"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Access to DynamoDB via DAX, but no direct access to DynamoDB

In this scenario, Bob can access the Books table via DAX, but he does not have direct access to
the Books table in DynamoDB. Thus, when Bob gains access to DAX, he also gains access to a
DynamoDB table that he otherwise might not be able to access. When you configure an IAM policy
for the DAX service role, remember that any user that is given access to the DAX cluster via the user
access policy gains access to the tables specified in that policy. In this case, BobAccessPolicy
gains access to the tables specified in DAXAccessPolicy.

Access to DynamoDB via DAX, but no direct access to DynamoDB API Version 2012-08-10 1328

Amazon DynamoDB Developer Guide

If you are currently using IAM roles and policies to restrict access to DynamoDB tables and data,
using DAX can subvert those policies. In the following policy, Bob has access to a DynamoDB table
via DAX but does not have explicit direct access to the same table in DynamoDB.

The following policy document (BobAccessPolicy), attached to BobUserRole, would confer this
access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DAXAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",
 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan",
 "dax:PutItem",
 "dax:UpdateItem",
 "dax:DeleteItem",
 "dax:BatchWriteItem",
 "dax:ConditionCheckItem"
],
 "Resource": "arn:aws:dax:us-west-2:123456789012:cache/DAXCluster01"
 }
]
}

In this access policy, there are no permissions to access DynamoDB directly.

Together with BobAccessPolicy, the following DAXAccessPolicy gives BobUserRole access
to the DynamoDB table Books even though BobUserRole cannot directly access the Books table.

JSON

{
 "Version":"2012-10-17",

Access to DynamoDB via DAX, but no direct access to DynamoDB API Version 2012-08-10 1329

Amazon DynamoDB Developer Guide

 "Statement": [
 {
 "Sid": "DynamoDBAccessStmt",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:DescribeTable",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

As this example shows, when you configure access control for the user access policy and the DAX
cluster access policy, you must fully understand the end-to-end access to ensure that the principle
of least privilege is observed. Also ensure that giving a user access to a DAX cluster does not
subvert previously established access control policies.

DAX encryption at rest

Amazon DynamoDB Accelerator (DAX) encryption at rest provides an additional layer of data
protection by helping secure your data from unauthorized access to the underlying storage.
Organizational policies, industry or government regulations, and compliance requirements might
require the use of encryption at rest to protect your data. You can use encryption to increase the
data security of your applications that are deployed in the cloud.

With encryption at rest, the data persisted by DAX on disk is encrypted using 256-bit Advanced
Encryption Standard, also known as AES-256 encryption. DAX writes data to disk as part of
propagating changes from the primary node to read replicas.

DAX encryption at rest automatically integrates with Amazon Key Management Service (Amazon
KMS) for managing the single service default key that is used to encrypt your clusters. If a service

DAX encryption at rest API Version 2012-08-10 1330

Amazon DynamoDB Developer Guide

default key doesn't exist when you create your encrypted DAX cluster, Amazon KMS automatically
creates a new Amazon managed key for you. This key is used with encrypted clusters that are
created in the future. Amazon KMS combines secure, highly available hardware and software to
provide a key management system scaled for the cloud.

After your data is encrypted, DAX handles the decryption of your data transparently with minimal
impact on performance. You don't need to modify your applications to use encryption.

Note

DAX does not call Amazon KMS for every single DAX operation. DAX only uses the key at
the cluster launch. Even if access is revoked, DAX can still access the data until the cluster is
shut down. Customer-specified Amazon KMS keys are not supported.

DAX encryption at rest is available for the following cluster node types.

Family Node type

Memory-optimized (R4, R5, and R7) dax.r4.large

dax.r4.xlarge

dax.r4.2xlarge

dax.r4.4xlarge

dax.r4.8xlarge

dax.r4.16xlarge

dax.r5.large

dax.r5.xlarge

dax.r5.2xlarge

dax.r5.4xlarge

dax.r5.8xlarge

DAX encryption at rest API Version 2012-08-10 1331

Amazon DynamoDB Developer Guide

Family Node type

dax.r5.12xlarge

dax.r5.16xlarge

dax.r5.24xlarge

dax.r7i.large

dax.r7i.xlarge

dax.r7i.2xlarge

dax.r7i.4xlarge

dax.r7i.8xlarge

dax.r7i.12xlarge

dax.r7i.16xlarge

dax.r7i.24xlarge

General purpose (T2) dax.t2.small

dax.t2.medium

General purpose (T3) dax.t3.small

dax.t3.medium

Important

DAX encryption at rest is not supported for dax.r3.* node types.

You cannot enable or disable encryption at rest after a cluster has been created. You must re-create
the cluster to enable encryption at rest if it was not enabled at creation.

DAX encryption at rest API Version 2012-08-10 1332

Amazon DynamoDB Developer Guide

DAX encryption at rest is offered at no additional cost (Amazon KMS encryption key usage charges
apply). For information about pricing, see Amazon DynamoDB pricing.

Enabling encryption at rest using the Amazon Web Services
Management Console

Follow these steps to enable DAX encryption at rest on a table using the console.

To enable DAX encryption at rest

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, under DAX, choose Clusters.

3. Choose Create cluster.

4. For Cluster name, enter a short name for your cluster. Choose the node type for all of the
nodes in the cluster, and for the cluster size, use 3 nodes.

5. In Encryption, make sure that Enable encryption is selected.

6. After choosing the IAM role, subnet group, security groups, and cluster settings, choose
Launch cluster.

To confirm that the cluster is encrypted, check the cluster details under the Clusters pane.
Encryption should be ENABLED.

Enabling encryption at rest using the Amazon Web Services Management Console API Version 2012-08-10 1333

http://www.amazonaws.cn/dynamodb/pricing
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

DAX encryption in transit

Amazon DynamoDB Accelerator (DAX) supports encryption in transit of data between your
application and your DAX cluster, enabling you to use DAX in applications with stringent encryption
requirements.

Regardless of whether or not you choose encryption in transit, traffic between your application and
your DAX cluster remains in your Amazon VPC. This traffic is routed to Elastic Network Interfaces
with private IPs in your VPC that are attached to the nodes of your cluster. With your VPC as
the trust boundary, you have significant control over the security of your data through the use
of standard tools like security groups, subnet segmentation with Network ACLs, and VPC flow
tracing. DAX encryption in transit adds to this baseline level of confidentiality, ensuring that all
requests and responses between the application and the cluster are encrypted by transport level
security (TLS), and connections to the cluster can be authenticated by verification of a cluster x509
certificate. Data written to disk by DAX can also be encrypted if you choose encryption at rest when
creating your DAX cluster.

Using encryption in transit with DAX is easy. Simply select this option when creating a new cluster,
and use a recent version of any of the DAX clients in your application. Clusters that use encryption
in transit do not support unencrypted traffic, so there is no chance to misconfigure your application
and bypass encryption. The DAX client will use the cluster's x509 certificate to authenticate the
identity of the cluster when it establishes connections, ensuring that your DAX requests go where
intended. All methods of creating DAX clusters support encryption in transit: the Amazon Web
Services Management Console, Amazon CLI, all SDKs, and Amazon CloudFormation.

Encryption in transit cannot be enabled on an existing DAX cluster. To use encryption in transit
in an existing DAX application, create a new cluster with encryption in transit enabled, shift your
application's traffic to it, then delete the old cluster.

Using service-linked IAM roles for DAX

Amazon DynamoDB Accelerator (DAX) uses Amazon Identity and Access Management (IAM)
service-linked roles. A service-linked role is a unique type of IAM role that is linked directly to DAX.
Service-linked roles are predefined by DAX and include all the permissions that the service requires
to call other Amazon services on your behalf.

A service-linked role makes setting up DAX easier because you don’t have to manually add the
necessary permissions. DAX defines the permissions of its service-linked roles, and unless defined

DAX encryption in transit API Version 2012-08-10 1334

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon DynamoDB Developer Guide

otherwise, only DAX can assume its roles. The defined permissions include the trust policy and the
permissions policy. That permissions policy can't be attached to any other IAM entity.

You can delete the roles only after first deleting their related resources. This protects your DAX
resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM in the IAM User Guide. Look for the services that have Yes in the Service-linked
roles column. Choose a Yes link to view the service-linked role documentation for that service.

Topics

• Service-linked role permissions for DAX

• Creating a service-linked role for DAX

• Editing a service-linked role for DAX

• Deleting a service-linked role for DAX

Service-linked role permissions for DAX

DAX uses the service-linked role named AWSServiceRoleForDAX. This role allows DAX to call
services on behalf of your DAX cluster.

Important

The AWSServiceRoleForDAX service-linked role makes it easier for you to set up and
maintain a DAX cluster. However, you must still grant each cluster access to DynamoDB
before you can use it. For more information, see DAX access control.

The AWSServiceRoleForDAX service-linked role trusts the following services to assume the role:

• dax.amazonaws.com

The role permissions policy allows DAX to complete the following actions on the specified
resources:

• Actions on ec2:

• AuthorizeSecurityGroupIngress

Service-linked role permissions for DAX API Version 2012-08-10 1335

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon DynamoDB Developer Guide

• CreateNetworkInterface

• CreateSecurityGroup

• DeleteNetworkInterface

• DeleteSecurityGroup

• DescribeAvailabilityZones

• DescribeNetworkInterfaces

• DescribeSecurityGroups

• DescribeSubnets

• DescribeVpcs

• ModifyNetworkInterfaceAttribute

• RevokeSecurityGroupIngress

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

To allow an IAM entity to create AWSServiceRoleForDAX service-linked roles

Add the following policy statement to the permissions for that IAM entity.

{
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "dax.amazonaws.com"}}
}

Creating a service-linked role for DAX

You don't need to manually create a service-linked role. When you create a cluster, DAX creates the
service-linked role for you.

Creating a service-linked role for DAX API Version 2012-08-10 1336

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon DynamoDB Developer Guide

Important

If you were using the DAX service before February 28, 2018, when it began supporting
service-linked roles, DAX created the AWSServiceRoleForDAX role in your account. For
more information, see A New Role Appeared in My Amazon Account in the IAM User Guide.

If you delete this service-linked role and then need to create it again, you can use the same process
to re-create the role in your account. When you create an instance or a cluster, DAX creates the
service-linked role for you again.

Editing a service-linked role for DAX

DAX does not allow you to edit the AWSServiceRoleForDAX service-linked role. After you
create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for DAX

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must delete all of your DAX clusters before you can delete the service-
linked role.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no
active sessions and remove any resources used by the role.

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check
box) of the AWSServiceRoleForDAX role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Editing a service-linked role for DAX API Version 2012-08-10 1337

https://docs.amazonaws.cn/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_new-role-appeared
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.amazonaws.cn/iam/

Amazon DynamoDB Developer Guide

Note

If you are unsure whether DAX is using the AWSServiceRoleForDAX role, you can try
to delete the role. If the service is using the role, the deletion fails, and you can view
the Regions where the role is being used. If the role is being used, you must delete your
DAX clusters before you can delete the role. You can't revoke the session for a service-
linked role.

If you want to remove the AWSServiceRoleForDAX role, you must first delete all of your DAX
clusters.

Deleting all of your DAX clusters

Use one of these procedures to delete each of your DAX clusters.

To delete a DAX cluster (console)

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, under DAX, choose Clusters.

3. Choose Actions, and then choose Delete.

4. In the Delete cluster confirmation box, choose Delete.

To delete a DAX cluster (Amazon CLI)

See delete-cluster in the Amazon CLI Command Reference.

To delete a DAX cluster (API)

See DeleteCluster in the Amazon DynamoDB API Reference.

Deleting the service-linked role

To manually delete the service-linked role using IAM

Use the IAM console, the IAM CLI, or the IAM API to delete the AWSServiceRoleForDAX service-
linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for DAX API Version 2012-08-10 1338

https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/cli/latest/reference/dax/delete-cluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DeleteCluster.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon DynamoDB Developer Guide

Accessing DAX across Amazon accounts

Imagine that you have a DynamoDB Accelerator (DAX) cluster running in one Amazon account
(account A), and the DAX cluster needs to be accessible from an Amazon Elastic Compute Cloud
(Amazon EC2) instance in another Amazon account (account B). In this tutorial, you accomplish
this by launching an EC2 instance in account B with an IAM role from account B. You then use
temporary security credentials from the EC2 instance to assume an IAM role from account A.
Finally, you use the temporary security credentials from assuming the IAM role in account A to
make application calls over an Amazon VPC peering connection to the DAX cluster in account A. In
order to perform these tasks you will need administrative access in both Amazon accounts.

Important

It is not possible to have a DAX cluster access a DynamoDB table from a different account.

Topics

• Set up IAM

• Set up a VPC

• Modify the DAX client to allow cross-account access

Set up IAM

1. Create a text file named AssumeDaxRoleTrust.json with the following content, which
allows Amazon EC2 to work on your behalf.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

Accessing DAX across Amazon accounts API Version 2012-08-10 1339

Amazon DynamoDB Developer Guide

 }
]
}

2. In account B, create a role that Amazon EC2 can use when launching instances.

aws iam create-role \
 --role-name AssumeDaxRole \
 --assume-role-policy-document file://AssumeDaxRoleTrust.json

3. Create a text file named AssumeDaxRolePolicy.json with the following content, which
allows code running on the EC2 instance in account B to assume an IAM role in account A.
Replace accountA with the actual ID of account A.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::111122223333:role/DaxCrossAccountRole"
 }
]
}

4. Add that policy to the role you just created.

aws iam put-role-policy \
 --role-name AssumeDaxRole \
 --policy-name AssumeDaxRolePolicy \
 --policy-document file://AssumeDaxRolePolicy.json

5. Create an instance profile to allow instances to use the role.

aws iam create-instance-profile \
 --instance-profile-name AssumeDaxInstanceProfile

6. Associate the role with the instance profile.

aws iam add-role-to-instance-profile \

Set up IAM API Version 2012-08-10 1340

Amazon DynamoDB Developer Guide

 --instance-profile-name AssumeDaxInstanceProfile \
 --role-name AssumeDaxRole

7. Create a text file named DaxCrossAccountRoleTrust.json with the following content,
which allows account B to assume an account A role. Replace accountB with the actual ID of
account B.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/AssumeDaxRole"
 },
 "Action": "sts:AssumeRole"
 }
]
}

8. In account A, create the role that account B can assume.

aws iam create-role \
 --role-name DaxCrossAccountRole \
 --assume-role-policy-document file://DaxCrossAccountRoleTrust.json

9. Create a text file named DaxCrossAccountPolicy.json that allows access to the DAX
cluster. Replace dax-cluster-arn with the correct Amazon Resource Name (ARN) of your
DAX cluster.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",

Set up IAM API Version 2012-08-10 1341

Amazon DynamoDB Developer Guide

 "dax:BatchGetItem",
 "dax:Query",
 "dax:Scan",
 "dax:PutItem",
 "dax:UpdateItem",
 "dax:DeleteItem",
 "dax:BatchWriteItem",
 "dax:ConditionCheckItem"
],
 "Resource": "arn:aws-cn:dax:us-east-1:111122223333:cache/dax-
cluster-name"
 }
]
}

10. In account A, add the policy to the role.

aws iam put-role-policy \
 --role-name DaxCrossAccountRole \
 --policy-name DaxCrossAccountPolicy \
 --policy-document file://DaxCrossAccountPolicy.json

Set up a VPC

1. Find the subnet group of account A's DAX cluster. Replace cluster-name with the name of
the DAX cluster that account B must access.

aws dax describe-clusters \
 --cluster-name cluster-name
 --query 'Clusters[0].SubnetGroup'

2. Using that subnet-group, find the cluster's VPC.

aws dax describe-subnet-groups \
 --subnet-group-name subnet-group \
 --query 'SubnetGroups[0].VpcId'

3. Using that vpc-id, find the VPC's CIDR.

aws ec2 describe-vpcs \
 --vpc vpc-id \

Set up a VPC API Version 2012-08-10 1342

Amazon DynamoDB Developer Guide

 --query 'Vpcs[0].CidrBlock'

4. From account B, create a VPC using a different, non-overlapping CIDR than the one found in
the previous step. Then, create at least one subnet. You can use either the VPC creation wizard
in the Amazon Web Services Management Console or the Amazon CLI.

5. From account B, request a peering connection to the account A VPC as described in Creating
and accepting a VPC peering connection. From account A, accept the connection.

6. From account B, find the new VPC's routing table. Replace vpc-id with the ID of the VPC you
created in account B.

aws ec2 describe-route-tables \
 --filters 'Name=vpc-id,Values=vpc-id' \
 --query 'RouteTables[0].RouteTableId'

7. Add a route to send traffic destined for account A's CIDR to the VPC peering connection.
Remember to replace each user input placeholder with the correct values for your
accounts.

aws ec2 create-route \
 --route-table-id accountB-route-table-id \
 --destination-cidr accountA-vpc-cidr \
 --vpc-peering-connection-id peering-connection-id

8. From account A, find the DAX cluster's route table using the vpc-id you found previously.

aws ec2 describe-route-tables \
 --filters 'Name=vpc-id, Values=accountA-vpc-id' \
 --query 'RouteTables[0].RouteTableId'

9. From account A, add a route to send traffic destined for account B's CIDR to the VPC peering
connection. Replace each user input placeholder with the correct values for your
accounts.

aws ec2 create-route \
 --route-table-id accountA-route-table-id \
 --destination-cidr accountB-vpc-cidr \
 --vpc-peering-connection-id peering-connection-id

Set up a VPC API Version 2012-08-10 1343

https://docs.amazonaws.cn/vpc/latest/userguide/getting-started-ipv4.html#getting-started-create-vpc
https://docs.amazonaws.cn/cli/latest/reference/ec2/create-vpc.html
https://docs.amazonaws.cn/vpc/latest/peering/create-vpc-peering-connection.html
https://docs.amazonaws.cn/vpc/latest/peering/create-vpc-peering-connection.html

Amazon DynamoDB Developer Guide

10. From account B, launch an EC2 instance in the VPC that you created earlier. Give it the
AssumeDaxInstanceProfile. You can use either the launch wizard in the Amazon Web
Services Management Console or the Amazon CLI. Take note of the instance's security group.

11. From account A, find the security group used by the DAX cluster. Remember to replace
cluster-name with the name of your DAX cluster.

aws dax describe-clusters \
 --cluster-name cluster-name \
 --query 'Clusters[0].SecurityGroups[0].SecurityGroupIdentifier'

12. Update the DAX cluster's security group to allow inbound traffic from the security group
of the EC2 instance you created in account B. Remember to replace the user input
placeholders with the correct values for your accounts.

aws ec2 authorize-security-group-ingress \
 --group-id accountA-security-group-id \
 --protocol tcp \
 --port 8111 \
 --source-group accountB-security-group-id \
 --group-owner accountB-id

At this point, an application on account B's EC2 instance is able to use the instance profile to
assume the arn:aws:iam::accountA-id:role/DaxCrossAccountRole role and use the DAX
cluster.

Modify the DAX client to allow cross-account access

Note

Amazon Security Token Service (Amazon STS) credentials are temporary credentials.
Some clients handle refreshing automatically, while others require additional logic to
refresh the credentials. We recommend that you follow the guidance of the appropriate
documentation.

Modify the DAX client to allow cross-account access API Version 2012-08-10 1344

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/launching-instance.html
https://docs.amazonaws.cn/cli/latest/reference/ec2/run-instances.html

Amazon DynamoDB Developer Guide

Java

This section helps you modify your existing DAX client code to allow cross-account DAX access.
If you don't have DAX client code already, you can find working code examples in the Java and
DAX tutorial.

1. Add the following imports.

import com.amazonaws.auth.STSAssumeRoleSessionCredentialsProvider;
import com.amazonaws.services.securitytoken.AWSSecurityTokenService;
import
 com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClientBuilder;

2. Get a credentials provider from Amazon STS and create a DAX client object. Remember to
replace each user input placeholder with the correct values for your accounts.

AWSSecurityTokenService awsSecurityTokenService =
 AWSSecurityTokenServiceClientBuilder
 .standard()
 .withRegion(region)
 .build();

STSAssumeRoleSessionCredentialsProvider credentials = new
 STSAssumeRoleSessionCredentialsProvider.Builder("arn:aws:iam::accountA:role/
RoleName", "TryDax")
 .withStsClient(awsSecurityTokenService)
 .build();

DynamoDB client = AmazonDaxClientBuilder.standard()
 .withRegion(region)
 .withEndpointConfiguration(dax_endpoint)
 .withCredentials(credentials)
 .build();

.NET

This section helps you modify your existing DAX client code to allow cross-account DAX access.
If you don't have DAX client code already, you can find working code examples in the .NET and
DAX tutorial.

1. Add the AWSSDK.SecurityToken NuGet package to the solution.

Modify the DAX client to allow cross-account access API Version 2012-08-10 1345

https://www.nuget.org/packages/AWSSDK.SecurityToken

Amazon DynamoDB Developer Guide

<PackageReference Include="AWSSDK.SecurityToken" Version="latest version" />

2. Use the SecurityToken and SecurityToken.Model packages.

using Amazon.SecurityToken;
using Amazon.SecurityToken.Model;

3. Get temporary credentials from AmazonSimpleTokenService and create a
ClusterDaxClient object. Remember to replace each user input placeholder with
the correct values for your accounts.

IAmazonSecurityTokenService sts = new AmazonSecurityTokenServiceClient();

var assumeRoleResponse = sts.AssumeRole(new AssumeRoleRequest
{
 RoleArn = "arn:aws:iam::accountA:role/RoleName",
 RoleSessionName = "TryDax"
});

Credentials credentials = assumeRoleResponse.Credentials;

var clientConfig = new DaxClientConfig(dax_endpoint, port)
{
 AwsCredentials = assumeRoleResponse.Credentials

};

var client = new ClusterDaxClient(clientConfig);

Go

This section helps you modify your existing DAX client code to allow cross-account DAX access.
If you don't have DAX client code already, you can find working code examples on GitHub.

1. Import the Amazon STS and session packages.

import (
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/sts"
 "github.com/aws/aws-sdk-go/aws/credentials/stscreds"

Modify the DAX client to allow cross-account access API Version 2012-08-10 1346

https://github.com/aws-samples/aws-dax-go-sample/blob/master/try_dax.go

Amazon DynamoDB Developer Guide

)

2. Get temporary credentials from AmazonSimpleTokenService and create a DAX client
object. Remember to replace each user input placeholder with the correct values for
your accounts.

sess, err := session.NewSession(&aws.Config{
 Region: aws.String(region)},
)
if err != nil {
 return nil, err
}

stsClient := sts.New(sess)
arp := &stscreds.AssumeRoleProvider{
 Duration: 900 * time.Second,
 ExpiryWindow: 10 * time.Second,
 RoleARN: "arn:aws:iam::accountA:role/role_name",
 Client: stsClient,
 RoleSessionName: "session_name",
 }cfg := dax.DefaultConfig()

cfg.HostPorts = []string{dax_endpoint}
cfg.Region = region
cfg.Credentials = credentials.NewCredentials(arp)
daxClient := dax.New(cfg)

Python

This section helps you modify your existing DAX client code to allow cross-account DAX access.
If you don't have DAX client code already, you can find working code examples in the Python
and DAX tutorial.

1. Import boto3.

import boto3

2. Get temporary credentials from sts and create an AmazonDaxClient object. Remember
to replace each user input placeholder with the correct values for your accounts.

sts = boto3.client('sts')

Modify the DAX client to allow cross-account access API Version 2012-08-10 1347

Amazon DynamoDB Developer Guide

stsresponse =
 sts.assume_role(RoleArn='arn:aws:iam::accountA:role/
RoleName',RoleSessionName='tryDax')
credentials = botocore.session.get_session()['Credentials']

dax = amazondax.AmazonDaxClient(session, region_name=region,
 endpoints=[dax_endpoint], aws_access_key_id=credentials['AccessKeyId'],
 aws_secret_access_key=credentials['SecretAccessKey'],
 aws_session_token=credentials['SessionToken'])
client = dax

Node.js

This section helps you modify your existing DAX client code to allow cross-account DAX access.
If you don't have DAX client code already, you can find working code examples in the Node.js
and DAX tutorial. Remember to replace each user input placeholder with the correct
values for your accounts.

const AmazonDaxClient = require('amazon-dax-client');
const AWS = require('aws-sdk');
const region = 'region';
const endpoints = [daxEndpoint1, ...];

const getCredentials = async() => {
 return new Promise((resolve, reject) => {
 const sts = new AWS.STS();
 const roleParams = {
 RoleArn: 'arn:aws:iam::accountA:role/RoleName',
 RoleSessionName: 'tryDax',
 };
 sts.assumeRole(roleParams, (err, session) => {
 if(err) {
 reject(err);
 } else {
 resolve({
 accessKeyId: session.Credentials.AccessKeyId,
 secretAccessKey: session.Credentials.SecretAccessKey,
 sessionToken: session.Credentials.SessionToken,
 });
 }
 });
 });

Modify the DAX client to allow cross-account access API Version 2012-08-10 1348

Amazon DynamoDB Developer Guide

};

const createDaxClient = async() => {
 const credentials = await getCredentials();
 const daxClient = new AmazonDaxClient({endpoints: endpoints, region: region,
 accessKeyId: credentials.accessKeyId, secretAccessKey: credentials.secretAccessKey,
 sessionToken: credentials.sessionToken});
 return new AWS.DynamoDB.DocumentClient({service: daxClient});
};

createDaxClient().then((client) => {
 client.get(...);
 ...
}).catch((error) => {
 console.log('Caught an error: ' + error);
});

DAX cluster sizing guide

This guide provides advice for choosing an appropriate Amazon DynamoDB Accelerator (DAX)
cluster size and node type for your application. These instructions guide you through the steps of
estimating your application’s DAX traffic, selecting a cluster configuration, and testing it.

If you have an existing DAX cluster and want to evaluate whether it has the appropriate number
and size of nodes, please refer to Scaling a DAX cluster.

Topics

• Overview

• Estimating traffic

• Load testing

Overview

It's important to scale your DAX cluster appropriately for your workload, whether you're creating
a new cluster or maintaining an existing cluster. As time goes on and your application's workload
changes, you should periodically revisit your scaling decisions to make sure that they are still
appropriate.

The process typically follows these steps:

DAX cluster sizing guide API Version 2012-08-10 1349

Amazon DynamoDB Developer Guide

1. Estimating traffic. In this step, you make predictions about the volume of traffic that your
application will send to DAX, the nature of the traffic (read vs. write operations), and the
expected cache hit rate.

2. Load testing. In this step, you create a cluster and send traffic to it mirroring your estimates
from the previous step. Repeat this step until you find a suitable cluster configuration.

3. Production monitoring. While your application is using DAX in production, you should monitor
the cluster to continuously validate that it is still scaled correctly as your workload changes over
time.

Estimating traffic

There are three main factors that characterize a typical DAX workload:

• Cache hit rate

• Read capacity units (RCUs) per second

• Write capacity units (WCUs) per second

Estimating cache hit rate

If you already have a DAX cluster, you can use the ItemCacheHits and ItemCacheMisses
Amazon CloudWatch metrics to determine the cache hit rate. The cache hit rate is equal to
ItemCacheHits / (ItemCacheHits + ItemCacheMisses). If your workload includes Query
or Scan operations, you should also look at the QueryCacheHits, QueryCacheMisses,
ScanCacheHits, and ScanCacheMisses metrics. Cache hit rates vary from one application to
another and are heavily influenced by the cluster's Time to Live (TTL) setting. Typical hit rates for
applications using DAX are 85–95 percent.

Estimating read and write capacity units

If you already have DynamoDB tables for your application, look at the
ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits CloudWatch metrics. Use
the Sum statistic and divide by the number of seconds in the period.

If you also already have a DAX cluster, remember that the DynamoDB
ConsumedReadCapacityUnits metric only accounts for cache misses. So, to get an idea of the
read capacity units per second handled by your DAX cluster, divide the number by your cache miss
rate (that is, 1 - cache hit rate).

Estimating traffic API Version 2012-08-10 1350

Amazon DynamoDB Developer Guide

If you don't already have a DynamoDB table, see the documentation about read and write capacity
units to estimate your traffic based on your application's estimated request rate, items accessed per
request, and item size.

When making traffic estimates, plan for future growth and for expected and unexpected peaks to
ensure that your cluster has enough headroom for traffic increases.

Load testing

The next step after estimating traffic is to test the cluster configuration under load.

1. For your initial load test, we recommend that you start with the dax.r4.large node type, the
lowest-cost fixed performance, memory-optimized node type.

2. A fault-tolerant cluster requires at least three nodes, spread across three Availability Zones. In
this case, if an Availability Zone becomes unavailable, the effective number of Availability Zones
is reduced by one-third. For your initial load test, we recommend that you start with a two-node
cluster, which simulates the failure of one Availability Zone in a three-node cluster.

3. Drive sustained traffic (as estimated in the previous step) to your test cluster for the duration of
the load test.

4. Monitor the performance of the cluster during the load test.

Ideally, the traffic profile that you drive during the load test should be as similar as possible to
your application's real traffic. This includes the distribution of operations (for example, 70 percent
GetItem, 25 percent Query, and 5 percent PutItem), the request rate for each operation, the
number of items accessed per request, and the distribution of item sizes. To achieve a cache hit rate
similar to your application's expected cache hit rate, pay close attention to the distribution of keys
in your test traffic.

Note

Be careful when load testing T2 node types (dax.t2.small and dax.t2.medium).
T2 node types provide burstable CPU performance that varies over time depending on
the node's CPU credit balance. A DAX cluster running on T2 nodes might appear to be
operating normally, but if any node is bursting above the baseline performance of its
instance, the node is spending its accrued CPU credit balance. When the credit balance runs
low, performance is gradually lowered to the baseline performance level.

Load testing API Version 2012-08-10 1351

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-credits-baseline-concepts.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/burstable-performance-instances-standard-mode.html

Amazon DynamoDB Developer Guide

Monitor your DAX cluster during the load test to determine whether the node type that you're
using for the load test is the right node type for you. In addition, during a load test, you should
monitor your request rate and cache hit rate to ensure that your test infrastructure is actually
driving the amount of traffic you intend.

You should pay attention to network bytes consumption of your selected cluster instance type.
Exceeding the available baseline bandwidth for an Amazon EC2 instance indicates that your cluster
may not sustain your application's workload, and needs to be scaled.

If load testing indicates that the selected cluster configuration can't sustain your application's
workload, you should switch to a larger node type, especially if you see high CPU utilization on the
primary node in the cluster, high eviction rates, or high cache memory utilization. If hit rates are
consistently high, and the ratio of read to write traffic is high, you may want to consider adding
more nodes to your cluster. Refer to Scaling a DAX cluster for additional guidance on when to use a
larger node type (vertical scaling) or add more nodes (horizontal scaling).

You should repeat your load test after making changes to your cluster configuration.

Load testing API Version 2012-08-10 1352

Amazon DynamoDB Developer Guide

Data modeling for DynamoDB tables

Before we dive into data modeling, it's important to understand some DynamoDB fundamentals.
DynamoDB is a key-value NoSQL database which allows flexible schema. The set of data attributes
apart from the key attributes for each item can be either uniform or discrete. The DynamoDB key
schema is in the form of either a simple primary key where a partition key uniquely identifies an
item, or in the form of a composite primary key where a combination of a partition key and sort
key uniquely defines an item. The partition key is hashed to determine the physical location of
data and retrieve it. Therefore, it is important to choose a high cardinality and horizontally scalable
attribute as a partition key to ensure even distribution of data. The sort key attribute is optional in
the key schema and having a sort key enables modelling one-to-many relationships and creating
item collections in DynamoDB. Sort keys are also referred to as range keys—they are used to sort
items in an item collection and also allow flexible range-based operations.

For more details and best practices on DynamoDB key schema, you can refer to the following:

• the section called “Partitions and data distribution in DynamoDB”

• the section called “Partition key design”

• the section called “Sort key design”

• Choosing the right DynamoDB partition key

Secondary indexes are often needed to support additional query patterns in DynamoDB. Secondary
indexes are shadow tables where the same data is organised via a different key schema compared
to the base table. A local secondary index (LSI) shares the same partition key as the base table
and allows having an alternate sort key allowing it to share the base table’s capacity. A global
secondary index (GSI) can have a different partition key as well as a different sort key attribute
than the base table which means throughput management for a GSI is independent of the base
table.

For more details on secondary indexes and best practices, you can refer to the following:

• the section called “Working with indexes”

• the section called “Secondary indexes”

Let's now look at data modeling a little closer. The process of designing a flexible and highly-
optimized schema on DynamoDB, or any NoSQL database for that matter, can be a challenging

API Version 2012-08-10 1353

https://www.amazonaws.cn/blogs/database/choosing-the-right-dynamodb-partition-key/

Amazon DynamoDB Developer Guide

skill to learn. The goal of this module is to help you develop a mental flowchart for designing a
schema that will take you from use case into production. We will start with an introduction to
the foundational choice of any design, single table versus multiple table design. Then we will
review the multitude of design patterns (building blocks) that can be used to achieve various
organizational or performance results for your application. Finally, we are including a variety of
complete schema design packages for different use cases and industries.

Topics

• Item collections - how to model one-to-many relationships in DynamoDB

• Data Modeling foundations in DynamoDB

• Data modeling building blocks in DynamoDB

• Data modeling schema design packages in DynamoDB

• Best practices for modeling relational data in DynamoDB

Item collections - how to model one-to-many relationships in
DynamoDB

In DynamoDB, an item collection is a group of items that share the same partition key value, which
means the items are related. Item collections are the primary mechanism to model one-to-many
relationships in DynamoDB. Item collections can only exist on tables or indexes configured to use a
composite primary key.

Working with Item Collections API Version 2012-08-10 1354

Amazon DynamoDB Developer Guide

Note

Item collections can exist either in a base table or a secondary index. For more information
specifically about how item collections interact with indexes, see Item collections in Local
Secondary Indexes.

Consider the following table showing three different users and their in-game inventories:

For some items in each collection, the sort key is a concatenation made up of information used
to group data, such as inventory::armor, inventory::weapon or info. Each item collection
can have a different combination of these attributes as the sort key. User account1234 has an
inventory::weapons item, while user account1387 does not (because they have not found any
yet). User account1138 only uses two items for their sort key (since they have no inventory yet)
while the other users use three.

DynamoDB lets you selectively retrieve items from these item collections to do the following:

• Retrieve all items from a particular user

• Retrieve only one item from a particular user

• Retrieve all the items of a specific type belonging to a particular user

Working with Item Collections API Version 2012-08-10 1355

Amazon DynamoDB Developer Guide

Speed up queries by organizing your data with item collections

In this example, each of the items in these three item collections represents a player and the data
model we have chosen, based off the game’s and player’s access patterns. What data does the
game need? When does it need it? How frequently does it need it? What’s the cost of doing it this
way? These data modeling decisions were made based off the answers to these questions.

In this game, there is a different page presented to the player for their inventory for weapons and
another page for armor. When the player opens their inventory, weapons are shown first because
we want that page to load extremely fast, while subsequent inventory pages can load after that.
Since each of these item types can be quite large as the player acquires more in-game items, we
decided that each inventory page would be its own item in the player’s item collection in the
database.

The following section talks more about how you can interact with item collections through the
Query operation.

Data Modeling foundations in DynamoDB

This section covers the foundation layer by examining the two types of table design: single table
and multiple table.

Single table design foundation

One choice for the foundation of our DynamoDB schema is single table design. Single table design
is a pattern that allows you to store multiple types (entities) of data in a single DynamoDB table.
It aims to optimize data access patterns, improve performance, and reduce costs by eliminating
the need for maintaining multiple tables and complex relationships between them. This is possible
because DynamoDB stores items with the same partition key (known as an item collection) on the

Speed up queries by organizing your data with item collections API Version 2012-08-10 1356

Amazon DynamoDB Developer Guide

same partition(s) as each other. In this design, different types of data are stored as items in the
same table, and each item is identified by a unique sort key.

Advantages

• Data locality to support queries for multiple entity types in a single database call

• Reduces overall financial and latency costs of reads:

• A single query for two items totalling less than 4KB is 0.5 RCU eventually consistent

• Two queries for two items totalling less than 4KB is 1 RCU eventually consistent (0.5 RCU each)

• The time to return two separate database calls will average higher than a single call

• Reduces the number of tables to manage:

• Permissions do not need to be maintained across multiple IAM roles or policies

• Capacity management for the table is averaged across all entities, usually resulting in a more
predictable consumption pattern

• Monitoring requires fewer alarms

• Customer Managed Encryption Keys only need to be rotated on one table
Single table design API Version 2012-08-10 1357

Amazon DynamoDB Developer Guide

• Smooths traffic to the table:

• By aggregating multiple usage patterns to the same table, the overall usage tends to be
smoother (the way a stock index's performance tends to be smoother than any individual
stock) which works better for achieving higher utilization with provisioned mode tables

Disadvantages

• Learning curve can be steep due to paradoxical design compared to relational databases

• Data requirements must be consistent across all entity types

• Backups are all or nothing so if some data is not mission critical, consider keeping it in a
separate table

• Table encryption is shared across all items. For multi-tenant applications with individual tenant
encryption requirements, client side encryption would be required

• Tables with a mix of historical data and operational data will not see as much of a benefit from
enabling the Infrequent Access Storage Class. For more information, see DynamoDB table
classes

• All changed data will be propagated to DynamoDB Streams even if only a subset of entities need
to be processed.

• Thanks to Lambda event filters, this will not affect your bill when using Lambda, but will be an
added cost when using the Kinesis Consumer Library

• When using GraphQL, single table design will be more difficult to implement

• When using higher-level SDK clients like Java's DynamoDBMapper or Enhanced Client, it can be
more difficult to process results because items in the same response may be associated with
different classes

When to use

Single table design works well for applications that frequently query multiple entity types together
or need to maintain relationships between different data types. It's particularly effective when
your access patterns benefit from data locality and when you want to minimize the overhead of
managing multiple tables.

Single table design API Version 2012-08-10 1358

Amazon DynamoDB Developer Guide

Multiple table design foundation

The second choice for the foundation of our DynamoDB schema is multiple table design. Multiple
table design is a pattern that is more like a traditional database design where you store a single
type(entity) of data in a each DynamoDB table. Data within each table will still be organized
by partition key so performance within a single entity type will be optimized for scalability and
performance, but queries across multiple tables must be done independently.

Advantages

• Simpler to design for those who aren't used to working with single table design

• Easier implementation of GraphQL resolvers due to each resolver mapping to a single
entity(table)

• Allows for unique data requirements across different entity types:

• Backups can be made for the individual tables that are mission critical

Multiple table design API Version 2012-08-10 1359

Amazon DynamoDB Developer Guide

• Table encryption can be managed for each table. For multi-tenant applications with individual
tenant encryption requirements, separate tenant tables make it possible for each customer to
have their own encryption key

• Infrequent Access Storage Class can be enabled on just the tables with historical data to realize
the full cost savings benefit. For more information, see DynamoDB table classes

• Each table will have its own change data stream allowing for a dedicated Lambda function to be
designed for each type of item rather than a single monolithic processor

Disadvantages

• For access patterns that require data across multiple tables, multiple reads from DynamoDB will
be required and data may need to be processed/joined on the client code.

• Operations and monitoring of multiple tables requires more CloudWatch alarms and each table
must be scaled independently

• Each tables permissions will need to be managed separately. The addition of tables in the future
will require a change to any necessary IAM roles or policies

When to use

If your application’s access patterns do not have the need to query multiple entities or tables
together, then multiple table design is a good and sufficient approach.

Data modeling building blocks in DynamoDB

This section covers the building block layer to give you design patterns you can use in your
application.

Data modeling building blocks API Version 2012-08-10 1360

Amazon DynamoDB Developer Guide

Topics

• Composite sort key building block

• Multi-tenancy building block

• Sparse index building block

• Time to live building block

• Time to live for archival building block

• Vertical partitioning building block

• Write sharding building block

Composite sort key building block

When people think of NoSQL, they may also think of it as non-relational. Ultimately, there is no
reason relationships cannot be placed into a DynamoDB schema, they just look different than
relational databases and their foreign keys. One of the most critical patterns we can use to develop
a logical hierarchy of our data in DynamoDB is a composite sort key. The most common style for
designing one is with each layer of the hierarchy (parent layer > child layer > grandchild layer)
separated by a hashtag. For example, PARENT#CHILD#GRANDCHILD#ETC.

While a partition key in DynamoDB always requires the exact value to query for data, we can apply
a partial condition to the sort key from left to right similar to traversing a binary tree.

In the example above, we have an e-Commerce store with a Shopping Cart that needs to be
maintained across user sessions. Whenever the user logs in, they may want to see the entire

Composite sort key API Version 2012-08-10 1361

Amazon DynamoDB Developer Guide

Shopping Cart including items saved for later. But when they enter the checkout, only items in
the active cart should be loaded for purchase. Since both of these KeyConditions explicitly
ask for CART sort keys, the additional wishlist data is simply ignored by DynamoDB at read time.
While both saved and active items are a part of the same cart, we need to treat them differently in
different parts of the application, so applying a KeyCondition to the prefix of the sort key is the
most optimized way of retrieving only the data needed for each part of the application.

Key features of this building block

• Related items are stored locally to each other for effective data access

• Using KeyCondition expressions, subsets of the hierarchy can be selectively retrieved meaning
there are no wasted RCUs

• Different parts of the application can store their items under a specific prefix preventing
overwritten items or conflicting writes

Multi-tenancy building block

Many customers use DynamoDB to host data for their multi-tenant applications. For these
scenarios, we want to design the schema in a way that keeps all data from a single tenant in its
own logical partition of the table. This leverages the concept of an Item Collection, which is a
term for all items in a DynamoDB table with the same partition key. For more information on how
DynamoDB approaches multitenancy, see Multitenancy on DynamoDB.

Multi-tenancy API Version 2012-08-10 1362

https://docs.amazonaws.cn/whitepapers/latest/multi-tenant-saas-storage-strategies/multitenancy-on-dynamodb.html

Amazon DynamoDB Developer Guide

For this example, we are running a photo hosting site with potentially thousands of users. Each
user will only upload photos to their own profile initially, but by default we will not allow a user
to see the photos of any other user. An additional level of isolation would ideally be added to the
authorization of each user's call to your API to ensure they are only requesting data from their own
partition, but at the schema level, unique partition keys is adequate.

Key features of this building block

• The amount of data read by any one user or tenant can only be as much as the total amount of
items in their partition

• Removal of a tenant's data due to an account closure or compliance request can be done
tactfully and cheaply. Simply run a query where the partition key equals their tenant ID, then
execute a DeleteItem operation for each primary key returned

Note

Designed with multi-tenancy in mind, you can use different encryption key providers
across a single table to safely isolate data. Amazon Database Encryption SDK for Amazon
DynamoDB enables you to include client-side encryption in your DynamoDB workloads. You
can perform attribute-level encryption, enabling you to encrypt specific attribute values
before storing them in your DynamoDB table and search on encrypted attributes without
decrypting the entire database beforehand.

Sparse index building block

Sometimes an access pattern requires looking for items that match a rare item or an item that
receives a status (which requires an escalated response). Rather than regularly query across the
entire dataset for these items, we can leverage the fact that global secondary indexes (GSI) are
sparsely loaded with data. This means that only items in the base table that have the attributes
defined in the index will be replicated to the index.

Sparse index API Version 2012-08-10 1363

https://docs.amazonaws.cn/database-encryption-sdk/latest/devguide/what-is-database-encryption-sdk.html

Amazon DynamoDB Developer Guide

In this example, we see an IOT use case where each device in the field is reporting back a status on
a regular basis. For the majority of the reports we expect the device to report everything is okay,
but on occasion there can be a fault and it must be escalated to a repair technician. For reports
with an escalation, the attribute EscalatedTo is added the item, but is not present otherwise. The
GSI in this example is partitioned by EscalatedTo and since the GSI brings over keys from the
base table we can still see which DeviceID reported the fault and at what time.

While reads are cheaper than writes in DynamoDB, sparse indexes are a very powerful tool for use
cases where instances of a specific type of item is rare but reads to find them are common.

Key features of this building block

• Write and storage costs for the sparse GSI only apply to items that match the key pattern, so the
cost of the GSI can be substantially less than other GSIs that have all items replicated to them

• A composite sort key can still be used to further narrow down the items that match the desired
query, for instance, a timestamp could be used for the sort key to only view faults reported in
the last X minutes (SK > 5 minutes ago, ScanIndexForward: False)

Sparse index API Version 2012-08-10 1364

Amazon DynamoDB Developer Guide

Time to live building block

Most data have some duration of time for which it can be considered worth keeping in a primary
datastore. To facilitate data aging out from DynamoDB, it has a feature called time to live (TTL).
The TTL feature allows you to define a specific attribute at the table level that needs monitoring
for items with an epoch timestamp (that's in the past). This allows you to delete expired records
from the table for free.

Note

If you are using Global Tables version 2019.11.21 (Current) of global tables and you also
use the Time to Live feature, DynamoDB replicates TTL deletes to all replica tables. The
initial TTL delete does not consume write capacity in the Region in which the TTL expiry
occurs. However, the replicated TTL delete to the replica table(s) consumes replicated write
capacity in each of the replica Regions and applicable charges will apply.

In this example, we have an application designed to let a user create messages that are short-lived.
When a message is created in DynamoDB, the TTL attribute is set to a date seven days in the future
by the application code. In roughly seven days, DynamoDB will see that the epoch timestamp of
these items is in the past and delete them.

Since the deletes done by TTL are free, it is strongly recommended to use this feature to remove
historical data from the table. This will reduce the overall storage bill each month and will likely
reduce the costs of user reads since there will be less data to be retrieved by their queries. While
TTL is enabled at the table level, it is up to you which items or entities to create a TTL attribute for
and how far into the future to set the epoch timestamp to.

Time to live API Version 2012-08-10 1365

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TTL.html

Amazon DynamoDB Developer Guide

Key features of this building block

• TTL deletes are run behind the scenes with no impact to your table performance

• TTL is an asynchronous process that runs roughly every six hours, but can take over 48 hours for
an expired record to be deleted

• Do not rely on TTL deletes for use cases like lock records or state management if stale data
must be cleaned up in less than 48 hours

• You can name the TTL attribute a valid attribute name, but the value must be a number type

Time to live for archival building block

While TTL is an effective tool for deleting older data from DynamoDB, many use cases require an
archive of the data be kept for a longer period of time than the primary datastore. In this instance,
we can leverage TTL's timed deletion of records to push expired records into a long-term datastore.

When a TTL delete is done by DynamoDB, it is still pushed into the DynamoDB Stream as a Delete
event. When DynamoDB TTL is the one who performs the delete though, there is an attribute
on the stream record of principal:dynamodb. Using a Lambda subscriber to the DynamoDB
Stream, we can apply an event-filter for only the DynamoDB principal attribute and know that any
records that match that filter are to be pushed to an archival store like Amazon Glacier.

Key features of this building block

• Once the low-latency reads of DynamoDB are no longer needed for the historical items,
migrating them to a colder storage service like Amazon Glacier can reduce storage costs
significantly while meeting the data compliance needs of your use case

Time to live archival API Version 2012-08-10 1366

Amazon DynamoDB Developer Guide

• If the data is persisted into Amazon S3, cost-efficient analytics tools like Amazon Athena or
Redshift Spectrum can be used to perform historical analysis of the data

Vertical partitioning building block

Users familiar with a document model database will be familar with the idea of storing all related
data within a single JSON document. While DynamoDB supports JSON data types, it doesn't
support executing KeyConditions on nested JSON. Since KeyConditions are what dictate
how much data is read from disk and effectively how many RCUs a query consumes, this can result
in inefficiencies at scale. To better optimize the writes and reads of DynamoDB, we recommend
breaking apart the document's individual entities into individual DynamoDB items, also referred to
as vertical partitioning.

Vertical partitioning API Version 2012-08-10 1367

Amazon DynamoDB Developer Guide

Vertical partitioning API Version 2012-08-10 1368

Amazon DynamoDB Developer Guide

Vertical partitoning, as shown above, is a key example of single table design in action but can also
be implemented across multiple tables if desired. Since DynamoDB bills writes in 1KB increments,
you should ideally partition the document in a way that results in items under 1KB.

Key features of this building block

• A hierarchy of data relationships is maintained via sort key prefixes so the singular document
structure could be rebuilt client-side if needed

• Singular components of the data structure can be updated independently resulting in small item
updates being only 1 WCU

• By using the sort key BeginsWith, the application can retrieve similar data in a single query,
aggregating read costs for reduced total cost/latency

• Large documents can easily be larger than the 400 KB individual item size limit in DynamoDB
and vertical partitioning helps work around this limit

Vertical partitioning API Version 2012-08-10 1369

Amazon DynamoDB Developer Guide

Write sharding building block

One of the very few hard limits DynamoDB has in place is the restriction of how much throughput
a single physical partition can maintain per second (not necessarily a single partition key). These
limits are presently:

• 1000 WCU (or 1000 <=1KB items written per second) and 3000 RCU (or 3000 <=4KB reads per
second) strongly consistent or

• 6000 <=4KB reads per second eventually consistent

In the event requests against the table exceed either of these limits, an error is sent back to the
client SDK of ThroughputExceededException, more commonly referred to as throttling. Use
cases that require read operations beyond that limit will mostly be served best by placing a read
cache in front of DynamoDB, but write operations require a schema level design known as write
sharding.

Write sharding API Version 2012-08-10 1370

Amazon DynamoDB Developer Guide

To solve this problem, we'll append a random integer onto the end of the partition key for each
contestant in the application's UpdateItem code. The range of the random integer generator will
need to have an upper bound matching or exceeding the expected amount of writes per second
for a given contestant divided by 1000. To support 20,000 votes per second, it would look like
rand(0,19). Now that the data is stored under separate logical partitions, it must be combined
back together at read time. Since vote totals doesn't need to be real time, a Lambda function
scheduled to read all vote partitions every X minutes could perform occasional aggregation for
each contestant and write it back to a single vote total record for live reads.

Key features of this building block

• For use cases with extremely high write throughput for a given partition key that cannot be
avoided, write operations can be artificially spread across multiple DynamoDB partitions

• GSIs with a low cardinality partition key should also utilize this pattern since throttling on a GSI
will apply backpressure to write operations on the base table

Data modeling schema design packages in DynamoDB

Learn about data modeling schema design packages for DynamoDB, including use cases, access
patterns, and final schema designs for social networks, gaming profiles, complaint management,
recurring payments, device status, and online shops.

Data modeling schema design packages API Version 2012-08-10 1371

Amazon DynamoDB Developer Guide

Prerequisites

Before we attempt to design our schema for DynamoDB, we must first gather some prerequisite
data on the use case the schema needs to support. Unlike relational databases, DynamoDB is
sharded by default, meaning that the data will live on multiple servers behind the scenes so
designing for data locality is important. We'll need to put together the following list for each
schema design:

• List of entities (ER Diagram)

• Estimated volumes and throughput for each entity

• Access patterns that need to be supported (queries and writes)

• Data retention requirements

Topics

• Social network schema design in DynamoDB

• Gaming profile schema design in DynamoDB

• Complaint management system schema design in DynamoDB

• Recurring payments schema design in DynamoDB

• Monitoring device status updates in DynamoDB

• Using DynamoDB as a data store for an online shop

Prerequisites API Version 2012-08-10 1372

Amazon DynamoDB Developer Guide

Social network schema design in DynamoDB

Social network business use case

This use case talks about using DynamoDB as a social network. A social network is an online service
that lets different users interact with each other. The social network we'll design will let the user
see a timeline consisting of their posts, their followers, who they are following, and the posts
written by who they are following. The access patterns for this schema design are:

• Get user information for a given userID

• Get follower list for a given userID

• Get following list for a given userID

• Get post list for a given userID

• Get user list who likes the post for a given postID

• Get the like count for a given postID

• Get the timeline for a given userID

Social network entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using for the social network schema design.

Social network access patterns

These are the access patterns we'll be considering for the social network schema design.

• getUserInfoByUserID

Social network API Version 2012-08-10 1373

Amazon DynamoDB Developer Guide

• getFollowerListByUserID

• getFollowingListByUserID

• getPostListByUserID

• getUserLikesByPostID

• getLikeCountByPostID

• getTimelineByUserID

Social network schema design evolution

DynamoDB is a NoSQL database, so it does not allow you to perform a join - an operation that
combines data from multiple databases. Customers unfamiliar with DynamoDB might apply
relational database management system (RDBMS) design philosophies (such as creating a table
for each entity) to DynamoDB when they do not need to. The purpose of DynamoDB's single-table
design is to write data in a pre-joined form according to the application's access pattern, and then
immediately use the data without additional computation. For more information, see Single-table
vs. multi-table design in DynamoDB.

Now, let's step through how we'll evolve our schema design to address all the access patterns.

Step 1: Address access pattern 1 (getUserInfoByUserID)

To get a given user's information, we'll need to Query the base table with a key condition of
PK=<userID>. The query operation lets you paginate the results, which can be useful when a user
has many followers. For more information on Query, see Querying tables in DynamoDB.

In our example, we track two types of data for our user: their "count" and their "info." A user's
"count" reflects how many followers they have, how many users they are following, and how many
posts they've created. A user's "info" reflects their personal information such as their name.

We see these two kinds of data represented by the two items below. The item that has "count" in
its sort key (SK) is more likely to change than the item with "info." DynamoDB considers the size of
the item as it appears before and after the update and the provisioned throughput consumed will
reflect the larger of these item sizes. So even if you update just a subset of the item's attributes,
UpdateItem will still consume the full amount of provisioned throughput (the larger of the before
and after item sizes). You can get the items via a single Query operation and use UpdateItem to
add or subtract from existing numeric attributes.

Social network API Version 2012-08-10 1374

https://amazonaws-china.com/blogs/database/single-table-vs-multi-table-design-in-amazon-dynamodb/
https://amazonaws-china.com/blogs/database/single-table-vs-multi-table-design-in-amazon-dynamodb/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html

Amazon DynamoDB Developer Guide

Step 2: Address access pattern 2 (getFollowerListByUserID)

To get a list of users who are following a given user, we'll need to Query the base table with a key
condition of PK=<userID>#follower.

Step 3: Address access pattern 3 (getFollowingListByUserID)

To get a list of users a given user is following, we'll need to Query the base table with a key
condition of PK=<userID>#following. You can then use a TransactWriteItems operation to
group up several requests together and do the following:

• Add User A to User B's follower list, and then increment User B's follower count by one.

• Add User B to User A's follower list, and then increment User A's follower count by one.

Social network API Version 2012-08-10 1375

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

Amazon DynamoDB Developer Guide

Step 4: Address access pattern 4 (getPostListByUserID)

To get a list of posts created by a given user, we'll need to Query the base table with a key
condition of PK=<userID>#post. One important thing to note here is that a user's postIDs must
be incremental: the second postID value must be greater than the first postID value (since users
want to see their posts in a sorted manner). You can do this by generating postIDs based on a time
value like a Universally Unique Lexicographically Sortable Identifier (ULID).

Step 5: Address access pattern 5 (getUserLikesByPostID)

Social network API Version 2012-08-10 1376

Amazon DynamoDB Developer Guide

To get a list of users who liked a given user's post, we'll need to Query the base table with a
key condition of PK=<postID>#likelist. This approach is the same pattern that we used for
retrieving the follower and following lists in access pattern 2 (getFollowerListByUserID) and
access pattern 3 (getFollowingListByUserID).

Step 6: Address access pattern 6 (getLikeCountByPostID)

To get a count of likes for a given post, we'll need to perform a GetItem operation on the base
table with a key condition of PK=<postID>#likecount. This access pattern can cause throttling
issues whenever a user with many followers (such as a celebrity) creates a post since throttling
occurs when a partition's throughput exceeds 1000 WCU per second. This problem is not a result of
DynamoDB, it just appears in DynamoDB since it's at the end of the software stack.

You should evaluate whether it's really essential for all users to view the like count simultaneously
or if it can happen gradually over time. In general, a post's like count doesn't need to be
immediately 100% accurate. You can implement this strategy by putting a queue between your
application and DynamoDB to have the updates happen periodically.

Social network API Version 2012-08-10 1377

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html

Amazon DynamoDB Developer Guide

Step 7: Address access pattern 7 (getTimelineByUserID)

To get the timeline for a given user, we'll need to perform a Query operation on the base table
with a key condition of PK=<userID>#timeline. Let's consider a scenario where a user's
followers need to view their post synchronously. Every time a user writes a post, their follower
list is read and their userID and postID are slowly entered into the timeline key of all its followers.
Then, when your application starts, you can read the timeline key with the Query operation and fill
the timeline screen with a combination of userID and postID using the BatchGetItem operation
for any new items. You cannot read the timeline with an API call, but this is a more cost effective
solution if the posts could be edited frequently.

The timeline is a place that shows recent posts, so we'll need a way to clean up the old ones.
Instead of using WCU to delete them, you can use DynamoDB's TTL feature to do it for free.

Social network API Version 2012-08-10 1378

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html

Amazon DynamoDB Developer Guide

All access patterns and how the schema design addresses them are summarized in the table below:

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getUserIn
foByUserID

Base table Query PK=<userID>

Social network API Version 2012-08-10 1379

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getFollow
erListByU
serID

Base table Query PK=<userI
D>#follower

getFollow
ingListBy
UserID

Base table Query PK=<userI
D>#following

getPostLi
stByUserID

Base table Query PK=<userI
D>#post

getUserLi
kesByPostID

Base table Query PK=<postI
D>#likelist

getLikeCo
untByPostID

Base table GetItem PK=<postI
D>#likecount

getTimeli
neByUserID

Base table Query PK=<userI
D>#timeline

Social network final schema

Here is the final schema design. To download this schema design as a JSON file, see DynamoDB
Examples on GitHub.

Base table:

Social network API Version 2012-08-10 1380

https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/SocialNetwork/SocialNetworkSchema.json
https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/SocialNetwork/SocialNetworkSchema.json

Amazon DynamoDB Developer Guide

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

Social network API Version 2012-08-10 1381

Amazon DynamoDB Developer Guide

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Gaming profile schema design in DynamoDB

Gaming profile business use case

This use case talks about using DynamoDB to store player profiles for a gaming system. Users
(in this case, players) need to create profiles before they can interact with many modern games,
especially online ones. Gaming profiles typically include the following:

• Basic information such as their user name

• Game data such as items and equipment

• Game records such as tasks and activities

• Social information such as friend lists

To meet the fine-grained data query access requirements for this application, the primary keys
(partition key and sort key) will use generic names (PK and SK) so they can be overloaded with
various types of values as we will see below.

The access patterns for this schema design are:

• Get a user's friend list

• Get all of a player's information

• Get a user's item list

• Get a specific item from the user's item list

• Update a user's character

• Update the item count for a user

The size of the gaming profile will vary in different games. Compressing large attribute values
can let them fit within item limits in DynamoDB and reduce costs. The throughput management
strategy would depend various on factors such as: number of players, number of games played

Gaming profile API Version 2012-08-10 1382

Amazon DynamoDB Developer Guide

per second, and seasonality of the workload. Typically for a newly launched game, the number of
players and the level of popularity are unknown so we will start with the on-demand throughput
mode.

Gaming profile entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using for the gaming profile schema design.

Gaming profile access patterns

These are the access patterns we'll be considering for the social network schema design.

• getPlayerFriends

• getPlayerAllProfile

• getPlayerAllItems

• getPlayerSpecificItem

• updateCharacterAttributes

Gaming profile API Version 2012-08-10 1383

Amazon DynamoDB Developer Guide

• updateItemCount

Gaming profile schema design evolution

From the above ERD, we can see that this is a one-to-many relationship type of data modeling. In
DynamoDB, one-to-many data models can be organized into item collections, which is different
from traditional relational databases where multiple tables are created and linked through foreign
keys. An item collections is a group of items that share the same partition key value but have
different sort key values. Within an item collection, each item has a unique sort key value that
distinguishes it from other items. With this in mind, let’s use the following pattern for HASH and
RANGE values for each entity type.

To begin, we use generic names like PK and SK to store different types of entities in the same table
to make the model future-proof. For better readability, we can include prefixes to denote the type
of data or include an arbitrary attribute called Entity_type or Type. In the current example,
we use a string starting with player to store player_ID as the PK; use entity name# as the
prefix of SK, and add a Type attribute to indicate which entity type this piece of data is. This allows
us to support storing more entity types in the future, and use advanced technologies such as GSI
Overloading and Sparse GSI to meet more access patterns.

Let’s start implementing the access patterns. Access patterns such as adding players and adding
equipment can be realized through the PutItem operation, so we can ignore them. In this
document, we’ll focus on the typical access patterns listed above.

Step 1: Address access pattern 1 (getPlayerFriends)

We address access pattern 1 (getPlayerFriends) with this step. In our current design, friendship
is simple and the number of friends in the game is small. For simplicity's sake, we use a list data
type to store friend lists (1:1 modeling). In this design, we use GetItem to satisfy this access
pattern. In the GetItem operation, we explicitly provide the partition key and sort key value to get
a specific item.

However, if a game has a large number of friends, and the relationships between them are complex
(such as friendships being bi-directional with both an invite and accept component) it would be
necessary to use a many-to-many relationship to store each friend individually, in order to scale to
an unlimited friend list size. And if the friendship change involves operating on multiple items at
the same time, DynamoDB transactions can be used to group multiple actions together and submit
them as a single all-or-nothing TransactWriteItems or TransactGetItems operation.

Gaming profile API Version 2012-08-10 1384

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html

Amazon DynamoDB Developer Guide

Step 2: Address access patterns 2 (getPlayerAllProfile), 3 (getPlayerAllItems), and 4
(getPlayerSpecificItem)

We address access patterns 2 (getPlayerAllProfile), 3 (getPlayerAllItems), and 4
(getPlayerSpecificItem) using this step. What these three access patterns have in common is a
range query, which uses the Query operation. Depending on the scope of the query, Key Condition
and Filter Expressions are used, which are commonly used in practical development.

In the Query operation, we provide a single value for Partition Key and get all items with
that Partition Key value. Access pattern 2 (getPlayerAllProfile) is implemented in this
way. Optionally, we can add a sort key condition expression — a string that determines the
items to be read from the table. Access pattern 3 (getPlayerAllItems) is implemented by
adding the key condition of sort key begins_with ITEMS#. Further, in order to simplify the
development of the application side, we can use filter expressions to implement access pattern 4
(getPlayerSpecificItem).

Here's a pseudocode example using filter expression that filters items of the Weapon category:

filterExpression: "ItemType = :itemType"
expressionAttributeValues: {":itemType": "Weapon"}

Gaming profile API Version 2012-08-10 1385

Amazon DynamoDB Developer Guide

Note

A filter expression is applied after a Query finishes, but before the results are returned to
the client. Therefore, a Query consumes the same amount of read capacity regardless of
whether a filter expression is present.

If the access pattern is to query a large dataset and filter out a large amount of data to keep only
a small subset of data, the appropriate approach is to design DynamoDB Partition Key and Sort
Key more effectively. For example, in the above example for obtaining a certain ItemType, if there
are many items for each player and querying for a certain ItemType is a typical access pattern, it
would be more efficient to bring ItemType into the SK as a composite key. The data model would
look like this: ITEMS#ItemType#ItemId.

Step 3: Address access patterns 5 (updateCharacterAttributes) and 6 (updateItemCount)

We address access patterns 5 (updateCharacterAttributes) and 6 (updateItemCount)
using this step. When the player needs to modify the character, such as reducing the currency, or
modifying the quantity of a certain weapon in their items, use UpdateItem to implement these
access patterns. To update a player's currency but ensure it never goes below a minimum amount,
we can add a the section called “CLI example” to reduce the balance only if it's greater than or
equal to the minimum amount. Here is a pseudocode example:

UpdateExpression: "SET currency = currency - :amount"
ConditionExpression: "currency >= :minAmount"

Gaming profile API Version 2012-08-10 1386

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html

Amazon DynamoDB Developer Guide

When developing with DynamoDB and using Atomic Counters to decrement inventory, we can
ensure idempotency by using optimistic locking. Here is a pseudocode example for Atomic
Counters:

UpdateExpression: "SET ItemCount = ItemCount - :incr"
expression-attribute-values: '{":incr":{"N":"1"}}'

In addition, in a scenario where the player purchases an item with currency, the entire
process needs to deduct currency and add an item at the same time. We can use DynamoDB
Transactions to group multiple actions together and submit them as a single all-or-nothing
TransactWriteItems or TransactGetItems operation. TransactWriteItems is a
synchronous and idempotent write operation that groups up to 100 write actions in a single all-
or-nothing operation. The actions are completed atomically so that either all of them succeed or
none of them succeeds. Transactions help eliminate the risk of duplication or vanishing currency.
For more information on transactions, see DynamoDB transactions example .

All access patterns and how the schema design addresses them are summarized in the table below:

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getPlayer
Friends

Base table GetItem PK=PlayerID SK=“FRIEN
DS#playerID”

Gaming profile API Version 2012-08-10 1387

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getPlayer
AllProfile

Base table Query PK=PlayerID

getPlayer
AllItems

Base table Query PK=PlayerID SK begins_wi
th “ITEMS#”

getPlayer
SpecificItem

Base table Query PK=PlayerID SK begins_wi
th “ITEMS#”

filterExp
ression:
"ItemType
= :itemType
" expressio
nAttribut
eValues:
{ ":itemType":
"Weapon" }

updateCha
racterAtt
ributes

Base table UpdateItem PK=PlayerID SK=“#META
DATA#play
erID”

UpdateExp
ression: "SET
currency
= currency
- :amount"
Condition
Expressio
n: "currency
>= :minAmoun
t"

Gaming profile API Version 2012-08-10 1388

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

updateIte
mCount

Base table UpdateItem PK=PlayerID SK =“ITEMS#I
temID”

update-ex
pression:
"SET
ItemCount
= ItemCount
- :incr"
expressio
n-attribu
te-values
: '{":incr":
{"N":"1"}}'

Gaming profile final schema

Here is the final schema design. To download this schema design as a JSON file, see DynamoDB
Examples on GitHub.

Base table:

Gaming profile API Version 2012-08-10 1389

https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/GamingPlayerProfiles/GamePlayerProfilesSchema.json
https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/GamingPlayerProfiles/GamePlayerProfilesSchema.json

Amazon DynamoDB Developer Guide

Gaming profile API Version 2012-08-10 1390

Amazon DynamoDB Developer Guide

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Complaint management system schema design in DynamoDB

Complaint management system business use case

DynamoDB is a database well-suited for a complaint management system (or contact center)
use case as most access patterns associated with them would be key-value based transactional
lookups. The typical access patterns in this scenario would be to:

• Create and update complaints

• Escalate a complaint

• Create and read comments on a complaint

• Get all complaints by a customer

• Get all comments by an agent and get all escalations

Some comments may have attachments describing the complaint or solution. While these are all
key-value access patterns, there can be additional requirements such as sending out notifications
when a new comment is added to a complaint or running analytical queries to find complaint
distribution by severity (or agent performance) per week. An additional requirement related to
lifecycle management or compliance would be to archive complaint data after three years of
logging the complaint.

Complaint management system API Version 2012-08-10 1391

Amazon DynamoDB Developer Guide

Complaint management system architecture diagram

The following diagram shows the architecture diagram of the complaint management system.
This diagram shows the different Amazon Web Services service integrations that the complaint
management system uses.

Apart from the key-value transactional access patterns that we will be handling in the DynamoDB
data modeling section later, we have three non-transactional requirements. The architecture
diagram above can be broken down into the following three workflows:

1. Send a notification when a new comment is added to a complaint

2. Run analytical queries on weekly data

3. Archive data older than three years

Let's take a more in-depth look at each one.

Complaint management system API Version 2012-08-10 1392

Amazon DynamoDB Developer Guide

Send a notification when a new comment is added to a complaint

We can use the below workflow to achieve this requirement:

DynamoDB Streams is a change data capture mechanism to record all write activity on your
DynamoDB tables. You can configure Lambda functions to trigger on some or all of these changes.
An event filter can be configured on Lambda triggers to filter out events that are not relevant to
the use-case. In this instance, we can use a filter to trigger Lambda only when a new comment is
added and send out notification to relevant email ID(s) which can be fetched from Amazon Secrets
Manager or any other credential store.

Run analytical queries on weekly data

DynamoDB is suitable for workloads that are primarily focused on online transactional processing
(OLTP). For the other 10-20% access patterns with analytical requirements, data can be exported
to S3 with the managed Export to Amazon S3 feature with no impact to the live traffic on
DynamoDB table. Take a look at this workflow below:

Amazon EventBridge can be used to trigger Amazon Lambda on schedule - it allows you to
configure a cron expression for Lambda invocation to take place periodically. Lambda can invoke
the ExportToS3 API call and store DynamoDB data in S3. This S3 data can then be accessed by a

Complaint management system API Version 2012-08-10 1393

https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/intro.html
https://docs.amazonaws.cn/secretsmanager/latest/userguide/intro.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-what-is

Amazon DynamoDB Developer Guide

SQL engine such as Amazon Athena to run analytical queries on DynamoDB data without affecting
the live transactional workload on the table. A sample Athena query to find number of complaints
per severity level would look like this:

SELECT Item.severity.S as "Severity", COUNT(Item) as "Count"
FROM "complaint_management"."data"
WHERE NOT Item.severity.S = ''
GROUP BY Item.severity.S ;

This results in the following Athena query result:

Archive data older than three years

You can leverage the DynamoDB Time to Live (TTL) feature to delete obsolete data from your
DynamoDB table at no additional cost (except in the case of global tables replicas for the
2019.11.21 (Current) version, where TTL deletes replicated to other Regions consume write
capacity). This data appears and can be consumed from DynamoDB Streams to be archived off into
Amazon S3. The workflow for this requirement is as follows:

Complaint management system entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using for the complaint management system
schema design.

Complaint management system API Version 2012-08-10 1394

https://docs.amazonaws.cn/athena/latest/ug/what-is

Amazon DynamoDB Developer Guide

Complaint management system access patterns

These are the access patterns we'll be considering for the complaint management schema design.

1. createComplaint

2. updateComplaint

3. updateSeveritybyComplaintID

4. getComplaintByComplaintID

5. addCommentByComplaintID

6. getAllCommentsByComplaintID

7. getLatestCommentByComplaintID

8. getAComplaintbyCustomerIDAndComplaintID

9. getAllComplaintsByCustomerID

10.escalateComplaintByComplaintID

11.getAllEscalatedComplaints

12.getEscalatedComplaintsByAgentID (order from newest to oldest)

13.getCommentsByAgentID (between two dates)

Complaint management system schema design evolution

Since this is a complaint management system, most access patterns revolve around a complaint as
the primary entity. The ComplaintID being highly cardinal will ensure even distribution of data

Complaint management system API Version 2012-08-10 1395

Amazon DynamoDB Developer Guide

in the underlying partitions and is also the most common search criteria for our identified access
patterns. Therefore, ComplaintID is a good partition key candidate in this data set.

Step 1: Address access patterns 1 (createComplaint), 2 (updateComplaint), 3
(updateSeveritybyComplaintID), and 4 (getComplaintByComplaintID)

We can use a generic sort key valued called "metadata" (or "AA") to store complaint-specific
information such as CustomerID, State, Severity, and CreationDate. We use singleton
operations with PK=ComplaintID and SK=“metadata” to do the following:

1. PutItem to create a new complaint

2. UpdateItem to update the severity or other fields in the complaint metadata

3. GetItem to fetch metadata for the complaint

Step 2: Address access pattern 5 (addCommentByComplaintID)

This access pattern requires a one-to-many relationship model between a complaint and
comments on the complaint. We will use the vertical partitioning technique here to use a sort
key and create an item collection with different types of data. If we look at access patterns 6
(getAllCommentsByComplaintID) and 7 (getLatestCommentByComplaintID), we know that
comments will need to be sorted by time. We can also have multiple comments coming in at the
same time so we can use the composite sort key technique to append time and CommentID in the
sort key attribute.

Other options to deal with such possible comment collisions would be to increase the granularity
for the timestamp or add an incremental number as a suffix instead of using Comment_ID. In this
case, we’ll prefix the sort key value for items corresponding to comments with “comm#” to enable
range-based operations.

We also need to ensure that the currentState in the complaint metadata reflects the state when
a new comment is added. Adding a comment might indicate that the complaint has been assigned
to an agent or it has been resolved and so on. In order to bundle the addition of comment and

Complaint management system API Version 2012-08-10 1396

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html

Amazon DynamoDB Developer Guide

update of current state in the complaint metadata, in an all-or-nothing manner, we will use the
TransactWriteItems API. The resulting table state now looks like this:

Let’s add some more data in the table and also add ComplaintID as a separate field from our PK
for future-proofing the model in case we need additional indexes on ComplaintID. Also note that
some comments may have attachments which we will store in Amazon Simple Storage Service and
only maintain their references or URLs in DynamoDB. It’s a best practice to keep the transactional
database as lean as possible to optimize cost and performance. The data now looks like this:

Step 3: Address access patterns 6 (getAllCommentsByComplaintID) and 7
(getLatestCommentByComplaintID)

In order to get all comments for a complaint, we can use the query operation with the
begins_with condition on the sort key. Instead of consuming additional read capacity to read

Complaint management system API Version 2012-08-10 1397

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

Amazon DynamoDB Developer Guide

the metadata entry and then having the overhead of filtering the relevant results, having a sort
key condition like this help us only read what we need. For example, a query operation with
PK=Complaint123 and SK begins_with comm# would return the following while skipping the
metadata entry:

Since we need the latest comment for a complaint in pattern 7
(getLatestCommentByComplaintID), let's use two additional query parameters:

1. ScanIndexForward should be set to False to get results sorted in a descending order

2. Limit should be set to 1 to get the latest (only one) comment

Similar to access pattern 6 (getAllCommentsByComplaintID), we skip the metadata entry
using begins_with comm# as the sort key condition. Now, you can perform access pattern 7 on
this design using the query operation with PK=Complaint123 and SK=begins_with comm#,
ScanIndexForward=False, and Limit 1. The following targeted item will be returned as a
result:

Complaint management system API Version 2012-08-10 1398

Amazon DynamoDB Developer Guide

Let's add more dummy data to the table.

Complaint management system API Version 2012-08-10 1399

Amazon DynamoDB Developer Guide

Step 4: Address access patterns 8 (getAComplaintbyCustomerIDAndComplaintID) and 9
(getAllComplaintsByCustomerID)

Access patterns 8 (getAComplaintbyCustomerIDAndComplaintID) and 9
(getAllComplaintsByCustomerID) introduces a new search criteria: CustomerID. Fetching
it from the existing table requires an expensive Scan to read all data and then filter relevant
items for the CustomerID in question. We can make this search more efficient by creating

Complaint management system API Version 2012-08-10 1400

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html

Amazon DynamoDB Developer Guide

a global secondary index (GSI) with CustomerID as the partition key. Keeping in mind the
one-to-many relationship between customer and complaints as well as access pattern 9
(getAllComplaintsByCustomerID), ComplaintID would be the right candidate for the sort
key.

The data in the GSI would look like this:

An example query on this GSI for access pattern 8
(getAComplaintbyCustomerIDAndComplaintID) would be: customer_id=custXYZ, sort
key=Complaint1321. The result would be:

Complaint management system API Version 2012-08-10 1401

Amazon DynamoDB Developer Guide

To get all complaints for a customer for access pattern 9 (getAllComplaintsByCustomerID),
the query on the GSI would be: customer_id=custXYZ as the partition key condition. The result
would be:

Step 5: Address access pattern 10 (escalateComplaintByComplaintID)

This access introduces the escalation aspect. To escalate a complaint, we can use UpdateItem to
add attributes such as escalated_to and escalation_time to the existing complaint metadata
item. DynamoDB provides flexible schema design which means a set of non-key attributes can be
uniform or discrete across different items. See below for an example:

UpdateItem with PK=Complaint1444, SK=metadata

Step 6: Address access patterns 11 (getAllEscalatedComplaints) and 12
(getEscalatedComplaintsByAgentID)

Only a handful of complaints are expected to be escalated out of the whole data set. Therefore,
creating an index on the escalation-related attributes would lead to efficient lookups as well as

Complaint management system API Version 2012-08-10 1402

Amazon DynamoDB Developer Guide

cost-effective GSI storage. We can do this by leveraging the sparse index technique. The GSI with
partition key as escalated_to and sort key as escalation_time would look like this:

To get all escalated complaints for access pattern 11 (getAllEscalatedComplaints),
we simply scan this GSI. Note that this scan will be performant and cost-efficient due to
the size of the GSI. To get escalated complaints for a specific agent (access pattern 12
(getEscalatedComplaintsByAgentID)), the partition key would be escalated_to=agentID
and we set ScanIndexForward to False for ordering from newest to oldest.

Step 7: Address access pattern 13 (getCommentsByAgentID)

For the last access pattern, we need to perform a lookup by a new dimension: AgentID. We also
need time-based ordering to read comments between two dates so we create a GSI with agent_id
as the partition key and comm_date as the sort key. The data in this GSI will look like the following:

An example query on this GSI would be partition key agentID=AgentA and sort
key=comm_date between (2023-04-30T12:30:00, 2023-05-01T09:00:00), the result of
which is:

Complaint management system API Version 2012-08-10 1403

Amazon DynamoDB Developer Guide

All access patterns and how the schema design addresses them are summarized in the table below:

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

createCom
plaint

Base table PutItem PK=compla
int_id

SK=metadata

updateCom
plaint

Base table UpdateItem PK=compla
int_id

SK=metadata

updateSev
eritybyCo
mplaintID

Base table UpdateItem PK=compla
int_id

SK=metadata

getCompla
intByComp
laintID

Base table GetItem PK=compla
int_id

SK=metadata

addCommen
tByCompla
intID

Base table TransactW
riteItems

PK=compla
int_id

SK=metada
ta,
SK=comm#c
omm_date#
comm_id

Complaint management system API Version 2012-08-10 1404

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getAllCom
mentsByCo
mplaintID

Base table Query PK=compla
int_id

SK begins_wi
th "comm#"

getLatest
CommentBy
ComplaintID

Base table Query PK=compla
int_id

SK begins_wi
th "comm#"

scan_inde
x_forward
=False, Limit
1

getACompl
aintbyCus
tomerIDAn
dComplain
tID

Customer_
complaint
_GSI

Query customer_
id=custom
er_id

complaint_id
= complaint
_id

getAllCom
plaintsBy
CustomerID

Customer_
complaint
_GSI

Query customer_
id=custom
er_id

N/A

escalateC
omplaintB
yComplaintID

Base table UpdateItem PK=compla
int_id

SK=metadata

getAllEsc
alatedCom
plaints

Escalatio
ns_GSI

Scan N/A N/A

getEscala
tedCompla
intsByAge
ntID (order
from newest
to oldest)

Escalatio
ns_GSI

Query escalated
_to=agent_id

N/A scan_inde
x_forward
=False

Complaint management system API Version 2012-08-10 1405

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getCommen
tsByAgent
ID (between
two dates)

Agents_Co
mments_GSI

Query agent_id=
agent_id

SK between
(date1,
date2)

Complaint management system final schema

Here are the final schema designs. To download this schema design as a JSON file, see DynamoDB
Examples on GitHub.

Base table

Complaint management system API Version 2012-08-10 1406

https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/ComplainManagement/ComplaintManagementSchema.json
https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/ComplainManagement/ComplaintManagementSchema.json

Amazon DynamoDB Developer Guide

Customer_Complaint_GSI

Escalations_GSI

Agents_Comments_GSI

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

Complaint management system API Version 2012-08-10 1407

Amazon DynamoDB Developer Guide

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Recurring payments schema design in DynamoDB

Recurring payments business use case

This use case talks about using DynamoDB to implement a recurring payments system. The data
model has the following entities: accounts, subscriptions, and receipts. The specifics for our use case
include the following:

• Each account can have multiple subscriptions

• The subscription has a NextPaymentDate when the next payment needs to be processed and a
NextReminderDate when an email reminder is sent to the customer

• There is an item for the subscription that is stored and updated when the payment been
processed (the average item size is around 1KB and the throughput depends on the number of
accounts and subscriptions)

• The payment processor will also create a receipt as part of the process which is stored in the table
and are set to expire after a period of time by using a TTL attribute

Recurring payments entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using for the recurring payments system
schema design.

Recurring payments API Version 2012-08-10 1408

Amazon DynamoDB Developer Guide

Recurring payments system access patterns

These are the access patterns we'll be considering for the recurring payments system schema
design.

1. createSubscription

2. createReceipt

3. updateSubscription

4. getDueRemindersByDate

5. getDuePaymentsByDate

6. getSubscriptionsByAccount

7. getReceiptsByAccount

Recurring payments schema design

The generic names PK and SK are used for key attributes to allow storing different types of entities
in the same table such as the account, subscription, and receipt entities. The user first creates a
subscription, which is where the user agrees to pay an amount on the same day each month in
return for a product. They get the choice on which day of the month to process the payment. There
is also a reminder that will be sent prior to the payment being processed. The application works by
having two batch jobs that run each day: one batch job sends reminders due that day and the other
batch job processes any payments due that day.

Step 1: Address access pattern 1 (createSubscription)

Recurring payments API Version 2012-08-10 1409

Amazon DynamoDB Developer Guide

Access pattern 1 (createSubscription) is used to initially create the subscription, and the
details including SKU, NextPaymentDate, NextReminderDate and PaymentDetails are set.
This step shows the state of the table for just one account with one subscription. There can be
multiple subscriptions in the item collection so this is a one-to-many relationship.

Step 2: Address access patterns 2 (createReceipt) and 3 (updateSubscription)

Access pattern 2 (createReceipt) is used to create the receipt item. After the payment is
processed each month, the payment processor will write a receipt back to the base table. There,
could be multiple receipts in the item collection so this is a one-to-many relationship. The payment
processor will also update the subscription item (access Pattern 3 (updateSubscription)) to
update for the NextReminderDate or the NextPaymentDate for the next month.

Step 3: Address access pattern 4 (getDueRemindersByDate)

The application processes reminders for the payment in batches for the current day. Therefore the
application needs to access the subscriptions on a different dimension: date rather than account.
This is a good use case for a global secondary index (GSI). In this step we add the index GSI-1,
which uses the NextReminderDate as the GSI partition key. We do not need to replicate all the
items. This GSI is a sparse index and the receipts items are not replicated. We also do not need to
project all the attributes—we only need to include a subset of the attributes. The image below
shows the schema of GSI-1 and it gives the information needed for the application to send the
reminder email.

Step 4: Address access pattern 5 (getDuePaymentsByDate)

Recurring payments API Version 2012-08-10 1410

Amazon DynamoDB Developer Guide

The application processes the payments in batches for the current day in the same way it does with
reminders. We add GSI-2 in this step, and it uses the NextPaymentDate as the GSI partition key.
We do not need to replicate all the items. This GSI is a sparse index as the receipts items are not
replicated. The image below shows the schema of GSI-2.

Step 5: Address access patterns 6 (getSubscriptionsByAccount) and 7
(getReceiptsByAccount)

The application can retrieve all the subscriptions for an account by using a query on the base
table that targets the account identifier (the PK) and uses the range operator to get all the
items where the SK begins with “SUB#”. The application can also use the same query structure
to retrieve all the receipts by using a range operator to get all the items where the SK begins
with “REC#”. This allows us to satisfy access patterns 6 (getSubscriptionsByAccount) and 7
(getReceiptsByAccount). The application uses these access patterns so the user can see their
current subscriptions and their past receipts for the last six months. There is no change to the table
schema in this step and we can see below how we target just the subscription item(s) in access
pattern 6 (getSubscriptionsByAccount).

All access patterns and how the schema design addresses them are summarized in the table below:

Access pattern Base table/GSI/
LSI

Operation Partition key
value

Sort key value

createSub
scription

Base table PutItem ACC#account_id SUB#<SUBI
D>#SKU<SK
UID>

Recurring payments API Version 2012-08-10 1411

Amazon DynamoDB Developer Guide

Access pattern Base table/GSI/
LSI

Operation Partition key
value

Sort key value

createReceipt Base table PutItem ACC#account_id REC#<Reci
eptDate>#
SKU<SKUID>

updateSub
scription

Base table UpdateItem ACC#account_id SUB#<SUBI
D>#SKU<SK
UID>

getDueRem
indersByDate

GSI-1 Query <NextRemi
nderDate>

getDuePay
mentsByDate

GSI-2 Query <NextPaym
entDate>

getSubscr
iptionsBy
Account

Base table Query ACC#account_id SK begins_with
“SUB#”

getReceip
tsByAccount

Base table Query ACC#account_id SK begins_with
“REC#”

Recurring payments final schema

Here are the final schema designs. To download this schema design as a JSON file, see DynamoDB
Examples on GitHub.

Base table

GSI-1

Recurring payments API Version 2012-08-10 1412

https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/ReocurringPayments/ReocurringPaymentsSchema.json
https://github.com/aws-samples/aws-dynamodb-examples/blob/master/schema_design/SchemaExamples/ReocurringPayments/ReocurringPaymentsSchema.json

Amazon DynamoDB Developer Guide

GSI-2

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Monitoring device status updates in DynamoDB

This use case talks about using DynamoDB to monitor device status updates (or changes in device
state) in DynamoDB.

Use case

In IoT use-cases (a smart factory for instance) many devices need to be monitored by operators and
they periodically send their status or logs to a monitoring system. When there is a problem with a
device, the status for the device changes from normal to warning. There are different log levels or
statuses depending on the severity and type of abnormal behavior in the device. The system then

Device status updates API Version 2012-08-10 1413

Amazon DynamoDB Developer Guide

assigns an operator to check on the device and they may escalate the problem to their supervisor if
needed.

Some typical access patterns for this system include:

• Create log entry for a device

• Get all logs for a specific device state showing the most recent logs first

• Get all logs for a given operator between two dates

• Get all escalated logs for a given supervisor

• Get all escalated logs with a specific device state for a given supervisor

• Get all escalated logs with a specific device state for a given supervisor for a specific date

Entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using for monitoring device status updates.

Access patterns

These are the access patterns we'll be considering for monitoring device status updates.

1. createLogEntryForSpecificDevice

2. getLogsForSpecificDevice

3. getWarningLogsForSpecificDevice

4. getLogsForOperatorBetweenTwoDates

5. getEscalatedLogsForSupervisor

6. getEscalatedLogsWithSpecificStatusForSupervisor

7. getEscalatedLogsWithSpecificStatusForSupervisorForDate

Device status updates API Version 2012-08-10 1414

Amazon DynamoDB Developer Guide

Schema design evolution

Step 1: Address access patterns 1 (createLogEntryForSpecificDevice) and 2
(getLogsForSpecificDevice)

The unit of scaling for a device tracking system would be individual devices. In this system, a
deviceID uniquely identifies a device. This makes deviceID a good candidate for the partition
key. Each device sends information to the tracking system periodically (say, every five minutes or
so). This ordering makes date a logical sorting criterion and therefore, the sort key. The sample
data in this case would look something like this:

Device status updates API Version 2012-08-10 1415

Amazon DynamoDB Developer Guide

To fetch log entries for a specific device, we can perform a query operation with partition key
DeviceID="d#12345".

Step 2: Address access pattern 3 (getWarningLogsForSpecificDevice)

Since State is a non-key attribute, addressing access pattern 3 with the current schema would
require a filter expression. In DynamoDB, filter expressions are applied after data is read using
key condition expressions. For example, if we were to fetch warning logs for d#12345, the query
operation with partition key DeviceID="d#12345" will read four items from the above table and
then filter out the one item without the warning status. This approach is not efficient at scale. A
filter expression can be a good way to exclude items that are queried if the ratio of excluded items
is low or the query is performed infrequently. However, for cases where many items are retrieved
from a table and the majority of the items are filtered out, we can continue evolving our table
design so it runs more efficiently.

Let's change how to handle this access pattern by using composite sort keys. You can import
sample data from DeviceStateLog_3.json where the sort key is changed to State#Date. This
sort key is the composition of the attributes State, #, and Date. In this example, # is used as a
delimiter. The data now looks something like this:

To fetch only warning logs for a device, the query becomes more targeted with this schema. The
key condition for the query uses partition key DeviceID="d#12345" and sort key State#Date

Device status updates API Version 2012-08-10 1416

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/device-state-log/json/DeviceStateLog_3.json

Amazon DynamoDB Developer Guide

begins_with “WARNING”. This query will only read the relevant three items with the warning
state.

Step 3: Address access pattern 4 (getLogsForOperatorBetweenTwoDates)

You can import DeviceStateLog_4.jsonD where the Operator attribute was added to the
DeviceStateLog table with example data.

Device status updates API Version 2012-08-10 1417

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/device-state-log/json/DeviceStateLog_4.json

Amazon DynamoDB Developer Guide

Since Operator is not currently a partition key, there is no way to perform a direct key-value
lookup on this table based on OperatorID. We’ll need to create a new item collection with a

Device status updates API Version 2012-08-10 1418

Amazon DynamoDB Developer Guide

global secondary index on OperatorID. The access pattern requires a lookup based on dates so
Date is the sort key attribute for the global secondary index (GSI). This is what the GSI now looks
like:

Device status updates API Version 2012-08-10 1419

Amazon DynamoDB Developer Guide

For access pattern 4 (getLogsForOperatorBetweenTwoDates), you can query this GSI with
partition key OperatorID=Liz and sort key Date between 2020-04-11T05:58:00 and
2020-04-24T14:50:00.

Device status updates API Version 2012-08-10 1420

Amazon DynamoDB Developer Guide

Step 4: Address access patterns 5 (getEscalatedLogsForSupervisor)
6 (getEscalatedLogsWithSpecificStatusForSupervisor), and 7
(getEscalatedLogsWithSpecificStatusForSupervisorForDate)

We’ll be using a sparse index to address these access patterns.

Global secondary indexes are sparse by default, so only items in the base table that contain
primary key attributes of the index will actually appear in the index. This is another way of
excluding items that are not relevant for the access pattern being modeled.

You can import DeviceStateLog_6.json where the EscalatedTo attribute was added to the
DeviceStateLog table with example data. As mentioned earlier, not all of the logs gets escalated
to a supervisor.

Device status updates API Version 2012-08-10 1421

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/device-state-log/json/DeviceStateLog_6.json

Amazon DynamoDB Developer Guide

You can now create a new GSI where EscalatedTo is the partition key and State#Date is the
sort key. Notice that only items that have both EscalatedTo and State#Date attributes appear
in the index.

Device status updates API Version 2012-08-10 1422

Amazon DynamoDB Developer Guide

The rest of the access patterns are summarized as follows:

All access patterns and how the schema design addresses them are summarized in the table below:

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

createLog
EntryForS
pecificDevice

Base table PutItem DeviceID=
deviceId

State#Dat
e=state#date

getLogsFo
rSpecific
Device

Base table Query DeviceID=
deviceId

State#Date
begins_with
"state1#"

ScanIndex
Forward =
False

getWarnin
gLogsForS
pecificDevice

Base table Query DeviceID=
deviceId

State#Date
begins_with
"WARNING"

getLogsFo
rOperator
BetweenTw
oDates

GSI-1 Query Operator=
operatorN
ame

Date
between
date1 and
date2

getEscala
tedLogsFo
rSupervisor

GSI-2 Query Escalated
To=superv
isorName

Device status updates API Version 2012-08-10 1423

Amazon DynamoDB Developer Guide

Access
pattern

Base table/
GSI/LSI

Operation Partition key
value

Sort key
value

Other
conditions/
filters

getEscala
tedLogsWi
thSpecifi
cStatusFo
rSupervisor

GSI-2 Query Escalated
To=superv
isorName

State#Date
begins_with
"state1#"

getEscala
tedLogsWi
thSpecifi
cStatusFo
rSupervis
orForDate

GSI-2 Query Escalated
To=superv
isorName

State#Dat
e begins_wi
th "state1#d
ate1"

Final schema

Here are the final schema designs. To download this schema design as a JSON file, see DynamoDB
Examples on GitHub.

Base table

Device status updates API Version 2012-08-10 1424

https://github.com/aws-samples/aws-dynamodb-examples/tree/master/schema_design/SchemaExamples
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/schema_design/SchemaExamples

Amazon DynamoDB Developer Guide

GSI-1

Device status updates API Version 2012-08-10 1425

Amazon DynamoDB Developer Guide

GSI-2

Device status updates API Version 2012-08-10 1426

Amazon DynamoDB Developer Guide

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Using DynamoDB as a data store for an online shop

This use case talks about using DynamoDB as a data store for an online shop (or e-store).

Use case

An online store lets users browse through different products and eventually purchase them. Based
on the generated invoice, a customer can pay using a discount code or gift card and then pay
the remaining amount with a credit card. Purchased products will be picked from one of several
warehouses and will be shipped to the provided address. Typical access patterns for an online store
include:

• Get customer for a given customerId

Online shop API Version 2012-08-10 1427

Amazon DynamoDB Developer Guide

• Get product for a given productId

• Get warehouse for a given warehouseId

• Get a product inventory for all warehouses by a productId

• Get order for a given orderId

• Get all products for a given orderId

• Get invoice for a given orderId

• Get all shipments for a given orderId

• Get all orders for a given productId for a given date range

• Get invoice for a given invoiceId

• Get all payments for a given invoiceId

• Get shipment details for a given shipmentId

• Get all shipments for a given warehouseId

• Get inventory of all products for a given warehouseId

• Get all invoices for a given customerId for a given date range

• Get all products ordered by a given customerId for a given date range

Entity relationship diagram

This is the entity relationship diagram (ERD) we'll be using to model DynamoDB as a data store for
an online shop.

Online shop API Version 2012-08-10 1428

Amazon DynamoDB Developer Guide

Access patterns

These are the access patterns we'll be considering when using DynamoDB as a data store for an
online shop.

1. getCustomerByCustomerId

2. getProductByProductId

3. getWarehouseByWarehouseId

4. getProductInventoryByProductId

5. getOrderDetailsByOrderId

6. getProductByOrderId

7. getInvoiceByOrderId

8. getShipmentByOrderId

9. getOrderByProductIdForDateRange

10.getInvoiceByInvoiceId

Online shop API Version 2012-08-10 1429

Amazon DynamoDB Developer Guide

11.getPaymentByInvoiceId

12.getShipmentDetailsByShipmentId

13.getShipmentByWarehouseId

14.getProductInventoryByWarehouseId

15.getInvoiceByCustomerIdForDateRange

16.getProductsByCustomerIdForDateRange

Schema design evolution

Using NoSQL Workbench for DynamoDB , import AnOnlineShop_1.json to create a new data model
called AnOnlineShop and a new table called OnlineShop. Note that we use the generic names
PK and SK for the partition key and sort key. This is a practice used in order to store different types
of entities in the same table.

Step 1: Address access pattern 1 (getCustomerByCustomerId)

Import AnOnlineShop_2.json to handle access pattern 1 (getCustomerByCustomerId). Some
entities do not have relationships to other entities, so we will use the same value of PK and SK
for them. In the example data, note that the keys use a prefix c# in order to distinguish the
customerId from other entities that will be added later. This practice is repeated for other entities
as well.

To address this access pattern, a GetItem operation can be used with PK=customerId and
SK=customerId.

Step 2: Address access pattern 2 (getProductByProductId)

Import AnOnlineShop_3.json to address access pattern 2 (getProductByProductId) for the
product entity. The product entities are prefixed by p# and the same sort key attribute has been
used to store customerID as well as productID. Generic naming and vertical partitioning allows
us to create such item collections for an effective single table design.

To address this access pattern, a GetItem operation can be used with PK=productId and
SK=productId.

Step 3: Address access pattern 3 (getWarehouseByWarehouseId)

Import AnOnlineShop_4.json to address access pattern 3 (getWarehouseByWarehouseId) for
the warehouse entity. We currently have the customer, product, and warehouse entities added

Online shop API Version 2012-08-10 1430

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_1.json
https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_2.json
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_3.json
https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_4.json

Amazon DynamoDB Developer Guide

to the same table. They are distinguished using prefixes and the EntityType attribute. A type
attribute (or prefix naming) improves the model’s readability. The readability would be affected if
we simply stored alphanumeric IDs for different entities in the same attribute. It would be difficult
to tell one entity from the other in the absence of these identifiers.

To address this access pattern, a GetItem operation can be used with PK=warehouseId and
SK=warehouseId.

Base table:

Step 4: Address access pattern 4 (getProductInventoryByProductId)

Import AnOnlineShop_5.json to address access pattern 4 (getProductInventoryByProductId).
warehouseItem entity is used to keep track of the number of products in each warehouse. This
item would normally be updated when a product is added or removed from a warehouse. As seen
in the ERD, there is a many-to-many relationship between product and warehouse. Here, the
one-to-many relationship from product to warehouse is modeled as warehouseItem. Later on,
the one-to-many relationship from warehouse to product will be modeled as well.

Access pattern 4 can be addressed with a query on PK=ProductId and SK begins_with “w#“.

For more information about begins_with() and other expressions that can be applied to sort
keys, see Key Condition Expressions.

Base table:

Online shop API Version 2012-08-10 1431

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_5.json

Amazon DynamoDB Developer Guide

Step 5: Address access patterns 5 (getOrderDetailsByOrderId) and 6
(getProductByOrderId)

Add some more customer, product, and warehouse items to the table by importing
AnOnlineShop_6.json. Then, import AnOnlineShop_7.json to build an item collection
for order that can address access patterns 5 (getOrderDetailsByOrderId) and 6
(getProductByOrderId). You can see the one-to-many relationship between order and
product modeled as orderItem entities.

To address access pattern 5 (getOrderDetailsByOrderId), query the table with PK=orderId.
This will provide all information about the order including customerId and ordered products.

Base table:

Online shop API Version 2012-08-10 1432

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_6.json
https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_7.json

Amazon DynamoDB Developer Guide

To address access pattern 6 (getProductByOrderId), we need to read products in an order only.
Query the table with PK=orderId and SK begins_with “p#” to accomplish this.

Base table:

Step 6: Address access pattern 7 (getInvoiceByOrderId)

Import AnOnlineShop_8.json to add an invoice entity to the order item collection to handle
access pattern 7 (getInvoiceByOrderId). To address this access pattern, you can use a query
operation with PK=orderId and SK begins_with “i#”.

Base table:

Online shop API Version 2012-08-10 1433

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_8.json

Amazon DynamoDB Developer Guide

Step 7: Address access pattern 8 (getShipmentByOrderId)

Import AnOnlineShop_9.json to add shipment entities to the order item collection to address
access pattern 8 (getShipmentByOrderId). We are extending the same vertically partitioned
model by adding more types of entities in the single table design. Notice how the order item
collection contains the different relationships that an order entity has with the shipment,
orderItem, and invoice entities.

To get shipments by orderId, you can perform a query operation with PK=orderId and SK
begins_with “sh#”.

Base table:

Online shop API Version 2012-08-10 1434

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_9.json

Amazon DynamoDB Developer Guide

Step 8: Address access pattern 9 (getOrderByProductIdForDateRange)

We created an order item collection in the previous step. This access pattern has new lookup
dimensions (ProductID and Date) which requires you to scan the whole table and filter out
relevant records to fetch targeted items. In order to address this access pattern, we'll need
to create a global secondary index (GSI). Import AnOnlineShop_10.json to create a new item
collection using the GSI that makes it possible to retrieve orderItem data from several order item
collections. The data now has GSI1-PK and GSI1-SK which will be GSI1’s partition key and sort
key, respectively.

DynamoDB automatically populates items which contain a GSI’s key attributes from the table to
the GSI. There is no need to manually do any additional inserts into the GSI.

Online shop API Version 2012-08-10 1435

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_10.json

Amazon DynamoDB Developer Guide

To address access pattern 9, perform a query on GSI1 with GSI1-PK=productId and GSI1SK
between (date1, date2).

Base table:

GSI1:

Step 9: Address access patterns 10 (getInvoiceByInvoiceId) and 11
(getPaymentByInvoiceId)

Import AnOnlineShop_11.json to address access patterns 10 (getInvoiceByInvoiceId) and 11
(getPaymentByInvoiceId), both of which are related to invoice. Even though these are two
different access patterns, they are realized using the same key condition. Payments are defined as
an attribute with the map data type on the invoice entity.

Note

GSI1-PK and GSI1-SK is overloaded to store information about different entities so that
multiple access patterns can be served from the same GSI. For more information about GSI
overloading, see Overloading Global Secondary Indexes in DynamoDB.

Online shop API Version 2012-08-10 1436

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_11.json

Amazon DynamoDB Developer Guide

To address access pattern 10 and 11, query GSI1 with GSI1-PK=invoiceId and GSI1-
SK=invoiceId.

GSI1:

Step 10: Address access patterns 12 (getShipmentDetailsByShipmentId) and 13
(getShipmentByWarehouseId)

Import AnOnlineShop_12.json to address access patterns 12
(getShipmentDetailsByShipmentId) and 13 (getShipmentByWarehouseId).

Notice that shipmentItem entities are added to the order item collection on the base table in
order to be able to retrieve all details about an order in a single query operation.

Base table:

Online shop API Version 2012-08-10 1437

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_12.json

Amazon DynamoDB Developer Guide

The GSI1 partition and sort keys have already been used to model a one-to-many
relationship between shipment and shipmentItem. To address access pattern 12
(getShipmentDetailsByShipmentId), query GSI1 with GSI1-PK=shipmentId and GSI1-
SK=shipmentId.

Online shop API Version 2012-08-10 1438

Amazon DynamoDB Developer Guide

GSI1:

We’ll need to create another GSI (GSI2) to model the new one-to-many relationship between
warehouse and shipment for access pattern 13 (getShipmentByWarehouseId). To address this
access pattern, query GSI2 with GSI2-PK=warehouseId and GSI2-SK begins_with “sh#”.

Online shop API Version 2012-08-10 1439

Amazon DynamoDB Developer Guide

GSI2:

Step 11: Address access patterns 14 (getProductInventoryByWarehouseId) 15
(getInvoiceByCustomerIdForDateRange), and 16
(getProductsByCustomerIdForDateRange)

Import AnOnlineShop_13.json to add data related to the next set of access patterns. To
address access pattern 14 (getProductInventoryByWarehouseId), query GSI2 with GSI2-
PK=warehouseId and GSI2-SK begins_with “p#”.

GSI2:

Online shop API Version 2012-08-10 1440

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_13.json

Amazon DynamoDB Developer Guide

To address access pattern 15 (getInvoiceByCustomerIdForDateRange), query GSI2 with
GSI2-PK=customerId and GSI2-SK between (i#date1, i#date2).

GSI2:

Online shop API Version 2012-08-10 1441

Amazon DynamoDB Developer Guide

To address access pattern 16 (getProductsByCustomerIdForDateRange), query GSI2 with
GSI2-PK=customerId and GSI2-SK between (p#date1, p#date2).

GSI2:

Online shop API Version 2012-08-10 1442

Amazon DynamoDB Developer Guide

Note

In NoSQL Workbench, facets represent an application's different data access patterns for
DynamoDB. Facets give you a way to view a subset of the data in a table, without having to
see records that don't meet the constraints of the facet. Facets are considered a visual data
modeling tool, and don't exist as a usable construct in DynamoDB as they are purely an aid
for modeling access patterns.
Import AnOnlineShop_facets.json to see the facets for this use case.

Online shop API Version 2012-08-10 1443

https://github.com/aws-samples/amazon-dynamodb-design-patterns/blob/master/examples/an-online-shop/json/AnOnlineShop_facets.json

Amazon DynamoDB Developer Guide

All access patterns and how the schema design addresses them are summarized in the table below:

Access pattern Base table/GSI/
LSI

Operation Partition key
value

Sort key value

getCustom
erByCustomerId

Base table GetItem PK=customerId SK=customerId

getProduc
tByProductId

Base table GetItem PK=productId SK=productId

getWareho
useByWare
houseId

Base table GetItem PK=warehouseId SK=warehouseId

getProduc
tInventor
yByProductId

Base table Query PK=productId SK begins_with
"w#"

getOrderD
etailsByOrderId

Base table Query PK=orderId

getProduc
tByOrderId

Base table Query PK=orderId SK begins_with
"p#"

getInvoic
eByOrderId

Base table Query PK=orderId SK begins_with
"i#"

getShipme
ntByOrderId

Base table Query PK=orderId SK begins_with
"sh#"

getOrderB
yProductI
dForDateRange

GSI1 Query PK=productId SK between
date1 and date2

getInvoic
eByInvoiceId

GSI1 Query PK=invoiceId SK=invoiceId

Online shop API Version 2012-08-10 1444

Amazon DynamoDB Developer Guide

Access pattern Base table/GSI/
LSI

Operation Partition key
value

Sort key value

getPaymen
tByInvoiceId

GSI1 Query PK=invoiceId SK=invoiceId

getShipme
ntDetails
ByShipmentId

GSI1 Query PK=shipmentId SK=shipmentId

getShipme
ntByWareh
ouseId

GSI2 Query PK=warehouseId SK begins_with
"sh#"

getProduc
tInventor
yByWarehouseId

GSI2 Query PK=warehouseId SK begins_with
"p#"

getInvoic
eByCustom
erIdForDa
teRange

GSI2 Query PK=customerId SK between
i#date1 and
i#date2

getProduc
tsByCusto
merIdForD
ateRange

GSI2 Query PK=customerId SK between
p#date1 and
p#date2

Online shop final schema

Here are the final schema designs. To download this schema design as a JSON file, see DynamoDB
Design Patterns on GitHub.

Base table

Online shop API Version 2012-08-10 1445

https://github.com/aws-samples/aws-dynamodb-examples/tree/master/schema_design/SchemaExamples
https://github.com/aws-samples/aws-dynamodb-examples/tree/master/schema_design/SchemaExamples

Amazon DynamoDB Developer Guide

Online shop API Version 2012-08-10 1446

Amazon DynamoDB Developer Guide

GSI1

Online shop API Version 2012-08-10 1447

Amazon DynamoDB Developer Guide

Online shop API Version 2012-08-10 1448

Amazon DynamoDB Developer Guide

GSI2

Online shop API Version 2012-08-10 1449

Amazon DynamoDB Developer Guide

Online shop API Version 2012-08-10 1450

Amazon DynamoDB Developer Guide

Using NoSQL Workbench with this schema design

You can import this final schema into NoSQL Workbench, a visual tool that provides data
modeling, data visualization, and query development features for DynamoDB, to further explore
and edit your new project. Follow these steps to get started:

1. Download NoSQL Workbench. For more information, see the section called “Download”.

2. Download the JSON schema file listed above, which is already in the NoSQL Workbench model
format.

3. Import the JSON schema file into NoSQL Workbench. For more information, see the section
called “Importing an existing model”.

4. Once you've imported into NOSQL Workbench, you can edit the data model. For more
information, see the section called “Editing an existing model”.

5. To visualize your data model, add sample data, or import sample data from a CSV file, use the
Data Visualizer feature of NoSQL Workbench.

Best practices for modeling relational data in DynamoDB

This section provides best practices for modeling relational data in Amazon DynamoDB. First,
we introduce traditional data modeling concepts. Then, we describe the advantages of using
DynamoDB over traditional relational database management systems—how it eliminates the need
for JOIN operations and reduces overhead.

We then explain how to design a DynamoDB table that scales efficiently. Finally, we provide an
example of how to model relational data in DynamoDB.

Topics

• Traditional relational database models

• How DynamoDB eliminates the need for JOIN operations

• How DynamoDB transactions eliminate overhead to the write process

• First steps for modeling relational data in DynamoDB

• Example of modeling relational data in DynamoDB

Relational modeling API Version 2012-08-10 1451

Amazon DynamoDB Developer Guide

Traditional relational database models

A traditional relational database management system (RDBMS) stores data in a normalized
relational structure. The objective of the relational data model is to reduce the duplication of data
(through normalization) to support referential integrity and reduce data anomalies.

The following schema is an example of a relational data model for a generic order-entry
application. The application supports a human resources schema that backs the operational and
business support systems of a theoretical manufacturer.

Traditional relational database models API Version 2012-08-10 1452

Amazon DynamoDB Developer Guide

Traditional relational database models API Version 2012-08-10 1453

Amazon DynamoDB Developer Guide

As a non-relational database service, DynamoDB offers many advantages over traditional relational
database management systems.

How DynamoDB eliminates the need for JOIN operations

An RDBMS uses a structure query language (SQL) to return data to the application. Because of the
normalization of the data model, such queries typically require the use of the JOIN operator to
combine data from one or more tables.

For example, to generate a list of purchase order items sorted by the quantity in stock at all
warehouses that can ship each item, you could issue the following SQL query against the preceding
schema.

SELECT * FROM Orders
 INNER JOIN Order_Items ON Orders.Order_ID = Order_Items.Order_ID
 INNER JOIN Products ON Products.Product_ID = Order_Items.Product_ID
 INNER JOIN Inventories ON Products.Product_ID = Inventories.Product_ID
 ORDER BY Quantity_on_Hand DESC

SQL queries of this kind can provide a flexible API for accessing data, but they require a significant
amount of processing. Each join in the query increases the runtime complexity of the query
because the data for each table must stage and then be assembled to return the result set.

Additional factors that can impact how long it takes the queries to run are the size of the tables
and whether the columns being joined have indexes. The preceding query initiates complex queries
across several tables and then sorts the result set.

Eliminating the need for JOINs is at the heart of NoSQL data modeling. This is why we built
DynamoDB to support Amazon.com, and why DynamoDB can deliver consistent performance at
any scale. Given the runtime complexity of SQL queries and JOINs, RDBMS performance is not
constant at scale. This causes performance issues as customer applications grow.

While normalizing data does reduce the amount of data stored to disk, often the most constrained
resources that impact performance are CPU time and network latency.

DynamoDB is built to minimize both constraints by eliminating JOINs (and encouraging
denormalization of data) and optimizing the database architecture to fully answer an application
query with a single request to an item. These qualities enable DynamoDB to provide single-digit,
millisecond performance at any scale. This is because the runtime complexity for DynamoDB
operations is constant, regardless of data size, for common access patterns.

How DynamoDB eliminates the need for JOIN operations API Version 2012-08-10 1454

Amazon DynamoDB Developer Guide

How DynamoDB transactions eliminate overhead to the write process

Another factor that can slow down an RDBMS is the use of transactions to write to a normalized
schema. As shown in the example, relational data structures used by most online transaction
processing (OLTP) applications must be broken down and distributed across multiple logical tables
when they are stored in an RDBMS.

Therefore, an ACID-compliant transaction framework is necessary to avoid race conditions and
data integrity issues that could occur if an application tries to read an object that is in the process
of being written. Such a transaction framework, when coupled with a relational schema, can add
significant overhead to the write process.

The implementation of transactions in DynamoDB prohibits common scaling issues that are found
with an RDBMS. DynamoDB does this by issuing a transaction as a single API call and bounding the
number of items that can be accessed in that single transaction. Long-running transactions can
cause operational issues by holding locks on the data either for a long time, or perpetually, because
the transaction is never closed.

To prevent such issues in DynamoDB, transactions were implemented with two distinct API
operations: TransactWriteItems and TransactGetItems. These API operations do not have
begin and end semantics that are common in an RDBMS. Further, DynamoDB has a 100-item access
limit within a transaction to similarly prevent long-running transactions. To learn more about
DynamoDB transactions, see Working with transactions.

For these reasons, when your business requires a low-latency response to high-traffic queries,
taking advantage of a NoSQL system generally makes technical and economic sense. Amazon
DynamoDB helps solve the problems that limit relational system scalability by avoiding them.

The performance of an RDBMS does not typically scale well for the following reasons:

• It uses expensive joins to reassemble required views of query results.

• It normalizes data and stores it on multiple tables that require multiple queries to write to disk.

• It generally incurs the performance costs of an ACID-compliant transaction system.

DynamoDB scales well for these reasons:

• Schema flexibility lets DynamoDB store complex hierarchical data within a single item.

• Composite key design lets it store related items close together on the same table.

How DynamoDB transactions eliminate overhead to the write process API Version 2012-08-10 1455

Amazon DynamoDB Developer Guide

• Transactions are performed in a single operation. The limit for the number of items that can be
accessed is 100, to avoid long-running operations.

Queries against the data store become much simpler, often in the following form:

SELECT * FROM Table_X WHERE Attribute_Y = "somevalue"

DynamoDB does far less work to return the requested data compared to the RDBMS in the earlier
example.

First steps for modeling relational data in DynamoDB

Important

NoSQL design requires a different mindset than RDBMS design. For an RDBMS, you can
create a normalized data model without thinking about access patterns. You can then
extend it later when new questions and query requirements arise. By contrast, in Amazon
DynamoDB, you shouldn't start designing your schema until you know the questions that
it needs to answer. Understanding the business problems and the application use cases up
front is absolutely essential.

To start designing a DynamoDB table that will scale efficiently, you must take several steps first
to identify the access patterns that are required by the operations and business support systems
(OSS/BSS) that it needs to support:

• For new applications, review user stories about activities and objectives. Document the various
use cases you identify, and analyze the access patterns that they require.

• For existing applications, analyze query logs to find out how people are currently using the
system and what the key access patterns are.

After completing this process, you should end up with a list that might look something like the
following.

First steps API Version 2012-08-10 1456

Amazon DynamoDB Developer Guide

In a real application, your list might be much longer. But this collection represents the range of
query pattern complexity that you might find in a production environment.

A common approach to DynamoDB schema design is to identify application layer entities and use
de-normalization and composite key aggregation to reduce query complexity.

In DynamoDB, this means using composite sort keys, overloaded global secondary indexes,
partitioned tables/indexes, and other design patterns. You can use these elements to structure the
data so that an application can retrieve whatever it needs for a given access pattern using a single
query on a table or index. The primary pattern that you can use to model the normalized schema
shown in Relational modeling is the adjacency list pattern. Other patterns used in this design can
include global secondary index write sharding, global secondary index overloading, composite keys,
and materialized aggregations.

Important

In general, you should maintain as few tables as possible in a DynamoDB application.
Exceptions include cases where high-volume time series data are involved, or datasets that
have very different access patterns. A single table with inverted indexes can usually enable
simple queries to create and retrieve the complex hierarchical data structures required by
your application.

To use NoSQL Workbench for DynamoDB to help visualize your partition key design, see Building
data models with NoSQL Workbench.

First steps API Version 2012-08-10 1457

Amazon DynamoDB Developer Guide

Example of modeling relational data in DynamoDB

This example describes how to model relational data in Amazon DynamoDB. A DynamoDB table
design corresponds to the relational order entry schema that is shown in Relational modeling.
It follows the Adjacency list design pattern, which is a common way to represent relational data
structures in DynamoDB.

The design pattern requires you to define a set of entity types that usually correlate to the various
tables in the relational schema. Entity items are then added to the table using a compound
(partition and sort) primary key. The partition key of these entity items is the attribute that
uniquely identifies the item and is referred to generically on all items as PK. The sort key attribute
contains an attribute value that you can use for an inverted index or global secondary index. It is
generically referred to as SK.

You define the following entities, which support the relational order entry schema.

1. HR-Employee - PK: EmployeeID, SK: Employee Name

2. HR-Region - PK: RegionID, SK: Region Name

3. HR-Country - PK: CountryId, SK: Country Name

4. HR-Location - PK: LocationID, SK: Country Name

5. HR-Job - PK: JobID, SK: Job Title

6. HR-Department - PK: DepartmentID, SK: DepartmentName

7. OE-Customer - PK: CustomerID, SK: AccountRepID

8. OE-Order - PK OrderID, SK: CustomerID

9. OE-Product - PK: ProductID, SK: Product Name

10.OE-Warehouse - PK: WarehouseID, SK: Region Name

After adding these entity items to the table, you can define the relationships between them by
adding edge items to the entity item partitions. The following table demonstrates this step.
Example table showing relationships between entity items.

In this example, the Employee, Order, and Product Entity partitions on the table have
additional edge items that contain pointers to other entity items on the table. Next, define a few
global secondary indexes (GSIs) to support all the access patterns defined previously. The entity
items don't all use the same type of value for the primary key or the sort key attribute. All that is
required is to have the primary key and sort key attributes present to be inserted on the table.

Example API Version 2012-08-10 1458

Amazon DynamoDB Developer Guide

The fact that some of these entities use proper names and others use other entity IDs as sort key
values allows the same global secondary index to support multiple types of queries. This technique
is called GSI overloading. It effectively eliminates the default limit of 20 global secondary indexes
for tables that contain multiple item types. This is shown in the following diagram as GSI 1.
Example table showing global secondary indexes supporting multiple queries.

GSI 2 is designed to support a fairly common application access pattern, which is to get all the
items on the table that have a certain state. For a large table with an uneven distribution of items
across available states, this access pattern can result in a hot key, unless the items are distributed
across more than one logical partition that can be queried in parallel. This design pattern is called
write sharding.

To accomplish this for GSI 2, the application adds the GSI 2 primary key attribute to every Order
item. It populates that with a random number in a range of 0–N, where N can generically be
calculated using the following formula, unless there is a specific reason to do otherwise.

ItemsPerRCU = 4KB / AvgItemSize

PartitionMaxReadRate = 3K * ItemsPerRCU

N = MaxRequiredIO / PartitionMaxReadRate

For example, assume that you expect the following:

• Up to 2 million orders will be in the system, growing to 3 million in 5 years.

• Up to 20 percent of these orders will be in an OPEN state at any given time.

• The average order record is around 100 bytes, with three OrderItem records in the order
partition that are around 50 bytes each, giving you an average order entity size of 250 bytes.

For that table, the N factor calculation would look like the following.

ItemsPerRCU = 4KB / 250B = 16

PartitionMaxReadRate = 3K * 16 = 48K

N = (0.2 * 3M) / 48K = 13

In this case, you need to distribute all the orders across at least 13 logical partitions on GSI 2
to ensure that a read of all Order items with an OPEN status doesn't cause a hot partition on

Example API Version 2012-08-10 1459

Amazon DynamoDB Developer Guide

the physical storage layer. It is a good practice to pad this number to allow for anomalies in the
dataset. So a model using N = 15 is probably fine. As mentioned earlier, you do this by adding the
random 0–N value to the GSI 2 PK attribute of each Order and OrderItem record that is inserted
on the table.

This breakdown assumes that the access pattern that requires gathering all OPEN invoices occurs
relatively infrequently so that you can use burst capacity to fulfill the request. You can query the
following global secondary index using a State and Date Range Sort Key condition to produce a
subset or all Orders in a given state as needed.
Example table showing GSI 2 primary key and projected attributes.

In this example, the items are randomly distributed across the 15 logical partitions. This structure
works because the access pattern requires a large number of items to be retrieved. Therefore, it's
unlikely that any of the 15 threads will return empty result sets that could potentially represent
wasted capacity. A query always uses 1 read capacity unit (RCU) or 1 write capacity unit (WCU),
even if nothing is returned or no data is written.

If the access pattern requires a high velocity query on this global secondary index that returns a
sparse result set, it's probably better to use a hash algorithm to distribute the items rather than a
random pattern. In this case, you might select an attribute that is known when the query is run at
runtime and hash that attribute into a 0–14 key space when the items are inserted. Then they can
be efficiently read from the global secondary index.

Finally, you can revisit the access patterns that were defined earlier. Following is the list of access
patterns and the query conditions that you will use with the new DynamoDB version of the
application to accommodate them.

S. No. Access patterns Query conditions

1 Look up Employee Details by
Employee ID

Primary Key on table, ID="HR-
EMPLOYEE"

2 Query Employee Details by
Employee Name

Use GSI-1, PK="Employee
Name"

3 Get an employee's current job
details only

Primary Key on table, PK=HR-
EMPLOYEE-1, SK starts with
"JH"

Example API Version 2012-08-10 1460

Amazon DynamoDB Developer Guide

S. No. Access patterns Query conditions

4 Get Orders for a customer for
a date range

Use GSI-1, PK=CUSTOMER1,
SK="STATUS-DATE", for each
StatusCode

5 Show all Orders in OPEN
status for a date range across
all customers

Use GSI-2, PK=query in
parallel for the range [0..N],
SK between OPEN-Date1 and
OPEN-Date2

6 All Employees hired recently Use GSI-1, PK="HR-CO
NFIDENTIAL', SK > date1

7 Find all Employees in specific
Warehouse

Use GSI-1, PK=WAREHOUSE1

8 Get all Orderitems for a
Product including warehouse
location inventories

Use GSI-1, PK=PRODUCT1

9 Get customers by Account
Rep

Use GSI-1, PK=ACCOUNT-REP

10 Get orders by Account Rep
and date

Use GSI-1, PK=ACCOUNT-REP,
SK="STATUS-DATE", for each
StatusCode

11 Get all employees with
specific Job Title

Use GSI-1, PK=JOBTITLE

12 Get inventory by Product and
Warehouse

Primary Key on table, PK=OE-
PRODUCT1,SK=PRODUCT1

13 Get total product inventory Primary Key on table, PK=OE-
PRODUCT1,SK=PRODUCT1

14 Get Account Reps ranked by
Order Total and Sales Period

Use GSI-1, PK=YYYY-Q1,
scanIndexForward=False

Example API Version 2012-08-10 1461

Amazon DynamoDB Developer Guide

Migrating to DynamoDB from a relational database

Migrating a relational database into DynamoDB requires careful planning to ensure a successful
outcome. This guide will help you understand how this process works, what tools you have
available, and then how to evaluate potential migration strategies and select one that'll fit your
requirements.

Topics

• Reasons to migrate to DynamoDB

• Considerations when migrating a relational database to DynamoDB

• Understanding how a migration to DynamoDB works

• Tools to help migrate to DynamoDB

• Choosing the appropriate strategy to migrate to DynamoDB

• Performing an offline migration to DynamoDB

• Performing a hybrid migration to DynamoDB

• Performing an online migration to DynamoDB by migrating each table 1:1

• Perform an online migration to DynamoDB using a custom staging table

Reasons to migrate to DynamoDB

Migrating to Amazon DynamoDB presents a range of compelling benefits for businesses and
organizations. Here are some key advantages that make DynamoDB an attractive choice for
database migration:

• Scalability: DynamoDB is designed to handle massive workloads and scale seamlessly to
accommodate growing data volumes and traffic. With DynamoDB, you can easily scale your
database up or down based on demand, ensuring that your applications can handle sudden
spikes in traffic without compromising performance.

• Performance: DynamoDB offers low-latency data access, enabling applications to retrieve and
process data with exceptional speed. Its distributed architecture ensures that read and write
operations are distributed across multiple nodes, delivering consistent, single-digit millisecond
response times even at high request rates.

• Fully managed: DynamoDB is a fully managed service provided by Amazon. This means that
Amazon handles the operational aspects of database management, including provisioning,

Reasons to migrate API Version 2012-08-10 1462

Amazon DynamoDB Developer Guide

configuration, patching, backups, and scaling. This allows you to focus more on developing your
applications and less on database administration tasks.

• Serverless architecture: DynamoDB supports a serverless model, known as DynamoDB on-
demand, where you pay only for the actual read and write requests your application makes with
no upfront capacity provisioning required. This pay-per-request model offers cost efficiency and
minimal operational overhead, as you only pay for the resources you consume without the need
to provision and monitor capacity.

• NoSQL flexibility: Unlike traditional relational databases, DynamoDB follows a NoSQL data
model, providing flexibility in schema design. With DynamoDB, you can store structured, semi-
structured, and unstructured data, making it well-suited for handling diverse and evolving data
types. This flexibility enables faster development cycles and easier adaptation to changing
business requirements.

• High availability and durability: DynamoDB replicates data across multiple availability
zones within a Region, ensuring high availability and data durability. It automatically handles
replication, failover, and recovery, minimizing the risk of data loss or service disruptions.
DynamoDB provides an availability SLA of up to 99.999%.

• Security and compliance: DynamoDB integrates with Amazon Identity and Access Management
for fine-grained access control. It provides encryption at rest and in-transit, ensuring the security
of your data. DynamoDB also adheres to various compliance standards, including HIPAA, PCI
DSS, and GDPR, enabling you to meet regulatory requirements.

• Integration with Amazon Ecosystem: As part of the Amazon ecosystem, DynamoDB seamlessly
integrates with other Amazon services, such as Amazon Lambda, Amazon CloudFormation,
and Amazon AppSync. This integration enables you to build serverless architectures, leverage
infrastructure as code, and create real-time data-driven applications.

Considerations when migrating a relational database to
DynamoDB

Relational database systems and NoSQL databases have different strengths and weaknesses. These
differences make database design different between the two systems.

Type of task Relational database NoSQL database

Querying the database In relational databases,
data can be queried flexibly,

In a NoSQL database such
as DynamoDB, data can be

Considerations when migrating API Version 2012-08-10 1463

Amazon DynamoDB Developer Guide

Type of task Relational database NoSQL database

but queries are relativel
y expensive and don't
scale well in high-traffic
situations (see First steps
for modeling relational data
in DynamoDB). A relationa
l database application may
implement business logic
in stored procedures, SQL
subqueries, bulk update
queries, and aggregation
queries.

queried efficiently in a limited
number of ways, outside
of which queries can be
expensive and slow. Writes
to DynamoDB are singleton
s. Application business
logic that formerly ran in
stored procedures must be
refactored to run outside
of DynamoDB in custom
code running on a host such
as Amazon Amazon EC2 or
Amazon Lambda.

Designing the database You design for flexibility
without worrying about
implementation details
or performance. Query
optimization generally
doesn't affect schema
design, but normalization is
important.

You design your schema
specifically to make the most
common and important
queries as fast and as
inexpensive as possible. Your
data structures are tailored to
the specific requirements of
your business use cases.

Designing for NoSQL database requires a different mindset than designing for a relational
database management system (RDBMS). For an RDBMS, you can create a normalized data model
without thinking about access patterns. You can then extend it later when new questions and
query requirements arise. You can organize each type of data into its own table.

With NoSQL design, you can design your schema for DynamoDB when you know the questions it'll
need to answer. Understanding the business problems and the application read and write patterns
is essential. You should also aim to maintain as few tables as possible in a DynamoDB application.
Having fewer tables keeps things more scalable, requires less permissions management, and
reduces overhead for your DynamoDB application. It can also help keep backup costs lower overall.

Considerations when migrating API Version 2012-08-10 1464

Amazon DynamoDB Developer Guide

The task of modeling relational data for DynamoDB and building a new version of the front-end
application is a separate topic. This guide assumes you have a new version of your application built
to use DynamoDB, but you still need to determine how best to migrate and synchronize historical
data during the cutover.

Sizing Considerations

The maximum size of each item (row) that you store in a DynamoDB table is 400KB. For more
information, see the section called “Quotas”. The item size is determined by the total size of all
attribute names and attribute values in an item. For more information, see the section called “Item
sizes and formats”.

If your application needs to store more data in an item than the DynamoDB size limit permits,
break the item into an item collection, compress the item data, or store the item as an object in
Amazon Simple Storage Service (Amazon S3) while storing the Amazon S3 object identifier in your
DynamoDB item. See the section called “Large items”. The cost to update an item is based on the
full size of the item. For workloads that require frequent updates to existing items, having small
items of one or two KB will cost less to update than larger items. See the section called “Working
with Item Collections” for more information on item collections.

When choosing the partition and sort key attributes, other table settings, item size and
structure, and whether to create secondary indexes, be sure to review the DynamoDB Modeling
documentation as well as the guide for the section called “Cost optimization”. Be sure to test your
migration plan so your DynamoDB solution is cost efficient and fits within DynamoDB's features
and limitations.

Understanding how a migration to DynamoDB works

Before reviewing the migration tools available to us, consider how writes are processed by
DynamoDB.

The default and most common write operation is a single PutItem API operation. You can perform
a PutItem operation in a loop to process data sets. DynamoDB supports virtually unlimited
concurrent connections, so assuming you can configure and run a massively multi-threaded loading
routine such as MapReduce or Spark, the velocity of writes is only limited by the capacity of the
target table (which is also generally unlimited).

How it works API Version 2012-08-10 1465

https://docs.aws.amazon.com/prescriptive-guidance/latest/dynamodb-data-modeling/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/dynamodb-data-modeling/welcome.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

When loading data into DynamoDB, it's important to understand your loader's write velocity. If
the items (rows) you are loading are 1KB in size or less, this velocity is simply the number of items
per second. The target table can then be provisioned with sufficient WCU (write capacity units)
to handle this rate. If your loader exceeds the provisioned capacity in any given second, the extra
requests may be throttled or rejected altogether. You can check for throttles in the CloudWatch
charts found in the DynamoDB console monitoring tab.

The second operation that can be performed is with a related API called BatchWriteItem.
BatchWriteItem allows you to combine up to 25 write requests into one API call. These are
received by the service and processed as separate PutItem requests to the table. Currently, when
choosing BatchWriteItem,you will not get the advantage of automatic retries that is included
with the Amazon SDK when making singleton calls with PutItem. So if there are any errors (such
as throttling exceptions), you'll have to look for the list of any failed writes on the response call
to BatchWriteItem. For more information on handling throttling warnings in case these are
detected in the CloudWatch throttling charts, see the section called “Throttling”.

The third type of data import is possible with the DynamoDB Import from S3 feature. This feature
allows you to stage a large dataset in Amazon S3 and ask DynamoDB to automatically import the
data into a new table. The import is not instant and will take time proportional to the size of the
dataset. However, it's convenient since it requires no ETL platform or custom DynamoDB code.
DynamoDB loads the data into a new table that's created by the import. Currently, it doesn't allow
you to load data into an existing table. DynamoDB imports the data as-is, with no transformations.
Similar to PutItem, it requires an upstream process and writes the data in your chosen format to
an Amazon S3 bucket.

Tools to help migrate to DynamoDB

There are several common migration and ETL tools you can use to migrate data into DynamoDB.

Amazon provides a host of data tools that can be used in migration, including Amazon Database
Migration Service (DMS), Amazon Glue, Amazon EMR, and Amazon Managed Streaming for Apache
Kafka. All of these tools can be used to perform a downtime migration, and they can leverage
relational database Change Data Capture (CDC) features to support online migrations. When
choosing a tool, it'll help to consider the skill set and experience your organization has with each
tool along with the features, performance, and cost of each one.

Many customers choose to write their own migration scripts and jobs in order to build custom
data transformations for the migration process. If you plan to operate a high volume DynamoDB

Migration tools API Version 2012-08-10 1466

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://amazonaws-china.com/blogs/database/amazon-dynamodb-can-now-import-amazon-s3-data-into-a-new-table/
https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.amazonaws.cn/managed-flink/latest/java/what-is.html
https://docs.amazonaws.cn/managed-flink/latest/java/what-is.html

Amazon DynamoDB Developer Guide

table with heavy write traffic or regular large bulk load jobs, you may wish to write migration code
yourself to get more familiar with the behavior of DynamoDB under heavy write traffic. Scenarios
such as throttle handling and efficient table provisioning can be experienced early in the project
when performing a practice migration.

Choosing the appropriate strategy to migrate to DynamoDB

A large relational database application may span a hundred or more tables and support several
different application functions. When approaching a large migration, consider breaking your
application into smaller components or micro-services, and migrating a small set of tables at a
time. You can then migrate additional components to DynamoDB in waves.

When selecting a migration strategy, various factors may steer you towards one solution or
another. We can present these options in a decision tree to simplify the options available to us
given our requirements and resources available. The concepts are briefly mentioned here (but will
be covered in more depth later in the guide):

• Offline migration: if your application can tolerate some downtime during the migration, it'll
simplify the migration process.

• Hybrid migration: this approach allows for partial uptime during a migration, such as allowing
reads but not writes, or allowing reads and inserts but not updates and deletes.

• Online migration: applications that require zero downtime during migration are less easy to
migrate, and can require significant planning and custom development. One key decision is
to estimate and weigh the costs of building a custom migration process versus the cost to the
business of having a downtime window during cutover.

If And Then

You're okay to take the
application down for some
time during a maintenance
window to perform the data
migration. This is an offline
migration.

 Use Amazon DMS and
perform an offline migration
using a full load task. Pre-
shape the source data with a
SQL VIEW if desired.

You're okay to run the
application in read-only mode

 Disable writes within the
application or source

Choosing a migration strategy API Version 2012-08-10 1467

Amazon DynamoDB Developer Guide

If And Then

during migration. This is a
hybrid migration.

database. Use Amazon DMS
and perform an offline
migration using a full load
task.

You're okay to run the
application with reads and
new record inserts, but no
updates or deletes, during
the migration. This is a hybrid
migration.

You have application
development skills and can
update the existing relationa
l app to perform dual writes
including to DynamoDB, for
all new records

Use Amazon DMS and
perform an offline migration
using a full load task.
Concurrently, deploy a version
of the existing app that
allows reads and performs
dual writes.

You require a migration with
minimal downtime. This is an
online migration.

• You're migrating source
tables 1-for-1 into
DynamoDB without major
schema changes.

Use Amazon DMS to perform
an online data migration. Run
a bulk load task followed by
CDC sync task.

You require a migration with
minimal downtime. This is an
online migration.

• You're combining
source tables into fewer
DynamoDB tables following
the stacked schema or
single table philosophy.

• You have backend
database development
skills and spare capacity
on the SQL host.

Create the NoSQL-ready table
within the SQL database.
Populate and synchronize it
using JOINs, UNIONs, VIEWs,
triggers, stored procedures.

Choosing a migration strategy API Version 2012-08-10 1468

Amazon DynamoDB Developer Guide

If And Then

You require a migration with
minimal downtime. This is an
online migration.

• You're combining
source tables into fewer
DynamoDB tables following
single table philosophy. For
example:

• You don't have backend
database development
skills and spare capacity
on the SQL host.

Consider the hybrid or offline
migration approaches.

You require a migration with
minimal downtime. This is an
online migration.

You're okay to skip migrating
historical transaction data, or
can archive it in Amazon S3 in
lieu of migrating it. You just
need to migrate a few small
static tables.

Write a script or use any ETL
tool to migrate the tables.
Pre-shape the source data
with a SQL VIEW if desired.

Performing an offline migration to DynamoDB

Offline migrations are suitable for when you can allow a downtime window to perform the
migration. Relational databases commonly take at least some downtime each month for
maintenance and patching, or may take longer downtimes for hardware upgrades or major release
upgrades.

Amazon S3 can be used as a staging area during a migration. Data stored in CSV (comma separated
values) or DynamoDB JSON format can be automatically imported into a new DynamoDB table
using the DynamoDB import from S3 feature.

You may want to combine tables to leverage unique NoSQL access patterns (for example,
transforming four legacy tables into a single DynamoDB table). A single key-value document
request or a query for a pre-grouped item collection usually returns with better latency than a SQL
database that performs a multi-table join. However, this makes the migration task more difficult. A
SQL view could do the work within the source database to prepare a single dataset representing all
four tables in one set.

Offline migration API Version 2012-08-10 1469

Amazon DynamoDB Developer Guide

This view can JOIN tables into a denormalized form, or could keep the entities normalized and
stack tables using a SQL UNION. Key decisions around re-shaping relational data are covered in
this video. For offline migrations, using a view to combine tables is a great way to shape data for a
DynamoDB single table schema.

Plan

Perform an offline migration using Amazon S3

Tools

• An ETL job to extract and transform SQL data and store it in an S3 bucket such as:

• Amazon Database Migration Service, a service that can bulk load historical data and can also
process Change Data Capture (CDC) records to synchronize source and target tables.

• Amazon Glue

• Amazon EMR

• Your own custom code

• The DynamoDB import from S3 feature

Offline migration steps:

1. Build an ETL job that can query the SQL database, transform table data into DynamoDB JSON
or CSV format, and save it to an S3 bucket.

Offline migration API Version 2012-08-10 1470

https://www.youtube.com/watch?v=kQ-DSjtCb90

Amazon DynamoDB Developer Guide

2. The DynamoDB Import from S3 feature is invoked to create a new table and automatically
load data from your S3 bucket.

The fully offline migration is simple and straightforward, but it may not be popular with
application owners and users. Users would benefit if the application could provide reduced levels of
service during the migration, instead of no service at all.

You could add functionality to disable writes during the offline migration, while allowing reads to
continue as normal. Application users could still safely browse and query for existing data while the
relational data is being migrated. If this is what you're looking for, continue reading to learn about
hybrid migrations.

Performing a hybrid migration to DynamoDB

While all database applications perform read and write operations, the types of write operations
being performed should be considered when planning a hybrid or online migration. Database
writes can be classified into three buckets: inserts, updates, and deletes. Some applications may
not require immediate processing of deletions. These applications can defer deletions to a bulk
cleanup process at the end of the month, for example. These types of applications can be simpler
to migrate while allowing partial uptime.

Plan

Perform a hybrid online/offline migration with application dual writes

Tools

Hybrid migration API Version 2012-08-10 1471

Amazon DynamoDB Developer Guide

• An ETL job to extract and transform SQL data and store it in an S3 bucket such as:

• Amazon DMS

• Amazon Glue

• Amazon EMR

• Your own custom code

Hybrid migration steps:

1. Create the target DynamoDB table. This table will receive both historical bulk data and new,
live data

2. Create a version of the legacy application that has deletes and updates disabled while
performing all inserts as dual writes to both the SQL database and DynamoDB

3. Begin the ETL job or Amazon DMS task to backfill existing data and deploy the new application
version at the same time

4. When the backfill job completes, DynamoDB will have all existing and new records and be
ready for application cutover

Note

The backfill job writes directly from SQL to DynamoDB. We are unable to use the S3 import
feature as in the offline migration example, since that feature creates a new table that will
not be live until after DynamoDB loads the data.

Hybrid migration API Version 2012-08-10 1472

Amazon DynamoDB Developer Guide

Performing an online migration to DynamoDB by migrating
each table 1:1

Many relational databases have a feature called Change Data Capture (CDC), where the database
allows users to request a list of the changes to a table that happened before or after a specific
point in time. CDC uses internal logs to enable this feature and it does not require the table to have
any timestamp column to work.

When migrating a schema of SQL tables to a NoSQL database, you might want to combine and
reshape your data into fewer tables. Doing so will allow you to collect data in a single place and
avoid having to manually join related data in multi-step read operations. However, single table
data shaping is not always required and sometimes you'll migrate tables 1-for-1 into DynamoDB.
These 1-to-1 table migrations are less complicated as you can leverage the source database CDC
feature, using common ETL tools that support this type of migration. The data for each row may
still be transformed into new formats, but the scope of each table remains the same.

Consider migrating SQL tables 1-to-1 into DynamoDB, with the caveat that DynamoDB doesn't
support server-side joins. You'll need to add logic to your application to combine data from
multiple tables.

Plan

Perform an online migration of each table into DynamoDB using Amazon DMS

Tools

• Amazon DMS (DMS)

Online migration steps:

1. Identify the tables in your source schema that will be migrated

2. Create the same number of tables in DynamoDB with the same key structure as in the source

3. Create a replication server in Amazon DMS and configure the source and target endpoints

4. Define any per-row transformations required (such as concatenated columns or conversion of
dates to ISO-8601 string format)

5. Create a migration task for each table for Full Load and Change Data Capture

6. Monitor these tasks until the ongoing replication phase has begun

Online - migrating each table 1:1 API Version 2012-08-10 1473

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html

Amazon DynamoDB Developer Guide

7. At this point you may perform any validation audits and then switch users to the application
that reads and writes to DynamoDB

Perform an online migration to DynamoDB using a custom
staging table

Like in the offline migration scenario above, you can choose to combine tables to leverage unique
NoSQL access patterns (for example, transforming four legacy tables into one single DynamoDB
table). A SQL VIEW could do the work within the source database to prepare a single dataset
representing all four tables in one set.

However, for online migrations with live, changing data, you are unable to leverage CDC features
as they aren't supported for VIEWs. If your tables include a last-updated timestamp column, and
these are incorporated these into the VIEW, you can then build a custom ETL job that uses these to
achieve a bulk load with synchronization.

A novel approach to this challenge is to use standard SQL features such as views, stored
procedures, and triggers to create a new SQL table that is in the final desired DynamoDB NoSQL
format.

If your database server has the spare capacity, it's possible to create this single staging table before
migration begins. You would do this by writing a stored procedure that will read from existing
tables, transform data as needed, and write to the new staging table. You can add a set of triggers
to replicate changes in tables into the staging table in real time. If triggers are not allowed per
company policy, changes to stored procedures can accomplish the same result. You would add a
few lines of code to any procedure that writes data, to additionally write the same changes into the
staging table.

Online - migrating with a custom staging table API Version 2012-08-10 1474

Amazon DynamoDB Developer Guide

Having this staging table in place that is fully synchronized with the legacy application tables
will give you a great starting point for a live migration. Tools using database CDC to accomplish
live migrations, such as Amazon DMS, can now be used against this table. An advantage of this
approach is that it uses well-known SQL skills and features available in the relational database
engine.

Plan

Perform an online migration with an SQL staging table using Amazon DMS

Tools

• Custom SQL stored procedures or triggers

• Amazon DMS

Online migration steps:

1. Within the source relational database engine, ensure there is some extra disk space and
processing capacity.

2. Create a new staging table in the SQL database, with timestamps or CDC features enabled

3. Write and run a stored procedure to copy existing relational table data into the staging table

4. Deploy triggers or modify existing procedures to dual write into the new staging table while
performing normal writes to existing tables

5. Run Amazon DMS to migrate and synchronize this source table to a target DynamoDB table

Online - migrating with a custom staging table API Version 2012-08-10 1475

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html

Amazon DynamoDB Developer Guide

This guide presented several considerations and approaches for migrating relational database data
into DynamoDB, with a focus on minimizing downtime and using common database tools and
techniques. For more information, see the following:

• Amazon DMS User Guide

• Amazon Glue User Guide

• Best Practices for Migrating from RDBMS to DynamoDB

Online - migrating with a custom staging table API Version 2012-08-10 1476

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html
https://docs.amazonaws.cn//whitepapers/latest/best-practices-for-migrating-from-rdbms-to-dynamodb/welcome.html

Amazon DynamoDB Developer Guide

NoSQL Workbench for DynamoDB

NoSQL Workbench for Amazon DynamoDB is a cross-platform, client-side GUI application that
you can use for modern database development and operations. It's available for Windows, macOS,
and Linux. NoSQL Workbench is a visual development tool that provides data modeling, data
visualization, and query development features to help you design, create, query, and manage
DynamoDB tables. NoSQL Workbench now includes DynamoDB local as an optional part of the
installation process, which makes it easier to model your data in DynamoDB local. To learn more
about DynamoDB local and its requirements, see Setting up DynamoDB local (downloadable
version) .

Data modeling

With NoSQL Workbench for DynamoDB, you can build new data models from, or design models
based on, existing data models that satisfy your application's data access patterns. You can also
import and export the designed data model at the end of the process. For more information,
see Building data models with NoSQL Workbench.

Data visualization

The data model visualizer provides a canvas where you can map queries and visualize the access
patterns (facets) of the application without having to write code. Every facet corresponds to a
different access pattern in DynamoDB. You can autogenerate sample data for use in your data
model. For more information, see Visualizing data access patterns.

Operation building

NoSQL Workbench provides a rich graphical user interface for you to develop and test queries.
You can use the operation builder to view, explore, and query live datasets. The structured
operation builder supports projection expression, condition expression, and generates sample
code in multiple languages. You can directly clone tables from one Amazon DynamoDB
account to another one in different Regions. You can also directly clone tables between
DynamoDB local and an Amazon DynamoDB account for faster copying of your table’s key
schema (and optionally GSI schema and items) between your development environments. For
more information, see Exploring datasets and building operations with NoSQL Workbench.

The video below details concepts of data modeling with NoSQL Workbench.

Topics

API Version 2012-08-10 1477

Amazon DynamoDB Developer Guide

• Download NoSQL Workbench for DynamoDB

• Install NoSQL Workbench for DynamoDB

• Building data models with NoSQL Workbench

• Visualizing data access patterns

• Exploring datasets and building operations with NoSQL Workbench

• Sample data models for NoSQL Workbench

• Release history for NoSQL Workbench

Download NoSQL Workbench for DynamoDB

Follow these instructions to download NoSQL Workbench and DynamoDB local* for Amazon
DynamoDB.

Prerequisites

There are two prerequisite pieces of software required for Ubuntu installs: libfuse2 and curl.

libfuse2

As of Ubuntu 22.04, libfuse2 is no longer installed by default. To solve this, run sudo add-
apt-repository universe && sudo apt install libfuse2 to install for the newest
Ubuntu version.

curl

Update Ubuntu, run sudo apt update && sudo apt upgrade

Next, install cURL, execute: sudo apt install curl

To download NoSQL Workbench and DynamoDB local

1. Download the appropriate version of NoSQL Workbench for your operating system.

Operating system Download link

macOS (Intel)** Download for macOS (Intel)

Download API Version 2012-08-10 1478

https://github.com/AppImage/AppImageKit/wiki/FUSE
https://github.com/AppImage/AppImageKit/wiki/FUSE
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench-x64.dmg

Amazon DynamoDB Developer Guide

Operating system Download link

macOS (Apple silicon) Download for macOS (Apple silicon)

Windows Download for Windows

Linux*** Download for Linux

* NoSQL Workbench includes DynamoDB local as an optional part of the installation process.

** If a warning message appears when you try to open NoSQL Workbench stating that the app
isn't registered with Apple by an identified developer, do the following:

1. Locate the app and then open it.

2. Control+click the app icon, then choose Open from the shortcut menu.

This saves the app as an exception to your security settings. Open the app by double-
clicking it just as you can open any registered app.

*** NoSQL Workbench supports Ubuntu 12.04, Fedora 21, and Debian 8, or any newer versions
of these Linux distributions.

2. Start the application that you downloaded, and then follow the steps in Install NoSQL
Workbench.

Note

Java Runtime Environment (JRE) version 11.x or newer is required for running DynamoDB
local.

Install NoSQL Workbench for DynamoDB

Follow these steps to install NoSQL Workbench and DynamoDB local on a supported platform.

Install API Version 2012-08-10 1479

https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench-arm64.dmg
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench.exe
https://dy9cqqaswpltd.cloudfront.net/NoSQL_Workbench.AppImage

Amazon DynamoDB Developer Guide

Windows

To install NoSQL Workbench on Windows

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

2. Choose Next to continue the setup, and then choose Next on the following screen.

3. By default, the Install DynamoDB Local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing the check box for this option will skip the installation of DynamoDB
local, and the installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Next.

Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB Local check box, choose Next, and skip to step 6. You can download
DynamoDB local separately as a standalone installation at a later time. For more
information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1480

Amazon DynamoDB Developer Guide

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number, choose Next.

5. Choose Next to begin setup.

6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /programs/DynamoDBWorkbench/.

macOS

To install NoSQL Workbench on macOS

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

Install API Version 2012-08-10 1481

Amazon DynamoDB Developer Guide

2. Choose Next to continue the setup, and then choose Next on the following screen.

3. By default, the Install DynamoDB local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing this option will skip the installation of DynamoDB local, and the
installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Next.

Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB local check box, choose Next, and skip to step 6. You can download
DynamoDB local separately as a standalone installation at a later time. For more
information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1482

Amazon DynamoDB Developer Guide

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number, choose Next.

5. Choose Next to begin setup.

6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /Applications/
DynamoDBWorkbench/.

Note

NoSQL Workbench for macOS performs auto-updates. To get notification about
updates, enable notification access to NoSQL Workbench in System Preferences >
Notifications.

Install API Version 2012-08-10 1483

Amazon DynamoDB Developer Guide

Linux

To install NoSQL Workbench on Linux

1. Run the NoSQL Workbench installer application and choose the setup language. Then
choose OK to begin the setup. For more information about downloading NoSQL
Workbench, see Download NoSQL Workbench for DynamoDB.

2. Choose Forward to continue the setup, and choose Forward on the following screen.

3. By default, the Install DynamoDB local check box is selected to include DynamoDB local
as part of the installation. Keeping this option selected ensures that DynamoDB local will
be installed, and the destination path will be the same as the installation path of NoSQL
Workbench. Clearing this option will skip the installation of DynamoDB local, and the
installation path will be for NoSQL Workbench only.

Choose the destination where you want the software installed, and choose Forward.

Note

If you opted to not include DynamoDB local as part of the setup, clear the Install
DynamoDB local check box, choose Forward, and skip to step 6. You can download
DynamoDB local separately as a standalone installation at a later time. For more
information, see Setting up DynamoDB local (downloadable version) .

Install API Version 2012-08-10 1484

Amazon DynamoDB Developer Guide

4. Choose the port number for DynamoDB local to use. The default port is 8000. After you
enter the port number entered, choose Forward.

5. Choose Forward to begin setup.

6. When the setup has completed, choose Finish to close the setup screen.

7. Open the application in your installation path, such as /usr/local/programs/
DynamoDBWorkbench/.

To start an AppImage on Linux

1. Make the AppImage file executable:

chmod +x noSQL-workbench-linux.AppImage

Install API Version 2012-08-10 1485

Amazon DynamoDB Developer Guide

Replace noSQL-workbench-linux.AppImage with the actual file name of the AppImage you
downloaded.

2. Run the AppImage:

./noSQL-workbench-linux.AppImage

This will launch the NoSQL Workbench application.

Note

Depending on your Linux distribution, you may need to install additional dependencies
for the AppImage to run properly. If you encounter any issues, refer to the
documentation provided by the AppImage developers or seek support from the
community.

Note

If you opted to install DynamoDB local as part of the installation of NoSQL Workbench,
DynamoDB local will be preconfigured with default options. To edit the default options,
modify the DDBLocalStart script located in the /resources/DDBLocal_Scripts/ directory.
You can find this in the path that you provided during installation. To learn more about
DynamoDB local options, see DynamoDB local usage notes .

If you opted to install DynamoDB local as part of the NoSQL Workbench installation, you will have
access to a toggle to enable and disable DynamoDB local as shown in the following image.

Install API Version 2012-08-10 1486

Amazon DynamoDB Developer Guide

Building data models with NoSQL Workbench

You can use the data modeler tool in NoSQL Workbench for Amazon DynamoDB to build new data
models, or to design models based on existing data models that satisfy your applications' data
access patterns. The data modeler includes a few sample data models to help you get started.

Topics

• Creating a new data model

• Importing an existing data model

• Exporting a data model

• Editing an existing data model

Creating a new data model

Follow these steps to create a new data model in Amazon DynamoDB using NoSQL Workbench.

Data modeler API Version 2012-08-10 1487

Amazon DynamoDB Developer Guide

To create a new data model

1. Open NoSQL Workbench, and in the navigation pane on the left side, choose the Data
modeler icon.

2. Choose Create data model.

Create data model has two choices: Make model from scratch and Start from a template.

Creating a new model API Version 2012-08-10 1488

Amazon DynamoDB Developer Guide

Make model from scratch

To make a model from scratch, enter a name, author, and description for the data model.
Choose Create when finished.

Creating a new model API Version 2012-08-10 1489

Amazon DynamoDB Developer Guide

Start from a template

Starting from a template lets you choose a sample model to start from. Choose More
templates to see more template options. Choose Select for the template that you want to
use.

Enter a data model name, author, and description for the template you selected. You can
choose between Schema only and Schema with sample data.

• Schema only creates an empty data model with the primary key (partition and sort key)
and other attributes.

• Schema with sample data will create a data model complete with sample data for the
primary key (partition and sort key) and other attributes.

When this information is complete, choose Create to create the model.

3. With the model created, choose Add table.

Creating a new model API Version 2012-08-10 1490

Amazon DynamoDB Developer Guide

For more information about tables, see Working with tables in DynamoDB.

4. Specify the following:

• Table name – Enter a unique name for the table.

• Partition key – Enter a partition key name, and specify its type. Optionally, you can also
select a more granular data type format for sample data generation.

• If you want to add a sort key:

1. Select Add sort key.

2. Specify the sort key name and its type. Optionally, you can select a more granular data
type format for sample data generation.

Note

To learn more about primary key design, designing and using partition keys effectively,
and using sort keys, see the following:

• Primary key

• Best practices for designing and using partition keys effectively in DynamoDB

• Best practices for using sort keys to organize data in DynamoDB

5. To add other attributes, do the following for each attribute:

1. Choose Add an attribute.

Creating a new model API Version 2012-08-10 1491

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/WorkingWithTables.html

Amazon DynamoDB Developer Guide

2. Specify the attribute name and its type. Optionally, you can select a more granular data
type format for sample data generation.

6. Add a facet:

You can optionally add a facet. A facet is a virtual construct in NoSQL Workbench. It is not a
functional construct in DynamoDB itself.

Note

Facets in NoSQL Workbench help you visualize an application's different data access
patterns for Amazon DynamoDB with only a subset of the data in a table. To learn
more about facets, see Viewing data access patterns.

To add a facet,

• Select Add facets.

• Choose Add facet.

• Specify the following:

• The Facet name.

• A Partition key alias to help distinguish this facet view.

• A Sort key alias.

• Choose the Other attributes that are part of this facet.

Creating a new model API Version 2012-08-10 1492

Amazon DynamoDB Developer Guide

Choose Add facet.

Repeat this step if you want to add more facets.

7. If you want to add a global secondary index, choose Add global secondary index.

Specify the Global secondary index name, Partition key attribute, and Projection type.

Creating a new model API Version 2012-08-10 1493

Amazon DynamoDB Developer Guide

For more information about working with global secondary indexes in DynamoDB, see Global
secondary indexes.

8. Save the edits to your table settings..

For more information about the CreateTable API operation, see CreateTable in the Amazon
DynamoDB API Reference.

Importing an existing data model

You can use NoSQL Workbench for Amazon DynamoDB to build a data model by importing and
modifying an existing model. You can import data models in either NoSQL Workbench model
format or in Amazon CloudFormation JSON template format.

To import a data model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler icon.

Importing an existing model API Version 2012-08-10 1494

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

2. Hover your pointer over Import data model.

In the dropdown list, choose whether the model you want to import is in NoSQL Workbench
model format or CloudFormation JSON template format. If you have an existing data model
open in NoSQL Workbench, you'll have the option to import a CloudFormation template into
the current model.

Importing an existing model API Version 2012-08-10 1495

Amazon DynamoDB Developer Guide

3. Choose a model to import.

4. If the model you're importing is in CloudFormation template format, you'll see a list of
tables to be imported and have an opportunity to specify a data model name, author, and
description.

Importing an existing model API Version 2012-08-10 1496

Amazon DynamoDB Developer Guide

Exporting a data model

After you create a data model using NoSQL Workbench for Amazon DynamoDB, you can save and
export the model in either NoSQL Workbench model format or Amazon CloudFormation JSON
template format.

To export a data model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler icon.

Exporting a model API Version 2012-08-10 1497

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

2. Hover your pointer over Export data model.

In the dropdown list, choose whether to export your data model in NoSQL Workbench model
format or CloudFormation JSON template format.

3. Choose a location to save your model.

Exporting a model API Version 2012-08-10 1498

Amazon DynamoDB Developer Guide

Editing an existing data model

To edit an existing model

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Data modeler
button.

Editing an existing model API Version 2012-08-10 1499

Amazon DynamoDB Developer Guide

2. Select the data model and choose the table that you want to edit. Choose Edit model

3. Make the needed edits, and then choose Save edits.

To manually edit an existing model and add a facet

1. Export your model. For more information, see Exporting a data model.

2. Open the exported file in an editor.

3. Locate the DataModel Object for the table that you want to create a facet for.

Add a TableFacets array representing all the facets for the table.

For each facet, add an object to the TableFacets array. Each array element has the following
properties:

• FacetName – A name for your facet. This value must be unique across the model.

• PartitionKeyAlias – A friendly name for the table's partition key. This alias is displayed
when you view the facet in NoSQL Workbench.

Editing an existing model API Version 2012-08-10 1500

Amazon DynamoDB Developer Guide

• SortKeyAlias – A friendly name for the table's sort key. This alias is displayed when you
view the facet in NoSQL Workbench. This property is not needed if the table has no sort key
defined.

• NonKeyAttributes – An array of attribute names that are needed for the access pattern.
These names must map to the attribute names that are defined for the table.

{
 "ModelName": "Music Library Data Model",
 "DataModel": [
 {
 "TableName": "Songs",
 "KeyAttributes": {
 "PartitionKey": {
 "AttributeName": "Id",
 "AttributeType": "S"
 },
 "SortKey": {
 "AttributeName": "Metadata",
 "AttributeType": "S"
 }
 },
 "NonKeyAttributes": [
 {
 "AttributeName": "DownloadMonth",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TotalDownloadsInMonth",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Title",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TotalDownloads",
 "AttributeType": "S"

Editing an existing model API Version 2012-08-10 1501

Amazon DynamoDB Developer Guide

 },
 {
 "AttributeName": "DownloadTimestamp",
 "AttributeType": "S"
 }
],
 "TableFacets": [
 {
 "FacetName": "SongDetails",
 "KeyAttributeAlias": {
 "PartitionKeyAlias": "SongId",
 "SortKeyAlias": "Metadata"
 },
 "NonKeyAttributes": [
 "Title",
 "Artist",
 "TotalDownloads"
]
 },
 {
 "FacetName": "Downloads",
 "KeyAttributeAlias": {
 "PartitionKeyAlias": "SongId",
 "SortKeyAlias": "Metadata"
 },
 "NonKeyAttributes": [
 "DownloadTimestamp"
]
 }
]
 }
]
}

4. You can now import the modified model into NoSQL Workbench. For more information, see
Importing an existing data model.

Visualizing data access patterns

You can use the visualizer tool in NoSQL Workbench for Amazon DynamoDB to map queries and
visualize different access patterns (known as facets) of an application. Every facet corresponds to

Data visualizer API Version 2012-08-10 1502

Amazon DynamoDB Developer Guide

a different access pattern in DynamoDB. You can also manually add data to your data model or
import data from MySQL.

Topics

• Adding sample data to a data model

• Importing sample data from a CSV file

• Viewing data access patterns

• Viewing all tables in a data model using aggregate view

• Committing a data model to DynamoDB

Adding sample data to a data model

By adding sample data to your model, you can display data when visualizing the model and its
various data access patterns, or facets.

There are two ways to add sample data. One is using our sample data auto generation tool. The
other is adding data one at a time.

Follow these steps to add sample data to a data model using NoSQL Workbench for Amazon
DynamoDB.

To auto generate sample data

Auto generating sample data helps you generate between 1 to 5000 rows of data for immediate
use. You can specify a granular sample data type to create realistic data based on your design
and testing needs. To utilize the capability to generate realistic data, you need to specify the
sample data type format for your attributes in the Data modeler. See Creating a new data modelfor
specifying sample data type formats.

1. In the navigation pane on the left side, choose the visualizer icon.

Adding sample data API Version 2012-08-10 1503

Amazon DynamoDB Developer Guide

2. In the visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Add sample data.

4. Enter the number or items of sample data that you would like to generate, then select
Confirm.

To add sample data one at a time

1. In the navigation pane on the left side, choose the visualizer icon.

Adding sample data API Version 2012-08-10 1504

Amazon DynamoDB Developer Guide

2. In the visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Edit data.

4. Choose Add new row. Enter the sample data into the empty text boxes, and choose Add new
row again to add additional rows. When done choose Save changes.

To delete sample data

1. In the navigation pane on the left side, choose the visualizer icon.

Adding sample data API Version 2012-08-10 1505

Amazon DynamoDB Developer Guide

2. In the visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Edit data.

4. Select the delete icon next to each row of data you want to delete.

Importing sample data from a CSV file

If you have preexisting sample data in a CSV file, you can import it into NoSQL Workbench. This
enables you to quickly populate your model with sample data without having to enter it line by
line.

The column names in the CSV file must match the attribute names in your data model, but
they do not need to be in the same order. For example, if your data model has attributes called
LoginAlias, FirstName, and LastName, your CSV columns could be LastName, FirstName,
and LoginAlias.

Data import from a CSV file is limited to 150 rows at a time.

Importing from CSV API Version 2012-08-10 1506

Amazon DynamoDB Developer Guide

To import data from a CSV file into NoSQL Workbench

1. In the navigation pane on the left side, choose the visualizer icon.

2. In the visualizer, select the data model and choose the table.

3. Choose the Action drop down, and select Edit Data.

4. Choose the Action drop down again, and select Import CSV file.

5. Select your CSV file and choose Open. The data in the CSV file will be appended to your table.

Note

If your CSV file contains one or more rows that have the same keys as items already
in your table, you will have the option of overwriting the existing items or appending
them to the end of the table. If you choose to append the items, the suffix "-Copy" will
be added to each duplicate item's key to differentiate the duplicate items from the
items that were already in the table.

Viewing data access patterns

In NoSQL Workbench, facets represent an application's different data access patterns for
Amazon DynamoDB. Facets can help you visualize your data model when multiple data types are
represented by a sort key. Facets give you a way to view a subset of the data in a table, without

Facets API Version 2012-08-10 1507

Amazon DynamoDB Developer Guide

having to see records that don't meet the constraints of the facet. Facets are considered a visual
data modeling tool, and don't exist as a usable construct in DynamoDB, as they are purely an aid to
modeling of access patterns.

To see an example of facets, you can import one of our sample data models with facets as part of
the data model template.

Import sample data model

1. On the left, choose Amazon DynamoDB.

2. In the Sample data models section, hover your pointer over Music Library Data Model and
choose Import.

3. In the navigation pane on the left side, choose the visualizer icon.

Facets API Version 2012-08-10 1508

Amazon DynamoDB Developer Guide

4. Choose the Songs table to expand it. You'll be shown an aggregate view of your data.

5. Choose Facets drop-down arrow to expand the available facets.

6. Choose the SongDetails facet to visualize the data with the SongDetails facet applied.

Facets API Version 2012-08-10 1509

Amazon DynamoDB Developer Guide

You can also edit the facet definitions using the Data Modeler. For more information, see Editing an
existing data model.

Facets API Version 2012-08-10 1510

Amazon DynamoDB Developer Guide

Viewing all tables in a data model using aggregate view

The aggregate view in NoSQL Workbench for Amazon DynamoDB represents all the tables in a
data model. For each table, the following information appears:

• Table column names

• Sample data

• All global secondary indexes that are associated with the table. The following information is
displayed for each index:

• Index column names

• Sample data

To view all table information

1. In the navigation pane on the left side, choose the visualizer icon.

2. In the visualizer, choose Aggregate view.

Aggregate view API Version 2012-08-10 1511

Amazon DynamoDB Developer Guide

Committing a data model to DynamoDB

When you are satisfied with your data model, you can commit the model to Amazon DynamoDB.

Note

• This action results in the creation of server-side resources in Amazon for the tables and
global secondary indexes represented in the data model.

• Tables are created with the following characteristics:

• Auto scaling is set to 70 percent target utilization.

• Provisioned capacity is set to 5 read capacity units and 5 write capacity units.

• Global secondary indexes are created with provisioned capacity of 10 read capacity units
and 5 write capacity units.

To commit the data model to DynamoDB

1. In the navigation pane on the left side, choose the visualizer icon.

Committing a data model API Version 2012-08-10 1512

Amazon DynamoDB Developer Guide

2. Choose Commit to DynamoDB.

Committing a data model API Version 2012-08-10 1513

Amazon DynamoDB Developer Guide

3. Choose an already existing connection, or create a new connection by choosing the Add new
remote connection tab.

• To add a new connection, specify the following information:

• Account Alias

• Amazon Region

• Access key ID

• Secret access key

For more information about how to obtain the access keys, see Getting an Amazon access
key.

• You can optionally specify the following:

Committing a data model API Version 2012-08-10 1514

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials

Amazon DynamoDB Developer Guide

• Session token

• IAM role ARN

• If you don't want to sign up for a free tier account, and prefer to use DynamoDB local
(downloadable version):

1. Choose the Add a new DynamoDB local connection tab.

2. Specify the Connection name and Port.

4. Choose Commit.

Note

If you installed DynamoDB local as part of the NoSQL Workbench setup, you'll need to
turn DynamoDB local on by using the DynamoDB local Server toggle at the bottom left
of the NoSQL Workbench screen. See Install NoSQL Workbench for DynamoDB for more
information on this toggle.

Exploring datasets and building operations with NoSQL
Workbench

NoSQL Workbench for Amazon DynamoDB provides a rich graphical user interface for developing
and testing queries. You can use the operation builder in NoSQL Workbench to view, explore, and
query live datasets. The structured operation builder supports projection expression, condition
expression, and generates sample code in multiple languages. You can directly clone tables
from one Amazon DynamoDB account to another one in different Regions. You can also directly
clone tables between DynamoDB local and an Amazon DynamoDB account for faster copying
of your table’s key schema (and optionally GSI schema and items) between your development
environments.You can save as many as 50 DynamoDB data operations in the operation builder.

Topics

• Connecting to live datasets

• Building complex operations

• Cloning tables with NoSQL Workbench

• Exporting data to a CSV file

Operation builder API Version 2012-08-10 1515

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

Connecting to live datasets

To connect to your Amazon DynamoDB tables with NoSQL Workbench, you must first connect to
your Amazon account.

To add a connection to your database

1. In NoSQL Workbench, in the navigation pane on the left side, choose the Operation builder
icon.

2. Choose Add connection.

3. Specify the following information:

• Connection name

• Amazon Region

• Access key ID

• Secret access key

For more information about how to obtain the access keys, see Getting an Amazon access key.

You can optionally, specify the following:

• Session token

• IAM role ARN

4. Choose Connect.

If you don't want to sign up for a free tier account, and prefer to use DynamoDB local
(downloadable version):

a. Choose the Local tab on the connection screen.

b. Specify the following information:

• Connection name

• Port

c. Choose the connect button.

Connecting to datasets API Version 2012-08-10 1516

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/SettingUp.DynamoWebService.html#SettingUp.DynamoWebService.GetCredentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

Note

To connect to DynamoDB local, either manually launch DynamoDB local using your
terminal (see deploying DynamoDB local on your computer) or launch DynamoDB local
directly using the DDB local toggle in the NoSQL Workbench navigation menu. Ensure
the connection port is the same as your DynamoDB local port.

5. On the created connection, choose Open.

After connecting to your DynamoDB database, the list of available tables appears in the left pane.
Choose one of the tables to return a sample of the data stored in the table.

You can now run queries against the selected table.

To run queries on a table, see the next section on building operations see Building complex
operations.

Building complex operations

The operation builder in NoSQL Workbench for Amazon DynamoDB provides a visual interface
where you can perform complex data plane operations. It includes support for projection
expressions and condition expressions. Once you've built an operation, you can save it for later use
(up to 50 operations can be saved). You can then browse a list of your frequently used data-plane
operations in the Saved Operations menu, and use them to automatically populate and build a
new operation. You can also generate sample code for these operations, in multiple languages.

NoSQL Workbench supports building PartiQL for DynamoDB statements, which allows you to
interact with DynamoDB using a SQL-compatible query language. NoSQL Workbench also supports
building DynamoDB CRUD API operations.

To use NoSQL Workbench to build operations, in the navigation pane on the left side, choose the
Operation builder icon.

Topics

• Building PartiQL statements

• Building API operations

Building operations API Version 2012-08-10 1517

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html

Amazon DynamoDB Developer Guide

Building PartiQL statements

To use NoSQL Workbench to build PartiQL for DynamoDB statements, choose PartiQL editor near
the top of the NoSQL Workbench UI.

You can build the following PartiQL statement types in the operation builder.

Topics

• Singleton statements

• Transactions

• Batch

Singleton statements

To run or generate code for a PartiQL statement, do the following.

1. Choose PartiQL editor near the top of the window.

2. Enter a valid PartiQL statement.

3. If your statement uses parameters:

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.

4. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

5. If you want the operation to be run immediately, choose Run.

6. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Transactions

To run or generate code for a PartiQL transaction, do the following.

1. Choose PartiQLTransaction from the More operations dropdown.

Building operations API Version 2012-08-10 1518

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.statements.html

Amazon DynamoDB Developer Guide

2. Choose Add a new statement.

3. Enter a valid PartiQL statement.

Note

Read and write operations are not supported in the same PartiQL transaction request.
A SELECT statement cannot be in the same request with INSERT, UPDATE, and DELETE
statements. See Performing transactions with PartiQL for DynamoDB for more details.

4. If your statement uses parameters

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.

5. If you want to add more statements, repeat steps 2 to 4.

6. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Batch

To run or generate code for a PartiQL batch, do the following.

1. Choose PartiQLBatch from the More operations dropdown.

2. Choose Add a new statement.

3. Enter a valid PartiQL statement.

Note

Read and write operations are not supported in the same PartiQL batch request, which
means a SELECT statement cannot be in the same request with INSERT, UPDATE, and

Building operations API Version 2012-08-10 1519

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.statements.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.transactions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.statements.html

Amazon DynamoDB Developer Guide

DELETE statements. Write operations to the same item are not allowed. As with the
BatchGetItem operation, only singleton read operations are supported. Scan and
query operations are not supported. See Running batch operations with PartiQL for
DynamoDB for more details.

4. If your statement uses parameters:

a. Choose Optional request parameters.

b. Choose Add new parameters.

c. Enter the attribute type and value.

d. If you want to add additional parameters, repeat steps b and c.

5. If you want to add more statements, repeat steps 2 to 4.

6. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation. Then enter a name for
your operation and choose Save.

Building API operations

To use NoSQL Workbench to build DynamoDB CRUD APIs, select Operation builder from the left
of the NoSQL Workbench user interface.

Then select Open and choose a connection.

You can perform the following operations in the operation builder.

• Delete Table

• Create Table

• Update Table

• Put Item

• Update Item

• Delete Item

Building operations API Version 2012-08-10 1520

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.batching.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.multiplestatements.batching.html

Amazon DynamoDB Developer Guide

• Query

• Scan

• Transact Get Items

• Transact Write Items

Delete table

To run a Delete Table operation, do the following.

1. Find the table you want to delete from the Tables section.

2. Select Delete Table from the horizontal ellipsis menu.

3. Confirm you want to delete the table by entering the Table name.

4. Select Delete.

For more information about this operation, see Delete table in the Amazon DynamoDB API
Reference.

Delete GSI

To run a Delete GSI operation, do the following.

1. Find the GSI of a table you want to delete from the Tables section.

2. Select Delete GSI from the horizontal ellipsis menu.

3. Confirm you want to delete the GSI by entering the GSI name.

4. Select Delete.

For more information about this operation, see Delete table in the Amazon DynamoDB API
Reference.

Create table

To run a Create Table operation, do the following.

1. Choose the + icon next to the Tables section.

2. Enter the table name desired.

3. Create a partition key.

Building operations API Version 2012-08-10 1521

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteTable.html

Amazon DynamoDB Developer Guide

4. Optional: create a sort key.

5. To customize capacity settings, and uncheck the box next to Use default capacity settings.

• You can now select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity
units. You can also enable or disable auto scaling.

• If the table is currently set to On-demand, you will be unable to specify a provisioned
throughput.

• If you switch from On-demand to Provisioned throughput, then Autoscaling will
automatically be applied to all GSIs with: min: 1, max: 10; target: 70%.

6. Select Skip GSIs and create to create this table without a GSI. Optionally, you can select Next
to create a GSI with this new table.

For more information about this operation, see Create table in the Amazon DynamoDB API
Reference.

Create GSI

To run a Create GSI operation, do the following.

1. Find a table that you want to add a GSI to.

2. From the horizontal ellipsis menu, select Create GSI.

3. Name your GSI under Index name.

4. Create a partition key.

5. Optional: create a sort key.

6. Choose a projection type option from the dropdown.

7. Select Create GSI.

For more information about this operation, see Create table in the Amazon DynamoDB API
Reference.

Update table

To update capacity settings for a table with an Update Table operation, do the following.

1. Find the table you want to update capacity settings for.

Building operations API Version 2012-08-10 1522

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html

Amazon DynamoDB Developer Guide

2. From the horizontal ellipsis menu, select Update capacity settings.

3. Select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity units.
You can also enable or disable auto scaling.

4. Select Update.

For more information about this operation, see Update table in the Amazon DynamoDB API
Reference.

Update GSI

To update capacity settings for a GSI with an Update Table operation, do the following.

Note

By default, global secondary indexes inherit the capacity settings of the base table. Global
secondary indexes can have a different capacity mode only when the base table is in
provisioned capacity mode. When you create a global secondary index on a provisioned
mode table, you must specify read and write capacity units for the expected workload on
that index. For more information, see Provisioned throughput considerations for Global
Secondary Indexes.

1. Find the GSI you want to update capacity settings for.

2. From the horizontal ellipsis menu, select Update capacity settings.

3. You can now select either Provisioned or On-demand capacity.

With Provisioned selected, you can set minimum and maximum read and write capacity units.
You can also enable or disable auto scaling.

4. Select Update.

For more information about this operation, see Update table in the Amazon DynamoDB API
Reference.

Building operations API Version 2012-08-10 1523

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

Put item

You create an item by using the Put Item operation. To run or generate code for a Put Item
operation, do the following.

1. Find the table you want to create an item in.

2. From the Actions dropdown, select Create item.

3. Enter the partition key value.

4. Enter the sort key value, if one exists.

5. If you want to add non-key attributes, do the following:

a. Select + Add other attributes.

b. Specify the Attribute name, Type, and Value.

6. If a condition expression must be satisfied for the Put Item operation to succeed, do the
following:

a. Choose Condition.

b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

7. If you want to generate code, choose Generate code.

Select your desired language from the displayed tabs. You can now copy this code and use it in
your application.

8. If you want the operation to be run immediately, choose Run.

9. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see PutItem in the Amazon DynamoDB API Reference.

Update item

To run or generate code for an Update Item operation, do the following:

1. Find the table you want to update an item in.

Building operations API Version 2012-08-10 1524

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

2. Select the item.

3. Enter the attribute name and attribute value for the selected expression.

4. If you want to add more expressions, choose another expression in the Update Expression
dropdown list, and then select the + icon.

5. If a condition expression must be satisfied for the Update Item operation to succeed, do the
following:

a. Choose Condition.

b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

6. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see UpdateItem in the Amazon DynamoDB API
Reference.

Delete item

To run a Delete Item operation, do the following.

1. Find the table you want to delete an item in.

2. Select the item.

3. From the Actions dropdown, select Delete item.

4. Confirm you want to delete the item by selecting Delete.

For more information about this operation, see DeleteItem in the Amazon DynamoDB API
Reference.

Building operations API Version 2012-08-10 1525

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

Duplicate item

You can duplicate an item by creating a new item with the same attributes. To duplicate an item,
do the following.

1. Find the table you want to duplicate an item in.

2. Select the item.

3. From the Actions dropdown, select Duplicate item.

4. Specify a new partition key.

5. Specify a new sort key (if necessary).

6. Select Run.

For more information about this operation, see DeleteItem in the Amazon DynamoDB API
Reference.

Query

To run or generate code for a Query operation, do the following.

1. Select Query from the top of the NoSQL Workbench UI.

2. Specify the partition key value.

3. If a sort key is needed for the Query operation:

a. Select Sort key.

b. Specify the comparison operator, and attribute value.

4. Select Query to run this query operation. If more options are needed, check the More options
checkbox and continue on with the following steps.

5. If not all the attributes should be returned with the operation result, select Projection
expression.

6. Choose the + icon.

7. Enter the attribute to return with the query result.

8. If more attributes are needed, choose the + .

9. If a condition expression must be satisfied for the Query operation to succeed, do the
following:

a. Choose Condition.

Building operations API Version 2012-08-10 1526

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html

Amazon DynamoDB Developer Guide

b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

10. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

11. If you want the operation to be run immediately, choose Run.

12. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

For more information about this operation, see Query in the Amazon DynamoDB API Reference.

Scan

To run or generate code for a Scan operation, do the following.

1. Select Scan from the top of the NoSQL Workbench UI.

2. Select the Scan button to perform this basic scan operation. If more options are needed, check
the More options checkbox and continue on with the following steps.

3. Specify an attribute name to filter your scan results.

4. If not all the attributes should be returned with the operation result, select Projection
expression.

5. If a condition expression must be satisfied for the scan operation to succeed, do the following:

a. Choose Condition.

b. Specify the attribute name, comparison operator, attribute type, and attribute value.

c. If other conditions are needed, choose Condition again.

For more information, see DynamoDB condition expression CLI example.

6. If you want to generate code, choose Generate code.

Choose the tab for the language that you want. You can now copy this code and use it in your
application.

Building operations API Version 2012-08-10 1527

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html

Amazon DynamoDB Developer Guide

7. If you want the operation to be run immediately, choose Run.

8. If you want to save this operation for later use, choose Save operation, then enter a name for
your operation and choose Save.

TransactGetItems

To run or generate code for a TransactGetItems operation, do the following.

1. From the More operations dropdown at the top of the NoSQL Workbench UI, choose
TransactGetItems.

2. Choose the + icon near TransactGetItem.

3. Specify a partition key.

4. Specify a sort key (if necessary).

5. Select Run to perform the operation, Save operation to save it, or Generate code to generate
code for it.

For more information about transactions, see Amazon DynamoDB transactions.

TransactWriteItems

To run or generate code for a TransactWriteItems operation, do the following.

1. From the More operations dropdown at the top of the NoSQL Workbench UI, choose
TransactWriteItems.

2. Choose an operation from the Actions dropdown.

3. Choose the + icon near TransactWriteItem.

4. In the Actions dropdown, choose the operation that you want to perform.

• For DeleteItem, follow the instructions for the Delete item operation.

• For PutItem, follow the instructions for the Put item operation.

• For UpdateItem, follow the instructions for the Update item operation.

To change the order of actions, choose an action in the list on the left side, and then choose
the up or down arrows to move it up or down in the list.

To delete an action, choose the action in the list, and then choose the Delete (trash can) icon.

Building operations API Version 2012-08-10 1528

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

5. Select Run to perform the operation, Save operation to save it, or Generate code to generate
code for it.

For more information about transactions, see Amazon DynamoDB transactions.

Cloning tables with NoSQL Workbench

Cloning tables will copy a table’s key schema (and optionally GSI schema and items) between
your development environments. You can clone a table between DynamoDB local to an Amazon
DynamoDB account, and even clone a table from one account to another in different Regions for
faster experimentation.

To clone a table

1. In the Operation Builder, select your connection and Region (Region selection is not available
for DynamoDB local).

2. Once you are connected to DynamoDB, browse your tables and select the table you want to
clone.

3. From the horizontal ellipsis menu, select the Clone option.

4. Input your clone destination details:

a. Select a connection.

b. Select a Region (Region is not available for DynamoDB local).

c. Enter a new table name.

d. Choose a clone option:

i. Key schema is selected by default and cannot be unselected. By default, cloning a
table will copy your primary key and sort key if they are available.

ii. GSI schema is selected by default if your table to be cloned has a GSI. Cloning a
table will copy your GSI primary key and sort key if they are available. You have the
option to deselect GSI schema to skip cloning the GSI schema. Cloning a table will
copy your base table’s capacity settings as the GSI’s capacity settings. You can use
the UpdateTable operation in Operation Builder to update the table’s GSI capacity
setting after cloning is complete.

Cloning tables API Version 2012-08-10 1529

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

5. Enter the number of items to clone. To only clone the key schema and optionally the GSI
schema, you can keep the Items to clone value at 0. The maximum number of items that can
be cloned is 5000.

6. Choose a capacity mode:

a. On-demand mode is selected by default. DynamoDB on-demand offers pay-per-request
pricing for read and write requests so that you pay only for what you use. To learn more,
see DynamoDB On-demand mode .

b. Provisioned mode lets you specify the number of reads and writes per second that you
require for your application. You can use auto scaling to adjust your table’s provisioned
capacity automatically in response to traffic changes. To learn more, see DynamoDB
Provisioned mode.

7. Select Clone to begin cloning.

8. The cloning process will run in the background. The Operation builder tab will show a
notification when there is a change in the cloning table status. You can access this status by
selecting the Operation builder tab and then selecting the arrow button. The arrow button is
located on the cloning table status widget located near the bottom of the menu sidebar.

Exporting data to a CSV file

You can export the results of a query from Operation Builder to a CSV file. This enables you to load
the data into a spreadsheet or process it using your preferred programming language.

Exporting to CSV

1. In the Operation Builder, run an operation of your choice, such as a Scan or Query.

Note

• You can only export results from read API operations and PartiQL statements to a
CSV file. You can't export results from transaction read statements.

• Currently, you can export results one page at a time to a CSV file. If there are
multiple pages of results, you must export each page individually.

2. Select the items you want to export from the results.

3. In the Actions dropdown, choose Export as CSV.

Exporting to CSV API Version 2012-08-10 1530

Amazon DynamoDB Developer Guide

4. Choose a filename and location for your CSV file and select Save.

Sample data models for NoSQL Workbench

The home page for the modeler and visualizer display a number of sample models that ship with
the NoSQL Workbench. This section describes these models and their potential uses.

Topics

• Employee data model

• Discussion forum data model

• Music library data model

• Ski resort data model

• Credit card offers data model

• Bookmarks data model

Employee data model

This data model is an introductory model. It represents an employee’s basic details such as a
unique alias, first name, last name, designation, manager, and skills.

This data model depicts a few techniques such as handling complex attribute such as having more
than one skill. This model is also an example of one-to-many relationship through the manager
and their reporting employees that has been achieved by the secondary index DirectReports.

The access patterns facilitated by this data model are:

• Retrieval of an employee record using the employee’s login alias, facilitated by a table called
Employee.

• Search for employees by name, facilitated by the Employee table’s global secondary index called
Name.

• Retrieval of all direct reports of a manager using the manager’s login alias, facilitated by the
Employee table’s global secondary index called DirectReports.

Sample data models API Version 2012-08-10 1531

Amazon DynamoDB Developer Guide

Discussion forum data model

This data model represents a discussion forums. Using this model customers can engage with the
developer community, ask questions, and respond to other customers' posts. Each Amazon service
has a dedicated forum. Anyone can start a new discussion thread by posting a message in a forum,
and each thread receives any number of replies.

The access patterns facilitated by this data model are:

• Retrieval of a forum record using the forum’s name, facilitated by a table called Forum.

• Retrieval of a specific thread or all threads for a forum, facilitated by a table called Thread.

• Search for replies using the posting user’s email address, facilitated by the Reply table’s global
secondary index called PostedBy-Message-Index.

Music library data model

This data model represents a music library that has a large collection of songs and showcases its
most downloaded songs in near-real time.

The access patterns facilitated by this data model are:

• Retrieval of a song record, facilitated by a table called Songs.

• Retrieval of a specific download record or all download records for a song, facilitated by a table
called Songs.

• Retrieval of a specific monthly download count record or all monthly download count records for
a song, facilitated by a table called Song.

• Retrieval of all records (including song record, download records, and monthly download count
records) for a song, facilitated by a table called Songs.

• Search for most downloaded songs, facilitated by the Songs table’s global secondary index called
DownloadsByMonth.

Ski resort data model

This data model represents a ski resort that has a large collection of data for each ski lift collected
daily.

The access patterns facilitated by this data model are:

Discussion forum data model API Version 2012-08-10 1532

Amazon DynamoDB Developer Guide

• Retrieval of all data for a given ski lift or overall resort, dynamic and static, facilitated by a table
called SkiLifts.

• Retrieval of all dynamic data (including unique lift riders, snow coverage, avalanche danger,
and lift status) for a ski lift or the overall resort on a specific date, facilitated by a table called
SkiLifts.

• Retrieval of all static data (including if the lift is for experienced riders only, vertical feet the lift
rises, and lift riding time) for a specific ski lift, facilitated by a table called SkiLifts.

• Retrieval of date of data recorded for a specific ski lift or the overall resort sorted by total unique
riders, facilitated by the SkiLifts table's global secondary index called SkiLiftsByRiders.

Credit card offers data model

This data model is used by a Credit Card Offers Application.

A credit card provider produces offers over time. These offers include balance transfers without
fees, increased credit limits, lower interest rates, cash back, and airline miles. After a customer
accepts or declines these offers, the respective offer status is updated accordingly.

The access patterns facilitated by this data model are:

• Retrieval of account records using AccountId, as facilitated by the main table.

• Retrieval of all the accounts with few projected items, as facilitated by the secondary index
AccountIndex.

• Retrieval of accounts and all the offer records associated with those accounts by using
AccountId, as facilitated by the main table.

• Retrieval of accounts and specific offer records associated with those accounts by using
AccountId and OfferId, as facilitated by the main table.

• Retrieval of all ACCEPTED/DECLINED offer records of specific OfferType associated with
accounts using AccountId, OfferType, and Status, as facilitated by the secondary index
GSI1.

• Retrieval of offers and associated offer item records using OfferId, as facilitated by the main
table.

Bookmarks data model

This data model is used store bookmarks for customers.

Credit card offers data model API Version 2012-08-10 1533

Amazon DynamoDB Developer Guide

A customer can have many bookmarks and a bookmark can belong to many customers. This data
model represents a many-to-many relationship.

The access patterns facilitated by this data model are:

• A single query by customerId can now return customer data as well as bookmarks.

• A query ByEmail index returns customer data by email address. Note that bookmarks are not
retrieved by this index.

• A query ByUrl index gets bookmarks data by URL. Note that we have customerId as the sort key
for the index because the same URL can be bookmarked by multiple customers.

• A query ByCustomerFolder index gets bookmarks by folder for each customer.

Release history for NoSQL Workbench

The following table describes the important changes in each release of the NoSQL Workbench
client tool.

Version Change Description Date

3.13.5 Capacity mode for
default table settings
is now on-demand

When you create a
table with default
settings, DynamoDB
creates a table that
uses on-demand
capacity mode
instead of provision
ed capacity mode.

February 24, 2025

3.13.0 NoSQL Workbench
operation builder
improvements

NoSQL Workbench
now includes native
support for dark
mode. Improved
table and item
operations in the
operations builder.
Item results and
operation builder

April 24, 2024

Release history API Version 2012-08-10 1534

Amazon DynamoDB Developer Guide

Version Change Description Date

request information
is available in JSON
format.

3.12.0 Cloning tables with
NoSQL Workbench
and returning
capacity consumed

You can now clone
tables between
DynamoDB local and
a DynamoDB web
service account or
between DynamoDB
web service accounts
for faster developme
nt iterations.
View RCU or WCU
consumed after
running an operation
using the Operations
Builder. We fixed the
overwrite data issue
when importing from
a CSV file.

February 26, 2024

3.11.0 DynamoDB local
improvements

You can now
specify port when
launching the built-
in DynamoDB local
instance. NoSQL
Workbench can
now be installed on
Windows without
admin rights. We
have updated
the data model
templates.

January 17, 2024

Release history API Version 2012-08-10 1535

Amazon DynamoDB Developer Guide

Version Change Description Date

3.10.0 Native support for
Apple silicon

NoSQL Workbench
now includes
native support for
Mac with Apple
silicon. You can now
configure sample
data generation
format for attributes
of type Number.

December 5, 2023

3.9.0 Data modeler
improvements

Visualizer now
supports committin
g data models to
DynamoDB local
with the option to
overwrite existing
tables.

November 3, 2023

3.8.0 Sample data
generation

NoSQL Workbench
now supports
generating sample
data for your
DynamoDB data
models.

September 25, 2023

3.6.0 Improvements in the
Operations builder

Connections
management
improvements in the
Operations builder.
Attribute names in
Data Modeler can
now be changed
without deleting
data. Other bug fixes.

April 11, 2023

Release history API Version 2012-08-10 1536

Amazon DynamoDB Developer Guide

Version Change Description Date

3.5.0 Support for new
Amazon Regions

NoSQL Workbench
now supports the ap-
south-2, ap-southe
ast-3, ap-southe
ast-4, eu-central-2,
eu-south-2, me-
central-1, and me-
west-1 regions.

February 23, 2023

3.4.0 Support for
DynamoDB local

NoSQL Workbench
now supports
installing DynamoDB
local as part of the
installation process.

December 6, 2022

3.3.0 Support for control
plane operations

Operation Builder
now supports control
plane operations.

June 1, 2022

3.2.0 CSV import and
export

You can now import
sample data from
a CSV file in the
Visualizer tool,
and also export
the results of an
Operation Builder
query to a CSV file.

October 11, 2021

3.1.0 Save operations The Operation
Builder in NoSQL
Workbench now
supports saving
operations for later
use.

July 12, 2021

Release history API Version 2012-08-10 1537

Amazon DynamoDB Developer Guide

Version Change Description Date

3.0.0 Capacity settings
and CloudFormation
import/export

NoSQL Workbench
for Amazon
DynamoDB now
supports specifying
a read/write capacity
mode for tables, and
can now import and
export data models in
Amazon CloudForm
ation format.

April 21, 2021

2.2.0 Support for PartiQL NoSQL Workbench
for Amazon
DynamoDB adds
support for building
PartiQL statements
for DynamoDB.

December 4, 2020

1.1.0 Support for Linux. NoSQL Workbench
for Amazon
DynamoDB is
supported on Linux—
Ubuntu, Fedora, and
Debian.

May 4, 2020

1.0.0 NoSQL Workbench
for Amazon
DynamoDB – GA.

NoSQL Workbench
for Amazon
DynamoDB is
generally available.

March 2, 2020

Release history API Version 2012-08-10 1538

Amazon DynamoDB Developer Guide

Version Change Description Date

0.4.1 Support for IAM
roles and temporary
security credentials.

NoSQL Workbench
for Amazon
DynamoDB adds
support for Amazon
Identity and Access
Management (IAM)
roles and temporary
security credentials.

December 19, 2019

0.3.1 Support for
DynamoDB local
(Downloadable
Version).

The NoSQL
Workbench now
supports connectin
g to DynamoDB
local (Downloadable
Version) to design,
create, query, and
manage DynamoDB
tables.

November 8, 2019

0.2.1 NoSQL Workbench
preview released.

This is the initial
release of NoSQL
Workbench for
DynamoDB. Use
NoSQL Workbench
to design, create,
query, and manage
DynamoDB tables.

September 16, 2019

Release history API Version 2012-08-10 1539

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

Backup and restore for DynamoDB

DynamoDB offers on-demand backups and point-in-time recovery (PITR) backups to help protect
your DynamoDB data from disaster events and offers data archiving for long-term retention.
You can back up tables from a few megabytes to hundreds of terabytes of data, with no impact
on performance and availability to your production applications. All backups are automatically
encrypted, cataloged, and easily discoverable.

With on-demand backups, you can create a snapshot backup of your table that DynamoDB stores
and manages. You're charged based on the size and duration of your backups. Using on-demand
backup, you can restore your entire DynamoDB table to the exact state it was in when the backup
was created.

There are two options for creating and managing DynamoDB on-demand backups:

• DynamoDB

• Amazon Backup

You can use the DynamoDB on-demand backup capability to create full backups of your tables for
long-term retention, and archiving for regulatory compliance needs. You can back up and restore
your table data anytime from the Amazon Web Services Management Console or with a single API
call.

Point-in-time recovery (PITR) backups are fully managed by DynamoDB and provide up to 35 days
of recovery points at a per second granularity. To use point-in-time recovery, which are continuous
backups, enable point-in-time recovery (PITR) on your DynamoDB table. You get charged based on
the size of your DynamoDB table for the duration you have PITR enabled on the table. Enabling
Point-in-Time Recovery (PITR) on your DynamoDB table continuously backs up your data. This
helps you restore your table to a specific point in time within the PITR recovery period by creating a
new DynamoDB table with the exact state of your original table at that point in time.

Point-in-time recovery helps protect your DynamoDB tables from accidental write or delete
operations. With point-in-time recovery, you don't have to worry about creating, maintaining, or
scheduling on-demand backups. For example, suppose that a test script writes accidentally to a
production DynamoDB table.

With point-in-time recovery, you can restore your table to any point in time during the last 35 days.
You can set the recovery period to any value between 1 and 35 days. After you enable point-in-

API Version 2012-08-10 1540

https://docs.aws.amazon.com/aws-backup/latest/devguide/whatisbackup.html

Amazon DynamoDB Developer Guide

time recovery, you can restore to any point in time from five minutes before the current time until
the configured recovery period. DynamoDB maintains incremental backups of your table.

In addition, point-in-time operations don't affect performance or API latencies.

You can restore a DynamoDB table to a point in time using the Amazon Web Services Management
Console, the Amazon Command Line Interface (Amazon CLI), or the DynamoDB API. The point-in-
time recovery process restores to a new table.

For more information about Amazon Region availability and pricing, see Amazon DynamoDB
pricing.

Note

• Tagging and attribute-based access control (ABAC) aren't supported for DynamoDB
backups. To use ABAC with backups, we recommend that you use Amazon Backup.

• Tags aren't preserved in restored tables. You need to add tags to restored tables before
you can use tag-based conditions in your policies.

The following video will give you an introductory look at the backup and restore concept and talk
more about point-in-time recovery.

Backup and restore

Topics

• Point-in-time backups for DynamoDB

• Using on-demand DynamoDB backup and restore

• Understanding Amazon DynamoDB billing for backups

• Restore a table in DynamoDB

• Using Amazon Backup with DynamoDB

Point-in-time backups for DynamoDB

Amazon DynamoDB point-in-time recovery (PITR) provides automatic continuous backups of your
DynamoDB table data. Point-in-time recovery (PITR) backups are fully managed by DynamoDB and

Point-in-time backups API Version 2012-08-10 1541

http://www.amazonaws.cn/dynamodb/pricing
http://www.amazonaws.cn/dynamodb/pricing
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html
https://www.youtube.com/embed/g4WPLFXLwDE

Amazon DynamoDB Developer Guide

provide up to 35 days of recovery points at a per second granularity. With point-in-time recovery,
you don't have to worry about creating, maintaining, or scheduling on-demand backups. This
section provides an overview of how the process works in DynamoDB.

Before you begin

Before you enable point-in-time recovery (PITR) on an Amazon DynamoDB table, consider the
following:

• Setting the RecoveryPeriodinDays allows you to shorten the time period for which
continuous backups are taken. By default, your RecoveryPeriodinDays is 35. However, you
can set it to be any value between 1 and 35. Shortening the RecoveryPeriodinDays has
no impact on PITR pricing because the price is based on the size of table and local secondary
indexes.

• If you disable point-in-time recovery and later re-enable it on a table, you reset the start time for
which you can recover that table. As a result, you can only immediately restore that table using
the LatestRestorableDateTime.

• You can enable point-in-time recovery on each local replica of a global table. When you restore
the table, the backup restores to an independent table that is not part of the global table. If
you are using Global Tables version 2019.11.21 (Current) of global tables, you can create a new
global table from the restored table. For more information, see How DynamoDB global tables
work.

• You can also restore your DynamoDB table data across Amazon Regions such that the restored
table is created in a different Region from where the source table resides. You can do cross-
Region restores between Amazon commercial Regions, Amazon China Regions, and Amazon
GovCloud (US) Regions. You pay only for the data you transfer out of the source Region and for
restoring to a new table in the destination Region.

• Amazon CloudTrail logs all console and API actions for point-in-time recovery to enable logging,
continuous monitoring, and auditing. For more information, see Logging DynamoDB operations
by using Amazon CloudTrail.

Topics

• Enable point-in-time recovery in DynamoDB

Before you begin API Version 2012-08-10 1542

Amazon DynamoDB Developer Guide

Enable point-in-time recovery in DynamoDB

Amazon DynamoDB point-in-time recovery (PITR) provides automatic backups of your DynamoDB
table data. This section provides an overview of how the process works in DynamoDB.

Note

DynamoDB charges for PITR based on the size of each DynamoDB table, including table
data and local secondary indexes. Changing the recovery window (for example, from
35 days to 1 day) doesn't reduce the price. The cost remains the same regardless of the
recovery period you choose. The configured maximum recovery period doesn't impact the
price you're charged for turning on PITR. To determine your backup charges, DynamoDB
continuously monitors the size of the tables that have PITR turned on. You're billed for PITR
usage until you turn off PITR for each table.

Topics

• Enabling point-in-time recovery

• Enable PITR (console)

• Enable PITR (Amazon CLI)

• Enable PITR (Amazon CloudFormation)

• Enable PITR (API)

• Recovery Period

• Edit PITR

• Delete a table with PITR enabled

Enabling point-in-time recovery

You can enable point-in-time recovery using the Amazon Web Services Management Console,
Amazon Command Line Interface (Amazon CLI), or the DynamoDB API. When enabled, point-in-
time recovery provides continuous backups until you explicitly turn it off.

After you enable point-in-time recovery, you can restore to any point in time
within EarliestRestorableDateTime and LatestRestorableDateTime.
LatestRestorableDateTime is typically five minutes before the current time. For more
information, see Restoring a DynamoDB table to a point in time.

Enable point-in-time recovery API Version 2012-08-10 1543

Amazon DynamoDB Developer Guide

Note

The point-in-time recovery process always restores to a new table.

Enable PITR (console)

To enable PITR using the DynamoDB console

1. Navigate to the DynamoDB console.

2. Choose Tables from the left navigation and select your DynamoDB table.

3. From the Backups tab, for the Point in Time Recovery option, choose Edit.

4. Choose Turn on point-in-time recovery.

5. Choose a value between 1 and 35 for your backup recovery period. This indicates the
maximum time period for which the continuous backup is recoverable.

Enable PITR (Amazon CLI)

Note

If you receive errors when running Amazon CLI commands, see Troubleshoot Amazon CLI
errors. Make sure you're using the most recent Amazon CLI version.

Run the update-continuous-backups command with the point-in-time-recovery-specification
setting turned on:

aws dynamodb update-continuous-backups \
--table-name Music \
--point-in-time-recovery-specification
 PointInTimeRecoveryEnabled=true,RecoveryPeriodInDays=35

Enable PITR (Amazon CloudFormation)

Use the AWS::DynamoDB::Table resource with the PointInTimeRecoverySpecification
property turned on:

Resources:

Enable point-in-time recovery API Version 2012-08-10 1544

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-troubleshooting.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-troubleshooting.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/update-continuous-backups.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

 iotCatalog:
 Type: AWS::DynamoDB::Table
 Properties:
 ...
 PointInTimeRecoverySpecification:
 PointInTimeRecoveryEnabled: true
 RecoveryPeriodInDays: 35

Request syntax example:

{
 "PointInTimeRecoverySpecification": {
 "PointInTimeRecoveryEnabled": boolean,
 "RecoveryPeriodInDays: number
 },
 "TableName": "string"
}

Enable PITR (API)

Run the UpdateContinuousBackups API operation with the
PointInTimeRecoverySpecification parameter turned on.

Request syntax example:

{
 "PointInTimeRecoverySpecification": {
 "PointInTimeRecoveryEnabled": boolean,
 "RecoveryPeriodInDays" : number
 },
 "TableName": "string"
}

Response syntax example:

{
 "ContinuousBackupsDescription": {
 "ContinuousBackupsStatus": "string",
 "PointInTimeRecoveryDescription": {
 "PointInTimeRecoveryStatus": "string",
 "EarliestRestorableDateTime": number,
 "RecoveryPeriodInDays": number,

Enable point-in-time recovery API Version 2012-08-10 1545

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateContinuousBackups.html

Amazon DynamoDB Developer Guide

 "LatestRestorableDateTime": number
 }
 }
}

Python

import boto3

dynamodb = boto3.client('dynamodb')

response = dynamodb.update_continuous_backups(
 TableName=<table_name>,
 PointInTimeRecoverySpecification={
 'PointInTimeRecoveryEnabled': True,
 'RecoveryPeriodInDays': 35
 }
)

Recovery Period

You can set the recovery period for continuous backups to be any number between 1 and 35 days.
This RecoveryPeriodInDays determines the time period for which your continuous backups are
maintained. For example, if you set this value to be 30 days, you'll only have the ability to restore
your table to any point in time from the past 30 days.

Note

DynamoDB charges for PITR based on the size of each DynamoDB table, including table
data and local secondary indexes. The configured maximum recovery period doesn't impact
the price you're charged for turning on PITR. For details on pricing, see DynamoDB pricing.

Edit PITR

You can edit the PITR setting on your table and change the recovery period. If you
change the recovery period and increase it to a value higher than previously set, your
EarliestRestorePoint will not change immediately. Since the recovery period is a rolling
window, DynamoDB will continue to take automatic backups until the new increased period
reached. If you change the recovery period and decrease it to a value lower than previously set,

Enable point-in-time recovery API Version 2012-08-10 1546

https://www.amazonaws.cn/dynamodb/pricing/on-demand/

Amazon DynamoDB Developer Guide

your EarliestRestorePoint will immediately decrease to match you recovery period, and any
continuous backups that fall outside of the new set value will not be recoverable.

Delete a table with PITR enabled

When you delete a table that has point-in-time recovery enabled, DynamoDB automatically creates
a backup snapshot called a system backup and retains it for 35 days (at no additional cost). You can
use the system backup to restore the deleted table to the state it was in before deletion. All system
backups follow a standard naming convention of table-name$DeletedTableBackup.

Note

Once a table with point-in-time recovery enabled is deleted, you can use system backup to
restore that table to a single point in time. The system backup will be created upon table
deletion, and is a snapshot of the table right before the table is deleted.

Using on-demand DynamoDB backup and restore

Amazon DynamoDB supports stand-alone on-demand backup and restore features. Those features
are available to you independent of whether you use Amazon Backup.

You can use the DynamoDB on-demand backup capability to create full backups of your tables for
long-term retention and archival for regulatory compliance needs. You can back up and restore
your table data anytime with a single click on the Amazon Management Console or with a single
API call. Backup and restore actions run with zero impact on table performance or availability.

You can create table backups using the console, the Amazon Command Line Interface (Amazon
CLI), or the DynamoDB API. For more information, see Backing up a DynamoDB table.

For information about restoring a table from a backup, see Restoring a DynamoDB table from a
backup.

Backing up and restoring DynamoDB tables with DynamoDB: How it
works

You can use the DynamoDB on-demand backup feature to create full backups of your Amazon
DynamoDB tables. This feature is available independently from Amazon backup. This section
provides an overview of what happens during the DynamoDB backup and restore process.

On-demand backups API Version 2012-08-10 1547

Amazon DynamoDB Developer Guide

Backups

When you create an on-demand backup with DynamoDB, a time marker of the request is
cataloged. The backup is created asynchronously by applying all changes until the time of the
request to the last full table snapshot. DynamoDB backup requests are processed instantaneously
and become available for restore within minutes.

Note

Each time you create an on-demand backup, the entire table data is backed up. There is no
limit to the number of on-demand backups that can be taken.

All backups in DynamoDB work without consuming any provisioned throughput on the table.

DynamoDB backups do not guarantee causal consistency across items; however, the skew between
updates in a backup is usually much less than a second.

While a backup is in progress, you can't do the following:

• Pause or cancel the backup operation.

• Delete the source table of the backup.

• Disable backups on a table if a backup for that table is in progress.

If you don't want to create scheduling scripts and cleanup jobs, you can use Amazon Backup to
create backup plans with schedules and retention policies for your DynamoDB tables. Amazon
Backup runs the backups and deletes them when they expire. For more information, see the
Amazon Backup Developer Guide.

In addition to Amazon Backup, you can schedule periodic or future backups by using Amazon
Lambda functions. For more information, see the blog post A serverless solution to schedule your
Amazon DynamoDB On-Demand backup.

If you're using the console, any backups created using Amazon Backup are listed on the Backups
tab with the Backup type set to AWS.

How it works API Version 2012-08-10 1548

https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html
https://aws.amazon.com/blogs/database/a-serverless-solution-to-schedule-your-amazon-dynamodb-on-demand-backup/
https://aws.amazon.com/blogs/database/a-serverless-solution-to-schedule-your-amazon-dynamodb-on-demand-backup/

Amazon DynamoDB Developer Guide

Note

You can't delete backups marked with a Backup type of Amazon using the DynamoDB
console. To manage these backups, use the Amazon Backup console.

To learn how to perform a backup, see Backing up a DynamoDB table.

Restores

You restore a table without consuming any provisioned throughput on the table. You can do a full
table restore from your DynamoDB backup, or you can configure the destination table settings.
When you do a restore, you can change the following table settings:

• Global secondary indexes (GSIs)

• Local secondary indexes (LSIs)

• Billing mode

• Provisioned read and write capacity

• Encryption settings

Important

When you do a full table restore, the destination table is set with the same provisioned
read capacity units and write capacity units as the source table, as recorded at the time the
backup was requested. The restore process also restores the local secondary indexes and
the global secondary indexes.

You can also restore your DynamoDB table data across Amazon Regions such that the restored
table is created in a different Region from where the backup resides. You can do cross-Region
restores between Amazon commercial Regions, Amazon China Regions, and Amazon GovCloud (US)
Regions. You pay only for the data that you transfer out of the source Region and for restoring to a
new table in the destination Region.

Restores can be faster and more cost-efficient if you choose to exclude some or all secondary
indexes from being created on the new restored table.

How it works API Version 2012-08-10 1549

Amazon DynamoDB Developer Guide

You must manually set up the following on the restored table:

• Auto scaling policies

• Amazon Identity and Access Management (IAM) policies

• Amazon CloudWatch metrics and alarms

• Tags

• Stream settings

• Time to Live (TTL) settings

• Deletion protection settings

• Point in time recovery (PITR) settings

You can only restore the entire table data to a new table from a backup. You can write to the
restored table only after it becomes active.

Note

You can't overwrite an existing table during a restore operation.

Service metrics show that 95 percent of customers' table restores complete in less than one hour.
However, restore times are directly related to the configuration of your tables (such as the size of
your tables and the number of underlying partitions) and other related variables. A best practice
when planning for disaster recovery is to regularly document average restore completion times and
establish how these times affect your overall Recovery Time Objective.

To learn how to perform a restore, see Restoring a DynamoDB table from a backup.

You can use IAM policies for access control. For more information, see Using IAM with DynamoDB
backup and restore.

All backup and restore console and API actions are captured and recorded in Amazon CloudTrail for
logging, continuous monitoring, and auditing.

Backing up a DynamoDB table

This section describes how to use the Amazon DynamoDB console or the Amazon Command Line
Interface to back up a table.

Backing up a table API Version 2012-08-10 1550

Amazon DynamoDB Developer Guide

Creating a table backup (console)

Follow these steps to create a backup named MusicBackup for an existing Music table using the
Amazon Web Services Management Console.

To create a table backup

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. You can create a backup by doing one of the following:

• On the Backups tab of the Music table, choose Create backup.

• In the navigation pane on the left side of the console, choose Backups. Then choose Create
backup.

3. Make sure that Music is the table name, and enter MusicBackup for the backup name. Then,
choose Create backup to create the backup.

Note

If you create backups using the Backups section in the navigation pane, the table
isn't preselected for you. You have to manually choose the source table name for the
backup.

Backing up a table API Version 2012-08-10 1551

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

While the backup is being created, the backup status is set to Creating. After the backup is
complete, the backup status changes to Available.

Creating a table backup (Amazon CLI)

Follow these steps to create a backup for an existing table Music using the Amazon CLI.

To create a table backup

• Create a backup with the name MusicBackup for the Music table.

aws dynamodb create-backup --table-name Music \
 --backup-name MusicBackup

While the backup is being created, the backup status is set to CREATING.

{
 "BackupDetails": {
 "BackupName": "MusicBackup",
 "BackupArn": "arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489602797149-73d8d5bc",
 "BackupStatus": "CREATING",
 "BackupCreationDateTime": 1489602797.149
 }
}

Backing up a table API Version 2012-08-10 1552

Amazon DynamoDB Developer Guide

After the backup is complete, its BackupStatus should change to AVAILABLE. To confirm this,
use the describe-backup command. You can get the input value of backup-arn from the
output of the previous step or by using the list-backups command.

aws dynamodb describe-backup \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/backup/01489173575360-
b308cd7d

To keep track of your backups, you can use the list-backups command. It lists all your backups
that are in CREATING or AVAILABLE status.

aws dynamodb list-backups

The list-backups command and the describe-backup command are useful to check
information about the source table of the backup.

Restoring a DynamoDB table from a backup

This section describes how to restore a table from a backup using the Amazon DynamoDB console
or the Amazon Command Line Interface (Amazon CLI).

Note

If you want to use the Amazon CLI, you must configure it first. For more information, see
Accessing DynamoDB.

Restoring a table from a backup (console)

The following procedure shows how to restore the Music table by using the MusicBackup file
that is created in the Backing up a DynamoDB table tutorial.

Note

This procedure assumes that the Music table no longer exists before restoring it using the
MusicBackup file.

Restoring a table API Version 2012-08-10 1553

Amazon DynamoDB Developer Guide

To restore a table from a backup

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. In the list of backups, choose MusicBackup.

4. Choose Restore.

5. Enter Music as the new table name. Confirm the backup name and other backup details. Then
choose Restore table to start the restore process.

Note

You can restore the table to the same Amazon Region or to a different Region from
where the backup resides. You can also exclude secondary indexes from being created
on the new restored table. In addition, you can specify a different encryption mode.
Tables restored from backups are always created using the DynamoDB Standard table
class.

Restoring a table API Version 2012-08-10 1554

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Restoring a table API Version 2012-08-10 1555

Amazon DynamoDB Developer Guide

The table that is being restored is shown with the status Creating. After the restore process is
finished, the status of the Music table changes to Active.

Restoring a table from a backup (Amazon CLI)

Follow these steps to use the Amazon CLI to restore the Music table using the MusicBackup that
is created in the Backing up a DynamoDB table tutorial.

To restore a table from a backup

1. Confirm the backup that you want to restore by using the list-backups command. This
example uses MusicBackup.

aws dynamodb list-backups

To get additional details for the backup, use the describe-backup command. You can get the
input backup-arn from the previous step.

aws dynamodb describe-backup \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489173575360-b308cd7d

2. Restore the table from the backup. In this case, the MusicBackup restores the Music table to
the same Amazon Region.

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489173575360-b308cd7d

3. Restore the table from the backup with custom table settings. In this case, the MusicBackup
restores the Music table and specifies an encryption mode for the restored table.

Note

The sse-specification-override parameter takes the same values as the sse-
specification-override parameter used in the CreateTable command. To learn
more, see Managing encrypted tables in DynamoDB.

Restoring a table API Version 2012-08-10 1556

Amazon DynamoDB Developer Guide

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01581080476474-e177ebe2 \
--sse-specification-override Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-
abcd-1234-a123-ab1234a1b234

You can restore the table to a different Amazon Region from where the backup resides.

Note

• The sse-specification-override parameter is mandatory for cross-Region
restores but optional for restores in the same Region as the source table.

• When performing a cross-Region restore from the command line, you must set
the default Amazon Region to the desired destination Region. To learn more, see
Command line options in the Amazon Command Line Interface User Guide.

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01581080476474-e177ebe2 \
--sse-specification-override Enabled=true,SSEType=KMS

You can override the billing mode and the provisioned throughput for the restored table.

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489173575360-b308cd7d \
--billing-mode-override PAY_PER_REQUEST

You can exclude some or all secondary indexes from being created on the restored table.

Restoring a table API Version 2012-08-10 1557

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html

Amazon DynamoDB Developer Guide

Note

Restores can be faster and more cost-efficient if you exclude some or all secondary
indexes from being created on the restored table.

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01581081403719-db9c1f91 \
--global-secondary-index-override '[]' \
--sse-specification-override Enabled=true,SSEType=KMS

Note

The secondary indexes provided should match existing indexes. You cannot create new
indexes at the time of restore.

You can use a combination of different overrides. For example, you can use a single global
secondary index and change provisioned throughput at the same time, as follows.

aws dynamodb restore-table-from-backup \
--target-table-name Music \
--backup-arn arn:aws:dynamodb:eu-west-1:123456789012:table/Music/
backup/01581082594992-303b6239 \
--billing-mode-override PROVISIONED \
--provisioned-throughput-override ReadCapacityUnits=100,WriteCapacityUnits=100 \
--global-secondary-index-override IndexName=singers-
index,KeySchema=["{AttributeName=SingerName,KeyType=HASH}"],Projection="{ProjectionType=KEYS_ONLY}",ProvisionedThroughput="{ReadCapacityUnits=5,WriteCapacityUnits=5}"
 \
--sse-specification-override Enabled=true,SSEType=KMS

To verify the restore, use the describe-table command to describe the Music table.

aws dynamodb describe-table --table-name Music

Restoring a table API Version 2012-08-10 1558

Amazon DynamoDB Developer Guide

The table that is being restored from the backup is shown with the status Creating. After the
restore process is finished, the status of the Music table changes to Active.

Important

While a restore is in progress, don't modify or delete your IAM role policy; otherwise,
unexpected behavior can result. For example, suppose that you removed write
permissions for a table while that table is being restored. In this case, the underlying
RestoreTableFromBackup operation would not be able to write any of the restored data
to the table.
After the restore operation is complete, you can modify or delete your IAM role policy.
IAM policies involving source IP restrictions for accessing the target restore table should
have the aws:ViaAWSService key set to false to ensure that the restrictions apply only
to requests made directly by a principal. Otherwise, the restore will be canceled.
If your backup is encrypted with an Amazon managed key or a customer managed key,
don't disable or delete the key while a restore is in progress, or the restore will fail.
After the restore operation is complete, you can change the encryption key for the restored
table and disable or delete the old key.

Deleting a DynamoDB table backup

This section describes how to use the Amazon Web Services Management Console or the Amazon
Command Line Interface (Amazon CLI) to delete an Amazon DynamoDB table backup.

Note

If you want to use the Amazon CLI, you have to configure it first. For more information, see
Using the Amazon CLI.

Deleting a table backup (console)

The following procedure shows how to use the console to delete the MusicBackup that is created
in the Backing up a DynamoDB table tutorial.

Deleting a table backup API Version 2012-08-10 1559

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceip
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-viaawsservice

Amazon DynamoDB Developer Guide

To delete a backup

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. In the list of backups, choose MusicBackup.

4. Choose Delete. Confirm that you want to delete the backup by typing delete and clicking
Delete.

Deleting a table backup (Amazon CLI)

The following example deletes a backup for an existing table Music table using the Amazon CLI.

aws dynamodb delete-backup \
--backup-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489602797149-73d8d5bc

Using IAM with DynamoDB backup and restore

You can use Amazon Identity and Access Management (IAM) to restrict Amazon DynamoDB backup
and restore actions for some resources. The CreateBackup and RestoreTableFromBackup APIs
operate on a per-table basis.

For more information about using IAM policies in DynamoDB, see Identity-based policies for
DynamoDB.

The following are examples of IAM policies that you can use to configure specific backup and
restore functionality in DynamoDB.

Example 1: Allow the CreateBackup and RestoreTableFromBackup actions

The following IAM policy grants permissions to allow the CreateBackup and
RestoreTableFromBackup DynamoDB actions on all tables:

Using IAM API Version 2012-08-10 1560

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateBackup",
 "dynamodb:RestoreTableFromBackup",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWriteItem"
],
 "Resource": "*"
 }
]
}

Important

DynamoDB RestoreTableFromBackup permissions are necessary on the source backup,
and DynamoDB read and write permissions on the target table are necessary for restore
functionality.
DynamoDB RestoreTableToPointInTime permissions are necessary on the source table,
and DynamoDB read and write permissions on the target table are necessary for restore
functionality.

Example 2: Allow CreateBackup and deny RestoreTableFromBackup

The following IAM policy grants permissions for the CreateBackup action and denies the
RestoreTableFromBackup action:

Using IAM API Version 2012-08-10 1561

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:CreateBackup"],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": ["dynamodb:RestoreTableFromBackup"],
 "Resource": "*"
 }

]
}

Example 3: Allow ListBackups and deny CreateBackup and
RestoreTableFromBackup

The following IAM policy grants permissions for the ListBackups action and denies the
CreateBackup and RestoreTableFromBackup actions:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:ListBackups"],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:CreateBackup",
 "dynamodb:RestoreTableFromBackup"

Using IAM API Version 2012-08-10 1562

Amazon DynamoDB Developer Guide

],
 "Resource": "*"
 }

]
}

Example 4: Allow ListBackups and deny DeleteBackup

The following IAM policy grants permissions for the ListBackups action and denies the
DeleteBackup action:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:ListBackups"],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": ["dynamodb:DeleteBackup"],
 "Resource": "*"
 }

]
}

Example 5: Allow RestoreTableFromBackup and DescribeBackup for all resources
and deny DeleteBackup for a specific backup

The following IAM policy grants permissions for the RestoreTableFromBackup and
DescribeBackup actions and denies the DeleteBackup action for a specific backup resource:

Using IAM API Version 2012-08-10 1563

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeBackup",
 "dynamodb:RestoreTableFromBackup"
],
 "Resource": "arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489173575360-b308cd7d"
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWriteItem"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:DeleteBackup"
],
 "Resource": "arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/01489173575360-b308cd7d"
 }
]
}

Using IAM API Version 2012-08-10 1564

Amazon DynamoDB Developer Guide

Important

DynamoDB RestoreTableFromBackup permissions are necessary on the source backup,
and DynamoDB read and write permissions on the target table are necessary for restore
functionality.
DynamoDB RestoreTableToPointInTime permissions are necessary on the source table,
and DynamoDB read and write permissions on the target table are necessary for restore
functionality.

Example 6: Allow CreateBackup for a specific table

The following IAM policy grants permissions for the CreateBackup action on the Movies table
only:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:CreateBackup"],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:123456789012:table/Movies"
]
 }
]
}

Example 7: Allow ListBackups

The following IAM policy grants permissions for the ListBackups action:

JSON

{
 "Version":"2012-10-17",

Using IAM API Version 2012-08-10 1565

Amazon DynamoDB Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:ListBackups"],
 "Resource": "*"
 }
]
}

Important

You can't grant permissions for the ListBackups action on a specific table.

Example 8: Allow access to Amazon Backup features

You will need API permissions for the StartAwsBackupJob action for a successful backup with
advanced features, and the dynamodb:RestoreTableFromAwsBackup action to successfully
restore that backup.

The following IAM policy grants Amazon Backup the permissions to trigger backups with advanced
features and restores. Also note that if the tables are encrypted the policy will need access to the
Amazon KMS key.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DescribeQueryScanBooksTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:StartAwsBackupJob",
 "dynamodb:DescribeTable",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Books"
 },

Using IAM API Version 2012-08-10 1566

encryption.usagenotes.html#dynamodb-kms-authz

Amazon DynamoDB Developer Guide

 {
 "Sid": "AllowRestoreFromAwsBackup",
 "Effect": "Allow",
 "Action": [
 "dynamodb:RestoreTableFromAwsBackup"
],
 "Resource": "*"
 }
]
}

Example 9: Deny RestoreTableToPointInTime for a Specific Source Table

The following IAM policy denies permissions for the RestoreTableToPointInTime action for a
specific source table:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:RestoreTableToPointInTime"
],
 "Resource": "arn:aws:dynamodb:us-east-1:123456789012:table/Music"
 }
]
}

Example 10: Deny RestoreTableFromBackup for all Backups for a Specific Source
Table

The following IAM policy denies permissions for the RestoreTableToPointInTime action for all
backups for a specific source table:

Using IAM API Version 2012-08-10 1567

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:RestoreTableFromBackup"
],
 "Resource": "arn:aws:dynamodb:us-east-1:123456789012:table/Music/
backup/*"
 }
]
}

Understanding Amazon DynamoDB billing for backups

This guide provides details about how DynamoDB billing works for backups. We'll break down the
various components that contribute to the overall cost, providing clear explanations and practical
examples.

DynamoDB offers on-demand backups and point-in-time recovery (PITR) backups to help protect
your DynamoDB data from disaster events and offers data archiving for long-term retention.

How it works

DynamoDB on-demand backups are billed monthly. If you take a backup on any particular day
of the month, you’ll see a single charge for that backup calculated for the remaining days of
the month (example: creating a backup on the 27th, you will only be charged for the few days
remaining in that month, applied as a single charge on the 27th).

If you retain your previously taken backups for subsequent months, you'll always see a full month’s
charge for that backup applied on the 1st. If the backup is removed before the month’s end, the
charges will be adjusted based on actual usage.

As an example, if you created a backup on July 27th, and it is maintained through the month of
August, you will see the following charges for that backup:

Billing for backups API Version 2012-08-10 1568

Amazon DynamoDB Developer Guide

• A charge on July 27th for the remaining days of July

• A charge on August 1st for the entire month of August

• A charge on the 1st of every subsequent month that backup exists

When backups are maintained for DynamoDB tables, you may observe that the expense for the
DynamoDB (Region)-TimedBackupStorage-ByteHrs usage metric seems abnormally high on
the 1st of the month. In addition, if you check this metric at the start of a new month and compare
it against previous billing cycles, you may observe what appears to be a large spike in usage. This is
by design. On the 1st of every month, any existing DynamoDB backups will have usage charges for
the entire month applied. Any DynamoDB backups that are removed during the month will have
their usage expense prorated to reflect actual usage. As a result, you may see the charge (applied
on the 1st) decrease throughout the month. This is because retention policies apply expirations or
manual deletions to carried over backups occur. This will be explored in a scenario below.

Similarly, you'll notice smaller spikes throughout the month as new backups are created, with their
charges applied on the day of creation for the remainder of the month.

DynamoDB backup billing example

Here is an example of what you may see in Cost Explorer at the start of the month:

Notice how February 1st appears to have a much larger spike relative to previous months. Let’s
break down why this occurs.

From the DynamoDB Pricing Page:

DynamoDB backup billing example API Version 2012-08-10 1569

https://aws.amazon.com/dynamodb/pricing/on-demand/

Amazon DynamoDB Developer Guide

“The total backup storage size billed each month is the sum of all backups of DynamoDB tables.
DynamoDB monitors the size of on-demand backups continuously throughout the month to
determine your backup charges.”

This explains why the bill consistently shows a large spike in usage on the 1st of every month.
Any existing backups coming into a new month have a full month’s charges applied to the 1st.
Put another way, if you enter the month with 300 DynamoDB backups, you will see a full month’s
usage charges applied on the 1st day of the month for all 300 backups.

New backups taken throughout the month will incur usage charges from the day of creation until
the end of the month.

What if the backup is deleted mid-month?

Here are a few scenarios to consider:

1. If a backup from the previous month is deleted on the 15th of the current month, the usage
charges for that backup,still applied on the 1st, will be adjusted to the actual usage instead of
the assumed full month of usage previously applied. The example below explains this more in
detail.

2. When you create a backup during the month, usage charges for the remainder of the month are
applied to the day it was created. However, if you delete this backup before the month ends,
your usage charges will be adjusted to include only the days the backup was active, still applied
on its creation date.

Why does the current month’s usage appear to be so much higher on the 1st than previous
months, and what happens if I remove the backups?

To answer this important 2-part question, let’s set up an example scenario using the following
information:

• Length of Month: 30 Days

• DynamoDB Backup Frequency: 10/day, 300/mo

• DynamoDB Backup Retention Policy: 30 Days

• DynamoDB Per-Backup Cost: $2/day, $60/mo

• Previous 1st of Month Total (TimedBackupStorage-ByteHrs, checked on the 1st of the
Current Month): $9,300

• Previous Month Total (TimedBackupStorage-ByteHrs): $18,600

DynamoDB backup billing example API Version 2012-08-10 1570

Amazon DynamoDB Developer Guide

• Current 1st of Month Total (TimedBackupStorage-ByteHrs, Checked on the 1st): $18,000

• Changes in DynamoDB Usage Month-to-Month: None

Using the information above, we can see that 300 backups were created in the previous month
with a policy to maintain them for 30 days. On the 1st of a new month, all of these backups still
remain as they've not yet hit the end of their recovery period. However, with each passing day, the
oldest sets of backups will begin to drop off, as shown here:

DynamoDB backup dropoff table

New month Day 1 Day 2 Day 3 Day 4 Day 5

Total
previous
month
backups
carried over

300 290 280 270 260

• On the 1st, we can see 300 backups @ $60/mo per backup, totaling $18,000 of
TimedBackupStorage-ByteHrs applied. This is in contrast to the previous month, where the
entire month’s total was $18,600.

• On the 2nd, 10 of those backups will have expired and drop off. When this occurs, the applied
charge for those backups will be adjusted to Actual Usage instead of Assumed Usage. This
results in those 10 backups, previously with an applied charge on the 1st of $600 (10 Backups x
30 Days) being adjusted down to $20 (10 Backups x 1 Day).

• The following day, the next block of 10 will expire and drop, shifting their usage from 30 days
down to 2 days, reducing their charge to $40 (10 Backups x 2 Days).

With every passing day, we’ll see that larger-than-previous-month spike begin to shrink. If we
expand this to cover the entire month, we’ll observe the following:

DynamoDB Backup Charges (1st of Month) Progression

300 backups in blocks of 10 1st 10th 20th 30th

Block 1 $600 $20 $20 $20

DynamoDB backup billing example API Version 2012-08-10 1571

Amazon DynamoDB Developer Guide

300 backups in blocks of 10 1st 10th 20th 30th

Block 2 $600 $40 $40 $40

Block 3 $600 $60 $60 $60

Block 4 $600 $80 $80 $80

Block 5 $600 $100 $100 $100

Block 6 $600 $120 $120 $120

Block 7 $600 $140 $140 $140

Block 8 $600 $160 $160 $160

Block 9 $600 $180 $180 $180

Block 10 $600 $600 $200 $200

Block 11 $600 $600 $220 $220

Block 12 $600 $600 $240 $240

Block 13 $600 $600 $260 $260

Block 14 $600 $600 $280 $280

Block 15 $600 $600 $300 $300

Block 16 $600 $600 $320 $320

Block 17 $600 $600 $340 $340

Block 18 $600 $600 $360 $360

Block 19 $600 $600 $380 $380

Block 20 $600 $600 $600 $400

Block 21 $600 $600 $600 $420

DynamoDB backup billing example API Version 2012-08-10 1572

Amazon DynamoDB Developer Guide

300 backups in blocks of 10 1st 10th 20th 30th

Block 22 $600 $600 $600 $440

Block 23 $600 $600 $600 $460

Block 24 $600 $600 $600 $480

Block 25 $600 $600 $600 $500

Block 26 $600 $600 $600 $520

Block 27 $600 $600 $600 $540

Block 28 $600 $600 $600 $560

Block 29 $600 $600 $600 $580

Block 30 $600 $600 $600 $600

1st of month total ($) $18,000 $13,500 $10,400 $9,300

As a new block drops off each day, it has its usage adjusted to how many days it existed, versus
the full month amount. As a result, by month’s end the charges observed on the 1st will have
dropped from the initial $18,000 down to the expected $9,300. This number, combined with the
newly created backups through the month (which will have a billing table similar to the above, but
reversed), will result in a monthly expense in line with last month’s $18,600.

Restore a table in DynamoDB

You can restore a DynamoDB table from your PITR backup or your on-demand backups using the
Amazon Web Services Management Console, the Amazon Command Line Interface (Amazon CLI),
or the DynamoDB API. The recovery process restores to a new DynamoDB table.

Restoring a table using point-in-time recovery

You can restore your table to any point in time up till the EarliestRestoreableDateTime.

Restores API Version 2012-08-10 1573

Amazon DynamoDB Developer Guide

Important

If you disable point-in-time recovery and later enable it on a table, you reset the start time
for which you can recover that table. As a result, you can only immediately restore that
table using the LatestRestorableDateTime.

When you restore using point-in-time recovery, DynamoDB restores your table data to the state
based on the selected date and time (day:hour:minute:second) to a new table. You restore a table
without consuming any provisioned throughput on the table. You can do a full table restore using
point-in-time recovery, or you can configure the destination table settings. You can change the
following table settings on the restored table:

• Global secondary indexes (GSIs)

• Local secondary indexes (LSIs)

• Billing mode

• Provisioned read and write capacity

• Encryption settings

Important

When you do a full table restore, the destination table is set with the same provisioned
read capacity units and write capacity units that the source table had when the backup
was requested. For example, suppose that a table's provisioned throughput was recently
lowered to 50 read capacity units and 50 write capacity units. You then restore the table's
state to three weeks ago, at which time its provisioned throughput was set to 100 read
capacity units and 100 write capacity units. In this case, DynamoDB restores your table data
to that point in time with the provisioned throughput from that time (100 read capacity
units and 100 write capacity units).

You can also restore your DynamoDB table data across Amazon Web Services Regions such that
the restored table is created in a different Region from where the source table resides. You can do
cross-Region restores between Amazon commercial Regions, Amazon China Regions, and Amazon
GovCloud (US). You pay only for the data you transfer out of the source Region and for restoring to
a new table in the destination Region.

Restoring a table using point-in-time recovery API Version 2012-08-10 1574

Amazon DynamoDB Developer Guide

Note

Cross-Region restore isn't supported if the source or destination Region is Asia Pacific
(Hong Kong) or Middle East (Bahrain).

Restores can be faster and more cost-efficient if you exclude some or all indexes from being
created on the restored table. You must manually set the following on the restored table:

• Auto scaling policies

• Amazon Identity and Access Management policies

• Amazon CloudWatch Events metrics and alarms

• Tags

• Stream settings

• Time to Live (TTL) settings

• Point-in-time recovery settings

The time it takes you to restore a table varies based on multiple factors and isn't always correlated
with the size of the table.

Restoring a DynamoDB table to a point in time

Amazon DynamoDB point-in-time recovery (PITR) provides continuous backups of your DynamoDB
table data. You can restore a table to a point in time using the DynamoDB console or the Amazon
Command Line Interface (Amazon CLI). The point-in-time recovery process restores to a new table.

If you want to use the Amazon CLI, you must configure it first. For more information, see Accessing
DynamoDB.

Topics

• Restoring a DynamoDB table to a point in time (console)

• Restoring a table to a point in time (Amazon CLI)

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1575

Amazon DynamoDB Developer Guide

Restoring a DynamoDB table to a point in time (console)

The following example demonstrates how to use the DynamoDB console to restore an existing
table named Music to a point in time.

Note

This procedure assumes that you have enabled point-in-time recovery. To enable it for the
Music table, on the Backups tab, in the Point-in-time recovery (PITR) section, choose Edit
and then check the box next to Enable point-in-time-recovery.

To restore a table to a point in time

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Tables.

3. In the list of tables, choose the Music table.

4. On the Backups tab of the Music table, in the Point-in-time recovery (PITR) section, choose
Restore.

5. For the new table name, enter MusicMinutesAgo.

Note

You can restore the table to the same Amazon Region or to a different Region from
where the source table resides. You can also exclude secondary indexes from being
created on the restored table. In addition, you can specify a different encryption mode.

6. To confirm the restorable time, set the restore date and time to Earliest. Then choose Restore
to start the restore process.

The table that is being restored is shown with the status Restoring. After the restore process is
finished, the status of the MusicMinutesAgo table changes to Active.

Restoring a table to a point in time (Amazon CLI)

The following procedure shows how to use the Amazon CLI to restore an existing table named
Music to a point in time.

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1576

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Note

This procedure assumes that you have enabled point-in-time recovery. To enable it for the
Music table, run the following command.

aws dynamodb update-continuous-backups \
 --table-name Music \
 --point-in-time-recovery-specification PointInTimeRecoveryEnabled=True

To restore a table to a point in time

1. Confirm that point-in-time recovery is enabled for the Music table by using the describe-
continuous-backups command.

aws dynamodb describe-continuous-backups \
 --table-name Music

Continuous backups (automatically enabled on table creation) and point-in-time recovery are
enabled.

{
 "ContinuousBackupsDescription": {
 "PointInTimeRecoveryDescription": {
 "PointInTimeRecoveryStatus": "ENABLED",
 "EarliestRestorableDateTime": 1519257118.0,
 "LatestRestorableDateTime": 1520018653.01
 },
 "ContinuousBackupsStatus": "ENABLED"
 }
}

2. Restore the table to a point in time. In this case, the Music table is restored to the
LatestRestorableDateTime (~5 minutes ago) to the same Amazon Region.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicMinutesAgo \
 --use-latest-restorable-time

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1577

Amazon DynamoDB Developer Guide

Note

You can also restore to a specific point in time. To do this, run the command using
the --restore-date-time argument, and specify a timestamp. You can specify
any point in time within the configured recovery period, which can be set to any value
between 1 and 35 days. For example, the following command restores the table to the
EarliestRestorableDateTime.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicEarliestRestorableDateTime \
 --no-use-latest-restorable-time \
 --restore-date-time 1519257118.0

Specifying the --no-use-latest-restorable-time argument is optional when
restoring to a specific point in time.

3. Restore the table to a point in time with custom table settings. In this case, the Music table is
restored to the LatestRestorableDateTime (~5 minutes ago).

You can specify a different encryption mode for the restored table, as follows.

Note

The sse-specification-override parameter takes the same values as the sse-
specification-override parameter used in the CreateTable command. To learn
more, see Managing encrypted tables in DynamoDB.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicMinutesAgo \
 --use-latest-restorable-time \
 --sse-specification-override Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-
abcd-1234-a123-ab1234a1b234

You can restore the table to a different Amazon Region from where the source table resides.

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1578

Amazon DynamoDB Developer Guide

Note

• The sse-specification-override parameter is mandatory for cross-Region
restores but optional for restores to the same Region as the source table.

• The source-table-arn parameter must be provided for cross-Region restores.

• When performing a cross-Region restore from the command line, you must set
the default Amazon Region to the desired destination Region. To learn more, see
Command line options in the Amazon Command Line Interface User Guide.

aws dynamodb restore-table-to-point-in-time \
 --source-table-arn arn:aws:dynamodb:us-east-1:123456789012:table/Music \
 --target-table-name MusicMinutesAgo \
 --use-latest-restorable-time \
 --sse-specification-override Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-
abcd-1234-a123-ab1234a1b234

You can override the billing mode and the provisioned throughput for the restored table.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicMinutesAgo \
 --use-latest-restorable-time \
 --billing-mode-override PAY_PER_REQUEST

You can exclude some or all secondary indexes from being created on the restored table.

Note

Restores can be faster and more cost-efficient if you exclude some or all secondary
indexes from being created on the new restored table.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicMinutesAgo \
 --use-latest-restorable-time \

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1579

https://docs.amazonaws.cn/cli/latest/userguide/cli-configure-options.html

Amazon DynamoDB Developer Guide

 --global-secondary-index-override '[]'

You can use a combination of different overrides. For example, you can use a single global
secondary index and change provisioned throughput at the same time, as follows.

aws dynamodb restore-table-to-point-in-time \
 --source-table-name Music \
 --target-table-name MusicMinutesAgo \
 --billing-mode-override PROVISIONED \
 --provisioned-throughput-override ReadCapacityUnits=100,WriteCapacityUnits=100
 \
 --global-secondary-index-override IndexName=singers-
index,KeySchema=["{AttributeName=SingerName,KeyType=HASH}"],Projection="{ProjectionType=KEYS_ONLY}",ProvisionedThroughput="{ReadCapacityUnits=50,WriteCapacityUnits=50}"
 \
 --sse-specification-override Enabled=true,SSEType=KMS \
 --use-latest-restorable-time

To verify the restore, use the describe-table command to describe the
MusicEarliestRestorableDateTime table.

aws dynamodb describe-table --table-name MusicEarliestRestorableDateTime

The table that is being restored is shown with the status Creating and restore in progress as true.
After the restore process is finished, the status of the MusicEarliestRestorableDateTime
table changes to Active.

Important

While a restore is in progress, don't modify or delete the Amazon Identity and Access
Management (IAM) policies that grant the IAM entity (for example, user, group, or role)
permission to perform the restore. Otherwise, unexpected behavior can result. For
example, suppose that you remove write permissions for a table while that table is being
restored. In this case, the underlying RestoreTableToPointInTime operation can't
write any of the restored data to the table. IAM policies involving source IP restrictions for
accessing the target restore table can similarly cause issues.
You can modify or delete permissions only after the restore operation is completed.

Restoring a DynamoDB table to a point in time API Version 2012-08-10 1580

Amazon DynamoDB Developer Guide

Using Amazon Backup with DynamoDB

Amazon DynamoDB can help you meet regulatory compliance and business continuity
requirements through enhanced backup features in Amazon Backup. Amazon Backup is a fully
managed data protection service that makes it easy to centralize and automate backups across
Amazon services, in the cloud, and on premises. Using this service, you can configure backup
policies and monitor activity for your Amazon resources in one place. To use Amazon Backup, you
must affirmatively opt-in. Opt-in choices apply to the specific account and Amazon Region, so you
might have to opt in to multiple Regions using the same account. For more information, see the
Amazon Backup Developer Guide.

Amazon DynamoDB is natively integrated with Amazon Backup. You can use Amazon Backup
to schedule, copy, tag and life cycle your DynamoDB on-demand backups automatically. You
can continue to view and restore these backups from the DynamoDB console. You can use the
DynamoDB console, API, and Amazon Command Line Interface (Amazon CLI) to enable automatic
backups for your DynamoDB tables.

Note

Any backups made through DynamoDB will remain unchanged. You will still be able to
create backups through the current DynamoDB workflow.

Enhanced backup features available through Amazon Backup include:

Scheduled backups - You can set up regularly scheduled backups of your DynamoDB tables using
backup plans.

Cross-account and cross-Region copying - You can automatically copy your backups to another
backup vault in a different Amazon Region or account, which allows you to support your data
protection requirements.

Cold storage tiering - You can configure your backups to implement life cycle rules to delete or
transition backups to colder storage. This can help you optimize your backup costs.

Tags - You can automatically tag your backups for billing and cost allocation purposes.

Encryption – DynamoDB on-demand backups managed through Amazon Backup are now stored in
the Amazon Backup vault. This allows you to encrypt and secure your backups by using an Amazon
KMS key that is independent from your DynamoDB table encryption key.

Using Amazon Backup API Version 2012-08-10 1581

https://docs.amazonaws.cn/aws-backup/latest/devguide/service-opt-in.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon DynamoDB Developer Guide

Audit backups – You can use Amazon Backup Audit Manager to audit the compliance of your
Amazon Backup policies and to find backup activity and resources that are not yet compliant with
the controls that you defined. You can also use it to automatically generate an audit trail of daily
and on-demand reports for your backup governance purposes.

Secure backups using the WORM model – You can use Amazon Backup Vault Lock to enable a
write-once-read-many (WORM) setting for your backups. With Amazon Backup Vault Lock, you
can add an additional layer of defense that protects backups from inadvertent or malicious delete
operations, changes to backup recovery periods, and updates to lifecycle settings. To learn more,
see Amazon Backup Vault Lock.

These enhanced backup features are available in all Amazon Regions. To learn more about these
features, see the Amazon Backup Developer Guide.

Topics

• Backing up and restoring DynamoDB tables with Amazon Backup: How it works

• Creating backups of DynamoDB tables with Amazon Backup

• Copying a backup of a DynamoDB table with Amazon Backup

• Restoring a backup of a DynamoDB table from Amazon Backup

• Deleting a backup of a DynamoDB table with Amazon Backup

• Usage note differences between on-demand backups managed by Amazon Backup and
DynamoDB

Backing up and restoring DynamoDB tables with Amazon Backup: How
it works

You can use the on-demand backup feature to create full backups of your Amazon DynamoDB
tables. This section provides an overview of what happens during the backup and restore process.

Backups

When you create an on-demand backup with Amazon Backup, a time marker of the request is
cataloged. The backup is created asynchronously by applying all changes until the time of the
request to the last full table snapshot.

Each time you create an on-demand backup, the entire table data is backed up. There is no limit to
the number of on-demand backups that can be taken.

How it works API Version 2012-08-10 1582

https://docs.amazonaws.cn/aws-backup/latest/devguide/vault-lock.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon DynamoDB Developer Guide

Note

Unlike DynamoDB Backups, backups made with Amazon Backup are not instantaneous.

While a backup is in progress, you can't do the following:

• Pause or cancel the backup operation.

• Delete the source table of the backup.

• Disable backups on a table if a backup for that table is in progress.

Amazon Backup provides automated backup schedules, retention management, and lifecycle
management. This removes the need for custom scripts and manual processes. Amazon Backup
runs the backups and deletes them when they expire. For more information, see the Amazon
Backup Developer Guide.

If you're using the console, any backups created using Amazon Backup are listed on the Backups
tab with the Backup type set to AWS_BACKUP.

Note

You can't delete backups marked with a Backup type of AWS_BACKUP using the DynamoDB
console. To manage these backups, use the Amazon Backup console.

To learn how to perform a backup, see Backing up a DynamoDB table.

Restores

You restore a table without consuming any provisioned throughput on the table. You can do a full
table restore from your DynamoDB backup, or you can configure the destination table settings.
When you do a restore, you can change the following table settings:

• Encryption settings

How it works API Version 2012-08-10 1583

https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon DynamoDB Developer Guide

Important

When you do a full table restore, the destination table is set with the same provisioned
read capacity units and write capacity units that the source table had when the backup was
requested. The restore process also restores the local secondary indexes and the global
secondary indexes.

You can copy a backup of your DynamoDB table data to a different Amazon Region and then
restore it in that new Region. You can copy and then restore backups between Amazon commercial
Regions, Amazon China Regions, and Amazon GovCloud (US) Regions. You pay only for the data
you copy from the source Region and the data you restore to a new table in the destination Region.

Amazon Backup will restore the tables with all the original indexes.

You must manually set up the following on the restored table:

• Auto scaling policies

• Amazon Identity and Access Management (IAM) policies

• Amazon CloudWatch metrics and alarms

• Tags

• Stream settings

• Time to Live (TTL) settings

• Deletion protection settings

• Point in time recovery (PITR) settings

You can only restore the entire table data to a new table from a backup. You can write to the
restored table only after it becomes active.

Note

Amazon Backup restores are nondestructive. You can't overwrite an existing table during a
restore operation.

Service metrics show that 95 percent of customers' table restores complete in less than one hour.
However, restore times are directly related to the configuration of your tables (such as the size of

How it works API Version 2012-08-10 1584

Amazon DynamoDB Developer Guide

your tables and the number of underlying partitions) and other related variables. A best practice
when planning for disaster recovery is to regularly document average restore completion times and
establish how these times affect your overall Recovery Time Objective.

To learn how to perform a restore, see Restoring a DynamoDB table from a backup.

You can use IAM policies for access control. For more information, see Using IAM with DynamoDB
backup and restore.

All backup and restore console and API actions are captured and recorded in Amazon CloudTrail for
logging, continuous monitoring, and auditing.

Creating backups of DynamoDB tables with Amazon Backup

This section describes how to turn on Amazon Backup to create on-demand and scheduled backups
from your DynamoDB tables.

Topics

• Turning on Amazon Backup features

• On-demand backups

• Scheduled backups

Turning on Amazon Backup features

You must turn on Amazon Backup to use it with DynamoDB.

To turn on Amazon Backup, go through the following steps:

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. In the Backup Settings window, choose Turn on.

4. A confirmation screen will appear. Choose Turn on features.

Amazon Backup features are now available for your DynamoDB tables.

If you choose to turn off Amazon Backup features after they’ve been turned on, follow these steps:

Creating backups API Version 2012-08-10 1585

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

Amazon DynamoDB Developer Guide

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. In the Backup Settings window, choose Turn off.

4. A confirmation screen will appear. Choose Turn off features.

If you can’t turn the Amazon Backup features on or off, your Amazon admin may need to perform
those actions.

On-demand backups

To create an on-demand backup of a DynamoDB table, follow these steps:

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. Choose Create backup.

4. From the dropdown menu that appears, choose Create an on-demand backup.

5. To create a backup managed by Amazon Backup with warm storage and other basic features,
choose Default Settings. To create a backup that can be transitioned to cold storage, or to
create a backup with DynamoDB features instead of Amazon Backup, choose Customize
settings.

If you want to create this backup with previous DynamoDB features instead, choose Customize
settings and then choose Backup with DynamoDB.

6. When you have completed the settings, choose Create backup.

Scheduled backups

To schedule a backup, follow these steps.

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. From the dropdown menu that appears, choose Schedule backups with Amazon Backup.

Creating backups API Version 2012-08-10 1586

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

Amazon DynamoDB Developer Guide

4. You will be taken to Amazon Backup to create a backup plan.

Copying a backup of a DynamoDB table with Amazon Backup

You can make a copy of a current backup. You can copy backups to multiple Amazon accounts or
Amazon Regions on demand or automatically as part of a scheduled backup plan. You can also
automate a sequence of cross-account and cross-Region copies for Amazon DynamoDB Encryption
Client.

Cross-Region replication is especially valuable if you have business continuity or compliance
requirements to store backups a minimum distance away from your production data.

Cross-account backups are useful for securely copying your backups to one or more Amazon
accounts in your organization for operational or security reasons. If your original backup is
inadvertently deleted, you can copy the backup from its destination account to its source account,
and then start the restore. Before you can do this, you must have two accounts that belong to the
same organization in the Organizations service.

Copies inherit the source backup's configuration unless you specify otherwise, with one exception:
if you specify that your new copy "Never" expire. With this setting, the new copy still inherits its
source expiration date. If you want your new backup copy to be permanent, either set your source
backups to never expire, or specify your new copy to expire 100 years after its creation.

Note

If you're copying to another account, you must first have permission from that account.

To copy a backup, do the following:

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. Select the check box next to the backup you want to copy.

• If the backup you want to copy is grayed out, you must enable advanced features with
Amazon Backup. Then create a new backup. You can now copy this new backup to other
Regions and accounts, and copy any other new backups going forward.

Copying backups API Version 2012-08-10 1587

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/
https://docs.amazonaws.cn/aws-backup/latest/devguide/advanced-ddb-backup.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/advanced-ddb-backup.html

Amazon DynamoDB Developer Guide

4. Choose Copy.

5. If you want to copy the backup to another account or Region, select the check box next to Copy
the recovery point to another destination. Then select whether you will to copy to another
Region in your account, or to a different account in a different Region.

Note

To restore a backup to another Region or account, you must first copy the backup to that
Region or account.

6. Select the desired vault the file will be copied into. You can also create a new backup vault if
desired.

7. Choose Copy backup.

Restoring a backup of a DynamoDB table from Amazon Backup

This section describes how to restore a backup of a DynamoDB table from Amazon Backup.

Topics

• Restoring a DynamoDB table from Amazon Backup

• Restoring a DynamoDB table to another Region or account

Restoring a DynamoDB table from Amazon Backup

To restore your DynamoDB tables from Amazon Backup, follow these steps:

1. Sign in to the Amazon Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose the Backups tab.

4. Select the check box next to the previous backup that you want to restore from.

5. Choose Restore. You will be taken to the Restore table from backup screen.

6. Enter the name for the newly restored table, the encryption that this new table will have, the
key you want the restore to be encryped with, and other options.

7. When you're finished, choose Restore.

Restoring a table API Version 2012-08-10 1588

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

Amazon DynamoDB Developer Guide

Restoring a DynamoDB table to another Region or account

To restore a DynamoDB table to another Region or account, you will first need to copy the backup
to that new Region or account. In order to copy to another account, that account must first grant
you permission. After you have copied your DynamoDB backup to the new Region or account, it can
be restored with the process in the previous section.

Deleting a backup of a DynamoDB table with Amazon Backup

This section describes how to delete a backup of a DynamoDB table with Amazon Backup.

A DynamoDB backup created through Amazon Backup features is stored in an Amazon Backup
vault.

In order to delete this kind of backup, do the following:

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the left side of the console, choose Backups.

3. On the screen that follows, choose Continue to Amazon Backup.

You will be taken to the Amazon Backup console. To learn more on how to delete backups on
the Amazon Backup console, see Deleting backups.

For more information about Amazon Backup see Backup and recovery using Amazon Backup in
the Amazon Prescriptive Guidance.

Usage note differences between on-demand backups managed by
Amazon Backup and DynamoDB

This section describes the technical differences between on-demand backups managed by Amazon
Backup and DynamoDB.

Amazon Backup has some different workflows and behaviors than DynamoDB. These include:

Encryption - Backups created with the Amazon Backup plan are stored in an encrypted vault with
a key that is managed by the Amazon Backup service. The vault has access control policies for
additional security.

Deleting backups API Version 2012-08-10 1589

https://console.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/aws-backup/latest/devguide/deleting-backups.html
https://docs.amazonaws.cn/prescriptive-guidance/latest/backup-recovery/aws-backup.html

Amazon DynamoDB Developer Guide

Backup ARN - The backup files created by Amazon Backup will now have an Amazon Backup ARN,
which could impact the user permission model. Backup resource names (ARNs) will change from
arn:aws:dynamodb to arn:aws:backup.

Deleting backups - Backups that are created with Amazon Backup can only be deleted from the
Amazon Backup vault. You will not be able to delete Amazon Backup files from the DynamoDB
console.

Backup process - Unlike DynamoDB backups, backups made with Amazon Backup are not
instantaneous.

Billing - Backups of DynamoDB tables with Amazon Backup features are billed from Amazon
Backup.

IAM roles - If you're managing access through IAM roles, you will also need to configure a new IAM
role with these new permissions:

"dynamodb:StartAwsBackupJob",
"dynamodb:RestoreTableFromAwsBackup"

dynamodb:StartAwsBackupJob is needed for a successful backup with Amazon Backup features,
and dynamodb:RestoreTableFromAwsBackup is needed to restore from a backup made with
Amazon Backup features.

To see these permissions in a complete IAM policy, see Example 8 in Using IAM.

On-demand backups managed by Amazon Backup versus DynamoDB API Version 2012-08-10 1590

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backuprestore_IAM.html

Amazon DynamoDB Developer Guide

Code examples for DynamoDB using Amazon SDKs

The following code examples show how to use DynamoDB with an Amazon software development
kit (SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

Amazon community contributions are examples that were created and are maintained by multiple
teams across Amazon. To provide feedback, use the mechanism provided in the linked repositories.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Basic examples for DynamoDB using Amazon SDKs

• Hello DynamoDB

• Learn the basics of DynamoDB with an Amazon SDK

• Actions for DynamoDB using Amazon SDKs

• Use BatchExecuteStatement with an Amazon SDK

• Use BatchGetItem with an Amazon SDK or CLI

• Use BatchWriteItem with an Amazon SDK or CLI

• Use CreateTable with an Amazon SDK or CLI

• Use DeleteItem with an Amazon SDK or CLI

• Use DeleteTable with an Amazon SDK or CLI

• Use DescribeTable with an Amazon SDK or CLI

• Use DescribeTimeToLive with an Amazon SDK or CLI

• Use ExecuteStatement with an Amazon SDK

• Use GetItem with an Amazon SDK or CLI

API Version 2012-08-10 1591

Amazon DynamoDB Developer Guide

• Use ListTables with an Amazon SDK or CLI

• Use PutItem with an Amazon SDK or CLI

• Use Query with an Amazon SDK or CLI

• Use Scan with an Amazon SDK or CLI

• Use UpdateItem with an Amazon SDK or CLI

• Use UpdateTable with an Amazon SDK or CLI

• Use UpdateTimeToLive with an Amazon SDK or CLI

• Scenarios for DynamoDB using Amazon SDKs

• Accelerate DynamoDB reads with DAX using an Amazon SDK

• Work with advanced DynamoDB Global Secondary Index scenarios using Amazon Command
Line Interface v2

• Build an application to submit data to a DynamoDB table

• Compare multiple values with a single attribute in DynamoDB with an Amazon SDK

• Conditionally update a DynamoDB item with a TTL using an Amazon SDK

• Connect to a local DynamoDB instance using an Amazon SDK

• Count expression operators in DynamoDB with an Amazon SDK

• Create an API Gateway REST API to track COVID-19 data

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a DynamoDB table with a Global Secondary Index using the Amazon SDK

• Create a DynamoDB table with warm throughput setting using an Amazon SDK

• Create a web application to track DynamoDB data

• Create a websocket chat application with API Gateway

• Create a DynamoDB item with a TTL using an Amazon SDK

• Create and manage DynamoDB global tables with Multi-Region Strong Consistency using an
Amazon SDK

• Create and manage DynamoDB global tables demonstrating MREC using an Amazon SDK

• Delete DynamoDB data using PartiQL DELETE statements with an Amazon SDK

• Detect PPE in images with Amazon Rekognition using an Amazon SDK

• Insert DynamoDB data using PartiQL INSERT statements with an Amazon SDK

• Invoke a Lambda function from a browser

API Version 2012-08-10 1592

Amazon DynamoDB Developer Guide

• Manage DynamoDB Global Secondary Indexes using Amazon Command Line Interface v2

• Manage DynamoDB resource-based policies using Amazon Command Line Interface v2

• Monitor performance of Amazon DynamoDB using an Amazon SDK

• Perform advanced DynamoDB query operations using an Amazon SDK

• Perform list operations in DynamoDB with an Amazon SDK

• Perform map operations in DynamoDB with an Amazon SDK

• Perform set operations in DynamoDB with an Amazon SDK

• Query a DynamoDB table by using batches of PartiQL statements and an Amazon SDK

• Query a DynamoDB table using PartiQL and an Amazon SDK

• Query a DynamoDB table using a Global Secondary Index with an Amazon SDK

• Query a DynamoDB table using a begins_with condition with an Amazon SDK

• Query a DynamoDB table using a date range in the sort key with an Amazon SDK

• Query a DynamoDB table with a complex filter expression with an Amazon SDK

• Query a DynamoDB table with a dynamic filter expression with an Amazon SDK

• Query a DynamoDB table with a filter expression and limit with an Amazon SDK

• Query a DynamoDB table with nested attributes using an Amazon SDK

• Query a DynamoDB table with pagination using an Amazon SDK

• Query a DynamoDB table with strongly consistent reads using an Amazon SDK

• Query DynamoDB data using PartiQL SELECT statements with an Amazon SDK

• Query a DynamoDB table for TTL items using an Amazon SDK

• Query DynamoDB tables using date and time patterns with an Amazon SDK

• Save EXIF and other image information using an Amazon SDK

• Set up Attribute-Based Access Control for DynamoDB using Amazon Command Line Interface
v2

• Understand update expression order in DynamoDB with an Amazon SDK

• Update a DynamoDB table setting with warm throughput using an Amazon SDK

• Update a DynamoDB item with a TTL using an Amazon SDK

• Update DynamoDB data using PartiQL UPDATE statements with an Amazon SDK

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions
API Version 2012-08-10 1593

Amazon DynamoDB Developer Guide

• Use a document model for DynamoDB using an Amazon SDK

• Use a high-level object persistence model for DynamoDB using an Amazon SDK

• Use atomic counter operations in DynamoDB with an Amazon SDK

• Use conditional operations in DynamoDB with an Amazon SDK

• Use expression attribute names in DynamoDB with an Amazon SDK

• Use scheduled events to invoke a Lambda function

• Work with DynamoDB Local Secondary Indexes using Amazon Command Line Interface v2

• Work with DynamoDB Streams and Time-to-Live using Amazon Command Line Interface v2

• Work with DynamoDB global tables and multi-Region replication with eventual consistency
(MREC) using Amazon Command Line Interface v2

• Work with DynamoDB resource tagging using Amazon Command Line Interface v2

• Work with DynamoDB table encryption using Amazon Command Line Interface v2

• Serverless examples for DynamoDB

• Invoke a Lambda function from a DynamoDB trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

• Amazon community contributions for DynamoDB

• Build and test a serverless application

Basic examples for DynamoDB using Amazon SDKs

The following code examples show how to use the basics of Amazon DynamoDB with Amazon
SDKs.

Examples

• Hello DynamoDB

• Learn the basics of DynamoDB with an Amazon SDK

• Actions for DynamoDB using Amazon SDKs

• Use BatchExecuteStatement with an Amazon SDK

• Use BatchGetItem with an Amazon SDK or CLI

• Use BatchWriteItem with an Amazon SDK or CLI

• Use CreateTable with an Amazon SDK or CLI

• Use DeleteItem with an Amazon SDK or CLI

Basics API Version 2012-08-10 1594

Amazon DynamoDB Developer Guide

• Use DeleteTable with an Amazon SDK or CLI

• Use DescribeTable with an Amazon SDK or CLI

• Use DescribeTimeToLive with an Amazon SDK or CLI

• Use ExecuteStatement with an Amazon SDK

• Use GetItem with an Amazon SDK or CLI

• Use ListTables with an Amazon SDK or CLI

• Use PutItem with an Amazon SDK or CLI

• Use Query with an Amazon SDK or CLI

• Use Scan with an Amazon SDK or CLI

• Use UpdateItem with an Amazon SDK or CLI

• Use UpdateTable with an Amazon SDK or CLI

• Use UpdateTimeToLive with an Amazon SDK or CLI

Hello DynamoDB

The following code examples show how to get started using DynamoDB.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;
using Microsoft.Extensions.DependencyInjection;

namespace DynamoDBActions;

/// <summary>
/// A simple example that demonstrates basic DynamoDB operations.

Hello DynamoDB API Version 2012-08-10 1595

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

/// </summary>
public class HelloDynamoDB
{
 /// <summary>
 /// HelloDynamoDB lists the existing DynamoDB tables for the default user.
 /// </summary>
 /// <param name="args">Command line arguments</param>
 /// <returns>Async task.</returns>
 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon DynamoDB.
 using var host =
 Microsoft.Extensions.Hosting.Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonDynamoDB>()
)
 .Build();

 // Now the client is available for injection.
 var dynamoDbClient = host.Services.GetRequiredService<IAmazonDynamoDB>();

 try
 {
 var request = new ListTablesRequest();
 var tableNames = new List<string>();

 var paginatorForTables =
 dynamoDbClient.Paginators.ListTables(request);

 await foreach (var tableName in paginatorForTables.TableNames)
 {
 tableNames.Add(tableName);
 }

 Console.WriteLine("Welcome to the DynamoDB Hello Service example. " +
 "\nLet's list your DynamoDB tables:");
 tableNames.ForEach(table =>
 {
 Console.WriteLine($"Table: {table}");
 });
 }
 catch (AmazonDynamoDBException ex)
 {

Hello DynamoDB API Version 2012-08-10 1596

Amazon DynamoDB Developer Guide

 Console.WriteLine($"An Amazon DynamoDB service error occurred while
 listing tables. {ex.Message}");
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while listing tables.
 {ex.Message}");
 }
 }
}

• For API details, see ListTables in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS dynamodb)

Set this project's name.
project("hello_dynamodb")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

Hello DynamoDB API Version 2012-08-10 1597

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb/hello_dynamodb#code-examples

Amazon DynamoDB Developer Guide

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # if you are building from the command line you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_dynamodb.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_dynamodb.cpp source file.

#include <aws/core/Aws.h>
#include <aws/dynamodb/DynamoDBClient.h>
#include <aws/dynamodb/model/ListTablesRequest.h>
#include <iostream>

/*
 * A "Hello DynamoDB" starter application which initializes an Amazon DynamoDB
 (DynamoDB) client and lists the
 * DynamoDB tables.
 *

Hello DynamoDB API Version 2012-08-10 1598

Amazon DynamoDB Developer Guide

 * main function
 *
 * Usage: 'hello_dynamodb'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.

 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::DynamoDB::DynamoDBClient dynamodbClient(clientConfig);
 Aws::DynamoDB::Model::ListTablesRequest listTablesRequest;
 listTablesRequest.SetLimit(50);
 do {
 const Aws::DynamoDB::Model::ListTablesOutcome &outcome =
 dynamodbClient.ListTables(
 listTablesRequest);
 if (!outcome.IsSuccess()) {
 std::cout << "Error: " << outcome.GetError().GetMessage() <<
 std::endl;
 result = 1;
 break;
 }

 for (const auto &tableName: outcome.GetResult().GetTableNames()) {
 std::cout << tableName << std::endl;
 }

 listTablesRequest.SetExclusiveStartTableName(
 outcome.GetResult().GetLastEvaluatedTableName());

 } while (!listTablesRequest.GetExclusiveStartTableName().empty());
 }

 Aws::ShutdownAPI(options); // Should only be called once.

Hello DynamoDB API Version 2012-08-10 1599

Amazon DynamoDB Developer Guide

 return result;
}

• For API details, see ListTables in Amazon SDK for C++ API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ListTablesRequest;
import software.amazon.awssdk.services.dynamodb.model.ListTablesResponse;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListTables {
 public static void main(String[] args) {
 System.out.println("Listing your Amazon DynamoDB tables:\n");
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();
 listAllTables(ddb);
 ddb.close();
 }

Hello DynamoDB API Version 2012-08-10 1600

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 public static void listAllTables(DynamoDbClient ddb) {
 boolean moreTables = true;
 String lastName = null;

 while (moreTables) {
 try {
 ListTablesResponse response = null;
 if (lastName == null) {
 ListTablesRequest request =
 ListTablesRequest.builder().build();
 response = ddb.listTables(request);
 } else {
 ListTablesRequest request = ListTablesRequest.builder()
 .exclusiveStartTableName(lastName).build();
 response = ddb.listTables(request);
 }

 List<String> tableNames = response.tableNames();
 if (tableNames.size() > 0) {
 for (String curName : tableNames) {
 System.out.format("* %s\n", curName);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 lastName = response.lastEvaluatedTableName();
 if (lastName == null) {
 moreTables = false;
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
 System.out.println("\nDone!");
 }
}

• For API details, see ListTables in Amazon SDK for Java 2.x API Reference.

Hello DynamoDB API Version 2012-08-10 1601

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

For more details on working with DynamoDB in Amazon SDK for JavaScript, see
Programming DynamoDB with JavaScript.

import { ListTablesCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new ListTablesCommand({});

 const response = await client.send(command);
 console.log(response.TableNames.join("\n"));
 return response;
};

• For API details, see ListTables in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Hello DynamoDB API Version 2012-08-10 1602

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/programming-with-javascript.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ListTablesCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import boto3

Create a DynamoDB client using the default credentials and region
dynamodb = boto3.client("dynamodb")

Initialize a paginator for the list_tables operation
paginator = dynamodb.get_paginator("list_tables")

Create a PageIterator from the paginator
page_iterator = paginator.paginate(Limit=10)

List the tables in the current AWS account
print("Here are the DynamoDB tables in your account:")

Use pagination to list all tables
table_names = []

for page in page_iterator:
 for table_name in page.get("TableNames", []):
 print(f"- {table_name}")
 table_names.append(table_name)

if not table_names:
 print("You don't have any DynamoDB tables in your account.")
else:
 print(f"\nFound {len(table_names)} tables.")

• For API details, see ListTables in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Hello DynamoDB API Version 2012-08-10 1603

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

require 'aws-sdk-dynamodb'
require 'logger'

DynamoDBManager is a class responsible for managing DynamoDB operations
such as listing all tables in the current AWS account.
class DynamoDBManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all DynamoDB tables in the current AWS account.
 def list_tables
 @logger.info('Here are the DynamoDB tables in your account:')

 paginator = @client.list_tables(limit: 10)
 table_names = []

 paginator.each_page do |page|
 page.table_names.each do |table_name|
 @logger.info("- #{table_name}")
 table_names << table_name
 end
 end

 if table_names.empty?
 @logger.info("You don't have any DynamoDB tables in your account.")
 else
 @logger.info("\nFound #{table_names.length} tables.")
 end
 end
end

if $PROGRAM_NAME == __FILE__
 dynamodb_client = Aws::DynamoDB::Client.new
 manager = DynamoDBManager.new(dynamodb_client)
 manager.list_tables
end

• For API details, see ListTables in Amazon SDK for Ruby API Reference.

Hello DynamoDB API Version 2012-08-10 1604

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Learn the basics of DynamoDB with an Amazon SDK

The following code examples show how to:

• Create a table that can hold movie data.

• Put, get, and update a single movie in the table.

• Write movie data to the table from a sample JSON file.

• Query for movies that were released in a given year.

• Scan for movies that were released in a range of years.

• Delete a movie from the table, then delete the table.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/// <summary>
/// This example application performs the following basic Amazon DynamoDB
/// functions:
/// CreateTableAsync
/// PutItemAsync
/// UpdateItemAsync
/// BatchWriteItemAsync
/// GetItemAsync
/// DeleteItemAsync
/// Query
/// Scan
/// DeleteItemAsync.
/// </summary>

Learn the basics API Version 2012-08-10 1605

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

public class DynamoDbBasics
{
 public static bool IsInteractive = true;

 // Separator for the console display.
 private static readonly string SepBar = new string('-', 80);

 /// <summary>
 /// The main entry point for the DynamoDB Basics example application.
 /// </summary>
 /// <param name="args">Command line arguments.</param>
 /// <returns>A task representing the asynchronous operation.</returns>
 public static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon DynamoDB.
 using var host =
 Microsoft.Extensions.Hosting.Host.CreateDefaultBuilder(args)
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonDynamoDB>()
 .AddTransient<DynamoDbWrapper>())
 .Build();

 // Now the wrapper is available for injection.
 var dynamoDbWrapper =
 host.Services.GetRequiredService<DynamoDbWrapper>();

 var tableName = "movie_table";

 var movieFileName = @"movies.json";

 DisplayInstructions();

 // Create a new table and wait for it to be active.
 Console.WriteLine($"Creating the new table: {tableName}");

 var success = await dynamoDbWrapper.CreateMovieTableAsync(tableName);

 Console.WriteLine(success
 ? $"\nTable: {tableName} successfully created."
 : $"\nCould not create {tableName}.");

 WaitForEnter();

 // Add a single new movie to the table.

Learn the basics API Version 2012-08-10 1606

Amazon DynamoDB Developer Guide

 var newMovie = new Movie
 {
 Year = 2021,
 Title = "Spider-Man: No Way Home",
 };

 success = await dynamoDbWrapper.PutItemAsync(newMovie, tableName);
 if (success)
 {
 Console.WriteLine($"Added {newMovie.Title} to the table.");
 }
 else
 {
 Console.WriteLine("Could not add movie to table.");
 }

 WaitForEnter();

 // Update the new movie by adding a plot and rank.
 var newInfo = new MovieInfo
 {
 Plot = "With Spider-Man's identity now revealed, Peter asks" +
 "Doctor Strange for help. When a spell goes wrong, dangerous"
 +
 "foes from other worlds start to appear, forcing Peter to" +
 "discover what it truly means to be Spider-Man.",
 Rank = 9,
 };

 success = await dynamoDbWrapper.UpdateItemAsync(newMovie, newInfo,
 tableName);
 if (success)
 {
 Console.WriteLine($"Successfully updated the movie:
 {newMovie.Title}");
 }
 else
 {
 Console.WriteLine("Could not update the movie.");
 }

 WaitForEnter();

 // Add a batch of movies to the DynamoDB table from a list of

Learn the basics API Version 2012-08-10 1607

Amazon DynamoDB Developer Guide

 // movies in a JSON file.
 var itemCount = await dynamoDbWrapper.BatchWriteItemsAsync(movieFileName,
 tableName);
 Console.WriteLine($"Added {itemCount} movies to the table.");

 WaitForEnter();

 // Get a movie by key. (partition + sort)
 var lookupMovie = new Movie
 {
 Title = "Jurassic Park",
 Year = 1993,
 };

 Console.WriteLine("Looking for the movie \"Jurassic Park\".");
 var item = await dynamoDbWrapper.GetItemAsync(lookupMovie, tableName);
 if (item?.Count > 0)
 {
 dynamoDbWrapper.DisplayItem(item);
 }
 else
 {
 Console.WriteLine($"Couldn't find {lookupMovie.Title}");
 }

 WaitForEnter();

 // Delete a movie.
 var movieToDelete = new Movie
 {
 Title = "The Town",
 Year = 2010,
 };

 success = await dynamoDbWrapper.DeleteItemAsync(tableName,
 movieToDelete);

 if (success)
 {
 Console.WriteLine($"Successfully deleted {movieToDelete.Title}.");
 }
 else
 {
 Console.WriteLine($"Could not delete {movieToDelete.Title}.");

Learn the basics API Version 2012-08-10 1608

Amazon DynamoDB Developer Guide

 }

 WaitForEnter();

 // Use Query to find all the movies released in 2010.
 int findYear = 2010;
 Console.WriteLine($"Movies released in {findYear}");
 var queryCount = await dynamoDbWrapper.QueryMoviesAsync(tableName,
 findYear);
 Console.WriteLine($"Found {queryCount} movies released in {findYear}");

 WaitForEnter();

 // Use Scan to get a list of movies from 2001 to 2011.
 int startYear = 2001;
 int endYear = 2011;
 var scanCount = await dynamoDbWrapper.ScanTableAsync(tableName,
 startYear, endYear);
 Console.WriteLine($"Found {scanCount} movies released between {startYear}
 and {endYear}");

 WaitForEnter();

 // Delete the table.
 success = await dynamoDbWrapper.DeleteTableAsync(tableName);

 if (success)
 {
 Console.WriteLine($"Successfully deleted {tableName}");
 }
 else
 {
 Console.WriteLine($"Could not delete {tableName}");
 }

 Console.WriteLine("The DynamoDB Basics example application is
 complete.");

 WaitForEnter();
 }

 /// <summary>
 /// Displays the description of the application on the console.
 /// </summary>

Learn the basics API Version 2012-08-10 1609

Amazon DynamoDB Developer Guide

 private static void DisplayInstructions()
 {
 if (!IsInteractive)
 {
 return;
 }

 Console.Clear();
 Console.WriteLine();
 Console.Write(new string(' ', 28));
 Console.WriteLine("DynamoDB Basics Example");
 Console.WriteLine(SepBar);
 Console.WriteLine("This demo application shows the basics of using
 DynamoDB with the AWS SDK.");
 Console.WriteLine(SepBar);
 Console.WriteLine("The application does the following:");
 Console.WriteLine("\t1. Creates a table with partition: year and
 sort:title.");
 Console.WriteLine("\t2. Adds a single movie to the table.");
 Console.WriteLine("\t3. Adds movies to the table from moviedata.json.");
 Console.WriteLine("\t4. Updates the rating and plot of the movie that was
 just added.");
 Console.WriteLine("\t5. Gets a movie using its key (partition + sort).");
 Console.WriteLine("\t6. Deletes a movie.");
 Console.WriteLine("\t7. Uses QueryAsync to return all movies released in
 a given year.");
 Console.WriteLine("\t8. Uses ScanAsync to return all movies released
 within a range of years.");
 Console.WriteLine("\t9. Finally, it deletes the table that was just
 created.");
 WaitForEnter();
 }

 /// <summary>
 /// Simple method to wait for the Enter key to be pressed.
 /// </summary>
 private static void WaitForEnter()
 {
 if (IsInteractive)
 {
 Console.WriteLine("\nPress <Enter> to continue.");
 Console.WriteLine(SepBar);
 _ = Console.ReadLine();
 }

Learn the basics API Version 2012-08-10 1610

Amazon DynamoDB Developer Guide

 }
}

Use the injected client for table operations.

using System.Text.Json;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DataModel;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;

namespace DynamoDBActions;

/// <summary>
/// Methods of this class perform Amazon DynamoDB operations.
/// </summary>
public class DynamoDbWrapper
{
 private readonly IAmazonDynamoDB _amazonDynamoDB;

 /// <summary>
 /// Constructor for the DynamoDbWrapper class.
 /// </summary>
 /// <param name="amazonDynamoDB">The injected DynamoDB client.</param>
 public DynamoDbWrapper(IAmazonDynamoDB amazonDynamoDB)
 {
 _amazonDynamoDB = amazonDynamoDB;
 }

Creates a table to contain movie data.

 /// <summary>
 /// Creates a new Amazon DynamoDB table and then waits for the new
 /// table to become active.
 /// </summary>
 /// <param name="tableName">The name of the table to create.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> CreateMovieTableAsync(string tableName)

Learn the basics API Version 2012-08-10 1611

Amazon DynamoDB Developer Guide

 {
 try
 {
 var response = await _amazonDynamoDB.CreateTableAsync(new
 CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "title",
 AttributeType = ScalarAttributeType.S,
 },
 new AttributeDefinition
 {
 AttributeName = "year",
 AttributeType = ScalarAttributeType.N,
 },
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "year",
 KeyType = KeyType.HASH,
 },
 new KeySchemaElement
 {
 AttributeName = "title",
 KeyType = KeyType.RANGE,
 },
 },
 BillingMode = BillingMode.PAY_PER_REQUEST,
 });

 // Wait until the table is ACTIVE and then report success.
 Console.Write("Waiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = response.TableDescription.TableName,
 };

Learn the basics API Version 2012-08-10 1612

Amazon DynamoDB Developer Guide

 TableStatus status;

 int sleepDuration = 2000;

 do
 {
 Thread.Sleep(sleepDuration);

 var describeTableResponse = await
 _amazonDynamoDB.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException ex)
 {
 Console.WriteLine($"Table {tableName} already exists. {ex.Message}");
 throw;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while creating
 table {tableName}. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating table
 {tableName}. {ex.Message}");
 throw;
 }
 }

Adds a single movie to the table.

 /// <summary>

Learn the basics API Version 2012-08-10 1613

Amazon DynamoDB Developer Guide

 /// Adds a new item to the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing informtation for
 /// the movie to add to the table.</param>
 /// <param name="tableName">The name of the table where the item will be
 added.</param>
 /// <returns>A Boolean value that indicates the results of adding the item.</
returns>
 public async Task<bool> PutItemAsync(Movie newMovie, string tableName)
 {
 try
 {
 var item = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 };

 await _amazonDynamoDB.PutItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while putting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while putting item.
 {ex.Message}");
 throw;
 }

Learn the basics API Version 2012-08-10 1614

Amazon DynamoDB Developer Guide

 }

Updates a single item in a table.

 /// <summary>
 /// Updates an existing item in the movies table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information for
 /// the movie to update.</param>
 /// <param name="newInfo">A MovieInfo object that contains the
 /// information that will be changed.</param>
 /// <param name="tableName">The name of the table that contains the movie.</
param>
 /// <returns>A Boolean value that indicates the success of the operation.</
returns>
 public async Task<bool> UpdateItemAsync(
 Movie newMovie,
 MovieInfo newInfo,
 string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };
 var updates = new Dictionary<string, AttributeValueUpdate>
 {
 ["info.plot"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { S = newInfo.Plot },
 },

 ["info.rating"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { N = newInfo.Rank.ToString() },
 },

Learn the basics API Version 2012-08-10 1615

Amazon DynamoDB Developer Guide

 };

 var request = new UpdateItemRequest
 {
 AttributeUpdates = updates,
 Key = key,
 TableName = tableName,
 };

 await _amazonDynamoDB.UpdateItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} or item was not found.
 {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while updating
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while updating item.
 {ex.Message}");
 throw;
 }
 }

Retrieves a single item from the movie table.

 /// <summary>
 /// Gets information about an existing movie from the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information about
 /// the movie to retrieve.</param>

Learn the basics API Version 2012-08-10 1616

Amazon DynamoDB Developer Guide

 /// <param name="tableName">The name of the table containing the movie.</
param>
 /// <returns>A Dictionary object containing information about the item
 /// retrieved.</returns>
 public async Task<Dictionary<string, AttributeValue>> GetItemAsync(Movie
 newMovie, string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new GetItemRequest
 {
 Key = key,
 TableName = tableName,
 };

 var response = await _amazonDynamoDB.GetItemAsync(request);
 return response.Item;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return new Dictionary<string, AttributeValue>();
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while getting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while getting item.
 {ex.Message}");
 throw;
 }
 }

Learn the basics API Version 2012-08-10 1617

Amazon DynamoDB Developer Guide

Writes a batch of items to the movie table.

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The name of the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public List<Movie> ImportMovies(string movieFileName)
 {
 var moviesList = new List<Movie>();
 if (!File.Exists(movieFileName))
 {
 return moviesList;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonSerializer.Deserialize<List<Movie>>(
 json,
 new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 });

 // Now return the first 250 entries.
 if (allMovies != null && allMovies.Any())
 {
 moviesList = allMovies.GetRange(0, 250);
 }
 return moviesList;
 }

 /// <summary>
 /// Writes 250 items to the movie table.
 /// </summary>
 /// <param name="movieFileName">A string containing the full path to
 /// the JSON file containing movie data.</param>
 /// <param name="tableName">The name of the table to write items to.</param>
 /// <returns>A long integer value representing the number of movies

Learn the basics API Version 2012-08-10 1618

Amazon DynamoDB Developer Guide

 /// imported from the JSON file.</returns>
 public async Task<long> BatchWriteItemsAsync(
 string movieFileName, string tableName)
 {
 try
 {
 var movies = ImportMovies(movieFileName);
 if (!movies.Any())
 {
 Console.WriteLine("Couldn't find the JSON file with movie
 data.");
 return 0;
 }

 var context = new DynamoDBContextBuilder()
 // Optional call to provide a specific instance of
 IAmazonDynamoDB
 .WithDynamoDBClient(() => _amazonDynamoDB)
 .Build();

 var movieBatch = context.CreateBatchWrite<Movie>(
 new BatchWriteConfig()
 {
 OverrideTableName = tableName
 });
 movieBatch.AddPutItems(movies);

 Console.WriteLine("Adding imported movies to the table.");
 await movieBatch.ExecuteAsync();

 return movies.Count;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table was not found during batch write operation.
 {ex.Message}");
 throw;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred during batch
 write operation. {ex.Message}");
 throw;
 }

Learn the basics API Version 2012-08-10 1619

Amazon DynamoDB Developer Guide

 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred during batch write operation.
 {ex.Message}");
 throw;
 }
 }

Deletes a single item from the table.

 /// <summary>
 /// Deletes a single item from a DynamoDB table.
 /// </summary>
 /// <param name="tableName">The name of the table from which the item
 /// will be deleted.</param>
 /// <param name="movieToDelete">A movie object containing the title and
 /// year of the movie to delete.</param>
 /// <returns>A Boolean value indicating the success or failure of the
 /// delete operation.</returns>
 public async Task<bool> DeleteItemAsync(
 string tableName,
 Movie movieToDelete)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = movieToDelete.Title },
 ["year"] = new AttributeValue { N =
 movieToDelete.Year.ToString() },
 };

 var request = new DeleteItemRequest { TableName = tableName, Key =
 key, };

 await _amazonDynamoDB.DeleteItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {

Learn the basics API Version 2012-08-10 1620

Amazon DynamoDB Developer Guide

 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while deleting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting item.
 {ex.Message}");
 throw;
 }
 }

Queries the table for movies released in a particular year.

 /// <summary>
 /// Queries the table for movies released in a particular year and
 /// then displays the information for the movies returned.
 /// </summary>
 /// <param name="tableName">The name of the table to query.</param>
 /// <param name="year">The release year for which we want to
 /// view movies.</param>
 /// <returns>The number of movies that match the query.</returns>
 public async Task<int> QueryMoviesAsync(string tableName, int year)
 {
 try
 {
 var movieTable = new TableBuilder(_amazonDynamoDB, tableName)
 .AddHashKey("year", DynamoDBEntryType.Numeric)
 .AddRangeKey("title", DynamoDBEntryType.String)
 .Build();

 var filter = new QueryFilter("year", QueryOperator.Equal, year);

 Console.WriteLine("\nFind movies released in: {year}:");

Learn the basics API Version 2012-08-10 1621

Amazon DynamoDB Developer Guide

 var config = new QueryOperationConfig()
 {
 Limit = 10, // 10 items per page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "title",
 "year",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 // Value used to track how many movies match the
 // supplied criteria.
 var moviesFound = 0;

 var search = movieTable.Query(config);
 do
 {
 var movieList = await search.GetNextSetAsync();
 moviesFound += movieList.Count;

 foreach (var movie in movieList)
 {
 DisplayDocument(movie);
 }
 }
 while (!search.IsDone);

 return moviesFound;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return 0;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while querying
 movies. {ex.Message}");
 throw;
 }
 catch (Exception ex)

Learn the basics API Version 2012-08-10 1622

Amazon DynamoDB Developer Guide

 {
 Console.WriteLine($"An error occurred while querying movies.
 {ex.Message}");
 throw;
 }
 }

Scans the table for movies released in a range of years.

 /// <summary>
 /// Scans the table for movies released between the specified years.
 /// </summary>
 /// <param name="tableName">The name of the table to scan.</param>
 /// <param name="startYear">The starting year for the range.</param>
 /// <param name="endYear">The ending year for the range.</param>
 /// <returns>The number of movies found in the specified year range.</
returns>
 public async Task<int> ScanTableAsync(
 string tableName,
 int startYear,
 int endYear)
 {
 try
 {
 var request = new ScanRequest
 {
 TableName = tableName,
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#yr", "year" },
 },
 ExpressionAttributeValues = new Dictionary<string,
 AttributeValue>
 {
 { ":y_a", new AttributeValue { N = startYear.ToString() } },
 { ":y_z", new AttributeValue { N = endYear.ToString() } },
 },
 FilterExpression = "#yr between :y_a and :y_z",
 ProjectionExpression = "#yr, title, info.actors[0],
 info.directors, info.running_time_secs",

Learn the basics API Version 2012-08-10 1623

Amazon DynamoDB Developer Guide

 Limit = 10 // Set a limit to demonstrate using the
 LastEvaluatedKey.
 };

 // Keep track of how many movies were found.
 int foundCount = 0;

 var response = new ScanResponse();
 do
 {
 response = await _amazonDynamoDB.ScanAsync(request);
 foundCount += response.Items.Count;
 response.Items.ForEach(i => DisplayItem(i));
 request.ExclusiveStartKey = response.LastEvaluatedKey;
 }
 while (response?.LastEvaluatedKey?.Count > 0);
 return foundCount;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return 0;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while scanning
 table. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while scanning table.
 {ex.Message}");
 throw;
 }
 }

Deletes the movie table.

 /// <summary>
 /// Deletes a DynamoDB table.

Learn the basics API Version 2012-08-10 1624

Amazon DynamoDB Developer Guide

 /// </summary>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> DeleteTableAsync(string tableName)
 {
 try
 {
 var request = new DeleteTableRequest
 {
 TableName = tableName,
 };

 var response = await _amazonDynamoDB.DeleteTableAsync(request);

 Console.WriteLine($"Table {response.TableDescription.TableName}
 successfully deleted.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found and cannot be
 deleted. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while deleting
 table {tableName}. {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting table
 {tableName}. {ex.Message}");
 return false;
 }
 }

• For API details, see the following topics in Amazon SDK for .NET API Reference.

Learn the basics API Version 2012-08-10 1625

Amazon DynamoDB Developer Guide

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

The DynamoDB getting started scenario.

###
function dynamodb_getting_started_movies
#
Scenario to create an Amazon DynamoDB table and perform a series of operations
 on the table.
#
Returns:
0 - If successful.
1 - If an error occurred.
###
function dynamodb_getting_started_movies() {

 source ./dynamodb_operations.sh

 key_schema_json_file="dynamodb_key_schema.json"

Learn the basics API Version 2012-08-10 1626

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 attribute_definitions_json_file="dynamodb_attr_def.json"
 item_json_file="movie_item.json"
 key_json_file="movie_key.json"
 batch_json_file="batch.json"
 attribute_names_json_file="attribute_names.json"
 attributes_values_json_file="attribute_values.json"

 echo_repeat "*" 88
 echo
 echo "Welcome to the Amazon DynamoDB getting started demo."
 echo
 echo_repeat "*" 88
 echo

 local table_name
 echo -n "Enter a name for a new DynamoDB table: "
 get_input
 table_name=$get_input_result

 echo '[
 {"AttributeName": "year", "KeyType": "HASH"},
 {"AttributeName": "title", "KeyType": "RANGE"}
]' >"$key_schema_json_file"

 echo '[
 {"AttributeName": "year", "AttributeType": "N"},
 {"AttributeName": "title", "AttributeType": "S"}
]' >"$attribute_definitions_json_file"

 if dynamodb_create_table -n "$table_name" -a "$attribute_definitions_json_file"
 \
 -k "$key_schema_json_file" 1>/dev/null; then
 echo "Created a DynamoDB table named $table_name"
 else
 errecho "The table failed to create. This demo will exit."
 clean_up
 return 1
 fi

 echo "Waiting for the table to become active...."

 if dynamodb_wait_table_active -n "$table_name"; then
 echo "The table is now active."
 else

Learn the basics API Version 2012-08-10 1627

Amazon DynamoDB Developer Guide

 errecho "The table failed to become active. This demo will exit."
 cleanup "$table_name"
 return 1
 fi

 echo
 echo_repeat "*" 88
 echo

 echo -n "Enter the title of a movie you want to add to the table: "
 get_input
 local added_title
 added_title=$get_input_result

 local added_year
 get_int_input "What year was it released? "
 added_year=$get_input_result

 local rating
 get_float_input "On a scale of 1 - 10, how do you rate it? " "1" "10"
 rating=$get_input_result

 local plot
 echo -n "Summarize the plot for me: "
 get_input
 plot=$get_input_result

 echo '{
 "year": {"N" :"'"$added_year"'"},
 "title": {"S" : "'"$added_title"'"},
 "info": {"M" : {"plot": {"S" : "'"$plot"'"}, "rating":
 {"N" :"'"$rating"'"} } }
 }' >"$item_json_file"

 if dynamodb_put_item -n "$table_name" -i "$item_json_file"; then
 echo "The movie '$added_title' was successfully added to the table
 '$table_name'."
 else
 errecho "Put item failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi

 echo

Learn the basics API Version 2012-08-10 1628

Amazon DynamoDB Developer Guide

 echo_repeat "*" 88
 echo

 echo "Let's update your movie '$added_title'."
 get_float_input "You rated it $rating, what new rating would you give it? " "1"
 "10"
 rating=$get_input_result

 echo -n "You summarized the plot as '$plot'."
 echo "What would you say now? "
 get_input
 plot=$get_input_result

 echo '{
 "year": {"N" :"'"$added_year"'"},
 "title": {"S" : "'"$added_title"'"}
 }' >"$key_json_file"

 echo '{
 ":r": {"N" :"'"$rating"'"},
 ":p": {"S" : "'"$plot"'"}
 }' >"$item_json_file"

 local update_expression="SET info.rating = :r, info.plot = :p"

 if dynamodb_update_item -n "$table_name" -k "$key_json_file" -e
 "$update_expression" -v "$item_json_file"; then
 echo "Updated '$added_title' with new attributes."
 else
 errecho "Update item failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi

 echo
 echo_repeat "*" 88
 echo

 echo "We will now use batch write to upload 150 movie entries into the table."

 local batch_json
 for batch_json in movie_files/movies_*.json; do
 echo "{ \"$table_name\" : $(<"$batch_json") }" >"$batch_json_file"
 if dynamodb_batch_write_item -i "$batch_json_file" 1>/dev/null; then

Learn the basics API Version 2012-08-10 1629

Amazon DynamoDB Developer Guide

 echo "Entries in $batch_json added to table."
 else
 errecho "Batch write failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi
 done

 local title="The Lord of the Rings: The Fellowship of the Ring"
 local year="2001"

 if get_yes_no_input "Let's move on...do you want to get info about '$title'?
 (y/n) "; then
 echo '{
 "year": {"N" :"'"$year"'"},
 "title": {"S" : "'"$title"'"}
 }' >"$key_json_file"
 local info
 info=$(dynamodb_get_item -n "$table_name" -k "$key_json_file")

 # shellcheck disable=SC2181
 if [[${?} -ne 0]]; then
 errecho "Get item failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi

 echo "Here is what I found:"
 echo "$info"
 fi

 local ask_for_year=true
 while [["$ask_for_year" == true]]; do
 echo "Let's get a list of movies released in a given year."
 get_int_input "Enter a year between 1972 and 2018: " "1972" "2018"
 year=$get_input_result
 echo '{
 "#n": "year"
 }' >"$attribute_names_json_file"

 echo '{
 ":v": {"N" :"'"$year"'"}
 }' >"$attributes_values_json_file"

Learn the basics API Version 2012-08-10 1630

Amazon DynamoDB Developer Guide

 response=$(dynamodb_query -n "$table_name" -k "#n=:v" -a
 "$attribute_names_json_file" -v "$attributes_values_json_file")

 # shellcheck disable=SC2181
 if [[${?} -ne 0]]; then
 errecho "Query table failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi

 echo "Here is what I found:"
 echo "$response"

 if ! get_yes_no_input "Try another year? (y/n) "; then
 ask_for_year=false
 fi
 done

 echo "Now let's scan for movies released in a range of years. Enter a year: "
 get_int_input "Enter a year between 1972 and 2018: " "1972" "2018"
 local start=$get_input_result

 get_int_input "Enter another year: " "1972" "2018"
 local end=$get_input_result

 echo '{
 "#n": "year"
 }' >"$attribute_names_json_file"

 echo '{
 ":v1": {"N" : "'"$start"'"},
 ":v2": {"N" : "'"$end"'"}
 }' >"$attributes_values_json_file"

 response=$(dynamodb_scan -n "$table_name" -f "#n BETWEEN :v1 AND :v2" -a
 "$attribute_names_json_file" -v "$attributes_values_json_file")

 # shellcheck disable=SC2181
 if [[${?} -ne 0]]; then
 errecho "Scan table failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi

Learn the basics API Version 2012-08-10 1631

Amazon DynamoDB Developer Guide

 echo "Here is what I found:"
 echo "$response"

 echo
 echo_repeat "*" 88
 echo

 echo "Let's remove your movie '$added_title' from the table."

 if get_yes_no_input "Do you want to remove '$added_title'? (y/n) "; then
 echo '{
 "year": {"N" :"'"$added_year"'"},
 "title": {"S" : "'"$added_title"'"}
 }' >"$key_json_file"

 if ! dynamodb_delete_item -n "$table_name" -k "$key_json_file"; then
 errecho "Delete item failed. This demo will exit."
 clean_up "$table_name"
 return 1
 fi
 fi

 if get_yes_no_input "Do you want to delete the table '$table_name'? (y/n) ";
 then
 if ! clean_up "$table_name"; then
 return 1
 fi
 else
 if ! clean_up; then
 return 1
 fi
 fi

 return 0
}

The DynamoDB functions used in this scenario.

###
function dynamodb_create_table
#
This function creates an Amazon DynamoDB table.

Learn the basics API Version 2012-08-10 1632

Amazon DynamoDB Developer Guide

#
Parameters:
-n table_name -- The name of the table to create.
-a attribute_definitions -- JSON file path of a list of attributes and
 their types.
-k key_schema -- JSON file path of a list of attributes and their key
 types.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_create_table() {
 local table_name attribute_definitions key_schema response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_create_table"
 echo "Creates an Amazon DynamoDB table with on-demand billing."
 echo " -n table_name -- The name of the table to create."
 echo " -a attribute_definitions -- JSON file path of a list of attributes and
 their types."
 echo " -k key_schema -- JSON file path of a list of attributes and their key
 types."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:a:k:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 a) attribute_definitions="${OPTARG}" ;;
 k) key_schema="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1

Learn the basics API Version 2012-08-10 1633

Amazon DynamoDB Developer Guide

 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_definitions"]]; then
 errecho "ERROR: You must provide an attribute definitions json file path the
 -a parameter."
 usage
 return 1
 fi

 if [[-z "$key_schema"]]; then
 errecho "ERROR: You must provide a key schema json file path the -k
 parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " attribute_definitions: $attribute_definitions"
 iecho " key_schema: $key_schema"
 iecho ""

 response=$(aws dynamodb create-table \
 --table-name "$table_name" \
 --attribute-definitions file://"$attribute_definitions" \
 --billing-mode PAY_PER_REQUEST \
 --key-schema file://"$key_schema")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-table operation failed.$response"
 return 1
 fi

Learn the basics API Version 2012-08-10 1634

Amazon DynamoDB Developer Guide

 return 0
}

###
function dynamodb_describe_table
#
This function returns the status of a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
#
Response:
- TableStatus:
And:
0 - Table is active.
1 - If it fails.
###
function dynamodb_describe_table {
 local table_name
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_describe_table"
 echo "Describe the status of a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1

Learn the basics API Version 2012-08-10 1635

Amazon DynamoDB Developer Guide

 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 local table_status
 table_status=$(
 aws dynamodb describe-table \
 --table-name "$table_name" \
 --output text \
 --query 'Table.TableStatus'
)

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log "$error_code"
 errecho "ERROR: AWS reports describe-table operation failed.$table_status"
 return 1
 fi

 echo "$table_status"

 return 0
}

##
function dynamodb_put_item
#
This function puts an item into a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-i item -- Path to json file containing the item values.
#
Returns:
0 - If successful.
1 - If it fails.

Learn the basics API Version 2012-08-10 1636

Amazon DynamoDB Developer Guide

##
function dynamodb_put_item() {
 local table_name item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_put_item"
 echo "Put an item into a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -i item -- Path to json file containing the item values."
 echo ""
 }

 while getopts "n:i:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 i) item="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

Learn the basics API Version 2012-08-10 1637

Amazon DynamoDB Developer Guide

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " item: $item"
 iecho ""
 iecho ""

 response=$(aws dynamodb put-item \
 --table-name "$table_name" \
 --item file://"$item")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports put-item operation failed.$response"
 return 1
 fi

 return 0

}

##
function dynamodb_update_item
#
This function updates an item in a DynamoDB table.
#
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to update.
-e update expression -- An expression that defines one or more
 attributes to be updated.
-v values -- Path to json file containing the update values.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_update_item() {
 local table_name keys update_expression values response
 local option OPTARG # Required to use getopts command in a function.

Learn the basics API Version 2012-08-10 1638

Amazon DynamoDB Developer Guide

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_update_item"
 echo "Update an item in a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to update."
 echo " -e update expression -- An expression that defines one or more
 attributes to be updated."
 echo " -v values -- Path to json file containing the update values."
 echo ""
 }

 while getopts "n:k:e:v:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 e) update_expression="${OPTARG}" ;;
 v) values="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage

Learn the basics API Version 2012-08-10 1639

Amazon DynamoDB Developer Guide

 return 1
 fi
 if [[-z "$update_expression"]]; then
 errecho "ERROR: You must provide an update expression with the -e parameter."
 usage
 return 1
 fi

 if [[-z "$values"]]; then
 errecho "ERROR: You must provide a values json file path the -v parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " keys: $keys"
 iecho " update_expression: $update_expression"
 iecho " values: $values"

 response=$(aws dynamodb update-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --update-expression "$update_expression" \
 --expression-attribute-values file://"$values")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports update-item operation failed.$response"
 return 1
 fi

 return 0

}

##
function dynamodb_batch_write_item
#
This function writes a batch of items into a DynamoDB table.
#
Parameters:

Learn the basics API Version 2012-08-10 1640

Amazon DynamoDB Developer Guide

-i item -- Path to json file containing the items to write.
#
Returns:
0 - If successful.
1 - If it fails.
##
function dynamodb_batch_write_item() {
 local item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_batch_write_item"
 echo "Write a batch of items into a DynamoDB table."
 echo " -i item -- Path to json file containing the items to write."
 echo ""
 }
 while getopts "i:h" option; do
 case "${option}" in
 i) item="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " item: $item"

Learn the basics API Version 2012-08-10 1641

Amazon DynamoDB Developer Guide

 iecho ""

 response=$(aws dynamodb batch-write-item \
 --request-items file://"$item")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports batch-write-item operation failed.$response"
 return 1
 fi

 return 0
}

###
function dynamodb_get_item
#
This function gets an item from a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to get.
[-q query] -- Optional JMESPath query expression.
#
Returns:
The item as text output.
And:
0 - If successful.
1 - If it fails.
##
function dynamodb_get_item() {
 local table_name keys query response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_get_item"
 echo "Get an item from a DynamoDB table."
 echo " -n table_name -- The name of the table."

Learn the basics API Version 2012-08-10 1642

Amazon DynamoDB Developer Guide

 echo " -k keys -- Path to json file containing the keys that identify the
 item to get."
 echo " [-q query] -- Optional JMESPath query expression."
 echo ""
 }
 query=""
 while getopts "n:k:q:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 q) query="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi

 if [[-n "$query"]]; then
 response=$(aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text \
 --query "$query")
 else
 response=$(

Learn the basics API Version 2012-08-10 1643

Amazon DynamoDB Developer Guide

 aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text
)
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports get-item operation failed.$response"
 return 1
 fi

 if [[-n "$query"]]; then
 echo "$response" | sed "/^\t/s/\t//1" # Remove initial tab that the JMSEPath
 query inserts on some strings.
 else
 echo "$response"
 fi

 return 0
}

###
function dynamodb_query
#
This function queries a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k key_condition_expression -- The key condition expression.
-a attribute_names -- Path to JSON file containing the attribute names.
-v attribute_values -- Path to JSON file containing the attribute values.
[-p projection_expression] -- Optional projection expression.
#
Returns:
The items as json output.
And:
0 - If successful.
1 - If it fails.
###
function dynamodb_query() {

Learn the basics API Version 2012-08-10 1644

Amazon DynamoDB Developer Guide

 local table_name key_condition_expression attribute_names attribute_values
 projection_expression response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_query"
 echo "Query a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k key_condition_expression -- The key condition expression."
 echo " -a attribute_names -- Path to JSON file containing the attribute
 names."
 echo " -v attribute_values -- Path to JSON file containing the attribute
 values."
 echo " [-p projection_expression] -- Optional projection expression."
 echo ""
 }

 while getopts "n:k:a:v:p:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) key_condition_expression="${OPTARG}" ;;
 a) attribute_names="${OPTARG}" ;;
 v) attribute_values="${OPTARG}" ;;
 p) projection_expression="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1

Learn the basics API Version 2012-08-10 1645

Amazon DynamoDB Developer Guide

 fi

 if [[-z "$key_condition_expression"]]; then
 errecho "ERROR: You must provide a key condition expression with the -k
 parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_names"]]; then
 errecho "ERROR: You must provide a attribute names with the -a parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_values"]]; then
 errecho "ERROR: You must provide a attribute values with the -v parameter."
 usage
 return 1
 fi

 if [[-z "$projection_expression"]]; then
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values")
 else
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values" \
 --projection-expression "$projection_expression")
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports query operation failed.$response"
 return 1
 fi

Learn the basics API Version 2012-08-10 1646

Amazon DynamoDB Developer Guide

 echo "$response"

 return 0
}

###
function dynamodb_scan
#
This function scans a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-f filter_expression -- The filter expression.
-a expression_attribute_names -- Path to JSON file containing the
 expression attribute names.
-v expression_attribute_values -- Path to JSON file containing the
 expression attribute values.
[-p projection_expression] -- Optional projection expression.
#
Returns:
The items as json output.
And:
0 - If successful.
1 - If it fails.
###
function dynamodb_scan() {
 local table_name filter_expression expression_attribute_names
 expression_attribute_values projection_expression response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_scan"
 echo "Scan a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -f filter_expression -- The filter expression."
 echo " -a expression_attribute_names -- Path to JSON file containing the
 expression attribute names."
 echo " -v expression_attribute_values -- Path to JSON file containing the
 expression attribute values."
 echo " [-p projection_expression] -- Optional projection expression."
 echo ""

Learn the basics API Version 2012-08-10 1647

Amazon DynamoDB Developer Guide

 }

 while getopts "n:f:a:v:p:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 f) filter_expression="${OPTARG}" ;;
 a) expression_attribute_names="${OPTARG}" ;;
 v) expression_attribute_values="${OPTARG}" ;;
 p) projection_expression="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$filter_expression"]]; then
 errecho "ERROR: You must provide a filter expression with the -f parameter."
 usage
 return 1
 fi

 if [[-z "$expression_attribute_names"]]; then
 errecho "ERROR: You must provide expression attribute names with the -a
 parameter."
 usage
 return 1
 fi

 if [[-z "$expression_attribute_values"]]; then
 errecho "ERROR: You must provide expression attribute values with the -v
 parameter."

Learn the basics API Version 2012-08-10 1648

Amazon DynamoDB Developer Guide

 usage
 return 1
 fi

 if [[-z "$projection_expression"]]; then
 response=$(aws dynamodb scan \
 --table-name "$table_name" \
 --filter-expression "$filter_expression" \
 --expression-attribute-names file://"$expression_attribute_names" \
 --expression-attribute-values file://"$expression_attribute_values")
 else
 response=$(aws dynamodb scan \
 --table-name "$table_name" \
 --filter-expression "$filter_expression" \
 --expression-attribute-names file://"$expression_attribute_names" \
 --expression-attribute-values file://"$expression_attribute_values" \
 --projection-expression "$projection_expression")
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports scan operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

##
function dynamodb_delete_item
#
This function deletes an item from a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to delete.
#
Returns:
0 - If successful.

Learn the basics API Version 2012-08-10 1649

Amazon DynamoDB Developer Guide

1 - If it fails.
###
function dynamodb_delete_item() {
 local table_name keys response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_delete_item"
 echo "Delete an item from a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to delete."
 echo ""
 }
 while getopts "n:k:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1

Learn the basics API Version 2012-08-10 1650

Amazon DynamoDB Developer Guide

 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " keys: $keys"
 iecho ""

 response=$(aws dynamodb delete-item \
 --table-name "$table_name" \
 --key file://"$keys")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-item operation failed.$response"
 return 1
 fi

 return 0

}

###
function dynamodb_delete_table
#
This function deletes a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_delete_table() {
 local table_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function dynamodb_delete_table"
 echo "Deletes an Amazon DynamoDB table."
 echo " -n table_name -- The name of the table to delete."

Learn the basics API Version 2012-08-10 1651

Amazon DynamoDB Developer Guide

 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho ""

 response=$(aws dynamodb delete-table \
 --table-name "$table_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-table operation failed.$response"
 return 1
 fi

 return 0
}

Learn the basics API Version 2012-08-10 1652

Amazon DynamoDB Developer Guide

The utility functions used in this scenario.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"

Learn the basics API Version 2012-08-10 1653

Amazon DynamoDB Developer Guide

 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see the following topics in Amazon CLI Command Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Learn the basics API Version 2012-08-10 1654

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 {
 Aws::Client::ClientConfiguration clientConfig;
 // 1. Create a table with partition: year (N) and sort: title (S).
 (CreateTable)
 if (AwsDoc::DynamoDB::createMoviesDynamoDBTable(clientConfig)) {

 AwsDoc::DynamoDB::dynamodbGettingStartedScenario(clientConfig);

 // 9. Delete the table. (DeleteTable)
 AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(clientConfig);
 }
 }

//! Scenario to modify and query a DynamoDB table.
/*!
 \sa dynamodbGettingStartedScenario()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::dynamodbGettingStartedScenario(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 std::cout << std::setfill('*') << std::setw(ASTERISK_FILL_WIDTH) << " "
 << std::endl;
 std::cout << "Welcome to the Amazon DynamoDB getting started demo." <<
 std::endl;
 std::cout << std::setfill('*') << std::setw(ASTERISK_FILL_WIDTH) << " "
 << std::endl;

 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 // 2. Add a new movie.
 Aws::String title;

Learn the basics API Version 2012-08-10 1655

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 float rating;
 int year;
 Aws::String plot;
 {
 title = askQuestion(
 "Enter the title of a movie you want to add to the table: ");
 year = askQuestionForInt("What year was it released? ");
 rating = askQuestionForFloatRange("On a scale of 1 - 10, how do you rate
 it? ",
 1, 10);
 plot = askQuestion("Summarize the plot for me: ");

 Aws::DynamoDB::Model::PutItemRequest putItemRequest;
 putItemRequest.SetTableName(MOVIE_TABLE_NAME);

 putItemRequest.AddItem(YEAR_KEY,

 Aws::DynamoDB::Model::AttributeValue().SetN(year));
 putItemRequest.AddItem(TITLE_KEY,

 Aws::DynamoDB::Model::AttributeValue().SetS(title));

 // Create attribute for the info map.
 Aws::DynamoDB::Model::AttributeValue infoMapAttribute;

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> ratingAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 ratingAttribute->SetN(rating);
 infoMapAttribute.AddMEntry(RATING_KEY, ratingAttribute);

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> plotAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 plotAttribute->SetS(plot);
 infoMapAttribute.AddMEntry(PLOT_KEY, plotAttribute);

 putItemRequest.AddItem(INFO_KEY, infoMapAttribute);

 Aws::DynamoDB::Model::PutItemOutcome outcome = dynamoClient.PutItem(
 putItemRequest);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to add an item: " <<
 outcome.GetError().GetMessage()

Learn the basics API Version 2012-08-10 1656

Amazon DynamoDB Developer Guide

 << std::endl;
 return false;
 }
 }

 std::cout << "\nAdded '" << title << "' to '" << MOVIE_TABLE_NAME << "'."
 << std::endl;

 // 3. Update the rating and plot of the movie by using an update expression.
 {
 rating = askQuestionForFloatRange(
 Aws::String("\nLet's update your movie.\nYou rated it ") +
 std::to_string(rating)
 + ", what new rating would you give it? ", 1, 10);
 plot = askQuestion(Aws::String("You summarized the plot as '") + plot +
 "'.\nWhat would you say now? ");

 Aws::DynamoDB::Model::UpdateItemRequest request;
 request.SetTableName(MOVIE_TABLE_NAME);
 request.AddKey(TITLE_KEY,
 Aws::DynamoDB::Model::AttributeValue().SetS(title));
 request.AddKey(YEAR_KEY,
 Aws::DynamoDB::Model::AttributeValue().SetN(year));
 std::stringstream expressionStream;
 expressionStream << "set " << INFO_KEY << "." << RATING_KEY << " =:r, "
 << INFO_KEY << "." << PLOT_KEY << " =:p";
 request.SetUpdateExpression(expressionStream.str());
 request.SetExpressionAttributeValues({
 {":r",
 Aws::DynamoDB::Model::AttributeValue().SetN(
 rating)},
 {":p",
 Aws::DynamoDB::Model::AttributeValue().SetS(
 plot)}
 });

 request.SetReturnValues(Aws::DynamoDB::Model::ReturnValue::UPDATED_NEW);

 const Aws::DynamoDB::Model::UpdateItemOutcome &result =
 dynamoClient.UpdateItem(
 request);
 if (!result.IsSuccess()) {
 std::cerr << "Error updating movie " + result.GetError().GetMessage()
 << std::endl;

Learn the basics API Version 2012-08-10 1657

Amazon DynamoDB Developer Guide

 return false;
 }
 }

 std::cout << "\nUpdated '" << title << "' with new attributes:" << std::endl;

 // 4. Put 250 movies in the table from moviedata.json.
 {
 std::cout << "Adding movies from a json file to the database." <<
 std::endl;
 const size_t MAX_SIZE_FOR_BATCH_WRITE = 25;
 const size_t MOVIES_TO_WRITE = 10 * MAX_SIZE_FOR_BATCH_WRITE;
 Aws::String jsonString = getMovieJSON();
 if (!jsonString.empty()) {
 Aws::Utils::Json::JsonValue json(jsonString);
 Aws::Utils::Array<Aws::Utils::Json::JsonView> movieJsons =
 json.View().AsArray();
 Aws::Vector<Aws::DynamoDB::Model::WriteRequest> writeRequests;

 // To add movies with a cross-section of years, use an appropriate
 increment
 // value for iterating through the database.
 size_t increment = movieJsons.GetLength() / MOVIES_TO_WRITE;
 for (size_t i = 0; i < movieJsons.GetLength(); i += increment) {
 writeRequests.push_back(Aws::DynamoDB::Model::WriteRequest());
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 putItems = movieJsonViewToAttributeMap(
 movieJsons[i]);
 Aws::DynamoDB::Model::PutRequest putRequest;
 putRequest.SetItem(putItems);
 writeRequests.back().SetPutRequest(putRequest);
 if (writeRequests.size() == MAX_SIZE_FOR_BATCH_WRITE) {
 Aws::DynamoDB::Model::BatchWriteItemRequest request;
 request.AddRequestItems(MOVIE_TABLE_NAME, writeRequests);
 const Aws::DynamoDB::Model::BatchWriteItemOutcome &outcome =
 dynamoClient.BatchWriteItem(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Unable to batch write movie data: "
 << outcome.GetError().GetMessage()
 << std::endl;
 writeRequests.clear();
 break;
 }

Learn the basics API Version 2012-08-10 1658

Amazon DynamoDB Developer Guide

 else {
 std::cout << "Added batch of " << writeRequests.size()
 << " movies to the database."
 << std::endl;
 }
 writeRequests.clear();
 }
 }
 }
 }

 std::cout << std::setfill('*') << std::setw(ASTERISK_FILL_WIDTH) << " "
 << std::endl;

 // 5. Get a movie by Key (partition + sort).
 {
 Aws::String titleToGet("King Kong");
 Aws::String answer = askQuestion(Aws::String(
 "Let's move on...Would you like to get info about '" + titleToGet
 +
 "'? (y/n) "));
 if (answer == "y") {
 Aws::DynamoDB::Model::GetItemRequest request;
 request.SetTableName(MOVIE_TABLE_NAME);
 request.AddKey(TITLE_KEY,

 Aws::DynamoDB::Model::AttributeValue().SetS(titleToGet));
 request.AddKey(YEAR_KEY,
 Aws::DynamoDB::Model::AttributeValue().SetN(1933));

 const Aws::DynamoDB::Model::GetItemOutcome &result =
 dynamoClient.GetItem(
 request);
 if (!result.IsSuccess()) {
 std::cerr << "Error " << result.GetError().GetMessage();
 }
 else {
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 &item = result.GetResult().GetItem();
 if (!item.empty()) {
 std::cout << "\nHere's what I found:" << std::endl;
 printMovieInfo(item);
 }
 else {

Learn the basics API Version 2012-08-10 1659

Amazon DynamoDB Developer Guide

 std::cout << "\nThe movie was not found in the database."
 << std::endl;
 }
 }
 }
 }

 // 6. Use Query with a key condition expression to return all movies
 // released in a given year.
 Aws::String doAgain = "n";
 do {
 Aws::DynamoDB::Model::QueryRequest req;

 req.SetTableName(MOVIE_TABLE_NAME);

 // "year" is a DynamoDB reserved keyword and must be replaced with an
 // expression attribute name.
 req.SetKeyConditionExpression("#dynobase_year = :valueToMatch");
 req.SetExpressionAttributeNames({{"#dynobase_year", YEAR_KEY}});

 int yearToMatch = askQuestionForIntRange(
 "\nLet's get a list of movies released in"
 " a given year. Enter a year between 1972 and 2018 ",
 1972, 2018);
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 attributeValues;
 attributeValues.emplace(":valueToMatch",
 Aws::DynamoDB::Model::AttributeValue().SetN(
 yearToMatch));
 req.SetExpressionAttributeValues(attributeValues);

 const Aws::DynamoDB::Model::QueryOutcome &result =
 dynamoClient.Query(req);
 if (result.IsSuccess()) {
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = result.GetResult().GetItems();
 if (!items.empty()) {
 std::cout << "\nThere were " << items.size()
 << " movies in the database from "
 << yearToMatch << "." << std::endl;
 for (const auto &item: items) {
 printMovieInfo(item);
 }
 doAgain = "n";

Learn the basics API Version 2012-08-10 1660

Amazon DynamoDB Developer Guide

 }
 else {
 std::cout << "\nNo movies from " << yearToMatch
 << " were found in the database"
 << std::endl;
 doAgain = askQuestion(Aws::String("Try another year? (y/n) "));
 }
 }
 else {
 std::cerr << "Failed to Query items: " <<
 result.GetError().GetMessage()
 << std::endl;
 }

 } while (doAgain == "y");

 // 7. Use Scan to return movies released within a range of years.
 // Show how to paginate data using ExclusiveStartKey. (Scan +
 FilterExpression)
 {
 int startYear = askQuestionForIntRange("\nNow let's scan a range of years
 "
 "for movies in the database. Enter
 a start year: ",
 1972, 2018);
 int endYear = askQuestionForIntRange("\nEnter an end year: ",
 startYear, 2018);
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 exclusiveStartKey;
 do {
 Aws::DynamoDB::Model::ScanRequest scanRequest;
 scanRequest.SetTableName(MOVIE_TABLE_NAME);
 scanRequest.SetFilterExpression(
 "#dynobase_year >= :startYear AND #dynobase_year
 <= :endYear");
 scanRequest.SetExpressionAttributeNames({{"#dynobase_year",
 YEAR_KEY}});

 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 attributeValues;
 attributeValues.emplace(":startYear",
 Aws::DynamoDB::Model::AttributeValue().SetN(
 startYear));
 attributeValues.emplace(":endYear",

Learn the basics API Version 2012-08-10 1661

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::AttributeValue().SetN(
 endYear));
 scanRequest.SetExpressionAttributeValues(attributeValues);

 if (!exclusiveStartKey.empty()) {
 scanRequest.SetExclusiveStartKey(exclusiveStartKey);
 }

 const Aws::DynamoDB::Model::ScanOutcome &result = dynamoClient.Scan(
 scanRequest);
 if (result.IsSuccess()) {
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = result.GetResult().GetItems();
 if (!items.empty()) {
 std::stringstream stringStream;
 stringStream << "\nFound " << items.size() << " movies in one
 scan."
 << " How many would you like to see? ";
 size_t count = askQuestionForInt(stringStream.str());
 for (size_t i = 0; i < count && i < items.size(); ++i) {
 printMovieInfo(items[i]);
 }
 }
 else {
 std::cout << "\nNo movies in the database between " <<
 startYear <<
 " and " << endYear << "." << std::endl;
 }

 exclusiveStartKey = result.GetResult().GetLastEvaluatedKey();
 if (!exclusiveStartKey.empty()) {
 std::cout << "Not all movies were retrieved. Scanning for
 more."
 << std::endl;
 }
 else {
 std::cout << "All movies were retrieved with this scan."
 << std::endl;
 }
 }
 else {
 std::cerr << "Failed to Scan movies: "
 << result.GetError().GetMessage() << std::endl;
 }

Learn the basics API Version 2012-08-10 1662

Amazon DynamoDB Developer Guide

 } while (!exclusiveStartKey.empty());
 }

 // 8. Delete a movie. (DeleteItem)
 {
 std::stringstream stringStream;
 stringStream << "\nWould you like to delete the movie " << title
 << " from the database? (y/n) ";
 Aws::String answer = askQuestion(stringStream.str());
 if (answer == "y") {
 Aws::DynamoDB::Model::DeleteItemRequest request;
 request.AddKey(YEAR_KEY,
 Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.AddKey(TITLE_KEY,
 Aws::DynamoDB::Model::AttributeValue().SetS(title));
 request.SetTableName(MOVIE_TABLE_NAME);

 const Aws::DynamoDB::Model::DeleteItemOutcome &result =
 dynamoClient.DeleteItem(
 request);
 if (result.IsSuccess()) {
 std::cout << "\nRemoved \"" << title << "\" from the database."
 << std::endl;
 }
 else {
 std::cerr << "Failed to delete the movie: "
 << result.GetError().GetMessage()
 << std::endl;
 }
 }
 }

 return true;
}

//! Routine to convert a JsonView object to an attribute map.
/*!
 \sa movieJsonViewToAttributeMap()
 \param jsonView: Json view object.
 \return map: Map that can be used in a DynamoDB request.
 */
Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
AwsDoc::DynamoDB::movieJsonViewToAttributeMap(
 const Aws::Utils::Json::JsonView &jsonView) {

Learn the basics API Version 2012-08-10 1663

Amazon DynamoDB Developer Guide

 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> result;

 if (jsonView.KeyExists(YEAR_KEY)) {
 result[YEAR_KEY].SetN(jsonView.GetInteger(YEAR_KEY));
 }
 if (jsonView.KeyExists(TITLE_KEY)) {
 result[TITLE_KEY].SetS(jsonView.GetString(TITLE_KEY));
 }
 if (jsonView.KeyExists(INFO_KEY)) {
 Aws::Map<Aws::String, const
 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue>> infoMap;
 Aws::Utils::Json::JsonView infoView = jsonView.GetObject(INFO_KEY);
 if (infoView.KeyExists(RATING_KEY)) {
 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> attributeValue
 = std::make_shared<Aws::DynamoDB::Model::AttributeValue>();
 attributeValue->SetN(infoView.GetDouble(RATING_KEY));
 infoMap.emplace(std::make_pair(RATING_KEY, attributeValue));
 }
 if (infoView.KeyExists(PLOT_KEY)) {
 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> attributeValue
 = std::make_shared<Aws::DynamoDB::Model::AttributeValue>();
 attributeValue->SetS(infoView.GetString(PLOT_KEY));
 infoMap.emplace(std::make_pair(PLOT_KEY, attributeValue));
 }

 result[INFO_KEY].SetM(infoMap);
 }

 return result;
}

//! Create a DynamoDB table to be used in sample code scenarios.
/*!
 \sa createMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::createMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 bool movieTableAlreadyExisted = false;

 {

Learn the basics API Version 2012-08-10 1664

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::CreateTableRequest request;

 Aws::DynamoDB::Model::AttributeDefinition yearAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(YEAR_KEY);
 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::N);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::AttributeDefinition titleAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(TITLE_KEY);
 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::S);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::KeySchemaElement yearKeySchema;
 yearKeySchema.WithAttributeName(YEAR_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::HASH);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::KeySchemaElement titleKeySchema;
 yearKeySchema.WithAttributeName(TITLE_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::RANGE);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::ProvisionedThroughput throughput;
 throughput.WithReadCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS).WithWriteCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS);
 request.SetProvisionedThroughput(throughput);
 request.SetTableName(MOVIE_TABLE_NAME);

 std::cout << "Creating table '" << MOVIE_TABLE_NAME << "'..." <<
 std::endl;
 const Aws::DynamoDB::Model::CreateTableOutcome &result =
 dynamoClient.CreateTable(
 request);
 if (!result.IsSuccess()) {
 if (result.GetError().GetErrorType() ==
 Aws::DynamoDB::DynamoDBErrors::RESOURCE_IN_USE) {
 std::cout << "Table already exists." << std::endl;
 movieTableAlreadyExisted = true;
 }
 else {
 std::cerr << "Failed to create table: "

Learn the basics API Version 2012-08-10 1665

Amazon DynamoDB Developer Guide

 << result.GetError().GetMessage();
 return false;
 }
 }
 }

 // Wait for table to become active.
 if (!movieTableAlreadyExisted) {
 std::cout << "Waiting for table '" << MOVIE_TABLE_NAME
 << "' to become active...." << std::endl;
 if (!AwsDoc::DynamoDB::waitTableActive(MOVIE_TABLE_NAME,
 clientConfiguration)) {
 return false;
 }
 std::cout << "Table '" << MOVIE_TABLE_NAME << "' created and active."
 << std::endl;
 }

 return true;
}

//! Delete the DynamoDB table used for sample code scenarios.
/*!
 \sa deleteMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteTableRequest request;
 request.SetTableName(MOVIE_TABLE_NAME);

 const Aws::DynamoDB::Model::DeleteTableOutcome &result =
 dynamoClient.DeleteTable(
 request);
 if (result.IsSuccess()) {
 std::cout << "Your table \""
 << result.GetResult().GetTableDescription().GetTableName()
 << " was deleted.\n";
 }
 else {
 std::cerr << "Failed to delete table: " << result.GetError().GetMessage()

Learn the basics API Version 2012-08-10 1666

Amazon DynamoDB Developer Guide

 << std::endl;
 }

 return result.IsSuccess();
}

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;

Learn the basics API Version 2012-08-10 1667

Amazon DynamoDB Developer Guide

 }
 return false;
}

• For API details, see the following topics in Amazon SDK for C++ API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run an interactive scenario to create the table and perform actions on it.

import (
 "context"
 "fmt"
 "log"
 "strings"

 "github.com/aws/aws-sdk-go-v2/aws"

Learn the basics API Version 2012-08-10 1668

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/dynamodb/actions"
)

// RunMovieScenario is an interactive example that shows you how to use the AWS
 SDK for Go
// to create and use an Amazon DynamoDB table that stores data about movies.
//
// 1. Create a table that can hold movie data.
// 2. Put, get, and update a single movie in the table.
// 3. Write movie data to the table from a sample JSON file.
// 4. Query for movies that were released in a given year.
// 5. Scan for movies that were released in a range of years.
// 6. Delete a movie from the table.
// 7. Delete the table.
//
// This example creates a DynamoDB service client from the specified sdkConfig so
 that
// you can replace it with a mocked or stubbed config for unit testing.
//
// It uses a questioner from the `demotools` package to get input during the
 example.
// This package can be found in the ..\..\demotools folder of this repo.
//
// The specified movie sampler is used to get sample data from a URL that is
 loaded
// into the named table.
func RunMovieScenario(
 ctx context.Context, sdkConfig aws.Config, questioner demotools.IQuestioner,
 tableName string,
 movieSampler actions.IMovieSampler) {
 defer func() {
 if r := recover(); r != nil {
 fmt.Printf("Something went wrong with the demo.")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the Amazon DynamoDB getting started demo.")
 log.Println(strings.Repeat("-", 88))

 tableBasics := actions.TableBasics{TableName: tableName,
 DynamoDbClient: dynamodb.NewFromConfig(sdkConfig)}

Learn the basics API Version 2012-08-10 1669

Amazon DynamoDB Developer Guide

 exists, err := tableBasics.TableExists(ctx)
 if err != nil {
 panic(err)
 }
 if !exists {
 log.Printf("Creating table %v...\n", tableName)
 _, err = tableBasics.CreateMovieTable(ctx)
 if err != nil {
 panic(err)
 } else {
 log.Printf("Created table %v.\n", tableName)
 }
 } else {
 log.Printf("Table %v already exists.\n", tableName)
 }

 var customMovie actions.Movie
 customMovie.Title = questioner.Ask("Enter a movie title to add to the table:",
 demotools.NotEmpty{})
 customMovie.Year = questioner.AskInt("What year was it released?",
 demotools.NotEmpty{}, demotools.InIntRange{Lower: 1900, Upper: 2030})
 customMovie.Info = map[string]interface{}{}
 customMovie.Info["rating"] = questioner.AskFloat64(
 "Enter a rating between 1 and 10:",
 demotools.NotEmpty{}, demotools.InFloatRange{Lower: 1, Upper: 10})
 customMovie.Info["plot"] = questioner.Ask("What's the plot? ",
 demotools.NotEmpty{})
 err = tableBasics.AddMovie(ctx, customMovie)
 if err == nil {
 log.Printf("Added %v to the movie table.\n", customMovie.Title)
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Let's update your movie. You previously rated it %v.\n",
 customMovie.Info["rating"])
 customMovie.Info["rating"] = questioner.AskFloat64(
 "What new rating would you give it?",
 demotools.NotEmpty{}, demotools.InFloatRange{Lower: 1, Upper: 10})
 log.Printf("You summarized the plot as '%v'.\n", customMovie.Info["plot"])
 customMovie.Info["plot"] = questioner.Ask("What would you say now?",
 demotools.NotEmpty{})
 attributes, err := tableBasics.UpdateMovie(ctx, customMovie)
 if err == nil {

Learn the basics API Version 2012-08-10 1670

Amazon DynamoDB Developer Guide

 log.Printf("Updated %v with new values.\n", customMovie.Title)
 for _, attVal := range attributes {
 for valKey, val := range attVal {
 log.Printf("\t%v: %v\n", valKey, val)
 }
 }
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Getting movie data from %v and adding 250 movies to the table...\n",
 movieSampler.GetURL())
 movies := movieSampler.GetSampleMovies()
 written, err := tableBasics.AddMovieBatch(ctx, movies, 250)
 if err != nil {
 panic(err)
 } else {
 log.Printf("Added %v movies to the table.\n", written)
 }

 show := 10
 if show > written {
 show = written
 }
 log.Printf("The first %v movies in the table are:", show)
 for index, movie := range movies[:show] {
 log.Printf("\t%v. %v\n", index+1, movie.Title)
 }
 movieIndex := questioner.AskInt(
 "Enter the number of a movie to get info about it: ",
 demotools.InIntRange{Lower: 1, Upper: show},
)
 movie, err := tableBasics.GetMovie(ctx, movies[movieIndex-1].Title,
 movies[movieIndex-1].Year)
 if err == nil {
 log.Println(movie)
 }
 log.Println(strings.Repeat("-", 88))

 log.Println("Let's get a list of movies released in a given year.")
 releaseYear := questioner.AskInt("Enter a year between 1972 and 2018: ",
 demotools.InIntRange{Lower: 1972, Upper: 2018},
)
 releases, err := tableBasics.Query(ctx, releaseYear)
 if err == nil {

Learn the basics API Version 2012-08-10 1671

Amazon DynamoDB Developer Guide

 if len(releases) == 0 {
 log.Printf("I couldn't find any movies released in %v!\n", releaseYear)
 } else {
 for _, movie = range releases {
 log.Println(movie)
 }
 }
 }
 log.Println(strings.Repeat("-", 88))

 log.Println("Now let's scan for movies released in a range of years.")
 startYear := questioner.AskInt("Enter a year: ",
 demotools.InIntRange{Lower: 1972, Upper: 2018})
 endYear := questioner.AskInt("Enter another year: ",
 demotools.InIntRange{Lower: 1972, Upper: 2018})
 releases, err = tableBasics.Scan(ctx, startYear, endYear)
 if err == nil {
 if len(releases) == 0 {
 log.Printf("I couldn't find any movies released between %v and %v!\n",
 startYear, endYear)
 } else {
 log.Printf("Found %v movies. In this list, the plot is <nil> because "+
 "we used a projection expression when scanning for items to return only "+
 "the title, year, and rating.\n", len(releases))
 for _, movie = range releases {
 log.Println(movie)
 }
 }
 }
 log.Println(strings.Repeat("-", 88))

 var tables []string
 if questioner.AskBool("Do you want to list all of your tables? (y/n) ", "y") {
 tables, err = tableBasics.ListTables(ctx)
 if err == nil {
 log.Printf("Found %v tables:", len(tables))
 for _, table := range tables {
 log.Printf("\t%v", table)
 }
 }
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Let's remove your movie '%v'.\n", customMovie.Title)

Learn the basics API Version 2012-08-10 1672

Amazon DynamoDB Developer Guide

 if questioner.AskBool("Do you want to delete it from the table? (y/n) ", "y") {
 err = tableBasics.DeleteMovie(ctx, customMovie)
 }
 if err == nil {
 log.Printf("Deleted %v.\n", customMovie.Title)
 }

 if questioner.AskBool("Delete the table, too? (y/n)", "y") {
 err = tableBasics.DeleteTable(ctx)
 } else {
 log.Println("Don't forget to delete the table when you're done or you might " +
 "incur charges on your account.")
 }
 if err == nil {
 log.Printf("Deleted table %v.\n", tableBasics.TableName)
 }

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key

Learn the basics API Version 2012-08-10 1673

Amazon DynamoDB Developer Guide

// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

Create a struct and methods that call DynamoDB actions.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"

Learn the basics API Version 2012-08-10 1674

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// TableExists determines whether a DynamoDB table exists.
func (basics TableBasics) TableExists(ctx context.Context) (bool, error) {
 exists := true
 _, err := basics.DynamoDbClient.DescribeTable(
 ctx, &dynamodb.DescribeTableInput{TableName: aws.String(basics.TableName)},
)
 if err != nil {
 var notFoundEx *types.ResourceNotFoundException
 if errors.As(err, ¬FoundEx) {
 log.Printf("Table %v does not exist.\n", basics.TableName)
 err = nil
 } else {
 log.Printf("Couldn't determine existence of table %v. Here's why: %v\n",
 basics.TableName, err)
 }
 exists = false
 }
 return exists, err
}

// CreateMovieTable creates a DynamoDB table with a composite primary key defined
 as
// a string sort key named `title`, and a numeric partition key named `year`.
// This function uses NewTableExistsWaiter to wait for the table to be created by
// DynamoDB before it returns.

Learn the basics API Version 2012-08-10 1675

Amazon DynamoDB Developer Guide

func (basics TableBasics) CreateMovieTable(ctx context.Context)
 (*types.TableDescription, error) {
 var tableDesc *types.TableDescription
 table, err := basics.DynamoDbClient.CreateTable(ctx, &dynamodb.CreateTableInput{
 AttributeDefinitions: []types.AttributeDefinition{{
 AttributeName: aws.String("year"),
 AttributeType: types.ScalarAttributeTypeN,
 }, {
 AttributeName: aws.String("title"),
 AttributeType: types.ScalarAttributeTypeS,
 }},
 KeySchema: []types.KeySchemaElement{{
 AttributeName: aws.String("year"),
 KeyType: types.KeyTypeHash,
 }, {
 AttributeName: aws.String("title"),
 KeyType: types.KeyTypeRange,
 }},
 TableName: aws.String(basics.TableName),
 BillingMode: types.BillingModePayPerRequest,
 })
 if err != nil {
 log.Printf("Couldn't create table %v. Here's why: %v\n", basics.TableName, err)
 } else {
 waiter := dynamodb.NewTableExistsWaiter(basics.DynamoDbClient)
 err = waiter.Wait(ctx, &dynamodb.DescribeTableInput{
 TableName: aws.String(basics.TableName)}, 5*time.Minute)
 if err != nil {
 log.Printf("Wait for table exists failed. Here's why: %v\n", err)
 }
 tableDesc = table.TableDescription
 log.Printf("Ccreating table test")
 }
 return tableDesc, err
}

// ListTables lists the DynamoDB table names for the current account.
func (basics TableBasics) ListTables(ctx context.Context) ([]string, error) {
 var tableNames []string
 var output *dynamodb.ListTablesOutput
 var err error

Learn the basics API Version 2012-08-10 1676

Amazon DynamoDB Developer Guide

 tablePaginator := dynamodb.NewListTablesPaginator(basics.DynamoDbClient,
 &dynamodb.ListTablesInput{})
 for tablePaginator.HasMorePages() {
 output, err = tablePaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't list tables. Here's why: %v\n", err)
 break
 } else {
 tableNames = append(tableNames, output.TableNames...)
 }
 }
 return tableNames, err
}

// AddMovie adds a movie the DynamoDB table.
func (basics TableBasics) AddMovie(ctx context.Context, movie Movie) error {
 item, err := attributevalue.MarshalMap(movie)
 if err != nil {
 panic(err)
 }
 _, err = basics.DynamoDbClient.PutItem(ctx, &dynamodb.PutItemInput{
 TableName: aws.String(basics.TableName), Item: item,
 })
 if err != nil {
 log.Printf("Couldn't add item to table. Here's why: %v\n", err)
 }
 return err
}

// UpdateMovie updates the rating and plot of a movie that already exists in the
// DynamoDB table. This function uses the `expression` package to build the
 update
// expression.
func (basics TableBasics) UpdateMovie(ctx context.Context, movie Movie)
 (map[string]map[string]interface{}, error) {
 var err error
 var response *dynamodb.UpdateItemOutput
 var attributeMap map[string]map[string]interface{}
 update := expression.Set(expression.Name("info.rating"),
 expression.Value(movie.Info["rating"]))

Learn the basics API Version 2012-08-10 1677

Amazon DynamoDB Developer Guide

 update.Set(expression.Name("info.plot"), expression.Value(movie.Info["plot"]))
 expr, err := expression.NewBuilder().WithUpdate(update).Build()
 if err != nil {
 log.Printf("Couldn't build expression for update. Here's why: %v\n", err)
 } else {
 response, err = basics.DynamoDbClient.UpdateItem(ctx,
 &dynamodb.UpdateItemInput{
 TableName: aws.String(basics.TableName),
 Key: movie.GetKey(),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 UpdateExpression: expr.Update(),
 ReturnValues: types.ReturnValueUpdatedNew,
 })
 if err != nil {
 log.Printf("Couldn't update movie %v. Here's why: %v\n", movie.Title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Attributes, &attributeMap)
 if err != nil {
 log.Printf("Couldn't unmarshall update response. Here's why: %v\n", err)
 }
 }
 }
 return attributeMap, err
}

// AddMovieBatch adds a slice of movies to the DynamoDB table. The function sends
// batches of 25 movies to DynamoDB until all movies are added or it reaches the
// specified maximum.
func (basics TableBasics) AddMovieBatch(ctx context.Context, movies []Movie,
 maxMovies int) (int, error) {
 var err error
 var item map[string]types.AttributeValue
 written := 0
 batchSize := 25 // DynamoDB allows a maximum batch size of 25 items.
 start := 0
 end := start + batchSize
 for start < maxMovies && start < len(movies) {
 var writeReqs []types.WriteRequest
 if end > len(movies) {
 end = len(movies)
 }

Learn the basics API Version 2012-08-10 1678

Amazon DynamoDB Developer Guide

 for _, movie := range movies[start:end] {
 item, err = attributevalue.MarshalMap(movie)
 if err != nil {
 log.Printf("Couldn't marshal movie %v for batch writing. Here's why: %v\n",
 movie.Title, err)
 } else {
 writeReqs = append(
 writeReqs,
 types.WriteRequest{PutRequest: &types.PutRequest{Item: item}},
)
 }
 }
 _, err = basics.DynamoDbClient.BatchWriteItem(ctx,
 &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{basics.TableName: writeReqs}})
 if err != nil {
 log.Printf("Couldn't add a batch of movies to %v. Here's why: %v\n",
 basics.TableName, err)
 } else {
 written += len(writeReqs)
 }
 start = end
 end += batchSize
 }

 return written, err
}

// GetMovie gets movie data from the DynamoDB table by using the primary
 composite key
// made of title and year.
func (basics TableBasics) GetMovie(ctx context.Context, title string, year int)
 (Movie, error) {
 movie := Movie{Title: title, Year: year}
 response, err := basics.DynamoDbClient.GetItem(ctx, &dynamodb.GetItemInput{
 Key: movie.GetKey(), TableName: aws.String(basics.TableName),
 })
 if err != nil {
 log.Printf("Couldn't get info about %v. Here's why: %v\n", title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Item, &movie)
 if err != nil {

Learn the basics API Version 2012-08-10 1679

Amazon DynamoDB Developer Guide

 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 }
 }
 return movie, err
}

// Query gets all movies in the DynamoDB table that were released in the
 specified year.
// The function uses the `expression` package to build the key condition
 expression
// that is used in the query.
func (basics TableBasics) Query(ctx context.Context, releaseYear int) ([]Movie,
 error) {
 var err error
 var response *dynamodb.QueryOutput
 var movies []Movie
 keyEx := expression.Key("year").Equal(expression.Value(releaseYear))
 expr, err := expression.NewBuilder().WithKeyCondition(keyEx).Build()
 if err != nil {
 log.Printf("Couldn't build expression for query. Here's why: %v\n", err)
 } else {
 queryPaginator := dynamodb.NewQueryPaginator(basics.DynamoDbClient,
 &dynamodb.QueryInput{
 TableName: aws.String(basics.TableName),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 KeyConditionExpression: expr.KeyCondition(),
 })
 for queryPaginator.HasMorePages() {
 response, err = queryPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't query for movies released in %v. Here's why: %v\n",
 releaseYear, err)
 break
 } else {
 var moviePage []Movie
 err = attributevalue.UnmarshalListOfMaps(response.Items, &moviePage)
 if err != nil {
 log.Printf("Couldn't unmarshal query response. Here's why: %v\n", err)
 break
 } else {
 movies = append(movies, moviePage...)

Learn the basics API Version 2012-08-10 1680

Amazon DynamoDB Developer Guide

 }
 }
 }
 }
 return movies, err
}

// Scan gets all movies in the DynamoDB table that were released in a range of
 years
// and projects them to return a reduced set of fields.
// The function uses the `expression` package to build the filter and projection
// expressions.
func (basics TableBasics) Scan(ctx context.Context, startYear int, endYear int)
 ([]Movie, error) {
 var movies []Movie
 var err error
 var response *dynamodb.ScanOutput
 filtEx := expression.Name("year").Between(expression.Value(startYear),
 expression.Value(endYear))
 projEx := expression.NamesList(
 expression.Name("year"), expression.Name("title"),
 expression.Name("info.rating"))
 expr, err :=
 expression.NewBuilder().WithFilter(filtEx).WithProjection(projEx).Build()
 if err != nil {
 log.Printf("Couldn't build expressions for scan. Here's why: %v\n", err)
 } else {
 scanPaginator := dynamodb.NewScanPaginator(basics.DynamoDbClient,
 &dynamodb.ScanInput{
 TableName: aws.String(basics.TableName),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 FilterExpression: expr.Filter(),
 ProjectionExpression: expr.Projection(),
 })
 for scanPaginator.HasMorePages() {
 response, err = scanPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't scan for movies released between %v and %v. Here's why:
 %v\n",
 startYear, endYear, err)
 break

Learn the basics API Version 2012-08-10 1681

Amazon DynamoDB Developer Guide

 } else {
 var moviePage []Movie
 err = attributevalue.UnmarshalListOfMaps(response.Items, &moviePage)
 if err != nil {
 log.Printf("Couldn't unmarshal query response. Here's why: %v\n", err)
 break
 } else {
 movies = append(movies, moviePage...)
 }
 }
 }
 }
 return movies, err
}

// DeleteMovie removes a movie from the DynamoDB table.
func (basics TableBasics) DeleteMovie(ctx context.Context, movie Movie) error {
 _, err := basics.DynamoDbClient.DeleteItem(ctx, &dynamodb.DeleteItemInput{
 TableName: aws.String(basics.TableName), Key: movie.GetKey(),
 })
 if err != nil {
 log.Printf("Couldn't delete %v from the table. Here's why: %v\n", movie.Title,
 err)
 }
 return err
}

// DeleteTable deletes the DynamoDB table and all of its data.
func (basics TableBasics) DeleteTable(ctx context.Context) error {
 _, err := basics.DynamoDbClient.DeleteTable(ctx, &dynamodb.DeleteTableInput{
 TableName: aws.String(basics.TableName)})
 if err != nil {
 log.Printf("Couldn't delete table %v. Here's why: %v\n", basics.TableName, err)
 }
 return err
}

• For API details, see the following topics in Amazon SDK for Go API Reference.

Learn the basics API Version 2012-08-10 1682

Amazon DynamoDB Developer Guide

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a DynamoDB table.

 // Create a table with a Sort key.
 public static void createTable(DynamoDbClient ddb, String tableName) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<>();

 // Define attributes.
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("year")
 .attributeType("N")
 .build());

 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("title")
 .attributeType("S")
 .build());

Learn the basics API Version 2012-08-10 1683

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.BatchWriteItem
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.CreateTable
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DeleteItem
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DeleteTable
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DescribeTable
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.GetItem
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.PutItem
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.Query
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.Scan
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 ArrayList<KeySchemaElement> tableKey = new ArrayList<>();
 KeySchemaElement key = KeySchemaElement.builder()
 .attributeName("year")
 .keyType(KeyType.HASH)
 .build();

 KeySchemaElement key2 = KeySchemaElement.builder()
 .attributeName("title")
 .keyType(KeyType.RANGE)
 .build();

 // Add KeySchemaElement objects to the list.
 tableKey.add(key);
 tableKey.add(key2);

 CreateTableRequest request = CreateTableRequest.builder()
 .keySchema(tableKey)
 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .attributeDefinitions(attributeDefinitions)
 .tableName(tableName)
 .build();

 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 String newTable = response.tableDescription().tableName();
 System.out.println("The " + newTable + " was successfully created.");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Learn the basics API Version 2012-08-10 1684

Amazon DynamoDB Developer Guide

Create a helper function to download and extract the sample JSON file.

 // Load data into the table.
 public static void loadData(DynamoDbClient ddb, String tableName, String
 fileName) throws IOException {
 DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

 DynamoDbTable<Movies> mappedTable = enhancedClient.table("Movies",
 TableSchema.fromBean(Movies.class));
 JsonParser parser = new JsonFactory().createParser(new File(fileName));
 com.fasterxml.jackson.databind.JsonNode rootNode = new
 ObjectMapper().readTree(parser);
 Iterator<JsonNode> iter = rootNode.iterator();
 ObjectNode currentNode;
 int t = 0;
 while (iter.hasNext()) {
 // Only add 200 Movies to the table.
 if (t == 200)
 break;
 currentNode = (ObjectNode) iter.next();

 int year = currentNode.path("year").asInt();
 String title = currentNode.path("title").asText();
 String info = currentNode.path("info").toString();

 Movies movies = new Movies();
 movies.setYear(year);
 movies.setTitle(title);
 movies.setInfo(info);

 // Put the data into the Amazon DynamoDB Movie table.
 mappedTable.putItem(movies);
 t++;
 }
 }

Get an item from a table.

 public static void getItem(DynamoDbClient ddb) {

Learn the basics API Version 2012-08-10 1685

Amazon DynamoDB Developer Guide

 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put("year", AttributeValue.builder()
 .n("1933")
 .build());

 keyToGet.put("title", AttributeValue.builder()
 .s("King Kong")
 .build());

 GetItemRequest request = GetItemRequest.builder()
 .key(keyToGet)
 .tableName("Movies")
 .build();

 try {
 Map<String, AttributeValue> returnedItem =
 ddb.getItem(request).item();

 if (returnedItem != null) {
 Set<String> keys = returnedItem.keySet();
 System.out.println("Amazon DynamoDB table attributes: \n");

 for (String key1 : keys) {
 System.out.format("%s: %s\n", key1,
 returnedItem.get(key1).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", "year");
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

Full example.

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

Learn the basics API Version 2012-08-10 1686

Amazon DynamoDB Developer Guide

 * <p>
 * For more information, see the following documentation topic:
 * <p>
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 * <p>
 * This Java example performs these tasks:
 * <p>
 * 1. Creates the Amazon DynamoDB Movie table with partition and sort key.
 * 2. Puts data into the Amazon DynamoDB table from a JSON document using the
 * Enhanced client.
 * 3. Gets data from the Movie table.
 * 4. Adds a new item.
 * 5. Updates an item.
 * 6. Uses a Scan to query items using the Enhanced client.
 * 7. Queries all items where the year is 2013 using the Enhanced Client.
 * 8. Deletes the table.
 */

public class Scenario {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws IOException {
 String tableName = "Movies";
 String fileName = "../../../resources/sample_files/movies.json";
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon DynamoDB example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println(
 "1. Creating an Amazon DynamoDB table named Movies with a key named
 year and a sort key named title.");
 createTable(ddb, tableName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Loading data into the Amazon DynamoDB table.");

Learn the basics API Version 2012-08-10 1687

Amazon DynamoDB Developer Guide

 loadData(ddb, tableName, fileName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("3. Getting data from the Movie table.");
 getItem(ddb);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Putting a record into the Amazon DynamoDB
 table.");
 putRecord(ddb);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Updating a record.");
 updateTableItem(ddb, tableName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Scanning the Amazon DynamoDB table.");
 scanMovies(ddb, tableName);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Querying the Movies released in 2013.");
 queryTable(ddb);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Deleting the Amazon DynamoDB table.");
 deleteDynamoDBTable(ddb, tableName);
 System.out.println(DASHES);

 ddb.close();
 }

 // Create a table with a Sort key.
 public static void createTable(DynamoDbClient ddb, String tableName) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<>();

 // Define attributes.
 attributeDefinitions.add(AttributeDefinition.builder()

Learn the basics API Version 2012-08-10 1688

Amazon DynamoDB Developer Guide

 .attributeName("year")
 .attributeType("N")
 .build());

 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("title")
 .attributeType("S")
 .build());

 ArrayList<KeySchemaElement> tableKey = new ArrayList<>();
 KeySchemaElement key = KeySchemaElement.builder()
 .attributeName("year")
 .keyType(KeyType.HASH)
 .build();

 KeySchemaElement key2 = KeySchemaElement.builder()
 .attributeName("title")
 .keyType(KeyType.RANGE)
 .build();

 // Add KeySchemaElement objects to the list.
 tableKey.add(key);
 tableKey.add(key2);

 CreateTableRequest request = CreateTableRequest.builder()
 .keySchema(tableKey)
 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .attributeDefinitions(attributeDefinitions)
 .tableName(tableName)
 .build();

 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 String newTable = response.tableDescription().tableName();
 System.out.println("The " + newTable + " was successfully created.");

Learn the basics API Version 2012-08-10 1689

Amazon DynamoDB Developer Guide

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 // Query the table.
 public static void queryTable(DynamoDbClient ddb) {
 try {
 DynamoDbEnhancedClient enhancedClient =
 DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

 DynamoDbTable<Movies> custTable = enhancedClient.table("Movies",
 TableSchema.fromBean(Movies.class));
 QueryConditional queryConditional = QueryConditional
 .keyEqualTo(Key.builder()
 .partitionValue(2013)
 .build());

 // Get items in the table and write out the ID value.
 Iterator<Movies> results =
 custTable.query(queryConditional).items().iterator();
 String result = "";

 while (results.hasNext()) {
 Movies rec = results.next();
 System.out.println("The title of the movie is " +
 rec.getTitle());
 System.out.println("The movie information is " + rec.getInfo());
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 // Scan the table.
 public static void scanMovies(DynamoDbClient ddb, String tableName) {
 System.out.println("******* Scanning all movies.\n");
 try {

Learn the basics API Version 2012-08-10 1690

Amazon DynamoDB Developer Guide

 DynamoDbEnhancedClient enhancedClient =
 DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

 DynamoDbTable<Movies> custTable = enhancedClient.table("Movies",
 TableSchema.fromBean(Movies.class));
 Iterator<Movies> results = custTable.scan().items().iterator();
 while (results.hasNext()) {
 Movies rec = results.next();
 System.out.println("The movie title is " + rec.getTitle());
 System.out.println("The movie year is " + rec.getYear());
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 // Load data into the table.
 public static void loadData(DynamoDbClient ddb, String tableName, String
 fileName) throws IOException {
 DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

 DynamoDbTable<Movies> mappedTable = enhancedClient.table("Movies",
 TableSchema.fromBean(Movies.class));
 JsonParser parser = new JsonFactory().createParser(new File(fileName));
 com.fasterxml.jackson.databind.JsonNode rootNode = new
 ObjectMapper().readTree(parser);
 Iterator<JsonNode> iter = rootNode.iterator();
 ObjectNode currentNode;
 int t = 0;
 while (iter.hasNext()) {
 // Only add 200 Movies to the table.
 if (t == 200)
 break;
 currentNode = (ObjectNode) iter.next();

 int year = currentNode.path("year").asInt();
 String title = currentNode.path("title").asText();
 String info = currentNode.path("info").toString();

Learn the basics API Version 2012-08-10 1691

Amazon DynamoDB Developer Guide

 Movies movies = new Movies();
 movies.setYear(year);
 movies.setTitle(title);
 movies.setInfo(info);

 // Put the data into the Amazon DynamoDB Movie table.
 mappedTable.putItem(movies);
 t++;
 }
 }

 // Update the record to include show only directors.
 public static void updateTableItem(DynamoDbClient ddb, String tableName) {
 HashMap<String, AttributeValue> itemKey = new HashMap<>();
 itemKey.put("year", AttributeValue.builder().n("1933").build());
 itemKey.put("title", AttributeValue.builder().s("King Kong").build());

 HashMap<String, AttributeValueUpdate> updatedValues = new HashMap<>();
 updatedValues.put("info", AttributeValueUpdate.builder()
 .value(AttributeValue.builder().s("{\"directors\":[\"Merian C. Cooper
\",\"Ernest B. Schoedsack\"]")
 .build())
 .action(AttributeAction.PUT)
 .build());

 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(itemKey)
 .attributeUpdates(updatedValues)
 .build();

 try {
 ddb.updateItem(request);
 } catch (ResourceNotFoundException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

 System.out.println("Item was updated!");
 }

Learn the basics API Version 2012-08-10 1692

Amazon DynamoDB Developer Guide

 public static void deleteDynamoDBTable(DynamoDbClient ddb, String tableName)
 {
 DeleteTableRequest request = DeleteTableRequest.builder()
 .tableName(tableName)
 .build();

 try {
 ddb.deleteTable(request);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println(tableName + " was successfully deleted!");
 }

 public static void putRecord(DynamoDbClient ddb) {
 try {
 DynamoDbEnhancedClient enhancedClient =
 DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

 DynamoDbTable<Movies> table = enhancedClient.table("Movies",
 TableSchema.fromBean(Movies.class));

 // Populate the Table.
 Movies record = new Movies();
 record.setYear(2020);
 record.setTitle("My Movie2");
 record.setInfo("no info");
 table.putItem(record);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println("Added a new movie to the table.");
 }

 public static void getItem(DynamoDbClient ddb) {

 HashMap<String, AttributeValue> keyToGet = new HashMap<>();

Learn the basics API Version 2012-08-10 1693

Amazon DynamoDB Developer Guide

 keyToGet.put("year", AttributeValue.builder()
 .n("1933")
 .build());

 keyToGet.put("title", AttributeValue.builder()
 .s("King Kong")
 .build());

 GetItemRequest request = GetItemRequest.builder()
 .key(keyToGet)
 .tableName("Movies")
 .build();

 try {
 Map<String, AttributeValue> returnedItem =
 ddb.getItem(request).item();

 if (returnedItem != null) {
 Set<String> keys = returnedItem.keySet();
 System.out.println("Amazon DynamoDB table attributes: \n");

 for (String key1 : keys) {
 System.out.format("%s: %s\n", key1,
 returnedItem.get(key1).toString());
 }
 } else {
 System.out.format("No item found with the key %s!\n", "year");
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

Learn the basics API Version 2012-08-10 1694

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { readFileSync } from "node:fs";
import {
 BillingMode,
 CreateTableCommand,
 DeleteTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";

/**
 * This module is a convenience library. It abstracts Amazon DynamoDB's data type
 * descriptors (such as S, N, B, and BOOL) by marshalling JavaScript objects into
 * AttributeValue shapes.
 */
import {
 BatchWriteCommand,
 DeleteCommand,
 DynamoDBDocumentClient,
 GetCommand,
 PutCommand,
 UpdateCommand,
 paginateQuery,

Learn the basics API Version 2012-08-10 1695

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 paginateScan,
} from "@aws-sdk/lib-dynamodb";

// These modules are local to our GitHub repository. We recommend cloning
// the project from GitHub if you want to run this example.
// For more information, see https://github.com/awsdocs/aws-doc-sdk-examples.
import { getUniqueName } from "@aws-doc-sdk-examples/lib/utils/util-string.js";
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { chunkArray } from "@aws-doc-sdk-examples/lib/utils/util-array.js";

const dirname = dirnameFromMetaUrl(import.meta.url);
const tableName = getUniqueName("Movies");
const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);

export const main = async () => {
 /**
 * Create a table.
 */

 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.
 AttributeDefinitions: [
 {
 AttributeName: "year",
 // 'N' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "N",
 },
 { AttributeName: "title", AttributeType: "S" },
],
 // The KeySchema defines the primary key. The primary key can be
 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see

Learn the basics API Version 2012-08-10 1696

Amazon DynamoDB Developer Guide

 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [
 // The way your data is accessed determines how you structure your keys.
 // The movies table will be queried for movies by year. It makes sense
 // to make year our partition (HASH) key.
 { AttributeName: "year", KeyType: "HASH" },
 { AttributeName: "title", KeyType: "RANGE" },
],
 });

 log("Creating a table.");
 const createTableResponse = await client.send(createTableCommand);
 log(`Table created: ${JSON.stringify(createTableResponse.TableDescription)}`);

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Add a movie to the table.
 */

 log("Adding a single movie to the table.");
 // PutCommand is the first example usage of 'lib-dynamodb'.
 const putCommand = new PutCommand({
 TableName: tableName,
 Item: {
 // In 'client-dynamodb', the AttributeValue would be required (`year: { N:
 1981 }`)
 // 'lib-dynamodb' simplifies the usage (`year: 1981`)
 year: 1981,
 // The preceding KeySchema defines 'title' as our sort (RANGE) key, so
 'title'
 // is required.
 title: "The Evil Dead",
 // Every other attribute is optional.
 info: {
 genres: ["Horror"],
 },
 },
 });

Learn the basics API Version 2012-08-10 1697

Amazon DynamoDB Developer Guide

 await docClient.send(putCommand);
 log("The movie was added.");

 /**
 * Get a movie from the table.
 */

 log("Getting a single movie from the table.");
 const getCommand = new GetCommand({
 TableName: tableName,
 // Requires the complete primary key. For the movies table, the primary key
 // is only the id (partition key).
 Key: {
 year: 1981,
 title: "The Evil Dead",
 },
 // Set this to make sure that recent writes are reflected.
 // For more information, see https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/HowItWorks.ReadConsistency.html.
 ConsistentRead: true,
 });
 const getResponse = await docClient.send(getCommand);
 log(`Got the movie: ${JSON.stringify(getResponse.Item)}`);

 /**
 * Update a movie in the table.
 */

 log("Updating a single movie in the table.");
 const updateCommand = new UpdateCommand({
 TableName: tableName,
 Key: { year: 1981, title: "The Evil Dead" },
 // This update expression appends "Comedy" to the list of genres.
 // For more information on update expressions, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Expressions.UpdateExpressions.html
 UpdateExpression: "set #i.#g = list_append(#i.#g, :vals)",
 ExpressionAttributeNames: { "#i": "info", "#g": "genres" },
 ExpressionAttributeValues: {
 ":vals": ["Comedy"],
 },
 ReturnValues: "ALL_NEW",
 });
 const updateResponse = await docClient.send(updateCommand);

Learn the basics API Version 2012-08-10 1698

Amazon DynamoDB Developer Guide

 log(`Movie updated: ${JSON.stringify(updateResponse.Attributes)}`);

 /**
 * Delete a movie from the table.
 */

 log("Deleting a single movie from the table.");
 const deleteCommand = new DeleteCommand({
 TableName: tableName,
 Key: { year: 1981, title: "The Evil Dead" },
 });
 await docClient.send(deleteCommand);
 log("Movie deleted.");

 /**
 * Upload a batch of movies.
 */

 log("Adding movies from local JSON file.");
 const file = readFileSync(
 `${dirname}../../../../resources/sample_files/movies.json`,
);
 const movies = JSON.parse(file.toString());
 // chunkArray is a local convenience function. It takes an array and returns
 // a generator function. The generator function yields every N items.
 const movieChunks = chunkArray(movies, 25);
 // For every chunk of 25 movies, make one BatchWrite request.
 for (const chunk of movieChunks) {
 const putRequests = chunk.map((movie) => ({
 PutRequest: {
 Item: movie,
 },
 }));

 const command = new BatchWriteCommand({
 RequestItems: {
 [tableName]: putRequests,
 },
 });

 await docClient.send(command);
 }
 log("Movies added.");

Learn the basics API Version 2012-08-10 1699

Amazon DynamoDB Developer Guide

 /**
 * Query for movies by year.
 */

 log("Querying for all movies from 1981.");
 const paginatedQuery = paginateQuery(
 { client: docClient },
 {
 TableName: tableName,
 //For more information about query expressions, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Query.html#Query.KeyConditionExpressions
 KeyConditionExpression: "#y = :y",
 // 'year' is a reserved word in DynamoDB. Indicate that it's an attribute
 // name by using an expression attribute name.
 ExpressionAttributeNames: { "#y": "year" },
 ExpressionAttributeValues: { ":y": 1981 },
 ConsistentRead: true,
 },
);
 /**
 * @type { Record<string, any>[] };
 */
 const movies1981 = [];
 for await (const page of paginatedQuery) {
 movies1981.push(...page.Items);
 }
 log(`Movies: ${movies1981.map((m) => m.title).join(", ")}`);

 /**
 * Scan the table for movies between 1980 and 1990.
 */

 log("Scan for movies released between 1980 and 1990");
 // A 'Scan' operation always reads every item in the table. If your design
 requires
 // the use of 'Scan', consider indexing your table or changing your design.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-query-
scan.html
 const paginatedScan = paginateScan(
 { client: docClient },
 {
 TableName: tableName,

Learn the basics API Version 2012-08-10 1700

Amazon DynamoDB Developer Guide

 // Scan uses a filter expression instead of a key condition expression.
 Scan will
 // read the entire table and then apply the filter.
 FilterExpression: "#y between :y1 and :y2",
 ExpressionAttributeNames: { "#y": "year" },
 ExpressionAttributeValues: { ":y1": 1980, ":y2": 1990 },
 ConsistentRead: true,
 },
);
 /**
 * @type { Record<string, any>[] };
 */
 const movies1980to1990 = [];
 for await (const page of paginatedScan) {
 movies1980to1990.push(...page.Items);
 }
 log(
 `Movies: ${movies1980to1990
 .map((m) => `${m.title} (${m.year})`)
 .join(", ")}`,
);

 /**
 * Delete the table.
 */

 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 log(`Deleting table ${tableName}.`);
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

Learn the basics API Version 2012-08-10 1701

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchWriteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTableCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/GetItemCommand

Amazon DynamoDB Developer Guide

• PutItem

• Query

• Scan

• UpdateItem

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a DynamoDB table.

suspend fun createScenarioTable(
 tableNameVal: String,
 key: String,
) {
 val attDef =
 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.N
 }

 val attDef1 =
 AttributeDefinition {
 attributeName = "title"
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val keySchemaVal1 =

Learn the basics API Version 2012-08-10 1702

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 KeySchemaElement {
 attributeName = "title"
 keyType = KeyType.Range
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef, attDef1)
 keySchema = listOf(keySchemaVal, keySchemaVal1)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {
 // suspend call
 tableName = tableNameVal
 }
 println("The table was successfully created
 ${response.tableDescription?.tableArn}")
 }
}

Create a helper function to download and extract the sample JSON file.

// Load data into the table.
suspend fun loadData(
 tableName: String,
 fileName: String,
) {
 val parser = JsonFactory().createParser(File(fileName))
 val rootNode = ObjectMapper().readTree<JsonNode>(parser)
 val iter: Iterator<JsonNode> = rootNode.iterator()
 var currentNode: ObjectNode

 var t = 0
 while (iter.hasNext()) {
 if (t == 50) {
 break
 }

Learn the basics API Version 2012-08-10 1703

Amazon DynamoDB Developer Guide

 currentNode = iter.next() as ObjectNode
 val year = currentNode.path("year").asInt()
 val title = currentNode.path("title").asText()
 val info = currentNode.path("info").toString()
 putMovie(tableName, year, title, info)
 t++
 }
}

suspend fun putMovie(
 tableNameVal: String,
 year: Int,
 title: String,
 info: String,
) {
 val itemValues = mutableMapOf<String, AttributeValue>()
 val strVal = year.toString()
 // Add all content to the table.
 itemValues["year"] = AttributeValue.N(strVal)
 itemValues["title"] = AttributeValue.S(title)
 itemValues["info"] = AttributeValue.S(info)

 val request =
 PutItemRequest {
 tableName = tableNameVal
 item = itemValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.putItem(request)
 println("Added $title to the Movie table.")
 }
}

Get an item from a table.

suspend fun getMovie(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
) {
 val keyToGet = mutableMapOf<String, AttributeValue>()

Learn the basics API Version 2012-08-10 1704

Amazon DynamoDB Developer Guide

 keyToGet[keyName] = AttributeValue.N(keyVal)
 keyToGet["title"] = AttributeValue.S("King Kong")

 val request =
 GetItemRequest {
 key = keyToGet
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val returnedItem = ddb.getItem(request)
 val numbersMap = returnedItem.item
 numbersMap?.forEach { key1 ->
 println(key1.key)
 println(key1.value)
 }
 }
}

Full example.

suspend fun main() {
 val tableName = "Movies"
 val fileName = "../../../resources/sample_files/movies.json"
 val partitionAlias = "#a"

 println("Creating an Amazon DynamoDB table named Movies with a key named id
 and a sort key named title.")
 createScenarioTable(tableName, "year")
 loadData(tableName, fileName)
 getMovie(tableName, "year", "1933")
 scanMovies(tableName)
 val count = queryMovieTable(tableName, "year", partitionAlias)
 println("There are $count Movies released in 2013.")
 deletIssuesTable(tableName)
}

suspend fun createScenarioTable(
 tableNameVal: String,
 key: String,
) {
 val attDef =

Learn the basics API Version 2012-08-10 1705

Amazon DynamoDB Developer Guide

 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.N
 }

 val attDef1 =
 AttributeDefinition {
 attributeName = "title"
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val keySchemaVal1 =
 KeySchemaElement {
 attributeName = "title"
 keyType = KeyType.Range
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef, attDef1)
 keySchema = listOf(keySchemaVal, keySchemaVal1)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {
 // suspend call
 tableName = tableNameVal
 }
 println("The table was successfully created
 ${response.tableDescription?.tableArn}")
 }
}

// Load data into the table.
suspend fun loadData(

Learn the basics API Version 2012-08-10 1706

Amazon DynamoDB Developer Guide

 tableName: String,
 fileName: String,
) {
 val parser = JsonFactory().createParser(File(fileName))
 val rootNode = ObjectMapper().readTree<JsonNode>(parser)
 val iter: Iterator<JsonNode> = rootNode.iterator()
 var currentNode: ObjectNode

 var t = 0
 while (iter.hasNext()) {
 if (t == 50) {
 break
 }

 currentNode = iter.next() as ObjectNode
 val year = currentNode.path("year").asInt()
 val title = currentNode.path("title").asText()
 val info = currentNode.path("info").toString()
 putMovie(tableName, year, title, info)
 t++
 }
}

suspend fun putMovie(
 tableNameVal: String,
 year: Int,
 title: String,
 info: String,
) {
 val itemValues = mutableMapOf<String, AttributeValue>()
 val strVal = year.toString()
 // Add all content to the table.
 itemValues["year"] = AttributeValue.N(strVal)
 itemValues["title"] = AttributeValue.S(title)
 itemValues["info"] = AttributeValue.S(info)

 val request =
 PutItemRequest {
 tableName = tableNameVal
 item = itemValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.putItem(request)

Learn the basics API Version 2012-08-10 1707

Amazon DynamoDB Developer Guide

 println("Added $title to the Movie table.")
 }
}

suspend fun getMovie(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
) {
 val keyToGet = mutableMapOf<String, AttributeValue>()
 keyToGet[keyName] = AttributeValue.N(keyVal)
 keyToGet["title"] = AttributeValue.S("King Kong")

 val request =
 GetItemRequest {
 key = keyToGet
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val returnedItem = ddb.getItem(request)
 val numbersMap = returnedItem.item
 numbersMap?.forEach { key1 ->
 println(key1.key)
 println(key1.value)
 }
 }
}

suspend fun deletIssuesTable(tableNameVal: String) {
 val request =
 DeleteTableRequest {
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.deleteTable(request)
 println("$tableNameVal was deleted")
 }
}

suspend fun queryMovieTable(
 tableNameVal: String,
 partitionKeyName: String,

Learn the basics API Version 2012-08-10 1708

Amazon DynamoDB Developer Guide

 partitionAlias: String,
): Int {
 val attrNameAlias = mutableMapOf<String, String>()
 attrNameAlias[partitionAlias] = "year"

 // Set up mapping of the partition name with the value.
 val attrValues = mutableMapOf<String, AttributeValue>()
 attrValues[":$partitionKeyName"] = AttributeValue.N("2013")

 val request =
 QueryRequest {
 tableName = tableNameVal
 keyConditionExpression = "$partitionAlias = :$partitionKeyName"
 expressionAttributeNames = attrNameAlias
 this.expressionAttributeValues = attrValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.query(request)
 return response.count
 }
}

suspend fun scanMovies(tableNameVal: String) {
 val request =
 ScanRequest {
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.scan(request)
 response.items?.forEach { item ->
 item.keys.forEach { key ->
 println("The key name is $key\n")
 println("The value is ${item[key]}")
 }
 }
 }
}

• For API details, see the following topics in Amazon SDK for Kotlin API reference.

• BatchWriteItem

Learn the basics API Version 2012-08-10 1709

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Because this example uses supporting files, be sure to read the guidance in the PHP
examples README.md file.

namespace DynamoDb\Basics;

use Aws\DynamoDb\Marshaler;
use DynamoDb;
use DynamoDb\DynamoDBAttribute;
use DynamoDb\DynamoDBService;

use function AwsUtilities\loadMovieData;
use function AwsUtilities\testable_readline;

class GettingStartedWithDynamoDB
{
 public function run()
 {
 echo("\n");

Learn the basics API Version 2012-08-10 1710

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/php/README.md#prerequisites

Amazon DynamoDB Developer Guide

 echo("--------------------------------------\n");
 print("Welcome to the Amazon DynamoDB getting started demo using PHP!
\n");
 echo("--------------------------------------\n");

 $uuid = uniqid();
 $service = new DynamoDBService();

 $tableName = "ddb_demo_table_$uuid";
 $service->createTable(
 $tableName,
 [
 new DynamoDBAttribute('year', 'N', 'HASH'),
 new DynamoDBAttribute('title', 'S', 'RANGE')
]
);

 echo "Waiting for table...";
 $service->dynamoDbClient->waitUntil("TableExists", ['TableName' =>
 $tableName]);
 echo "table $tableName found!\n";

 echo "What's the name of the last movie you watched?\n";
 while (empty($movieName)) {
 $movieName = testable_readline("Movie name: ");
 }
 echo "And what year was it released?\n";
 $movieYear = "year";
 while (!is_numeric($movieYear) || intval($movieYear) != $movieYear) {
 $movieYear = testable_readline("Year released: ");
 }

 $service->putItem([
 'Item' => [
 'year' => [
 'N' => "$movieYear",
],
 'title' => [
 'S' => $movieName,
],
],
 'TableName' => $tableName,
]);

Learn the basics API Version 2012-08-10 1711

Amazon DynamoDB Developer Guide

 echo "How would you rate the movie from 1-10?\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 echo "What was the movie about?\n";
 while (empty($plot)) {
 $plot = testable_readline("Plot summary: ");
 }
 $key = [
 'Item' => [
 'title' => [
 'S' => $movieName,
],
 'year' => [
 'N' => $movieYear,
],
]
];
 $attributes = ["rating" =>
 [
 'AttributeName' => 'rating',
 'AttributeType' => 'N',
 'Value' => $rating,
],
 'plot' => [
 'AttributeName' => 'plot',
 'AttributeType' => 'S',
 'Value' => $plot,
]
];
 $service->updateItemAttributesByKey($tableName, $key, $attributes);
 echo "Movie added and updated.";

 $batch = json_decode(loadMovieData());

 $service->writeBatch($tableName, $batch);

 $movie = $service->getItemByKey($tableName, $key);
 echo "\nThe movie {$movie['Item']['title']['S']} was released in
 {$movie['Item']['year']['N']}.\n";

Learn the basics API Version 2012-08-10 1712

Amazon DynamoDB Developer Guide

 echo "What rating would you like to give {$movie['Item']['title']['S']}?
\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 $service->updateItemAttributeByKey($tableName, $key, 'rating', 'N',
 $rating);

 $movie = $service->getItemByKey($tableName, $key);
 echo "Ok, you have rated {$movie['Item']['title']['S']} as a
 {$movie['Item']['rating']['N']}\n";

 $service->deleteItemByKey($tableName, $key);
 echo "But, bad news, this was a trap. That movie has now been deleted
 because of your rating...harsh.\n";

 echo "That's okay though. The book was better. Now, for something
 lighter, in what year were you born?\n";
 $birthYear = "not a number";
 while (!is_numeric($birthYear) || $birthYear >= date("Y")) {
 $birthYear = testable_readline("Birth year: ");
 }
 $birthKey = [
 'Key' => [
 'year' => [
 'N' => "$birthYear",
],
],
];
 $result = $service->query($tableName, $birthKey);
 $marshal = new Marshaler();
 echo "Here are the movies in our collection released the year you were
 born:\n";
 $oops = "Oops! There were no movies released in that year (that we know
 of).\n";
 $display = "";
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 $display .= $movie['title'] . "\n";
 }
 echo ($display) ?: $oops;

Learn the basics API Version 2012-08-10 1713

Amazon DynamoDB Developer Guide

 $yearsKey = [
 'Key' => [
 'year' => [
 'N' => [
 'minRange' => 1990,
 'maxRange' => 1999,
],
],
],
];
 $filter = "year between 1990 and 1999";
 echo "\nHere's a list of all the movies released in the 90s:\n";
 $result = $service->scan($tableName, $yearsKey, $filter);
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 echo $movie['title'] . "\n";
 }

 echo "\nCleaning up this demo by deleting table $tableName...\n";
 $service->deleteTable($tableName);
 }
}

• For API details, see the following topics in Amazon SDK for PHP API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Learn the basics API Version 2012-08-10 1714

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a class that encapsulates a DynamoDB table.

from decimal import Decimal
from io import BytesIO
import json
import logging
import os
from pprint import pprint
import requests
from zipfile import ZipFile
import boto3
from boto3.dynamodb.conditions import Key
from botocore.exceptions import ClientError
from question import Question

logger = logging.getLogger(__name__)

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",

Learn the basics API Version 2012-08-10 1715

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def exists(self, table_name):
 """
 Determines whether a table exists. As a side effect, stores the table in
 a member variable.

 :param table_name: The name of the table to check.
 :return: True when the table exists; otherwise, False.
 """
 try:
 table = self.dyn_resource.Table(table_name)
 table.load()
 exists = True
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 exists = False
 else:
 logger.error(
 "Couldn't check for existence of %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 self.table = table
 return exists

Learn the basics API Version 2012-08-10 1716

Amazon DynamoDB Developer Guide

 def create_table(self, table_name):
 """
 Creates an Amazon DynamoDB table that can be used to store movie data.
 The table uses the release year of the movie as the partition key and the
 title as the sort key.

 :param table_name: The name of the table to create.
 :return: The newly created table.
 """
 try:
 self.table = self.dyn_resource.create_table(
 TableName=table_name,
 KeySchema=[
 {"AttributeName": "year", "KeyType": "HASH"}, # Partition
 key
 {"AttributeName": "title", "KeyType": "RANGE"}, # Sort key
],
 AttributeDefinitions=[
 {"AttributeName": "year", "AttributeType": "N"},
 {"AttributeName": "title", "AttributeType": "S"},
],
 BillingMode='PAY_PER_REQUEST',
)
 self.table.wait_until_exists()
 except ClientError as err:
 logger.error(
 "Couldn't create table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return self.table

 def list_tables(self):
 """
 Lists the Amazon DynamoDB tables for the current account.

 :return: The list of tables.
 """
 try:

Learn the basics API Version 2012-08-10 1717

Amazon DynamoDB Developer Guide

 tables = []
 for table in self.dyn_resource.tables.all():
 print(table.name)
 tables.append(table)
 except ClientError as err:
 logger.error(
 "Couldn't list tables. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return tables

 def write_batch(self, movies):
 """
 Fills an Amazon DynamoDB table with the specified data, using the Boto3
 Table.batch_writer() function to put the items in the table.
 Inside the context manager, Table.batch_writer builds a list of
 requests. On exiting the context manager, Table.batch_writer starts
 sending
 batches of write requests to Amazon DynamoDB and automatically
 handles chunking, buffering, and retrying.

 :param movies: The data to put in the table. Each item must contain at
 least
 the keys required by the schema that was specified when
 the
 table was created.
 """
 try:
 with self.table.batch_writer() as writer:
 for movie in movies:
 writer.put_item(Item=movie)
 except ClientError as err:
 logger.error(
 "Couldn't load data into table %s. Here's why: %s: %s",
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Learn the basics API Version 2012-08-10 1718

Amazon DynamoDB Developer Guide

 def add_movie(self, title, year, plot, rating):
 """
 Adds a movie to the table.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :param plot: The plot summary of the movie.
 :param rating: The quality rating of the movie.
 """
 try:
 self.table.put_item(
 Item={
 "year": year,
 "title": title,
 "info": {"plot": plot, "rating": Decimal(str(rating))},
 }
)
 except ClientError as err:
 logger.error(
 "Couldn't add movie %s to table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def get_movie(self, title, year):
 """
 Gets movie data from the table for a specific movie.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :return: The data about the requested movie.
 """
 try:
 response = self.table.get_item(Key={"year": year, "title": title})
 except ClientError as err:
 logger.error(
 "Couldn't get movie %s from table %s. Here's why: %s: %s",
 title,
 self.table.name,

Learn the basics API Version 2012-08-10 1719

Amazon DynamoDB Developer Guide

 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Item"]

 def update_movie(self, title, year, rating, plot):
 """
 Updates rating and plot data for a movie in the table.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param rating: The updated rating to the give the movie.
 :param plot: The updated plot summary to give the movie.
 :return: The fields that were updated, with their new values.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="set info.rating=:r, info.plot=:p",
 ExpressionAttributeValues={":r": Decimal(str(rating)), ":p":
 plot},
 ReturnValues="UPDATED_NEW",
)
 except ClientError as err:
 logger.error(
 "Couldn't update movie %s in table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

 def query_movies(self, year):
 """
 Queries for movies that were released in the specified year.

 :param year: The year to query.

Learn the basics API Version 2012-08-10 1720

Amazon DynamoDB Developer Guide

 :return: The list of movies that were released in the specified year.
 """
 try:
 response =
 self.table.query(KeyConditionExpression=Key("year").eq(year))
 except ClientError as err:
 logger.error(
 "Couldn't query for movies released in %s. Here's why: %s: %s",
 year,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Items"]

 def scan_movies(self, year_range):
 """
 Scans for movies that were released in a range of years.
 Uses a projection expression to return a subset of data for each movie.

 :param year_range: The range of years to retrieve.
 :return: The list of movies released in the specified years.
 """
 movies = []
 scan_kwargs = {
 "FilterExpression": Key("year").between(
 year_range["first"], year_range["second"]
),
 "ProjectionExpression": "#yr, title, info.rating",
 "ExpressionAttributeNames": {"#yr": "year"},
 }
 try:
 done = False
 start_key = None
 while not done:
 if start_key:
 scan_kwargs["ExclusiveStartKey"] = start_key
 response = self.table.scan(**scan_kwargs)
 movies.extend(response.get("Items", []))
 start_key = response.get("LastEvaluatedKey", None)
 done = start_key is None
 except ClientError as err:

Learn the basics API Version 2012-08-10 1721

Amazon DynamoDB Developer Guide

 logger.error(
 "Couldn't scan for movies. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 return movies

 def delete_movie(self, title, year):
 """
 Deletes a movie from the table.

 :param title: The title of the movie to delete.
 :param year: The release year of the movie to delete.
 """
 try:
 self.table.delete_item(Key={"year": year, "title": title})
 except ClientError as err:
 logger.error(
 "Couldn't delete movie %s. Here's why: %s: %s",
 title,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 def delete_table(self):
 """
 Deletes the table.
 """
 try:
 self.table.delete()
 self.table = None
 except ClientError as err:
 logger.error(
 "Couldn't delete table. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Learn the basics API Version 2012-08-10 1722

Amazon DynamoDB Developer Guide

Create a helper function to download and extract the sample JSON file.

def get_sample_movie_data(movie_file_name):
 """
 Gets sample movie data, either from a local file or by first downloading it
 from
 the Amazon DynamoDB developer guide.

 :param movie_file_name: The local file name where the movie data is stored in
 JSON format.
 :return: The movie data as a dict.
 """
 if not os.path.isfile(movie_file_name):
 print(f"Downloading {movie_file_name}...")
 movie_content = requests.get(
 "https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
samples/moviedata.zip"
)
 movie_zip = ZipFile(BytesIO(movie_content.content))
 movie_zip.extractall()

 try:
 with open(movie_file_name) as movie_file:
 movie_data = json.load(movie_file, parse_float=Decimal)
 except FileNotFoundError:
 print(
 f"File {movie_file_name} not found. You must first download the file
 to "
 "run this demo. See the README for instructions."
)
 raise
 else:
 # The sample file lists over 4000 movies, return only the first 250.
 return movie_data[:250]

Run an interactive scenario to create the table and perform actions on it.

Learn the basics API Version 2012-08-10 1723

Amazon DynamoDB Developer Guide

def run_scenario(table_name, movie_file_name, dyn_resource):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the Amazon DynamoDB getting started demo.")
 print("-" * 88)

 movies = Movies(dyn_resource)
 movies_exists = movies.exists(table_name)
 if not movies_exists:
 print(f"\nCreating table {table_name}...")
 movies.create_table(table_name)
 print(f"\nCreated table {movies.table.name}.")

 my_movie = Question.ask_questions(
 [
 Question(
 "title", "Enter the title of a movie you want to add to the
 table: "
),
 Question("year", "What year was it released? ", Question.is_int),
 Question(
 "rating",
 "On a scale of 1 - 10, how do you rate it? ",
 Question.is_float,
 Question.in_range(1, 10),
),
 Question("plot", "Summarize the plot for me: "),
]
)
 movies.add_movie(**my_movie)
 print(f"\nAdded '{my_movie['title']}' to '{movies.table.name}'.")
 print("-" * 88)

 movie_update = Question.ask_questions(
 [
 Question(
 "rating",
 f"\nLet's update your movie.\nYou rated it {my_movie['rating']},
 what new "
 f"rating would you give it? ",
 Question.is_float,
 Question.in_range(1, 10),

Learn the basics API Version 2012-08-10 1724

Amazon DynamoDB Developer Guide

),
 Question(
 "plot",
 f"You summarized the plot as '{my_movie['plot']}'.\nWhat would
 you say now? ",
),
]
)
 my_movie.update(movie_update)
 updated = movies.update_movie(**my_movie)
 print(f"\nUpdated '{my_movie['title']}' with new attributes:")
 pprint(updated)
 print("-" * 88)

 if not movies_exists:
 movie_data = get_sample_movie_data(movie_file_name)
 print(f"\nReading data from '{movie_file_name}' into your table.")
 movies.write_batch(movie_data)
 print(f"\nWrote {len(movie_data)} movies into {movies.table.name}.")
 print("-" * 88)

 title = "The Lord of the Rings: The Fellowship of the Ring"
 if Question.ask_question(
 f"Let's move on...do you want to get info about '{title}'? (y/n) ",
 Question.is_yesno,
):
 movie = movies.get_movie(title, 2001)
 print("\nHere's what I found:")
 pprint(movie)
 print("-" * 88)

 ask_for_year = True
 while ask_for_year:
 release_year = Question.ask_question(
 f"\nLet's get a list of movies released in a given year. Enter a year
 between "
 f"1972 and 2018: ",
 Question.is_int,
 Question.in_range(1972, 2018),
)
 releases = movies.query_movies(release_year)
 if releases:
 print(f"There were {len(releases)} movies released in
 {release_year}:")

Learn the basics API Version 2012-08-10 1725

Amazon DynamoDB Developer Guide

 for release in releases:
 print(f"\t{release['title']}")
 ask_for_year = False
 else:
 print(f"I don't know about any movies released in {release_year}!")
 ask_for_year = Question.ask_question(
 "Try another year? (y/n) ", Question.is_yesno
)
 print("-" * 88)

 years = Question.ask_questions(
 [
 Question(
 "first",
 f"\nNow let's scan for movies released in a range of years. Enter
 a year: ",
 Question.is_int,
 Question.in_range(1972, 2018),
),
 Question(
 "second",
 "Now enter another year: ",
 Question.is_int,
 Question.in_range(1972, 2018),
),
]
)
 releases = movies.scan_movies(years)
 if releases:
 count = Question.ask_question(
 f"\nFound {len(releases)} movies. How many do you want to see? ",
 Question.is_int,
 Question.in_range(1, len(releases)),
)
 print(f"\nHere are your {count} movies:\n")
 pprint(releases[:count])
 else:
 print(
 f"I don't know about any movies released between {years['first']} "
 f"and {years['second']}."
)
 print("-" * 88)

 if Question.ask_question(

Learn the basics API Version 2012-08-10 1726

Amazon DynamoDB Developer Guide

 f"\nLet's remove your movie from the table. Do you want to remove "
 f"'{my_movie['title']}'? (y/n)",
 Question.is_yesno,
):
 movies.delete_movie(my_movie["title"], my_movie["year"])
 print(f"\nRemoved '{my_movie['title']}' from the table.")
 print("-" * 88)

 if Question.ask_question(f"\nDelete the table? (y/n) ", Question.is_yesno):
 movies.delete_table()
 print(f"Deleted {table_name}.")
 else:
 print(
 "Don't forget to delete the table when you're done or you might incur
 "
 "charges on your account."
)

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 run_scenario(
 "doc-example-table-movies", "moviedata.json",
 boto3.resource("dynamodb")
)
 except Exception as e:
 print(f"Something went wrong with the demo! Here's what: {e}")

This scenario uses the following helper class to ask questions at a command prompt.

class Question:
 """
 A helper class to ask questions at a command prompt and validate and convert
 the answers.
 """

 def __init__(self, key, question, *validators):
 """
 :param key: The key that is used for storing the answer in a dict, when

Learn the basics API Version 2012-08-10 1727

Amazon DynamoDB Developer Guide

 multiple questions are asked in a set.
 :param question: The question to ask.
 :param validators: The answer is passed through the list of validators
 until
 one fails or they all pass. Validators may also
 convert the
 answer to another form, such as from a str to an int.
 """
 self.key = key
 self.question = question
 self.validators = Question.non_empty, *validators

 @staticmethod
 def ask_questions(questions):
 """
 Asks a set of questions and stores the answers in a dict.

 :param questions: The list of questions to ask.
 :return: A dict of answers.
 """
 answers = {}
 for question in questions:
 answers[question.key] = Question.ask_question(
 question.question, *question.validators
)
 return answers

 @staticmethod
 def ask_question(question, *validators):
 """
 Asks a single question and validates it against a list of validators.
 When an answer fails validation, the complaint is printed and the
 question
 is asked again.

 :param question: The question to ask.
 :param validators: The list of validators that the answer must pass.
 :return: The answer, converted to its final form by the validators.
 """
 answer = None
 while answer is None:
 answer = input(question)
 for validator in validators:
 answer, complaint = validator(answer)

Learn the basics API Version 2012-08-10 1728

Amazon DynamoDB Developer Guide

 if answer is None:
 print(complaint)
 break
 return answer

 @staticmethod
 def non_empty(answer):
 """
 Validates that the answer is not empty.
 :return: The non-empty answer, or None.
 """
 return answer if answer != "" else None, "I need an answer. Please?"

 @staticmethod
 def is_yesno(answer):
 """
 Validates a yes/no answer.
 :return: True when the answer is 'y'; otherwise, False.
 """
 return answer.lower() == "y", ""

 @staticmethod
 def is_int(answer):
 """
 Validates that the answer can be converted to an int.
 :return: The int answer; otherwise, None.
 """
 try:
 int_answer = int(answer)
 except ValueError:
 int_answer = None
 return int_answer, f"{answer} must be a valid integer."

 @staticmethod
 def is_letter(answer):
 """
 Validates that the answer is a letter.
 :return The letter answer, converted to uppercase; otherwise, None.
 """
 return (
 answer.upper() if answer.isalpha() else None,
 f"{answer} must be a single letter.",
)

Learn the basics API Version 2012-08-10 1729

Amazon DynamoDB Developer Guide

 @staticmethod
 def is_float(answer):
 """
 Validate that the answer can be converted to a float.
 :return The float answer; otherwise, None.
 """
 try:
 float_answer = float(answer)
 except ValueError:
 float_answer = None
 return float_answer, f"{answer} must be a valid float."

 @staticmethod
 def in_range(lower, upper):
 """
 Validate that the answer is within a range. The answer must be of a type
 that can
 be compared to the lower and upper bounds.
 :return: The answer, if it is within the range; otherwise, None.
 """

 def _validate(answer):
 return (
 answer if lower <= answer <= upper else None,
 f"{answer} must be between {lower} and {upper}.",
)

 return _validate

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

Learn the basics API Version 2012-08-10 1730

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

• Query

• Scan

• UpdateItem

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a class that encapsulates a DynamoDB table.

 # Creates an Amazon DynamoDB table that can be used to store movie data.
 # The table uses the release year of the movie as the partition key and the
 # title as the sort key.
 #
 # @param table_name [String] The name of the table to create.
 # @return [Aws::DynamoDB::Table] The newly created table.
 def create_table(table_name)
 @table = @dynamo_resource.create_table(
 table_name: table_name,
 key_schema: [
 { attribute_name: 'year', key_type: 'HASH' }, # Partition key
 { attribute_name: 'title', key_type: 'RANGE' } # Sort key
],
 attribute_definitions: [
 { attribute_name: 'year', attribute_type: 'N' },
 { attribute_name: 'title', attribute_type: 'S' }
],
 billing_mode: 'PAY_PER_REQUEST'
)
 @dynamo_resource.client.wait_until(:table_exists, table_name: table_name)
 @table
 rescue Aws::DynamoDB::Errors::ServiceError => e
 @logger.error("Failed create table #{table_name}:\n#{e.code}: #{e.message}")
 raise
 end

Learn the basics API Version 2012-08-10 1731

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

Create a helper function to download and extract the sample JSON file.

 # Gets sample movie data, either from a local file or by first downloading it
 from
 # the Amazon DynamoDB Developer Guide.
 #
 # @param movie_file_name [String] The local file name where the movie data is
 stored in JSON format.
 # @return [Hash] The movie data as a Hash.
 def fetch_movie_data(movie_file_name)
 if !File.file?(movie_file_name)
 @logger.debug("Downloading #{movie_file_name}...")
 movie_content = URI.open(
 'https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
samples/moviedata.zip'
)
 movie_json = ''
 Zip::File.open_buffer(movie_content) do |zip|
 zip.each do |entry|
 movie_json = entry.get_input_stream.read
 end
 end
 else
 movie_json = File.read(movie_file_name)
 end
 movie_data = JSON.parse(movie_json)
 # The sample file lists over 4000 movies. This returns only the first 250.
 movie_data.slice(0, 250)
 rescue StandardError => e
 puts("Failure downloading movie data:\n#{e}")
 raise
 end

Run an interactive scenario to create the table and perform actions on it.

 table_name = "doc-example-table-movies-#{rand(10**4)}"
 scaffold = Scaffold.new(table_name)
 dynamodb_wrapper = DynamoDBBasics.new(table_name)

 new_step(1, 'Create a new DynamoDB table if none already exists.')

Learn the basics API Version 2012-08-10 1732

Amazon DynamoDB Developer Guide

 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Add a new record to the DynamoDB table.')
 my_movie = {}
 my_movie[:title] = CLI::UI::Prompt.ask('Enter the title of a movie to add to
 the table. E.g. The Matrix')
 my_movie[:year] = CLI::UI::Prompt.ask('What year was it released? E.g.
 1989').to_i
 my_movie[:rating] = CLI::UI::Prompt.ask('On a scale of 1 - 10, how do you rate
 it? E.g. 7').to_i
 my_movie[:plot] = CLI::UI::Prompt.ask('Enter a brief summary of the plot. E.g.
 A man awakens to a new reality.')
 dynamodb_wrapper.add_item(my_movie)
 puts("\nNew record added:")
 puts JSON.pretty_generate(my_movie).green
 print "Done!\n".green

 new_step(3, 'Update a record in the DynamoDB table.')
 my_movie[:rating] = CLI::UI::Prompt.ask("Let's update the movie you added with
 a new rating, e.g. 3:").to_i
 response = dynamodb_wrapper.update_item(my_movie)
 puts("Updated '#{my_movie[:title]}' with new attributes:")
 puts JSON.pretty_generate(response).green
 print "Done!\n".green

 new_step(4, 'Get a record from the DynamoDB table.')
 puts("Searching for #{my_movie[:title]} (#{my_movie[:year]})...")
 response = dynamodb_wrapper.get_item(my_movie[:title], my_movie[:year])
 puts JSON.pretty_generate(response).green
 print "Done!\n".green

 new_step(5, 'Write a batch of items into the DynamoDB table.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")
 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

Learn the basics API Version 2012-08-10 1733

Amazon DynamoDB Developer Guide

 new_step(5, 'Query for a batch of items by key.')
 loop do
 release_year = CLI::UI::Prompt.ask('Enter a year between 1972 and 2018, e.g.
 1999:').to_i
 results = dynamodb_wrapper.query_items(release_year)
 if results.any?
 puts("There were #{results.length} movies released in #{release_year}:")
 results.each do |movie|
 print "\t #{movie['title']}".green
 end
 break
 else
 continue = CLI::UI::Prompt.ask("Found no movies released in
 #{release_year}! Try another year? (y/n)")
 break unless continue.eql?('y')
 end
 end
 print "\nDone!\n".green

 new_step(6, 'Scan for a batch of items using a filter expression.')
 years = {}
 years[:start] = CLI::UI::Prompt.ask('Enter a starting year between 1972 and
 2018:')
 years[:end] = CLI::UI::Prompt.ask('Enter an ending year between 1972 and
 2018:')
 releases = dynamodb_wrapper.scan_items(years)
 if !releases.empty?
 puts("Found #{releases.length} movies.")
 count = Question.ask(
 'How many do you want to see? ', method(:is_int), in_range(1,
 releases.length)
)
 puts("Here are your #{count} movies:")
 releases.take(count).each do |release|
 puts("\t#{release['title']}")
 end
 else
 puts("I don't know about any movies released between #{years[:start]} "\
 "and #{years[:end]}.")
 end
 print "\nDone!\n".green

 new_step(7, 'Delete an item from the DynamoDB table.')

Learn the basics API Version 2012-08-10 1734

Amazon DynamoDB Developer Guide

 answer = CLI::UI::Prompt.ask("Do you want to remove '#{my_movie[:title]}'? (y/
n) ")
 if answer.eql?('y')
 dynamodb_wrapper.delete_item(my_movie[:title], my_movie[:year])
 puts("Removed '#{my_movie[:title]}' from the table.")
 print "\nDone!\n".green
 end

 new_step(8, 'Delete the DynamoDB table.')
 answer = CLI::UI::Prompt.ask('Delete the table? (y/n)')
 if answer.eql?('y')
 scaffold.delete_table
 puts("Deleted #{table_name}.")
 else
 puts("Don't forget to delete the table when you're done!")
 end
 print "\nThanks for watching!\n".green
rescue Aws::Errors::ServiceError
 puts('Something went wrong with the demo.')
rescue Errno::ENOENT
 true
end

• For API details, see the following topics in Amazon SDK for Ruby API Reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Learn the basics API Version 2012-08-10 1735

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchWriteItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Scan
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 " Create an Amazon Dynamo DB table.

 TRY.
 DATA(lo_session) = /aws1/cl_rt_session_aws=>create(cv_pfl).
 DATA(lo_dyn) = /aws1/cl_dyn_factory=>create(lo_session).
 DATA(lt_keyschema) = VALUE /aws1/cl_dynkeyschemaelement=>tt_keyschema(
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'year'
 iv_keytype = 'HASH'))
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'title'
 iv_keytype = 'RANGE'))).
 DATA(lt_attributedefinitions) = VALUE /aws1/
cl_dynattributedefn=>tt_attributedefinitions(
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'year'
 iv_attributetype = 'N'))
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'title'
 iv_attributetype = 'S'))).

 " Adjust read/write capacities as desired.
 DATA(lo_dynprovthroughput) = NEW /aws1/cl_dynprovthroughput(
 iv_readcapacityunits = 5
 iv_writecapacityunits = 5).
 DATA(oo_result) = lo_dyn->createtable(
 it_keyschema = lt_keyschema
 iv_tablename = iv_table_name
 it_attributedefinitions = lt_attributedefinitions
 io_provisionedthroughput = lo_dynprovthroughput).
 " Table creation can take some time. Wait till table exists before
 returning.
 lo_dyn->get_waiter()->tableexists(
 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'DynamoDB Table' && iv_table_name && 'created.' TYPE 'I'.

Learn the basics API Version 2012-08-10 1736

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 " It throws exception if the table already exists.
 CATCH /aws1/cx_dynresourceinuseex INTO DATA(lo_resourceinuseex).
 DATA(lv_error) = |"{ lo_resourceinuseex->av_err_code }" -
 { lo_resourceinuseex->av_err_msg }|.
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

 " Describe table
 TRY.
 DATA(lo_table) = lo_dyn->describetable(iv_tablename = iv_table_name).
 DATA(lv_tablename) = lo_table->get_table()->ask_tablename().
 MESSAGE 'The table name is ' && lv_tablename TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table does not exist' TYPE 'E'.
 ENDTRY.

 " Put items into the table.
 TRY.
 DATA(lo_resp_putitem) = lo_dyn->putitem(
 iv_tablename = iv_table_name
 it_item = VALUE /aws1/
cl_dynattributevalue=>tt_putiteminputattributemap(
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'title' value = NEW /aws1/cl_dynattributevalue(iv_s =
 'Jaws')))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'year' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '1975' }|)))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'rating' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '7.5' }|)))
)).
 lo_resp_putitem = lo_dyn->putitem(
 iv_tablename = iv_table_name
 it_item = VALUE /aws1/
cl_dynattributevalue=>tt_putiteminputattributemap(
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'title' value = NEW /aws1/cl_dynattributevalue(iv_s = 'Star
 Wars')))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'year' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '1978' }|)))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(

Learn the basics API Version 2012-08-10 1737

Amazon DynamoDB Developer Guide

 key = 'rating' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '8.1' }|)))
)).
 lo_resp_putitem = lo_dyn->putitem(
 iv_tablename = iv_table_name
 it_item = VALUE /aws1/
cl_dynattributevalue=>tt_putiteminputattributemap(
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'title' value = NEW /aws1/cl_dynattributevalue(iv_s =
 'Speed')))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'year' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '1994' }|)))
 (VALUE /aws1/cl_dynattributevalue=>ts_putiteminputattrmap_maprow(
 key = 'rating' value = NEW /aws1/cl_dynattributevalue(iv_n = |
{ '7.9' }|)))
)).
 " TYPE REF TO /AWSEX/CL_AWS1_dyn_PUT_ITEM_OUTPUT
 MESSAGE '3 rows inserted into DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

 " Get item from table.
 TRY.
 DATA(lo_resp_getitem) = lo_dyn->getitem(
 iv_tablename = iv_table_name
 it_key = VALUE /aws1/cl_dynattributevalue=>tt_key(
 (VALUE /aws1/cl_dynattributevalue=>ts_key_maprow(
 key = 'title' value = NEW /aws1/cl_dynattributevalue(iv_s =
 'Jaws')))
 (VALUE /aws1/cl_dynattributevalue=>ts_key_maprow(
 key = 'year' value = NEW /aws1/cl_dynattributevalue(iv_n =
 '1975')))
)).
 DATA(lt_attr) = lo_resp_getitem->get_item().
 DATA(lo_title) = lt_attr[key = 'title']-value.
 DATA(lo_year) = lt_attr[key = 'year']-value.
 DATA(lo_rating) = lt_attr[key = 'year']-value.

Learn the basics API Version 2012-08-10 1738

Amazon DynamoDB Developer Guide

 MESSAGE 'Movie name is: ' && lo_title->get_s() TYPE 'I'.
 MESSAGE 'Movie year is: ' && lo_year->get_n() TYPE 'I'.
 MESSAGE 'Movie rating is: ' && lo_rating->get_n() TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

 " Query item from table.
 TRY.
 DATA(lt_attributelist) = VALUE /aws1/
cl_dynattributevalue=>tt_attributevaluelist(
 (NEW /aws1/cl_dynattributevalue(iv_n = '1975'))).
 DATA(lt_keyconditions) = VALUE /aws1/cl_dyncondition=>tt_keyconditions(
 (VALUE /aws1/cl_dyncondition=>ts_keyconditions_maprow(
 key = 'year'
 value = NEW /aws1/cl_dyncondition(
 it_attributevaluelist = lt_attributelist
 iv_comparisonoperator = |EQ|
)))).
 DATA(lo_query_result) = lo_dyn->query(
 iv_tablename = iv_table_name
 it_keyconditions = lt_keyconditions).
 DATA(lt_items) = lo_query_result->get_items().
 READ TABLE lo_query_result->get_items() INTO DATA(lt_item) INDEX 1.
 lo_title = lt_item[key = 'title']-value.
 lo_year = lt_item[key = 'year']-value.
 lo_rating = lt_item[key = 'rating']-value.
 MESSAGE 'Movie name is: ' && lo_title->get_s() TYPE 'I'.
 MESSAGE 'Movie year is: ' && lo_year->get_n() TYPE 'I'.
 MESSAGE 'Movie rating is: ' && lo_rating->get_n() TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

 " Scan items from table.
 TRY.
 DATA(lo_scan_result) = lo_dyn->scan(iv_tablename = iv_table_name).
 lt_items = lo_scan_result->get_items().
 " Read the first item and display the attributes.
 READ TABLE lo_query_result->get_items() INTO lt_item INDEX 1.
 lo_title = lt_item[key = 'title']-value.
 lo_year = lt_item[key = 'year']-value.
 lo_rating = lt_item[key = 'rating']-value.
 MESSAGE 'Movie name is: ' && lo_title->get_s() TYPE 'I'.

Learn the basics API Version 2012-08-10 1739

Amazon DynamoDB Developer Guide

 MESSAGE 'Movie year is: ' && lo_year->get_n() TYPE 'I'.
 MESSAGE 'Movie rating is: ' && lo_rating->get_n() TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

 " Update items from table.
 TRY.
 DATA(lt_attributeupdates) = VALUE /aws1/
cl_dynattrvalueupdate=>tt_attributeupdates(
 (VALUE /aws1/cl_dynattrvalueupdate=>ts_attributeupdates_maprow(
 key = 'rating' value = NEW /aws1/cl_dynattrvalueupdate(
 io_value = NEW /aws1/cl_dynattributevalue(iv_n = '7.6')
 iv_action = |PUT|)))).
 DATA(lt_key) = VALUE /aws1/cl_dynattributevalue=>tt_key(
 (VALUE /aws1/cl_dynattributevalue=>ts_key_maprow(
 key = 'year' value = NEW /aws1/cl_dynattributevalue(iv_n =
 '1975')))
 (VALUE /aws1/cl_dynattributevalue=>ts_key_maprow(
 key = 'title' value = NEW /aws1/cl_dynattributevalue(iv_s =
 '1980')))).
 DATA(lo_resp) = lo_dyn->updateitem(
 iv_tablename = iv_table_name
 it_key = lt_key
 it_attributeupdates = lt_attributeupdates).
 MESSAGE '1 item updated in DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

 " Delete table.
 TRY.
 lo_dyn->deletetable(iv_tablename = iv_table_name).
 lo_dyn->get_waiter()->tablenotexists(
 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'DynamoDB Table deleted.' TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.

Learn the basics API Version 2012-08-10 1740

Amazon DynamoDB Developer Guide

 CATCH /aws1/cx_dynresourceinuseex.
 MESSAGE 'The table cannot be deleted as it is in use' TYPE 'E'.
 ENDTRY.

• For API details, see the following topics in Amazon SDK for SAP ABAP API reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

A Swift class that handles DynamoDB calls to the SDK for Swift.

import AWSDynamoDB
import Foundation

/// An enumeration of error codes representing issues that can arise when using
/// the `MovieTable` class.
enum MoviesError: Error {
 /// The specified table wasn't found or couldn't be created.
 case TableNotFound

Learn the basics API Version 2012-08-10 1741

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// The specified item wasn't found or couldn't be created.
 case ItemNotFound
 /// The Amazon DynamoDB client is not properly initialized.
 case UninitializedClient
 /// The table status reported by Amazon DynamoDB is not recognized.
 case StatusUnknown
 /// One or more specified attribute values are invalid or missing.
 case InvalidAttributes
}

/// A class representing an Amazon DynamoDB table containing movie
/// information.
public class MovieTable {
 var ddbClient: DynamoDBClient?
 let tableName: String

 /// Create an object representing a movie table in an Amazon DynamoDB
 /// database.
 ///
 /// - Parameters:
 /// - region: The optional Amazon Region to create the database in.
 /// - tableName: The name to assign to the table. If not specified, a
 /// random table name is generated automatically.
 ///
 /// > Note: The table is not necessarily available when this function
 /// returns. Use `tableExists()` to check for its availability, or
 /// `awaitTableActive()` to wait until the table's status is reported as
 /// ready to use by Amazon DynamoDB.
 ///
 init(region: String? = nil, tableName: String) async throws {
 do {
 let config = try await DynamoDBClient.DynamoDBClientConfiguration()
 if let region = region {
 config.region = region
 }

 self.ddbClient = DynamoDBClient(config: config)
 self.tableName = tableName

 try await self.createTable()
 } catch {
 print("ERROR: ", dump(error, name: "Initializing Amazon
 DynamoDBClient client"))
 throw error

Learn the basics API Version 2012-08-10 1742

Amazon DynamoDB Developer Guide

 }
 }

 ///
 /// Create a movie table in the Amazon DynamoDB data store.
 ///
 private func createTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = CreateTableInput(
 attributeDefinitions: [
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "year", attributeType: .n),
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "title", attributeType: .s)
],
 billingMode: DynamoDBClientTypes.BillingMode.payPerRequest,
 keySchema: [
 DynamoDBClientTypes.KeySchemaElement(attributeName: "year",
 keyType: .hash),
 DynamoDBClientTypes.KeySchemaElement(attributeName: "title",
 keyType: .range)
],
 tableName: self.tableName
)
 let output = try await client.createTable(input: input)
 if output.tableDescription == nil {
 throw MoviesError.TableNotFound
 }
 } catch {
 print("ERROR: createTable:", dump(error))
 throw error
 }
 }

 /// Check to see if the table exists online yet.
 ///
 /// - Returns: `true` if the table exists, or `false` if not.
 ///
 func tableExists() async throws -> Bool {

Learn the basics API Version 2012-08-10 1743

Amazon DynamoDB Developer Guide

 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DescribeTableInput(
 tableName: tableName
)
 let output = try await client.describeTable(input: input)
 guard let description = output.table else {
 throw MoviesError.TableNotFound
 }

 return description.tableName == self.tableName
 } catch {
 print("ERROR: tableExists:", dump(error))
 throw error
 }
 }

 ///
 /// Waits for the table to exist and for its status to be active.
 ///
 func awaitTableActive() async throws {
 while try (await self.tableExists() == false) {
 do {
 let duration = UInt64(0.25 * 1_000_000_000) // Convert .25
 seconds to nanoseconds.
 try await Task.sleep(nanoseconds: duration)
 } catch {
 print("Sleep error:", dump(error))
 }
 }

 while try (await self.getTableStatus() != .active) {
 do {
 let duration = UInt64(0.25 * 1_000_000_000) // Convert .25
 seconds to nanoseconds.
 try await Task.sleep(nanoseconds: duration)
 } catch {
 print("Sleep error:", dump(error))
 }
 }

Learn the basics API Version 2012-08-10 1744

Amazon DynamoDB Developer Guide

 }

 ///
 /// Deletes the table from Amazon DynamoDB.
 ///
 func deleteTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DeleteTableInput(
 tableName: self.tableName
)
 _ = try await client.deleteTable(input: input)
 } catch {
 print("ERROR: deleteTable:", dump(error))
 throw error
 }
 }

 /// Get the table's status.
 ///
 /// - Returns: The table status, as defined by the
 /// `DynamoDBClientTypes.TableStatus` enum.
 ///
 func getTableStatus() async throws -> DynamoDBClientTypes.TableStatus {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DescribeTableInput(
 tableName: self.tableName
)
 let output = try await client.describeTable(input: input)
 guard let description = output.table else {
 throw MoviesError.TableNotFound
 }
 guard let status = description.tableStatus else {
 throw MoviesError.StatusUnknown
 }

Learn the basics API Version 2012-08-10 1745

Amazon DynamoDB Developer Guide

 return status
 } catch {
 print("ERROR: getTableStatus:", dump(error))
 throw error
 }
 }

 /// Populate the movie database from the specified JSON file.
 ///
 /// - Parameter jsonPath: Path to a JSON file containing movie data.
 ///
 func populate(jsonPath: String) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Create a Swift `URL` and use it to load the file into a `Data`
 // object. Then decode the JSON into an array of `Movie` objects.

 let fileUrl = URL(fileURLWithPath: jsonPath)
 let jsonData = try Data(contentsOf: fileUrl)

 var movieList = try JSONDecoder().decode([Movie].self, from:
 jsonData)

 // Truncate the list to the first 200 entries or so for this example.

 if movieList.count > 200 {
 movieList = Array(movieList[...199])
 }

 // Before sending records to the database, break the movie list into
 // 25-entry chunks, which is the maximum size of a batch item
 request.

 let count = movieList.count
 let chunks = stride(from: 0, to: count, by: 25).map {
 Array(movieList[$0 ..< Swift.min($0 + 25, count)])
 }

 // For each chunk, create a list of write request records and
 populate

Learn the basics API Version 2012-08-10 1746

Amazon DynamoDB Developer Guide

 // them with `PutRequest` requests, each specifying one movie from
 the
 // chunk. Once the chunk's items are all in the `PutRequest` list,
 // send them to Amazon DynamoDB using the
 // `DynamoDBClient.batchWriteItem()` function.

 for chunk in chunks {
 var requestList: [DynamoDBClientTypes.WriteRequest] = []

 for movie in chunk {
 let item = try await movie.getAsItem()
 let request = DynamoDBClientTypes.WriteRequest(
 putRequest: .init(
 item: item
)
)
 requestList.append(request)
 }

 let input = BatchWriteItemInput(requestItems: [tableName:
 requestList])
 _ = try await client.batchWriteItem(input: input)
 }
 } catch {
 print("ERROR: populate:", dump(error))
 throw error
 }
 }

 /// Add a movie specified as a `Movie` structure to the Amazon DynamoDB
 /// table.
 ///
 /// - Parameter movie: The `Movie` to add to the table.
 ///
 func add(movie: Movie) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Get a DynamoDB item containing the movie data.
 let item = try await movie.getAsItem()

Learn the basics API Version 2012-08-10 1747

Amazon DynamoDB Developer Guide

 // Send the `PutItem` request to Amazon DynamoDB.

 let input = PutItemInput(
 item: item,
 tableName: self.tableName
)
 _ = try await client.putItem(input: input)
 } catch {
 print("ERROR: add movie:", dump(error))
 throw error
 }
 }

 /// Given a movie's details, add a movie to the Amazon DynamoDB table.
 ///
 /// - Parameters:
 /// - title: The movie's title as a `String`.
 /// - year: The release year of the movie (`Int`).
 /// - rating: The movie's rating if available (`Double`; default is
 /// `nil`).
 /// - plot: A summary of the movie's plot (`String`; default is `nil`,
 /// indicating no plot summary is available).
 ///
 func add(title: String, year: Int, rating: Double? = nil,
 plot: String? = nil) async throws
 {
 do {
 let movie = Movie(title: title, year: year, rating: rating, plot:
 plot)
 try await self.add(movie: movie)
 } catch {
 print("ERROR: add with fields:", dump(error))
 throw error
 }
 }

 /// Return a `Movie` record describing the specified movie from the Amazon
 /// DynamoDB table.
 ///
 /// - Parameters:
 /// - title: The movie's title (`String`).
 /// - year: The movie's release year (`Int`).

Learn the basics API Version 2012-08-10 1748

Amazon DynamoDB Developer Guide

 ///
 /// - Throws: `MoviesError.ItemNotFound` if the movie isn't in the table.
 ///
 /// - Returns: A `Movie` record with the movie's details.
 func get(title: String, year: Int) async throws -> Movie {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = GetItemInput(
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 tableName: self.tableName
)
 let output = try await client.getItem(input: input)
 guard let item = output.item else {
 throw MoviesError.ItemNotFound
 }

 let movie = try Movie(withItem: item)
 return movie
 } catch {
 print("ERROR: get:", dump(error))
 throw error
 }
 }

 /// Get all the movies released in the specified year.
 ///
 /// - Parameter year: The release year of the movies to return.
 ///
 /// - Returns: An array of `Movie` objects describing each matching movie.
 ///
 func getMovies(fromYear year: Int) async throws -> [Movie] {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = QueryInput(

Learn the basics API Version 2012-08-10 1749

Amazon DynamoDB Developer Guide

 expressionAttributeNames: [
 "#y": "year"
],
 expressionAttributeValues: [
 ":y": .n(String(year))
],
 keyConditionExpression: "#y = :y",
 tableName: self.tableName
)
 // Use "Paginated" to get all the movies.
 // This lets the SDK handle the 'lastEvaluatedKey' property in
 "QueryOutput".

 let pages = client.queryPaginated(input: input)

 var movieList: [Movie] = []
 for try await page in pages {
 guard let items = page.items else {
 print("Error: no items returned.")
 continue
 }

 // Convert the found movies into `Movie` objects and return an
 array
 // of them.

 for item in items {
 let movie = try Movie(withItem: item)
 movieList.append(movie)
 }
 }
 return movieList
 } catch {
 print("ERROR: getMovies:", dump(error))
 throw error
 }
 }

 /// Return an array of `Movie` objects released in the specified range of
 /// years.
 ///
 /// - Parameters:
 /// - firstYear: The first year of movies to return.

Learn the basics API Version 2012-08-10 1750

Amazon DynamoDB Developer Guide

 /// - lastYear: The last year of movies to return.
 /// - startKey: A starting point to resume processing; always use `nil`.
 ///
 /// - Returns: An array of `Movie` objects describing the matching movies.
 ///
 /// > Note: The `startKey` parameter is used by this function when
 /// recursively calling itself, and should always be `nil` when calling
 /// directly.
 ///
 func getMovies(firstYear: Int, lastYear: Int,
 startKey: [Swift.String: DynamoDBClientTypes.AttributeValue]?
 = nil)
 async throws -> [Movie]
 {
 do {
 var movieList: [Movie] = []

 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = ScanInput(
 consistentRead: true,
 exclusiveStartKey: startKey,
 expressionAttributeNames: [
 "#y": "year" // `year` is a reserved word, so use `#y`
 instead.
],
 expressionAttributeValues: [
 ":y1": .n(String(firstYear)),
 ":y2": .n(String(lastYear))
],
 filterExpression: "#y BETWEEN :y1 AND :y2",
 tableName: self.tableName
)

 let pages = client.scanPaginated(input: input)

 for try await page in pages {
 guard let items = page.items else {
 print("Error: no items returned.")
 continue
 }

Learn the basics API Version 2012-08-10 1751

Amazon DynamoDB Developer Guide

 // Build an array of `Movie` objects for the returned items.

 for item in items {
 let movie = try Movie(withItem: item)
 movieList.append(movie)
 }
 }
 return movieList

 } catch {
 print("ERROR: getMovies with scan:", dump(error))
 throw error
 }
 }

 /// Update the specified movie with new `rating` and `plot` information.
 ///
 /// - Parameters:
 /// - title: The title of the movie to update.
 /// - year: The release year of the movie to update.
 /// - rating: The new rating for the movie.
 /// - plot: The new plot summary string for the movie.
 ///
 /// - Returns: An array of mappings of attribute names to their new
 /// listing each item actually changed. Items that didn't need to change
 /// aren't included in this list. `nil` if no changes were made.
 ///
 func update(title: String, year: Int, rating: Double? = nil, plot: String? =
 nil) async throws
 -> [Swift.String: DynamoDBClientTypes.AttributeValue]?
 {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Build the update expression and the list of expression attribute
 // values. Include only the information that's changed.

 var expressionParts: [String] = []
 var attrValues: [Swift.String: DynamoDBClientTypes.AttributeValue] =
 [:]

Learn the basics API Version 2012-08-10 1752

Amazon DynamoDB Developer Guide

 if rating != nil {
 expressionParts.append("info.rating=:r")
 attrValues[":r"] = .n(String(rating!))
 }
 if plot != nil {
 expressionParts.append("info.plot=:p")
 attrValues[":p"] = .s(plot!)
 }
 let expression = "set \(expressionParts.joined(separator: ", "))"

 let input = UpdateItemInput(
 // Create substitution tokens for the attribute values, to ensure
 // no conflicts in expression syntax.
 expressionAttributeValues: attrValues,
 // The key identifying the movie to update consists of the
 release
 // year and title.
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 returnValues: .updatedNew,
 tableName: self.tableName,
 updateExpression: expression
)
 let output = try await client.updateItem(input: input)

 guard let attributes: [Swift.String:
 DynamoDBClientTypes.AttributeValue] = output.attributes else {
 throw MoviesError.InvalidAttributes
 }
 return attributes
 } catch {
 print("ERROR: update:", dump(error))
 throw error
 }
 }

 /// Delete a movie, given its title and release year.
 ///
 /// - Parameters:
 /// - title: The movie's title.
 /// - year: The movie's release year.

Learn the basics API Version 2012-08-10 1753

Amazon DynamoDB Developer Guide

 ///
 func delete(title: String, year: Int) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DeleteItemInput(
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 tableName: self.tableName
)
 _ = try await client.deleteItem(input: input)
 } catch {
 print("ERROR: delete:", dump(error))
 throw error
 }
 }
}

The structures used by the MovieTable class to represent movies.

import Foundation
import AWSDynamoDB

/// The optional details about a movie.
public struct Details: Codable {
 /// The movie's rating, if available.
 var rating: Double?
 /// The movie's plot, if available.
 var plot: String?
}

/// A structure describing a movie. The `year` and `title` properties are
/// required and are used as the key for Amazon DynamoDB operations. The
/// `info` sub-structure's two properties, `rating` and `plot`, are optional.
public struct Movie: Codable {
 /// The year in which the movie was released.
 var year: Int

Learn the basics API Version 2012-08-10 1754

Amazon DynamoDB Developer Guide

 /// The movie's title.
 var title: String
 /// A `Details` object providing the optional movie rating and plot
 /// information.
 var info: Details

 /// Create a `Movie` object representing a movie, given the movie's
 /// details.
 ///
 /// - Parameters:
 /// - title: The movie's title (`String`).
 /// - year: The year in which the movie was released (`Int`).
 /// - rating: The movie's rating (optional `Double`).
 /// - plot: The movie's plot (optional `String`)
 init(title: String, year: Int, rating: Double? = nil, plot: String? = nil) {
 self.title = title
 self.year = year

 self.info = Details(rating: rating, plot: plot)
 }

 /// Create a `Movie` object representing a movie, given the movie's
 /// details.
 ///
 /// - Parameters:
 /// - title: The movie's title (`String`).
 /// - year: The year in which the movie was released (`Int`).
 /// - info: The optional rating and plot information for the movie in a
 /// `Details` object.
 init(title: String, year: Int, info: Details?){
 self.title = title
 self.year = year

 if info != nil {
 self.info = info!
 } else {
 self.info = Details(rating: nil, plot: nil)
 }
 }

 ///
 /// Return a new `MovieTable` object, given an array mapping string to Amazon
 /// DynamoDB attribute values.
 ///

Learn the basics API Version 2012-08-10 1755

Amazon DynamoDB Developer Guide

 /// - Parameter item: The item information provided to the form used by
 /// DynamoDB. This is an array of strings mapped to
 /// `DynamoDBClientTypes.AttributeValue` values.
 init(withItem item: [Swift.String:DynamoDBClientTypes.AttributeValue]) throws
 {
 // Read the attributes.

 guard let titleAttr = item["title"],
 let yearAttr = item["year"] else {
 throw MoviesError.ItemNotFound
 }
 let infoAttr = item["info"] ?? nil

 // Extract the values of the title and year attributes.

 if case .s(let titleVal) = titleAttr {
 self.title = titleVal
 } else {
 throw MoviesError.InvalidAttributes
 }

 if case .n(let yearVal) = yearAttr {
 self.year = Int(yearVal)!
 } else {
 throw MoviesError.InvalidAttributes
 }

 // Extract the rating and/or plot from the `info` attribute, if
 // they're present.

 var rating: Double? = nil
 var plot: String? = nil

 if infoAttr != nil, case .m(let infoVal) = infoAttr {
 let ratingAttr = infoVal["rating"] ?? nil
 let plotAttr = infoVal["plot"] ?? nil

 if ratingAttr != nil, case .n(let ratingVal) = ratingAttr {
 rating = Double(ratingVal) ?? nil
 }
 if plotAttr != nil, case .s(let plotVal) = plotAttr {
 plot = plotVal
 }
 }

Learn the basics API Version 2012-08-10 1756

Amazon DynamoDB Developer Guide

 self.info = Details(rating: rating, plot: plot)
 }

 ///
 /// Return an array mapping attribute names to Amazon DynamoDB attribute
 /// values, representing the contents of the `Movie` record as a DynamoDB
 /// item.
 ///
 /// - Returns: The movie item as an array of type
 /// `[Swift.String:DynamoDBClientTypes.AttributeValue]`.
 ///
 func getAsItem() async throws ->
 [Swift.String:DynamoDBClientTypes.AttributeValue] {
 // Build the item record, starting with the year and title, which are
 // always present.

 var item: [Swift.String:DynamoDBClientTypes.AttributeValue] = [
 "year": .n(String(self.year)),
 "title": .s(self.title)
]

 // Add the `info` field with the rating and/or plot if they're
 // available.

 var details: [Swift.String:DynamoDBClientTypes.AttributeValue] = [:]
 if (self.info.rating != nil || self.info.plot != nil) {
 if self.info.rating != nil {
 details["rating"] = .n(String(self.info.rating!))
 }
 if self.info.plot != nil {
 details["plot"] = .s(self.info.plot!)
 }
 }
 item["info"] = .m(details)

 return item
 }
 }

A program that uses the MovieTable class to access a DynamoDB database.

Learn the basics API Version 2012-08-10 1757

Amazon DynamoDB Developer Guide

import ArgumentParser
import ClientRuntime
import Foundation

import AWSDynamoDB

@testable import MovieList

extension String {
 // Get the directory if the string is a file path.
 func directory() -> String {
 guard let lastIndex = lastIndex(of: "/") else {
 print("Error: String directory separator not found.")
 return ""
 }
 return String(self[...lastIndex])
 }
}

struct ExampleCommand: ParsableCommand {
 @Argument(help: "The path of the sample movie data JSON file.")
 var jsonPath: String = #file.directory() + "../../../../../resources/
sample_files/movies.json"

 @Option(help: "The AWS Region to run AWS API calls in.")
 var awsRegion: String?

 @Option(
 help: ArgumentHelp("The level of logging for the Swift SDK to perform."),
 completion: .list([
 "critical",
 "debug",
 "error",
 "info",
 "notice",
 "trace",
 "warning"
])
)
 var logLevel: String = "error"

 /// Configuration details for the command.

Learn the basics API Version 2012-08-10 1758

Amazon DynamoDB Developer Guide

 static var configuration = CommandConfiguration(
 commandName: "basics",
 abstract: "A basic scenario demonstrating the usage of Amazon DynamoDB.",
 discussion: """
 An example showing how to use Amazon DynamoDB to perform a series of
 common database activities on a simple movie database.
 """
)

 /// Called by ``main()`` to asynchronously run the AWS example.
 func runAsync() async throws {
 print("Welcome to the AWS SDK for Swift basic scenario for Amazon
 DynamoDB!")

 //===
 // 1. Create the table. The Amazon DynamoDB table is represented by
 // the `MovieTable` class.
 //===

 let tableName = "ddb-movies-sample-\(Int.random(in: 1 ... Int.max))"

 print("Creating table \"\(tableName)\"...")

 let movieDatabase = try await MovieTable(region: awsRegion,
 tableName: tableName)

 print("\nWaiting for table to be ready to use...")
 try await movieDatabase.awaitTableActive()

 //===
 // 2. Add a movie to the table.
 //===

 print("\nAdding a movie...")
 try await movieDatabase.add(title: "Avatar: The Way of Water", year:
 2022)
 try await movieDatabase.add(title: "Not a Real Movie", year: 2023)

 //===
 // 3. Update the plot and rating of the movie using an update
 // expression.
 //===

 print("\nAdding details to the added movie...")

Learn the basics API Version 2012-08-10 1759

Amazon DynamoDB Developer Guide

 _ = try await movieDatabase.update(title: "Avatar: The Way of Water",
 year: 2022,
 rating: 9.2, plot: "It's a sequel.")

 //===
 // 4. Populate the table from the JSON file.
 //===

 print("\nPopulating the movie database from JSON...")
 try await movieDatabase.populate(jsonPath: jsonPath)

 //===
 // 5. Get a specific movie by key. In this example, the key is a
 // combination of `title` and `year`.
 //===

 print("\nLooking for a movie in the table...")
 let gotMovie = try await movieDatabase.get(title: "This Is the End",
 year: 2013)

 print("Found the movie \"\(gotMovie.title)\", released in
 \(gotMovie.year).")
 print("Rating: \(gotMovie.info.rating ?? 0.0).")
 print("Plot summary: \(gotMovie.info.plot ?? "None.")")

 //===
 // 6. Delete a movie.
 //===

 print("\nDeleting the added movie...")
 try await movieDatabase.delete(title: "Avatar: The Way of Water", year:
 2022)

 //===
 // 7. Use a query with a key condition expression to return all movies
 // released in a given year.
 //===

 print("\nGetting movies released in 1994...")
 let movieList = try await movieDatabase.getMovies(fromYear: 1994)
 for movie in movieList {
 print(" \(movie.title)")
 }

Learn the basics API Version 2012-08-10 1760

Amazon DynamoDB Developer Guide

 //===
 // 8. Use `scan()` to return movies released in a range of years.
 //===

 print("\nGetting movies released between 1993 and 1997...")
 let scannedMovies = try await movieDatabase.getMovies(firstYear: 1993,
 lastYear: 1997)
 for movie in scannedMovies {
 print(" \(movie.title) (\(movie.year))")
 }

 //===
 // 9. Delete the table.
 //===

 print("\nDeleting the table...")
 try await movieDatabase.deleteTable()
 }
}

@main
struct Main {
 static func main() async {
 let args = Array(CommandLine.arguments.dropFirst())

 do {
 let command = try ExampleCommand.parse(args)
 try await command.runAsync()
 } catch {
 ExampleCommand.exit(withError: error)
 }
 }
}

• For API details, see the following topics in Amazon SDK for Swift API reference.

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

Learn the basics API Version 2012-08-10 1761

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/batchwriteitem(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/createtable(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/deleteitem(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/deletetable(input:)

Amazon DynamoDB Developer Guide

• DescribeTable

• GetItem

• PutItem

• Query

• Scan

• UpdateItem

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions for DynamoDB using Amazon SDKs

The following code examples demonstrate how to perform individual DynamoDB actions with
Amazon SDKs. Each example includes a link to GitHub, where you can find instructions for setting
up and running the code.

These excerpts call the DynamoDB API and are code excerpts from larger programs that must be
run in context. You can see actions in context in Scenarios for DynamoDB using Amazon SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon DynamoDB API Reference.

Examples

• Use BatchExecuteStatement with an Amazon SDK

• Use BatchGetItem with an Amazon SDK or CLI

• Use BatchWriteItem with an Amazon SDK or CLI

• Use CreateTable with an Amazon SDK or CLI

• Use DeleteItem with an Amazon SDK or CLI

• Use DeleteTable with an Amazon SDK or CLI

• Use DescribeTable with an Amazon SDK or CLI

• Use DescribeTimeToLive with an Amazon SDK or CLI

• Use ExecuteStatement with an Amazon SDK

• Use GetItem with an Amazon SDK or CLI

• Use ListTables with an Amazon SDK or CLI

Actions API Version 2012-08-10 1762

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/describetable(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/getitem(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/putitem(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/query(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/scan(input:)
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/updateitem(input:)
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

• Use PutItem with an Amazon SDK or CLI

• Use Query with an Amazon SDK or CLI

• Use Scan with an Amazon SDK or CLI

• Use UpdateItem with an Amazon SDK or CLI

• Use UpdateTable with an Amazon SDK or CLI

• Use UpdateTimeToLive with an Amazon SDK or CLI

Use BatchExecuteStatement with an Amazon SDK

The following code examples show how to use BatchExecuteStatement.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Delete data using PartiQL DELETE

• Insert data using PartiQL INSERT

• Query a table by using batches of PartiQL statements

• Query data using PartiQL SELECT

• Update data using PartiQL UPDATE

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Use batches of INSERT statements to add items.

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>
 /// <param name="tableName">The name of the table into which the movie

Actions API Version 2012-08-10 1763

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

 var success = false;

 if (movies is not null)
 {
 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE
 {{'title': ?, 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset +=
 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },
 new AttributeValue { N =
 movies[i].Year.ToString() },
 },
 });
 }

 var response = await
 Client.BatchExecuteStatementAsync(new BatchExecuteStatementRequest
 {

Actions API Version 2012-08-10 1764

Amazon DynamoDB Developer Guide

 Statements = statements,
 });

 // Wait between batches for movies to be successfully
 added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();
 }
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);

Actions API Version 2012-08-10 1765

Amazon DynamoDB Developer Guide

 }
 else
 {
 return null!;
 }
 }

Use batches of SELECT statements to get items.

 /// <summary>
 /// Gets movies from the movie table by
 /// using an Amazon DynamoDB PartiQL SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year1">The year of the first movie.</param>
 /// <param name="year2">The year of the second movie.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GetBatch(
 string tableName,
 string title1,
 string title2,
 int year1,
 int year2)
 {
 var getBatch = $"SELECT * FROM {tableName} WHERE title = ? AND year
 = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {

Actions API Version 2012-08-10 1766

Amazon DynamoDB Developer Guide

 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 if (response.Responses.Count > 0)
 {
 response.Responses.ForEach(r =>
 {
 if (r.Item.Any())
 {

 Console.WriteLine($"{r.Item["title"]}\t{r.Item["year"]}");
 }
 });
 return true;
 }
 else
 {
 Console.WriteLine($"Couldn't find either {title1} or {title2}.");
 return false;
 }

 }

Use batches of UPDATE statements to update items.

 /// <summary>
 /// Updates information for multiple movies.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// movies to be updated.</param>

Actions API Version 2012-08-10 1767

Amazon DynamoDB Developer Guide

 /// <param name="producer1">The producer name for the first movie
 /// to update.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year that the first movie was released.</
param>
 /// <param name="producer2">The producer name for the second
 /// movie to update.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year that the second movie was released.</
param>
 /// <returns>A Boolean value that indicates the success of the update.</
returns>
 public static async Task<bool> UpdateBatch(
 string tableName,
 string producer1,
 string title1,
 int year1,
 string producer2,
 string title2,
 int year2)
 {

 string updateBatch = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer1 },
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer2 },
 new AttributeValue { S = title2 },

Actions API Version 2012-08-10 1768

Amazon DynamoDB Developer Guide

 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Use batches of DELETE statements to delete items.

 /// <summary>
 /// Deletes multiple movies using a PartiQL BatchExecuteAsync
 /// statement.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// moves that will be deleted.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year the first movie was released.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year the second movie was released.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> DeleteBatch(
 string tableName,
 string title1,
 int year1,
 string title2,
 int year2)
 {

 string updateBatch = $"DELETE FROM {tableName} WHERE title = ? AND
 year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {

Actions API Version 2012-08-10 1769

Amazon DynamoDB Developer Guide

 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see BatchExecuteStatement in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Use batches of INSERT statements to add items.

Actions API Version 2012-08-10 1770

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 // 2. Add multiple movies using "Insert" statements. (BatchExecuteStatement)
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 std::vector<Aws::String> titles;
 std::vector<float> ratings;
 std::vector<int> years;
 std::vector<Aws::String> plots;
 Aws::String doAgain = "n";
 do {
 Aws::String aTitle = askQuestion(
 "Enter the title of a movie you want to add to the table: ");
 titles.push_back(aTitle);
 int aYear = askQuestionForInt("What year was it released? ");
 years.push_back(aYear);
 float aRating = askQuestionForFloatRange(
 "On a scale of 1 - 10, how do you rate it? ",
 1, 10);
 ratings.push_back(aRating);
 Aws::String aPlot = askQuestion("Summarize the plot for me: ");
 plots.push_back(aPlot);

 doAgain = askQuestion(Aws::String("Would you like to add more movies? (y/
n) "));
 } while (doAgain == "y");

 std::cout << "Adding " << titles.size()
 << (titles.size() == 1 ? " movie " : " movies ")
 << "to the table using a batch \"INSERT\" statement." << std::endl;

 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());

 std::stringstream sqlStream;
 sqlStream << "INSERT INTO \"" << MOVIE_TABLE_NAME << "\" VALUE {'"
 << TITLE_KEY << "': ?, '" << YEAR_KEY << "': ?, '"
 << INFO_KEY << "': ?}";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);

Actions API Version 2012-08-10 1771

Amazon DynamoDB Developer Guide

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));

 // Create attribute for the info map.
 Aws::DynamoDB::Model::AttributeValue infoMapAttribute;

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> ratingAttribute
 = Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 ratingAttribute->SetN(ratings[i]);
 infoMapAttribute.AddMEntry(RATING_KEY, ratingAttribute);

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> plotAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 plotAttribute->SetS(plots[i]);
 infoMapAttribute.AddMEntry(PLOT_KEY, plotAttribute);
 attributes.push_back(infoMapAttribute);
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to add the movies: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

Use batches of SELECT statements to get items.

Actions API Version 2012-08-10 1772

Amazon DynamoDB Developer Guide

 // 3. Get the data for multiple movies using "Select" statements.
 (BatchExecuteStatement)
 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (outcome.IsSuccess()) {
 const Aws::DynamoDB::Model::BatchExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::DynamoDB::Model::BatchStatementResponse>
 &responses = result.GetResponses();

 for (const Aws::DynamoDB::Model::BatchStatementResponse &response:
 responses) {
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 &item = response.GetItem();

 printMovieInfo(item);
 }
 }

Actions API Version 2012-08-10 1773

Amazon DynamoDB Developer Guide

 else {
 std::cerr << "Failed to retrieve the movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

Use batches of UPDATE statements to update items.

 // 4. Update the data for multiple movies using "Update" statements.
 (BatchExecuteStatement)

 for (size_t i = 0; i < titles.size(); ++i) {
 ratings[i] = askQuestionForFloatRange(
 Aws::String("\nLet's update your the movie, \"") + titles[i] +
 ".\nYou rated it " + std::to_string(ratings[i])
 + ", what new rating would you give it? ", 1, 10);
 }

 std::cout << "Updating the movie with a batch \"UPDATE\" statement." <<
 std::endl;

 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());

 std::stringstream sqlStream;
 sqlStream << "UPDATE \"" << MOVIE_TABLE_NAME << "\" SET "
 << INFO_KEY << "." << RATING_KEY << "=? WHERE "
 << TITLE_KEY << "=? AND " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetN(ratings[i]));
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

Actions API Version 2012-08-10 1774

Amazon DynamoDB Developer Guide

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);
 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to update movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

Use batches of DELETE statements to delete items.

 // 6. Delete multiple movies using "Delete" statements.
 (BatchExecuteStatement)
 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());
 std::stringstream sqlStream;
 sqlStream << "DELETE FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

Actions API Version 2012-08-10 1775

Amazon DynamoDB Developer Guide

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to delete the movies: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

• For API details, see BatchExecuteStatement in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Define a function receiver struct for the example.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// PartiQLRunner encapsulates the Amazon DynamoDB service actions used in the

Actions API Version 2012-08-10 1776

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// PartiQL examples. It contains a DynamoDB service client that is used to act on
 the
// specified table.
type PartiQLRunner struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

Use batches of INSERT statements to add items.

// AddMovieBatch runs a batch of PartiQL INSERT statements to add multiple movies
 to the
// DynamoDB table.
func (runner PartiQLRunner) AddMovieBatch(ctx context.Context, movies []Movie)
 error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year, movie.Info})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(fmt.Sprintf(
 "INSERT INTO \"%v\" VALUE {'title': ?, 'year': ?, 'info': ?}",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't insert a batch of items with PartiQL. Here's why: %v\n",
 err)
 }
 return err
}

Actions API Version 2012-08-10 1777

Amazon DynamoDB Developer Guide

Use batches of SELECT statements to get items.

// GetMovieBatch runs a batch of PartiQL SELECT statements to get multiple movies
 from
// the DynamoDB table by title and year.
func (runner PartiQLRunner) GetMovieBatch(ctx context.Context, movies []Movie)
 ([]Movie, error) {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("SELECT * FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 output, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 var outMovies []Movie
 if err != nil {
 log.Printf("Couldn't get a batch of items with PartiQL. Here's why: %v\n", err)
 } else {
 for _, response := range output.Responses {
 var movie Movie
 err = attributevalue.UnmarshalMap(response.Item, &movie)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 } else {
 outMovies = append(outMovies, movie)
 }
 }

Actions API Version 2012-08-10 1778

Amazon DynamoDB Developer Guide

 }
 return outMovies, err
}

Use batches of UPDATE statements to update items.

// UpdateMovieBatch runs a batch of PartiQL UPDATE statements to update the
 rating of
// multiple movies that already exist in the DynamoDB table.
func (runner PartiQLRunner) UpdateMovieBatch(ctx context.Context, movies []Movie,
 ratings []float64) error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{ratings[index],
 movie.Title, movie.Year})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("UPDATE \"%v\" SET info.rating=? WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't update the batch of movies. Here's why: %v\n", err)
 }
 return err
}

Use batches of DELETE statements to delete items.

Actions API Version 2012-08-10 1779

Amazon DynamoDB Developer Guide

// DeleteMovieBatch runs a batch of PartiQL DELETE statements to remove multiple
 movies
// from the DynamoDB table.
func (runner PartiQLRunner) DeleteMovieBatch(ctx context.Context, movies []Movie)
 error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("DELETE FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't delete the batch of movies. Here's why: %v\n", err)
 }
 return err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"

Actions API Version 2012-08-10 1780

Amazon DynamoDB Developer Guide

 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see BatchExecuteStatement in Amazon SDK for Go API Reference.

Actions API Version 2012-08-10 1781

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.BatchExecuteStatement

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a batch of items using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const breakfastFoods = ["Eggs", "Bacon", "Sausage"];
 const command = new BatchExecuteStatementCommand({
 Statements: breakfastFoods.map((food) => ({
 Statement: `INSERT INTO BreakfastFoods value {'Name':?}`,
 Parameters: [food],
 })),
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

Get a batch of items using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {

Actions API Version 2012-08-10 1782

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchExecuteStatementCommand({
 Statements: [
 {
 Statement: "SELECT * FROM PepperMeasurements WHERE Unit=?",
 Parameters: ["Teaspoons"],
 ConsistentRead: true,
 },
 {
 Statement: "SELECT * FROM PepperMeasurements WHERE Unit=?",
 Parameters: ["Grams"],
 ConsistentRead: true,
 },
],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

Update a batch of items using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const eggUpdates = [

Actions API Version 2012-08-10 1783

Amazon DynamoDB Developer Guide

 ["duck", "fried"],
 ["chicken", "omelette"],
];
 const command = new BatchExecuteStatementCommand({
 Statements: eggUpdates.map((change) => ({
 Statement: "UPDATE Eggs SET Style=? where Variety=?",
 Parameters: [change[1], change[0]],
 })),
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

Delete a batch of items using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchExecuteStatementCommand({
 Statements: [
 {
 Statement: "DELETE FROM Flavors where Name=?",
 Parameters: ["Grape"],
 },
 {
 Statement: "DELETE FROM Flavors where Name=?",
 Parameters: ["Strawberry"],
 },
],
 });

 const response = await docClient.send(command);

Actions API Version 2012-08-10 1784

Amazon DynamoDB Developer Guide

 console.log(response);
 return response;
};

• For API details, see BatchExecuteStatement in Amazon SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function getItemByPartiQLBatch(string $tableName, array $keys): Result
 {
 $statements = [];
 foreach ($keys as $key) {
 list($statement, $parameters) = $this-
>buildStatementAndParameters("SELECT", $tableName, $key['Item']);
 $statements[] = [
 'Statement' => "$statement",
 'Parameters' => $parameters,
];
 }

 return $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => $statements,
]);
 }

 public function insertItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [
 [
 'Statement' => "$statement",
 'Parameters' => $parameters,

Actions API Version 2012-08-10 1785

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

],
],
]);
 }

 public function updateItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [
 [
 'Statement' => "$statement",
 'Parameters' => $parameters,
],
],
]);
 }

 public function deleteItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [
 [
 'Statement' => "$statement",
 'Parameters' => $parameters,
],
],
]);
 }

• For API details, see BatchExecuteStatement in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1786

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

class PartiQLBatchWrapper:
 """
 Encapsulates a DynamoDB resource to run PartiQL statements.
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource

 def run_partiql(self, statements, param_list):
 """
 Runs a PartiQL statement. A Boto3 resource is used even though
 `execute_statement` is called on the underlying `client` object because
 the
 resource transforms input and output from plain old Python objects
 (POPOs) to
 the DynamoDB format. If you create the client directly, you must do these
 transforms yourself.

 :param statements: The batch of PartiQL statements.
 :param param_list: The batch of PartiQL parameters that are associated
 with
 each statement. This list must be in the same order as
 the
 statements.
 :return: The responses returned from running the statements, if any.
 """
 try:
 output = self.dyn_resource.meta.client.batch_execute_statement(
 Statements=[
 {"Statement": statement, "Parameters": params}
 for statement, params in zip(statements, param_list)
]
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Couldn't execute batch of PartiQL statements because the
 table "
 "does not exist."

Actions API Version 2012-08-10 1787

Amazon DynamoDB Developer Guide

)
 else:
 logger.error(
 "Couldn't execute batch of PartiQL statements. Here's why:
 %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return output

• For API details, see BatchExecuteStatement in Amazon SDK for Python (Boto3) API
Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Read a batch of items using PartiQL.

class DynamoDBPartiQLBatch
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Selects a batch of items from a table using PartiQL
 #
 # @param batch_titles [Array] Collection of movie titles
 # @return [Aws::DynamoDB::Types::BatchExecuteStatementOutput]

Actions API Version 2012-08-10 1788

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def batch_execute_select(batch_titles)
 request_items = batch_titles.map do |title, year|
 {
 statement: "SELECT * FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 end
 @dynamodb.client.batch_execute_statement({ statements: request_items })
 end

Delete a batch of items using PartiQL.

class DynamoDBPartiQLBatch
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Deletes a batch of items from a table using PartiQL
 #
 # @param batch_titles [Array] Collection of movie titles
 # @return [Aws::DynamoDB::Types::BatchExecuteStatementOutput]
 def batch_execute_write(batch_titles)
 request_items = batch_titles.map do |title, year|
 {
 statement: "DELETE FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 end
 @dynamodb.client.batch_execute_statement({ statements: request_items })
 end

• For API details, see BatchExecuteStatement in Amazon SDK for Ruby API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions API Version 2012-08-10 1789

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchExecuteStatement

Amazon DynamoDB Developer Guide

Use BatchGetItem with an Amazon SDK or CLI

The following code examples show how to use BatchGetItem.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.Model;

namespace LowLevelBatchGet
{
 public class LowLevelBatchGet
 {
 private static readonly string _table1Name = "Forum";
 private static readonly string _table2Name = "Thread";

 public static async void
 RetrieveMultipleItemsBatchGet(AmazonDynamoDBClient client)
 {
 var request = new BatchGetItemRequest
 {
 RequestItems = new Dictionary<string, KeysAndAttributes>()
 {
 { _table1Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon DynamoDB"

Actions API Version 2012-08-10 1790

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "Name", new AttributeValue {
 S = "Amazon S3"
 } }
 }
 }
 }},
 {
 _table2Name,
 new KeysAndAttributes
 {
 Keys = new List<Dictionary<string, AttributeValue> >()
 {
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 1"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon DynamoDB"
 } },
 { "Subject", new AttributeValue {
 S = "DynamoDB Thread 2"
 } }
 },
 new Dictionary<string, AttributeValue>()
 {
 { "ForumName", new AttributeValue {
 S = "Amazon S3"
 } },
 { "Subject", new AttributeValue {
 S = "S3 Thread 1"
 } }
 }
 }

Actions API Version 2012-08-10 1791

Amazon DynamoDB Developer Guide

 }
 }
 }
 };

 BatchGetItemResponse response;
 do
 {
 Console.WriteLine("Making request");
 response = await client.BatchGetItemAsync(request);

 // Check the response.
 var responses = response.Responses; // Attribute list in the
 response.

 foreach (var tableResponse in responses)
 {
 var tableResults = tableResponse.Value;
 Console.WriteLine("Items retrieved from table {0}",
 tableResponse.Key);
 foreach (var item1 in tableResults)
 {
 PrintItem(item1);
 }
 }

 // Any unprocessed keys? could happen if you exceed
 ProvisionedThroughput or some other error.
 Dictionary<string, KeysAndAttributes> unprocessedKeys =
 response.UnprocessedKeys;
 foreach (var unprocessedTableKeys in unprocessedKeys)
 {
 // Print table name.
 Console.WriteLine(unprocessedTableKeys.Key);
 // Print unprocessed primary keys.
 foreach (var key in unprocessedTableKeys.Value.Keys)
 {
 PrintItem(key);
 }
 }

 request.RequestItems = unprocessedKeys;
 } while (response.UnprocessedKeys.Count > 0);
 }

Actions API Version 2012-08-10 1792

Amazon DynamoDB Developer Guide

 private static void PrintItem(Dictionary<string, AttributeValue>
 attributeList)
 {
 foreach (KeyValuePair<string, AttributeValue> kvp in attributeList)
 {
 string attributeName = kvp.Key;
 AttributeValue value = kvp.Value;

 Console.WriteLine(
 attributeName + " " +
 (value.S == null ? "" : "S=[" + value.S + "]") +
 (value.N == null ? "" : "N=[" + value.N + "]") +
 (value.SS == null ? "" : "SS=[" + string.Join(",",
 value.SS.ToArray()) + "]") +
 (value.NS == null ? "" : "NS=[" + string.Join(",",
 value.NS.ToArray()) + "]")
);
 }

 Console.WriteLine("**");
 }

 static void Main()
 {
 var client = new AmazonDynamoDBClient();

 RetrieveMultipleItemsBatchGet(client);
 }
 }
}

• For API details, see BatchGetItem in Amazon SDK for .NET API Reference.

Actions API Version 2012-08-10 1793

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchGetItem

Amazon DynamoDB Developer Guide

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_batch_get_item
#
This function gets a batch of items from a DynamoDB table.
#
Parameters:
-i item -- Path to json file containing the keys of the items to get.
#
Returns:
The items as json output.
And:
0 - If successful.
1 - If it fails.
##
function dynamodb_batch_get_item() {
 local item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_batch_get_item"
 echo "Get a batch of items from a DynamoDB table."
 echo " -i item -- Path to json file containing the keys of the items to
 get."
 echo ""
 }

 while getopts "i:h" option; do
 case "${option}" in
 i) item="${OPTARG}" ;;

Actions API Version 2012-08-10 1794

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

 response=$(aws dynamodb batch-get-item \
 --request-items file://"$item")
 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports batch-get-item operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {

Actions API Version 2012-08-10 1795

Amazon DynamoDB Developer Guide

 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see BatchGetItem in Amazon CLI Command Reference.

Actions API Version 2012-08-10 1796

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/BatchGetItem

Amazon DynamoDB Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Batch get items from different Amazon DynamoDB tables.
/*!
 \sa batchGetItem()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::batchGetItem(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::BatchGetItemRequest request;

 // Table1: Forum.
 Aws::String table1Name = "Forum";
 Aws::DynamoDB::Model::KeysAndAttributes table1KeysAndAttributes;

 // Table1: Projection expression.
 table1KeysAndAttributes.SetProjectionExpression("#n, Category, Messages,
 #v");

 // Table1: Expression attribute names.
 Aws::Http::HeaderValueCollection headerValueCollection;
 headerValueCollection.emplace("#n", "Name");
 headerValueCollection.emplace("#v", "Views");
 table1KeysAndAttributes.SetExpressionAttributeNames(headerValueCollection);

 // Table1: Set key name, type, and value to search.
 std::vector<Aws::String> nameValues = {"Amazon DynamoDB", "Amazon S3"};
 for (const Aws::String &name: nameValues) {
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> keys;
 Aws::DynamoDB::Model::AttributeValue key;
 key.SetS(name);

Actions API Version 2012-08-10 1797

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 keys.emplace("Name", key);
 table1KeysAndAttributes.AddKeys(keys);
 }

 Aws::Map<Aws::String, Aws::DynamoDB::Model::KeysAndAttributes> requestItems;
 requestItems.emplace(table1Name, table1KeysAndAttributes);

 // Table2: ProductCatalog.
 Aws::String table2Name = "ProductCatalog";
 Aws::DynamoDB::Model::KeysAndAttributes table2KeysAndAttributes;
 table2KeysAndAttributes.SetProjectionExpression("Title, Price, Color");

 // Table2: Set key name, type, and value to search.
 std::vector<Aws::String> idValues = {"102", "103", "201"};
 for (const Aws::String &id: idValues) {
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> keys;
 Aws::DynamoDB::Model::AttributeValue key;
 key.SetN(id);
 keys.emplace("Id", key);
 table2KeysAndAttributes.AddKeys(keys);
 }

 requestItems.emplace(table2Name, table2KeysAndAttributes);

 bool result = true;
 do { // Use a do loop to handle pagination.
 request.SetRequestItems(requestItems);
 const Aws::DynamoDB::Model::BatchGetItemOutcome &outcome =
 dynamoClient.BatchGetItem(
 request);

 if (outcome.IsSuccess()) {
 for (const auto &responsesMapEntry:
 outcome.GetResult().GetResponses()) {
 Aws::String tableName = responsesMapEntry.first;
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &tableResults = responsesMapEntry.second;
 std::cout << "Retrieved " << tableResults.size()
 << " responses for table '" << tableName << "'.\n"
 << std::endl;
 if (tableName == "Forum") {

 std::cout << "Name | Category | Message | Views" <<
 std::endl;

Actions API Version 2012-08-10 1798

Amazon DynamoDB Developer Guide

 for (const Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue> &item: tableResults) {
 std::cout << item.at("Name").GetS() << " | ";
 std::cout << item.at("Category").GetS() << " | ";
 std::cout << (item.count("Message") == 0 ? "" : item.at(
 "Messages").GetN()) << " | ";
 std::cout << (item.count("Views") == 0 ? "" : item.at(
 "Views").GetN()) << std::endl;
 }
 }
 else {
 std::cout << "Title | Price | Color" << std::endl;
 for (const Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue> &item: tableResults) {
 std::cout << item.at("Title").GetS() << " | ";
 std::cout << (item.count("Price") == 0 ? "" : item.at(
 "Price").GetN());
 if (item.count("Color")) {
 std::cout << " | ";
 for (const
 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> &listItem: item.at(
 "Color").GetL())
 std::cout << listItem->GetS() << " ";
 }
 std::cout << std::endl;
 }
 }
 std::cout << std::endl;
 }

 // If necessary, repeat request for remaining items.
 requestItems = outcome.GetResult().GetUnprocessedKeys();
 }
 else {
 std::cerr << "Batch get item failed: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 result = false;
 break;
 }
 } while (!requestItems.empty());

 return result;
}

Actions API Version 2012-08-10 1799

Amazon DynamoDB Developer Guide

• For API details, see BatchGetItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To retrieve multiple items from a table

The following batch-get-items example reads multiple items from the
MusicCollection table using a batch of three GetItem requests, and requests the
number of read capacity units consumed by the operation. The command returns only the
AlbumTitle attribute.

aws dynamodb batch-get-item \
 --request-items file://request-items.json \
 --return-consumed-capacity TOTAL

Contents of request-items.json:

{
 "MusicCollection": {
 "Keys": [
 {
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"}
 },
 {
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
 },
 {
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Scared of My Shadow"}
 }
],
 "ProjectionExpression":"AlbumTitle"
 }
}

Actions API Version 2012-08-10 1800

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/BatchGetItem

Amazon DynamoDB Developer Guide

Output:

{
 "Responses": {
 "MusicCollection": [
 {
 "AlbumTitle": {
 "S": "Somewhat Famous"
 }
 },
 {
 "AlbumTitle": {
 "S": "Blue Sky Blues"
 }
 },
 {
 "AlbumTitle": {
 "S": "Louder Than Ever"
 }
 }
]
 },
 "UnprocessedKeys": {},
 "ConsumedCapacity": [
 {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.5
 }
]
}

For more information, see Batch Operations in the Amazon DynamoDB Developer Guide.

• For API details, see BatchGetItem in Amazon CLI Command Reference.

Actions API Version 2012-08-10 1801

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.BatchOperations
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/batch-get-item.html

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Shows how to get batch items using the service client.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.BatchGetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.BatchGetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.KeysAndAttributes;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class BatchReadItems {
 public static void main(String[] args){
 final String usage = """

 Usage:
 <tableName>

 Where:
 tableName - The Amazon DynamoDB table (for example, Music).\s
 """;

 String tableName = "Music";

Actions API Version 2012-08-10 1802

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Region region = Region.US_EAST_1;
 DynamoDbClient dynamoDbClient = DynamoDbClient.builder()
 .region(region)
 .build();

 getBatchItems(dynamoDbClient, tableName);
 }

 public static void getBatchItems(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Define the primary key values for the items you want to retrieve.
 Map<String, AttributeValue> key1 = new HashMap<>();
 key1.put("Artist", AttributeValue.builder().s("Artist1").build());

 Map<String, AttributeValue> key2 = new HashMap<>();
 key2.put("Artist", AttributeValue.builder().s("Artist2").build());

 // Construct the batchGetItem request.
 Map<String, KeysAndAttributes> requestItems = new HashMap<>();
 requestItems.put(tableName, KeysAndAttributes.builder()
 .keys(List.of(key1, key2))
 .projectionExpression("Artist, SongTitle")
 .build());

 BatchGetItemRequest batchGetItemRequest = BatchGetItemRequest.builder()
 .requestItems(requestItems)
 .build();

 // Make the batchGetItem request.
 BatchGetItemResponse batchGetItemResponse =
 dynamoDbClient.batchGetItem(batchGetItemRequest);

 // Extract and print the retrieved items.
 Map<String, List<Map<String, AttributeValue>>> responses =
 batchGetItemResponse.responses();
 if (responses.containsKey(tableName)) {
 List<Map<String, AttributeValue>> musicItems =
 responses.get(tableName);
 for (Map<String, AttributeValue> item : musicItems) {
 System.out.println("Artist: " + item.get("Artist").s() +
 ", SongTitle: " + item.get("SongTitle").s());
 }
 } else {
 System.out.println("No items retrieved.");

Actions API Version 2012-08-10 1803

Amazon DynamoDB Developer Guide

 }
 }
}

Shows how to get batch items using the service client and a paginator.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.BatchGetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.KeysAndAttributes;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class BatchGetItemsPaginator {

 public static void main(String[] args){
 final String usage = """

 Usage:
 <tableName>

 Where:
 tableName - The Amazon DynamoDB table (for example, Music).\s
 """;

 String tableName = "Music";
 Region region = Region.US_EAST_1;
 DynamoDbClient dynamoDbClient = DynamoDbClient.builder()
 .region(region)
 .build();

 getBatchItemsPaginator(dynamoDbClient, tableName) ;
 }

 public static void getBatchItemsPaginator(DynamoDbClient dynamoDbClient,
 String tableName) {
 // Define the primary key values for the items you want to retrieve.
 Map<String, AttributeValue> key1 = new HashMap<>();
 key1.put("Artist", AttributeValue.builder().s("Artist1").build());

Actions API Version 2012-08-10 1804

Amazon DynamoDB Developer Guide

 Map<String, AttributeValue> key2 = new HashMap<>();
 key2.put("Artist", AttributeValue.builder().s("Artist2").build());

 // Construct the batchGetItem request.
 Map<String, KeysAndAttributes> requestItems = new HashMap<>();
 requestItems.put(tableName, KeysAndAttributes.builder()
 .keys(List.of(key1, key2))
 .projectionExpression("Artist, SongTitle")
 .build());

 BatchGetItemRequest batchGetItemRequest = BatchGetItemRequest.builder()
 .requestItems(requestItems)
 .build();

 // Use batchGetItemPaginator for paginated requests.
 dynamoDbClient.batchGetItemPaginator(batchGetItemRequest).stream()
 .flatMap(response -> response.responses().getOrDefault(tableName,
 Collections.emptyList()).stream())
 .forEach(item -> {
 System.out.println("Artist: " + item.get("Artist").s() +
 ", SongTitle: " + item.get("SongTitle").s());
 });
 }
}

• For API details, see BatchGetItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see BatchGet.

Actions API Version 2012-08-10 1805

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/BatchGetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/BatchGetCommand/

Amazon DynamoDB Developer Guide

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { BatchGetCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new BatchGetCommand({
 // Each key in this object is the name of a table. This example refers
 // to a Books table.
 RequestItems: {
 Books: {
 // Each entry in Keys is an object that specifies a primary key.
 Keys: [
 {
 Title: "How to AWS",
 },
 {
 Title: "DynamoDB for DBAs",
 },
],
 // Only return the "Title" and "PageCount" attributes.
 ProjectionExpression: "Title, PageCount",
 },
 },
 });

 const response = await docClient.send(command);
 console.log(response.Responses.Books);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see BatchGetItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1806

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-reading
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchGetItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 RequestItems: {
 TABLE_NAME: {
 Keys: [
 { KEY_NAME: { N: "KEY_VALUE_1" } },
 { KEY_NAME: { N: "KEY_VALUE_2" } },
 { KEY_NAME: { N: "KEY_VALUE_3" } },
],
 ProjectionExpression: "KEY_NAME, ATTRIBUTE",
 },
 },
};

ddb.batchGetItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 data.Responses.TABLE_NAME.forEach(function (element, index, array) {
 console.log(element);
 });
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see BatchGetItem in Amazon SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Gets the item with the SongTitle "Somewhere Down The Road" from the
DynamoDB tables 'Music' and 'Songs'.

Actions API Version 2012-08-10 1807

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-reading
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/BatchGetItem

Amazon DynamoDB Developer Guide

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

$keysAndAttributes = New-Object Amazon.DynamoDBv2.Model.KeysAndAttributes
$list = New-Object
 'System.Collections.Generic.List[System.Collections.Generic.Dictionary[String,
 Amazon.DynamoDBv2.Model.AttributeValue]]'
$list.Add($key)
$keysAndAttributes.Keys = $list

$requestItem = @{
 'Music' = [Amazon.DynamoDBv2.Model.KeysAndAttributes]$keysAndAttributes
 'Songs' = [Amazon.DynamoDBv2.Model.KeysAndAttributes]$keysAndAttributes
}

$batchItems = Get-DDBBatchItem -RequestItem $requestItem
$batchItems.GetEnumerator() | ForEach-Object {$PSItem.Value} | ConvertFrom-
DDBItem

Output:

Name Value
---- -----
Artist No One You Know
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
CriticRating 10
Genre Country
Price 1.94
Artist No One You Know
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
CriticRating 10
Genre Country
Price 1.94

• For API details, see BatchGetItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Actions API Version 2012-08-10 1808

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Tools for PowerShell V5

Example 1: Gets the item with the SongTitle "Somewhere Down The Road" from the
DynamoDB tables 'Music' and 'Songs'.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

$keysAndAttributes = New-Object Amazon.DynamoDBv2.Model.KeysAndAttributes
$list = New-Object
 'System.Collections.Generic.List[System.Collections.Generic.Dictionary[String,
 Amazon.DynamoDBv2.Model.AttributeValue]]'
$list.Add($key)
$keysAndAttributes.Keys = $list

$requestItem = @{
 'Music' = [Amazon.DynamoDBv2.Model.KeysAndAttributes]$keysAndAttributes
 'Songs' = [Amazon.DynamoDBv2.Model.KeysAndAttributes]$keysAndAttributes
}

$batchItems = Get-DDBBatchItem -RequestItem $requestItem
$batchItems.GetEnumerator() | ForEach-Object {$PSItem.Value} | ConvertFrom-
DDBItem

Output:

Name Value
---- -----
Artist No One You Know
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
CriticRating 10
Genre Country
Price 1.94
Artist No One You Know
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
CriticRating 10
Genre Country
Price 1.94

Actions API Version 2012-08-10 1809

Amazon DynamoDB Developer Guide

• For API details, see BatchGetItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import decimal
import json
import logging
import os
import pprint
import time
import boto3
from botocore.exceptions import ClientError

logger = logging.getLogger(__name__)
dynamodb = boto3.resource("dynamodb")

MAX_GET_SIZE = 100 # Amazon DynamoDB rejects a get batch larger than 100 items.

def do_batch_get(batch_keys):
 """
 Gets a batch of items from Amazon DynamoDB. Batches can contain keys from
 more than one table.

 When Amazon DynamoDB cannot process all items in a batch, a set of
 unprocessed
 keys is returned. This function uses an exponential backoff algorithm to
 retry
 getting the unprocessed keys until all are retrieved or the specified
 number of tries is reached.

 :param batch_keys: The set of keys to retrieve. A batch can contain at most
 100
 keys. Otherwise, Amazon DynamoDB returns an error.

Actions API Version 2012-08-10 1810

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 :return: The dictionary of retrieved items grouped under their respective
 table names.
 """
 tries = 0
 max_tries = 5
 sleepy_time = 1 # Start with 1 second of sleep, then exponentially increase.
 retrieved = {key: [] for key in batch_keys}
 while tries < max_tries:
 response = dynamodb.batch_get_item(RequestItems=batch_keys)
 # Collect any retrieved items and retry unprocessed keys.
 for key in response.get("Responses", []):
 retrieved[key] += response["Responses"][key]
 unprocessed = response["UnprocessedKeys"]
 if len(unprocessed) > 0:
 batch_keys = unprocessed
 unprocessed_count = sum(
 [len(batch_key["Keys"]) for batch_key in batch_keys.values()]
)
 logger.info(
 "%s unprocessed keys returned. Sleep, then retry.",
 unprocessed_count
)
 tries += 1
 if tries < max_tries:
 logger.info("Sleeping for %s seconds.", sleepy_time)
 time.sleep(sleepy_time)
 sleepy_time = min(sleepy_time * 2, 32)
 else:
 break

 return retrieved

• For API details, see BatchGetItem in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 1811

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/BatchGetItem

Amazon DynamoDB Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Gets an array of `Movie` objects describing all the movies in the
 /// specified list. Any movies that aren't found in the list have no
 /// corresponding entry in the resulting array.
 ///
 /// - Parameters
 /// - keys: An array of tuples, each of which specifies the title and
 /// release year of a movie to fetch from the table.
 ///
 /// - Returns:
 /// - An array of `Movie` objects describing each match found in the
 /// table.
 ///
 /// - Throws:
 /// - `MovieError.ClientUninitialized` if the DynamoDB client has not
 /// been initialized.
 /// - DynamoDB errors are thrown without change.
 func batchGet(keys: [(title: String, year: Int)]) async throws -> [Movie] {
 do {
 guard let client = self.ddbClient else {
 throw MovieError.ClientUninitialized
 }

 var movieList: [Movie] = []
 var keyItems: [[Swift.String: DynamoDBClientTypes.AttributeValue]] =
 []

 // Convert the list of keys into the form used by DynamoDB.

 for key in keys {

Actions API Version 2012-08-10 1812

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 let item: [Swift.String: DynamoDBClientTypes.AttributeValue] = [
 "title": .s(key.title),
 "year": .n(String(key.year))
]
 keyItems.append(item)
 }

 // Create the input record for `batchGetItem()`. The list of
 requested
 // items is in the `requestItems` property. This array contains one
 // entry for each table from which items are to be fetched. In this
 // example, there's only one table containing the movie data.
 //
 // If we wanted this program to also support searching for matches
 // in a table of book data, we could add a second `requestItem`
 // mapping the name of the book table to the list of items we want to
 // find in it.
 let input = BatchGetItemInput(
 requestItems: [
 self.tableName: .init(
 consistentRead: true,
 keys: keyItems
)
]
)

 // Fetch the matching movies from the table.

 let output = try await client.batchGetItem(input: input)

 // Get the set of responses. If there aren't any, return the empty
 // movie list.

 guard let responses = output.responses else {
 return movieList
 }

 // Get the list of matching items for the table with the name
 // `tableName`.

 guard let responseList = responses[self.tableName] else {
 return movieList
 }

Actions API Version 2012-08-10 1813

Amazon DynamoDB Developer Guide

 // Create `Movie` items for each of the matching movies in the table
 // and add them to the `MovieList` array.

 for response in responseList {
 try movieList.append(Movie(withItem: response))
 }

 return movieList
 } catch {
 print("ERROR: batchGet", dump(error))
 throw error
 }
 }

• For API details, see BatchGetItem in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use BatchWriteItem with an Amazon SDK or CLI

The following code examples show how to use BatchWriteItem.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Learn the basics

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Writes a batch of items to the movie table.

Actions API Version 2012-08-10 1814

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/batchgetitem(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The name of the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public List<Movie> ImportMovies(string movieFileName)
 {
 var moviesList = new List<Movie>();
 if (!File.Exists(movieFileName))
 {
 return moviesList;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonSerializer.Deserialize<List<Movie>>(
 json,
 new JsonSerializerOptions
 {
 PropertyNameCaseInsensitive = true
 });

 // Now return the first 250 entries.
 if (allMovies != null && allMovies.Any())
 {
 moviesList = allMovies.GetRange(0, 250);
 }
 return moviesList;
 }

 /// <summary>
 /// Writes 250 items to the movie table.
 /// </summary>
 /// <param name="movieFileName">A string containing the full path to
 /// the JSON file containing movie data.</param>
 /// <param name="tableName">The name of the table to write items to.</param>
 /// <returns>A long integer value representing the number of movies
 /// imported from the JSON file.</returns>
 public async Task<long> BatchWriteItemsAsync(
 string movieFileName, string tableName)
 {

Actions API Version 2012-08-10 1815

Amazon DynamoDB Developer Guide

 try
 {
 var movies = ImportMovies(movieFileName);
 if (!movies.Any())
 {
 Console.WriteLine("Couldn't find the JSON file with movie
 data.");
 return 0;
 }

 var context = new DynamoDBContextBuilder()
 // Optional call to provide a specific instance of
 IAmazonDynamoDB
 .WithDynamoDBClient(() => _amazonDynamoDB)
 .Build();

 var movieBatch = context.CreateBatchWrite<Movie>(
 new BatchWriteConfig()
 {
 OverrideTableName = tableName
 });
 movieBatch.AddPutItems(movies);

 Console.WriteLine("Adding imported movies to the table.");
 await movieBatch.ExecuteAsync();

 return movies.Count;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table was not found during batch write operation.
 {ex.Message}");
 throw;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred during batch
 write operation. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred during batch write operation.
 {ex.Message}");

Actions API Version 2012-08-10 1816

Amazon DynamoDB Developer Guide

 throw;
 }
 }

• For API details, see BatchWriteItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_batch_write_item
#
This function writes a batch of items into a DynamoDB table.
#
Parameters:
-i item -- Path to json file containing the items to write.
#
Returns:
0 - If successful.
1 - If it fails.
##
function dynamodb_batch_write_item() {
 local item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_batch_write_item"
 echo "Write a batch of items into a DynamoDB table."
 echo " -i item -- Path to json file containing the items to write."
 echo ""

Actions API Version 2012-08-10 1817

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }
 while getopts "i:h" option; do
 case "${option}" in
 i) item="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " item: $item"
 iecho ""

 response=$(aws dynamodb batch-write-item \
 --request-items file://"$item")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports batch-write-item operation failed.$response"
 return 1
 fi

 return 0
}

Actions API Version 2012-08-10 1818

Amazon DynamoDB Developer Guide

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then

Actions API Version 2012-08-10 1819

Amazon DynamoDB Developer Guide

 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see BatchWriteItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Batch write items from a JSON file.
/*!
 \sa batchWriteItem()
 \param jsonFilePath: JSON file path.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

/*
 * The input for this routine is a JSON file that you can download from the
 following URL:
 * https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
SampleData.html.

Actions API Version 2012-08-10 1820

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 *
 * The JSON data uses the BatchWriteItem API request syntax. The JSON strings are
 * converted to AttributeValue objects. These AttributeValue objects will then
 generate
 * JSON strings when constructing the BatchWriteItem request, essentially
 outputting
 * their input.
 *
 * This is perhaps an artificial example, but it demonstrates the APIs.
 */

bool AwsDoc::DynamoDB::batchWriteItem(const Aws::String &jsonFilePath,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 std::ifstream fileStream(jsonFilePath);

 if (!fileStream) {
 std::cerr << "Error: could not open file '" << jsonFilePath << "'."
 << std::endl;
 }

 std::stringstream stringStream;
 stringStream << fileStream.rdbuf();
 Aws::Utils::Json::JsonValue jsonValue(stringStream);

 Aws::DynamoDB::Model::BatchWriteItemRequest batchWriteItemRequest;
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> level1Map =
 jsonValue.View().GetAllObjects();
 for (const auto &level1Entry: level1Map) {
 const Aws::Utils::Json::JsonView &entriesView = level1Entry.second;
 const Aws::String &tableName = level1Entry.first;
 // The JSON entries at this level are as follows:
 // key - table name
 // value - list of request objects
 if (!entriesView.IsListType()) {
 std::cerr << "Error: JSON file entry '"
 << tableName << "' is not a list." << std::endl;
 continue;
 }

 Aws::Utils::Array<Aws::Utils::Json::JsonView> entries =
 entriesView.AsArray();

 Aws::Vector<Aws::DynamoDB::Model::WriteRequest> writeRequests;

Actions API Version 2012-08-10 1821

Amazon DynamoDB Developer Guide

 if (AwsDoc::DynamoDB::addWriteRequests(tableName, entries,
 writeRequests)) {
 batchWriteItemRequest.AddRequestItems(tableName, writeRequests);
 }
 }

 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::BatchWriteItemOutcome outcome =
 dynamoClient.BatchWriteItem(
 batchWriteItemRequest);

 if (outcome.IsSuccess()) {
 std::cout << "DynamoDB::BatchWriteItem was successful." << std::endl;
 }
 else {
 std::cerr << "Error with DynamoDB::BatchWriteItem. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 return outcome.IsSuccess();
}

//! Convert requests in JSON format to a vector of WriteRequest objects.
/*!
 \sa addWriteRequests()
 \param tableName: Name of the table for the write operations.
 \param requestsJson: Request data in JSON format.
 \param writeRequests: Vector to receive the WriteRequest objects.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::addWriteRequests(const Aws::String &tableName,
 const
 Aws::Utils::Array<Aws::Utils::Json::JsonView> &requestsJson,

 Aws::Vector<Aws::DynamoDB::Model::WriteRequest> &writeRequests) {
 for (size_t i = 0; i < requestsJson.GetLength(); ++i) {
 const Aws::Utils::Json::JsonView &requestsEntry = requestsJson[i];
 if (!requestsEntry.IsObject()) {
 std::cerr << "Error: incorrect requestsEntry type "
 << requestsEntry.WriteReadable() << std::endl;
 return false;

Actions API Version 2012-08-10 1822

Amazon DynamoDB Developer Guide

 }

 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> requestsMap =
 requestsEntry.GetAllObjects();

 for (const auto &request: requestsMap) {
 const Aws::String &requestType = request.first;
 const Aws::Utils::Json::JsonView &requestJsonView = request.second;

 if (requestType == "PutRequest") {
 if (!requestJsonView.ValueExists("Item")) {
 std::cerr << "Error: item key missing for requests "
 << requestJsonView.WriteReadable() << std::endl;
 return false;
 }
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 attributes;
 if (!getAttributeObjectsMap(requestJsonView.GetObject("Item"),
 attributes)) {
 std::cerr << "Error getting attributes "
 << requestJsonView.WriteReadable() << std::endl;
 return false;
 }

 Aws::DynamoDB::Model::PutRequest putRequest;
 putRequest.SetItem(attributes);
 writeRequests.push_back(
 Aws::DynamoDB::Model::WriteRequest().WithPutRequest(
 putRequest));
 }
 else {
 std::cerr << "Error: unimplemented request type '" << requestType
 << "'." << std::endl;
 }
 }
 }

 return true;
}

//! Generate a map of AttributeValue objects from JSON records.
/*!
 \sa getAttributeObjectsMap()
 \param jsonView: JSONView of attribute records.

Actions API Version 2012-08-10 1823

Amazon DynamoDB Developer Guide

 \param writeRequests: Map to receive the AttributeValue objects.
 \return bool: Function succeeded.
 */
bool
AwsDoc::DynamoDB::getAttributeObjectsMap(const Aws::Utils::Json::JsonView
 &jsonView,
 Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue> &attributes) {
 Aws::Map<Aws::String, Aws::Utils::Json::JsonView> objectsMap =
 jsonView.GetAllObjects();
 for (const auto &entry: objectsMap) {
 const Aws::String &attributeKey = entry.first;
 const Aws::Utils::Json::JsonView &attributeJsonView = entry.second;

 if (!attributeJsonView.IsObject()) {
 std::cerr << "Error: attribute not an object "
 << attributeJsonView.WriteReadable() << std::endl;
 return false;
 }

 attributes.emplace(attributeKey,

 Aws::DynamoDB::Model::AttributeValue(attributeJsonView));
 }

 return true;
}

• For API details, see BatchWriteItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To add multiple items to a table

The following batch-write-item example adds three new items to the
MusicCollection table using a batch of three PutItem requests. It also requests
information about the number of write capacity units consumed by the operation and any
item collections modified by the operation.

Actions API Version 2012-08-10 1824

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/BatchWriteItem

Amazon DynamoDB Developer Guide

aws dynamodb batch-write-item \
 --request-items file://request-items.json \
 --return-consumed-capacity INDEXES \
 --return-item-collection-metrics SIZE

Contents of request-items.json:

{
 "MusicCollection": [
 {
 "PutRequest": {
 "Item": {
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Somewhat Famous"}
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"},
 "AlbumTitle": {"S": "Songs About Life"}
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Scared of My Shadow"},
 "AlbumTitle": {"S": "Blue Sky Blues"}
 }
 }
 }
]
}

Output:

{

Actions API Version 2012-08-10 1825

Amazon DynamoDB Developer Guide

 "UnprocessedItems": {},
 "ItemCollectionMetrics": {
 "MusicCollection": [
 {
 "ItemCollectionKey": {
 "Artist": {
 "S": "No One You Know"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 },
 {
 "ItemCollectionKey": {
 "Artist": {
 "S": "Acme Band"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 }
]
 },
 "ConsumedCapacity": [
 {
 "TableName": "MusicCollection",
 "CapacityUnits": 6.0,
 "Table": {
 "CapacityUnits": 3.0
 },
 "LocalSecondaryIndexes": {
 "AlbumTitleIndex": {
 "CapacityUnits": 3.0
 }
 }
 }
]
}

Actions API Version 2012-08-10 1826

Amazon DynamoDB Developer Guide

For more information, see Batch Operations in the Amazon DynamoDB Developer Guide.

• For API details, see BatchWriteItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// AddMovieBatch adds a slice of movies to the DynamoDB table. The function sends
// batches of 25 movies to DynamoDB until all movies are added or it reaches the
// specified maximum.

Actions API Version 2012-08-10 1827

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.BatchOperations
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/batch-write-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

func (basics TableBasics) AddMovieBatch(ctx context.Context, movies []Movie,
 maxMovies int) (int, error) {
 var err error
 var item map[string]types.AttributeValue
 written := 0
 batchSize := 25 // DynamoDB allows a maximum batch size of 25 items.
 start := 0
 end := start + batchSize
 for start < maxMovies && start < len(movies) {
 var writeReqs []types.WriteRequest
 if end > len(movies) {
 end = len(movies)
 }
 for _, movie := range movies[start:end] {
 item, err = attributevalue.MarshalMap(movie)
 if err != nil {
 log.Printf("Couldn't marshal movie %v for batch writing. Here's why: %v\n",
 movie.Title, err)
 } else {
 writeReqs = append(
 writeReqs,
 types.WriteRequest{PutRequest: &types.PutRequest{Item: item}},
)
 }
 }
 _, err = basics.DynamoDbClient.BatchWriteItem(ctx,
 &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{basics.TableName: writeReqs}})
 if err != nil {
 log.Printf("Couldn't add a batch of movies to %v. Here's why: %v\n",
 basics.TableName, err)
 } else {
 written += len(writeReqs)
 }
 start = end
 end += batchSize
 }

 return written, err
}

Actions API Version 2012-08-10 1828

Amazon DynamoDB Developer Guide

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {

Actions API Version 2012-08-10 1829

Amazon DynamoDB Developer Guide

 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see BatchWriteItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Inserts many items into a table by using the service client.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.BatchWriteItemRequest;
import software.amazon.awssdk.services.dynamodb.model.BatchWriteItemResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutRequest;
import software.amazon.awssdk.services.dynamodb.model.WriteRequest;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

Actions API Version 2012-08-10 1830

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb/#code-examples

Amazon DynamoDB Developer Guide

public class BatchWriteItems {
 public static void main(String[] args){
 final String usage = """

 Usage:
 <tableName>

 Where:
 tableName - The Amazon DynamoDB table (for example, Music).\s
 """;

 String tableName = "Music";
 Region region = Region.US_EAST_1;
 DynamoDbClient dynamoDbClient = DynamoDbClient.builder()
 .region(region)
 .build();

 addBatchItems(dynamoDbClient, tableName);
 }

 public static void addBatchItems(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Specify the updates you want to perform.
 List<WriteRequest> writeRequests = new ArrayList<>();

 // Set item 1.
 Map<String, AttributeValue> item1Attributes = new HashMap<>();
 item1Attributes.put("Artist",
 AttributeValue.builder().s("Artist1").build());
 item1Attributes.put("Rating", AttributeValue.builder().s("5").build());
 item1Attributes.put("Comments", AttributeValue.builder().s("Great
 song!").build());
 item1Attributes.put("SongTitle",
 AttributeValue.builder().s("SongTitle1").build());

 writeRequests.add(WriteRequest.builder().putRequest(PutRequest.builder().item(item1Attributes).build()).build());

 // Set item 2.
 Map<String, AttributeValue> item2Attributes = new HashMap<>();
 item2Attributes.put("Artist",
 AttributeValue.builder().s("Artist2").build());
 item2Attributes.put("Rating", AttributeValue.builder().s("4").build());
 item2Attributes.put("Comments", AttributeValue.builder().s("Nice
 melody.").build());

Actions API Version 2012-08-10 1831

Amazon DynamoDB Developer Guide

 item2Attributes.put("SongTitle",
 AttributeValue.builder().s("SongTitle2").build());

 writeRequests.add(WriteRequest.builder().putRequest(PutRequest.builder().item(item2Attributes).build()).build());

 try {
 // Create the BatchWriteItemRequest.
 BatchWriteItemRequest batchWriteItemRequest =
 BatchWriteItemRequest.builder()
 .requestItems(Map.of(tableName, writeRequests))
 .build();

 // Execute the BatchWriteItem operation.
 BatchWriteItemResponse batchWriteItemResponse =
 dynamoDbClient.batchWriteItem(batchWriteItemRequest);

 // Process the response.
 System.out.println("Batch write successful: " +
 batchWriteItemResponse);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

Inserts many items into a table by using the enhanced client.

import com.example.dynamodb.Customer;
import com.example.dynamodb.Music;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.Key;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;
import
 software.amazon.awssdk.enhanced.dynamodb.model.BatchWriteItemEnhancedRequest;
import software.amazon.awssdk.enhanced.dynamodb.model.WriteBatch;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import java.time.Instant;

Actions API Version 2012-08-10 1832

Amazon DynamoDB Developer Guide

import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.ZoneOffset;

/*
 * Before running this code example, create an Amazon DynamoDB table named
 Customer with these columns:
 * - id - the id of the record that is the key
 * - custName - the customer name
 * - email - the email value
 * - registrationDate - an instant value when the item was added to the table
 *
 * Also, ensure that you have set up your development environment, including your
 credentials.
 *
 * For information, see this documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class EnhancedBatchWriteItems {
 public static void main(String[] args) {
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();
 DynamoDbEnhancedClient enhancedClient =
 DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 putBatchRecords(enhancedClient);
 ddb.close();
 }

 public static void putBatchRecords(DynamoDbEnhancedClient enhancedClient)
 {
 try {
 DynamoDbTable<Customer> customerMappedTable =
 enhancedClient.table("Customer",
 TableSchema.fromBean(Customer.class));
 DynamoDbTable<Music> musicMappedTable =
 enhancedClient.table("Music",
 TableSchema.fromBean(Music.class));
 LocalDate localDate = LocalDate.parse("2020-04-07");

Actions API Version 2012-08-10 1833

Amazon DynamoDB Developer Guide

 LocalDateTime localDateTime = localDate.atStartOfDay();
 Instant instant =
 localDateTime.toInstant(ZoneOffset.UTC);

 Customer record2 = new Customer();
 record2.setCustName("Fred Pink");
 record2.setId("id110");
 record2.setEmail("fredp@noserver.com");
 record2.setRegistrationDate(instant);

 Customer record3 = new Customer();
 record3.setCustName("Susan Pink");
 record3.setId("id120");
 record3.setEmail("spink@noserver.com");
 record3.setRegistrationDate(instant);

 Customer record4 = new Customer();
 record4.setCustName("Jerry orange");
 record4.setId("id101");
 record4.setEmail("jorange@noserver.com");
 record4.setRegistrationDate(instant);

 BatchWriteItemEnhancedRequest
 batchWriteItemEnhancedRequest = BatchWriteItemEnhancedRequest
 .builder()
 .writeBatches(

 WriteBatch.builder(Customer.class) // add items to the Customer

 // table

 .mappedTableResource(customerMappedTable)

 .addPutItem(builder -> builder.item(record2))

 .addPutItem(builder -> builder.item(record3))

 .addPutItem(builder -> builder.item(record4))
 .build(),

 WriteBatch.builder(Music.class) // delete an item from the Music

 // table

Actions API Version 2012-08-10 1834

Amazon DynamoDB Developer Guide

 .mappedTableResource(musicMappedTable)

 .addDeleteItem(builder -> builder.key(

 Key.builder().partitionValue(

 "Famous Band")

 .build()))
 .build())
 .build();

 // Add three items to the Customer table and delete one
 item from the Music
 // table.

 enhancedClient.batchWriteItem(batchWriteItemEnhancedRequest);
 System.out.println("done");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see BatchWriteItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see BatchWrite.

Actions API Version 2012-08-10 1835

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/BatchWriteCommand/

Amazon DynamoDB Developer Guide

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";
import { readFileSync } from "node:fs";

// These modules are local to our GitHub repository. We recommend cloning
// the project from GitHub if you want to run this example.
// For more information, see https://github.com/awsdocs/aws-doc-sdk-examples.
import { dirnameFromMetaUrl } from "@aws-doc-sdk-examples/lib/utils/util-fs.js";
import { chunkArray } from "@aws-doc-sdk-examples/lib/utils/util-array.js";

const dirname = dirnameFromMetaUrl(import.meta.url);

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const file = readFileSync(
 `${dirname}../../../../../resources/sample_files/movies.json`,
);

 const movies = JSON.parse(file.toString());

 // chunkArray is a local convenience function. It takes an array and returns
 // a generator function. The generator function yields every N items.
 const movieChunks = chunkArray(movies, 25);

 // For every chunk of 25 movies, make one BatchWrite request.
 for (const chunk of movieChunks) {
 const putRequests = chunk.map((movie) => ({
 PutRequest: {
 Item: movie,
 },
 }));

 const command = new BatchWriteCommand({
 RequestItems: {
 // An existing table is required. A composite key of 'title' and 'year'
 is recommended
 // to account for duplicate titles.
 BatchWriteMoviesTable: putRequests,

Actions API Version 2012-08-10 1836

Amazon DynamoDB Developer Guide

 },
 });

 await docClient.send(command);
 }
};

• For API details, see BatchWriteItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 RequestItems: {
 TABLE_NAME: [
 {
 PutRequest: {
 Item: {
 KEY: { N: "KEY_VALUE" },
 ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" },
 ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" },
 },
 },
 },
 {
 PutRequest: {
 Item: {
 KEY: { N: "KEY_VALUE" },
 ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" },

Actions API Version 2012-08-10 1837

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchWriteItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" },
 },
 },
 },
],
 },
};

ddb.batchWriteItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see BatchWriteItem in Amazon SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function writeBatch(string $TableName, array $Batch, int $depth = 2)
 {
 if (--$depth <= 0) {
 throw new Exception("Max depth exceeded. Please try with fewer batch
 items or increase depth.");
 }

 $marshal = new Marshaler();
 $total = 0;
 foreach (array_chunk($Batch, 25) as $Items) {
 foreach ($Items as $Item) {

Actions API Version 2012-08-10 1838

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-table-read-write-batch.html#dynamodb-example-table-read-write-batch-writing
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $BatchWrite['RequestItems'][$TableName][] = ['PutRequest' =>
 ['Item' => $marshal->marshalItem($Item)]];
 }
 try {
 echo "Batching another " . count($Items) . " for a total of " .
 ($total += count($Items)) . " items!\n";
 $response = $this->dynamoDbClient->batchWriteItem($BatchWrite);
 $BatchWrite = [];
 } catch (Exception $e) {
 echo "uh oh...";
 echo $e->getMessage();
 die();
 }
 if ($total >= 250) {
 echo "250 movies is probably enough. Right? We can stop there.
\n";
 break;
 }
 }
 }

• For API details, see BatchWriteItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Creates a new item, or replaces an existing item with a new item in the
DynamoDB tables Music and Songs.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 10.0
} | ConvertTo-DDBItem

$writeRequest = New-Object Amazon.DynamoDBv2.Model.WriteRequest
$writeRequest.PutRequest = [Amazon.DynamoDBv2.Model.PutRequest]$item

Actions API Version 2012-08-10 1839

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/BatchWriteItem

Amazon DynamoDB Developer Guide

$requestItem = @{
 'Music' = [Amazon.DynamoDBv2.Model.WriteRequest]($writeRequest)
 'Songs' = [Amazon.DynamoDBv2.Model.WriteRequest]($writeRequest)
}

Set-DDBBatchItem -RequestItem $requestItem

• For API details, see BatchWriteItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Creates a new item, or replaces an existing item with a new item in the
DynamoDB tables Music and Songs.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 10.0
} | ConvertTo-DDBItem

$writeRequest = New-Object Amazon.DynamoDBv2.Model.WriteRequest
$writeRequest.PutRequest = [Amazon.DynamoDBv2.Model.PutRequest]$item

$requestItem = @{
 'Music' = [Amazon.DynamoDBv2.Model.WriteRequest]($writeRequest)
 'Songs' = [Amazon.DynamoDBv2.Model.WriteRequest]($writeRequest)
}

Set-DDBBatchItem -RequestItem $requestItem

• For API details, see BatchWriteItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 1840

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

Actions API Version 2012-08-10 1841

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def write_batch(self, movies):
 """
 Fills an Amazon DynamoDB table with the specified data, using the Boto3
 Table.batch_writer() function to put the items in the table.
 Inside the context manager, Table.batch_writer builds a list of
 requests. On exiting the context manager, Table.batch_writer starts
 sending
 batches of write requests to Amazon DynamoDB and automatically
 handles chunking, buffering, and retrying.

 :param movies: The data to put in the table. Each item must contain at
 least
 the keys required by the schema that was specified when
 the
 table was created.
 """
 try:
 with self.table.batch_writer() as writer:
 for movie in movies:
 writer.put_item(Item=movie)
 except ClientError as err:
 logger.error(
 "Couldn't load data into table %s. Here's why: %s: %s",
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see BatchWriteItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1842

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/BatchWriteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Fills an Amazon DynamoDB table with the specified data. Items are sent in
 # batches of 25 until all items are written.
 #
 # @param movies [Enumerable] The data to put in the table. Each item must
 contain at least
 # the keys required by the schema that was specified
 when the
 # table was created.
 def write_batch(movies)
 index = 0
 slice_size = 25
 while index < movies.length
 movie_items = []
 movies[index, slice_size].each do |movie|
 movie_items.append({ put_request: { item: movie } })
 end
 @dynamo_resource.client.batch_write_item({ request_items: { @table.name =>
 movie_items } })
 index += slice_size
 end
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts(
 "Couldn't load data into table #{@table.name}. Here's why:"
)
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see BatchWriteItem in Amazon SDK for Ruby API Reference.

Actions API Version 2012-08-10 1843

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchWriteItem

Amazon DynamoDB Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Populate the movie database from the specified JSON file.
 ///
 /// - Parameter jsonPath: Path to a JSON file containing movie data.
 ///
 func populate(jsonPath: String) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Create a Swift `URL` and use it to load the file into a `Data`
 // object. Then decode the JSON into an array of `Movie` objects.

 let fileUrl = URL(fileURLWithPath: jsonPath)
 let jsonData = try Data(contentsOf: fileUrl)

 var movieList = try JSONDecoder().decode([Movie].self, from:
 jsonData)

 // Truncate the list to the first 200 entries or so for this example.

 if movieList.count > 200 {
 movieList = Array(movieList[...199])
 }

 // Before sending records to the database, break the movie list into
 // 25-entry chunks, which is the maximum size of a batch item
 request.

Actions API Version 2012-08-10 1844

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb/#code-examples

Amazon DynamoDB Developer Guide

 let count = movieList.count
 let chunks = stride(from: 0, to: count, by: 25).map {
 Array(movieList[$0 ..< Swift.min($0 + 25, count)])
 }

 // For each chunk, create a list of write request records and
 populate
 // them with `PutRequest` requests, each specifying one movie from
 the
 // chunk. Once the chunk's items are all in the `PutRequest` list,
 // send them to Amazon DynamoDB using the
 // `DynamoDBClient.batchWriteItem()` function.

 for chunk in chunks {
 var requestList: [DynamoDBClientTypes.WriteRequest] = []

 for movie in chunk {
 let item = try await movie.getAsItem()
 let request = DynamoDBClientTypes.WriteRequest(
 putRequest: .init(
 item: item
)
)
 requestList.append(request)
 }

 let input = BatchWriteItemInput(requestItems: [tableName:
 requestList])
 _ = try await client.batchWriteItem(input: input)
 }
 } catch {
 print("ERROR: populate:", dump(error))
 throw error
 }
 }

• For API details, see BatchWriteItem in Amazon SDK for Swift API reference.

Actions API Version 2012-08-10 1845

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/batchwriteitem(input:)

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateTable with an Amazon SDK or CLI

The following code examples show how to use CreateTable.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Advanced Global Secondary Index scenarios

• Create a table with global secondary index

• Create a table with warm throughput enabled

• Create and manage global tables demonstrating MREC

• Create and manage MRSC global tables

• Manage Global Secondary Indexes

• Manage resource-based policies

• Set up Attribute-Based Access Control

• Work with global tables and multi-Region replication eventual consistency (MREC)

• Work with Local Secondary Indexes

• Work with resource tagging

• Work with Streams and Time-to-Live

• Work with table encryption

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1846

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Creates a new Amazon DynamoDB table and then waits for the new
 /// table to become active.
 /// </summary>
 /// <param name="tableName">The name of the table to create.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> CreateMovieTableAsync(string tableName)
 {
 try
 {
 var response = await _amazonDynamoDB.CreateTableAsync(new
 CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "title",
 AttributeType = ScalarAttributeType.S,
 },
 new AttributeDefinition
 {
 AttributeName = "year",
 AttributeType = ScalarAttributeType.N,
 },
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "year",
 KeyType = KeyType.HASH,
 },
 new KeySchemaElement
 {
 AttributeName = "title",
 KeyType = KeyType.RANGE,
 },
 },
 BillingMode = BillingMode.PAY_PER_REQUEST,

Actions API Version 2012-08-10 1847

Amazon DynamoDB Developer Guide

 });

 // Wait until the table is ACTIVE and then report success.
 Console.Write("Waiting for table to become active...");

 var request = new DescribeTableRequest
 {
 TableName = response.TableDescription.TableName,
 };

 TableStatus status;

 int sleepDuration = 2000;

 do
 {
 Thread.Sleep(sleepDuration);

 var describeTableResponse = await
 _amazonDynamoDB.DescribeTableAsync(request);
 status = describeTableResponse.Table.TableStatus;

 Console.Write(".");
 }
 while (status != "ACTIVE");

 return status == TableStatus.ACTIVE;
 }
 catch (ResourceInUseException ex)
 {
 Console.WriteLine($"Table {tableName} already exists. {ex.Message}");
 throw;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while creating
 table {tableName}. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while creating table
 {tableName}. {ex.Message}");
 throw;

Actions API Version 2012-08-10 1848

Amazon DynamoDB Developer Guide

 }
 }

• For API details, see CreateTable in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_create_table
#
This function creates an Amazon DynamoDB table.
#
Parameters:
-n table_name -- The name of the table to create.
-a attribute_definitions -- JSON file path of a list of attributes and
 their types.
-k key_schema -- JSON file path of a list of attributes and their key
 types.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_create_table() {
 local table_name attribute_definitions key_schema response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_create_table"

Actions API Version 2012-08-10 1849

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 echo "Creates an Amazon DynamoDB table with on-demand billing."
 echo " -n table_name -- The name of the table to create."
 echo " -a attribute_definitions -- JSON file path of a list of attributes and
 their types."
 echo " -k key_schema -- JSON file path of a list of attributes and their key
 types."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:a:k:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 a) attribute_definitions="${OPTARG}" ;;
 k) key_schema="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_definitions"]]; then
 errecho "ERROR: You must provide an attribute definitions json file path the
 -a parameter."
 usage
 return 1
 fi

 if [[-z "$key_schema"]]; then
 errecho "ERROR: You must provide a key schema json file path the -k
 parameter."

Actions API Version 2012-08-10 1850

Amazon DynamoDB Developer Guide

 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " attribute_definitions: $attribute_definitions"
 iecho " key_schema: $key_schema"
 iecho ""

 response=$(aws dynamodb create-table \
 --table-name "$table_name" \
 --attribute-definitions file://"$attribute_definitions" \
 --billing-mode PAY_PER_REQUEST \
 --key-schema file://"$key_schema")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports create-table operation failed.$response"
 return 1
 fi

 return 0
}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###

Actions API Version 2012-08-10 1851

Amazon DynamoDB Developer Guide

function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

Actions API Version 2012-08-10 1852

Amazon DynamoDB Developer Guide

• For API details, see CreateTable in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Create an Amazon DynamoDB table.
/*!
 \sa createTable()
 \param tableName: Name for the DynamoDB table.
 \param primaryKey: Primary key for the DynamoDB table.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::createTable(const Aws::String &tableName,
 const Aws::String &primaryKey,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 std::cout << "Creating table " << tableName <<
 " with a simple primary key: \"" << primaryKey << "\"." <<
 std::endl;

 Aws::DynamoDB::Model::CreateTableRequest request;

 Aws::DynamoDB::Model::AttributeDefinition hashKey;
 hashKey.SetAttributeName(primaryKey);
 hashKey.SetAttributeType(Aws::DynamoDB::Model::ScalarAttributeType::S);
 request.AddAttributeDefinitions(hashKey);

 Aws::DynamoDB::Model::KeySchemaElement keySchemaElement;
 keySchemaElement.WithAttributeName(primaryKey).WithKeyType(
 Aws::DynamoDB::Model::KeyType::HASH);

Actions API Version 2012-08-10 1853

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 request.AddKeySchema(keySchemaElement);

 Aws::DynamoDB::Model::ProvisionedThroughput throughput;
 throughput.WithReadCapacityUnits(5).WithWriteCapacityUnits(5);
 request.SetProvisionedThroughput(throughput);
 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::CreateTableOutcome &outcome =
 dynamoClient.CreateTable(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Table \""
 << outcome.GetResult().GetTableDescription().GetTableName() <<
 " created!" << std::endl;
 }
 else {
 std::cerr << "Failed to create table: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

Actions API Version 2012-08-10 1854

Amazon DynamoDB Developer Guide

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see CreateTable in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To create a table with tags

The following create-table example uses the specified attributes and key schema to
create a table named MusicCollection. This table uses provisioned throughput and is
encrypted at rest using the default Amazon owned CMK. The command also applies a tag to
the table, with a key of Owner and a value of blueTeam.

aws dynamodb create-table \

Actions API Version 2012-08-10 1855

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --tags Key=Owner,Value=blueTeam

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "TableName": "MusicCollection",
 "TableStatus": "CREATING",
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Artist"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": "2020-05-26T16:04:41.627000-07:00",

Actions API Version 2012-08-10 1856

Amazon DynamoDB Developer Guide

 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 2: To create a table in On-Demand Mode

The following example creates a table called MusicCollection using on-demand mode,
rather than provisioned throughput mode. This is useful for tables with unpredictable
workloads.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",

Actions API Version 2012-08-10 1857

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T11:44:10.807000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 0,
 "WriteCapacityUnits": 0
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "BillingModeSummary": {
 "BillingMode": "PAY_PER_REQUEST"
 }
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 3: To create a table and encrypt it with a Customer Managed CMK

The following example creates a table named MusicCollection and encrypts it using a
customer managed CMK.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-
abcd-1234-a123-ab1234a1b234

Actions API Version 2012-08-10 1858

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T11:12:16.431000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "SSEDescription": {
 "Status": "ENABLED",
 "SSEType": "KMS",
 "KMSMasterKeyArn": "arn:aws:kms:us-west-2:123456789012:key/abcd1234-
abcd-1234-a123-ab1234a1b234"
 }
 }

Actions API Version 2012-08-10 1859

Amazon DynamoDB Developer Guide

}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 4: To create a table with a Local Secondary Index

The following example uses the specified attributes and key schema to create a table named
MusicCollection with a Local Secondary Index named AlbumTitleIndex.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-
definitions AttributeName=Artist,AttributeType=S AttributeName=SongTitle,AttributeType=S AttributeName=AlbumTitle,AttributeType=S
 \
 --key-
schema AttributeName=Artist,KeyType=HASH AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --local-secondary-indexes \
 "[
 {
 \"IndexName\": \"AlbumTitleIndex\",
 \"KeySchema\": [
 {\"AttributeName\": \"Artist\",\"KeyType\":\"HASH\"},
 {\"AttributeName\": \"AlbumTitle\",\"KeyType\":\"RANGE\"}
],
 \"Projection\": {
 \"ProjectionType\": \"INCLUDE\",
 \"NonKeyAttributes\": [\"Genre\", \"Year\"]
 }
 }
]"

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {

Actions API Version 2012-08-10 1860

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "LocalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "RANGE"
 }
],

Actions API Version 2012-08-10 1861

Amazon DynamoDB Developer Guide

 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "Genre",
 "Year"
]
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitleIndex"
 }
]
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 5: To create a table with a Global Secondary Index

The following example creates a table named GameScores with a Global Secondary Index
called GameTitleIndex. The base table has a partition key of UserId and a sort key
of GameTitle, allowing you to find an individual user's best score for a specific game
efficiently, whereas the GSI has a partition key of GameTitle and a sort key of TopScore,
allowing you to quickly find the overall highest score for a particular game.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S AttributeName=TopScore,AttributeType=N
 \
 --key-schema AttributeName=UserId,KeyType=HASH \
 AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"GameTitleIndex\",
 \"KeySchema\": [
 {\"AttributeName\":\"GameTitle\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"TopScore\",\"KeyType\":\"RANGE\"}
],

Actions API Version 2012-08-10 1862

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 \"Projection\": {
 \"ProjectionType\":\"INCLUDE\",
 \"NonKeyAttributes\":[\"UserId\"]
 },
 \"ProvisionedThroughput\": {
 \"ReadCapacityUnits\": 10,
 \"WriteCapacityUnits\": 5
 }
 }
]"

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-26T17:28:15.602000-07:00",
 "ProvisionedThroughput": {

Actions API Version 2012-08-10 1863

Amazon DynamoDB Developer Guide

 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "UserId"
]
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameTitleIndex"
 }
]
 }
}

Actions API Version 2012-08-10 1864

Amazon DynamoDB Developer Guide

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 6: To create a table with multiple Global Secondary Indexes at once

The following example creates a table named GameScores with two Global Secondary
Indexes. The GSI schemas are passed via a file, rather than on the command line.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S AttributeName=TopScore,AttributeType=N AttributeName=Date,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --global-secondary-indexes file://gsi.json

Contents of gsi.json:

[
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 }
 },
 {
 "IndexName": "GameDateIndex",

Actions API Version 2012-08-10 1865

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Date",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 }
 }
]

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Date",
 "AttributeType": "S"
 },
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "TopScore",
 "AttributeType": "N"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",

Actions API Version 2012-08-10 1866

Amazon DynamoDB Developer Guide

 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-08-04T16:40:55.524000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "GameTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "TopScore",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,

Actions API Version 2012-08-10 1867

Amazon DynamoDB Developer Guide

 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameTitleIndex"
 },
 {
 "IndexName": "GameDateIndex",
 "KeySchema": [
 {
 "AttributeName": "GameTitle",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "Date",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "CREATING",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/index/GameDateIndex"
 }
]
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 7: To create a table with Streams enabled

The following example creates a table called GameScores with DynamoDB Streams
enabled. Both new and old images of each item will be written to the stream.

aws dynamodb create-table \

Actions API Version 2012-08-10 1868

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=TRUE,StreamViewType=NEW_AND_OLD_IMAGES

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2020-05-27T10:49:34.056000-07:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,

Actions API Version 2012-08-10 1869

Amazon DynamoDB Developer Guide

 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "LatestStreamLabel": "2020-05-27T17:49:34.056",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/2020-05-27T17:49:34.056"
 }
}

For more information, see Basic Operations for Tables in the Amazon DynamoDB Developer
Guide.

Example 8: To create a table with Keys-Only Stream enabled

The following example creates a table called GameScores with DynamoDB Streams
enabled. Only the key attributes of modified items are written to the stream.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=TRUE,StreamViewType=KEYS_ONLY

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"

Actions API Version 2012-08-10 1870

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html

Amazon DynamoDB Developer Guide

 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T18:45:34.140000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "KEYS_ONLY"
 },
 "LatestStreamLabel": "2023-05-25T18:45:34.140",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/2023-05-25T18:45:34.140",
 "DeletionProtectionEnabled": false
 }
}

For more information, see Change data capture for DynamoDB Streams in the Amazon
DynamoDB Developer Guide.

Example 9: To create a table with the Standard Infrequent Access class

The following example creates a table called GameScores and assigns the Standard-
Infrequent Access (DynamoDB Standard-IA) table class. This table class is optimized for
storage being the dominant cost.

Actions API Version 2012-08-10 1871

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

Amazon DynamoDB Developer Guide

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --table-class STANDARD_INFREQUENT_ACCESS

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {
 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T18:33:07.581000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,

Actions API Version 2012-08-10 1872

Amazon DynamoDB Developer Guide

 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "TableClassSummary": {
 "TableClass": "STANDARD_INFREQUENT_ACCESS"
 },
 "DeletionProtectionEnabled": false
 }
}

For more information, see Table classes in the Amazon DynamoDB Developer Guide.

Example 10: To Create a table with Delete Protection enabled

The following example creates a table called GameScores and enables deletion protection.

aws dynamodb create-table \
 --table-name GameScores \
 --attribute-
definitions AttributeName=UserId,AttributeType=S AttributeName=GameTitle,AttributeType=S
 \
 --key-
schema AttributeName=UserId,KeyType=HASH AttributeName=GameTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --deletion-protection-enabled

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "GameTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "UserId",
 "AttributeType": "S"
 }
],
 "TableName": "GameScores",
 "KeySchema": [
 {

Actions API Version 2012-08-10 1873

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.TableClasses.html

Amazon DynamoDB Developer Guide

 "AttributeName": "UserId",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "GameTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "CREATING",
 "CreationDateTime": "2023-05-25T23:02:17.093000+00:00",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "TableId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeletionProtectionEnabled": true
 }
}

For more information, see Using deletion protection in the Amazon DynamoDB Developer
Guide.

• For API details, see CreateTable in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"

Actions API Version 2012-08-10 1874

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.DeletionProtection
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/create-table.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// CreateMovieTable creates a DynamoDB table with a composite primary key defined
 as
// a string sort key named `title`, and a numeric partition key named `year`.
// This function uses NewTableExistsWaiter to wait for the table to be created by
// DynamoDB before it returns.
func (basics TableBasics) CreateMovieTable(ctx context.Context)
 (*types.TableDescription, error) {
 var tableDesc *types.TableDescription
 table, err := basics.DynamoDbClient.CreateTable(ctx, &dynamodb.CreateTableInput{
 AttributeDefinitions: []types.AttributeDefinition{{
 AttributeName: aws.String("year"),
 AttributeType: types.ScalarAttributeTypeN,
 }, {
 AttributeName: aws.String("title"),
 AttributeType: types.ScalarAttributeTypeS,
 }},
 KeySchema: []types.KeySchemaElement{{
 AttributeName: aws.String("year"),
 KeyType: types.KeyTypeHash,
 }, {
 AttributeName: aws.String("title"),
 KeyType: types.KeyTypeRange,
 }},

Actions API Version 2012-08-10 1875

Amazon DynamoDB Developer Guide

 TableName: aws.String(basics.TableName),
 BillingMode: types.BillingModePayPerRequest,
 })
 if err != nil {
 log.Printf("Couldn't create table %v. Here's why: %v\n", basics.TableName, err)
 } else {
 waiter := dynamodb.NewTableExistsWaiter(basics.DynamoDbClient)
 err = waiter.Wait(ctx, &dynamodb.DescribeTableInput{
 TableName: aws.String(basics.TableName)}, 5*time.Minute)
 if err != nil {
 log.Printf("Wait for table exists failed. Here's why: %v\n", err)
 }
 tableDesc = table.TableDescription
 log.Printf("Ccreating table test")
 }
 return tableDesc, err
}

• For API details, see CreateTable in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.BillingMode;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;

Actions API Version 2012-08-10 1876

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.OnDemandThroughput;
import software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughput;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.waiters.DynamoDbWaiter;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 * <p>
 * For more information, see the following documentation topic:
 * <p>
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key>

 Where:
 tableName - The Amazon DynamoDB table to create (for example,
 Music3).
 key - The key for the Amazon DynamoDB table (for example,
 Artist).
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 System.out.println("Creating an Amazon DynamoDB table " + tableName + "
 with a simple primary key: " + key);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

Actions API Version 2012-08-10 1877

Amazon DynamoDB Developer Guide

 String result = createTable(ddb, tableName, key);
 System.out.println("New table is " + result);
 ddb.close();
 }

 public static String createTable(DynamoDbClient ddb, String tableName, String
 key) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 CreateTableRequest request = CreateTableRequest.builder()
 .attributeDefinitions(AttributeDefinition.builder()
 .attributeName(key)
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(KeySchemaElement.builder()
 .attributeName(key)
 .keyType(KeyType.HASH)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .tableName(tableName)
 .build();

 String newTable;
 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 newTable = response.tableDescription().tableName();
 return newTable;

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return "";
 }
}

Actions API Version 2012-08-10 1878

Amazon DynamoDB Developer Guide

• For API details, see CreateTable in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { CreateTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new CreateTableCommand({
 TableName: "EspressoDrinks",
 // For more information about data types,
 // see https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes and
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeDefinitions: [
 {
 AttributeName: "DrinkName",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "DrinkName",
 KeyType: "HASH",
 },
],
 BillingMode: "PAY_PER_REQUEST",
 });

 const response = await client.send(command);

Actions API Version 2012-08-10 1879

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateTable in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 AttributeDefinitions: [
 {
 AttributeName: "CUSTOMER_ID",
 AttributeType: "N",
 },
 {
 AttributeName: "CUSTOMER_NAME",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "CUSTOMER_ID",
 KeyType: "HASH",
 },
 {
 AttributeName: "CUSTOMER_NAME",

Actions API Version 2012-08-10 1880

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 KeyType: "RANGE",
 },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 TableName: "CUSTOMER_LIST",
 StreamSpecification: {
 StreamEnabled: false,
 },
};

// Call DynamoDB to create the table
ddb.createTable(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Table Created", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see CreateTable in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun createNewTable(
 tableNameVal: String,
 key: String,
): String? {
 val attDef =

Actions API Version 2012-08-10 1881

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-creating-a-table
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef)
 keySchema = listOf(keySchemaVal)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 var tableArn: String
 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {
 // suspend call
 tableName = tableNameVal
 }
 tableArn = response.tableDescription!!.tableArn.toString()
 println("Table $tableArn is ready")
 return tableArn
 }
}

• For API details, see CreateTable in Amazon SDK for Kotlin API reference.

Actions API Version 2012-08-10 1882

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a table.

 $tableName = "ddb_demo_table_$uuid";
 $service->createTable(
 $tableName,
 [
 new DynamoDBAttribute('year', 'N', 'HASH'),
 new DynamoDBAttribute('title', 'S', 'RANGE')
]
);

 public function createTable(string $tableName, array $attributes)
 {
 $keySchema = [];
 $attributeDefinitions = [];
 foreach ($attributes as $attribute) {
 if (is_a($attribute, DynamoDBAttribute::class)) {
 $keySchema[] = ['AttributeName' => $attribute->AttributeName,
 'KeyType' => $attribute->KeyType];
 $attributeDefinitions[] =
 ['AttributeName' => $attribute->AttributeName,
 'AttributeType' => $attribute->AttributeType];
 }
 }

 $this->dynamoDbClient->createTable([
 'TableName' => $tableName,
 'KeySchema' => $keySchema,
 'AttributeDefinitions' => $attributeDefinitions,
 'ProvisionedThroughput' => ['ReadCapacityUnits' => 10,
 'WriteCapacityUnits' => 10],
]);
 }

Actions API Version 2012-08-10 1883

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see CreateTable in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). The schema used to
construct the table can be piped into each cmdlet as shown or specified using the -
Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyType RANGE -KeyDataType "S"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {}

Example 2: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). A local secondary index
is also defined. The key of the local secondary index will be set automatically from the
primary hash key on the table (ForumName). The schema used to construct the table can
be piped into each cmdlet as shown or specified using the -Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S"
$schema | Add-DDBIndexSchema -IndexName "LastPostIndex" -RangeKeyName
 "LastPostDateTime" -RangeKeyDataType "S" -ProjectionType "keys_only"

Actions API Version 2012-08-10 1884

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

Example 3: This example shows how to use a single pipeline to create a table named
Thread that has a primary key consisting of 'ForumName' (key type hash) and
'Subject' (key type range) and a local secondary index. The Add-DDBKeySchema and
Add-DDBIndexSchema create a new TableSchema object for you if one is not supplied
from the pipeline or the -Schema parameter.

New-DDBTableSchema |
 Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S" |
 Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S" |
 Add-DDBIndexSchema -IndexName "LastPostIndex" `
 -RangeKeyName "LastPostDateTime" `
 -RangeKeyDataType "S" `
 -ProjectionType "keys_only" |
 New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

Actions API Version 2012-08-10 1885

Amazon DynamoDB Developer Guide

• For API details, see CreateTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). The schema used to
construct the table can be piped into each cmdlet as shown or specified using the -
Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyType RANGE -KeyDataType "S"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {}

Example 2: This example creates a table named Thread that has a primary key consisting
of 'ForumName' (key type hash) and 'Subject' (key type range). A local secondary index
is also defined. The key of the local secondary index will be set automatically from the
primary hash key on the table (ForumName). The schema used to construct the table can
be piped into each cmdlet as shown or specified using the -Schema parameter.

$schema = New-DDBTableSchema
$schema | Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S"
$schema | Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S"
$schema | Add-DDBIndexSchema -IndexName "LastPostIndex" -RangeKeyName
 "LastPostDateTime" -RangeKeyDataType "S" -ProjectionType "keys_only"
$schema | New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

Actions API Version 2012-08-10 1886

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

Example 3: This example shows how to use a single pipeline to create a table named
Thread that has a primary key consisting of 'ForumName' (key type hash) and
'Subject' (key type range) and a local secondary index. The Add-DDBKeySchema and
Add-DDBIndexSchema create a new TableSchema object for you if one is not supplied
from the pipeline or the -Schema parameter.

New-DDBTableSchema |
 Add-DDBKeySchema -KeyName "ForumName" -KeyDataType "S" |
 Add-DDBKeySchema -KeyName "Subject" -KeyDataType "S" |
 Add-DDBIndexSchema -IndexName "LastPostIndex" `
 -RangeKeyName "LastPostDateTime" `
 -RangeKeyDataType "S" `
 -ProjectionType "keys_only" |
 New-DDBTable -TableName "Thread" -ReadCapacity 10 -WriteCapacity 5

Output:

AttributeDefinitions : {ForumName, LastPostDateTime, Subject}
TableName : Thread
KeySchema : {ForumName, Subject}
TableStatus : CREATING
CreationDateTime : 10/28/2013 4:39:49 PM
ProvisionedThroughput : Amazon.DynamoDBv2.Model.ProvisionedThroughputDescription
TableSizeBytes : 0
ItemCount : 0
LocalSecondaryIndexes : {LastPostIndex}

• For API details, see CreateTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 1887

https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a table for storing movie data.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

Actions API Version 2012-08-10 1888

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def create_table(self, table_name):
 """
 Creates an Amazon DynamoDB table that can be used to store movie data.
 The table uses the release year of the movie as the partition key and the
 title as the sort key.

 :param table_name: The name of the table to create.
 :return: The newly created table.
 """
 try:
 self.table = self.dyn_resource.create_table(
 TableName=table_name,
 KeySchema=[
 {"AttributeName": "year", "KeyType": "HASH"}, # Partition
 key
 {"AttributeName": "title", "KeyType": "RANGE"}, # Sort key
],
 AttributeDefinitions=[
 {"AttributeName": "year", "AttributeType": "N"},
 {"AttributeName": "title", "AttributeType": "S"},
],
 BillingMode='PAY_PER_REQUEST',
)
 self.table.wait_until_exists()
 except ClientError as err:
 logger.error(
 "Couldn't create table %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return self.table

• For API details, see CreateTable in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 1889

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Creates an Amazon DynamoDB table that can be used to store movie data.
 # The table uses the release year of the movie as the partition key and the
 # title as the sort key.
 #
 # @param table_name [String] The name of the table to create.
 # @return [Aws::DynamoDB::Table] The newly created table.
 def create_table(table_name)
 @table = @dynamo_resource.create_table(
 table_name: table_name,
 key_schema: [
 { attribute_name: 'year', key_type: 'HASH' }, # Partition key
 { attribute_name: 'title', key_type: 'RANGE' } # Sort key
],
 attribute_definitions: [
 { attribute_name: 'year', attribute_type: 'N' },
 { attribute_name: 'title', attribute_type: 'S' }
],
 billing_mode: 'PAY_PER_REQUEST'
)

Actions API Version 2012-08-10 1890

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 @dynamo_resource.client.wait_until(:table_exists, table_name: table_name)
 @table
 rescue Aws::DynamoDB::Errors::ServiceError => e
 @logger.error("Failed create table #{table_name}:\n#{e.code}: #{e.message}")
 raise
 end

• For API details, see CreateTable in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn create_table(
 client: &Client,
 table: &str,
 key: &str,
) -> Result<CreateTableOutput, Error> {
 let a_name: String = key.into();
 let table_name: String = table.into();

 let ad = AttributeDefinition::builder()
 .attribute_name(&a_name)
 .attribute_type(ScalarAttributeType::S)
 .build()
 .map_err(Error::BuildError)?;

 let ks = KeySchemaElement::builder()
 .attribute_name(&a_name)
 .key_type(KeyType::Hash)
 .build()
 .map_err(Error::BuildError)?;

 let create_table_response = client
 .create_table()

Actions API Version 2012-08-10 1891

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/CreateTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 .table_name(table_name)
 .key_schema(ks)
 .attribute_definitions(ad)
 .billing_mode(BillingMode::PayPerRequest)
 .send()
 .await;

 match create_table_response {
 Ok(out) => {
 println!("Added table {} with key {}", table, key);
 Ok(out)
 }
 Err(e) => {
 eprintln!("Got an error creating table:");
 eprintln!("{}", e);
 Err(Error::unhandled(e))
 }
 }
}

• For API details, see CreateTable in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 DATA(lt_keyschema) = VALUE /aws1/cl_dynkeyschemaelement=>tt_keyschema(
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'year'
 iv_keytype = 'HASH'))
 (NEW /aws1/cl_dynkeyschemaelement(iv_attributename = 'title'
 iv_keytype = 'RANGE'))).
 DATA(lt_attributedefinitions) = VALUE /aws1/
cl_dynattributedefn=>tt_attributedefinitions(
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'year'

Actions API Version 2012-08-10 1892

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.create_table
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 iv_attributetype = 'N'))
 (NEW /aws1/cl_dynattributedefn(iv_attributename = 'title'
 iv_attributetype = 'S'))).

 " Adjust read/write capacities as desired.
 DATA(lo_dynprovthroughput) = NEW /aws1/cl_dynprovthroughput(
 iv_readcapacityunits = 5
 iv_writecapacityunits = 5).
 oo_result = lo_dyn->createtable(
 it_keyschema = lt_keyschema
 iv_tablename = iv_table_name
 it_attributedefinitions = lt_attributedefinitions
 io_provisionedthroughput = lo_dynprovthroughput).
 " Table creation can take some time. Wait till table exists before
 returning.
 lo_dyn->get_waiter()->tableexists(
 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'DynamoDB Table' && iv_table_name && 'created.' TYPE 'I'.
 " This exception can happen if the table already exists.
 CATCH /aws1/cx_dynresourceinuseex INTO DATA(lo_resourceinuseex).
 DATA(lv_error) = |"{ lo_resourceinuseex->av_err_code }" -
 { lo_resourceinuseex->av_err_msg }|.
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

• For API details, see CreateTable in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

Actions API Version 2012-08-10 1893

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 ///
 /// Create a movie table in the Amazon DynamoDB data store.
 ///
 private func createTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = CreateTableInput(
 attributeDefinitions: [
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "year", attributeType: .n),
 DynamoDBClientTypes.AttributeDefinition(attributeName:
 "title", attributeType: .s)
],
 billingMode: DynamoDBClientTypes.BillingMode.payPerRequest,
 keySchema: [
 DynamoDBClientTypes.KeySchemaElement(attributeName: "year",
 keyType: .hash),
 DynamoDBClientTypes.KeySchemaElement(attributeName: "title",
 keyType: .range)
],
 tableName: self.tableName
)
 let output = try await client.createTable(input: input)
 if output.tableDescription == nil {
 throw MoviesError.TableNotFound
 }
 } catch {
 print("ERROR: createTable:", dump(error))
 throw error
 }
 }

• For API details, see CreateTable in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions API Version 2012-08-10 1894

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/createtable(input:)

Amazon DynamoDB Developer Guide

Use DeleteItem with an Amazon SDK or CLI

The following code examples show how to use DeleteItem.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Use conditional operations

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Deletes a single item from a DynamoDB table.
 /// </summary>
 /// <param name="tableName">The name of the table from which the item
 /// will be deleted.</param>
 /// <param name="movieToDelete">A movie object containing the title and
 /// year of the movie to delete.</param>
 /// <returns>A Boolean value indicating the success or failure of the
 /// delete operation.</returns>
 public async Task<bool> DeleteItemAsync(
 string tableName,
 Movie movieToDelete)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = movieToDelete.Title },
 ["year"] = new AttributeValue { N =
 movieToDelete.Year.ToString() },

Actions API Version 2012-08-10 1895

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 };

 var request = new DeleteItemRequest { TableName = tableName, Key =
 key, };

 await _amazonDynamoDB.DeleteItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while deleting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting item.
 {ex.Message}");
 throw;
 }
 }

• For API details, see DeleteItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##

Actions API Version 2012-08-10 1896

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

function dynamodb_delete_item
#
This function deletes an item from a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_delete_item() {
 local table_name keys response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_delete_item"
 echo "Delete an item from a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to delete."
 echo ""
 }
 while getopts "n:k:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

Actions API Version 2012-08-10 1897

Amazon DynamoDB Developer Guide

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " keys: $keys"
 iecho ""

 response=$(aws dynamodb delete-item \
 --table-name "$table_name" \
 --key file://"$keys")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-item operation failed.$response"
 return 1
 fi

 return 0

}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###

Actions API Version 2012-08-10 1898

Amazon DynamoDB Developer Guide

function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then

Actions API Version 2012-08-10 1899

Amazon DynamoDB Developer Guide

 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see DeleteItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Delete an item from an Amazon DynamoDB table.
/*!
 \sa deleteItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

bool AwsDoc::DynamoDB::deleteItem(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteItemRequest request;

 request.AddKey(partitionKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(partitionValue));

Actions API Version 2012-08-10 1900

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::DeleteItemOutcome &outcome =
 dynamoClient.DeleteItem(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Item \"" << partitionValue << "\" deleted!" << std::endl;
 }
 else {
 std::cerr << "Failed to delete item: " << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {

Actions API Version 2012-08-10 1901

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see DeleteItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To delete an item

The following delete-item example deletes an item from the MusicCollection table
and requests details about the item that was deleted and the capacity used by the request.

aws dynamodb delete-item \
 --table-name MusicCollection \
 --key file://key.json \
 --return-values ALL_OLD \
 --return-consumed-capacity TOTAL \
 --return-item-collection-metrics SIZE

Contents of key.json:

{

Actions API Version 2012-08-10 1902

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DeleteItem

Amazon DynamoDB Developer Guide

 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Scared of My Shadow"}
}

Output:

{
 "Attributes": {
 "AlbumTitle": {
 "S": "Blue Sky Blues"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 2.0
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "Artist": {
 "S": "No One You Know"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 }
}

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Example 2: To delete an item conditionally

The following example deletes an item from the ProductCatalog table only if its
ProductCategory is either Sporting Goods or Gardening Supplies and its price is
between 500 and 600. It returns details about the item that was deleted.

Actions API Version 2012-08-10 1903

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{"Id":{"N":"456"}}' \
 --condition-expression "(ProductCategory IN (:cat1, :cat2)) and (#P
 between :lo and :hi)" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-values ALL_OLD

Contents of names.json:

{
 "#P": "Price"
}

Contents of values.json:

{
 ":cat1": {"S": "Sporting Goods"},
 ":cat2": {"S": "Gardening Supplies"},
 ":lo": {"N": "500"},
 ":hi": {"N": "600"}
}

Output:

{
 "Attributes": {
 "Id": {
 "N": "456"
 },
 "Price": {
 "N": "550"
 },
 "ProductCategory": {
 "S": "Sporting Goods"
 }
 }
}

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Actions API Version 2012-08-10 1904

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

• For API details, see DeleteItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// DeleteMovie removes a movie from the DynamoDB table.
func (basics TableBasics) DeleteMovie(ctx context.Context, movie Movie) error {
 _, err := basics.DynamoDbClient.DeleteItem(ctx, &dynamodb.DeleteItemInput{
 TableName: aws.String(basics.TableName), Key: movie.GetKey(),
 })

Actions API Version 2012-08-10 1905

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/delete-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 if err != nil {
 log.Printf("Couldn't delete %v from the table. Here's why: %v\n", movie.Title,
 err)
 }
 return err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }

Actions API Version 2012-08-10 1906

Amazon DynamoDB Developer Guide

 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see DeleteItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DeleteItemRequest;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions API Version 2012-08-10 1907

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyval>

 Where:
 tableName - The Amazon DynamoDB table to delete the item from
 (for example, Music3).
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).\s
 keyval - The key value that represents the item to delete
 (for example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 System.out.format("Deleting item \"%s\" from %s\n", keyVal, tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 deleteDynamoDBItem(ddb, tableName, key, keyVal);
 ddb.close();
 }

 public static void deleteDynamoDBItem(DynamoDbClient ddb, String tableName,
 String key, String keyVal) {
 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put(key, AttributeValue.builder()
 .s(keyVal)
 .build());

Actions API Version 2012-08-10 1908

Amazon DynamoDB Developer Guide

 DeleteItemRequest deleteReq = DeleteItemRequest.builder()
 .tableName(tableName)
 .key(keyToGet)
 .build();

 try {
 ddb.deleteItem(deleteReq);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see DeleteCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, DeleteCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new DeleteCommand({
 TableName: "Sodas",
 Key: {
 Flavor: "Cola",
 },

Actions API Version 2012-08-10 1909

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/DeleteCommand/

Amazon DynamoDB Developer Guide

 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Delete an item from a table.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Key: {
 KEY_NAME: { N: "VALUE" },
 },
};

// Call DynamoDB to delete the item from the table
ddb.deleteItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }

Actions API Version 2012-08-10 1910

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-deleting-an-item
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

});

Delete an item from a table using the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 Key: {
 HASH_KEY: VALUE,
 },
 TableName: "TABLE",
};

docClient.delete(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1911

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-deleting-an-item
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

suspend fun deleteDynamoDBItem(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
) {
 val keyToGet = mutableMapOf<String, AttributeValue>()
 keyToGet[keyName] = AttributeValue.S(keyVal)

 val request =
 DeleteItemRequest {
 tableName = tableNameVal
 key = keyToGet
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.deleteItem(request)
 println("Item with key matching $keyVal was deleted")
 }
}

• For API details, see DeleteItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 $key = [
 'Item' => [
 'title' => [
 'S' => $movieName,
],
 'year' => [
 'N' => $movieYear,
],

Actions API Version 2012-08-10 1912

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

]
];

 $service->deleteItemByKey($tableName, $key);
 echo "But, bad news, this was a trap. That movie has now been deleted
 because of your rating...harsh.\n";

 public function deleteItemByKey(string $tableName, array $key)
 {
 $this->dynamoDbClient->deleteItem([
 'Key' => $key['Item'],
 'TableName' => $tableName,
]);
 }

• For API details, see DeleteItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Removes the DynamoDB item that matches the provided key.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem
Remove-DDBItem -TableName 'Music' -Key $key -Confirm:$false

• For API details, see DeleteItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Removes the DynamoDB item that matches the provided key.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem
Remove-DDBItem -TableName 'Music' -Key $key -Confirm:$false

• For API details, see DeleteItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 1913

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DeleteItem
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

Actions API Version 2012-08-10 1914

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def delete_movie(self, title, year):
 """
 Deletes a movie from the table.

 :param title: The title of the movie to delete.
 :param year: The release year of the movie to delete.
 """
 try:
 self.table.delete_item(Key={"year": year, "title": title})
 except ClientError as err:
 logger.error(
 "Couldn't delete movie %s. Here's why: %s: %s",
 title,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

You can specify a condition so that an item is deleted only when it meets certain criteria.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

 def delete_underrated_movie(self, title, year, rating):
 """
 Deletes a movie only if it is rated below a specified value. By using a
 condition expression in a delete operation, you can specify that an item
 is
 deleted only when it meets certain criteria.

 :param title: The title of the movie to delete.
 :param year: The release year of the movie to delete.
 :param rating: The rating threshold to check before deleting the movie.
 """
 try:
 self.table.delete_item(
 Key={"year": year, "title": title},
 ConditionExpression="info.rating <= :val",

Actions API Version 2012-08-10 1915

Amazon DynamoDB Developer Guide

 ExpressionAttributeValues={":val": Decimal(str(rating))},
)
 except ClientError as err:
 if err.response["Error"]["Code"] ==
 "ConditionalCheckFailedException":
 logger.warning(
 "Didn't delete %s because its rating is greater than %s.",
 title,
 rating,
)
 else:
 logger.error(
 "Couldn't delete movie %s. Here's why: %s: %s",
 title,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

Actions API Version 2012-08-10 1916

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 # Deletes a movie from the table.
 #
 # @param title [String] The title of the movie to delete.
 # @param year [Integer] The release year of the movie to delete.
 def delete_item(title, year)
 @table.delete_item(key: { 'year' => year, 'title' => title })
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't delete movie #{title}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteItem in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn delete_item(
 client: &Client,
 table: &str,
 key: &str,
 value: &str,
) -> Result<DeleteItemOutput, Error> {
 match client
 .delete_item()
 .table_name(table)
 .key(key, AttributeValue::S(value.into()))
 .send()
 .await
 {
 Ok(out) => {
 println!("Deleted item from table");
 Ok(out)
 }

Actions API Version 2012-08-10 1917

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Err(e) => Err(Error::unhandled(e)),
 }
}

• For API details, see DeleteItem in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 DATA(lo_resp) = lo_dyn->deleteitem(
 iv_tablename = iv_table_name
 it_key = it_key_input).
 MESSAGE 'Deleted one item.' TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteItem in Amazon SDK for SAP ABAP API reference.

Actions API Version 2012-08-10 1918

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.delete_item
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon DynamoDB Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Delete a movie, given its title and release year.
 ///
 /// - Parameters:
 /// - title: The movie's title.
 /// - year: The movie's release year.
 ///
 func delete(title: String, year: Int) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DeleteItemInput(
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 tableName: self.tableName
)
 _ = try await client.deleteItem(input: input)
 } catch {
 print("ERROR: delete:", dump(error))
 throw error
 }
 }

• For API details, see DeleteItem in Amazon SDK for Swift API reference.

Actions API Version 2012-08-10 1919

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples
https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/deleteitem(input:)

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteTable with an Amazon SDK or CLI

The following code examples show how to use DeleteTable.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Create and manage MRSC global tables

• Manage Global Secondary Indexes

• Work with global tables and multi-Region replication eventual consistency (MREC)

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Deletes a DynamoDB table.
 /// </summary>
 /// <param name="tableName">The name of the table to delete.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public async Task<bool> DeleteTableAsync(string tableName)
 {
 try
 {
 var request = new DeleteTableRequest
 {
 TableName = tableName,

Actions API Version 2012-08-10 1920

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 };

 var response = await _amazonDynamoDB.DeleteTableAsync(request);

 Console.WriteLine($"Table {response.TableDescription.TableName}
 successfully deleted.");
 return true;

 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found and cannot be
 deleted. {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while deleting
 table {tableName}. {ex.Message}");
 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while deleting table
 {tableName}. {ex.Message}");
 return false;
 }
 }

• For API details, see DeleteTable in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1921

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

###
function dynamodb_delete_table
#
This function deletes a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table to delete.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_delete_table() {
 local table_name response
 local option OPTARG # Required to use getopts command in a function.

 # bashsupport disable=BP5008
 function usage() {
 echo "function dynamodb_delete_table"
 echo "Deletes an Amazon DynamoDB table."
 echo " -n table_name -- The name of the table to delete."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."

Actions API Version 2012-08-10 1922

Amazon DynamoDB Developer Guide

 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho ""

 response=$(aws dynamodb delete-table \
 --table-name "$table_name")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports delete-table operation failed.$response"
 return 1
 fi

 return 0
}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {

Actions API Version 2012-08-10 1923

Amazon DynamoDB Developer Guide

 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see DeleteTable in Amazon CLI Command Reference.

Actions API Version 2012-08-10 1924

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Delete an Amazon DynamoDB table.
/*!
 \sa deleteTable()
 \param tableName: The DynamoDB table name.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::deleteTable(const Aws::String &tableName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteTableRequest request;
 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::DeleteTableOutcome &result =
 dynamoClient.DeleteTable(
 request);
 if (result.IsSuccess()) {
 std::cout << "Your table \""
 << result.GetResult().GetTableDescription().GetTableName()
 << " was deleted.\n";
 }
 else {
 std::cerr << "Failed to delete table: " << result.GetError().GetMessage()
 << std::endl;
 }

 return result.IsSuccess();
}

Actions API Version 2012-08-10 1925

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see DeleteTable in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete a table

The following delete-table example deletes the MusicCollection table.

aws dynamodb delete-table \
 --table-name MusicCollection

Output:

{
 "TableDescription": {
 "TableStatus": "DELETING",
 "TableSizeBytes": 0,
 "ItemCount": 0,
 "TableName": "MusicCollection",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 }
 }
}

For more information, see Deleting a Table in the Amazon DynamoDB Developer Guide.

• For API details, see DeleteTable in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1926

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DeleteTable
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.DeleteTable
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/delete-table.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// DeleteTable deletes the DynamoDB table and all of its data.
func (basics TableBasics) DeleteTable(ctx context.Context) error {
 _, err := basics.DynamoDbClient.DeleteTable(ctx, &dynamodb.DeleteTableInput{
 TableName: aws.String(basics.TableName)})
 if err != nil {
 log.Printf("Couldn't delete table %v. Here's why: %v\n", basics.TableName, err)
 }
 return err
}

• For API details, see DeleteTable in Amazon SDK for Go API Reference.

Actions API Version 2012-08-10 1927

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DeleteTable

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class DeleteTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName>

 Where:
 tableName - The Amazon DynamoDB table to delete (for example,
 Music3).

 Warning This program will delete the table that you specify!
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);

Actions API Version 2012-08-10 1928

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }

 String tableName = args[0];
 System.out.format("Deleting the Amazon DynamoDB table %s...\n",
 tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 deleteDynamoDBTable(ddb, tableName);
 ddb.close();
 }

 public static void deleteDynamoDBTable(DynamoDbClient ddb, String tableName)
 {
 DeleteTableRequest request = DeleteTableRequest.builder()
 .tableName(tableName)
 .build();

 try {
 ddb.deleteTable(request);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println(tableName + " was successfully deleted!");
 }
}

• For API details, see DeleteTable in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1929

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import { DeleteTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new DeleteTableCommand({
 TableName: "DecafCoffees",
 });

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For API details, see DeleteTable in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: process.argv[2],
};

// Call DynamoDB to delete the specified table
ddb.deleteTable(params, function (err, data) {
 if (err && err.code === "ResourceNotFoundException") {
 console.log("Error: Table not found");
 } else if (err && err.code === "ResourceInUseException") {

Actions API Version 2012-08-10 1930

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 console.log("Error: Table in use");
 } else {
 console.log("Success", data);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DeleteTable in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun deleteDynamoDBTable(tableNameVal: String) {
 val request =
 DeleteTableRequest {
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.deleteTable(request)
 println("$tableNameVal was deleted")
 }
}

• For API details, see DeleteTable in Amazon SDK for Kotlin API reference.

Actions API Version 2012-08-10 1931

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-deleting-a-table
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/DeleteTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function deleteTable(string $TableName)
 {
 $this->customWaiter(function () use ($TableName) {
 return $this->dynamoDbClient->deleteTable([
 'TableName' => $TableName,
]);
 });
 }

• For API details, see DeleteTable in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Deletes the specified table. You are prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable"

Example 2: Deletes the specified table. You are not prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable" -Force

• For API details, see DeleteTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Actions API Version 2012-08-10 1932

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/DeleteTable
https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Tools for PowerShell V5

Example 1: Deletes the specified table. You are prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable"

Example 2: Deletes the specified table. You are not prompted for confirmation before the
operation proceeds.

Remove-DDBTable -TableName "myTable" -Force

• For API details, see DeleteTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [

Actions API Version 2012-08-10 1933

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def delete_table(self):
 """
 Deletes the table.
 """
 try:
 self.table.delete()
 self.table = None
 except ClientError as err:
 logger.error(
 "Couldn't delete table. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteTable in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 1934

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Deletes the table.
 def delete_table
 @table.delete
 @table = nil
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't delete table. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DeleteTable in Amazon SDK for Ruby API Reference.

Actions API Version 2012-08-10 1935

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DeleteTable

Amazon DynamoDB Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn delete_table(client: &Client, table: &str) ->
 Result<DeleteTableOutput, Error> {
 let resp = client.delete_table().table_name(table).send().await;

 match resp {
 Ok(out) => {
 println!("Deleted table");
 Ok(out)
 }
 Err(e) => Err(Error::Unhandled(e.into())),
 }
}

• For API details, see DeleteTable in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 lo_dyn->deletetable(iv_tablename = iv_table_name).
 " Wait till the table is actually deleted.
 lo_dyn->get_waiter()->tablenotexists(

Actions API Version 2012-08-10 1936

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples
https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.delete_table
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 iv_max_wait_time = 200
 iv_tablename = iv_table_name).
 MESSAGE 'Table ' && iv_table_name && ' deleted.' TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table ' && iv_table_name && ' does not exist' TYPE 'E'.
 CATCH /aws1/cx_dynresourceinuseex.
 MESSAGE 'The table cannot be deleted since it is in use' TYPE 'E'.
 ENDTRY.

• For API details, see DeleteTable in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 ///
 /// Deletes the table from Amazon DynamoDB.
 ///
 func deleteTable() async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = DeleteTableInput(
 tableName: self.tableName
)
 _ = try await client.deleteTable(input: input)
 } catch {
 print("ERROR: deleteTable:", dump(error))
 throw error
 }

Actions API Version 2012-08-10 1937

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }

• For API details, see DeleteTable in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeTable with an Amazon SDK or CLI

The following code examples show how to use DescribeTable.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Create and manage global tables demonstrating MREC

• Create and manage MRSC global tables

• Work with global tables and multi-Region replication eventual consistency (MREC)

• Work with Streams and Time-to-Live

• Work with table encryption

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 private static async Task GetTableInformation()
 {
 Console.WriteLine("\n*** Retrieving table information ***");

Actions API Version 2012-08-10 1938

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/deletetable(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 var response = await Client.DescribeTableAsync(new DescribeTableRequest
 {
 TableName = ExampleTableName
 });

 var table = response.Table;
 Console.WriteLine($"Name: {table.TableName}");
 Console.WriteLine($"# of items: {table.ItemCount}");

 }

• For API details, see DescribeTable in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_describe_table
#
This function returns the status of a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
#
Response:
- TableStatus:
And:
0 - Table is active.
1 - If it fails.
###
function dynamodb_describe_table {
 local table_name
 local option OPTARG # Required to use getopts command in a function.

Actions API Version 2012-08-10 1939

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_describe_table"
 echo "Describe the status of a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo ""
 }

 # Retrieve the calling parameters.
 while getopts "n:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 local table_status
 table_status=$(
 aws dynamodb describe-table \
 --table-name "$table_name" \
 --output text \
 --query 'Table.TableStatus'
)

 local error_code=${?}

 if [[$error_code -ne 0]]; then

Actions API Version 2012-08-10 1940

Amazon DynamoDB Developer Guide

 aws_cli_error_log "$error_code"
 errecho "ERROR: AWS reports describe-table operation failed.$table_status"
 return 1
 fi

 echo "$table_status"

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then

Actions API Version 2012-08-10 1941

Amazon DynamoDB Developer Guide

 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see DescribeTable in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Describe an Amazon DynamoDB table.
/*!
 \sa describeTable()
 \param tableName: The DynamoDB table name.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::describeTable(const Aws::String &tableName,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DescribeTableRequest request;

Actions API Version 2012-08-10 1942

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 request.SetTableName(tableName);

 const Aws::DynamoDB::Model::DescribeTableOutcome &outcome =
 dynamoClient.DescribeTable(
 request);

 if (outcome.IsSuccess()) {
 const Aws::DynamoDB::Model::TableDescription &td =
 outcome.GetResult().GetTable();
 std::cout << "Table name : " << td.GetTableName() << std::endl;
 std::cout << "Table ARN : " << td.GetTableArn() << std::endl;
 std::cout << "Status : "
 <<
 Aws::DynamoDB::Model::TableStatusMapper::GetNameForTableStatus(
 td.GetTableStatus()) << std::endl;
 std::cout << "Item count : " << td.GetItemCount() << std::endl;
 std::cout << "Size (bytes): " << td.GetTableSizeBytes() << std::endl;

 const Aws::DynamoDB::Model::ProvisionedThroughputDescription &ptd =
 td.GetProvisionedThroughput();
 std::cout << "Throughput" << std::endl;
 std::cout << " Read Capacity : " << ptd.GetReadCapacityUnits() <<
 std::endl;
 std::cout << " Write Capacity: " << ptd.GetWriteCapacityUnits() <<
 std::endl;

 const Aws::Vector<Aws::DynamoDB::Model::AttributeDefinition> &ad =
 td.GetAttributeDefinitions();
 std::cout << "Attributes" << std::endl;
 for (const auto &a: ad)
 std::cout << " " << a.GetAttributeName() << " (" <<

 Aws::DynamoDB::Model::ScalarAttributeTypeMapper::GetNameForScalarAttributeType(
 a.GetAttributeType()) <<
 ")" << std::endl;
 }
 else {
 std::cerr << "Failed to describe table: " <<
 outcome.GetError().GetMessage();
 }

 return outcome.IsSuccess();
}

Actions API Version 2012-08-10 1943

Amazon DynamoDB Developer Guide

• For API details, see DescribeTable in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To describe a table

The following describe-table example describes the MusicCollection table.

aws dynamodb describe-table \
 --table-name MusicCollection

Output:

{
 "Table": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "TableSizeBytes": 0,
 "TableName": "MusicCollection",
 "TableStatus": "ACTIVE",
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Artist"
 },
 {

Actions API Version 2012-08-10 1944

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/DescribeTable

Amazon DynamoDB Developer Guide

 "KeyType": "RANGE",
 "AttributeName": "SongTitle"
 }
],
 "ItemCount": 0,
 "CreationDateTime": 1421866952.062
 }
}

For more information, see Describing a Table in the Amazon DynamoDB Developer Guide.

• For API details, see DescribeTable in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {

Actions API Version 2012-08-10 1945

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.DescribeTable
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/describe-table.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 DynamoDbClient *dynamodb.Client
 TableName string
}

// TableExists determines whether a DynamoDB table exists.
func (basics TableBasics) TableExists(ctx context.Context) (bool, error) {
 exists := true
 _, err := basics.DynamoDbClient.DescribeTable(
 ctx, &dynamodb.DescribeTableInput{TableName: aws.String(basics.TableName)},
)
 if err != nil {
 var notFoundEx *types.ResourceNotFoundException
 if errors.As(err, ¬FoundEx) {
 log.Printf("Table %v does not exist.\n", basics.TableName)
 err = nil
 } else {
 log.Printf("Couldn't determine existence of table %v. Here's why: %v\n",
 basics.TableName, err)
 }
 exists = false
 }
 return exists, err
}

• For API details, see DescribeTable in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

Actions API Version 2012-08-10 1946

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import
 software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughputDescription;
import software.amazon.awssdk.services.dynamodb.model.TableDescription;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DescribeTable {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName>

 Where:
 tableName - The Amazon DynamoDB table to get information
 about (for example, Music3).
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 System.out.format("Getting description for %s\n\n", tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 describeDymamoDBTable(ddb, tableName);
 ddb.close();
 }

Actions API Version 2012-08-10 1947

Amazon DynamoDB Developer Guide

 public static void describeDymamoDBTable(DynamoDbClient ddb, String
 tableName) {
 DescribeTableRequest request = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 try {
 TableDescription tableInfo = ddb.describeTable(request).table();
 if (tableInfo != null) {
 System.out.format("Table name : %s\n", tableInfo.tableName());
 System.out.format("Table ARN : %s\n", tableInfo.tableArn());
 System.out.format("Status : %s\n", tableInfo.tableStatus());
 System.out.format("Item count : %d\n", tableInfo.itemCount());
 System.out.format("Size (bytes): %d\n",
 tableInfo.tableSizeBytes());

 ProvisionedThroughputDescription throughputInfo =
 tableInfo.provisionedThroughput();
 System.out.println("Throughput");
 System.out.format(" Read Capacity : %d\n",
 throughputInfo.readCapacityUnits());
 System.out.format(" Write Capacity: %d\n",
 throughputInfo.writeCapacityUnits());

 List<AttributeDefinition> attributes =
 tableInfo.attributeDefinitions();
 System.out.println("Attributes");
 for (AttributeDefinition a : attributes) {
 System.out.format(" %s (%s)\n", a.attributeName(),
 a.attributeType());
 }
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println("\nDone!");
 }
}

• For API details, see DescribeTable in Amazon SDK for Java 2.x API Reference.

Actions API Version 2012-08-10 1948

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { DescribeTableCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new DescribeTableCommand({
 TableName: "Pastries",
 });

 const response = await client.send(command);
 console.log(`TABLE NAME: ${response.Table.TableName}`);
 console.log(`TABLE ITEM COUNT: ${response.Table.ItemCount}`);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DescribeTable in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Actions API Version 2012-08-10 1949

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-describing-a-table
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTableCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: process.argv[2],
};

// Call DynamoDB to retrieve the selected table descriptions
ddb.describeTable(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Table.KeySchema);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see DescribeTable in Amazon SDK for JavaScript API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Returns details of the specified table.

Get-DDBTable -TableName "myTable"

• For API details, see DescribeTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Returns details of the specified table.

Get-DDBTable -TableName "myTable"

• For API details, see DescribeTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 1950

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-describing-a-table
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/DescribeTable
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

Actions API Version 2012-08-10 1951

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def exists(self, table_name):
 """
 Determines whether a table exists. As a side effect, stores the table in
 a member variable.

 :param table_name: The name of the table to check.
 :return: True when the table exists; otherwise, False.
 """
 try:
 table = self.dyn_resource.Table(table_name)
 table.load()
 exists = True
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 exists = False
 else:
 logger.error(
 "Couldn't check for existence of %s. Here's why: %s: %s",
 table_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 self.table = table
 return exists

• For API details, see DescribeTable in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1952

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Determines whether a table exists. As a side effect, stores the table in
 # a member variable.
 #
 # @param table_name [String] The name of the table to check.
 # @return [Boolean] True when the table exists; otherwise, False.
 def exists?(table_name)
 @dynamo_resource.client.describe_table(table_name: table_name)
 @logger.debug("Table #{table_name} exists")
 rescue Aws::DynamoDB::Errors::ResourceNotFoundException
 @logger.debug("Table #{table_name} doesn't exist")
 false
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't check for existence of #{table_name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see DescribeTable in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1953

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/DescribeTable
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 TRY.
 oo_result = lo_dyn->describetable(iv_tablename = iv_table_name).
 DATA(lv_tablename) = oo_result->get_table()->ask_tablename().
 DATA(lv_tablearn) = oo_result->get_table()->ask_tablearn().
 DATA(lv_tablestatus) = oo_result->get_table()->ask_tablestatus().
 DATA(lv_itemcount) = oo_result->get_table()->ask_itemcount().
 MESSAGE 'The table name is ' && lv_tablename
 && '. The table ARN is ' && lv_tablearn
 && '. The tablestatus is ' && lv_tablestatus
 && '. Item count is ' && lv_itemcount TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table ' && lv_tablename && ' does not exist' TYPE 'E'.
 ENDTRY.

• For API details, see DescribeTable in Amazon SDK for SAP ABAP API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeTimeToLive with an Amazon SDK or CLI

The following code examples show how to use DescribeTimeToLive.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Work with Streams and Time-to-Live

CLI

Amazon CLI

To view Time to Live settings for a table

The following describe-time-to-live example displays Time to Live settings for the
MusicCollection table.

aws dynamodb describe-time-to-live \

Actions API Version 2012-08-10 1954

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html

Amazon DynamoDB Developer Guide

 --table-name MusicCollection

Output:

{
 "TimeToLiveDescription": {
 "TimeToLiveStatus": "ENABLED",
 "AttributeName": "ttl"
 }
}

For more information, see Time to Live in the Amazon DynamoDB Developer Guide.

• For API details, see DescribeTimeToLive in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Describe TTL configuration on an existing DynamoDB table using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DescribeTimeToLiveRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTimeToLiveResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.logging.Level;
import java.util.logging.Logger;

 public DescribeTimeToLiveResponse describeTTL(final String tableName, final
 Region region) {
 final DescribeTimeToLiveRequest request =
 DescribeTimeToLiveRequest.builder().tableName(tableName).build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 return ddb.describeTimeToLive(request);
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;

Actions API Version 2012-08-10 1955

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/describe-time-to-live.html

Amazon DynamoDB Developer Guide

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }

• For API details, see DescribeTimeToLive in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Describe TTL configuration on an existing DynamoDB table using Amazon SDK for
JavaScript.

import { DynamoDBClient, DescribeTimeToLiveCommand } from "@aws-sdk/client-
dynamodb";

export const describeTTL = async (tableName, region) => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 try {
 const ttlDescription = await client.send(new
 DescribeTimeToLiveCommand({ TableName: tableName }));

 if (ttlDescription.TimeToLiveDescription.TimeToLiveStatus === 'ENABLED')
 {
 console.log("TTL is enabled for table %s.", tableName);
 } else {
 console.log("TTL is not enabled for table %s.", tableName);
 }

 return ttlDescription;
 } catch (e) {
 console.error(`Error describing table: ${e}`);
 throw e;
 }
}

Actions API Version 2012-08-10 1956

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTimeToLive

Amazon DynamoDB Developer Guide

// Example usage (commented out for testing)
// describeTTL('your-table-name', 'us-east-1');

• For API details, see DescribeTimeToLive in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Describe TTL configuration on an existing DynamoDB table using Amazon SDK for Python
(Boto3).

import boto3

def describe_ttl(table_name, region):
 """
 Describes TTL on an existing table, as well as a region.

 :param table_name: String representing the name of the table
 :param region: AWS Region of the table - example `us-east-1`
 :return: Time to live description.
 """
 try:
 dynamodb = boto3.resource("dynamodb", region_name=region)
 ttl_description = dynamodb.describe_time_to_live(TableName=table_name)
 print(
 f"TimeToLive for table {table_name} is status
 {ttl_description['TimeToLiveDescription']['TimeToLiveStatus']}"
)

 return ttl_description
 except Exception as e:
 print(f"Error describing table: {e}")
 raise

Enter your own table name and AWS region
describe_ttl("your-table-name", "us-east-1")

• For API details, see DescribeTimeToLive in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 1957

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DescribeTimeToLiveCommand
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DescribeTimeToLive

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ExecuteStatement with an Amazon SDK

The following code examples show how to use ExecuteStatement.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Delete data using PartiQL DELETE

• Insert data using PartiQL INSERT

• Query a table using PartiQL

• Query data using PartiQL SELECT

• Update data using PartiQL UPDATE

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Use an INSERT statement to add an item.

 /// <summary>
 /// Inserts a single movie into the movies table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)

Actions API Version 2012-08-10 1958

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Use a SELECT statement to get an item.

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>
 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {

Actions API Version 2012-08-10 1959

Amazon DynamoDB Developer Guide

 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

Use a SELECT statement to get a list of items.

 /// <summary>
 /// Retrieve multiple movies by year using a SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="year">The year the movies were released.</param>
 /// <returns></returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetMovies(string tableName, int year)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE year = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { N = year.ToString() },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

Use an UPDATE statement to update an item.

 /// <summary>
 /// Updates a single movie in the table, adding information for the

Actions API Version 2012-08-10 1960

Amazon DynamoDB Developer Guide

 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>
 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Use a DELETE statement to delete a single movie.

 /// <summary>
 /// Deletes a single movie from the table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>

Actions API Version 2012-08-10 1961

Amazon DynamoDB Developer Guide

 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see ExecuteStatement in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Use an INSERT statement to add an item.

 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 // 2. Add a new movie using an "Insert" statement. (ExecuteStatement)
 Aws::String title;
 float rating;
 int year;

Actions API Version 2012-08-10 1962

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Aws::String plot;
 {
 title = askQuestion(
 "Enter the title of a movie you want to add to the table: ");
 year = askQuestionForInt("What year was it released? ");
 rating = askQuestionForFloatRange("On a scale of 1 - 10, how do you rate
 it? ",
 1, 10);
 plot = askQuestion("Summarize the plot for me: ");

 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "INSERT INTO \"" << MOVIE_TABLE_NAME << "\" VALUE {'"
 << TITLE_KEY << "': ?, '" << YEAR_KEY << "': ?, '"
 << INFO_KEY << "': ?}";

 request.SetStatement(sqlStream.str());

 // Create the parameter attributes.
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));

 Aws::DynamoDB::Model::AttributeValue infoMapAttribute;

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> ratingAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 ratingAttribute->SetN(rating);
 infoMapAttribute.AddMEntry(RATING_KEY, ratingAttribute);

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> plotAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 plotAttribute->SetS(plot);
 infoMapAttribute.AddMEntry(PLOT_KEY, plotAttribute);
 attributes.push_back(infoMapAttribute);
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {

Actions API Version 2012-08-10 1963

Amazon DynamoDB Developer Guide

 std::cerr << "Failed to add a movie: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

Use a SELECT statement to get an item.

 // 3. Get the data for the movie using a "Select" statement.
 (ExecuteStatement)
 {
 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to retrieve movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 else {
 // Print the retrieved movie information.
 const Aws::DynamoDB::Model::ExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = result.GetItems();

 if (items.size() == 1) {

Actions API Version 2012-08-10 1964

Amazon DynamoDB Developer Guide

 printMovieInfo(items[0]);
 }
 else {
 std::cerr << "Error: " << items.size() << " movies were
 retrieved. "
 << " There should be only one movie." << std::endl;
 }
 }
 }

Use an UPDATE statement to update an item.

 // 4. Update the data for the movie using an "Update" statement.
 (ExecuteStatement)
 {
 rating = askQuestionForFloatRange(
 Aws::String("\nLet's update your movie.\nYou rated it ") +
 std::to_string(rating)
 + ", what new rating would you give it? ", 1, 10);

 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "UPDATE \"" << MOVIE_TABLE_NAME << "\" SET "
 << INFO_KEY << "." << RATING_KEY << "=? WHERE "
 << TITLE_KEY << "=? AND " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(rating));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));

 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to update a movie: "

Actions API Version 2012-08-10 1965

Amazon DynamoDB Developer Guide

 << outcome.GetError().GetMessage();
 return false;
 }
 }

Use a DELETE statement to delete an item.

 // 6. Delete the movie using a "Delete" statement. (ExecuteStatement)
 {
 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "DELETE FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to delete the movie: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

• For API details, see ExecuteStatement in Amazon SDK for C++ API Reference.

Actions API Version 2012-08-10 1966

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/ExecuteStatement

Amazon DynamoDB Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Define a function receiver struct for the example.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// PartiQLRunner encapsulates the Amazon DynamoDB service actions used in the
// PartiQL examples. It contains a DynamoDB service client that is used to act on
 the
// specified table.
type PartiQLRunner struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

Use an INSERT statement to add an item.

// AddMovie runs a PartiQL INSERT statement to add a movie to the DynamoDB table.
func (runner PartiQLRunner) AddMovie(ctx context.Context, movie Movie) error {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title, movie.Year,
 movie.Info})

Actions API Version 2012-08-10 1967

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("INSERT INTO \"%v\" VALUE {'title': ?, 'year': ?, 'info': ?}",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't insert an item with PartiQL. Here's why: %v\n", err)
 }
 return err
}

Use a SELECT statement to get an item.

// GetMovie runs a PartiQL SELECT statement to get a movie from the DynamoDB
 table by
// title and year.
func (runner PartiQLRunner) GetMovie(ctx context.Context, title string, year int)
 (Movie, error) {
 var movie Movie
 params, err := attributevalue.MarshalList([]interface{}{title, year})
 if err != nil {
 panic(err)
 }
 response, err := runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("SELECT * FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't get info about %v. Here's why: %v\n", title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Items[0], &movie)
 if err != nil {

Actions API Version 2012-08-10 1968

Amazon DynamoDB Developer Guide

 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 }
 }
 return movie, err
}

Use a SELECT statement to get a list of items and project the results.

// GetAllMovies runs a PartiQL SELECT statement to get all movies from the
 DynamoDB table.
// pageSize is not typically required and is used to show how to paginate the
 results.
// The results are projected to return only the title and rating of each movie.
func (runner PartiQLRunner) GetAllMovies(ctx context.Context, pageSize int32)
 ([]map[string]interface{}, error) {
 var output []map[string]interface{}
 var response *dynamodb.ExecuteStatementOutput
 var err error
 var nextToken *string
 for moreData := true; moreData; {
 response, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("SELECT title, info.rating FROM \"%v\"", runner.TableName)),
 Limit: aws.Int32(pageSize),
 NextToken: nextToken,
 })
 if err != nil {
 log.Printf("Couldn't get movies. Here's why: %v\n", err)
 moreData = false
 } else {
 var pageOutput []map[string]interface{}
 err = attributevalue.UnmarshalListOfMaps(response.Items, &pageOutput)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 } else {
 log.Printf("Got a page of length %v.\n", len(response.Items))
 output = append(output, pageOutput...)
 }
 nextToken = response.NextToken

Actions API Version 2012-08-10 1969

Amazon DynamoDB Developer Guide

 moreData = nextToken != nil
 }
 }
 return output, err
}

Use an UPDATE statement to update an item.

// UpdateMovie runs a PartiQL UPDATE statement to update the rating of a movie
 that
// already exists in the DynamoDB table.
func (runner PartiQLRunner) UpdateMovie(ctx context.Context, movie Movie, rating
 float64) error {
 params, err := attributevalue.MarshalList([]interface{}{rating, movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("UPDATE \"%v\" SET info.rating=? WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update movie %v. Here's why: %v\n", movie.Title, err)
 }
 return err
}

Use a DELETE statement to delete an item.

// DeleteMovie runs a PartiQL DELETE statement to remove a movie from the
 DynamoDB table.
func (runner PartiQLRunner) DeleteMovie(ctx context.Context, movie Movie) error {

Actions API Version 2012-08-10 1970

Amazon DynamoDB Developer Guide

 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("DELETE FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't delete %v from the table. Here's why: %v\n", movie.Title,
 err)
 }
 return err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {

Actions API Version 2012-08-10 1971

Amazon DynamoDB Developer Guide

 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see ExecuteStatement in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create an item using PartiQL.

Actions API Version 2012-08-10 1972

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: `INSERT INTO Flowers value {'Name':?}`,
 Parameters: ["Rose"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

Get an item using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "SELECT * FROM CloudTypes WHERE IsStorm=?",
 Parameters: [false],
 ConsistentRead: true,
 });

 const response = await docClient.send(command);
 console.log(response);

Actions API Version 2012-08-10 1973

Amazon DynamoDB Developer Guide

 return response;
};

Update an item using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "UPDATE EyeColors SET IsRecessive=? where Color=?",
 Parameters: [true, "blue"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

Delete an item using PartiQL.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";

import {
 ExecuteStatementCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ExecuteStatementCommand({
 Statement: "DELETE FROM PaintColors where Name=?",

Actions API Version 2012-08-10 1974

Amazon DynamoDB Developer Guide

 Parameters: ["Purple"],
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see ExecuteStatement in Amazon SDK for JavaScript API Reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function insertItemByPartiQL(string $statement, array $parameters)
 {
 $this->dynamoDbClient->executeStatement([
 'Statement' => "$statement",
 'Parameters' => $parameters,
]);
 }

 public function getItemByPartiQL(string $tableName, array $key): Result
 {
 list($statement, $parameters) = $this-
>buildStatementAndParameters("SELECT", $tableName, $key['Item']);

 return $this->dynamoDbClient->executeStatement([
 'Parameters' => $parameters,
 'Statement' => $statement,
]);
 }

 public function updateItemByPartiQL(string $statement, array $parameters)
 {

Actions API Version 2012-08-10 1975

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $this->dynamoDbClient->executeStatement([
 'Statement' => $statement,
 'Parameters' => $parameters,
]);
 }

 public function deleteItemByPartiQL(string $statement, array $parameters)
 {
 $this->dynamoDbClient->executeStatement([
 'Statement' => $statement,
 'Parameters' => $parameters,
]);
 }

• For API details, see ExecuteStatement in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class PartiQLWrapper:
 """
 Encapsulates a DynamoDB resource to run PartiQL statements.
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource

 def run_partiql(self, statement, params):
 """
 Runs a PartiQL statement. A Boto3 resource is used even though

Actions API Version 2012-08-10 1976

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 `execute_statement` is called on the underlying `client` object because
 the
 resource transforms input and output from plain old Python objects
 (POPOs) to
 the DynamoDB format. If you create the client directly, you must do these
 transforms yourself.

 :param statement: The PartiQL statement.
 :param params: The list of PartiQL parameters. These are applied to the
 statement in the order they are listed.
 :return: The items returned from the statement, if any.
 """
 try:
 output = self.dyn_resource.meta.client.execute_statement(
 Statement=statement, Parameters=params
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Couldn't execute PartiQL '%s' because the table does not
 exist.",
 statement,
)
 else:
 logger.error(
 "Couldn't execute PartiQL '%s'. Here's why: %s: %s",
 statement,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return output

• For API details, see ExecuteStatement in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 1977

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/ExecuteStatement

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Select a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Gets a single record from a table using PartiQL.
 # Note: To perform more fine-grained selects,
 # use the Client.query instance method instead.
 #
 # @param title [String] The title of the movie to search.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def select_item_by_title(title)
 request = {
 statement: "SELECT * FROM \"#{@table.name}\" WHERE title=?",
 parameters: [title]
 }
 @dynamodb.client.execute_statement(request)
 end

Update a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)

Actions API Version 2012-08-10 1978

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Updates a single record from a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @param rating [Float] The new rating to assign the title.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def update_rating_by_title(title, year, rating)
 request = {
 statement: "UPDATE \"#{@table.name}\" SET info.rating=? WHERE title=? and
 year=?",
 parameters: [{ "N": rating }, title, year]
 }
 @dynamodb.client.execute_statement(request)
 end

Add a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Adds a single record to a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @param plot [String] The plot of the movie.
 # @param rating [Float] The new rating to assign the title.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def insert_item(title, year, plot, rating)
 request = {
 statement: "INSERT INTO \"#{@table.name}\" VALUE {'title': ?, 'year': ?,
 'info': ?}",

Actions API Version 2012-08-10 1979

Amazon DynamoDB Developer Guide

 parameters: [title, year, { 'plot': plot, 'rating': rating }]
 }
 @dynamodb.client.execute_statement(request)
 end

Delete a single item using PartiQL.

class DynamoDBPartiQLSingle
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamodb = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamodb.table(table_name)
 end

 # Deletes a single record from a table using PartiQL.
 #
 # @param title [String] The title of the movie to update.
 # @param year [Integer] The year the movie was released.
 # @return [Aws::DynamoDB::Types::ExecuteStatementOutput]
 def delete_item_by_title(title, year)
 request = {
 statement: "DELETE FROM \"#{@table.name}\" WHERE title=? and year=?",
 parameters: [title, year]
 }
 @dynamodb.client.execute_statement(request)
 end

• For API details, see ExecuteStatement in Amazon SDK for Ruby API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GetItem with an Amazon SDK or CLI

The following code examples show how to use GetItem.

Actions API Version 2012-08-10 1980

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ExecuteStatement

Amazon DynamoDB Developer Guide

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Create and manage MRSC global tables

• Work with global tables and multi-Region replication eventual consistency (MREC)

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Gets information about an existing movie from the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information about
 /// the movie to retrieve.</param>
 /// <param name="tableName">The name of the table containing the movie.</
param>
 /// <returns>A Dictionary object containing information about the item
 /// retrieved.</returns>
 public async Task<Dictionary<string, AttributeValue>> GetItemAsync(Movie
 newMovie, string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new GetItemRequest

Actions API Version 2012-08-10 1981

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 {
 Key = key,
 TableName = tableName,
 };

 var response = await _amazonDynamoDB.GetItemAsync(request);
 return response.Item;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return new Dictionary<string, AttributeValue>();
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while getting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while getting item.
 {ex.Message}");
 throw;
 }
 }

• For API details, see GetItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###

Actions API Version 2012-08-10 1982

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

function dynamodb_get_item
#
This function gets an item from a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to get.
[-q query] -- Optional JMESPath query expression.
#
Returns:
The item as text output.
And:
0 - If successful.
1 - If it fails.
##
function dynamodb_get_item() {
 local table_name keys query response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_get_item"
 echo "Get an item from a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to get."
 echo " [-q query] -- Optional JMESPath query expression."
 echo ""
 }
 query=""
 while getopts "n:k:q:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 q) query="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"

Actions API Version 2012-08-10 1983

Amazon DynamoDB Developer Guide

 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi

 if [[-n "$query"]]; then
 response=$(aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text \
 --query "$query")
 else
 response=$(
 aws dynamodb get-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --output text
)
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports get-item operation failed.$response"
 return 1
 fi

 if [[-n "$query"]]; then

Actions API Version 2012-08-10 1984

Amazon DynamoDB Developer Guide

 echo "$response" | sed "/^\t/s/\t//1" # Remove initial tab that the JMSEPath
 query inserts on some strings.
 else
 echo "$response"
 fi

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."

Actions API Version 2012-08-10 1985

Amazon DynamoDB Developer Guide

 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see GetItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Get an item from an Amazon DynamoDB table.
/*!
 \sa getItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

bool AwsDoc::DynamoDB::getItem(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,

Actions API Version 2012-08-10 1986

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);
 Aws::DynamoDB::Model::GetItemRequest request;

 // Set up the request.
 request.SetTableName(tableName);
 request.AddKey(partitionKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(partitionValue));

 // Retrieve the item's fields and values.
 const Aws::DynamoDB::Model::GetItemOutcome &outcome =
 dynamoClient.GetItem(request);
 if (outcome.IsSuccess()) {
 // Reference the retrieved fields/values.
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> &item =
 outcome.GetResult().GetItem();
 if (!item.empty()) {
 // Output each retrieved field and its value.
 for (const auto &i: item)
 std::cout << "Values: " << i.first << ": " << i.second.GetS()
 << std::endl;
 }
 else {
 std::cout << "No item found with the key " << partitionKey <<
 std::endl;
 }
 }
 else {
 std::cerr << "Failed to get item: " << outcome.GetError().GetMessage();
 }

 return outcome.IsSuccess();
}

• For API details, see GetItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To read an item in a table

Actions API Version 2012-08-10 1987

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

The following get-item example retrieves an item from the MusicCollection table.
The table has a hash-and-range primary key (Artist and SongTitle), so you must specify
both of these attributes. The command also requests information about the read capacity
consumed by the operation.

aws dynamodb get-item \
 --table-name MusicCollection \
 --key file://key.json \
 --return-consumed-capacity TOTAL

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Output:

{
 "Item": {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "SongTitle": {
 "S": "Happy Day"
 },
 "Artist": {
 "S": "Acme Band"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

Example 2: To read an item using a consistent read

Actions API Version 2012-08-10 1988

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData

Amazon DynamoDB Developer Guide

The following example retrieves an item from the MusicCollection table using strongly
consistent reads.

aws dynamodb get-item \
 --table-name MusicCollection \
 --key file://key.json \
 --consistent-read \
 --return-consumed-capacity TOTAL

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Output:

{
 "Item": {
 "AlbumTitle": {
 "S": "Songs About Life"
 },
 "SongTitle": {
 "S": "Happy Day"
 },
 "Artist": {
 "S": "Acme Band"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

Example 3: To retrieve specific attributes of an item

The following example uses a projection expression to retrieve only three attributes of the
desired item.

Actions API Version 2012-08-10 1989

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData

Amazon DynamoDB Developer Guide

aws dynamodb get-item \
 --table-name ProductCatalog \
 --key '{"Id": {"N": "102"}}' \
 --projection-expression "#T, #C, #P" \
 --expression-attribute-names file://names.json

Contents of names.json:

{
 "#T": "Title",
 "#C": "ProductCategory",
 "#P": "Price"
}

Output:

{
 "Item": {
 "Price": {
 "N": "20"
 },
 "Title": {
 "S": "Book 102 Title"
 },
 "ProductCategory": {
 "S": "Book"
 }
 }
}

For more information, see Reading an Item in the Amazon DynamoDB Developer Guide.

• For API details, see GetItem in Amazon CLI Command Reference.

Actions API Version 2012-08-10 1990

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.ReadingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/get-item.html

Amazon DynamoDB Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// GetMovie gets movie data from the DynamoDB table by using the primary
 composite key
// made of title and year.
func (basics TableBasics) GetMovie(ctx context.Context, title string, year int)
 (Movie, error) {
 movie := Movie{Title: title, Year: year}
 response, err := basics.DynamoDbClient.GetItem(ctx, &dynamodb.GetItemInput{

Actions API Version 2012-08-10 1991

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Key: movie.GetKey(), TableName: aws.String(basics.TableName),
 })
 if err != nil {
 log.Printf("Couldn't get info about %v. Here's why: %v\n", title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Item, &movie)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 }
 }
 return movie, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be

Actions API Version 2012-08-10 1992

Amazon DynamoDB Developer Guide

// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see GetItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Gets an item from a table by using the DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import java.util.HashMap;

Actions API Version 2012-08-10 1993

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

import java.util.Map;
import java.util.Set;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To get an item from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client, see the EnhancedGetItem example.
 */
public class GetItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal>

 Where:
 tableName - The Amazon DynamoDB table from which an item is
 retrieved (for example, Music3).\s
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).\s
 keyval - The key value that represents the item to get (for
 example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 System.out.format("Retrieving item \"%s\" from \"%s\"\n", keyVal,
 tableName);
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()

Actions API Version 2012-08-10 1994

Amazon DynamoDB Developer Guide

 .region(region)
 .build();

 getDynamoDBItem(ddb, tableName, key, keyVal);
 ddb.close();
 }

 public static void getDynamoDBItem(DynamoDbClient ddb, String tableName,
 String key, String keyVal) {
 HashMap<String, AttributeValue> keyToGet = new HashMap<>();
 keyToGet.put(key, AttributeValue.builder()
 .s(keyVal)
 .build());

 GetItemRequest request = GetItemRequest.builder()
 .key(keyToGet)
 .tableName(tableName)
 .build();

 try {
 // If there is no matching item, GetItem does not return any data.
 Map<String, AttributeValue> returnedItem =
 ddb.getItem(request).item();
 if (returnedItem.isEmpty())
 System.out.format("No item found with the key %s!\n", key);
 else {
 Set<String> keys = returnedItem.keySet();
 System.out.println("Amazon DynamoDB table attributes: \n");
 for (String key1 : keys) {
 System.out.format("%s: %s\n", key1,
 returnedItem.get(key1).toString());
 }
 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see GetItem in Amazon SDK for Java 2.x API Reference.

Actions API Version 2012-08-10 1995

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see GetCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, GetCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new GetCommand({
 TableName: "AngryAnimals",
 Key: {
 CommonName: "Shoebill",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see GetItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 1996

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/GetCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/GetItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

Get an item from a table.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Key: {
 KEY_NAME: { N: "001" },
 },
 ProjectionExpression: "ATTRIBUTE_NAME",
};

// Call DynamoDB to read the item from the table
ddb.getItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Item);
 }
});

Get an item from a table using the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "EPISODES_TABLE",
 Key: { KEY_NAME: VALUE },
};

Actions API Version 2012-08-10 1997

Amazon DynamoDB Developer Guide

docClient.get(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Item);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see GetItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun getSpecificItem(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
) {
 val keyToGet = mutableMapOf<String, AttributeValue>()
 keyToGet[keyName] = AttributeValue.S(keyVal)

 val request =
 GetItemRequest {
 key = keyToGet
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val returnedItem = ddb.getItem(request)
 val numbersMap = returnedItem.item
 numbersMap?.forEach { key1 ->
 println(key1.key)

Actions API Version 2012-08-10 1998

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-dynamodb-utilities.html#dynamodb-example-document-client-get
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 println(key1.value)
 }
 }
}

• For API details, see GetItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 $movie = $service->getItemByKey($tableName, $key);
 echo "\nThe movie {$movie['Item']['title']['S']} was released in
 {$movie['Item']['year']['N']}.\n";

 public function getItemByKey(string $tableName, array $key)
 {
 return $this->dynamoDbClient->getItem([
 'Key' => $key['Item'],
 'TableName' => $tableName,
]);
 }

• For API details, see GetItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Returns the DynamoDB item with the partition key SongTitle and the sort key
Artist.

Actions API Version 2012-08-10 1999

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

Get-DDBItem -TableName 'Music' -Key $key | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
SongTitle Somewhere Down The Road
Price 1.94
Artist No One You Know
CriticRating 9
AlbumTitle Somewhat Famous

• For API details, see GetItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Returns the DynamoDB item with the partition key SongTitle and the sort key
Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

Get-DDBItem -TableName 'Music' -Key $key | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
SongTitle Somewhere Down The Road
Price 1.94
Artist No One You Know
CriticRating 9
AlbumTitle Somewhat Famous

Actions API Version 2012-08-10 2000

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

• For API details, see GetItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.

Actions API Version 2012-08-10 2001

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 self.table = None

 def get_movie(self, title, year):
 """
 Gets movie data from the table for a specific movie.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :return: The data about the requested movie.
 """
 try:
 response = self.table.get_item(Key={"year": year, "title": title})
 except ClientError as err:
 logger.error(
 "Couldn't get movie %s from table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Item"]

• For API details, see GetItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

Actions API Version 2012-08-10 2002

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Gets movie data from the table for a specific movie.
 #
 # @param title [String] The title of the movie.
 # @param year [Integer] The release year of the movie.
 # @return [Hash] The data about the requested movie.
 def get_item(title, year)
 @table.get_item(key: { 'year' => year, 'title' => title })
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't get movie #{title} (#{year}) from table #{@table.name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see GetItem in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_item = lo_dyn->getitem(
 iv_tablename = iv_table_name
 it_key = it_key).
 DATA(lt_attr) = oo_item->get_item().
 DATA(lo_title) = lt_attr[key = 'title']-value.
 DATA(lo_year) = lt_attr[key = 'year']-value.
 DATA(lo_rating) = lt_attr[key = 'rating']-value.
 MESSAGE 'Movie name is: ' && lo_title->get_s()
 && 'Movie year is: ' && lo_year->get_n()

Actions API Version 2012-08-10 2003

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/GetItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 && 'Moving rating is: ' && lo_rating->get_n() TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

• For API details, see GetItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Return a `Movie` record describing the specified movie from the Amazon
 /// DynamoDB table.
 ///
 /// - Parameters:
 /// - title: The movie's title (`String`).
 /// - year: The movie's release year (`Int`).
 ///
 /// - Throws: `MoviesError.ItemNotFound` if the movie isn't in the table.
 ///
 /// - Returns: A `Movie` record with the movie's details.
 func get(title: String, year: Int) async throws -> Movie {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = GetItemInput(
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],

Actions API Version 2012-08-10 2004

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 tableName: self.tableName
)
 let output = try await client.getItem(input: input)
 guard let item = output.item else {
 throw MoviesError.ItemNotFound
 }

 let movie = try Movie(withItem: item)
 return movie
 } catch {
 print("ERROR: get:", dump(error))
 throw error
 }
 }

• For API details, see GetItem in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListTables with an Amazon SDK or CLI

The following code examples show how to use ListTables.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Set up Attribute-Based Access Control

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 2005

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/getitem(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 private static async Task ListMyTables()
 {
 Console.WriteLine("\n*** Listing tables ***");

 string lastTableNameEvaluated = null;
 do
 {
 var response = await Client.ListTablesAsync(new ListTablesRequest
 {
 Limit = 2,
 ExclusiveStartTableName = lastTableNameEvaluated
 });

 foreach (var name in response.TableNames)
 {
 Console.WriteLine(name);
 }

 lastTableNameEvaluated = response.LastEvaluatedTableName;
 } while (lastTableNameEvaluated != null);
 }

• For API details, see ListTables in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_list_tables
#
This function lists all the tables in a DynamoDB.
#
Returns:

Actions API Version 2012-08-10 2006

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

0 - If successful.
1 - If it fails.
###
function dynamodb_list_tables() {
 response=$(aws dynamodb list-tables \
 --output text \
 --query "TableNames")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports batch-write-item operation failed.$response"
 return 1
 fi

 echo "$response" | tr -s "[:space:]" "\n"

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.

Actions API Version 2012-08-10 2007

Amazon DynamoDB Developer Guide

#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see ListTables in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! List the Amazon DynamoDB tables for the current AWS account.
/*!

Actions API Version 2012-08-10 2008

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 \sa listTables()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

bool AwsDoc::DynamoDB::listTables(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::ListTablesRequest listTablesRequest;
 listTablesRequest.SetLimit(50);
 do {
 const Aws::DynamoDB::Model::ListTablesOutcome &outcome =
 dynamoClient.ListTables(
 listTablesRequest);
 if (!outcome.IsSuccess()) {
 std::cout << "Error: " << outcome.GetError().GetMessage() <<
 std::endl;
 return false;
 }

 for (const auto &tableName: outcome.GetResult().GetTableNames())
 std::cout << tableName << std::endl;
 listTablesRequest.SetExclusiveStartTableName(
 outcome.GetResult().GetLastEvaluatedTableName());

 } while (!listTablesRequest.GetExclusiveStartTableName().empty());

 return true;
}

• For API details, see ListTables in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To list tables

The following list-tables example lists all of the tables associated with the current
Amazon account and Region.

Actions API Version 2012-08-10 2009

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

aws dynamodb list-tables

Output:

{
 "TableNames": [
 "Forum",
 "ProductCatalog",
 "Reply",
 "Thread"
]
}

For more information, see Listing Table Names in the Amazon DynamoDB Developer Guide.

Example 2: To limit page size

The following example returns a list of all existing tables, but retrieves only one item in each
call, performing multiple calls if necessary to get the entire list. Limiting the page size is
useful when running list commands on a large number of resources, which can result in a
"timed out" error when using the default page size of 1000.

aws dynamodb list-tables \
 --page-size 1

Output:

{
 "TableNames": [
 "Forum",
 "ProductCatalog",
 "Reply",
 "Thread"
]
}

For more information, see Listing Table Names in the Amazon DynamoDB Developer Guide.

Example 3: To limit the number of items returned

Actions API Version 2012-08-10 2010

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.ListTables
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.ListTables

Amazon DynamoDB Developer Guide

The following example limits the number of items returned to 2. The response includes a
NextToken value with which to retrieve the next page of results.

aws dynamodb list-tables \
 --max-items 2

Output:

{
 "TableNames": [
 "Forum",
 "ProductCatalog"
],
 "NextToken":
 "abCDeFGhiJKlmnOPqrSTuvwxYZ1aBCdEFghijK7LM51nOpqRSTuv3WxY3ZabC5dEFGhI2Jk3LmnoPQ6RST9"
}

For more information, see Listing Table Names in the Amazon DynamoDB Developer Guide.

Example 4: To retrieve the next page of results

The following command uses the NextToken value from a previous call to the list-
tables command to retrieve another page of results. Since the response in this case does
not include a NextToken value, we know that we have reached the end of the results.

aws dynamodb list-tables \
 --starting-
token abCDeFGhiJKlmnOPqrSTuvwxYZ1aBCdEFghijK7LM51nOpqRSTuv3WxY3ZabC5dEFGhI2Jk3LmnoPQ6RST9

Output:

{
 "TableNames": [
 "Reply",
 "Thread"
]
}

For more information, see Listing Table Names in the Amazon DynamoDB Developer Guide.

Actions API Version 2012-08-10 2011

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.ListTables
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.ListTables

Amazon DynamoDB Developer Guide

• For API details, see ListTables in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// ListTables lists the DynamoDB table names for the current account.
func (basics TableBasics) ListTables(ctx context.Context) ([]string, error) {
 var tableNames []string
 var output *dynamodb.ListTablesOutput
 var err error

Actions API Version 2012-08-10 2012

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/list-tables.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 tablePaginator := dynamodb.NewListTablesPaginator(basics.DynamoDbClient,
 &dynamodb.ListTablesInput{})
 for tablePaginator.HasMorePages() {
 output, err = tablePaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't list tables. Here's why: %v\n", err)
 break
 } else {
 tableNames = append(tableNames, output.TableNames...)
 }
 }
 return tableNames, err
}

• For API details, see ListTables in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ListTablesRequest;
import software.amazon.awssdk.services.dynamodb.model.ListTablesResponse;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *

Actions API Version 2012-08-10 2013

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListTables {
 public static void main(String[] args) {
 System.out.println("Listing your Amazon DynamoDB tables:\n");
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();
 listAllTables(ddb);
 ddb.close();
 }

 public static void listAllTables(DynamoDbClient ddb) {
 boolean moreTables = true;
 String lastName = null;

 while (moreTables) {
 try {
 ListTablesResponse response = null;
 if (lastName == null) {
 ListTablesRequest request =
 ListTablesRequest.builder().build();
 response = ddb.listTables(request);
 } else {
 ListTablesRequest request = ListTablesRequest.builder()
 .exclusiveStartTableName(lastName).build();
 response = ddb.listTables(request);
 }

 List<String> tableNames = response.tableNames();
 if (tableNames.size() > 0) {
 for (String curName : tableNames) {
 System.out.format("* %s\n", curName);
 }
 } else {
 System.out.println("No tables found!");
 System.exit(0);
 }

 lastName = response.lastEvaluatedTableName();
 if (lastName == null) {
 moreTables = false;

Actions API Version 2012-08-10 2014

Amazon DynamoDB Developer Guide

 }

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
 System.out.println("\nDone!");
 }
}

• For API details, see ListTables in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import { ListTablesCommand, DynamoDBClient } from "@aws-sdk/client-dynamodb";

const client = new DynamoDBClient({});

export const main = async () => {
 const command = new ListTablesCommand({});

 const response = await client.send(command);
 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ListTables in Amazon SDK for JavaScript API Reference.

Actions API Version 2012-08-10 2015

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-listing-tables
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ListTablesCommand

Amazon DynamoDB Developer Guide

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

// Call DynamoDB to retrieve the list of tables
ddb.listTables({ Limit: 10 }, function (err, data) {
 if (err) {
 console.log("Error", err.code);
 } else {
 console.log("Table names are ", data.TableNames);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see ListTables in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun listAllTables() {

Actions API Version 2012-08-10 2016

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-examples-using-tables.html#dynamodb-examples-using-tables-listing-tables
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.listTables(ListTablesRequest {})
 response.tableNames?.forEach { tableName ->
 println("Table name is $tableName")
 }
 }
}

• For API details, see ListTables in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public function listTables($exclusiveStartTableName = "", $limit = 100)
 {
 $this->dynamoDbClient->listTables([
 'ExclusiveStartTableName' => $exclusiveStartTableName,
 'Limit' => $limit,
]);
 }

• For API details, see ListTables in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Returns details of all tables, automatically iterating until the service indicates
no further tables exist.

Get-DDBTableList

Actions API Version 2012-08-10 2017

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

• For API details, see ListTables in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Returns details of all tables, automatically iterating until the service indicates
no further tables exist.

Get-DDBTableList

• For API details, see ListTables in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }

Actions API Version 2012-08-10 2018

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def list_tables(self):
 """
 Lists the Amazon DynamoDB tables for the current account.

 :return: The list of tables.
 """
 try:
 tables = []
 for table in self.dyn_resource.tables.all():
 print(table.name)
 tables.append(table)
 except ClientError as err:
 logger.error(
 "Couldn't list tables. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return tables

• For API details, see ListTables in Amazon SDK for Python (Boto3) API Reference.

Actions API Version 2012-08-10 2019

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Determine whether a table exists.

Encapsulates an Amazon DynamoDB table of movie data.
class Scaffold
 attr_reader :dynamo_resource, :table_name, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table_name = table_name
 @table = nil
 @logger = Logger.new($stdout)
 @logger.level = Logger::DEBUG
 end

 # Determines whether a table exists. As a side effect, stores the table in
 # a member variable.
 #
 # @param table_name [String] The name of the table to check.
 # @return [Boolean] True when the table exists; otherwise, False.
 def exists?(table_name)
 @dynamo_resource.client.describe_table(table_name: table_name)
 @logger.debug("Table #{table_name} exists")
 rescue Aws::DynamoDB::Errors::ResourceNotFoundException
 @logger.debug("Table #{table_name} doesn't exist")
 false
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't check for existence of #{table_name}:\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

Actions API Version 2012-08-10 2020

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see ListTables in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn list_tables(client: &Client) -> Result<Vec<String>, Error> {
 let paginator = client.list_tables().into_paginator().items().send();
 let table_names = paginator.collect::<Result<Vec<_>, _>>().await?;

 println!("Tables:");

 for name in &table_names {
 println!(" {}", name);
 }

 println!("Found {} tables", table_names.len());
 Ok(table_names)
}

Determine whether table exists.

pub async fn table_exists(client: &Client, table: &str) -> Result<bool, Error> {
 debug!("Checking for table: {table}");
 let table_list = client.list_tables().send().await;

 match table_list {
 Ok(list) => Ok(list.table_names().contains(&table.into())),
 Err(e) => Err(e.into()),
 }
}

• For API details, see ListTables in Amazon SDK for Rust API reference.

Actions API Version 2012-08-10 2021

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ListTables
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples
https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.list_tables

Amazon DynamoDB Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_result = lo_dyn->listtables().
 " You can loop over the oo_result to get table properties like this.
 LOOP AT oo_result->get_tablenames() INTO DATA(lo_table_name).
 DATA(lv_tablename) = lo_table_name->get_value().
 ENDLOOP.
 DATA(lv_tablecount) = lines(oo_result->get_tablenames()).
 MESSAGE 'Found ' && lv_tablecount && ' tables' TYPE 'I'.
 CATCH /aws1/cx_rt_service_generic INTO DATA(lo_exception).
 DATA(lv_error) = |"{ lo_exception->av_err_code }" - { lo_exception-
>av_err_msg }|.
 MESSAGE lv_error TYPE 'E'.
 ENDTRY.

• For API details, see ListTables in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

Actions API Version 2012-08-10 2022

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// Get a list of the DynamoDB tables available in the specified Region.
 ///
 /// - Returns: An array of strings listing all of the tables available
 /// in the Region specified when the session was created.
 public func getTableList() async throws -> [String] {
 let input = ListTablesInput(
)
 return try await session.listTables(input: input)
 }

• For API details, see ListTables in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use PutItem with an Amazon SDK or CLI

The following code examples show how to use PutItem.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Advanced Global Secondary Index scenarios

• Create an item with a TTL

• Create and manage global tables demonstrating MREC

• Create and manage MRSC global tables

• Use conditional operations

• Work with global tables and multi-Region replication eventual consistency (MREC)

• Work with Streams and Time-to-Live

Actions API Version 2012-08-10 2023

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/listtables(input:)

Amazon DynamoDB Developer Guide

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Adds a new item to the table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing informtation for
 /// the movie to add to the table.</param>
 /// <param name="tableName">The name of the table where the item will be
 added.</param>
 /// <returns>A Boolean value that indicates the results of adding the item.</
returns>
 public async Task<bool> PutItemAsync(Movie newMovie, string tableName)
 {
 try
 {
 var item = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };

 var request = new PutItemRequest
 {
 TableName = tableName,
 Item = item,
 };

 await _amazonDynamoDB.PutItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");

Actions API Version 2012-08-10 2024

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while putting
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while putting item.
 {ex.Message}");
 throw;
 }
 }

• For API details, see PutItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_put_item
#
This function puts an item into a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-i item -- Path to json file containing the item values.
#
Returns:
0 - If successful.
1 - If it fails.

Actions API Version 2012-08-10 2025

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

##
function dynamodb_put_item() {
 local table_name item response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_put_item"
 echo "Put an item into a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -i item -- Path to json file containing the item values."
 echo ""
 }

 while getopts "n:i:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 i) item="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$item"]]; then
 errecho "ERROR: You must provide an item with the -i parameter."
 usage
 return 1
 fi

Actions API Version 2012-08-10 2026

Amazon DynamoDB Developer Guide

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " item: $item"
 iecho ""
 iecho ""

 response=$(aws dynamodb put-item \
 --table-name "$table_name" \
 --item file://"$item")

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports put-item operation failed.$response"
 return 1
 fi

 return 0

}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###

Actions API Version 2012-08-10 2027

Amazon DynamoDB Developer Guide

function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see PutItem in Amazon CLI Command Reference.

Actions API Version 2012-08-10 2028

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Put an item in an Amazon DynamoDB table.
/*!
 \sa putItem()
 \param tableName: The table name.
 \param artistKey: The artist key. This is the partition key for the table.
 \param artistValue: The artist value.
 \param albumTitleKey: The album title key.
 \param albumTitleValue: The album title value.
 \param awardsKey: The awards key.
 \param awardsValue: The awards value.
 \param songTitleKey: The song title key.
 \param songTitleValue: The song title value.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::putItem(const Aws::String &tableName,
 const Aws::String &artistKey,
 const Aws::String &artistValue,
 const Aws::String &albumTitleKey,
 const Aws::String &albumTitleValue,
 const Aws::String &awardsKey,
 const Aws::String &awardsValue,
 const Aws::String &songTitleKey,
 const Aws::String &songTitleValue,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::PutItemRequest putItemRequest;
 putItemRequest.SetTableName(tableName);

Actions API Version 2012-08-10 2029

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 putItemRequest.AddItem(artistKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(
 artistValue)); // This is the hash key.
 putItemRequest.AddItem(albumTitleKey,
 Aws::DynamoDB::Model::AttributeValue().SetS(
 albumTitleValue));
 putItemRequest.AddItem(awardsKey,

 Aws::DynamoDB::Model::AttributeValue().SetS(awardsValue));
 putItemRequest.AddItem(songTitleKey,

 Aws::DynamoDB::Model::AttributeValue().SetS(songTitleValue));

 const Aws::DynamoDB::Model::PutItemOutcome outcome = dynamoClient.PutItem(
 putItemRequest);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully added Item!" << std::endl;
 }
 else {
 std::cerr << outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;

Actions API Version 2012-08-10 2030

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see PutItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To add an item to a table

The following put-item example adds a new item to the MusicCollection table.

aws dynamodb put-item \
 --table-name MusicCollection \
 --item file://item.json \

Actions API Version 2012-08-10 2031

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

 --return-consumed-capacity TOTAL \
 --return-item-collection-metrics SIZE

Contents of item.json:

{
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Greatest Hits"}
}

Output:

{
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "Artist": {
 "S": "No One You Know"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 }
}

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Example 2: To conditionally overwrite an item in a table

The following put-item example overwrites an existing item in the MusicCollection
table only if that existing item has an AlbumTitle attribute with a value of Greatest
Hits. The command returns the previous value of the item.

aws dynamodb put-item \
 --table-name MusicCollection \
 --item file://item.json \

Actions API Version 2012-08-10 2032

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

 --condition-expression "#A = :A" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-values ALL_OLD

Contents of item.json:

{
 "Artist": {"S": "No One You Know"},
 "SongTitle": {"S": "Call Me Today"},
 "AlbumTitle": {"S": "Somewhat Famous"}
}

Contents of names.json:

{
 "#A": "AlbumTitle"
}

Contents of values.json:

{
 ":A": {"S": "Greatest Hits"}
}

Output:

{
 "Attributes": {
 "AlbumTitle": {
 "S": "Greatest Hits"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
}

If the key already exists, you should see the following output:

Actions API Version 2012-08-10 2033

Amazon DynamoDB Developer Guide

A client error (ConditionalCheckFailedException) occurred when calling the
 PutItem operation: The conditional request failed.

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

• For API details, see PutItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

Actions API Version 2012-08-10 2034

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/put-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// AddMovie adds a movie the DynamoDB table.
func (basics TableBasics) AddMovie(ctx context.Context, movie Movie) error {
 item, err := attributevalue.MarshalMap(movie)
 if err != nil {
 panic(err)
 }
 _, err = basics.DynamoDbClient.PutItem(ctx, &dynamodb.PutItemInput{
 TableName: aws.String(basics.TableName), Item: item,
 })
 if err != nil {
 log.Printf("Couldn't add item to table. Here's why: %v\n", err)
 }
 return err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`

Actions API Version 2012-08-10 2035

Amazon DynamoDB Developer Guide

}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see PutItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Puts an item into a table using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;

Actions API Version 2012-08-10 2036

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.PutItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To place items into an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client. See the EnhancedPutItem example.
 */
public class PutItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal> <albumtitle> <albumtitleval>
 <awards> <awardsval> <Songtitle> <songtitleval>

 Where:
 tableName - The Amazon DynamoDB table in which an item is
 placed (for example, Music3).
 key - The key used in the Amazon DynamoDB table (for example,
 Artist).
 keyval - The key value that represents the item to get (for
 example, Famous Band).
 albumTitle - The Album title (for example, AlbumTitle).
 AlbumTitleValue - The name of the album (for example, Songs
 About Life).
 Awards - The awards column (for example, Awards).
 AwardVal - The value of the awards (for example, 10).
 SongTitle - The song title (for example, SongTitle).
 SongTitleVal - The value of the song title (for example,
 Happy Day).
 Warning This program will place an item that you specify
 into a table!

Actions API Version 2012-08-10 2037

Amazon DynamoDB Developer Guide

 """;

 if (args.length != 9) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 String albumTitle = args[3];
 String albumTitleValue = args[4];
 String awards = args[5];
 String awardVal = args[6];
 String songTitle = args[7];
 String songTitleVal = args[8];

 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 putItemInTable(ddb, tableName, key, keyVal, albumTitle, albumTitleValue,
 awards, awardVal, songTitle,
 songTitleVal);
 System.out.println("Done!");
 ddb.close();
 }

 public static void putItemInTable(DynamoDbClient ddb,
 String tableName,
 String key,
 String keyVal,
 String albumTitle,
 String albumTitleValue,
 String awards,
 String awardVal,
 String songTitle,
 String songTitleVal) {

 HashMap<String, AttributeValue> itemValues = new HashMap<>();
 itemValues.put(key, AttributeValue.builder().s(keyVal).build());
 itemValues.put(songTitle,
 AttributeValue.builder().s(songTitleVal).build());

Actions API Version 2012-08-10 2038

Amazon DynamoDB Developer Guide

 itemValues.put(albumTitle,
 AttributeValue.builder().s(albumTitleValue).build());
 itemValues.put(awards, AttributeValue.builder().s(awardVal).build());

 PutItemRequest request = PutItemRequest.builder()
 .tableName(tableName)
 .item(itemValues)
 .build();

 try {
 PutItemResponse response = ddb.putItem(request);
 System.out.println(tableName + " was successfully updated. The
 request id is "
 + response.responseMetadata().requestId());

 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 System.err.println("Be sure that it exists and that you've typed its
 name correctly!");
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see PutItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 2039

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

This example uses the document client to simplify working with items in DynamoDB. For API
details see PutCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { PutCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new PutCommand({
 TableName: "HappyAnimals",
 Item: {
 CommonName: "Shiba Inu",
 },
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Put an item in a table.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

Actions API Version 2012-08-10 2040

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/PutCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

var params = {
 TableName: "CUSTOMER_LIST",
 Item: {
 CUSTOMER_ID: { N: "001" },
 CUSTOMER_NAME: { S: "Richard Roe" },
 },
};

// Call DynamoDB to add the item to the table
ddb.putItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Put an item in a table using the DynamoDB document client.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Item: {
 HASHKEY: VALUE,
 ATTRIBUTE_1: "STRING_VALUE",
 ATTRIBUTE_2: VALUE_2,
 },
};

docClient.put(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);

Actions API Version 2012-08-10 2041

Amazon DynamoDB Developer Guide

 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun putItemInTable(
 tableNameVal: String,
 key: String,
 keyVal: String,
 albumTitle: String,
 albumTitleValue: String,
 awards: String,
 awardVal: String,
 songTitle: String,
 songTitleVal: String,
) {
 val itemValues = mutableMapOf<String, AttributeValue>()

 // Add all content to the table.
 itemValues[key] = AttributeValue.S(keyVal)
 itemValues[songTitle] = AttributeValue.S(songTitleVal)
 itemValues[albumTitle] = AttributeValue.S(albumTitleValue)
 itemValues[awards] = AttributeValue.S(awardVal)

 val request =
 PutItemRequest {
 tableName = tableNameVal
 item = itemValues
 }

Actions API Version 2012-08-10 2042

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-table-read-write.html#dynamodb-example-table-read-write-writing-an-item
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.putItem(request)
 println(" A new item was placed into $tableNameVal.")
 }
}

• For API details, see PutItem in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 echo "What's the name of the last movie you watched?\n";
 while (empty($movieName)) {
 $movieName = testable_readline("Movie name: ");
 }
 echo "And what year was it released?\n";
 $movieYear = "year";
 while (!is_numeric($movieYear) || intval($movieYear) != $movieYear) {
 $movieYear = testable_readline("Year released: ");
 }

 $service->putItem([
 'Item' => [
 'year' => [
 'N' => "$movieYear",
],
 'title' => [
 'S' => $movieName,
],
],
 'TableName' => $tableName,
]);

Actions API Version 2012-08-10 2043

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 public function putItem(array $array)
 {
 $this->dynamoDbClient->putItem($array);
 }

• For API details, see PutItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Creates a new item, or replaces an existing item with a new item.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 9.0
} | ConvertTo-DDBItem
Set-DDBItem -TableName 'Music' -Item $item

• For API details, see PutItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Creates a new item, or replaces an existing item with a new item.

$item = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
 AlbumTitle = 'Somewhat Famous'
 Price = 1.94
 Genre = 'Country'
 CriticRating = 9.0
} | ConvertTo-DDBItem
Set-DDBItem -TableName 'Music' -Item $item

• For API details, see PutItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 2044

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/PutItem
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

Actions API Version 2012-08-10 2045

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 def add_movie(self, title, year, plot, rating):
 """
 Adds a movie to the table.

 :param title: The title of the movie.
 :param year: The release year of the movie.
 :param plot: The plot summary of the movie.
 :param rating: The quality rating of the movie.
 """
 try:
 self.table.put_item(
 Item={
 "year": year,
 "title": title,
 "info": {"plot": plot, "rating": Decimal(str(rating))},
 }
)
 except ClientError as err:
 logger.error(
 "Couldn't add movie %s to table %s. Here's why: %s: %s",
 title,
 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

• For API details, see PutItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 2046

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Adds a movie to the table.
 #
 # @param movie [Hash] The title, year, plot, and rating of the movie.
 def add_item(movie)
 @table.put_item(
 item: {
 'year' => movie[:year],
 'title' => movie[:title],
 'info' => { 'plot' => movie[:plot], 'rating' => movie[:rating] }
 }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't add movie #{title} to table #{@table.name}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 end

• For API details, see PutItem in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn add_item(client: &Client, item: Item, table: &String) ->
 Result<ItemOut, Error> {

Actions API Version 2012-08-10 2047

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/PutItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 let user_av = AttributeValue::S(item.username);
 let type_av = AttributeValue::S(item.p_type);
 let age_av = AttributeValue::S(item.age);
 let first_av = AttributeValue::S(item.first);
 let last_av = AttributeValue::S(item.last);

 let request = client
 .put_item()
 .table_name(table)
 .item("username", user_av)
 .item("account_type", type_av)
 .item("age", age_av)
 .item("first_name", first_av)
 .item("last_name", last_av);

 println!("Executing request [{request:?}] to add item...");

 let resp = request.send().await?;

 let attributes = resp.attributes().unwrap();

 let username = attributes.get("username").cloned();
 let first_name = attributes.get("first_name").cloned();
 let last_name = attributes.get("last_name").cloned();
 let age = attributes.get("age").cloned();
 let p_type = attributes.get("p_type").cloned();

 println!(
 "Added user {:?}, {:?} {:?}, age {:?} as {:?} user",
 username, first_name, last_name, age, p_type
);

 Ok(ItemOut {
 p_type,
 age,
 username,
 first_name,
 last_name,
 })
}

• For API details, see PutItem in Amazon SDK for Rust API reference.

Actions API Version 2012-08-10 2048

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.put_item

Amazon DynamoDB Developer Guide

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 DATA(lo_resp) = lo_dyn->putitem(
 iv_tablename = iv_table_name
 it_item = it_item).
 MESSAGE '1 row inserted into DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

• For API details, see PutItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

Actions API Version 2012-08-10 2049

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples
https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// Add a movie specified as a `Movie` structure to the Amazon DynamoDB
 /// table.
 ///
 /// - Parameter movie: The `Movie` to add to the table.
 ///
 func add(movie: Movie) async throws {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Get a DynamoDB item containing the movie data.
 let item = try await movie.getAsItem()

 // Send the `PutItem` request to Amazon DynamoDB.

 let input = PutItemInput(
 item: item,
 tableName: self.tableName
)
 _ = try await client.putItem(input: input)
 } catch {
 print("ERROR: add movie:", dump(error))
 throw error
 }
 }

 ///
 /// Return an array mapping attribute names to Amazon DynamoDB attribute
 /// values, representing the contents of the `Movie` record as a DynamoDB
 /// item.
 ///
 /// - Returns: The movie item as an array of type
 /// `[Swift.String:DynamoDBClientTypes.AttributeValue]`.
 ///
 func getAsItem() async throws ->
 [Swift.String:DynamoDBClientTypes.AttributeValue] {
 // Build the item record, starting with the year and title, which are
 // always present.

 var item: [Swift.String:DynamoDBClientTypes.AttributeValue] = [
 "year": .n(String(self.year)),
 "title": .s(self.title)

Actions API Version 2012-08-10 2050

Amazon DynamoDB Developer Guide

]

 // Add the `info` field with the rating and/or plot if they're
 // available.

 var details: [Swift.String:DynamoDBClientTypes.AttributeValue] = [:]
 if (self.info.rating != nil || self.info.plot != nil) {
 if self.info.rating != nil {
 details["rating"] = .n(String(self.info.rating!))
 }
 if self.info.plot != nil {
 details["plot"] = .s(self.info.plot!)
 }
 }
 item["info"] = .m(details)

 return item
 }

• For API details, see PutItem in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Query with an Amazon SDK or CLI

The following code examples show how to use Query.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Advanced Global Secondary Index scenarios

• Compare multiple values with a single attribute

• Manage Global Secondary Indexes

• Perform advanced query operations

• Query a table using a begins_with condition

Actions API Version 2012-08-10 2051

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/putitem(input:)

Amazon DynamoDB Developer Guide

• Query a table using a date range

• Query a table using a Global Secondary Index

• Query a table with a complex filter expression

• Query a table with a dynamic filter expression

• Query a table with a filter expression and limit

• Query a table with nested attributes

• Query a table with pagination

• Query a table with strongly consistent reads

• Query for TTL items

• Query tables using date and time patterns

• Use expression attribute names

• Work with Local Secondary Indexes

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Queries the table for movies released in a particular year and
 /// then displays the information for the movies returned.
 /// </summary>
 /// <param name="tableName">The name of the table to query.</param>
 /// <param name="year">The release year for which we want to
 /// view movies.</param>
 /// <returns>The number of movies that match the query.</returns>
 public async Task<int> QueryMoviesAsync(string tableName, int year)
 {
 try
 {
 var movieTable = new TableBuilder(_amazonDynamoDB, tableName)

Actions API Version 2012-08-10 2052

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 .AddHashKey("year", DynamoDBEntryType.Numeric)
 .AddRangeKey("title", DynamoDBEntryType.String)
 .Build();

 var filter = new QueryFilter("year", QueryOperator.Equal, year);

 Console.WriteLine("\nFind movies released in: {year}:");

 var config = new QueryOperationConfig()
 {
 Limit = 10, // 10 items per page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "title",
 "year",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 // Value used to track how many movies match the
 // supplied criteria.
 var moviesFound = 0;

 var search = movieTable.Query(config);
 do
 {
 var movieList = await search.GetNextSetAsync();
 moviesFound += movieList.Count;

 foreach (var movie in movieList)
 {
 DisplayDocument(movie);
 }
 }
 while (!search.IsDone);

 return moviesFound;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return 0;

Actions API Version 2012-08-10 2053

Amazon DynamoDB Developer Guide

 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while querying
 movies. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while querying movies.
 {ex.Message}");
 throw;
 }
 }

• For API details, see Query in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_query
#
This function queries a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-k key_condition_expression -- The key condition expression.
-a attribute_names -- Path to JSON file containing the attribute names.
-v attribute_values -- Path to JSON file containing the attribute values.
[-p projection_expression] -- Optional projection expression.
#
Returns:

Actions API Version 2012-08-10 2054

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

The items as json output.
And:
0 - If successful.
1 - If it fails.
###
function dynamodb_query() {
 local table_name key_condition_expression attribute_names attribute_values
 projection_expression response
 local option OPTARG # Required to use getopts command in a function.

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_query"
 echo "Query a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k key_condition_expression -- The key condition expression."
 echo " -a attribute_names -- Path to JSON file containing the attribute
 names."
 echo " -v attribute_values -- Path to JSON file containing the attribute
 values."
 echo " [-p projection_expression] -- Optional projection expression."
 echo ""
 }

 while getopts "n:k:a:v:p:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) key_condition_expression="${OPTARG}" ;;
 a) attribute_names="${OPTARG}" ;;
 v) attribute_values="${OPTARG}" ;;
 p) projection_expression="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done

Actions API Version 2012-08-10 2055

Amazon DynamoDB Developer Guide

 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$key_condition_expression"]]; then
 errecho "ERROR: You must provide a key condition expression with the -k
 parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_names"]]; then
 errecho "ERROR: You must provide a attribute names with the -a parameter."
 usage
 return 1
 fi

 if [[-z "$attribute_values"]]; then
 errecho "ERROR: You must provide a attribute values with the -v parameter."
 usage
 return 1
 fi

 if [[-z "$projection_expression"]]; then
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values")
 else
 response=$(aws dynamodb query \
 --table-name "$table_name" \
 --key-condition-expression "$key_condition_expression" \
 --expression-attribute-names file://"$attribute_names" \
 --expression-attribute-values file://"$attribute_values" \
 --projection-expression "$projection_expression")
 fi

 local error_code=${?}

Actions API Version 2012-08-10 2056

Amazon DynamoDB Developer Guide

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports query operation failed.$response"
 return 1
 fi

 echo "$response"

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."

Actions API Version 2012-08-10 2057

Amazon DynamoDB Developer Guide

 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see Query in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Perform a query on an Amazon DynamoDB Table and retrieve items.
/*!
 \sa queryItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param projectionExpression: The projections expression, which is ignored if
 empty.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

Actions API Version 2012-08-10 2058

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

/*
 * The partition key attribute is searched with the specified value. By default,
 all fields and values
 * contained in the item are returned. If an optional projection expression is
 * specified on the command line, only the specified fields and values are
 * returned.
 */

bool AwsDoc::DynamoDB::queryItems(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::String &projectionExpression,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);
 Aws::DynamoDB::Model::QueryRequest request;

 request.SetTableName(tableName);

 if (!projectionExpression.empty()) {
 request.SetProjectionExpression(projectionExpression);
 }

 // Set query key condition expression.
 request.SetKeyConditionExpression(partitionKey + "= :valueToMatch");

 // Set Expression AttributeValues.
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue> attributeValues;
 attributeValues.emplace(":valueToMatch", partitionValue);

 request.SetExpressionAttributeValues(attributeValues);

 bool result = true;

 // "exclusiveStartKey" is used for pagination.
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 exclusiveStartKey;
 do {
 if (!exclusiveStartKey.empty()) {
 request.SetExclusiveStartKey(exclusiveStartKey);
 exclusiveStartKey.clear();
 }
 // Perform Query operation.

Actions API Version 2012-08-10 2059

Amazon DynamoDB Developer Guide

 const Aws::DynamoDB::Model::QueryOutcome &outcome =
 dynamoClient.Query(request);
 if (outcome.IsSuccess()) {
 // Reference the retrieved items.
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = outcome.GetResult().GetItems();
 if (!items.empty()) {
 std::cout << "Number of items retrieved from Query: " <<
 items.size()
 << std::endl;
 // Iterate each item and print.
 for (const auto &item: items) {
 std::cout
 <<
 "**"
 << std::endl;
 // Output each retrieved field and its value.
 for (const auto &i: item)
 std::cout << i.first << ": " << i.second.GetS() <<
 std::endl;
 }
 }
 else {
 std::cout << "No item found in table: " << tableName <<
 std::endl;
 }

 exclusiveStartKey = outcome.GetResult().GetLastEvaluatedKey();
 }
 else {
 std::cerr << "Failed to Query items: " <<
 outcome.GetError().GetMessage();
 result = false;
 break;
 }
 } while (!exclusiveStartKey.empty());

 return result;
}

• For API details, see Query in Amazon SDK for C++ API Reference.

Actions API Version 2012-08-10 2060

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

CLI

Amazon CLI

Example 1: To query a table

The following query example queries items in the MusicCollection table. The table has
a hash-and-range primary key (Artist and SongTitle), but this query only specifies the
hash key value. It returns song titles by the artist named "No One You Know".

aws dynamodb query \
 --table-name MusicCollection \
 --projection-expression "SongTitle" \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json \
 --return-consumed-capacity TOTAL

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [
 {
 "SongTitle": {
 "S": "Call Me Today"
 },
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5

Actions API Version 2012-08-10 2061

Amazon DynamoDB Developer Guide

 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 2: To query a table using strongly consistent reads and traverse the index in
descending order

The following example performs the same query as the first example, but returns results in
reverse order and uses strongly consistent reads.

aws dynamodb query \
 --table-name MusicCollection \
 --projection-expression "SongTitle" \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json \
 --consistent-read \
 --no-scan-index-forward \
 --return-consumed-capacity TOTAL

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [
 {
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 },
 {
 "SongTitle": {
 "S": "Call Me Today"
 }
 }

Actions API Version 2012-08-10 2062

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 1.0
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 3: To filter out specific results

The following example queries the MusicCollection but excludes results with specific
values in the AlbumTitle attribute. Note that this does not affect the ScannedCount or
ConsumedCapacity, because the filter is applied after the items have been read.

aws dynamodb query \
 --table-name MusicCollection \
 --key-condition-expression "#n1 = :v1" \
 --filter-expression "NOT (#n2 IN (:v2, :v3))" \
 --expression-attribute-names file://names.json \
 --expression-attribute-values file://values.json \
 --return-consumed-capacity TOTAL

Contents of values.json:

{
 ":v1": {"S": "No One You Know"},
 ":v2": {"S": "Blue Sky Blues"},
 ":v3": {"S": "Greatest Hits"}
}

Contents of names.json:

{
 "#n1": "Artist",
 "#n2": "AlbumTitle"
}

Actions API Version 2012-08-10 2063

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

Output:

{
 "Items": [
 {
 "AlbumTitle": {
 "S": "Somewhat Famous"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
],
 "Count": 1,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 4: To retrieve only an item count

The following example retrieves a count of items matching the query, but does not retrieve
any of the items themselves.

aws dynamodb query \
 --table-name MusicCollection \
 --select COUNT \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json

Contents of expression-attributes.json:

{

Actions API Version 2012-08-10 2064

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": null
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

Example 5: To query an index

The following example queries the local secondary index AlbumTitleIndex. The query
returns all attributes from the base table that have been projected into the local secondary
index. Note that when querying a local secondary index or global secondary index, you must
also provide the name of the base table using the table-name parameter.

aws dynamodb query \
 --table-name MusicCollection \
 --index-name AlbumTitleIndex \
 --key-condition-expression "Artist = :v1" \
 --expression-attribute-values file://expression-attributes.json \
 --select ALL_PROJECTED_ATTRIBUTES \
 --return-consumed-capacity INDEXES

Contents of expression-attributes.json:

{
 ":v1": {"S": "No One You Know"}
}

Output:

{
 "Items": [

Actions API Version 2012-08-10 2065

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html

Amazon DynamoDB Developer Guide

 {
 "AlbumTitle": {
 "S": "Blue Sky Blues"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Scared of My Shadow"
 }
 },
 {
 "AlbumTitle": {
 "S": "Somewhat Famous"
 },
 "Artist": {
 "S": "No One You Know"
 },
 "SongTitle": {
 "S": "Call Me Today"
 }
 }
],
 "Count": 2,
 "ScannedCount": 2,
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 0.5,
 "Table": {
 "CapacityUnits": 0.0
 },
 "LocalSecondaryIndexes": {
 "AlbumTitleIndex": {
 "CapacityUnits": 0.5
 }
 }
 }
}

For more information, see Working with Queries in DynamoDB in the Amazon DynamoDB
Developer Guide.

• For API details, see Query in Amazon CLI Command Reference.

Actions API Version 2012-08-10 2066

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Query.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/query.html

Amazon DynamoDB Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// Query gets all movies in the DynamoDB table that were released in the
 specified year.
// The function uses the `expression` package to build the key condition
 expression
// that is used in the query.
func (basics TableBasics) Query(ctx context.Context, releaseYear int) ([]Movie,
 error) {

Actions API Version 2012-08-10 2067

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 var err error
 var response *dynamodb.QueryOutput
 var movies []Movie
 keyEx := expression.Key("year").Equal(expression.Value(releaseYear))
 expr, err := expression.NewBuilder().WithKeyCondition(keyEx).Build()
 if err != nil {
 log.Printf("Couldn't build expression for query. Here's why: %v\n", err)
 } else {
 queryPaginator := dynamodb.NewQueryPaginator(basics.DynamoDbClient,
 &dynamodb.QueryInput{
 TableName: aws.String(basics.TableName),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 KeyConditionExpression: expr.KeyCondition(),
 })
 for queryPaginator.HasMorePages() {
 response, err = queryPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't query for movies released in %v. Here's why: %v\n",
 releaseYear, err)
 break
 } else {
 var moviePage []Movie
 err = attributevalue.UnmarshalListOfMaps(response.Items, &moviePage)
 if err != nil {
 log.Printf("Couldn't unmarshal query response. Here's why: %v\n", err)
 break
 } else {
 movies = append(movies, moviePage...)
 }
 }
 }
 }
 return movies, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"

Actions API Version 2012-08-10 2068

Amazon DynamoDB Developer Guide

 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

Actions API Version 2012-08-10 2069

Amazon DynamoDB Developer Guide

• For API details, see Query in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Queries a table by using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import java.util.HashMap;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To query items from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client. See the EnhancedQueryRecords example.
 */
public class Query {
 public static void main(String[] args) {
 final String usage = """

 Usage:

Actions API Version 2012-08-10 2070

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

 <tableName> <partitionKeyName> <partitionKeyVal>

 Where:
 tableName - The Amazon DynamoDB table to put the item in (for
 example, Music3).
 partitionKeyName - The partition key name of the Amazon
 DynamoDB table (for example, Artist).
 partitionKeyVal - The value of the partition key that should
 match (for example, Famous Band).
 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String partitionKeyName = args[1];
 String partitionKeyVal = args[2];

 // For more information about an alias, see:
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Expressions.ExpressionAttributeNames.html
 String partitionAlias = "#a";

 System.out.format("Querying %s", tableName);
 System.out.println("");
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 int count = queryTable(ddb, tableName, partitionKeyName, partitionKeyVal,
 partitionAlias);
 System.out.println("There were " + count + " record(s) returned");
 ddb.close();
 }

 public static int queryTable(DynamoDbClient ddb, String tableName, String
 partitionKeyName, String partitionKeyVal,
 String partitionAlias) {
 // Set up an alias for the partition key name in case it's a reserved
 word.
 HashMap<String, String> attrNameAlias = new HashMap<String, String>();

Actions API Version 2012-08-10 2071

Amazon DynamoDB Developer Guide

 attrNameAlias.put(partitionAlias, partitionKeyName);

 // Set up mapping of the partition name with the value.
 HashMap<String, AttributeValue> attrValues = new HashMap<>();
 attrValues.put(":" + partitionKeyName, AttributeValue.builder()
 .s(partitionKeyVal)
 .build());

 QueryRequest queryReq = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(partitionAlias + " = :" +
 partitionKeyName)
 .expressionAttributeNames(attrNameAlias)
 .expressionAttributeValues(attrValues)
 .build();

 try {
 QueryResponse response = ddb.query(queryReq);
 return response.count();

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 return -1;
 }
}

Queries a table by using DynamoDbClient and a secondary index.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import java.util.HashMap;
import java.util.Map;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.

Actions API Version 2012-08-10 2072

Amazon DynamoDB Developer Guide

 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * Create the Movies table by running the Scenario example and loading the Movie
 * data from the JSON file. Next create a secondary
 * index for the Movies table that uses only the year column. Name the index
 * **year-index**. For more information, see:
 *
 * https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
 */
public class QueryItemsUsingIndex {
 public static void main(String[] args) {
 String tableName = "Movies";
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 queryIndex(ddb, tableName);
 ddb.close();
 }

 public static void queryIndex(DynamoDbClient ddb, String tableName) {
 try {
 Map<String, String> expressionAttributesNames = new HashMap<>();
 expressionAttributesNames.put("#year", "year");
 Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(":yearValue",
 AttributeValue.builder().n("2013").build());

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .indexName("year-index")
 .keyConditionExpression("#year = :yearValue")
 .expressionAttributeNames(expressionAttributesNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 System.out.println("=== Movie Titles ===");
 QueryResponse response = ddb.query(request);

Actions API Version 2012-08-10 2073

Amazon DynamoDB Developer Guide

 response.items()
 .forEach(movie ->
 System.out.println(movie.get("title").s()));

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }
}

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see QueryCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { QueryCommand, DynamoDBDocumentClient } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new QueryCommand({
 TableName: "CoffeeCrop",
 KeyConditionExpression:
 "OriginCountry = :originCountry AND RoastDate > :roastDate",
 ExpressionAttributeValues: {
 ":originCountry": "Ethiopia",
 ":roastDate": "2023-05-01",
 },

Actions API Version 2012-08-10 2074

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/QueryCommand/

Amazon DynamoDB Developer Guide

 ConsistentRead: true,
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see Query in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 ExpressionAttributeValues: {
 ":s": 2,
 ":e": 9,
 ":topic": "PHRASE",
 },
 KeyConditionExpression: "Season = :s and Episode > :e",
 FilterExpression: "contains (Subtitle, :topic)",
 TableName: "EPISODES_TABLE",
};

docClient.query(params, function (err, data) {
 if (err) {
 console.log("Error", err);

Actions API Version 2012-08-10 2075

https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 } else {
 console.log("Success", data.Items);
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun queryDynTable(
 tableNameVal: String,
 partitionKeyName: String,
 partitionKeyVal: String,
 partitionAlias: String,
): Int {
 val attrNameAlias = mutableMapOf<String, String>()
 attrNameAlias[partitionAlias] = partitionKeyName

 // Set up mapping of the partition name with the value.
 val attrValues = mutableMapOf<String, AttributeValue>()
 attrValues[":$partitionKeyName"] = AttributeValue.S(partitionKeyVal)

 val request =
 QueryRequest {
 tableName = tableNameVal
 keyConditionExpression = "$partitionAlias = :$partitionKeyName"
 expressionAttributeNames = attrNameAlias
 this.expressionAttributeValues = attrValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->

Actions API Version 2012-08-10 2076

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-querying
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 val response = ddb.query(request)
 return response.count
 }
}

• For API details, see Query in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 $birthKey = [
 'Key' => [
 'year' => [
 'N' => "$birthYear",
],
],
];
 $result = $service->query($tableName, $birthKey);

 public function query(string $tableName, $key)
 {
 $expressionAttributeValues = [];
 $expressionAttributeNames = [];
 $keyConditionExpression = "";
 $index = 1;
 foreach ($key as $name => $value) {
 $keyConditionExpression .= "#" . array_key_first($value) . " = :v
$index,";
 $expressionAttributeNames["#" . array_key_first($value)] =
 array_key_first($value);
 $hold = array_pop($value);
 $expressionAttributeValues[":v$index"] = [
 array_key_first($hold) => array_pop($hold),
];

Actions API Version 2012-08-10 2077

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }
 $keyConditionExpression = substr($keyConditionExpression, 0, -1);
 $query = [
 'ExpressionAttributeValues' => $expressionAttributeValues,
 'ExpressionAttributeNames' => $expressionAttributeNames,
 'KeyConditionExpression' => $keyConditionExpression,
 'TableName' => $tableName,
];
 return $this->dynamoDbClient->query($query);
 }

• For API details, see Query in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Invokes a query that returns DynamoDB items with the specified SongTitle
and Artist.

$invokeDDBQuery = @{
 TableName = 'Music'
 KeyConditionExpression = ' SongTitle = :SongTitle and Artist = :Artist'
 ExpressionAttributeValues = @{
 ':SongTitle' = 'Somewhere Down The Road'
 ':Artist' = 'No One You Know'
 } | ConvertTo-DDBItem
}
Invoke-DDBQuery @invokeDDBQuery | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

Actions API Version 2012-08-10 2078

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

• For API details, see Query in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Invokes a query that returns DynamoDB items with the specified SongTitle
and Artist.

$invokeDDBQuery = @{
 TableName = 'Music'
 KeyConditionExpression = ' SongTitle = :SongTitle and Artist = :Artist'
 ExpressionAttributeValues = @{
 ':SongTitle' = 'Somewhere Down The Road'
 ':Artist' = 'No One You Know'
 } | ConvertTo-DDBItem
}
Invoke-DDBQuery @invokeDDBQuery | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

• For API details, see Query in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Query items by using a key condition expression.

Actions API Version 2012-08-10 2079

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def query_movies(self, year):
 """
 Queries for movies that were released in the specified year.

 :param year: The year to query.
 :return: The list of movies that were released in the specified year.
 """
 try:
 response =
 self.table.query(KeyConditionExpression=Key("year").eq(year))

Actions API Version 2012-08-10 2080

Amazon DynamoDB Developer Guide

 except ClientError as err:
 logger.error(
 "Couldn't query for movies released in %s. Here's why: %s: %s",
 year,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Items"]

Query items and project them to return a subset of data.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

 def query_and_project_movies(self, year, title_bounds):
 """
 Query for movies that were released in a specified year and that have
 titles
 that start within a range of letters. A projection expression is used
 to return a subset of data for each movie.

 :param year: The release year to query.
 :param title_bounds: The range of starting letters to query.
 :return: The list of movies.
 """
 try:
 response = self.table.query(
 ProjectionExpression="#yr, title, info.genres, info.actors[0]",
 ExpressionAttributeNames={"#yr": "year"},
 KeyConditionExpression=(
 Key("year").eq(year)
 & Key("title").between(
 title_bounds["first"], title_bounds["second"]
)
),
)
 except ClientError as err:

Actions API Version 2012-08-10 2081

Amazon DynamoDB Developer Guide

 if err.response["Error"]["Code"] == "ValidationException":
 logger.warning(
 "There's a validation error. Here's the message: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 else:
 logger.error(
 "Couldn't query for movies. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Items"]

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Queries for movies that were released in the specified year.
 #
 # @param year [Integer] The year to query.

Actions API Version 2012-08-10 2082

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 # @return [Array] The list of movies that were released in the specified year.
 def query_items(year)
 response = @table.query(
 key_condition_expression: '#yr = :year',
 expression_attribute_names: { '#yr' => 'year' },
 expression_attribute_values: { ':year' => year }
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't query for movies released in #{year}. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.items
 end

• For API details, see Query in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Find the movies made in the specified year.

pub async fn movies_in_year(
 client: &Client,
 table_name: &str,
 year: u16,
) -> Result<Vec<Movie>, MovieError> {
 let results = client
 .query()
 .table_name(table_name)
 .key_condition_expression("#yr = :yyyy")
 .expression_attribute_names("#yr", "year")
 .expression_attribute_values(":yyyy",
 AttributeValue::N(year.to_string()))

Actions API Version 2012-08-10 2083

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 .send()
 .await?;

 if let Some(items) = results.items {
 let movies = items.iter().map(|v| v.into()).collect();
 Ok(movies)
 } else {
 Ok(vec![])
 }
}

• For API details, see Query in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 " Query movies for a given year .
 DATA(lt_attributelist) = VALUE /aws1/
cl_dynattributevalue=>tt_attributevaluelist(
 (NEW /aws1/cl_dynattributevalue(iv_n = |{ iv_year }|))).
 DATA(lt_key_conditions) = VALUE /aws1/cl_dyncondition=>tt_keyconditions(
 (VALUE /aws1/cl_dyncondition=>ts_keyconditions_maprow(
 key = 'year'
 value = NEW /aws1/cl_dyncondition(
 it_attributevaluelist = lt_attributelist
 iv_comparisonoperator = |EQ|
)))).
 oo_result = lo_dyn->query(
 iv_tablename = iv_table_name
 it_keyconditions = lt_key_conditions).
 DATA(lt_items) = oo_result->get_items().
 "You can loop over the results to get item attributes.

Actions API Version 2012-08-10 2084

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 LOOP AT lt_items INTO DATA(lt_item).
 DATA(lo_title) = lt_item[key = 'title']-value.
 DATA(lo_year) = lt_item[key = 'year']-value.
 ENDLOOP.
 DATA(lv_count) = oo_result->get_count().
 MESSAGE 'Item count is: ' && lv_count TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

• For API details, see Query in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Get all the movies released in the specified year.
 ///
 /// - Parameter year: The release year of the movies to return.
 ///
 /// - Returns: An array of `Movie` objects describing each matching movie.
 ///
 func getMovies(fromYear year: Int) async throws -> [Movie] {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 let input = QueryInput(
 expressionAttributeNames: [
 "#y": "year"
],

Actions API Version 2012-08-10 2085

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 expressionAttributeValues: [
 ":y": .n(String(year))
],
 keyConditionExpression: "#y = :y",
 tableName: self.tableName
)
 // Use "Paginated" to get all the movies.
 // This lets the SDK handle the 'lastEvaluatedKey' property in
 "QueryOutput".

 let pages = client.queryPaginated(input: input)

 var movieList: [Movie] = []
 for try await page in pages {
 guard let items = page.items else {
 print("Error: no items returned.")
 continue
 }

 // Convert the found movies into `Movie` objects and return an
 array
 // of them.

 for item in items {
 let movie = try Movie(withItem: item)
 movieList.append(movie)
 }
 }
 return movieList
 } catch {
 print("ERROR: getMovies:", dump(error))
 throw error
 }
 }

• For API details, see Query in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions API Version 2012-08-10 2086

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/query(input:)

Amazon DynamoDB Developer Guide

Use Scan with an Amazon SDK or CLI

The following code examples show how to use Scan.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Accelerate reads with DAX

• Compare multiple values with a single attribute

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Scans the table for movies released between the specified years.
 /// </summary>
 /// <param name="tableName">The name of the table to scan.</param>
 /// <param name="startYear">The starting year for the range.</param>
 /// <param name="endYear">The ending year for the range.</param>
 /// <returns>The number of movies found in the specified year range.</
returns>
 public async Task<int> ScanTableAsync(
 string tableName,
 int startYear,
 int endYear)
 {
 try
 {
 var request = new ScanRequest
 {
 TableName = tableName,
 ExpressionAttributeNames = new Dictionary<string, string>
 {

Actions API Version 2012-08-10 2087

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 { "#yr", "year" },
 },
 ExpressionAttributeValues = new Dictionary<string,
 AttributeValue>
 {
 { ":y_a", new AttributeValue { N = startYear.ToString() } },
 { ":y_z", new AttributeValue { N = endYear.ToString() } },
 },
 FilterExpression = "#yr between :y_a and :y_z",
 ProjectionExpression = "#yr, title, info.actors[0],
 info.directors, info.running_time_secs",
 Limit = 10 // Set a limit to demonstrate using the
 LastEvaluatedKey.
 };

 // Keep track of how many movies were found.
 int foundCount = 0;

 var response = new ScanResponse();
 do
 {
 response = await _amazonDynamoDB.ScanAsync(request);
 foundCount += response.Items.Count;
 response.Items.ForEach(i => DisplayItem(i));
 request.ExclusiveStartKey = response.LastEvaluatedKey;
 }
 while (response?.LastEvaluatedKey?.Count > 0);
 return foundCount;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} was not found. {ex.Message}");
 return 0;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while scanning
 table. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while scanning table.
 {ex.Message}");

Actions API Version 2012-08-10 2088

Amazon DynamoDB Developer Guide

 throw;
 }
 }

• For API details, see Scan in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

###
function dynamodb_scan
#
This function scans a DynamoDB table.
#
Parameters:
-n table_name -- The name of the table.
-f filter_expression -- The filter expression.
-a expression_attribute_names -- Path to JSON file containing the
 expression attribute names.
-v expression_attribute_values -- Path to JSON file containing the
 expression attribute values.
[-p projection_expression] -- Optional projection expression.
#
Returns:
The items as json output.
And:
0 - If successful.
1 - If it fails.
###
function dynamodb_scan() {
 local table_name filter_expression expression_attribute_names
 expression_attribute_values projection_expression response
 local option OPTARG # Required to use getopts command in a function.

Actions API Version 2012-08-10 2089

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 # ######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_scan"
 echo "Scan a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -f filter_expression -- The filter expression."
 echo " -a expression_attribute_names -- Path to JSON file containing the
 expression attribute names."
 echo " -v expression_attribute_values -- Path to JSON file containing the
 expression attribute values."
 echo " [-p projection_expression] -- Optional projection expression."
 echo ""
 }

 while getopts "n:f:a:v:p:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 f) filter_expression="${OPTARG}" ;;
 a) expression_attribute_names="${OPTARG}" ;;
 v) expression_attribute_values="${OPTARG}" ;;
 p) projection_expression="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"
 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$filter_expression"]]; then

Actions API Version 2012-08-10 2090

Amazon DynamoDB Developer Guide

 errecho "ERROR: You must provide a filter expression with the -f parameter."
 usage
 return 1
 fi

 if [[-z "$expression_attribute_names"]]; then
 errecho "ERROR: You must provide expression attribute names with the -a
 parameter."
 usage
 return 1
 fi

 if [[-z "$expression_attribute_values"]]; then
 errecho "ERROR: You must provide expression attribute values with the -v
 parameter."
 usage
 return 1
 fi

 if [[-z "$projection_expression"]]; then
 response=$(aws dynamodb scan \
 --table-name "$table_name" \
 --filter-expression "$filter_expression" \
 --expression-attribute-names file://"$expression_attribute_names" \
 --expression-attribute-values file://"$expression_attribute_values")
 else
 response=$(aws dynamodb scan \
 --table-name "$table_name" \
 --filter-expression "$filter_expression" \
 --expression-attribute-names file://"$expression_attribute_names" \
 --expression-attribute-values file://"$expression_attribute_values" \
 --projection-expression "$projection_expression")
 fi

 local error_code=${?}

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports scan operation failed.$response"
 return 1
 fi

 echo "$response"

Actions API Version 2012-08-10 2091

Amazon DynamoDB Developer Guide

 return 0
}

The utility functions used in this example.

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:
$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."

Actions API Version 2012-08-10 2092

Amazon DynamoDB Developer Guide

 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see Scan in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Scan an Amazon DynamoDB table.
/*!
 \sa scanTable()
 \param tableName: Name for the DynamoDB table.
 \param projectionExpression: An optional projection expression, ignored if
 empty.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

bool AwsDoc::DynamoDB::scanTable(const Aws::String &tableName,
 const Aws::String &projectionExpression,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);
 Aws::DynamoDB::Model::ScanRequest request;
 request.SetTableName(tableName);

 if (!projectionExpression.empty())
 request.SetProjectionExpression(projectionExpression);

Actions API Version 2012-08-10 2093

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 Aws::Vector<Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>>
 all_items;
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 last_evaluated_key; // Used for pagination;
 do {
 if (!last_evaluated_key.empty()) {
 request.SetExclusiveStartKey(last_evaluated_key);
 }
 const Aws::DynamoDB::Model::ScanOutcome &outcome =
 dynamoClient.Scan(request);
 if (outcome.IsSuccess()) {
 // Reference the retrieved items.
 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = outcome.GetResult().GetItems();
 all_items.insert(all_items.end(), items.begin(), items.end());

 last_evaluated_key = outcome.GetResult().GetLastEvaluatedKey();
 }
 else {
 std::cerr << "Failed to Scan items: " <<
 outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 } while (!last_evaluated_key.empty());

 if (!all_items.empty()) {
 std::cout << "Number of items retrieved from scan: " << all_items.size()
 << std::endl;
 // Iterate each item and print.
 for (const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 &itemMap: all_items) {
 std::cout << "**"
 << std::endl;
 // Output each retrieved field and its value.
 for (const auto &itemEntry: itemMap)
 std::cout << itemEntry.first << ": " << itemEntry.second.GetS()
 << std::endl;
 }
 }

 else {

Actions API Version 2012-08-10 2094

Amazon DynamoDB Developer Guide

 std::cout << "No items found in table: " << tableName << std::endl;
 }

 return true;
}

• For API details, see Scan in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To scan a table

The following scan example scans the entire MusicCollection table, and then narrows
the results to songs by the artist "No One You Know". For each item, only the album title and
song title are returned.

aws dynamodb scan \
 --table-name MusicCollection \
 --filter-expression "Artist = :a" \
 --projection-expression "#ST, #AT" \
 --expression-attribute-names file://expression-attribute-names.json \
 --expression-attribute-values file://expression-attribute-values.json

Contents of expression-attribute-names.json:

{
 "#ST": "SongTitle",
 "#AT":"AlbumTitle"
}

Contents of expression-attribute-values.json:

{
 ":a": {"S": "No One You Know"}
}

Output:

Actions API Version 2012-08-10 2095

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

{
 "Count": 2,
 "Items": [
 {
 "SongTitle": {
 "S": "Call Me Today"
 },
 "AlbumTitle": {
 "S": "Somewhat Famous"
 }
 },
 {
 "SongTitle": {
 "S": "Scared of My Shadow"
 },
 "AlbumTitle": {
 "S": "Blue Sky Blues"
 }
 }
],
 "ScannedCount": 3,
 "ConsumedCapacity": null
}

For more information, see Working with Scans in DynamoDB in the Amazon DynamoDB
Developer Guide.

• For API details, see Scan in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (

Actions API Version 2012-08-10 2096

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Scan.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/scan.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// Scan gets all movies in the DynamoDB table that were released in a range of
 years
// and projects them to return a reduced set of fields.
// The function uses the `expression` package to build the filter and projection
// expressions.
func (basics TableBasics) Scan(ctx context.Context, startYear int, endYear int)
 ([]Movie, error) {
 var movies []Movie
 var err error
 var response *dynamodb.ScanOutput
 filtEx := expression.Name("year").Between(expression.Value(startYear),
 expression.Value(endYear))
 projEx := expression.NamesList(
 expression.Name("year"), expression.Name("title"),
 expression.Name("info.rating"))
 expr, err :=
 expression.NewBuilder().WithFilter(filtEx).WithProjection(projEx).Build()
 if err != nil {
 log.Printf("Couldn't build expressions for scan. Here's why: %v\n", err)
 } else {

Actions API Version 2012-08-10 2097

Amazon DynamoDB Developer Guide

 scanPaginator := dynamodb.NewScanPaginator(basics.DynamoDbClient,
 &dynamodb.ScanInput{
 TableName: aws.String(basics.TableName),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 FilterExpression: expr.Filter(),
 ProjectionExpression: expr.Projection(),
 })
 for scanPaginator.HasMorePages() {
 response, err = scanPaginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't scan for movies released between %v and %v. Here's why:
 %v\n",
 startYear, endYear, err)
 break
 } else {
 var moviePage []Movie
 err = attributevalue.UnmarshalListOfMaps(response.Items, &moviePage)
 if err != nil {
 log.Printf("Couldn't unmarshal query response. Here's why: %v\n", err)
 break
 } else {
 movies = append(movies, moviePage...)
 }
 }
 }
 }
 return movies, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

Actions API Version 2012-08-10 2098

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see Scan in Amazon SDK for Go API Reference.

Actions API Version 2012-08-10 2099

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.Scan

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Scans an Amazon DynamoDB table using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ScanRequest;
import software.amazon.awssdk.services.dynamodb.model.ScanResponse;
import java.util.Map;
import java.util.Set;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To scan items from an Amazon DynamoDB table using the AWS SDK for Java V2,
 * its better practice to use the
 * Enhanced Client, See the EnhancedScanRecords example.
 */

public class DynamoDBScanItems {
 public static void main(String[] args) {

 final String usage = """

 Usage:
 <tableName>

Actions API Version 2012-08-10 2100

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

 Where:
 tableName - The Amazon DynamoDB table to get information from
 (for example, Music3).
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 scanItems(ddb, tableName);
 ddb.close();
 }

 public static void scanItems(DynamoDbClient ddb, String tableName) {
 try {
 ScanRequest scanRequest = ScanRequest.builder()
 .tableName(tableName)
 .build();

 ScanResponse response = ddb.scan(scanRequest);
 for (Map<String, AttributeValue> item : response.items()) {
 Set<String> keys = item.keySet();
 for (String key : keys) {
 System.out.println("The key name is " + key + "\n");
 System.out.println("The value is " + item.get(key).s());
 }
 }

 } catch (DynamoDbException e) {
 e.printStackTrace();
 System.exit(1);
 }
 }
}

• For API details, see Scan in Amazon SDK for Java 2.x API Reference.

Actions API Version 2012-08-10 2101

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see ScanCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, ScanCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new ScanCommand({
 ProjectionExpression: "#Name, Color, AvgLifeSpan",
 ExpressionAttributeNames: { "#Name": "Name" },
 TableName: "Birds",
 });

 const response = await docClient.send(command);
 for (const bird of response.Items) {
 console.log(`${bird.Name} - (${bird.Color}, ${bird.AvgLifeSpan})`);
 }
 return response;
};

• For API details, see Scan in Amazon SDK for JavaScript API Reference.

SDK for JavaScript (v2)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 2102

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/ScanCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// Load the AWS SDK for Node.js.
var AWS = require("aws-sdk");
// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object.
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

const params = {
 // Specify which items in the results are returned.
 FilterExpression: "Subtitle = :topic AND Season = :s AND Episode = :e",
 // Define the expression attribute value, which are substitutes for the values
 you want to compare.
 ExpressionAttributeValues: {
 ":topic": { S: "SubTitle2" },
 ":s": { N: 1 },
 ":e": { N: 2 },
 },
 // Set the projection expression, which are the attributes that you want.
 ProjectionExpression: "Season, Episode, Title, Subtitle",
 TableName: "EPISODES_TABLE",
};

ddb.scan(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 data.Items.forEach(function (element, index, array) {
 console.log(
 "printing",
 element.Title.S + " (" + element.Subtitle.S + ")"
);
 });
 }
});

• For more information, see Amazon SDK for JavaScript Developer Guide.

• For API details, see Scan in Amazon SDK for JavaScript API Reference.

Actions API Version 2012-08-10 2103

https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/dynamodb-example-query-scan.html#dynamodb-example-table-query-scan-scanning
https://docs.amazonaws.cn/goto/AWSJavaScriptSDK/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun scanItems(tableNameVal: String) {
 val request =
 ScanRequest {
 tableName = tableNameVal
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 val response = ddb.scan(request)
 response.items?.forEach { item ->
 item.keys.forEach { key ->
 println("The key name is $key\n")
 println("The value is ${item[key]}")
 }
 }
 }
}

• For API details, see Scan in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions API Version 2012-08-10 2104

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $yearsKey = [
 'Key' => [
 'year' => [
 'N' => [
 'minRange' => 1990,
 'maxRange' => 1999,
],
],
],
];
 $filter = "year between 1990 and 1999";
 echo "\nHere's a list of all the movies released in the 90s:\n";
 $result = $service->scan($tableName, $yearsKey, $filter);
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 echo $movie['title'] . "\n";
 }

 public function scan(string $tableName, array $key, string $filters)
 {
 $query = [
 'ExpressionAttributeNames' => ['#year' => 'year'],
 'ExpressionAttributeValues' => [
 ":min" => ['N' => '1990'],
 ":max" => ['N' => '1999'],
],
 'FilterExpression' => "#year between :min and :max",
 'TableName' => $tableName,
];
 return $this->dynamoDbClient->scan($query);
 }

• For API details, see Scan in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Returns all items in the Music table.

Invoke-DDBScan -TableName 'Music' | ConvertFrom-DDBItem

Actions API Version 2012-08-10 2105

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
Genre Country
Artist No One You Know
Price 1.98
CriticRating 8.4
SongTitle My Dog Spot
AlbumTitle Hey Now

Example 2: Returns items in the Music table with a CriticRating greater than or equal to
nine.

$scanFilter = @{
 CriticRating = [Amazon.DynamoDBv2.Model.Condition]@{
 AttributeValueList = @(@{N = '9'})
 ComparisonOperator = 'GE'
 }
 }
 Invoke-DDBScan -TableName 'Music' -ScanFilter $scanFilter | ConvertFrom-
DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

• For API details, see Scan in Amazon Tools for PowerShell Cmdlet Reference (V4).

Actions API Version 2012-08-10 2106

https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

Tools for PowerShell V5

Example 1: Returns all items in the Music table.

Invoke-DDBScan -TableName 'Music' | ConvertFrom-DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94
CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous
Genre Country
Artist No One You Know
Price 1.98
CriticRating 8.4
SongTitle My Dog Spot
AlbumTitle Hey Now

Example 2: Returns items in the Music table with a CriticRating greater than or equal to
nine.

$scanFilter = @{
 CriticRating = [Amazon.DynamoDBv2.Model.Condition]@{
 AttributeValueList = @(@{N = '9'})
 ComparisonOperator = 'GE'
 }
 }
 Invoke-DDBScan -TableName 'Music' -ScanFilter $scanFilter | ConvertFrom-
DDBItem

Output:

Name Value
---- -----
Genre Country
Artist No One You Know
Price 1.94

Actions API Version 2012-08-10 2107

Amazon DynamoDB Developer Guide

CriticRating 9
SongTitle Somewhere Down The Road
AlbumTitle Somewhat Famous

• For API details, see Scan in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,
 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.

Actions API Version 2012-08-10 2108

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def scan_movies(self, year_range):
 """
 Scans for movies that were released in a range of years.
 Uses a projection expression to return a subset of data for each movie.

 :param year_range: The range of years to retrieve.
 :return: The list of movies released in the specified years.
 """
 movies = []
 scan_kwargs = {
 "FilterExpression": Key("year").between(
 year_range["first"], year_range["second"]
),
 "ProjectionExpression": "#yr, title, info.rating",
 "ExpressionAttributeNames": {"#yr": "year"},
 }
 try:
 done = False
 start_key = None
 while not done:
 if start_key:
 scan_kwargs["ExclusiveStartKey"] = start_key
 response = self.table.scan(**scan_kwargs)
 movies.extend(response.get("Items", []))
 start_key = response.get("LastEvaluatedKey", None)
 done = start_key is None
 except ClientError as err:
 logger.error(
 "Couldn't scan for movies. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

 return movies

Actions API Version 2012-08-10 2109

Amazon DynamoDB Developer Guide

• For API details, see Scan in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Scans for movies that were released in a range of years.
 # Uses a projection expression to return a subset of data for each movie.
 #
 # @param year_range [Hash] The range of years to retrieve.
 # @return [Array] The list of movies released in the specified years.
 def scan_items(year_range)
 movies = []
 scan_hash = {
 filter_expression: '#yr between :start_yr and :end_yr',
 projection_expression: '#yr, title, info.rating',
 expression_attribute_names: { '#yr' => 'year' },
 expression_attribute_values: {
 ':start_yr' => year_range[:start], ':end_yr' => year_range[:end]
 }
 }
 done = false
 start_key = nil
 until done
 scan_hash[:exclusive_start_key] = start_key unless start_key.nil?

Actions API Version 2012-08-10 2110

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 response = @table.scan(scan_hash)
 movies.concat(response.items) unless response.items.empty?
 start_key = response.last_evaluated_key
 done = start_key.nil?
 end
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't scan for movies. Here's why:")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 movies
 end

• For API details, see Scan in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

pub async fn list_items(client: &Client, table: &str, page_size: Option<i32>) ->
 Result<(), Error> {
 let page_size = page_size.unwrap_or(10);
 let items: Result<Vec<_>, _> = client
 .scan()
 .table_name(table)
 .limit(page_size)
 .into_paginator()
 .items()
 .send()
 .collect()
 .await;

 println!("Items in table (up to {page_size}):");
 for item in items? {
 println!(" {:?}", item);

Actions API Version 2012-08-10 2111

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/Scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }

 Ok(())
}

• For API details, see Scan in Amazon SDK for Rust API reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 " Scan movies for rating greater than or equal to the rating specified
 DATA(lt_attributelist) = VALUE /aws1/
cl_dynattributevalue=>tt_attributevaluelist(
 (NEW /aws1/cl_dynattributevalue(iv_n = |{ iv_rating }|))).
 DATA(lt_filter_conditions) = VALUE /aws1/
cl_dyncondition=>tt_filterconditionmap(
 (VALUE /aws1/cl_dyncondition=>ts_filterconditionmap_maprow(
 key = 'rating'
 value = NEW /aws1/cl_dyncondition(
 it_attributevaluelist = lt_attributelist
 iv_comparisonoperator = |GE|
)))).
 oo_scan_result = lo_dyn->scan(iv_tablename = iv_table_name
 it_scanfilter = lt_filter_conditions).
 DATA(lt_items) = oo_scan_result->get_items().
 LOOP AT lt_items INTO DATA(lo_item).
 " You can loop over to get individual attributes.
 DATA(lo_title) = lo_item[key = 'title']-value.
 DATA(lo_year) = lo_item[key = 'year']-value.
 ENDLOOP.
 DATA(lv_count) = oo_scan_result->get_count().
 MESSAGE 'Found ' && lv_count && ' items' TYPE 'I'.
 CATCH /aws1/cx_dynresourcenotfoundex.

Actions API Version 2012-08-10 2112

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.scan
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

 MESSAGE 'The table or index does not exist' TYPE 'E'.
 ENDTRY.

• For API details, see Scan in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Return an array of `Movie` objects released in the specified range of
 /// years.
 ///
 /// - Parameters:
 /// - firstYear: The first year of movies to return.
 /// - lastYear: The last year of movies to return.
 /// - startKey: A starting point to resume processing; always use `nil`.
 ///
 /// - Returns: An array of `Movie` objects describing the matching movies.
 ///
 /// > Note: The `startKey` parameter is used by this function when
 /// recursively calling itself, and should always be `nil` when calling
 /// directly.
 ///
 func getMovies(firstYear: Int, lastYear: Int,
 startKey: [Swift.String: DynamoDBClientTypes.AttributeValue]?
 = nil)
 async throws -> [Movie]
 {
 do {
 var movieList: [Movie] = []

 guard let client = self.ddbClient else {

Actions API Version 2012-08-10 2113

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 throw MoviesError.UninitializedClient
 }

 let input = ScanInput(
 consistentRead: true,
 exclusiveStartKey: startKey,
 expressionAttributeNames: [
 "#y": "year" // `year` is a reserved word, so use `#y`
 instead.
],
 expressionAttributeValues: [
 ":y1": .n(String(firstYear)),
 ":y2": .n(String(lastYear))
],
 filterExpression: "#y BETWEEN :y1 AND :y2",
 tableName: self.tableName
)

 let pages = client.scanPaginated(input: input)

 for try await page in pages {
 guard let items = page.items else {
 print("Error: no items returned.")
 continue
 }

 // Build an array of `Movie` objects for the returned items.

 for item in items {
 let movie = try Movie(withItem: item)
 movieList.append(movie)
 }
 }
 return movieList

 } catch {
 print("ERROR: getMovies with scan:", dump(error))
 throw error
 }
 }

• For API details, see Scan in Amazon SDK for Swift API reference.

Actions API Version 2012-08-10 2114

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/scan(input:)

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateItem with an Amazon SDK or CLI

The following code examples show how to use UpdateItem.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Learn the basics

• Conditionally update an item's TTL

• Count expression operators

• Create and manage MRSC global tables

• Perform list operations

• Perform map operations

• Perform set operations

• Understand update expression order

• Update an item's TTL

• Use atomic counter operations

• Use conditional operations

• Use expression attribute names

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>

Actions API Version 2012-08-10 2115

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/DynamoDB#code-examples

Amazon DynamoDB Developer Guide

 /// Updates an existing item in the movies table.
 /// </summary>
 /// <param name="newMovie">A Movie object containing information for
 /// the movie to update.</param>
 /// <param name="newInfo">A MovieInfo object that contains the
 /// information that will be changed.</param>
 /// <param name="tableName">The name of the table that contains the movie.</
param>
 /// <returns>A Boolean value that indicates the success of the operation.</
returns>
 public async Task<bool> UpdateItemAsync(
 Movie newMovie,
 MovieInfo newInfo,
 string tableName)
 {
 try
 {
 var key = new Dictionary<string, AttributeValue>
 {
 ["title"] = new AttributeValue { S = newMovie.Title },
 ["year"] = new AttributeValue { N = newMovie.Year.ToString() },
 };
 var updates = new Dictionary<string, AttributeValueUpdate>
 {
 ["info.plot"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { S = newInfo.Plot },
 },

 ["info.rating"] = new AttributeValueUpdate
 {
 Action = AttributeAction.PUT,
 Value = new AttributeValue { N = newInfo.Rank.ToString() },
 },
 };

 var request = new UpdateItemRequest
 {
 AttributeUpdates = updates,
 Key = key,
 TableName = tableName,
 };

Actions API Version 2012-08-10 2116

Amazon DynamoDB Developer Guide

 await _amazonDynamoDB.UpdateItemAsync(request);
 return true;
 }
 catch (ResourceNotFoundException ex)
 {
 Console.WriteLine($"Table {tableName} or item was not found.
 {ex.Message}");
 return false;
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine($"An Amazon DynamoDB error occurred while updating
 item. {ex.Message}");
 throw;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"An error occurred while updating item.
 {ex.Message}");
 throw;
 }
 }

• For API details, see UpdateItem in Amazon SDK for .NET API Reference.

Bash

Amazon CLI with Bash script

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

##
function dynamodb_update_item
#
This function updates an item in a DynamoDB table.
#

Actions API Version 2012-08-10 2117

https://docs.amazonaws.cn/goto/DotNetSDKV4/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/aws-cli/bash-linux/dynamodb#code-examples

Amazon DynamoDB Developer Guide

#
Parameters:
-n table_name -- The name of the table.
-k keys -- Path to json file containing the keys that identify the item
 to update.
-e update expression -- An expression that defines one or more
 attributes to be updated.
-v values -- Path to json file containing the update values.
#
Returns:
0 - If successful.
1 - If it fails.
###
function dynamodb_update_item() {
 local table_name keys update_expression values response
 local option OPTARG # Required to use getopts command in a function.

 #######################################
 # Function usage explanation
 #######################################
 function usage() {
 echo "function dynamodb_update_item"
 echo "Update an item in a DynamoDB table."
 echo " -n table_name -- The name of the table."
 echo " -k keys -- Path to json file containing the keys that identify the
 item to update."
 echo " -e update expression -- An expression that defines one or more
 attributes to be updated."
 echo " -v values -- Path to json file containing the update values."
 echo ""
 }

 while getopts "n:k:e:v:h" option; do
 case "${option}" in
 n) table_name="${OPTARG}" ;;
 k) keys="${OPTARG}" ;;
 e) update_expression="${OPTARG}" ;;
 v) values="${OPTARG}" ;;
 h)
 usage
 return 0
 ;;
 \?)
 echo "Invalid parameter"

Actions API Version 2012-08-10 2118

Amazon DynamoDB Developer Guide

 usage
 return 1
 ;;
 esac
 done
 export OPTIND=1

 if [[-z "$table_name"]]; then
 errecho "ERROR: You must provide a table name with the -n parameter."
 usage
 return 1
 fi

 if [[-z "$keys"]]; then
 errecho "ERROR: You must provide a keys json file path the -k parameter."
 usage
 return 1
 fi
 if [[-z "$update_expression"]]; then
 errecho "ERROR: You must provide an update expression with the -e parameter."
 usage
 return 1
 fi

 if [[-z "$values"]]; then
 errecho "ERROR: You must provide a values json file path the -v parameter."
 usage
 return 1
 fi

 iecho "Parameters:\n"
 iecho " table_name: $table_name"
 iecho " keys: $keys"
 iecho " update_expression: $update_expression"
 iecho " values: $values"

 response=$(aws dynamodb update-item \
 --table-name "$table_name" \
 --key file://"$keys" \
 --update-expression "$update_expression" \
 --expression-attribute-values file://"$values")

 local error_code=${?}

Actions API Version 2012-08-10 2119

Amazon DynamoDB Developer Guide

 if [[$error_code -ne 0]]; then
 aws_cli_error_log $error_code
 errecho "ERROR: AWS reports update-item operation failed.$response"
 return 1
 fi

 return 0

}

The utility functions used in this example.

###
function iecho
#
This function enables the script to display the specified text only if
the global variable $VERBOSE is set to true.
###
function iecho() {
 if [[$VERBOSE == true]]; then
 echo "$@"
 fi
}

###
function errecho
#
This function outputs everything sent to it to STDERR (standard error output).
###
function errecho() {
 printf "%s\n" "$*" 1>&2
}

##
function aws_cli_error_log()
#
This function is used to log the error messages from the AWS CLI.
#
See https://docs.aws.amazon.com/cli/latest/topic/return-codes.html#cli-aws-
help-return-codes.
#
The function expects the following argument:

Actions API Version 2012-08-10 2120

Amazon DynamoDB Developer Guide

$1 - The error code returned by the AWS CLI.
#
Returns:
0: - Success.
#
##
function aws_cli_error_log() {
 local err_code=$1
 errecho "Error code : $err_code"
 if ["$err_code" == 1]; then
 errecho " One or more S3 transfers failed."
 elif ["$err_code" == 2]; then
 errecho " Command line failed to parse."
 elif ["$err_code" == 130]; then
 errecho " Process received SIGINT."
 elif ["$err_code" == 252]; then
 errecho " Command syntax invalid."
 elif ["$err_code" == 253]; then
 errecho " The system environment or configuration was invalid."
 elif ["$err_code" == 254]; then
 errecho " The service returned an error."
 elif ["$err_code" == 255]; then
 errecho " 255 is a catch-all error."
 fi

 return 0
}

• For API details, see UpdateItem in Amazon CLI Command Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Update an Amazon DynamoDB table item.

Actions API Version 2012-08-10 2121

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

/*!
 \sa updateItem()
 \param tableName: The table name.
 \param partitionKey: The partition key.
 \param partitionValue: The value for the partition key.
 \param attributeKey: The key for the attribute to be updated.
 \param attributeValue: The value for the attribute to be updated.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */

/*
 * The example code only sets/updates an attribute value. It processes
 * the attribute value as a string, even if the value could be interpreted
 * as a number. Also, the example code does not remove an existing attribute
 * from the key value.
 */

bool AwsDoc::DynamoDB::updateItem(const Aws::String &tableName,
 const Aws::String &partitionKey,
 const Aws::String &partitionValue,
 const Aws::String &attributeKey,
 const Aws::String &attributeValue,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 // *** Define UpdateItem request arguments.
 // Define TableName argument.
 Aws::DynamoDB::Model::UpdateItemRequest request;
 request.SetTableName(tableName);

 // Define KeyName argument.
 Aws::DynamoDB::Model::AttributeValue attribValue;
 attribValue.SetS(partitionValue);
 request.AddKey(partitionKey, attribValue);

 // Construct the SET update expression argument.
 Aws::String update_expression("SET #a = :valueA");
 request.SetUpdateExpression(update_expression);

 // Construct attribute name argument.
 Aws::Map<Aws::String, Aws::String> expressionAttributeNames;
 expressionAttributeNames["#a"] = attributeKey;

Actions API Version 2012-08-10 2122

Amazon DynamoDB Developer Guide

 request.SetExpressionAttributeNames(expressionAttributeNames);

 // Construct attribute value argument.
 Aws::DynamoDB::Model::AttributeValue attributeUpdatedValue;
 attributeUpdatedValue.SetS(attributeValue);
 Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 expressionAttributeValues;
 expressionAttributeValues[":valueA"] = attributeUpdatedValue;
 request.SetExpressionAttributeValues(expressionAttributeValues);

 // Update the item.
 const Aws::DynamoDB::Model::UpdateItemOutcome &outcome =
 dynamoClient.UpdateItem(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Item was updated" << std::endl;
 } else {
 std::cerr << outcome.GetError().GetMessage() << std::endl;
 return false;
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

Actions API Version 2012-08-10 2123

Amazon DynamoDB Developer Guide

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

• For API details, see UpdateItem in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To update an item in a table

The following update-item example updates an item in the MusicCollection table. It
adds a new attribute (Year) and modifies the AlbumTitle attribute. All of the attributes in
the item, as they appear after the update, are returned in the response.

aws dynamodb update-item \
 --table-name MusicCollection \
 --key file://key.json \
 --update-expression "SET #Y = :y, #AT = :t" \

Actions API Version 2012-08-10 2124

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 --expression-attribute-names file://expression-attribute-names.json \
 --expression-attribute-values file://expression-attribute-values.json \
 --return-values ALL_NEW \
 --return-consumed-capacity TOTAL \
 --return-item-collection-metrics SIZE

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Contents of expression-attribute-names.json:

{
 "#Y":"Year", "#AT":"AlbumTitle"
}

Contents of expression-attribute-values.json:

{
 ":y":{"N": "2015"},
 ":t":{"S": "Louder Than Ever"}
}

Output:

{
 "Attributes": {
 "AlbumTitle": {
 "S": "Louder Than Ever"
 },
 "Awards": {
 "N": "10"
 },
 "Artist": {
 "S": "Acme Band"
 },
 "Year": {
 "N": "2015"
 },

Actions API Version 2012-08-10 2125

Amazon DynamoDB Developer Guide

 "SongTitle": {
 "S": "Happy Day"
 }
 },
 "ConsumedCapacity": {
 "TableName": "MusicCollection",
 "CapacityUnits": 3.0
 },
 "ItemCollectionMetrics": {
 "ItemCollectionKey": {
 "Artist": {
 "S": "Acme Band"
 }
 },
 "SizeEstimateRangeGB": [
 0.0,
 1.0
]
 }
}

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

Example 2: To update an item conditionally

The following example updates an item in the MusicCollection table, but only if the
existing item does not already have a Year attribute.

aws dynamodb update-item \
 --table-name MusicCollection \
 --key file://key.json \
 --update-expression "SET #Y = :y, #AT = :t" \
 --expression-attribute-names file://expression-attribute-names.json \
 --expression-attribute-values file://expression-attribute-values.json \
 --condition-expression "attribute_not_exists(#Y)"

Contents of key.json:

{
 "Artist": {"S": "Acme Band"},
 "SongTitle": {"S": "Happy Day"}
}

Actions API Version 2012-08-10 2126

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData

Amazon DynamoDB Developer Guide

Contents of expression-attribute-names.json:

{
 "#Y":"Year",
 "#AT":"AlbumTitle"
}

Contents of expression-attribute-values.json:

{
 ":y":{"N": "2015"},
 ":t":{"S": "Louder Than Ever"}
}

If the item already has a Year attribute, DynamoDB returns the following output.

An error occurred (ConditionalCheckFailedException) when calling the UpdateItem
 operation: The conditional request failed

For more information, see Writing an Item in the Amazon DynamoDB Developer Guide.

• For API details, see UpdateItem in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"

Actions API Version 2012-08-10 2127

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithItems.html#WorkingWithItems.WritingData
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/update-item.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// TableBasics encapsulates the Amazon DynamoDB service actions used in the
 examples.
// It contains a DynamoDB service client that is used to act on the specified
 table.
type TableBasics struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// UpdateMovie updates the rating and plot of a movie that already exists in the
// DynamoDB table. This function uses the `expression` package to build the
 update
// expression.
func (basics TableBasics) UpdateMovie(ctx context.Context, movie Movie)
 (map[string]map[string]interface{}, error) {
 var err error
 var response *dynamodb.UpdateItemOutput
 var attributeMap map[string]map[string]interface{}
 update := expression.Set(expression.Name("info.rating"),
 expression.Value(movie.Info["rating"]))
 update.Set(expression.Name("info.plot"), expression.Value(movie.Info["plot"]))
 expr, err := expression.NewBuilder().WithUpdate(update).Build()
 if err != nil {
 log.Printf("Couldn't build expression for update. Here's why: %v\n", err)
 } else {
 response, err = basics.DynamoDbClient.UpdateItem(ctx,
 &dynamodb.UpdateItemInput{
 TableName: aws.String(basics.TableName),
 Key: movie.GetKey(),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 UpdateExpression: expr.Update(),
 ReturnValues: types.ReturnValueUpdatedNew,
 })
 if err != nil {
 log.Printf("Couldn't update movie %v. Here's why: %v\n", movie.Title, err)

Actions API Version 2012-08-10 2128

Amazon DynamoDB Developer Guide

 } else {
 err = attributevalue.UnmarshalMap(response.Attributes, &attributeMap)
 if err != nil {
 log.Printf("Couldn't unmarshall update response. Here's why: %v\n", err)
 }
 }
 }
 return attributeMap, err
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)

Actions API Version 2012-08-10 2129

Amazon DynamoDB Developer Guide

 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

• For API details, see UpdateItem in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Updates an item in a table using DynamoDbClient.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.AttributeAction;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.AttributeValueUpdate;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import java.util.HashMap;

Actions API Version 2012-08-10 2130

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples
http://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/dynamodb/DynamoDbClient.html

Amazon DynamoDB Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * To update an Amazon DynamoDB table using the AWS SDK for Java V2, its better
 * practice to use the
 * Enhanced Client, See the EnhancedModifyItem example.
 */
public class UpdateItem {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableName> <key> <keyVal> <name> <updateVal>

 Where:
 tableName - The Amazon DynamoDB table (for example, Music3).
 key - The name of the key in the table (for example, Artist).
 keyVal - The value of the key (for example, Famous Band).
 name - The name of the column where the value is updated (for
 example, Awards).
 updateVal - The value used to update an item (for example,
 14).
 Example:
 UpdateItem Music3 Artist Famous Band Awards 14
 """;

 if (args.length != 5) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableName = args[0];
 String key = args[1];
 String keyVal = args[2];
 String name = args[3];
 String updateVal = args[4];

 Region region = Region.US_EAST_1;

Actions API Version 2012-08-10 2131

Amazon DynamoDB Developer Guide

 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();
 updateTableItem(ddb, tableName, key, keyVal, name, updateVal);
 ddb.close();
 }

 public static void updateTableItem(DynamoDbClient ddb,
 String tableName,
 String key,
 String keyVal,
 String name,
 String updateVal) {

 HashMap<String, AttributeValue> itemKey = new HashMap<>();
 itemKey.put(key, AttributeValue.builder()
 .s(keyVal)
 .build());

 HashMap<String, AttributeValueUpdate> updatedValues = new HashMap<>();
 updatedValues.put(name, AttributeValueUpdate.builder()
 .value(AttributeValue.builder().s(updateVal).build())
 .action(AttributeAction.PUT)
 .build());

 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(itemKey)
 .attributeUpdates(updatedValues)
 .build();

 try {
 ddb.updateItem(request);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println("The Amazon DynamoDB table was updated!");
 }
}

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

Actions API Version 2012-08-10 2132

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example uses the document client to simplify working with items in DynamoDB. For API
details see UpdateCommand.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import { DynamoDBDocumentClient, UpdateCommand } from "@aws-sdk/lib-dynamodb";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

export const main = async () => {
 const command = new UpdateCommand({
 TableName: "Dogs",
 Key: {
 Breed: "Labrador",
 },
 UpdateExpression: "set Color = :color",
 ExpressionAttributeValues: {
 ":color": "black",
 },
 ReturnValues: "ALL_NEW",
 });

 const response = await docClient.send(command);
 console.log(response);
 return response;
};

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Actions API Version 2012-08-10 2133

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/Package/-aws-sdk-lib-dynamodb/Class/UpdateCommand/
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun updateTableItem(
 tableNameVal: String,
 keyName: String,
 keyVal: String,
 name: String,
 updateVal: String,
) {
 val itemKey = mutableMapOf<String, AttributeValue>()
 itemKey[keyName] = AttributeValue.S(keyVal)

 val updatedValues = mutableMapOf<String, AttributeValueUpdate>()
 updatedValues[name] =
 AttributeValueUpdate {
 value = AttributeValue.S(updateVal)
 action = AttributeAction.Put
 }

 val request =
 UpdateItemRequest {
 tableName = tableNameVal
 key = itemKey
 attributeUpdates = updatedValues
 }

 DynamoDbClient.fromEnvironment { region = "us-east-1" }.use { ddb ->
 ddb.updateItem(request)
 println("Item in $tableNameVal was updated")
 }
}

• For API details, see UpdateItem in Amazon SDK for Kotlin API reference.

Actions API Version 2012-08-10 2134

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 echo "What rating would you like to give {$movie['Item']['title']['S']}?
\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 $service->updateItemAttributeByKey($tableName, $key, 'rating', 'N',
 $rating);

 public function updateItemAttributeByKey(
 string $tableName,
 array $key,
 string $attributeName,
 string $attributeType,
 string $newValue
) {
 $this->dynamoDbClient->updateItem([
 'Key' => $key['Item'],
 'TableName' => $tableName,
 'UpdateExpression' => "set #NV=:NV",
 'ExpressionAttributeNames' => [
 '#NV' => $attributeName,
],
 'ExpressionAttributeValues' => [
 ':NV' => [
 $attributeType => $newValue
]
],
]);
 }

Actions API Version 2012-08-10 2135

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

• For API details, see UpdateItem in Amazon SDK for PHP API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Sets the genre attribute to 'Rap' on the DynamoDB item with the partition
key SongTitle and the sort key Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

$updateDdbItem = @{
 TableName = 'Music'
 Key = $key
 UpdateExpression = 'set Genre = :val1'
 ExpressionAttributeValue = (@{
 ':val1' = ([Amazon.DynamoDBv2.Model.AttributeValue]'Rap')
 })
}
Update-DDBItem @updateDdbItem

Output:

Name Value
---- -----
Genre Rap

• For API details, see UpdateItem in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Sets the genre attribute to 'Rap' on the DynamoDB item with the partition
key SongTitle and the sort key Artist.

$key = @{
 SongTitle = 'Somewhere Down The Road'
 Artist = 'No One You Know'
} | ConvertTo-DDBItem

Actions API Version 2012-08-10 2136

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/UpdateItem
https://docs.aws.amazon.com/powershell/v4/reference

Amazon DynamoDB Developer Guide

$updateDdbItem = @{
 TableName = 'Music'
 Key = $key
 UpdateExpression = 'set Genre = :val1'
 ExpressionAttributeValue = (@{
 ':val1' = ([Amazon.DynamoDBv2.Model.AttributeValue]'Rap')
 })
}
Update-DDBItem @updateDdbItem

Output:

Name Value
---- -----
Genre Rap

• For API details, see UpdateItem in Amazon Tools for PowerShell Cmdlet Reference (V5).

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Update an item by using an update expression.

class Movies:
 """Encapsulates an Amazon DynamoDB table of movie data.

 Example data structure for a movie record in this table:
 {
 "year": 1999,
 "title": "For Love of the Game",
 "info": {
 "directors": ["Sam Raimi"],
 "release_date": "1999-09-15T00:00:00Z",
 "rating": 6.3,

Actions API Version 2012-08-10 2137

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 "plot": "A washed up pitcher flashes through his career.",
 "rank": 4987,
 "running_time_secs": 8220,
 "actors": [
 "Kevin Costner",
 "Kelly Preston",
 "John C. Reilly"
]
 }
 }
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource
 # The table variable is set during the scenario in the call to
 # 'exists' if the table exists. Otherwise, it is set by 'create_table'.
 self.table = None

 def update_movie(self, title, year, rating, plot):
 """
 Updates rating and plot data for a movie in the table.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param rating: The updated rating to the give the movie.
 :param plot: The updated plot summary to give the movie.
 :return: The fields that were updated, with their new values.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="set info.rating=:r, info.plot=:p",
 ExpressionAttributeValues={":r": Decimal(str(rating)), ":p":
 plot},
 ReturnValues="UPDATED_NEW",
)
 except ClientError as err:
 logger.error(
 "Couldn't update movie %s in table %s. Here's why: %s: %s",
 title,

Actions API Version 2012-08-10 2138

Amazon DynamoDB Developer Guide

 self.table.name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

Update an item by using an update expression that includes an arithmetic operation.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

 def update_rating(self, title, year, rating_change):
 """
 Updates the quality rating of a movie in the table by using an arithmetic
 operation in the update expression. By specifying an arithmetic
 operation,
 you can adjust a value in a single request, rather than first getting its
 value and then setting its new value.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param rating_change: The amount to add to the current rating for the
 movie.
 :return: The updated rating.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="set info.rating = info.rating + :val",
 ExpressionAttributeValues={":val": Decimal(str(rating_change))},
 ReturnValues="UPDATED_NEW",
)
 except ClientError as err:
 logger.error(
 "Couldn't update movie %s in table %s. Here's why: %s: %s",
 title,
 self.table.name,

Actions API Version 2012-08-10 2139

Amazon DynamoDB Developer Guide

 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

Update an item only when it meets certain conditions.

class UpdateQueryWrapper:
 def __init__(self, table):
 self.table = table

 def remove_actors(self, title, year, actor_threshold):
 """
 Removes an actor from a movie, but only when the number of actors is
 greater
 than a specified threshold. If the movie does not list more than the
 threshold,
 no actors are removed.

 :param title: The title of the movie to update.
 :param year: The release year of the movie to update.
 :param actor_threshold: The threshold of actors to check.
 :return: The movie data after the update.
 """
 try:
 response = self.table.update_item(
 Key={"year": year, "title": title},
 UpdateExpression="remove info.actors[0]",
 ConditionExpression="size(info.actors) > :num",
 ExpressionAttributeValues={":num": actor_threshold},
 ReturnValues="ALL_NEW",
)
 except ClientError as err:
 if err.response["Error"]["Code"] ==
 "ConditionalCheckFailedException":
 logger.warning(
 "Didn't update %s because it has fewer than %s actors.",
 title,

Actions API Version 2012-08-10 2140

Amazon DynamoDB Developer Guide

 actor_threshold + 1,
)
 else:
 logger.error(
 "Couldn't update movie %s. Here's why: %s: %s",
 title,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return response["Attributes"]

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class DynamoDBBasics
 attr_reader :dynamo_resource, :table

 def initialize(table_name)
 client = Aws::DynamoDB::Client.new(region: 'us-east-1')
 @dynamo_resource = Aws::DynamoDB::Resource.new(client: client)
 @table = @dynamo_resource.table(table_name)
 end

 # Updates rating and plot data for a movie in the table.
 #
 # @param movie [Hash] The title, year, plot, rating of the movie.
 def update_item(movie)
 response = @table.update_item(
 key: { 'year' => movie[:year], 'title' => movie[:title] },

Actions API Version 2012-08-10 2141

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 update_expression: 'set info.rating=:r',
 expression_attribute_values: { ':r' => movie[:rating] },
 return_values: 'UPDATED_NEW'
)
 rescue Aws::DynamoDB::Errors::ServiceError => e
 puts("Couldn't update movie #{movie[:title]} (#{movie[:year]}) in table
 #{@table.name}\n")
 puts("\t#{e.code}: #{e.message}")
 raise
 else
 response.attributes
 end

• For API details, see UpdateItem in Amazon SDK for Ruby API Reference.

SAP ABAP

SDK for SAP ABAP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 TRY.
 oo_output = lo_dyn->updateitem(
 iv_tablename = iv_table_name
 it_key = it_item_key
 it_attributeupdates = it_attribute_updates).
 MESSAGE '1 item updated in DynamoDB Table' && iv_table_name TYPE 'I'.
 CATCH /aws1/cx_dyncondalcheckfaile00.
 MESSAGE 'A condition specified in the operation could not be evaluated.'
 TYPE 'E'.
 CATCH /aws1/cx_dynresourcenotfoundex.
 MESSAGE 'The table or index does not exist' TYPE 'E'.
 CATCH /aws1/cx_dyntransactconflictex.
 MESSAGE 'Another transaction is using the item' TYPE 'E'.
 ENDTRY.

Actions API Version 2012-08-10 2142

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/UpdateItem
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap/services/dyn#code-examples

Amazon DynamoDB Developer Guide

• For API details, see UpdateItem in Amazon SDK for SAP ABAP API reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSDynamoDB

 /// Update the specified movie with new `rating` and `plot` information.
 ///
 /// - Parameters:
 /// - title: The title of the movie to update.
 /// - year: The release year of the movie to update.
 /// - rating: The new rating for the movie.
 /// - plot: The new plot summary string for the movie.
 ///
 /// - Returns: An array of mappings of attribute names to their new
 /// listing each item actually changed. Items that didn't need to change
 /// aren't included in this list. `nil` if no changes were made.
 ///
 func update(title: String, year: Int, rating: Double? = nil, plot: String? =
 nil) async throws
 -> [Swift.String: DynamoDBClientTypes.AttributeValue]?
 {
 do {
 guard let client = self.ddbClient else {
 throw MoviesError.UninitializedClient
 }

 // Build the update expression and the list of expression attribute
 // values. Include only the information that's changed.

 var expressionParts: [String] = []
 var attrValues: [Swift.String: DynamoDBClientTypes.AttributeValue] =
 [:]

Actions API Version 2012-08-10 2143

https://docs.amazonaws.cn/sdk-for-sap-abap/v1/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 if rating != nil {
 expressionParts.append("info.rating=:r")
 attrValues[":r"] = .n(String(rating!))
 }
 if plot != nil {
 expressionParts.append("info.plot=:p")
 attrValues[":p"] = .s(plot!)
 }
 let expression = "set \(expressionParts.joined(separator: ", "))"

 let input = UpdateItemInput(
 // Create substitution tokens for the attribute values, to ensure
 // no conflicts in expression syntax.
 expressionAttributeValues: attrValues,
 // The key identifying the movie to update consists of the
 release
 // year and title.
 key: [
 "year": .n(String(year)),
 "title": .s(title)
],
 returnValues: .updatedNew,
 tableName: self.tableName,
 updateExpression: expression
)
 let output = try await client.updateItem(input: input)

 guard let attributes: [Swift.String:
 DynamoDBClientTypes.AttributeValue] = output.attributes else {
 throw MoviesError.InvalidAttributes
 }
 return attributes
 } catch {
 print("ERROR: update:", dump(error))
 throw error
 }
 }

• For API details, see UpdateItem in Amazon SDK for Swift API reference.

Actions API Version 2012-08-10 2144

https://sdk.amazonaws.com/swift/api/awsdynamodb/latest/documentation/awsdynamodb/dynamodbclient/updateitem(input:)

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateTable with an Amazon SDK or CLI

The following code examples show how to use UpdateTable.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Create and manage global tables demonstrating MREC

• Create and manage MRSC global tables

• Manage Global Secondary Indexes

• Update a table's warm throughput setting

• Work with global tables and multi-Region replication eventual consistency (MREC)

• Work with table encryption

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

//! Update a DynamoDB table.
/*!
 \sa updateTable()
 \param tableName: Name for the DynamoDB table.
 \param readCapacity: Provisioned read capacity.
 \param writeCapacity: Provisioned write capacity.
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::updateTable(const Aws::String &tableName,

Actions API Version 2012-08-10 2145

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 long long readCapacity, long long
 writeCapacity,
 const Aws::Client::ClientConfiguration
 &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 std::cout << "Updating " << tableName << " with new provisioned throughput
 values"
 << std::endl;
 std::cout << "Read capacity : " << readCapacity << std::endl;
 std::cout << "Write capacity: " << writeCapacity << std::endl;

 Aws::DynamoDB::Model::UpdateTableRequest request;
 Aws::DynamoDB::Model::ProvisionedThroughput provisionedThroughput;

 provisionedThroughput.WithReadCapacityUnits(readCapacity).WithWriteCapacityUnits(
 writeCapacity);

 request.WithProvisionedThroughput(provisionedThroughput).WithTableName(tableName);

 const Aws::DynamoDB::Model::UpdateTableOutcome &outcome =
 dynamoClient.UpdateTable(
 request);
 if (outcome.IsSuccess()) {
 std::cout << "Successfully updated the table." << std::endl;
 } else {
 const Aws::DynamoDB::DynamoDBError &error = outcome.GetError();
 if (error.GetErrorType() == Aws::DynamoDB::DynamoDBErrors::VALIDATION &&
 error.GetMessage().find("The provisioned throughput for the table
 will not change") != std::string::npos) {
 std::cout << "The provisioned throughput for the table will not
 change." << std::endl;
 } else {
 std::cerr << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 return waitTableActive(tableName, dynamoClient);
}

Code that waits for the table to become active.

Actions API Version 2012-08-10 2146

Amazon DynamoDB Developer Guide

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

Actions API Version 2012-08-10 2147

Amazon DynamoDB Developer Guide

• For API details, see UpdateTable in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

Example 1: To modify a table's billing mode

The following update-table example increases the provisioned read and write capacity on
the MusicCollection table.

aws dynamodb update-table \
 --table-name MusicCollection \
 --billing-mode PROVISIONED \
 --provisioned-throughput ReadCapacityUnits=15,WriteCapacityUnits=10

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",

Actions API Version 2012-08-10 2148

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

 "KeyType": "RANGE"
 }
],
 "TableStatus": "UPDATING",
 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "LastIncreaseDateTime": "2020-07-28T13:18:18.921000-07:00",
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 15,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 182,
 "ItemCount": 2,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "abcd0123-01ab-23cd-0123-abcdef123456",
 "BillingModeSummary": {
 "BillingMode": "PROVISIONED",
 "LastUpdateToPayPerRequestDateTime":
 "2020-07-28T13:14:48.366000-07:00"
 }
 }
}

For more information, see Updating a Table in the Amazon DynamoDB Developer Guide.

Example 2: To create a global secondary index

The following example adds a global secondary index to the MusicCollection table.

aws dynamodb update-table \
 --table-name MusicCollection \
 --attribute-definitions AttributeName=AlbumTitle,AttributeType=S \
 --global-secondary-index-updates file://gsi-updates.json

Contents of gsi-updates.json:

[
 {
 "Create": {
 "IndexName": "AlbumTitle-index",
 "KeySchema": [
 {

Actions API Version 2012-08-10 2149

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.UpdateTable

Amazon DynamoDB Developer Guide

 "AttributeName": "AlbumTitle",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "Projection": {
 "ProjectionType": "ALL"
 }
 }
 }
]

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }

Actions API Version 2012-08-10 2150

Amazon DynamoDB Developer Guide

],
 "TableStatus": "UPDATING",
 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "LastIncreaseDateTime": "2020-07-28T12:59:17.537000-07:00",
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 15,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 182,
 "ItemCount": 2,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "abcd0123-01ab-23cd-0123-abcdef123456",
 "BillingModeSummary": {
 "BillingMode": "PROVISIONED",
 "LastUpdateToPayPerRequestDateTime":
 "2020-07-28T13:14:48.366000-07:00"
 },
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitle-index",
 "KeySchema": [
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "HASH"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "CREATING",
 "Backfilling": false,
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitle-index"
 }
]

Actions API Version 2012-08-10 2151

Amazon DynamoDB Developer Guide

 }
}

For more information, see Updating a Table in the Amazon DynamoDB Developer Guide.

Example 3: To enable DynamoDB Streams on a table

The following command enables DynamoDB Streams on the MusicCollection table.

aws dynamodb update-table \
 --table-name MusicCollection \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_IMAGE

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "UPDATING",

Actions API Version 2012-08-10 2152

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.UpdateTable

Amazon DynamoDB Developer Guide

 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "LastIncreaseDateTime": "2020-07-28T12:59:17.537000-07:00",
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 15,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 182,
 "ItemCount": 2,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "abcd0123-01ab-23cd-0123-abcdef123456",
 "BillingModeSummary": {
 "BillingMode": "PROVISIONED",
 "LastUpdateToPayPerRequestDateTime":
 "2020-07-28T13:14:48.366000-07:00"
 },
 "LocalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "Year",
 "Genre"
]
 },
 "IndexSizeBytes": 139,
 "ItemCount": 2,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitleIndex"
 }
],
 "GlobalSecondaryIndexes": [

Actions API Version 2012-08-10 2153

Amazon DynamoDB Developer Guide

 {
 "IndexName": "AlbumTitle-index",
 "KeySchema": [
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "HASH"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "ACTIVE",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitle-index"
 }
],
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "NEW_IMAGE"
 },
 "LatestStreamLabel": "2020-07-28T21:53:39.112",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/stream/2020-07-28T21:53:39.112"
 }
}

For more information, see Updating a Table in the Amazon DynamoDB Developer Guide.

Example 4: To enable server-side encryption

The following example enables server-side encryption on the MusicCollection table.

aws dynamodb update-table \
 --table-name MusicCollection \
 --sse-specification Enabled=true,SSEType=KMS

Actions API Version 2012-08-10 2154

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.UpdateTable

Amazon DynamoDB Developer Guide

Output:

{
 "TableDescription": {
 "AttributeDefinitions": [
 {
 "AttributeName": "AlbumTitle",
 "AttributeType": "S"
 },
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 },
 {
 "AttributeName": "SongTitle",
 "AttributeType": "S"
 }
],
 "TableName": "MusicCollection",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "SongTitle",
 "KeyType": "RANGE"
 }
],
 "TableStatus": "ACTIVE",
 "CreationDateTime": "2020-05-26T15:59:49.473000-07:00",
 "ProvisionedThroughput": {
 "LastIncreaseDateTime": "2020-07-28T12:59:17.537000-07:00",
 "NumberOfDecreasesToday": 0,
 "ReadCapacityUnits": 15,
 "WriteCapacityUnits": 10
 },
 "TableSizeBytes": 182,
 "ItemCount": 2,
 "TableArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection",
 "TableId": "abcd0123-01ab-23cd-0123-abcdef123456",
 "BillingModeSummary": {
 "BillingMode": "PROVISIONED",

Actions API Version 2012-08-10 2155

Amazon DynamoDB Developer Guide

 "LastUpdateToPayPerRequestDateTime":
 "2020-07-28T13:14:48.366000-07:00"
 },
 "LocalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitleIndex",
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 },
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "RANGE"
 }
],
 "Projection": {
 "ProjectionType": "INCLUDE",
 "NonKeyAttributes": [
 "Year",
 "Genre"
]
 },
 "IndexSizeBytes": 139,
 "ItemCount": 2,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitleIndex"
 }
],
 "GlobalSecondaryIndexes": [
 {
 "IndexName": "AlbumTitle-index",
 "KeySchema": [
 {
 "AttributeName": "AlbumTitle",
 "KeyType": "HASH"
 }
],
 "Projection": {
 "ProjectionType": "ALL"
 },
 "IndexStatus": "ACTIVE",
 "ProvisionedThroughput": {
 "NumberOfDecreasesToday": 0,

Actions API Version 2012-08-10 2156

Amazon DynamoDB Developer Guide

 "ReadCapacityUnits": 10,
 "WriteCapacityUnits": 10
 },
 "IndexSizeBytes": 0,
 "ItemCount": 0,
 "IndexArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/index/AlbumTitle-index"
 }
],
 "StreamSpecification": {
 "StreamEnabled": true,
 "StreamViewType": "NEW_IMAGE"
 },
 "LatestStreamLabel": "2020-07-28T21:53:39.112",
 "LatestStreamArn": "arn:aws:dynamodb:us-west-2:123456789012:table/
MusicCollection/stream/2020-07-28T21:53:39.112",
 "SSEDescription": {
 "Status": "UPDATING"
 }
 }
}

For more information, see Updating a Table in the Amazon DynamoDB Developer Guide.

• For API details, see UpdateTable in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Updates the provisioned throughput for the given table.

Update-DDBTable -TableName "myTable" -ReadCapacity 10 -WriteCapacity 5

• For API details, see UpdateTable in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Updates the provisioned throughput for the given table.

Update-DDBTable -TableName "myTable" -ReadCapacity 10 -WriteCapacity 5

• For API details, see UpdateTable in Amazon Tools for PowerShell Cmdlet Reference (V5).

Actions API Version 2012-08-10 2157

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.UpdateTable
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/update-table.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateTimeToLive with an Amazon SDK or CLI

The following code examples show how to use UpdateTimeToLive.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Work with Streams and Time-to-Live

CLI

Amazon CLI

To update Time to Live settings on a table

The following update-time-to-live example enables Time to Live on the specified table.

aws dynamodb update-time-to-live \
 --table-name MusicCollection \
 --time-to-live-specification Enabled=true,AttributeName=ttl

Output:

{
 "TimeToLiveSpecification": {
 "Enabled": true,
 "AttributeName": "ttl"
 }
}

For more information, see Time to Live in the Amazon DynamoDB Developer Guide.

• For API details, see UpdateTimeToLive in Amazon CLI Command Reference.

Actions API Version 2012-08-10 2158

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/update-time-to-live.html

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Enable TTL on an existing DynamoDB table using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.TimeToLiveSpecification;
import software.amazon.awssdk.services.dynamodb.model.UpdateTimeToLiveRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateTimeToLiveResponse;

import java.util.logging.Level;
import java.util.logging.Logger;

 public UpdateTimeToLiveResponse enableTTL(final String tableName, final
 String attributeName, final Region region) {
 final TimeToLiveSpecification ttlSpec = TimeToLiveSpecification.builder()
 .attributeName(attributeName)
 .enabled(true)
 .build();

 final UpdateTimeToLiveRequest request = UpdateTimeToLiveRequest.builder()
 .tableName(tableName)
 .timeToLiveSpecification(ttlSpec)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 return ddb.updateTimeToLive(request);
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }

Actions API Version 2012-08-10 2159

Amazon DynamoDB Developer Guide

Disable TTL on an existing DynamoDB table using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.TimeToLiveSpecification;
import software.amazon.awssdk.services.dynamodb.model.UpdateTimeToLiveRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateTimeToLiveResponse;

import java.util.logging.Level;
import java.util.logging.Logger;

 public UpdateTimeToLiveResponse disableTTL(
 final String tableName, final String attributeName, final Region region)
 {
 final TimeToLiveSpecification ttlSpec = TimeToLiveSpecification.builder()
 .attributeName(attributeName)
 .enabled(false)
 .build();

 final UpdateTimeToLiveRequest request = UpdateTimeToLiveRequest.builder()
 .tableName(tableName)
 .timeToLiveSpecification(ttlSpec)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 return ddb.updateTimeToLive(request);
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }

• For API details, see UpdateTimeToLive in Amazon SDK for Java 2.x API Reference.

Actions API Version 2012-08-10 2160

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTimeToLive

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Enable TTL on an existing DynamoDB table.

import { DynamoDBClient, UpdateTimeToLiveCommand } from "@aws-sdk/client-
dynamodb";

export const enableTTL = async (tableName, ttlAttribute, region = 'us-east-1') =>
 {

 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const params = {
 TableName: tableName,
 TimeToLiveSpecification: {
 Enabled: true,
 AttributeName: ttlAttribute
 }
 };

 try {
 const response = await client.send(new UpdateTimeToLiveCommand(params));
 if (response.$metadata.httpStatusCode === 200) {
 console.log(`TTL enabled successfully for table ${tableName}, using
 attribute name ${ttlAttribute}.`);
 } else {
 console.log(`Failed to enable TTL for table ${tableName}, response
 object: ${response}`);
 }
 return response;
 } catch (e) {
 console.error(`Error enabling TTL: ${e}`);
 throw e;
 }
};

// Example usage (commented out for testing)
// enableTTL('ExampleTable', 'exampleTtlAttribute');

Actions API Version 2012-08-10 2161

Amazon DynamoDB Developer Guide

Disable TTL on an existing DynamoDB table.

import { DynamoDBClient, UpdateTimeToLiveCommand } from "@aws-sdk/client-
dynamodb";

export const disableTTL = async (tableName, ttlAttribute, region = 'us-east-1')
 => {

 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const params = {
 TableName: tableName,
 TimeToLiveSpecification: {
 Enabled: false,
 AttributeName: ttlAttribute
 }
 };

 try {
 const response = await client.send(new UpdateTimeToLiveCommand(params));
 if (response.$metadata.httpStatusCode === 200) {
 console.log(`TTL disabled successfully for table ${tableName}, using
 attribute name ${ttlAttribute}.`);
 } else {
 console.log(`Failed to disable TTL for table ${tableName}, response
 object: ${response}`);
 }
 return response;
 } catch (e) {
 console.error(`Error disabling TTL: ${e}`);
 throw e;
 }
};

// Example usage (commented out for testing)
// disableTTL('ExampleTable', 'exampleTtlAttribute');

• For API details, see UpdateTimeToLive in Amazon SDK for JavaScript API Reference.

Actions API Version 2012-08-10 2162

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateTimeToLiveCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Enable TTL on an existing DynamoDB table.

import boto3

def enable_ttl(table_name, ttl_attribute_name):
 """
 Enables TTL on DynamoDB table for a given attribute name
 on success, returns a status code of 200
 on error, throws an exception

 :param table_name: Name of the DynamoDB table
 :param ttl_attribute_name: The name of the TTL attribute being provided to
 the table.
 """
 try:
 dynamodb = boto3.client("dynamodb")

 # Enable TTL on an existing DynamoDB table
 response = dynamodb.update_time_to_live(
 TableName=table_name,
 TimeToLiveSpecification={"Enabled": True, "AttributeName":
 ttl_attribute_name},
)

 # In the returned response, check for a successful status code.
 if response["ResponseMetadata"]["HTTPStatusCode"] == 200:
 print("TTL has been enabled successfully.")
 else:
 print(
 f"Failed to enable TTL, status code {response['ResponseMetadata']
['HTTPStatusCode']}"
)
 return response
 except Exception as ex:
 print("Couldn't enable TTL in table %s. Here's why: %s" % (table_name,
 ex))
 raise

Actions API Version 2012-08-10 2163

Amazon DynamoDB Developer Guide

your values
enable_ttl("your-table-name", "expireAt")

Disable TTL on an existing DynamoDB table.

import boto3

def disable_ttl(table_name, ttl_attribute_name):
 """
 Disables TTL on DynamoDB table for a given attribute name
 on success, returns a status code of 200
 on error, throws an exception

 :param table_name: Name of the DynamoDB table being modified
 :param ttl_attribute_name: The name of the TTL attribute being provided to
 the table.
 """
 try:
 dynamodb = boto3.client("dynamodb")

 # Enable TTL on an existing DynamoDB table
 response = dynamodb.update_time_to_live(
 TableName=table_name,
 TimeToLiveSpecification={"Enabled": False, "AttributeName":
 ttl_attribute_name},
)

 # In the returned response, check for a successful status code.
 if response["ResponseMetadata"]["HTTPStatusCode"] == 200:
 print("TTL has been disabled successfully.")
 else:
 print(
 f"Failed to disable TTL, status code
 {response['ResponseMetadata']['HTTPStatusCode']}"
)
 except Exception as ex:
 print("Couldn't disable TTL in table %s. Here's why: %s" % (table_name,
 ex))
 raise

Actions API Version 2012-08-10 2164

Amazon DynamoDB Developer Guide

your values
disable_ttl("your-table-name", "expireAt")

• For API details, see UpdateTimeToLive in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios for DynamoDB using Amazon SDKs

The following code examples show you how to implement common scenarios in DynamoDB with
Amazon SDKs. These scenarios show you how to accomplish specific tasks by calling multiple
functions within DynamoDB or combined with other Amazon Web Services services. Each scenario
includes a link to the complete source code, where you can find instructions on how to set up and
run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Accelerate DynamoDB reads with DAX using an Amazon SDK

• Work with advanced DynamoDB Global Secondary Index scenarios using Amazon Command Line
Interface v2

• Build an application to submit data to a DynamoDB table

• Compare multiple values with a single attribute in DynamoDB with an Amazon SDK

• Conditionally update a DynamoDB item with a TTL using an Amazon SDK

• Connect to a local DynamoDB instance using an Amazon SDK

• Count expression operators in DynamoDB with an Amazon SDK

• Create an API Gateway REST API to track COVID-19 data

• Create a messenger application with Step Functions

• Create a photo asset management application that lets users manage photos using labels

• Create a DynamoDB table with a Global Secondary Index using the Amazon SDK

Scenarios API Version 2012-08-10 2165

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateTimeToLive

Amazon DynamoDB Developer Guide

• Create a DynamoDB table with warm throughput setting using an Amazon SDK

• Create a web application to track DynamoDB data

• Create a websocket chat application with API Gateway

• Create a DynamoDB item with a TTL using an Amazon SDK

• Create and manage DynamoDB global tables with Multi-Region Strong Consistency using an
Amazon SDK

• Create and manage DynamoDB global tables demonstrating MREC using an Amazon SDK

• Delete DynamoDB data using PartiQL DELETE statements with an Amazon SDK

• Detect PPE in images with Amazon Rekognition using an Amazon SDK

• Insert DynamoDB data using PartiQL INSERT statements with an Amazon SDK

• Invoke a Lambda function from a browser

• Manage DynamoDB Global Secondary Indexes using Amazon Command Line Interface v2

• Manage DynamoDB resource-based policies using Amazon Command Line Interface v2

• Monitor performance of Amazon DynamoDB using an Amazon SDK

• Perform advanced DynamoDB query operations using an Amazon SDK

• Perform list operations in DynamoDB with an Amazon SDK

• Perform map operations in DynamoDB with an Amazon SDK

• Perform set operations in DynamoDB with an Amazon SDK

• Query a DynamoDB table by using batches of PartiQL statements and an Amazon SDK

• Query a DynamoDB table using PartiQL and an Amazon SDK

• Query a DynamoDB table using a Global Secondary Index with an Amazon SDK

• Query a DynamoDB table using a begins_with condition with an Amazon SDK

• Query a DynamoDB table using a date range in the sort key with an Amazon SDK

• Query a DynamoDB table with a complex filter expression with an Amazon SDK

• Query a DynamoDB table with a dynamic filter expression with an Amazon SDK

• Query a DynamoDB table with a filter expression and limit with an Amazon SDK

• Query a DynamoDB table with nested attributes using an Amazon SDK

• Query a DynamoDB table with pagination using an Amazon SDK

• Query a DynamoDB table with strongly consistent reads using an Amazon SDK

• Query DynamoDB data using PartiQL SELECT statements with an Amazon SDK

Scenarios API Version 2012-08-10 2166

Amazon DynamoDB Developer Guide

• Query a DynamoDB table for TTL items using an Amazon SDK

• Query DynamoDB tables using date and time patterns with an Amazon SDK

• Save EXIF and other image information using an Amazon SDK

• Set up Attribute-Based Access Control for DynamoDB using Amazon Command Line Interface v2

• Understand update expression order in DynamoDB with an Amazon SDK

• Update a DynamoDB table setting with warm throughput using an Amazon SDK

• Update a DynamoDB item with a TTL using an Amazon SDK

• Update DynamoDB data using PartiQL UPDATE statements with an Amazon SDK

• Use API Gateway to invoke a Lambda function

• Use Step Functions to invoke Lambda functions

• Use a document model for DynamoDB using an Amazon SDK

• Use a high-level object persistence model for DynamoDB using an Amazon SDK

• Use atomic counter operations in DynamoDB with an Amazon SDK

• Use conditional operations in DynamoDB with an Amazon SDK

• Use expression attribute names in DynamoDB with an Amazon SDK

• Use scheduled events to invoke a Lambda function

• Work with DynamoDB Local Secondary Indexes using Amazon Command Line Interface v2

• Work with DynamoDB Streams and Time-to-Live using Amazon Command Line Interface v2

• Work with DynamoDB global tables and multi-Region replication with eventual consistency
(MREC) using Amazon Command Line Interface v2

• Work with DynamoDB resource tagging using Amazon Command Line Interface v2

• Work with DynamoDB table encryption using Amazon Command Line Interface v2

Accelerate DynamoDB reads with DAX using an Amazon SDK

The following code example shows how to:

• Create and write data to a table with both the DAX and SDK clients.

• Get, query, and scan the table with both clients and compare their performance.

For more information, see Developing with the DynamoDB Accelerator Client.

Accelerate reads with DAX API Version 2012-08-10 2167

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.client.html

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a table with either the DAX or Boto3 client.

import boto3

def create_dax_table(dyn_resource=None):
 """
 Creates a DynamoDB table.

 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The newly created table.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table_name = "TryDaxTable"
 params = {
 "TableName": table_name,
 "KeySchema": [
 {"AttributeName": "partition_key", "KeyType": "HASH"},
 {"AttributeName": "sort_key", "KeyType": "RANGE"},
],
 "AttributeDefinitions": [
 {"AttributeName": "partition_key", "AttributeType": "N"},
 {"AttributeName": "sort_key", "AttributeType": "N"},
],
 "BillingMode": "PAY_PER_REQUEST",
 }
 table = dyn_resource.create_table(**params)
 print(f"Creating {table_name}...")
 table.wait_until_exists()
 return table

Accelerate reads with DAX API Version 2012-08-10 2168

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb/TryDax#code-examples

Amazon DynamoDB Developer Guide

if __name__ == "__main__":
 dax_table = create_dax_table()
 print(f"Created table.")

Write test data to the table.

import boto3

def write_data_to_dax_table(key_count, item_size, dyn_resource=None):
 """
 Writes test data to the demonstration table.

 :param key_count: The number of partition and sort keys to use to populate
 the
 table. The total number of items is key_count * key_count.
 :param item_size: The size of non-key data for each test item.
 :param dyn_resource: Either a Boto3 or DAX resource.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 some_data = "X" * item_size

 for partition_key in range(1, key_count + 1):
 for sort_key in range(1, key_count + 1):
 table.put_item(
 Item={
 "partition_key": partition_key,
 "sort_key": sort_key,
 "some_data": some_data,
 }
)
 print(f"Put item ({partition_key}, {sort_key}) succeeded.")

if __name__ == "__main__":
 write_key_count = 10
 write_item_size = 1000
 print(

Accelerate reads with DAX API Version 2012-08-10 2169

Amazon DynamoDB Developer Guide

 f"Writing {write_key_count*write_key_count} items to the table. "
 f"Each item is {write_item_size} characters."
)
 write_data_to_dax_table(write_key_count, write_item_size)

Get items for a number of iterations for both the DAX client and the Boto3 client and report
the time spent for each.

import argparse
import sys
import time
import amazondax
import boto3

def get_item_test(key_count, iterations, dyn_resource=None):
 """
 Gets items from the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param key_count: The number of items to get from the table in each
 iteration.
 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 start = time.perf_counter()
 for _ in range(iterations):
 for partition_key in range(1, key_count + 1):
 for sort_key in range(1, key_count + 1):
 table.get_item(
 Key={"partition_key": partition_key, "sort_key": sort_key}
)
 print(".", end="")
 sys.stdout.flush()
 print()
 end = time.perf_counter()

Accelerate reads with DAX API Version 2012-08-10 2170

Amazon DynamoDB Developer Guide

 return start, end

if __name__ == "__main__":
 # pylint: disable=not-context-manager
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "endpoint_url",
 nargs="?",
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not
 used.",
)
 args = parser.parse_args()

 test_key_count = 10
 test_iterations = 50
 if args.endpoint_url:
 print(
 f"Getting each item from the table {test_iterations} times, "
 f"using the DAX client."
)
 # Use a with statement so the DAX client closes the cluster after
 completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url)
 as dax:
 test_start, test_end = get_item_test(
 test_key_count, test_iterations, dyn_resource=dax
)
 else:
 print(
 f"Getting each item from the table {test_iterations} times, "
 f"using the Boto3 client."
)
 test_start, test_end = get_item_test(test_key_count, test_iterations)
 print(
 f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/ test_iterations}."
)

Query the table for a number of iterations for both the DAX client and the Boto3 client and
report the time spent for each.

Accelerate reads with DAX API Version 2012-08-10 2171

Amazon DynamoDB Developer Guide

import argparse
import time
import sys
import amazondax
import boto3
from boto3.dynamodb.conditions import Key

def query_test(partition_key, sort_keys, iterations, dyn_resource=None):
 """
 Queries the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param partition_key: The partition key value to use in the query. The query
 returns items that have partition keys equal to this
 value.
 :param sort_keys: The range of sort key values for the query. The query
 returns
 items that have sort key values between these two values.
 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 key_condition_expression = Key("partition_key").eq(partition_key) & Key(
 "sort_key"
).between(*sort_keys)

 start = time.perf_counter()
 for _ in range(iterations):
 table.query(KeyConditionExpression=key_condition_expression)
 print(".", end="")
 sys.stdout.flush()
 print()
 end = time.perf_counter()
 return start, end

if __name__ == "__main__":

Accelerate reads with DAX API Version 2012-08-10 2172

Amazon DynamoDB Developer Guide

 # pylint: disable=not-context-manager
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "endpoint_url",
 nargs="?",
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not
 used.",
)
 args = parser.parse_args()

 test_partition_key = 5
 test_sort_keys = (2, 9)
 test_iterations = 100
 if args.endpoint_url:
 print(f"Querying the table {test_iterations} times, using the DAX
 client.")
 # Use a with statement so the DAX client closes the cluster after
 completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url)
 as dax:
 test_start, test_end = query_test(
 test_partition_key, test_sort_keys, test_iterations,
 dyn_resource=dax
)
 else:
 print(f"Querying the table {test_iterations} times, using the Boto3
 client.")
 test_start, test_end = query_test(
 test_partition_key, test_sort_keys, test_iterations
)

 print(
 f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/test_iterations}."
)

Scan the table for a number of iterations for both the DAX client and the Boto3 client and
report the time spent for each.

import argparse
import time
import sys

Accelerate reads with DAX API Version 2012-08-10 2173

Amazon DynamoDB Developer Guide

import amazondax
import boto3

def scan_test(iterations, dyn_resource=None):
 """
 Scans the table a specified number of times. The time before the
 first iteration and the time after the last iteration are both captured
 and reported.

 :param iterations: The number of iterations to run.
 :param dyn_resource: Either a Boto3 or DAX resource.
 :return: The start and end times of the test.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 start = time.perf_counter()
 for _ in range(iterations):
 table.scan()
 print(".", end="")
 sys.stdout.flush()
 print()
 end = time.perf_counter()
 return start, end

if __name__ == "__main__":
 # pylint: disable=not-context-manager
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "endpoint_url",
 nargs="?",
 help="When specified, the DAX cluster endpoint. Otherwise, DAX is not
 used.",
)
 args = parser.parse_args()

 test_iterations = 100
 if args.endpoint_url:
 print(f"Scanning the table {test_iterations} times, using the DAX
 client.")

Accelerate reads with DAX API Version 2012-08-10 2174

Amazon DynamoDB Developer Guide

 # Use a with statement so the DAX client closes the cluster after
 completion.
 with amazondax.AmazonDaxClient.resource(endpoint_url=args.endpoint_url)
 as dax:
 test_start, test_end = scan_test(test_iterations, dyn_resource=dax)
 else:
 print(f"Scanning the table {test_iterations} times, using the Boto3
 client.")
 test_start, test_end = scan_test(test_iterations)
 print(
 f"Total time: {test_end - test_start:.4f} sec. Average time: "
 f"{(test_end - test_start)/test_iterations}."
)

Delete the table.

import boto3

def delete_dax_table(dyn_resource=None):
 """
 Deletes the demonstration table.

 :param dyn_resource: Either a Boto3 or DAX resource.
 """
 if dyn_resource is None:
 dyn_resource = boto3.resource("dynamodb")

 table = dyn_resource.Table("TryDaxTable")
 table.delete()

 print(f"Deleting {table.name}...")
 table.wait_until_not_exists()

if __name__ == "__main__":
 delete_dax_table()
 print("Table deleted!")

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• CreateTable

Accelerate reads with DAX API Version 2012-08-10 2175

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

• DeleteTable

• GetItem

• PutItem

• Query

• Scan

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with advanced DynamoDB Global Secondary Index scenarios
using Amazon Command Line Interface v2

The following code example shows how to work with advanced Global Secondary Index
configurations.

• Create a table with multiple GSIs.

• Create a table with on-demand capacity and GSI.

• Put items into a table with multiple GSIs.

• Query multiple GSIs with different conditions.

Bash

Amazon CLI with Bash script

Create a table with multiple GSIs.

Create a table with multiple GSIs
aws dynamodb create-table \
 --table-name MusicLibrary \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 AttributeName=AlbumTitle,AttributeType=S \
 AttributeName=Genre,AttributeType=S \
 AttributeName=Year,AttributeType=N \
 --key-schema \

Advanced Global Secondary Index scenarios API Version 2012-08-10 2176

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"AlbumIndex\",
 \"KeySchema\": [{\"AttributeName\":\"AlbumTitle\",\"KeyType\":
\"HASH\"}],
 \"Projection\": {\"ProjectionType\":\"ALL\"}
 },
 {
 \"IndexName\": \"GenreYearIndex\",
 \"KeySchema\": [
 {\"AttributeName\":\"Genre\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"Year\",\"KeyType\":\"RANGE\"}
],
 \"Projection\": {\"ProjectionType\":\"INCLUDE\",
\"NonKeyAttributes\":[\"Artist\",\"SongTitle\"]}
 }
]"

Create a table with on-demand capacity and GSI.

Create a table with on-demand capacity and GSI
aws dynamodb create-table \
 --table-name MusicOnDemand \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 AttributeName=Genre,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --global-secondary-indexes \
 "[
 {
 \"IndexName\": \"GenreIndex\",
 \"KeySchema\": [{\"AttributeName\":\"Genre\",\"KeyType\":\"HASH
\"}],
 \"Projection\": {\"ProjectionType\":\"ALL\"}

Advanced Global Secondary Index scenarios API Version 2012-08-10 2177

Amazon DynamoDB Developer Guide

 }
]"

Put items into a table with multiple GSIs.

Add items to MusicLibrary table
aws dynamodb put-item \
 --table-name MusicLibrary \
 --item '{
 "Artist": {"S": "The Beatles"},
 "SongTitle": {"S": "Hey Jude"},
 "AlbumTitle": {"S": "Past Masters"},
 "Genre": {"S": "Rock"},
 "Year": {"N": "1968"}
 }'

aws dynamodb put-item \
 --table-name MusicLibrary \
 --item '{
 "Artist": {"S": "Miles Davis"},
 "SongTitle": {"S": "So What"},
 "AlbumTitle": {"S": "Kind of Blue"},
 "Genre": {"S": "Jazz"},
 "Year": {"N": "1959"}
 }'

Query items from a table with multiple GSIs.

Query the AlbumIndex GSI
echo "Querying AlbumIndex GSI:"
aws dynamodb query \
 --table-name MusicLibrary \
 --index-name AlbumIndex \
 --key-condition-expression "AlbumTitle = :album" \
 --expression-attribute-values '{":album":{"S":"Kind of Blue"}}'

Query the GenreYearIndex GSI with a range condition
echo "Querying GenreYearIndex GSI with range condition:"
aws dynamodb query \
 --table-name MusicLibrary \
 --index-name GenreYearIndex \

Advanced Global Secondary Index scenarios API Version 2012-08-10 2178

Amazon DynamoDB Developer Guide

 --key-condition-expression "Genre = :genre AND #yr > :year" \
 --expression-attribute-names '{"#yr": "Year"}' \
 --expression-attribute-values '{":genre":{"S":"Rock"},":year":{"N":"1965"}}'

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• PutItem

• Query

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Build an application to submit data to a DynamoDB table

The following code examples show how to build an application that submits data to an Amazon
DynamoDB table and notifies you when a user updates the table.

Java

SDK for Java 2.x

Shows how to create a dynamic web application that submits data using the Amazon
DynamoDB Java API and sends a text message using the Amazon Simple Notification Service
Java API.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SNS

Build an app to submit data to a DynamoDB table API Version 2012-08-10 2179

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_first_project

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

This example shows how to build an app that enables users to submit data to an Amazon
DynamoDB table, and send a text message to the administrator using Amazon Simple
Notification Service (Amazon SNS).

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• DynamoDB

• Amazon SNS

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Compare multiple values with a single attribute in DynamoDB with an
Amazon SDK

The following code examples show how to compare multiple values with a single attribute in
DynamoDB.

• Use the IN operator to compare multiple values with a single attribute.

• Compare the IN operator with multiple OR conditions.

• Understand the performance and expression complexity benefits of using IN.

Java

SDK for Java 2.x

Compare multiple values with a single attribute in DynamoDB using Amazon SDK for Java
2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

Compare multiple values with a single attribute API Version 2012-08-10 2180

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/submit-data-app
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/cross-service-example-submitting-data.html

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ScanRequest;
import software.amazon.awssdk.services.dynamodb.model.ScanResponse;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;

 /**
 * Queries a table using the IN operator to compare multiple values with a
 single attribute.
 *
 * <p>This method demonstrates how to use the IN operator in a filter
 expression
 * to match an attribute against multiple values.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param partitionKeyName The name of the partition key attribute
 * @param partitionKeyValue The value of the partition key to query
 * @param attributeName The name of the attribute to compare
 * @param valuesList List of values to compare against
 * @return The query response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static QueryResponse compareMultipleValues(
 DynamoDbClient dynamoDbClient,
 String tableName,
 String partitionKeyName,
 AttributeValue partitionKeyValue,
 String attributeName,
 List<AttributeValue> valuesList) {

 // Create expression attribute names
 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#pkName", partitionKeyName);
 expressionAttributeNames.put("#attrName", attributeName);

 // Create expression attribute values

Compare multiple values with a single attribute API Version 2012-08-10 2181

Amazon DynamoDB Developer Guide

 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
 expressionAttributeValues.put(":pkValue", partitionKeyValue);

 // Add values for IN operator
 for (int i = 0; i < valuesList.size(); i++) {
 expressionAttributeValues.put(":val" + i, valuesList.get(i));
 }

 // Build the IN clause
 StringBuilder inClause = new StringBuilder();
 for (int i = 0; i < valuesList.size(); i++) {
 if (i > 0) {
 inClause.append(", ");
 }
 inClause.append(":val").append(i);
 }

 // Define the query parameters
 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression("#pkName = :pkValue")
 .filterExpression("#attrName IN (" + inClause.toString() + ")")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 // Perform the query operation
 return dynamoDbClient.query(request);
 }

 /**
 * Queries a table using multiple OR conditions to compare multiple values
 with a single attribute.
 *
 * <p>This method demonstrates the alternative approach to using the IN
 operator,
 * by using multiple OR conditions.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param partitionKeyName The name of the partition key attribute
 * @param partitionKeyValue The value of the partition key to query
 * @param attributeName The name of the attribute to compare
 * @param valuesList List of values to compare against

Compare multiple values with a single attribute API Version 2012-08-10 2182

Amazon DynamoDB Developer Guide

 * @return The query response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static QueryResponse compareWithOrConditions(
 DynamoDbClient dynamoDbClient,
 String tableName,
 String partitionKeyName,
 AttributeValue partitionKeyValue,
 String attributeName,
 List<AttributeValue> valuesList) {

 // Create expression attribute names
 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#pkName", partitionKeyName);
 expressionAttributeNames.put("#attrName", attributeName);

 // Create expression attribute values
 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
 expressionAttributeValues.put(":pkValue", partitionKeyValue);

 // Add values for OR conditions
 for (int i = 0; i < valuesList.size(); i++) {
 expressionAttributeValues.put(":val" + i, valuesList.get(i));
 }

 // Build the OR conditions
 StringBuilder orConditions = new StringBuilder();
 for (int i = 0; i < valuesList.size(); i++) {
 if (i > 0) {
 orConditions.append(" OR ");
 }
 orConditions.append("#attrName = :val").append(i);
 }

 // Define the query parameters
 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression("#pkName = :pkValue")
 .filterExpression(orConditions.toString())
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 // Perform the query operation

Compare multiple values with a single attribute API Version 2012-08-10 2183

Amazon DynamoDB Developer Guide

 return dynamoDbClient.query(request);
 }

 /**
 * Compares the performance of using the IN operator versus multiple OR
 conditions.
 *
 * <p>This method demonstrates the performance difference between using the
 IN operator
 * and using multiple OR conditions.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param partitionKeyName The name of the partition key attribute
 * @param partitionKeyValue The value of the partition key to query
 * @param attributeName The name of the attribute to compare
 * @param valuesList List of values to compare against
 * @return Map containing the performance comparison results
 */
 public static Map<String, Object> comparePerformance(
 DynamoDbClient dynamoDbClient,
 String tableName,
 String partitionKeyName,
 AttributeValue partitionKeyValue,
 String attributeName,
 List<AttributeValue> valuesList) {

 Map<String, Object> results = new HashMap<>();

 try {
 // Measure performance of IN operator
 long inStartTime = System.nanoTime();
 QueryResponse inResponse = compareMultipleValues(
 dynamoDbClient, tableName, partitionKeyName, partitionKeyValue,
 attributeName, valuesList);
 long inEndTime = System.nanoTime();
 long inDuration = inEndTime - inStartTime;

 // Measure performance of OR conditions
 long orStartTime = System.nanoTime();
 QueryResponse orResponse = compareWithOrConditions(
 dynamoDbClient, tableName, partitionKeyName, partitionKeyValue,
 attributeName, valuesList);
 long orEndTime = System.nanoTime();

Compare multiple values with a single attribute API Version 2012-08-10 2184

Amazon DynamoDB Developer Guide

 long orDuration = orEndTime - orStartTime;

 // Record results
 results.put("inOperatorDuration", inDuration);
 results.put("orConditionsDuration", orDuration);
 results.put("inOperatorItems", inResponse.count());
 results.put("orConditionsItems", orResponse.count());
 results.put("inOperatorExpression", "IN operator with " +
 valuesList.size() + " values");
 results.put("orConditionsExpression", valuesList.size() + " OR
 conditions");
 results.put("success", true);

 } catch (DynamoDbException e) {
 results.put("success", false);
 results.put("error", e.getMessage());
 }

 return results;
 }

 /**
 * Scans a table using the IN operator with a large number of values.
 *
 * <p>This method demonstrates how to use the IN operator with a large number
 of values,
 * which can help stay within the 300 operator limit.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param attributeName The name of the attribute to compare
 * @param valuesList List of values to compare against
 * @return The scan response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static ScanResponse scanWithLargeInClause(
 DynamoDbClient dynamoDbClient, String tableName, String attributeName,
 List<AttributeValue> valuesList) {

 // Create expression attribute names
 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#attrName", attributeName);

 // Create expression attribute values

Compare multiple values with a single attribute API Version 2012-08-10 2185

Amazon DynamoDB Developer Guide

 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();

 // Add values for IN operator
 for (int i = 0; i < valuesList.size(); i++) {
 expressionAttributeValues.put(":val" + i, valuesList.get(i));
 }

 // Build the IN clause
 StringBuilder inClause = new StringBuilder();
 for (int i = 0; i < valuesList.size(); i++) {
 if (i > 0) {
 inClause.append(", ");
 }
 inClause.append(":val").append(i);
 }

 // Define the scan parameters
 ScanRequest request = ScanRequest.builder()
 .tableName(tableName)
 .filterExpression("#attrName IN (" + inClause.toString() + ")")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 // Perform the scan operation
 return dynamoDbClient.scan(request);
 }

 /**
 * Generates a list of sample values for testing.
 *
 * <p>Helper method to generate a list of sample values for testing.
 *
 * @param valueType The type of values to generate (string, number, or
 boolean)
 * @param count The number of values to generate
 * @return List of generated attribute values
 */
 public static List<AttributeValue> generateSampleValues(String valueType, int
 count) {
 List<AttributeValue> values = new ArrayList<>();

 for (int i = 0; i < count; i++) {
 AttributeValue value;

Compare multiple values with a single attribute API Version 2012-08-10 2186

Amazon DynamoDB Developer Guide

 switch (valueType.toLowerCase(Locale.ROOT)) {
 case "string":
 value = AttributeValue.builder().s("Value" + i).build();
 break;
 case "number":
 value =
 AttributeValue.builder().n(String.valueOf(i)).build();
 break;
 case "boolean":
 value = AttributeValue.builder().bool(i % 2 == 0).build();
 break;
 default:
 throw new IllegalArgumentException("Unsupported value type: "
 + valueType);
 }

 values.add(value);
 }

 return values;
 }

Example usage of comparing multiple values with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 System.out.println("Demonstrating how to compare multiple values with a
 single attribute in DynamoDB");

 try {
 // Example 1: Using the IN operator
 System.out.println("\nExample 1: Using the IN operator");
 List<AttributeValue> categories = List.of(
 AttributeValue.builder().s("Electronics").build(),
 AttributeValue.builder().s("Computers").build(),
 AttributeValue.builder().s("Accessories").build());

 QueryResponse inResponse = compareMultipleValues(
 dynamoDbClient,
 tableName,
 "Department",

Compare multiple values with a single attribute API Version 2012-08-10 2187

Amazon DynamoDB Developer Guide

 AttributeValue.builder().s("Retail").build(),
 "Category",
 categories);

 System.out.println("Found " + inResponse.count() + " items using IN
 operator");
 System.out.println("Items: " + inResponse.items());

 // Example 2: Using multiple OR conditions
 System.out.println("\nExample 2: Using multiple OR conditions");
 QueryResponse orResponse = compareWithOrConditions(
 dynamoDbClient,
 tableName,
 "Department",
 AttributeValue.builder().s("Retail").build(),
 "Category",
 categories);

 System.out.println("Found " + orResponse.count() + " items using OR
 conditions");
 System.out.println("Items: " + orResponse.items());

 // Example 3: Performance comparison
 System.out.println("\nExample 3: Performance comparison");
 Map<String, Object> perfComparison = comparePerformance(
 dynamoDbClient,
 tableName,
 "Department",
 AttributeValue.builder().s("Retail").build(),
 "Category",
 categories);

 if ((boolean) perfComparison.get("success")) {
 System.out.println("IN operator duration: " +
 perfComparison.get("inOperatorDuration") + " ns");
 System.out.println("OR conditions duration: " +
 perfComparison.get("orConditionsDuration") + " ns");
 System.out.println("IN operator found " +
 perfComparison.get("inOperatorItems") + " items");
 System.out.println("OR conditions found " +
 perfComparison.get("orConditionsItems") + " items");
 System.out.println("Expression complexity comparison:");
 System.out.println(" IN operator: " +
 perfComparison.get("inOperatorExpression"));

Compare multiple values with a single attribute API Version 2012-08-10 2188

Amazon DynamoDB Developer Guide

 System.out.println(" OR conditions: " +
 perfComparison.get("orConditionsExpression"));
 } else {
 System.out.println("Performance comparison failed: " +
 perfComparison.get("error"));
 }

 // Example 4: Using IN with a large number of values
 System.out.println("\nExample 4: Using IN with a large number of
 values");
 List<AttributeValue> productIds = generateSampleValues("string", 20);

 ScanResponse largeInResponse = scanWithLargeInClause(dynamoDbClient,
 tableName, "ProductId", productIds);

 System.out.println(
 "Found " + largeInResponse.count() + " items using IN with " +
 productIds.size() + " values");

 // Explain the benefits of using IN
 System.out.println("\nKey points about using the IN operator in
 DynamoDB:");
 System.out.println("1. The IN operator allows comparing a single
 attribute against multiple values");
 System.out.println("2. IN is more concise than using multiple OR
 conditions");
 System.out.println("3. IN counts as only 1 operator regardless of the
 number of values");
 System.out.println("4. Multiple OR conditions count as 1 operator per
 condition plus 1 per OR");
 System.out.println("5. Using IN helps stay within the 300 operator
 limit for complex expressions");
 System.out.println("6. IN can be used in filter expressions and
 condition expressions");
 System.out.println("7. The IN operator supports up to 100 comparison
 values");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

Compare multiple values with a single attribute API Version 2012-08-10 2189

Amazon DynamoDB Developer Guide

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• Query

• Scan

JavaScript

SDK for JavaScript (v3)

Compare multiple values with a single attribute using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 ScanCommand,
 QueryCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Query or scan a DynamoDB table to find items where an attribute matches any
 value from a list.
 *
 * This function demonstrates the use of the IN operator to compare a single
 attribute
 * against multiple possible values, which is more efficient than using multiple
 OR conditions.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} attributeName - The name of the attribute to compare against
 the values list
 * @param {Array} valuesList - List of values to compare the attribute against
 * @param {string} [partitionKeyName] - Optional name of the partition key
 attribute for query operations
 * @param {string} [partitionKeyValue] - Optional value of the partition key to
 query
 * @returns {Promise<Object>} - The response from DynamoDB containing the
 matching items
 */
async function compareMultipleValues(
 config,
 tableName,
 attributeName,

Compare multiple values with a single attribute API Version 2012-08-10 2190

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

 valuesList,
 partitionKeyName,
 partitionKeyValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the filter expression using the IN operator
 const filterExpression = `${attributeName} IN (${valuesList.map((_, index) =>
 `:val${index}`).join(', ')})`;

 // Create expression attribute values for the values list
 const expressionAttributeValues = valuesList.reduce((acc, val, index) => {
 acc[`:val${index}`] = val;
 return acc;
 }, {});

 // If partition key is provided, perform a query operation
 if (partitionKeyName && partitionKeyValue) {
 const keyCondition = `${partitionKeyName} = :partitionKey`;
 expressionAttributeValues[':partitionKey'] = partitionKeyValue;

 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 KeyConditionExpression: keyCondition,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous
 query
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new QueryCommand(params));

Compare multiple values with a single attribute API Version 2012-08-10 2191

Amazon DynamoDB Developer Guide

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 } else {
 // Otherwise, perform a scan operation
 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous scan
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new ScanCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

Compare multiple values with a single attribute API Version 2012-08-10 2192

Amazon DynamoDB Developer Guide

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 }
}

/**
 * Alternative implementation using multiple OR conditions instead of the IN
 operator.
 *
 * This function is provided for comparison to show why using the IN operator is
 preferable.
 * With many values, this approach becomes verbose and less efficient.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} attributeName - The name of the attribute to compare against
 the values list
 * @param {Array} valuesList - List of values to compare the attribute against
 * @param {string} [partitionKeyName] - Optional name of the partition key
 attribute for query operations
 * @param {string} [partitionKeyValue] - Optional value of the partition key to
 query
 * @returns {Promise<Object>} - The response from DynamoDB containing the
 matching items
 */
async function compareWithOrConditions(
 config,
 tableName,
 attributeName,
 valuesList,
 partitionKeyName,
 partitionKeyValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // If no values provided, return empty result
 if (!valuesList || valuesList.length === 0) {
 return {
 Items: [],

Compare multiple values with a single attribute API Version 2012-08-10 2193

Amazon DynamoDB Developer Guide

 Count: 0
 };
 }

 // Create the filter expression using multiple OR conditions
 const filterConditions = valuesList.map((_, index) => `${attributeName} = :val
${index}`);
 const filterExpression = filterConditions.join(' OR ');

 // Create expression attribute values for the values list
 const expressionAttributeValues = valuesList.reduce((acc, val, index) => {
 acc[`:val${index}`] = val;
 return acc;
 }, {});

 // If partition key is provided, perform a query operation
 if (partitionKeyName && partitionKeyValue) {
 const keyCondition = `${partitionKeyName} = :partitionKey`;
 expressionAttributeValues[':partitionKey'] = partitionKeyValue;

 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 KeyConditionExpression: keyCondition,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous
 query
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new QueryCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];

Compare multiple values with a single attribute API Version 2012-08-10 2194

Amazon DynamoDB Developer Guide

 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,
 Count: allItems.length
 };
 } else {
 // Otherwise, perform a scan operation
 // Initialize array to collect all items
 let allItems = [];
 let lastEvaluatedKey;

 // Use pagination to get all results
 do {
 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeValues: expressionAttributeValues
 };

 // Add ExclusiveStartKey if we have a lastEvaluatedKey from a previous scan
 if (lastEvaluatedKey) {
 params.ExclusiveStartKey = lastEvaluatedKey;
 }

 const response = await docClient.send(new ScanCommand(params));

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems = [...allItems, ...response.Items];
 }

 // Get the key for the next page of results
 lastEvaluatedKey = response.LastEvaluatedKey;
 } while (lastEvaluatedKey);

 // Return the complete result
 return {
 Items: allItems,

Compare multiple values with a single attribute API Version 2012-08-10 2195

Amazon DynamoDB Developer Guide

 Count: allItems.length
 };
 }
}

Example usage of comparing multiple values with Amazon SDK for JavaScript.

/**
 * Example of how to use the compareMultipleValues function.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const attributeName = "Category";
 const valuesList = ["Electronics", "Computers", "Accessories"];

 console.log(`Searching for products in any of these categories:
 ${valuesList.join(', ')}`);

 try {
 // Using the IN operator (recommended approach)
 console.log("\nApproach 1: Using the IN operator");
 const response = await compareMultipleValues(
 config,
 tableName,
 attributeName,
 valuesList
);

 console.log(`Found ${response.Count} products in the specified categories`);

 // Using multiple OR conditions (alternative approach)
 console.log("\nApproach 2: Using multiple OR conditions");
 const response2 = await compareWithOrConditions(
 config,
 tableName,
 attributeName,
 valuesList
);

 console.log(`Found ${response2.Count} products in the specified categories`);

Compare multiple values with a single attribute API Version 2012-08-10 2196

Amazon DynamoDB Developer Guide

 // Example with a query operation
 console.log("\nQuerying a specific manufacturer's products in multiple
 categories");
 const partitionKeyName = "Manufacturer";
 const partitionKeyValue = "Acme";

 const response3 = await compareMultipleValues(
 config,
 tableName,
 attributeName,
 valuesList,
 partitionKeyName,
 partitionKeyValue
);

 console.log(`Found ${response3.Count} Acme products in the specified
 categories`);

 // Explain the benefits of using the IN operator
 console.log("\nBenefits of using the IN operator:");
 console.log("1. More concise expression compared to multiple OR conditions");
 console.log("2. Better readability and maintainability");
 console.log("3. Potentially better performance with large value lists");
 console.log("4. Simpler code that's less prone to errors");
 console.log("5. Easier to modify when adding or removing values");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• Query

• Scan

Python

SDK for Python (Boto3)

Compare multiple values with a single attribute using Amazon SDK for Python (Boto3).

Compare multiple values with a single attribute API Version 2012-08-10 2197

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ScanCommand

Amazon DynamoDB Developer Guide

import boto3
from boto3.dynamodb.conditions import Attr, Key
from typing import Any, Dict, List, Optional

def compare_multiple_values(
 table_name: str,
 attribute_name: str,
 values_list: List[Any],
 partition_key_name: Optional[str] = None,
 partition_key_value: Optional[str] = None,
) -> Dict[str, Any]:
 """
 Query or scan a DynamoDB table to find items where an attribute matches any
 value from a list.

 This function demonstrates the use of the IN operator to compare a single
 attribute
 against multiple possible values, which is more efficient than using multiple
 OR conditions.

 Args:
 table_name (str): The name of the DynamoDB table.
 attribute_name (str): The name of the attribute to compare against the
 values list.
 values_list (List[Any]): List of values to compare the attribute against.
 partition_key_name (Optional[str]): The name of the partition key
 attribute for query operations.
 partition_key_value (Optional[str]): The value of the partition key to
 query.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the matching items.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Create the filter expression using the is_in method
 filter_expression = Attr(attribute_name).is_in(values_list)

 # If partition key is provided, perform a query operation
 if partition_key_name and partition_key_value:

Compare multiple values with a single attribute API Version 2012-08-10 2198

Amazon DynamoDB Developer Guide

 key_condition = Key(partition_key_name).eq(partition_key_value)
 response = table.query(
 KeyConditionExpression=key_condition,
 FilterExpression=filter_expression
)
 else:
 # Otherwise, perform a scan operation
 response = table.scan(FilterExpression=filter_expression)

 # Handle pagination if there are more results
 items = response.get("Items", [])
 while "LastEvaluatedKey" in response:
 if partition_key_name and partition_key_value:
 response = table.query(
 KeyConditionExpression=key_condition,
 FilterExpression=filter_expression,
 ExclusiveStartKey=response["LastEvaluatedKey"],
)
 else:
 response = table.scan(
 FilterExpression=filter_expression,
 ExclusiveStartKey=response["LastEvaluatedKey"]
)
 items.extend(response.get("Items", []))

 # Return the complete result
 return {"Items": items, "Count": len(items)}

def compare_with_or_conditions(
 table_name: str,
 attribute_name: str,
 values_list: List[Any],
 partition_key_name: Optional[str] = None,
 partition_key_value: Optional[str] = None,
) -> Dict[str, Any]:
 """
 Alternative implementation using multiple OR conditions instead of the IN
 operator.

 This function is provided for comparison to show why using the IN operator is
 preferable.
 With many values, this approach becomes verbose and less efficient.

Compare multiple values with a single attribute API Version 2012-08-10 2199

Amazon DynamoDB Developer Guide

 Args:
 table_name (str): The name of the DynamoDB table.
 attribute_name (str): The name of the attribute to compare against the
 values list.
 values_list (List[Any]): List of values to compare the attribute against.
 partition_key_name (Optional[str]): The name of the partition key
 attribute for query operations.
 partition_key_value (Optional[str]): The value of the partition key to
 query.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the matching items.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Create a filter expression with multiple OR conditions
 filter_expression = None
 for value in values_list:
 condition = Attr(attribute_name).eq(value)
 if filter_expression is None:
 filter_expression = condition
 else:
 filter_expression = filter_expression | condition

 # If partition key is provided, perform a query operation
 if partition_key_name and partition_key_value and filter_expression:
 key_condition = Key(partition_key_name).eq(partition_key_value)
 response = table.query(
 KeyConditionExpression=key_condition,
 FilterExpression=filter_expression
)
 elif filter_expression:
 # Otherwise, perform a scan operation
 response = table.scan(FilterExpression=filter_expression)
 else:
 # Return empty response if no values provided
 return {"Items": [], "Count": 0}

 # Handle pagination if there are more results
 items = response.get("Items", [])
 while "LastEvaluatedKey" in response:
 if partition_key_name and partition_key_value:

Compare multiple values with a single attribute API Version 2012-08-10 2200

Amazon DynamoDB Developer Guide

 response = table.query(
 KeyConditionExpression=key_condition,
 FilterExpression=filter_expression,
 ExclusiveStartKey=response["LastEvaluatedKey"],
)
 else:
 response = table.scan(
 FilterExpression=filter_expression,
 ExclusiveStartKey=response["LastEvaluatedKey"]
)
 items.extend(response.get("Items", []))

 # Return the complete result
 return {"Items": items, "Count": len(items)}

Example usage of comparing multiple values with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the compare_multiple_values function."""
 # Example parameters
 table_name = "Products"
 attribute_name = "Category"
 values_list = ["Electronics", "Computers", "Accessories"]

 print(f"Searching for products in any of these categories: {values_list}")

 # Using the IN operator (recommended approach)
 print("\nApproach 1: Using the IN operator")
 response = compare_multiple_values(
 table_name=table_name, attribute_name=attribute_name,
 values_list=values_list
)

 print(f"Found {response['Count']} products in the specified categories")

 # Using multiple OR conditions (alternative approach)
 print("\nApproach 2: Using multiple OR conditions")
 response2 = compare_with_or_conditions(
 table_name=table_name, attribute_name=attribute_name,
 values_list=values_list

Compare multiple values with a single attribute API Version 2012-08-10 2201

Amazon DynamoDB Developer Guide

)

 print(f"Found {response2['Count']} products in the specified categories")

 # Example with a query operation
 print("\nQuerying a specific manufacturer's products in multiple categories")
 partition_key_name = "Manufacturer"
 partition_key_value = "Acme"

 response3 = compare_multiple_values(
 table_name=table_name,
 attribute_name=attribute_name,
 values_list=values_list,
 partition_key_name=partition_key_name,
 partition_key_value=partition_key_value,
)

 print(f"Found {response3['Count']} Acme products in the specified
 categories")

 # Explain the benefits of using the IN operator
 print("\nBenefits of using the IN operator:")
 print("1. More concise expression compared to multiple OR conditions")
 print("2. Better readability and maintainability")
 print("3. Potentially better performance with large value lists")
 print("4. Simpler code that's less prone to errors")
 print("5. Easier to modify when adding or removing values")

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• Query

• Scan

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Compare multiple values with a single attribute API Version 2012-08-10 2202

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Scan

Amazon DynamoDB Developer Guide

Conditionally update a DynamoDB item with a TTL using an Amazon
SDK

The following code examples show how to conditionally update an item's TTL.

Java

SDK for Java 2.x

Update TTL on on an existing DynamoDB Item in a table, with a condition.

package com.amazon.samplelib.ttl;

import com.amazon.samplelib.CodeSampleUtils;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import
 software.amazon.awssdk.services.dynamodb.model.ConditionalCheckFailedException;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.Map;
import java.util.Optional;

/**
 * Updates an item in a DynamoDB table with TTL attributes using a conditional
 expression.
 * This class demonstrates how to conditionally update TTL expiration timestamps.
 */
public class UpdateTTLConditional {

 private static final String USAGE =
 """
 Usage:
 <tableName> <primaryKey> <sortKey> <region>
 Where:
 tableName - The Amazon DynamoDB table being queried.
 primaryKey - The name of the primary key. Also known as the hash
 or partition key.

Conditionally update an item's TTL API Version 2012-08-10 2203

Amazon DynamoDB Developer Guide

 sortKey - The name of the sort key. Also known as the range
 attribute.
 region (optional) - The AWS region that the Amazon DynamoDB table
 is located in. (Default: us-east-1)
 """;
 private static final int DAYS_TO_EXPIRE = 90;
 private static final int SECONDS_PER_DAY = 24 * 60 * 60;
 private static final String PRIMARY_KEY_ATTR = "primaryKey";
 private static final String SORT_KEY_ATTR = "sortKey";
 private static final String UPDATED_AT_ATTR = "updatedAt";
 private static final String EXPIRE_AT_ATTR = "expireAt";
 private static final String UPDATE_EXPRESSION = "SET " + UPDATED_AT_ATTR +
 "=:c, " + EXPIRE_AT_ATTR + "=:e";
 private static final String CONDITION_EXPRESSION = "attribute_exists(" +
 PRIMARY_KEY_ATTR + ")";
 private static final String SUCCESS_MESSAGE = "%s UpdateItem operation with
 TTL successful.";
 private static final String CONDITION_FAILED_MESSAGE = "Condition check
 failed. Item does not exist.";
 private static final String TABLE_NOT_FOUND_ERROR = "Error: The Amazon
 DynamoDB table \"%s\" can't be found.";

 private final DynamoDbClient dynamoDbClient;

 /**
 * Constructs an UpdateTTLConditional with a default DynamoDB client.
 */
 public UpdateTTLConditional() {
 this.dynamoDbClient = null;
 }

 /**
 * Constructs an UpdateTTLConditional with the specified DynamoDB client.
 *
 * @param dynamoDbClient The DynamoDB client to use
 */
 public UpdateTTLConditional(final DynamoDbClient dynamoDbClient) {
 this.dynamoDbClient = dynamoDbClient;
 }

 /**
 * Main method to demonstrate conditionally updating an item with TTL.
 *
 * @param args Command line arguments

Conditionally update an item's TTL API Version 2012-08-10 2204

Amazon DynamoDB Developer Guide

 */
 public static void main(final String[] args) {
 try {
 int result = new UpdateTTLConditional().processArgs(args);
 System.exit(result);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Process command line arguments and conditionally update an item with TTL.
 *
 * @param args Command line arguments
 * @return 0 if successful, non-zero otherwise
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 * @throws IllegalArgumentException If arguments are invalid
 */
 public int processArgs(final String[] args) {
 // Argument validation (remove or replace this line when reusing this
 code)
 CodeSampleUtils.validateArgs(args, new int[] {3, 4}, USAGE);

 final String tableName = args[0];
 final String primaryKey = args[1];
 final String sortKey = args[2];
 final Region region = Optional.ofNullable(args.length > 3 ? args[3] :
 null)
 .map(Region::of)
 .orElse(Region.US_EAST_1);

 // Get current time in epoch second format
 final long currentTime = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = currentTime + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 // Create the key map for the item to update
 final Map<String, AttributeValue> keyMap = Map.of(
 PRIMARY_KEY_ATTR, AttributeValue.builder().s(primaryKey).build(),
 SORT_KEY_ATTR, AttributeValue.builder().s(sortKey).build());

Conditionally update an item's TTL API Version 2012-08-10 2205

Amazon DynamoDB Developer Guide

 // Create the expression attribute values
 final Map<String, AttributeValue> expressionAttributeValues = Map.of(
 ":c",
 AttributeValue.builder().n(String.valueOf(currentTime)).build(),
 ":e",
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

 final UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(keyMap)
 .updateExpression(UPDATE_EXPRESSION)
 .conditionExpression(CONDITION_EXPRESSION)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final UpdateItemResponse response = ddb.updateItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return 0;
 } catch (ConditionalCheckFailedException e) {
 System.err.println(CONDITION_FAILED_MESSAGE);
 throw e;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Update TTL on on an existing DynamoDB Item in a table, with a condition.

Conditionally update an item's TTL API Version 2012-08-10 2206

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const updateItemConditional = async (tableName, partitionKey, sortKey,
 region = 'us-east-1', newAttribute = 'default-value') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

 const params = {
 TableName: tableName,
 Key: marshall({
 artist: partitionKey,
 album: sortKey
 }),
 UpdateExpression: "SET newAttribute = :newAttribute",
 ConditionExpression: "expireAt > :expiration",
 ExpressionAttributeValues: marshall({
 ':newAttribute': newAttribute,
 ':expiration': currentTime
 }),
 ReturnValues: "ALL_NEW"
 };

 try {
 const response = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(response.Attributes);
 console.log("Item updated successfully: ", responseData);
 return responseData;
 } catch (error) {
 if (error.name === "ConditionalCheckFailedException") {
 console.log("Condition check failed: Item's 'expireAt' is expired.");
 } else {
 console.error("Error updating item: ", error);
 }
 throw error;
 }
};

// Example usage (commented out for testing)

Conditionally update an item's TTL API Version 2012-08-10 2207

Amazon DynamoDB Developer Guide

// updateItemConditional('your-table-name', 'your-partition-key-value', 'your-
sort-key-value');

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Update TTL on on an existing DynamoDB Item in a table, with a condition.

from datetime import datetime, timedelta

import boto3
from botocore.exceptions import ClientError

def update_dynamodb_item_ttl(table_name, region, primary_key, sort_key,
 ttl_attribute):
 """
 Updates an existing record in a DynamoDB table with a new or updated TTL
 attribute.

 :param table_name: Name of the DynamoDB table
 :param region: AWS Region of the table - example `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :param ttl_attribute: name of the TTL attribute in the target DynamoDB table
 :return:
 """
 try:
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Generate updated TTL in epoch second format
 updated_expiration_time = int((datetime.now() +
 timedelta(days=90)).timestamp())

 # Define the update expression for adding/updating a new attribute
 update_expression = "SET newAttribute = :val1"

Conditionally update an item's TTL API Version 2012-08-10 2208

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 # Define the condition expression for checking if 'expireAt' is not
 expired
 condition_expression = "expireAt > :val2"

 # Define the expression attribute values
 expression_attribute_values = {":val1": ttl_attribute, ":val2":
 updated_expiration_time}

 response = table.update_item(
 Key={"primaryKey": primary_key, "sortKey": sort_key},
 UpdateExpression=update_expression,
 ConditionExpression=condition_expression,
 ExpressionAttributeValues=expression_attribute_values,
)

 print("Item updated successfully.")
 return response["ResponseMetadata"]["HTTPStatusCode"] # Ideally a 200 OK
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 print("Condition check failed: Item's 'expireAt' is expired.")
 else:
 print(f"Error updating item: {e}")
 except Exception as e:
 print(f"Error updating item: {e}")

replace with your values
update_dynamodb_item_ttl(
 "your-table-name",
 "us-east-1",
 "your-partition-key-value",
 "your-sort-key-value",
 "your-ttl-attribute-value",
)

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Conditionally update an item's TTL API Version 2012-08-10 2209

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Connect to a local DynamoDB instance using an Amazon SDK

The following code example shows how to override an endpoint URL to connect to a local
development deployment of DynamoDB and an Amazon SDK.

For more information, see DynamoDB Local.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/// Lists your tables from a local DynamoDB instance by setting the SDK Config's
/// endpoint_url and test_credentials.
#[tokio::main]
async fn main() {
 tracing_subscriber::fmt::init();

 let config = aws_config::defaults(aws_config::BehaviorVersion::latest())
 .test_credentials()
 // DynamoDB run locally uses port 8000 by default.
 .endpoint_url("http://localhost:8000")
 .load()
 .await;
 let dynamodb_local_config =
 aws_sdk_dynamodb::config::Builder::from(&config).build();

 let client = aws_sdk_dynamodb::Client::from_conf(dynamodb_local_config);

 let list_resp = client.list_tables().send().await;
 match list_resp {
 Ok(resp) => {
 println!("Found {} tables", resp.table_names().len());
 for name in resp.table_names() {
 println!(" {}", name);
 }

Connect to a local instance API Version 2012-08-10 2210

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }
 Err(err) => eprintln!("Failed to list local dynamodb tables: {err:?}"),
 }
}

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Count expression operators in DynamoDB with an Amazon SDK

The following code examples show how to count expression operators in DynamoDB.

• Understand DynamoDB's 300 operator limit.

• Count operators in complex expressions.

• Optimize expressions to stay within limits.

Java

SDK for Java 2.x

Demonstrate expression operator counting using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

 /**
 * Creates a complex filter expression with a specified number of conditions.
 *
 * <p>This method demonstrates how to generate a complex expression with
 * a specific number of operators to test the 300 operator limit.

Count expression operators API Version 2012-08-10 2211

Amazon DynamoDB Developer Guide

 *
 * @param conditionsCount Number of conditions to include
 * @param useAnd Whether to use AND (true) or OR (false) between conditions
 * @return Map containing the filter expression, attribute values, and
 operator count
 */
 public static Map<String, Object> createComplexFilterExpression(int
 conditionsCount, boolean useAnd) {
 // Initialize the expression parts and attribute values
 StringBuilder filterExpression = new StringBuilder();
 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();

 // Generate the specified number of conditions
 for (int i = 0; i < conditionsCount; i++) {
 // Add the operator between conditions (except for the first one)
 if (i > 0) {
 filterExpression.append(useAnd ? " AND " : " OR ");
 }

 // Alternate between different comparison operators for variety
 String valueKey = ":val" + i;

 switch (i % 5) {
 case 0:
 filterExpression.append("attribute").append(i).append(" =
 ").append(valueKey);
 expressionAttributeValues.put(
 valueKey, AttributeValue.builder().s("value" +
 i).build());
 break;
 case 1:
 filterExpression.append("attribute").append(i).append(" >
 ").append(valueKey);
 expressionAttributeValues.put(
 valueKey,
 AttributeValue.builder().n(String.valueOf(i)).build());
 break;
 case 2:
 filterExpression.append("attribute").append(i).append(" <
 ").append(valueKey);
 expressionAttributeValues.put(
 valueKey,
 AttributeValue.builder().n(String.valueOf(i *
 10)).build());

Count expression operators API Version 2012-08-10 2212

Amazon DynamoDB Developer Guide

 break;
 case 3:
 filterExpression
 .append("contains(attribute")
 .append(i)
 .append(", ")
 .append(valueKey)
 .append(")");
 expressionAttributeValues.put(
 valueKey, AttributeValue.builder().s("substring" +
 i).build());
 break;
 case 4:
 filterExpression
 .append("attribute_exists(attribute")
 .append(i)
 .append(")");
 break;
 default:
 // This case will never be reached, but added to satisfy
 checkstyle
 break;
 }
 }

 // Calculate the operator count
 // Each condition has 1 operator (=, >, <, contains, attribute_exists)
 // Each AND or OR between conditions is 1 operator
 int operatorCount = conditionsCount + (conditionsCount > 0 ?
 conditionsCount - 1 : 0);

 // Create the result map
 Map<String, Object> result = new HashMap<>();
 result.put("filterExpression", filterExpression.toString());
 result.put("expressionAttributeValues", expressionAttributeValues);
 result.put("operatorCount", operatorCount);

 return result;
 }

 /**
 * Creates a complex update expression with a specified number of operations.
 *

Count expression operators API Version 2012-08-10 2213

Amazon DynamoDB Developer Guide

 * <p>This method demonstrates how to generate a complex update expression
 with
 * a specific number of operators to test the 300 operator limit.
 *
 * @param operationsCount Number of operations to include
 * @return Map containing the update expression, attribute values, and
 operator count
 */
 public static Map<String, Object> createComplexUpdateExpression(int
 operationsCount) {
 // Initialize the expression parts and attribute values
 StringBuilder updateExpression = new StringBuilder("SET ");
 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();

 // Generate the specified number of SET operations
 for (int i = 0; i < operationsCount; i++) {
 // Add comma between operations (except for the first one)
 if (i > 0) {
 updateExpression.append(", ");
 }

 // Alternate between different types of SET operations
 String valueKey = ":val" + i;

 switch (i % 3) {
 case 0:
 // Simple assignment (1 operator: =)
 updateExpression.append("attribute").append(i).append(" =
 ").append(valueKey);
 expressionAttributeValues.put(
 valueKey, AttributeValue.builder().s("value" +
 i).build());
 break;
 case 1:
 // Addition (2 operators: = and +)
 updateExpression
 .append("attribute")
 .append(i)
 .append(" = attribute")
 .append(i)
 .append(" + ")
 .append(valueKey);
 expressionAttributeValues.put(

Count expression operators API Version 2012-08-10 2214

Amazon DynamoDB Developer Guide

 valueKey,
 AttributeValue.builder().n(String.valueOf(i)).build());
 break;
 case 2:
 // Conditional assignment with if_not_exists (2 operators: =
 and if_not_exists)
 updateExpression
 .append("attribute")
 .append(i)
 .append(" = if_not_exists(attribute")
 .append(i)
 .append(", ")
 .append(valueKey)
 .append(")");
 expressionAttributeValues.put(
 valueKey,
 AttributeValue.builder().n(String.valueOf(i *
 10)).build());
 break;
 default:
 // This case will never be reached, but added to satisfy
 checkstyle
 break;
 }
 }

 // Calculate the operator count
 // Each operation has 1-2 operators as noted above
 int operatorCount = 0;
 for (int i = 0; i < operationsCount; i++) {
 operatorCount += (i % 3 == 0) ? 1 : 2;
 }

 // Create the result map
 Map<String, Object> result = new HashMap<>();
 result.put("updateExpression", updateExpression.toString());
 result.put("expressionAttributeValues", expressionAttributeValues);
 result.put("operatorCount", operatorCount);

 return result;
 }

 /**

Count expression operators API Version 2012-08-10 2215

Amazon DynamoDB Developer Guide

 * Test the operator limit by attempting an operation with a complex
 expression.
 *
 * <p>This method demonstrates what happens when an expression approaches or
 * exceeds the 300 operator limit.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param operatorCount Target number of operators to include
 * @return Map containing the result of the operation attempt
 */
 public static Map<String, Object> testOperatorLimit(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, int operatorCount) {

 // Create a complex update expression with the specified operator count
 Map<String, Object> expressionData =
 createComplexUpdateExpression((int) Math.ceil(operatorCount /
 1.5)); // Adjust to get close to target count

 String updateExpression = (String)
 expressionData.get("updateExpression");
 @SuppressWarnings("unchecked")
 Map<String, AttributeValue> expressionAttributeValues =
 (Map<String, AttributeValue>)
 expressionData.get("expressionAttributeValues");
 int actualCount = (int) expressionData.get("operatorCount");

 System.out.println("Generated update expression with approximately " +
 actualCount + " operators");

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression(updateExpression)
 .expressionAttributeValues(expressionAttributeValues)
 .returnValues("UPDATED_NEW")
 .build();

 try {
 // Attempt the update operation
 UpdateItemResponse response = dynamoDbClient.updateItem(request);

Count expression operators API Version 2012-08-10 2216

Amazon DynamoDB Developer Guide

 Map<String, Object> result = new HashMap<>();
 result.put("success", true);
 result.put("message", "Operation succeeded with " + actualCount + "
 operators");
 result.put("data", response);
 return result;

 } catch (DynamoDbException e) {
 // Check if the error is due to exceeding the operator limit
 if (e.getMessage().contains("too many operators")) {
 Map<String, Object> result = new HashMap<>();
 result.put("success", false);
 result.put("message", "Operation failed: " + e.getMessage());
 result.put("operatorCount", actualCount);
 return result;
 }

 // Return other errors
 Map<String, Object> result = new HashMap<>();
 result.put("success", false);
 result.put("message", "Operation failed: " + e.getMessage());
 result.put("error", e);
 return result;
 }
 }

 /**
 * Break down a complex expression into multiple simpler operations.
 *
 * <p>This method demonstrates how to handle expressions that would exceed
 * the 300 operator limit by breaking them into multiple operations.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param totalOperations Total number of operations to perform
 * @return Map containing the results of the operations
 */
 public static Map<String, Object> breakDownComplexExpression(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, int totalOperations) {

 // Calculate how many operations we can safely include in each batch

Count expression operators API Version 2012-08-10 2217

Amazon DynamoDB Developer Guide

 // Using 150 as a conservative limit (well below 300)
 final int operationsPerBatch = 100;
 final int batchCount = (int) Math.ceil((double) totalOperations /
 operationsPerBatch);

 System.out.println("Breaking down " + totalOperations + " operations into
 " + batchCount + " batches");

 Map<String, Object> results = new HashMap<>();
 results.put("totalBatches", batchCount);

 Map<Integer, Map<String, Object>> batchResults = new HashMap<>();

 // Process each batch
 for (int batch = 0; batch < batchCount; batch++) {
 // Calculate the operations for this batch
 int batchStart = batch * operationsPerBatch;
 int batchEnd = Math.min(batchStart + operationsPerBatch,
 totalOperations);
 int batchSize = batchEnd - batchStart;

 System.out.println(
 "Processing batch " + (batch + 1) + "/" + batchCount + " with " +
 batchSize + " operations");

 // Create an update expression for this batch
 Map<String, Object> expressionData =
 createComplexUpdateExpression(batchSize);

 String updateExpression = (String)
 expressionData.get("updateExpression");
 @SuppressWarnings("unchecked")
 Map<String, AttributeValue> expressionAttributeValues =
 (Map<String, AttributeValue>)
 expressionData.get("expressionAttributeValues");
 int operatorCount = (int) expressionData.get("operatorCount");

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression(updateExpression)
 .expressionAttributeValues(expressionAttributeValues)
 .returnValues("UPDATED_NEW")

Count expression operators API Version 2012-08-10 2218

Amazon DynamoDB Developer Guide

 .build();

 try {
 // Perform the update operation for this batch
 UpdateItemResponse response = dynamoDbClient.updateItem(request);

 Map<String, Object> batchResult = new HashMap<>();
 batchResult.put("batch", batch + 1);
 batchResult.put("success", true);
 batchResult.put("operatorCount", operatorCount);
 batchResult.put("attributes", response.attributes());

 batchResults.put(batch, batchResult);

 } catch (DynamoDbException e) {
 Map<String, Object> batchResult = new HashMap<>();
 batchResult.put("batch", batch + 1);
 batchResult.put("success", false);
 batchResult.put("operatorCount", operatorCount);
 batchResult.put("error", e.getMessage());

 batchResults.put(batch, batchResult);

 // Continue with next batch instead of breaking
 continue;
 }
 }

 results.put("results", batchResults);
 return results;
 }

 /**
 * Count operators in a DynamoDB expression based on the rules in the
 documentation.
 *
 * <p>This method demonstrates how operators are counted according to the
 * DynamoDB documentation.
 *
 * @param expression The DynamoDB expression to analyze
 * @return Map containing the breakdown of operator counts
 */
 public static Map<String, Integer> countOperatorsInExpression(String
 expression) {

Count expression operators API Version 2012-08-10 2219

Amazon DynamoDB Developer Guide

 // Initialize counters for different operator types
 Map<String, Integer> counts = new HashMap<>();
 counts.put("comparisonOperators", 0);
 counts.put("logicalOperators", 0);
 counts.put("functions", 0);
 counts.put("arithmeticOperators", 0);
 counts.put("specialOperators", 0);
 counts.put("total", 0);

 // Count comparison operators (=, <>, <, <=, >, >=)
 // This is a simplified approach and may not catch all cases
 int comparisonCount = 0;
 Pattern comparisonPattern = Pattern.compile("(=|<>|<=|>=|<|>)");
 Matcher comparisonMatcher = comparisonPattern.matcher(expression);
 while (comparisonMatcher.find()) {
 comparisonCount++;
 }
 counts.put("comparisonOperators", comparisonCount);

 // Count logical operators (AND, OR, NOT)
 int andCount = countOccurrences(expression, "\\bAND\\b");
 int orCount = countOccurrences(expression, "\\bOR\\b");
 int notCount = countOccurrences(expression, "\\bNOT\\b");
 counts.put("logicalOperators", andCount + orCount + notCount);

 // Count functions (attribute_exists, attribute_not_exists,
 attribute_type, begins_with, contains, size)
 int functionCount = countOccurrences(
 expression,
 "\\b(attribute_exists|attribute_not_exists|attribute_type|
begins_with|contains|size|if_not_exists)\\(");
 counts.put("functions", functionCount);

 // Count arithmetic operators (+ and -)
 // This is a simplified approach and may not catch all cases
 int arithmeticCount = 0;
 Pattern arithmeticPattern = Pattern.compile("[a-zA-Z0-9_)\\]]\\s*[\\+\
\-]\\s*[a-zA-Z0-9_:(]");
 Matcher arithmeticMatcher = arithmeticPattern.matcher(expression);
 while (arithmeticMatcher.find()) {
 arithmeticCount++;
 }
 counts.put("arithmeticOperators", arithmeticCount);

Count expression operators API Version 2012-08-10 2220

Amazon DynamoDB Developer Guide

 // Count special operators (BETWEEN, IN)
 int betweenCount = countOccurrences(expression, "\\bBETWEEN\\b");
 int inCount = countOccurrences(expression, "\\bIN\\b");
 counts.put("specialOperators", betweenCount + inCount);

 // Add extra operators for BETWEEN (each BETWEEN includes an AND)
 int currentLogicalOps = counts.getOrDefault("logicalOperators", 0);
 counts.put("logicalOperators", currentLogicalOps + betweenCount);

 // Calculate total
 int total = counts.getOrDefault("comparisonOperators", 0)
 + counts.getOrDefault("logicalOperators", 0)
 + counts.getOrDefault("functions", 0)
 + counts.getOrDefault("arithmeticOperators", 0)
 + counts.getOrDefault("specialOperators", 0);
 counts.put("total", total);

 return counts;
 }

 /**
 * Helper method to count occurrences of a pattern in a string.
 *
 * @param text The text to search in
 * @param regex The regular expression pattern to search for
 * @return The number of occurrences
 */
 private static int countOccurrences(String text, String regex) {
 final Pattern pattern = Pattern.compile(regex);
 final Matcher matcher = pattern.matcher(text);
 int count = 0;
 while (matcher.find()) {
 count++;
 }
 return count;
 }

Example usage of expression operator counting with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key

Count expression operators API Version 2012-08-10 2221

Amazon DynamoDB Developer Guide

 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating DynamoDB expression operator counting
 and the 300 operator limit");

 try {
 // Example 1: Analyze a simple expression
 System.out.println("\nExample 1: Analyzing a simple expression");
 String simpleExpression = "Price = :price AND Rating > :rating AND
 Category IN (:cat1, :cat2, :cat3)";
 Map<String, Integer> simpleCount =
 countOperatorsInExpression(simpleExpression);

 System.out.println("Expression: " + simpleExpression);
 System.out.println("Operator count breakdown:");
 System.out.println("- Comparison operators: " +
 simpleCount.get("comparisonOperators"));
 System.out.println("- Logical operators: " +
 simpleCount.get("logicalOperators"));
 System.out.println("- Functions: " + simpleCount.get("functions"));
 System.out.println("- Arithmetic operators: " +
 simpleCount.get("arithmeticOperators"));
 System.out.println("- Special operators: " +
 simpleCount.get("specialOperators"));
 System.out.println("- Total operators: " + simpleCount.get("total"));

 // Example 2: Analyze a complex expression
 System.out.println("\nExample 2: Analyzing a complex expression");
 String complexExpression = "(attribute_exists(Category) AND Size
 BETWEEN :min AND :max) OR "
 + "(Price > :price AND contains(Description, :keyword) AND "
 + "(Rating >= :minRating OR Reviews > :minReviews))";
 Map<String, Integer> complexCount =
 countOperatorsInExpression(complexExpression);

 System.out.println("Expression: " + complexExpression);
 System.out.println("Operator count breakdown:");
 System.out.println("- Comparison operators: " +
 complexCount.get("comparisonOperators"));
 System.out.println("- Logical operators: " +
 complexCount.get("logicalOperators"));
 System.out.println("- Functions: " + complexCount.get("functions"));

Count expression operators API Version 2012-08-10 2222

Amazon DynamoDB Developer Guide

 System.out.println("- Arithmetic operators: " +
 complexCount.get("arithmeticOperators"));
 System.out.println("- Special operators: " +
 complexCount.get("specialOperators"));
 System.out.println("- Total operators: " +
 complexCount.get("total"));

 // Example 3: Test approaching the operator limit
 System.out.println("\nExample 3: Testing an expression approaching
 the operator limit");
 Map<String, Object> approachingLimit =
 testOperatorLimit(dynamoDbClient, tableName, key, 290);
 System.out.println(approachingLimit.get("message"));

 // Example 4: Test exceeding the operator limit
 System.out.println("\nExample 4: Testing an expression exceeding the
 operator limit");
 Map<String, Object> exceedingLimit =
 testOperatorLimit(dynamoDbClient, tableName, key, 310);
 System.out.println(exceedingLimit.get("message"));

 // Example 5: Breaking down a complex expression
 System.out.println("\nExample 5: Breaking down a complex expression
 into multiple operations");
 Map<String, Object> breakdownResult =
 breakDownComplexExpression(dynamoDbClient, tableName, key, 500);
 @SuppressWarnings("unchecked")
 Map<Integer, Map<String, Object>> results =
 (Map<Integer, Map<String, Object>>)
 breakdownResult.get("results");
 System.out.println(
 "Processed " + results.size() + " of " +
 breakdownResult.get("totalBatches") + " batches");

 // Explain the operator counting rules
 System.out.println("\nKey points about DynamoDB expression operator
 counting:");
 System.out.println("1. The maximum number of operators in any
 expression is 300");
 System.out.println("2. Each comparison operator (=, <>, <, <=, >, >=)
 counts as 1 operator");
 System.out.println("3. Each logical operator (AND, OR, NOT) counts as
 1 operator");

Count expression operators API Version 2012-08-10 2223

Amazon DynamoDB Developer Guide

 System.out.println("4. Each function call (attribute_exists,
 contains, etc.) counts as 1 operator");
 System.out.println("5. Each arithmetic operator (+ or -) counts as 1
 operator");
 System.out.println("6. BETWEEN counts as 2 operators (BETWEEN itself
 and the AND within it)");
 System.out.println("7. IN counts as 1 operator regardless of the
 number of values");
 System.out.println("8. Parentheses for grouping and attribute paths
 don't count as operators");
 System.out.println("9. When you exceed the limit, the error always
 reports '301 operators'");
 System.out.println("10. For complex operations, break them into
 multiple smaller operations");

 } catch (Exception e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Demonstrate expression operator counting using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 QueryCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Create a complex filter expression with a specified number of conditions.
 *
 * This function demonstrates how to generate a complex expression with
 * a specific number of operators to test the 300 operator limit.
 *

Count expression operators API Version 2012-08-10 2224

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 * @param {number} conditionsCount - Number of conditions to include
 * @param {boolean} useAnd - Whether to use AND (true) or OR (false) between
 conditions
 * @returns {Object} - Object containing the filter expression and attribute
 values
 */
function createComplexFilterExpression(conditionsCount, useAnd = true) {
 // Initialize the expression parts and attribute values
 const conditions = [];
 const expressionAttributeValues = {};

 // Generate the specified number of conditions
 for (let i = 0; i < conditionsCount; i++) {
 // Alternate between different comparison operators for variety
 let condition;
 const valueKey = `:val${i}`;

 switch (i % 5) {
 case 0:
 condition = `attribute${i} = ${valueKey}`;
 expressionAttributeValues[valueKey] = `value${i}`;
 break;
 case 1:
 condition = `attribute${i} > ${valueKey}`;
 expressionAttributeValues[valueKey] = i;
 break;
 case 2:
 condition = `attribute${i} < ${valueKey}`;
 expressionAttributeValues[valueKey] = i * 10;
 break;
 case 3:
 condition = `contains(attribute${i}, ${valueKey})`;
 expressionAttributeValues[valueKey] = `substring${i}`;
 break;
 case 4:
 condition = `attribute_exists(attribute${i})`;
 break;
 }

 conditions.push(condition);
 }

 // Join the conditions with AND or OR
 const operator = useAnd ? " AND " : " OR ";

Count expression operators API Version 2012-08-10 2225

Amazon DynamoDB Developer Guide

 const filterExpression = conditions.join(operator);

 // Calculate the operator count
 // Each condition has 1 operator (=, >, <, contains, attribute_exists)
 // Each AND or OR between conditions is 1 operator
 const operatorCount = conditionsCount + (conditionsCount > 0 ? conditionsCount
 - 1 : 0);

 return {
 filterExpression,
 expressionAttributeValues,
 operatorCount
 };
}

/**
 * Create a complex update expression with a specified number of operations.
 *
 * This function demonstrates how to generate a complex update expression with
 * a specific number of operators to test the 300 operator limit.
 *
 * @param {number} operationsCount - Number of operations to include
 * @returns {Object} - Object containing the update expression and attribute
 values
 */
function createComplexUpdateExpression(operationsCount) {
 // Initialize the expression parts and attribute values
 const setOperations = [];
 const expressionAttributeValues = {};

 // Generate the specified number of SET operations
 for (let i = 0; i < operationsCount; i++) {
 // Alternate between different types of SET operations
 let operation;
 const valueKey = `:val${i}`;

 switch (i % 3) {
 case 0:
 // Simple assignment (1 operator: =)
 operation = `attribute${i} = ${valueKey}`;
 expressionAttributeValues[valueKey] = `value${i}`;
 break;
 case 1:
 // Addition (2 operators: = and +)

Count expression operators API Version 2012-08-10 2226

Amazon DynamoDB Developer Guide

 operation = `attribute${i} = attribute${i} + ${valueKey}`;
 expressionAttributeValues[valueKey] = i;
 break;
 case 2:
 // Conditional assignment with if_not_exists (2 operators: = and
 if_not_exists)
 operation = `attribute${i} = if_not_exists(attribute${i}, ${valueKey})`;
 expressionAttributeValues[valueKey] = i * 10;
 break;
 }

 setOperations.push(operation);
 }

 // Create the update expression
 const updateExpression = `SET ${setOperations.join(", ")}`;

 // Calculate the operator count
 // Each operation has 1-2 operators as noted above
 let operatorCount = 0;
 for (let i = 0; i < operationsCount; i++) {
 operatorCount += (i % 3 === 0) ? 1 : 2;
 }

 return {
 updateExpression,
 expressionAttributeValues,
 operatorCount
 };
}

/**
 * Test the operator limit by attempting an operation with a complex expression.
 *
 * This function demonstrates what happens when an expression approaches or
 * exceeds the 300 operator limit.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {number} operatorCount - Target number of operators to include
 * @returns {Promise<Object>} - Result of the operation attempt
 */
async function testOperatorLimit(

Count expression operators API Version 2012-08-10 2227

Amazon DynamoDB Developer Guide

 config,
 tableName,
 key,
 operatorCount
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create a complex update expression with the specified operator count
 const { updateExpression, expressionAttributeValues, operatorCount:
 actualCount } =
 createComplexUpdateExpression(Math.ceil(operatorCount / 1.5)); // Adjust to
 get close to target count

 console.log(`Generated update expression with approximately ${actualCount}
 operators`);

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Attempt the update operation
 const response = await docClient.send(new UpdateCommand(params));
 return {
 success: true,
 message: `Operation succeeded with ${actualCount} operators`,
 data: response
 };
 } catch (error) {
 // Check if the error is due to exceeding the operator limit
 if (error.name === "ValidationException" &&
 error.message.includes("too many operators")) {
 return {
 success: false,
 message: `Operation failed: ${error.message}`,
 operatorCount: actualCount
 };

Count expression operators API Version 2012-08-10 2228

Amazon DynamoDB Developer Guide

 }

 // Return other errors
 return {
 success: false,
 message: `Operation failed: ${error.message}`,
 error
 };
 }
}

/**
 * Break down a complex expression into multiple simpler operations.
 *
 * This function demonstrates how to handle expressions that would exceed
 * the 300 operator limit by breaking them into multiple operations.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {number} totalOperations - Total number of operations to perform
 * @returns {Promise<Object>} - Result of the operations
 */
async function breakDownComplexExpression(
 config,
 tableName,
 key,
 totalOperations
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Calculate how many operations we can safely include in each batch
 // Using 150 as a conservative limit (well below 300)
 const operationsPerBatch = 100;
 const batchCount = Math.ceil(totalOperations / operationsPerBatch);

 console.log(`Breaking down ${totalOperations} operations into ${batchCount}
 batches`);

 const results = [];

 // Process each batch

Count expression operators API Version 2012-08-10 2229

Amazon DynamoDB Developer Guide

 for (let batch = 0; batch < batchCount; batch++) {
 // Calculate the operations for this batch
 const batchStart = batch * operationsPerBatch;
 const batchEnd = Math.min(batchStart + operationsPerBatch, totalOperations);
 const batchSize = batchEnd - batchStart;

 console.log(`Processing batch ${batch + 1}/${batchCount} with ${batchSize}
 operations`);

 // Create an update expression for this batch
 const { updateExpression, expressionAttributeValues, operatorCount } =
 createComplexUpdateExpression(batchSize);

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation for this batch
 const response = await docClient.send(new UpdateCommand(params));

 results.push({
 batch: batch + 1,
 success: true,
 operatorCount,
 attributes: response.Attributes
 });
 } catch (error) {
 results.push({
 batch: batch + 1,
 success: false,
 operatorCount,
 error: error.message
 });

 // Stop processing if an error occurs
 break;
 }
 }

Count expression operators API Version 2012-08-10 2230

Amazon DynamoDB Developer Guide

 return {
 totalBatches: batchCount,
 results
 };
}

/**
 * Count operators in a DynamoDB expression based on the rules in the
 documentation.
 *
 * This function demonstrates how operators are counted according to the
 * DynamoDB documentation.
 *
 * @param {string} expression - The DynamoDB expression to analyze
 * @returns {Object} - Breakdown of operator counts
 */
function countOperatorsInExpression(expression) {
 // Initialize counters for different operator types
 const counts = {
 comparisonOperators: 0,
 logicalOperators: 0,
 functions: 0,
 arithmeticOperators: 0,
 specialOperators: 0,
 total: 0
 };

 // Count comparison operators (=, <>, <, <=, >, >=)
 const comparisonRegex = /[^<>]=[^=]|<>|<=|>=|[^<]>[^=]|[^>]<[^=]/g;
 const comparisonMatches = expression.match(comparisonRegex) || [];
 counts.comparisonOperators = comparisonMatches.length;

 // Count logical operators (AND, OR, NOT)
 const andMatches = expression.match(/\bAND\b/g) || [];
 const orMatches = expression.match(/\bOR\b/g) || [];
 const notMatches = expression.match(/\bNOT\b/g) || [];
 counts.logicalOperators = andMatches.length + orMatches.length +
 notMatches.length;

 // Count functions (attribute_exists, attribute_not_exists, attribute_type,
 begins_with, contains, size)
 const functionRegex = /\b(attribute_exists|attribute_not_exists|attribute_type|
begins_with|contains|size|if_not_exists)\(/g;

Count expression operators API Version 2012-08-10 2231

Amazon DynamoDB Developer Guide

 const functionMatches = expression.match(functionRegex) || [];
 counts.functions = functionMatches.length;

 // Count arithmetic operators (+ and -)
 const arithmeticMatches = expression.match(/[a-zA-Z0-9_)\]]\s*[\+\-]\s*[a-zA-
Z0-9_(:]/g) || [];
 counts.arithmeticOperators = arithmeticMatches.length;

 // Count special operators (BETWEEN, IN)
 const betweenMatches = expression.match(/\bBETWEEN\b/g) || [];
 const inMatches = expression.match(/\bIN\b/g) || [];
 counts.specialOperators = betweenMatches.length + inMatches.length;

 // Add extra operators for BETWEEN (each BETWEEN includes an AND)
 counts.logicalOperators += betweenMatches.length;

 // Calculate total
 counts.total = counts.comparisonOperators +
 counts.logicalOperators +
 counts.functions +
 counts.arithmeticOperators +
 counts.specialOperators;

 return counts;
}

Example usage of expression operator counting with Amazon SDK for JavaScript.

/**
 * Example of how to work with expression operator counting.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating DynamoDB expression operator counting and the 300
 operator limit");

 try {
 // Example 1: Analyze a simple expression

Count expression operators API Version 2012-08-10 2232

Amazon DynamoDB Developer Guide

 console.log("\nExample 1: Analyzing a simple expression");
 const simpleExpression = "Price = :price AND Rating > :rating AND Category IN
 (:cat1, :cat2, :cat3)";
 const simpleCount = countOperatorsInExpression(simpleExpression);

 console.log(`Expression: ${simpleExpression}`);
 console.log("Operator count breakdown:");
 console.log(`- Comparison operators: ${simpleCount.comparisonOperators}`);
 console.log(`- Logical operators: ${simpleCount.logicalOperators}`);
 console.log(`- Functions: ${simpleCount.functions}`);
 console.log(`- Arithmetic operators: ${simpleCount.arithmeticOperators}`);
 console.log(`- Special operators: ${simpleCount.specialOperators}`);
 console.log(`- Total operators: ${simpleCount.total}`);

 // Example 2: Analyze a complex expression
 console.log("\nExample 2: Analyzing a complex expression");
 const complexExpression =
 "(attribute_exists(Category) AND Size BETWEEN :min AND :max) OR " +
 "(Price > :price AND contains(Description, :keyword) AND " +
 "(Rating >= :minRating OR Reviews > :minReviews))";
 const complexCount = countOperatorsInExpression(complexExpression);

 console.log(`Expression: ${complexExpression}`);
 console.log("Operator count breakdown:");
 console.log(`- Comparison operators: ${complexCount.comparisonOperators}`);
 console.log(`- Logical operators: ${complexCount.logicalOperators}`);
 console.log(`- Functions: ${complexCount.functions}`);
 console.log(`- Arithmetic operators: ${complexCount.arithmeticOperators}`);
 console.log(`- Special operators: ${complexCount.specialOperators}`);
 console.log(`- Total operators: ${complexCount.total}`);

 // Example 3: Test approaching the operator limit
 console.log("\nExample 3: Testing an expression approaching the operator
 limit");
 const approachingLimit = await testOperatorLimit(config, tableName, key,
 290);
 console.log(approachingLimit.message);

 // Example 4: Test exceeding the operator limit
 console.log("\nExample 4: Testing an expression exceeding the operator
 limit");
 const exceedingLimit = await testOperatorLimit(config, tableName, key, 310);
 console.log(exceedingLimit.message);

Count expression operators API Version 2012-08-10 2233

Amazon DynamoDB Developer Guide

 // Example 5: Breaking down a complex expression
 console.log("\nExample 5: Breaking down a complex expression into multiple
 operations");
 const breakdownResult = await breakDownComplexExpression(config, tableName,
 key, 500);
 console.log(`Processed ${breakdownResult.results.length} of
 ${breakdownResult.totalBatches} batches`);

 // Explain the operator counting rules
 console.log("\nKey points about DynamoDB expression operator counting:");
 console.log("1. The maximum number of operators in any expression is 300");
 console.log("2. Each comparison operator (=, <>, <, <=, >, >=) counts as 1
 operator");
 console.log("3. Each logical operator (AND, OR, NOT) counts as 1 operator");
 console.log("4. Each function call (attribute_exists, contains, etc.) counts
 as 1 operator");
 console.log("5. Each arithmetic operator (+ or -) counts as 1 operator");
 console.log("6. BETWEEN counts as 2 operators (BETWEEN itself and the AND
 within it)");
 console.log("7. IN counts as 1 operator regardless of the number of values");
 console.log("8. Parentheses for grouping and attribute paths don't count as
 operators");
 console.log("9. When you exceed the limit, the error always reports '301
 operators'");
 console.log("10. For complex operations, break them into multiple smaller
 operations");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Demonstrate expression operator counting using Amazon SDK for Python (Boto3).

import boto3
from botocore.exceptions import ClientError

Count expression operators API Version 2012-08-10 2234

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

from typing import Any, Dict, List, Optional, Tuple

def create_complex_filter_expression(
 attribute_name: str, values: List[Any], use_or: bool = True
) -> Tuple[str, Dict[str, Any], Dict[str, str], int]:
 """
 Create a complex filter expression with multiple conditions.

 This function demonstrates how to build a complex filter expression
 and count the number of operators used.

 Args:
 attribute_name (str): The name of the attribute to filter on.
 values (List[Any]): List of values to compare against.
 use_or (bool, optional): Whether to use OR between conditions. Defaults
 to True.

 Returns:
 Tuple[str, Dict[str, Any], Dict[str, str], int]: A tuple containing:
 - The filter expression string
 - Expression attribute values
 - Expression attribute names
 - The number of operators used
 """
 if not values:
 return "", {}, {}, 0

 # Initialize expression components
 filter_expression = ""
 expression_attribute_values = {}
 expression_attribute_names = {"#attr": attribute_name}
 operator_count = 0

 # Build the filter expression
 for i, value in enumerate(values):
 value_placeholder = f":val{i}"
 expression_attribute_values[value_placeholder] = value

 if i > 0:
 # Add OR or AND operator between conditions
 filter_expression += " OR " if use_or else " AND "
 operator_count += 1 # Count the OR/AND operator

Count expression operators API Version 2012-08-10 2235

Amazon DynamoDB Developer Guide

 # Add the condition
 filter_expression += f"#attr = {value_placeholder}"
 operator_count += 1 # Count the = operator

 return (
 filter_expression,
 expression_attribute_values,
 expression_attribute_names,
 operator_count,
)

def create_nested_filter_expression(
 depth: int, conditions_per_level: int
) -> Tuple[str, Dict[str, Any], Dict[str, str], int]:
 """
 Create a deeply nested filter expression with multiple conditions.

 This function demonstrates how to build a complex nested filter expression
 and count the number of operators used.

 Args:
 depth (int): The depth of nesting.
 conditions_per_level (int): Number of conditions at each level.

 Returns:
 Tuple[str, Dict[str, Any], Dict[str, str], int]: A tuple containing:
 - The filter expression string
 - Expression attribute values
 - Expression attribute names
 - The number of operators used
 """
 if depth <= 0 or conditions_per_level <= 0:
 return "", {}, {}, 0

 # Initialize expression components
 expression_attribute_values = {}
 expression_attribute_names = {}
 operator_count = 0

 def build_nested_expression(current_depth: int, prefix: str) -> str:
 nonlocal operator_count

Count expression operators API Version 2012-08-10 2236

Amazon DynamoDB Developer Guide

 if current_depth <= 0:
 return ""

 # Build conditions at this level
 conditions = []
 for i in range(conditions_per_level):
 attr_name = f"attr{prefix}_{i}"
 attr_placeholder = f"#attr{prefix}_{i}"
 val_placeholder = f":val{prefix}_{i}"

 expression_attribute_names[attr_placeholder] = attr_name
 expression_attribute_values[val_placeholder] = i

 conditions.append(f"{attr_placeholder} = {val_placeholder}")
 operator_count += 1 # Count the = operator

 # Join conditions with AND
 level_expression = " AND ".join(conditions)
 operator_count += max(0, len(conditions) - 1) # Count the AND operators

 # If not at the deepest level, add nested expressions
 if current_depth > 1:
 nested_expr = build_nested_expression(current_depth - 1,
 f"{prefix}_{current_depth}")
 if nested_expr:
 level_expression = f"({level_expression}) OR ({nested_expr})"
 operator_count += 1 # Count the OR operator

 return level_expression

 # Build the expression starting from the top level
 filter_expression = build_nested_expression(depth, "1")

 return (
 filter_expression,
 expression_attribute_values,
 expression_attribute_names,
 operator_count,
)

def count_operators_in_update_expression(update_expression: str) -> int:
 """
 Count the number of operators in an update expression.

Count expression operators API Version 2012-08-10 2237

Amazon DynamoDB Developer Guide

 This function demonstrates how to count operators in an update expression
 based on DynamoDB's rules.

 Args:
 update_expression (str): The update expression to analyze.

 Returns:
 int: The number of operators in the expression.
 """
 operator_count = 0

 # Count SET operations
 if "SET" in update_expression:
 set_section = (
 update_expression.split("SET")[1].split("REMOVE")[0].split("ADD")
[0].split("DELETE")[0]
)

 # Count assignment operators (=)
 operator_count += set_section.count("=")

 # Count arithmetic operators (+, -)
 operator_count += set_section.count("+")
 operator_count += set_section.count("-")

 # Count list_append function calls (each counts as 1 operator)
 operator_count += set_section.lower().count("list_append")

 # Count if_not_exists function calls (each counts as 1 operator)
 operator_count += set_section.lower().count("if_not_exists")

 # Count REMOVE operations (no additional operators)

 # Count ADD operations (each ADD counts as 1 operator)
 if "ADD" in update_expression:
 add_section = (
 update_expression.split("ADD")[1].split("DELETE")[0].split("SET")
[0].split("REMOVE")[0]
)
 operator_count += add_section.count(",") + 1

 # Count DELETE operations (each DELETE counts as 1 operator)
 if "DELETE" in update_expression:

Count expression operators API Version 2012-08-10 2238

Amazon DynamoDB Developer Guide

 delete_section = (
 update_expression.split("DELETE")[1].split("SET")[0].split("ADD")
[0].split("REMOVE")[0]
)
 operator_count += delete_section.count(",") + 1

 return operator_count

def count_operators_in_condition_expression(condition_expression: str) -> int:
 """
 Count the number of operators in a condition expression.

 This function demonstrates how to count operators in a condition expression
 based on DynamoDB's rules.

 Args:
 condition_expression (str): The condition expression to analyze.

 Returns:
 int: The number of operators in the expression.
 """
 operator_count = 0

 # Count comparison operators
 comparison_operators = ["=", "<>", "<", "<=", ">", ">="]
 for op in comparison_operators:
 operator_count += condition_expression.count(op)

 # Count logical operators
 operator_count += condition_expression.upper().count(" AND ")
 operator_count += condition_expression.upper().count(" OR ")
 operator_count += condition_expression.upper().count("NOT ")

 # Count BETWEEN operator (counts as 2: BETWEEN + AND)
 between_count = condition_expression.upper().count(" BETWEEN ")
 operator_count += between_count * 2

 # Count IN operator (counts as 1 regardless of number of values)
 operator_count += condition_expression.upper().count(" IN ")

 # Count functions (each counts as 1 operator)
 functions = [
 "attribute_exists",

Count expression operators API Version 2012-08-10 2239

Amazon DynamoDB Developer Guide

 "attribute_not_exists",
 "attribute_type",
 "begins_with",
 "contains",
 "size",
]
 for func in functions:
 operator_count += condition_expression.lower().count(func)

 return operator_count

Note: This function is for demonstration purposes only and should be called
 from example_usage()
It's not meant to be used directly as a test function
def _test_expression_limit(
 table_name: str, key: Dict[str, Any], operator_count: int, attribute_name:
 str = "TestAttribute"
) -> Tuple[bool, Optional[str]]:
 """
 Test if an expression with a specific number of operators exceeds the limit.

 This function demonstrates how to test the 300 operator limit by creating
 an expression with a specified number of operators.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 operator_count (int): The number of operators to include in the
 expression.
 attribute_name (str, optional): The name of the attribute to update.
 Defaults to "TestAttribute".

 Returns:
 Tuple[bool, Optional[str]]: A tuple containing:
 - A boolean indicating if the operation succeeded
 - The error message if it failed, None otherwise
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Create an update expression with the specified number of operators
 update_expression = f"SET #{attribute_name} = :val0"

Count expression operators API Version 2012-08-10 2240

Amazon DynamoDB Developer Guide

 expression_attribute_names = {f"#{attribute_name}": attribute_name}
 expression_attribute_values = {":val0": 0}

 # Add additional SET operations to reach the desired operator count
 # Each assignment adds 1 operator
 for i in range(1, operator_count):
 attr_name = f"{attribute_name}{i}"
 attr_placeholder = f"#attr{i}"
 val_placeholder = f":val{i}"

 update_expression += f", {attr_placeholder} = {val_placeholder}"
 expression_attribute_names[attr_placeholder] = attr_name
 expression_attribute_values[val_placeholder] = i

 try:
 # Attempt the update operation
 table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues=expression_attribute_values,
)
 return True, None
 except ClientError as e:
 error_message = e.response["Error"]["Message"]

 if "expression contains too many operators" in error_message.lower():
 return False, error_message
 else:
 # Other error occurred
 raise

Example usage of expression operator counting with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the expression operator counting functions."""

 print("Example 1: Creating a complex filter expression with multiple
 conditions")
 attribute_name = "Status"

Count expression operators API Version 2012-08-10 2241

Amazon DynamoDB Developer Guide

 values = ["Active", "Pending", "Processing", "Shipped", "Delivered"]

 filter_expr, expr_attr_vals, expr_attr_names, op_count =
 create_complex_filter_expression(
 attribute_name=attribute_name, values=values, use_or=True
)

 print(f"Filter Expression: {filter_expr}")
 print(f"Expression Attribute Values: {expr_attr_vals}")
 print(f"Expression Attribute Names: {expr_attr_names}")
 print(f"Operator Count: {op_count}")

 print("\nExample 2: Creating a nested filter expression")
 nested_expr, nested_vals, nested_names, nested_count =
 create_nested_filter_expression(
 depth=3, conditions_per_level=2
)

 print(f"Nested Filter Expression: {nested_expr}")
 print(f"Operator Count: {nested_count}")

 print("\nExample 3: Counting operators in an update expression")
 update_expression = "SET #name = :name, #age = :age + :increment,
 #address.#city = :city, #status = if_not_exists(#status, :default_status) REMOVE
 #old_field ADD #counter :value DELETE #set_attr :set_val"
 update_op_count = count_operators_in_update_expression(update_expression)

 print(f"Update Expression: {update_expression}")
 print(f"Operator Count: {update_op_count}")

 print("\nExample 4: Counting operators in a condition expression")
 condition_expression = "(#status = :active OR #status = :pending) AND #price
 BETWEEN :min_price AND :max_price AND attribute_exists(#category) AND NOT
 (#stock <= :min_stock)"
 condition_op_count =
 count_operators_in_condition_expression(condition_expression)

 print(f"Condition Expression: {condition_expression}")
 print(f"Operator Count: {condition_op_count}")

 print("\nExample 5: Testing the 300 operator limit")

 # This is just for demonstration - in a real application, you would use your
 actual table

Count expression operators API Version 2012-08-10 2242

Amazon DynamoDB Developer Guide

 # Note: This function is renamed to _test_expression_limit to avoid pytest
 trying to run it
 print("In a real application, you would test with _test_expression_limit
 function")
 print("Expression with 250 operators would be under the limit")
 print("Expression with 350 operators would exceed the 300 operator limit")

 print("\nOperator Counting Rules in DynamoDB:")
 print("1. Comparison Operators (=, <>, <, <=, >, >=): 1 operator each")
 print("2. Logical Operators (AND, OR, NOT): 1 operator each")
 print("3. BETWEEN: 2 operators (BETWEEN + AND)")
 print("4. IN: 1 operator (regardless of number of values)")
 print("5. Functions (attribute_exists, begins_with, etc.): 1 operator each")
 print("6. Arithmetic Operators (+, -): 1 operator each")
 print("7. SET assignments (=): 1 operator each")
 print("8. ADD and DELETE operations: 1 operator each")

 print("\nStrategies for Working Within the 300 Operator Limit:")
 print("1. Break operations into multiple requests")
 print("2. Use DynamoDB Transactions for complex operations")
 print("3. Optimize data model to reduce query complexity")
 print("4. Use application-side filtering for less critical filters")
 print("5. Consider using IN operator instead of multiple OR conditions")

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create an API Gateway REST API to track COVID-19 data

The following code example shows how to create a REST API that simulates a system to track daily
cases of COVID-19 in the United States, using fictional data.

Create a REST API to track COVID-19 data API Version 2012-08-10 2243

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Shows how to use Amazon Chalice with the Amazon SDK for Python (Boto3) to create
a serverless REST API that uses Amazon API Gateway, Amazon Lambda, and Amazon
DynamoDB. The REST API simulates a system that tracks daily cases of COVID-19 in the
United States, using fictional data. Learn how to:

• Use Amazon Chalice to define routes in Lambda functions that are called to handle REST
requests that come through API Gateway.

• Use Lambda functions to retrieve and store data in a DynamoDB table to serve REST
requests.

• Define table structure and security role resources in an Amazon CloudFormation template.

• Use Amazon Chalice and CloudFormation to package and deploy all necessary resources.

• Use CloudFormation to clean up all created resources.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• Amazon CloudFormation

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a messenger application with Step Functions

The following code example shows how to create an Amazon Step Functions messenger
application that retrieves message records from a database table.

Create a messenger application API Version 2012-08-10 2244

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_covid-19_tracker

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon Step Functions to
create a messenger application that retrieves message records from an Amazon DynamoDB
table and sends them with Amazon Simple Queue Service (Amazon SQS). The state machine
integrates with an Amazon Lambda function to scan the database for unsent messages.

• Create a state machine that retrieves and updates message records from an Amazon
DynamoDB table.

• Update the state machine definition to also send messages to Amazon Simple Queue
Service (Amazon SQS).

• Start and stop state machine runs.

• Connect to Lambda, DynamoDB, and Amazon SQS from a state machine by using service
integrations.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SQS

• Step Functions

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a photo asset management application that lets users manage
photos using labels

The following code examples show how to create a serverless application that lets users manage
photos using labels.

Create a serverless application to manage photos API Version 2012-08-10 2245

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/stepfunctions_messenger

Amazon DynamoDB Developer Guide

.NET

Amazon SDK for .NET

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

C++

SDK for C++

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

Create a serverless application to manage photos API Version 2012-08-10 2246

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/PhotoAssetManager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cross-service/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon DynamoDB Developer Guide

• Amazon S3

• Amazon SNS

Java

SDK for Java 2.x

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

Create a serverless application to manage photos API Version 2012-08-10 2247

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/pam_source_files
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/photo-asset-manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon DynamoDB Developer Guide

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Kotlin

SDK for Kotlin

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

PHP

SDK for PHP

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Create a serverless application to manage photos API Version 2012-08-10 2248

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/creating_pam
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/applications/photo_asset_manager
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon DynamoDB Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

Rust

SDK for Rust

Shows how to develop a photo asset management application that detects labels in images
using Amazon Rekognition and stores them for later retrieval.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

For a deep dive into the origin of this example see the post on Amazon Community.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon Rekognition

• Amazon S3

• Amazon SNS

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a DynamoDB table with a Global Secondary Index using the
Amazon SDK

The following code example shows how to create a table with global secondary index.

Create a table with global secondary index API Version 2012-08-10 2249

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/cross_service/photo_asset_management
https://community.aws/posts/cloud-journeys/01-serverless-image-recognition-app

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Create DynamoDB table with Global Secondary Index using Amazon SDK for Java 2.x.

import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.waiters.WaiterResponse;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DeleteTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableRequest;
import software.amazon.awssdk.services.dynamodb.model.DescribeTableResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GlobalSecondaryIndex;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.Projection;
import software.amazon.awssdk.services.dynamodb.model.ProjectionType;
import software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughput;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.waiters.DynamoDbWaiter;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

 public void createTable() {
 try {
 // Attribute definitions
 final List<AttributeDefinition> attributeDefinitions = new
 ArrayList<>();
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName(ISSUE_ID_ATTR)
 .attributeType(ScalarAttributeType.S)
 .build());
 attributeDefinitions.add(AttributeDefinition.builder()

Create a table with global secondary index API Version 2012-08-10 2250

Amazon DynamoDB Developer Guide

 .attributeName(TITLE_ATTR)
 .attributeType(ScalarAttributeType.S)
 .build());
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName(CREATE_DATE_ATTR)
 .attributeType(ScalarAttributeType.S)
 .build());
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName(DUE_DATE_ATTR)
 .attributeType(ScalarAttributeType.S)
 .build());

 // Key schema for table
 final List<KeySchemaElement> tableKeySchema = new ArrayList<>();
 tableKeySchema.add(KeySchemaElement.builder()
 .attributeName(ISSUE_ID_ATTR)
 .keyType(KeyType.HASH)
 .build()); // Partition key
 tableKeySchema.add(KeySchemaElement.builder()
 .attributeName(TITLE_ATTR)
 .keyType(KeyType.RANGE)
 .build()); // Sort key

 // Initial provisioned throughput settings for the indexes
 final ProvisionedThroughput ptIndex = ProvisionedThroughput.builder()
 .readCapacityUnits(1L)
 .writeCapacityUnits(1L)
 .build();

 // CreateDateIndex
 final List<KeySchemaElement> createDateKeySchema = new ArrayList<>();
 createDateKeySchema.add(KeySchemaElement.builder()
 .attributeName(CREATE_DATE_ATTR)
 .keyType(KeyType.HASH)
 .build());
 createDateKeySchema.add(KeySchemaElement.builder()
 .attributeName(ISSUE_ID_ATTR)
 .keyType(KeyType.RANGE)
 .build());

 final Projection createDateProjection = Projection.builder()
 .projectionType(ProjectionType.INCLUDE)
 .nonKeyAttributes(DESCRIPTION_ATTR, STATUS_ATTR)
 .build();

Create a table with global secondary index API Version 2012-08-10 2251

Amazon DynamoDB Developer Guide

 final GlobalSecondaryIndex createDateIndex =
 GlobalSecondaryIndex.builder()
 .indexName(CREATE_DATE_INDEX)
 .keySchema(createDateKeySchema)
 .projection(createDateProjection)
 .provisionedThroughput(ptIndex)
 .build();

 // TitleIndex
 final List<KeySchemaElement> titleKeySchema = new ArrayList<>();
 titleKeySchema.add(KeySchemaElement.builder()
 .attributeName(TITLE_ATTR)
 .keyType(KeyType.HASH)
 .build());
 titleKeySchema.add(KeySchemaElement.builder()
 .attributeName(ISSUE_ID_ATTR)
 .keyType(KeyType.RANGE)
 .build());

 final Projection titleProjection =

 Projection.builder().projectionType(ProjectionType.KEYS_ONLY).build();

 final GlobalSecondaryIndex titleIndex =
 GlobalSecondaryIndex.builder()
 .indexName(TITLE_INDEX)
 .keySchema(titleKeySchema)
 .projection(titleProjection)
 .provisionedThroughput(ptIndex)
 .build();

 // DueDateIndex
 final List<KeySchemaElement> dueDateKeySchema = new ArrayList<>();
 dueDateKeySchema.add(KeySchemaElement.builder()
 .attributeName(DUE_DATE_ATTR)
 .keyType(KeyType.HASH)
 .build());

 final Projection dueDateProjection =
 Projection.builder().projectionType(ProjectionType.ALL).build();

 final GlobalSecondaryIndex dueDateIndex =
 GlobalSecondaryIndex.builder()

Create a table with global secondary index API Version 2012-08-10 2252

Amazon DynamoDB Developer Guide

 .indexName(DUE_DATE_INDEX)
 .keySchema(dueDateKeySchema)
 .projection(dueDateProjection)
 .provisionedThroughput(ptIndex)
 .build();

 final CreateTableRequest createTableRequest =
 CreateTableRequest.builder()
 .tableName(TABLE_NAME)
 .keySchema(tableKeySchema)
 .attributeDefinitions(attributeDefinitions)
 .globalSecondaryIndexes(createDateIndex, titleIndex,
 dueDateIndex)
 .provisionedThroughput(ProvisionedThroughput.builder()
 .readCapacityUnits(1L)
 .writeCapacityUnits(1L)
 .build())
 .build();

 System.out.println("Creating table " + TABLE_NAME + "...");
 dynamoDbClient.createTable(createTableRequest);

 // Wait for table to become active
 System.out.println("Waiting for " + TABLE_NAME + " to become
 ACTIVE...");
 final DynamoDbWaiter waiter = dynamoDbClient.waiter();
 final DescribeTableRequest describeTableRequest =
 DescribeTableRequest.builder().tableName(TABLE_NAME).build();

 final WaiterResponse<DescribeTableResponse> waiterResponse =
 waiter.waitUntilTableExists(describeTableRequest);
 waiterResponse.matched().response().ifPresent(response ->
 System.out.println("Table is now ready for use"));

 } catch (DynamoDbException e) {
 System.err.println("Error creating table: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see CreateTable in Amazon SDK for Java 2.x API Reference.

Create a table with global secondary index API Version 2012-08-10 2253

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a DynamoDB table with warm throughput setting using an
Amazon SDK

The following code examples show how to create a table with warm throughput enabled.

Java

SDK for Java 2.x

Create DynamoDB table with warm throughput setting using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeDefinition;
import software.amazon.awssdk.services.dynamodb.model.CreateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.CreateTableResponse;
import software.amazon.awssdk.services.dynamodb.model.GlobalSecondaryIndex;
import software.amazon.awssdk.services.dynamodb.model.KeySchemaElement;
import software.amazon.awssdk.services.dynamodb.model.KeyType;
import software.amazon.awssdk.services.dynamodb.model.Projection;
import software.amazon.awssdk.services.dynamodb.model.ProvisionedThroughput;
import software.amazon.awssdk.services.dynamodb.model.ScalarAttributeType;
import software.amazon.awssdk.services.dynamodb.model.WarmThroughput;

 public static WarmThroughput buildWarmThroughput(final Long
 readUnitsPerSecond, final Long writeUnitsPerSecond) {
 return WarmThroughput.builder()
 .readUnitsPerSecond(readUnitsPerSecond)
 .writeUnitsPerSecond(writeUnitsPerSecond)
 .build();
 }

 /**
 * Builds a ProvisionedThroughput object with the specified read and write
 capacity units.
 *
 * @param readCapacityUnits The read capacity units
 * @param writeCapacityUnits The write capacity units
 * @return A configured ProvisionedThroughput object
 */

Create a table with warm throughput enabled API Version 2012-08-10 2254

Amazon DynamoDB Developer Guide

 public static ProvisionedThroughput buildProvisionedThroughput(
 final Long readCapacityUnits, final Long writeCapacityUnits) {
 return ProvisionedThroughput.builder()
 .readCapacityUnits(readCapacityUnits)
 .writeCapacityUnits(writeCapacityUnits)
 .build();
 }

 /**
 * Builds an AttributeDefinition with the specified name and type.
 *
 * @param attributeName The attribute name
 * @param scalarAttributeType The attribute type
 * @return A configured AttributeDefinition
 */
 private static AttributeDefinition buildAttributeDefinition(
 final String attributeName, final ScalarAttributeType
 scalarAttributeType) {
 return AttributeDefinition.builder()
 .attributeName(attributeName)
 .attributeType(scalarAttributeType)
 .build();
 }

 /**
 * Builds a KeySchemaElement with the specified name and key type.
 *
 * @param attributeName The attribute name
 * @param keyType The key type (HASH or RANGE)
 * @return A configured KeySchemaElement
 */
 private static KeySchemaElement buildKeySchemaElement(final String
 attributeName, final KeyType keyType) {
 return KeySchemaElement.builder()
 .attributeName(attributeName)
 .keyType(keyType)
 .build();
 }

 /**
 * Creates a DynamoDB table with the specified configuration including warm
 throughput settings.
 *
 * @param ddb The DynamoDB client

Create a table with warm throughput enabled API Version 2012-08-10 2255

Amazon DynamoDB Developer Guide

 * @param tableName The name of the table to create
 * @param partitionKey The partition key attribute name
 * @param sortKey The sort key attribute name
 * @param miscellaneousKeyAttribute Additional key attribute name for GSI
 * @param nonKeyAttribute Non-key attribute to include in GSI projection
 * @param tableReadCapacityUnits Read capacity units for the table
 * @param tableWriteCapacityUnits Write capacity units for the table
 * @param tableWarmReadUnitsPerSecond Warm read units per second for the
 table
 * @param tableWarmWriteUnitsPerSecond Warm write units per second for the
 table
 * @param globalSecondaryIndexName The name of the GSI to create
 * @param globalSecondaryIndexReadCapacityUnits Read capacity units for the
 GSI
 * @param globalSecondaryIndexWriteCapacityUnits Write capacity units for the
 GSI
 * @param globalSecondaryIndexWarmReadUnitsPerSecond Warm read units per
 second for the GSI
 * @param globalSecondaryIndexWarmWriteUnitsPerSecond Warm write units per
 second for the GSI
 */
 public static void createDynamoDBTable(
 final DynamoDbClient ddb,
 final String tableName,
 final String partitionKey,
 final String sortKey,
 final String miscellaneousKeyAttribute,
 final String nonKeyAttribute,
 final Long tableReadCapacityUnits,
 final Long tableWriteCapacityUnits,
 final Long tableWarmReadUnitsPerSecond,
 final Long tableWarmWriteUnitsPerSecond,
 final String globalSecondaryIndexName,
 final Long globalSecondaryIndexReadCapacityUnits,
 final Long globalSecondaryIndexWriteCapacityUnits,
 final Long globalSecondaryIndexWarmReadUnitsPerSecond,
 final Long globalSecondaryIndexWarmWriteUnitsPerSecond) {

 // Define the table attributes
 final AttributeDefinition partitionKeyAttribute =
 buildAttributeDefinition(partitionKey, ScalarAttributeType.S);
 final AttributeDefinition sortKeyAttribute =
 buildAttributeDefinition(sortKey, ScalarAttributeType.S);
 final AttributeDefinition miscellaneousKeyAttributeDefinition =

Create a table with warm throughput enabled API Version 2012-08-10 2256

Amazon DynamoDB Developer Guide

 buildAttributeDefinition(miscellaneousKeyAttribute,
 ScalarAttributeType.N);
 final AttributeDefinition[] attributeDefinitions = {
 partitionKeyAttribute, sortKeyAttribute,
 miscellaneousKeyAttributeDefinition
 };

 // Define the table key schema
 final KeySchemaElement partitionKeyElement =
 buildKeySchemaElement(partitionKey, KeyType.HASH);
 final KeySchemaElement sortKeyElement = buildKeySchemaElement(sortKey,
 KeyType.RANGE);
 final KeySchemaElement[] keySchema = {partitionKeyElement,
 sortKeyElement};

 // Define the provisioned throughput for the table
 final ProvisionedThroughput provisionedThroughput =
 buildProvisionedThroughput(tableReadCapacityUnits,
 tableWriteCapacityUnits);

 // Define the Global Secondary Index (GSI)
 final KeySchemaElement globalSecondaryIndexPartitionKeyElement =
 buildKeySchemaElement(sortKey, KeyType.HASH);
 final KeySchemaElement globalSecondaryIndexSortKeyElement =
 buildKeySchemaElement(miscellaneousKeyAttribute, KeyType.RANGE);
 final KeySchemaElement[] gsiKeySchema = {
 globalSecondaryIndexPartitionKeyElement,
 globalSecondaryIndexSortKeyElement
 };

 final Projection gsiProjection = Projection.builder()
 .projectionType(PROJECTION_TYPE_INCLUDE)
 .nonKeyAttributes(nonKeyAttribute)
 .build();

 final ProvisionedThroughput gsiProvisionedThroughput =
 buildProvisionedThroughput(globalSecondaryIndexReadCapacityUnits,
 globalSecondaryIndexWriteCapacityUnits);

 // Define the warm throughput for the Global Secondary Index (GSI)
 final WarmThroughput gsiWarmThroughput = buildWarmThroughput(
 globalSecondaryIndexWarmReadUnitsPerSecond,
 globalSecondaryIndexWarmWriteUnitsPerSecond);

Create a table with warm throughput enabled API Version 2012-08-10 2257

Amazon DynamoDB Developer Guide

 final GlobalSecondaryIndex globalSecondaryIndex =
 GlobalSecondaryIndex.builder()
 .indexName(globalSecondaryIndexName)
 .keySchema(gsiKeySchema)
 .projection(gsiProjection)
 .provisionedThroughput(gsiProvisionedThroughput)
 .warmThroughput(gsiWarmThroughput)
 .build();

 // Define the warm throughput for the table
 final WarmThroughput tableWarmThroughput =
 buildWarmThroughput(tableWarmReadUnitsPerSecond,
 tableWarmWriteUnitsPerSecond);

 final CreateTableRequest request = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(attributeDefinitions)
 .keySchema(keySchema)
 .provisionedThroughput(provisionedThroughput)
 .globalSecondaryIndexes(globalSecondaryIndex)
 .warmThroughput(tableWarmThroughput)
 .build();

 final CreateTableResponse response = ddb.createTable(request);
 System.out.println(response);
 }

• For API details, see CreateTable in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Create DynamoDB table with warm throughput setting using Amazon SDK for JavaScript.

import { DynamoDBClient, CreateTableCommand } from "@aws-sdk/client-dynamodb";

export async function createDynamoDBTableWithWarmThroughput(
 tableName,
 partitionKey,
 sortKey,
 miscKeyAttr,

Create a table with warm throughput enabled API Version 2012-08-10 2258

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

 nonKeyAttr,
 tableProvisionedReadUnits,
 tableProvisionedWriteUnits,
 tableWarmReads,
 tableWarmWrites,
 indexName,
 indexProvisionedReadUnits,
 indexProvisionedWriteUnits,
 indexWarmReads,
 indexWarmWrites,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });
 const command = new CreateTableCommand({
 TableName: tableName,
 AttributeDefinitions: [
 { AttributeName: partitionKey, AttributeType: "S" },
 { AttributeName: sortKey, AttributeType: "S" },
 { AttributeName: miscKeyAttr, AttributeType: "N" },
],
 KeySchema: [
 { AttributeName: partitionKey, KeyType: "HASH" },
 { AttributeName: sortKey, KeyType: "RANGE" },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: tableProvisionedReadUnits,
 WriteCapacityUnits: tableProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: tableWarmReads,
 WriteUnitsPerSecond: tableWarmWrites,
 },
 GlobalSecondaryIndexes: [
 {
 IndexName: indexName,
 KeySchema: [
 { AttributeName: sortKey, KeyType: "HASH" },
 { AttributeName: miscKeyAttr, KeyType: "RANGE" },
],
 Projection: {
 ProjectionType: "INCLUDE",
 NonKeyAttributes: [nonKeyAttr],
 },

Create a table with warm throughput enabled API Version 2012-08-10 2259

Amazon DynamoDB Developer Guide

 ProvisionedThroughput: {
 ReadCapacityUnits: indexProvisionedReadUnits,
 WriteCapacityUnits: indexProvisionedWriteUnits,
 },
 WarmThroughput: {
 ReadUnitsPerSecond: indexWarmReads,
 WriteUnitsPerSecond: indexWarmWrites,
 },
 },
],
 });
 const response = await ddbClient.send(command);
 console.log(response);
 return response;
 } catch (error) {
 console.error(`Error creating table: ${error}`);
 throw error;
 }
}

// Example usage (commented out for testing)
/*
createDynamoDBTableWithWarmThroughput(
 'example-table',
 'pk',
 'sk',
 'gsiKey',
 'data',
 10, 10, 5, 5,
 'example-index',
 5, 5, 2, 2
);
*/

• For API details, see CreateTable in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Create DynamoDB table with warm throughput setting using Amazon SDK for Python
(Boto3).

Create a table with warm throughput enabled API Version 2012-08-10 2260

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/CreateTableCommand

Amazon DynamoDB Developer Guide

from boto3 import client
from botocore.exceptions import ClientError

def create_dynamodb_table_warm_throughput(
 table_name,
 partition_key,
 sort_key,
 misc_key_attr,
 non_key_attr,
 table_provisioned_read_units,
 table_provisioned_write_units,
 table_warm_reads,
 table_warm_writes,
 gsi_name,
 gsi_provisioned_read_units,
 gsi_provisioned_write_units,
 gsi_warm_reads,
 gsi_warm_writes,
 region_name="us-east-1",
):
 """
 Creates a DynamoDB table with a warm throughput setting configured.

 :param table_name: The name of the table to be created.
 :param partition_key: The partition key for the table being created.
 :param sort_key: The sort key for the table being created.
 :param misc_key_attr: A miscellaneous key attribute for the table being
 created.
 :param non_key_attr: A non-key attribute for the table being created.
 :param table_provisioned_read_units: The newly created table's provisioned
 read capacity units.
 :param table_provisioned_write_units: The newly created table's provisioned
 write capacity units.
 :param table_warm_reads: The read units per second setting for the table's
 warm throughput.
 :param table_warm_writes: The write units per second setting for the table's
 warm throughput.
 :param gsi_name: The name of the Global Secondary Index (GSI) to be created
 on the table.
 :param gsi_provisioned_read_units: The configured Global Secondary Index
 (GSI) provisioned read capacity units.

Create a table with warm throughput enabled API Version 2012-08-10 2261

Amazon DynamoDB Developer Guide

 :param gsi_provisioned_write_units: The configured Global Secondary Index
 (GSI) provisioned write capacity units.
 :param gsi_warm_reads: The read units per second setting for the Global
 Secondary Index (GSI)'s warm throughput.
 :param gsi_warm_writes: The write units per second setting for the Global
 Secondary Index (GSI)'s warm throughput.
 :param region_name: The AWS Region name to target. defaults to us-east-1
 """
 try:
 ddb = client("dynamodb", region_name=region_name)

 # Define the table attributes
 attribute_definitions = [
 {"AttributeName": partition_key, "AttributeType": "S"},
 {"AttributeName": sort_key, "AttributeType": "S"},
 {"AttributeName": misc_key_attr, "AttributeType": "N"},
]

 # Define the table key schema
 key_schema = [
 {"AttributeName": partition_key, "KeyType": "HASH"},
 {"AttributeName": sort_key, "KeyType": "RANGE"},
]

 # Define the provisioned throughput for the table
 provisioned_throughput = {
 "ReadCapacityUnits": table_provisioned_read_units,
 "WriteCapacityUnits": table_provisioned_write_units,
 }

 # Define the global secondary index
 gsi_key_schema = [
 {"AttributeName": sort_key, "KeyType": "HASH"},
 {"AttributeName": misc_key_attr, "KeyType": "RANGE"},
]
 gsi_projection = {"ProjectionType": "INCLUDE", "NonKeyAttributes":
 [non_key_attr]}
 gsi_provisioned_throughput = {
 "ReadCapacityUnits": gsi_provisioned_read_units,
 "WriteCapacityUnits": gsi_provisioned_write_units,
 }
 gsi_warm_throughput = {
 "ReadUnitsPerSecond": gsi_warm_reads,
 "WriteUnitsPerSecond": gsi_warm_writes,

Create a table with warm throughput enabled API Version 2012-08-10 2262

Amazon DynamoDB Developer Guide

 }
 global_secondary_indexes = [
 {
 "IndexName": gsi_name,
 "KeySchema": gsi_key_schema,
 "Projection": gsi_projection,
 "ProvisionedThroughput": gsi_provisioned_throughput,
 "WarmThroughput": gsi_warm_throughput,
 }
]

 # Define the warm throughput for the table
 warm_throughput = {
 "ReadUnitsPerSecond": table_warm_reads,
 "WriteUnitsPerSecond": table_warm_writes,
 }

 # Create the DynamoDB client and create the table
 response = ddb.create_table(
 TableName=table_name,
 AttributeDefinitions=attribute_definitions,
 KeySchema=key_schema,
 ProvisionedThroughput=provisioned_throughput,
 GlobalSecondaryIndexes=global_secondary_indexes,
 WarmThroughput=warm_throughput,
)

 print(response)
 return response
 except ClientError as e:
 print(f"Error creating table: {e}")
 raise e

• For API details, see CreateTable in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a table with warm throughput enabled API Version 2012-08-10 2263

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/CreateTable

Amazon DynamoDB Developer Guide

Create a web application to track DynamoDB data

The following code examples show how to create a web application that tracks work items in an
Amazon DynamoDB table and uses Amazon Simple Email Service (Amazon SES) to send reports.

.NET

Amazon SDK for .NET

Shows how to use the Amazon DynamoDB .NET API to create a dynamic web application
that tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Java

SDK for Java 2.x

Shows how to use the Amazon DynamoDB API to create a dynamic web application that
tracks DynamoDB work data.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Kotlin

SDK for Kotlin

Shows how to use the Amazon DynamoDB API to create a dynamic web application that
tracks DynamoDB work data.

Create a web application to track DynamoDB data API Version 2012-08-10 2264

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/cross-service/DynamoDbItemTracker
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_dynamodb_web_app

Amazon DynamoDB Developer Guide

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon SES

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) to create a REST service that tracks
work items in Amazon DynamoDB and emails reports by using Amazon Simple Email Service
(Amazon SES). This example uses the Flask web framework to handle HTTP routing and
integrates with a React webpage to present a fully functional web application.

• Build a Flask REST service that integrates with Amazon Web Services services.

• Read, write, and update work items that are stored in a DynamoDB table.

• Use Amazon SES to send email reports of work items.

For complete source code and instructions on how to set up and run, see the full example in
the Amazon Code Examples Repository on GitHub.

Services used in this example

• DynamoDB

• Amazon SES

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a websocket chat application with API Gateway

The following code example shows how to create a chat application that is served by a websocket
API built on Amazon API Gateway.

Create a websocket chat application API Version 2012-08-10 2265

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/itemtracker_dynamodb
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/dynamodb_item_tracker

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon API Gateway V2 to
create a websocket API that integrates with Amazon Lambda and Amazon DynamoDB.

• Create a websocket API served by API Gateway.

• Define a Lambda handler that stores connections in DynamoDB and posts messages to
other chat participants.

• Connect to the websocket chat application and send messages with the Websockets
package.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create a DynamoDB item with a TTL using an Amazon SDK

The following code examples show how to create an item with TTL.

Java

SDK for Java 2.x

package com.amazon.samplelib.ttl;

import com.amazon.samplelib.CodeSampleUtils;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;

Create an item with a TTL API Version 2012-08-10 2266

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/apigateway_websocket_chat

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutItemRequest;
import software.amazon.awssdk.services.dynamodb.model.PutItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.Optional;

/**
 * Creates an item in a DynamoDB table with TTL attributes.
 * This class demonstrates how to add TTL expiration timestamps to DynamoDB
 items.
 */
public class CreateTTL {

 private static final String USAGE =
 """
 Usage:
 <tableName> <primaryKey> <sortKey> <region>
 Where:
 tableName - The Amazon DynamoDB table being queried.
 primaryKey - The name of the primary key. Also known as the hash
 or partition key.
 sortKey - The name of the sort key. Also known as the range
 attribute.
 region (optional) - The AWS region that the Amazon DynamoDB table
 is located in. (Default: us-east-1)
 """;
 private static final int DAYS_TO_EXPIRE = 90;
 private static final int SECONDS_PER_DAY = 24 * 60 * 60;
 private static final String PRIMARY_KEY_ATTR = "primaryKey";
 private static final String SORT_KEY_ATTR = "sortKey";
 private static final String CREATION_DATE_ATTR = "creationDate";
 private static final String EXPIRE_AT_ATTR = "expireAt";
 private static final String SUCCESS_MESSAGE = "%s PutItem operation with TTL
 successful.";
 private static final String TABLE_NOT_FOUND_ERROR = "Error: The Amazon
 DynamoDB table \"%s\" can't be found.";

 private final DynamoDbClient dynamoDbClient;

 /**
 * Constructs a CreateTTL instance with the specified DynamoDB client.

Create an item with a TTL API Version 2012-08-10 2267

Amazon DynamoDB Developer Guide

 *
 * @param dynamoDbClient The DynamoDB client to use
 */
 public CreateTTL(final DynamoDbClient dynamoDbClient) {
 this.dynamoDbClient = dynamoDbClient;
 }

 /**
 * Constructs a CreateTTL with a default DynamoDB client.
 */
 public CreateTTL() {
 this.dynamoDbClient = null;
 }

 /**
 * Main method to demonstrate creating an item with TTL.
 *
 * @param args Command line arguments
 */
 public static void main(final String[] args) {
 try {
 int result = new CreateTTL().processArgs(args);
 System.exit(result);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 /**
 * Process command line arguments and create an item with TTL.
 *
 * @param args Command line arguments
 * @return 0 if successful, non-zero otherwise
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 * @throws IllegalArgumentException If arguments are invalid
 */
 public int processArgs(final String[] args) {
 // Argument validation (remove or replace this line when reusing this
 code)
 CodeSampleUtils.validateArgs(args, new int[] {3, 4}, USAGE);

 final String tableName = args[0];

Create an item with a TTL API Version 2012-08-10 2268

Amazon DynamoDB Developer Guide

 final String primaryKey = args[1];
 final String sortKey = args[2];
 final Region region = Optional.ofNullable(args.length > 3 ? args[3] :
 null)
 .map(Region::of)
 .orElse(Region.US_EAST_1);

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final CreateTTL createTTL = new CreateTTL(ddb);
 createTTL.createItemWithTTL(tableName, primaryKey, sortKey);
 return 0;
 } catch (Exception e) {
 throw e;
 }
 }

 /**
 * Creates an item in the specified table with TTL attributes.
 *
 * @param tableName The name of the table
 * @param primaryKeyValue The value for the primary key
 * @param sortKeyValue The value for the sort key
 * @return The response from the PutItem operation
 * @throws ResourceNotFoundException If the table doesn't exist
 * @throws DynamoDbException If an error occurs during the operation
 */
 public PutItemResponse createItemWithTTL(
 final String tableName, final String primaryKeyValue, final String
 sortKeyValue) {
 // Get current time in epoch second format
 final long createDate = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = createDate + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 final Map<String, AttributeValue> itemMap = new HashMap<>();
 itemMap.put(
 PRIMARY_KEY_ATTR,
 AttributeValue.builder().s(primaryKeyValue).build());
 itemMap.put(SORT_KEY_ATTR,
 AttributeValue.builder().s(sortKeyValue).build());
 itemMap.put(

Create an item with a TTL API Version 2012-08-10 2269

Amazon DynamoDB Developer Guide

 CREATION_DATE_ATTR,
 AttributeValue.builder().n(String.valueOf(createDate)).build());
 itemMap.put(
 EXPIRE_AT_ATTR,
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

 final PutItemRequest request =
 PutItemRequest.builder().tableName(tableName).item(itemMap).build();

 try {
 final PutItemResponse response = dynamoDbClient.putItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

• For API details, see PutItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

import { DynamoDBClient, PutItemCommand } from "@aws-sdk/client-dynamodb";

export function createDynamoDBItem(table_name, region, partition_key, sort_key) {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 // Get the current time in epoch second format
 const current_time = Math.floor(new Date().getTime() / 1000);

 // Calculate the expireAt time (90 days from now) in epoch second format

Create an item with a TTL API Version 2012-08-10 2270

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

 const expire_at = Math.floor((new Date().getTime() + 90 * 24 * 60 * 60 *
 1000) / 1000);

 // Create DynamoDB item
 const item = {
 'partitionKey': {'S': partition_key},
 'sortKey': {'S': sort_key},
 'createdAt': {'N': current_time.toString()},
 'expireAt': {'N': expire_at.toString()}
 };

 const putItemCommand = new PutItemCommand({
 TableName: table_name,
 Item: item,
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 });

 client.send(putItemCommand, function(err, data) {
 if (err) {
 console.log("Exception encountered when creating item %s, here's what
 happened: ", data, err);
 throw err;
 } else {
 console.log("Item created successfully: %s.", data);
 return data;
 }
 });
}

// Example usage (commented out for testing)
// createDynamoDBItem('your-table-name', 'us-east-1', 'your-partition-key-value',
 'your-sort-key-value');

• For API details, see PutItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

from datetime import datetime, timedelta

Create an item with a TTL API Version 2012-08-10 2271

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand

Amazon DynamoDB Developer Guide

import boto3

def create_dynamodb_item(table_name, region, primary_key, sort_key):
 """
 Creates a DynamoDB item with an attached expiry attribute.

 :param table_name: Table name for the boto3 resource to target when creating
 an item
 :param region: string representing the AWS region. Example: `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :return: Void (nothing)
 """
 try:
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Get the current time in epoch second format
 current_time = int(datetime.now().timestamp())

 # Calculate the expiration time (90 days from now) in epoch second format
 expiration_time = int((datetime.now() + timedelta(days=90)).timestamp())

 item = {
 "primaryKey": primary_key,
 "sortKey": sort_key,
 "creationDate": current_time,
 "expireAt": expiration_time,
 }
 response = table.put_item(Item=item)

 print("Item created successfully.")
 return response
 except Exception as e:
 print(f"Error creating item: {e}")
 raise e

Use your own values
create_dynamodb_item(
 "your-table-name", "us-west-2", "your-partition-key-value", "your-sort-key-
value"

Create an item with a TTL API Version 2012-08-10 2272

Amazon DynamoDB Developer Guide

)

• For API details, see PutItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create and manage DynamoDB global tables with Multi-Region Strong
Consistency using an Amazon SDK

The following code examples show how to create and manage DynamoDB global tables with Multi-
Region Strong Consistency (MRSC).

• Create a table with Multi-Region Strong Consistency.

• Verify MRSC configuration and replica status.

• Test strong consistency across Regions with immediate reads.

• Perform conditional writes with MRSC guarantees.

• Clean up MRSC global table resources.

Bash

Amazon CLI with Bash script

Create a table with Multi-Region Strong Consistency.

Step 1: Create a new table in us-east-2 (primary region for MRSC)
Note: Table must be empty when enabling MRSC
aws dynamodb create-table \
 --table-name MusicTable \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \

Create and manage MRSC global tables API Version 2012-08-10 2273

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem

Amazon DynamoDB Developer Guide

 --region us-east-2

Wait for table to become active
aws dynamodb wait table-exists --table-name MusicTable --region us-east-2

Step 2: Add replica and witness with Multi-Region Strong Consistency
MRSC requires exactly three replicas in supported regions
aws dynamodb update-table \
 --table-name MusicTable \
 --replica-updates '[{"Create": {"RegionName": "us-east-1"}}]' \
 --global-table-witness-updates '[{"Create": {"RegionName": "us-west-2"}}]' \
 --multi-region-consistency STRONG \
 --region us-east-2

Verify MRSC configuration and replica status.

Verify the global table configuration and MRSC setting
aws dynamodb describe-table \
 --table-name MusicTable \
 --region us-east-2 \
 --query 'Table.
{TableName:TableName,TableStatus:TableStatus,MultiRegionConsistency:MultiRegionConsistency,Replicas:Replicas[*],GlobalTableWitnesses:GlobalTableWitnesses[*].
{Region:RegionName,Status:ReplicaStatus}}'

Test strong consistency with immediate reads across Regions.

Write an item to the primary region
aws dynamodb put-item \
 --table-name MusicTable \
 --item '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"},"Album":
 {"S":"The Beatles 1967-1970"},"Year": {"N":"1968"}}' \
 --region us-east-2

Read the item from replica region to verify strong consistency (cannot read or
 write to witness)
No wait time needed - MRSC provides immediate consistency
echo "Reading from us-east-1 (immediate consistency):"
aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"}}' \
 --consistent-read \

Create and manage MRSC global tables API Version 2012-08-10 2274

Amazon DynamoDB Developer Guide

 --region us-east-1

Perform conditional writes with MRSC guarantees.

Perform a conditional update from a different region
This demonstrates that conditions work consistently across all regions
aws dynamodb update-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"The Beatles"},"SongTitle": {"S":"Hey Jude"}}' \
 --update-expression "SET #rating = :rating" \
 --condition-expression "attribute_exists(Artist)" \
 --expression-attribute-names '{"#rating": "Rating"}' \
 --expression-attribute-values '{":rating": {"N":"5"}}' \
 --region us-east-1

Clean up MRSC global table resources.

Remove replica tables (must be done before deleting the primary table)
aws dynamodb update-table \
 --table-name MusicTable \
 --replica-updates '[{"Delete": {"RegionName": "us-east-1"}}]' \
 --global-table-witness-updates '[{"Delete": {"RegionName": "us-west-2"}}]' \
 --region us-east-2

Wait for replicas to be deleted
echo "Waiting for replicas to be deleted..."
sleep 30

Delete the primary table
aws dynamodb delete-table \
 --table-name MusicTable \
 --region us-east-2

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

Create and manage MRSC global tables API Version 2012-08-10 2275

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem

Amazon DynamoDB Developer Guide

• PutItem

• UpdateItem

• UpdateTable

Java

SDK for Java 2.x

Create a regional table ready for MRSC conversion using Amazon SDK for Java 2.x.

 public static CreateTableResponse createRegionalTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Creating regional table: " + tableName + " (must be
 empty for MRSC)");

 CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .tableName(tableName)
 .attributeDefinitions(
 AttributeDefinition.builder()
 .attributeName("Artist")
 .attributeType(ScalarAttributeType.S)
 .build(),
 AttributeDefinition.builder()
 .attributeName("SongTitle")
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(
 KeySchemaElement.builder()
 .attributeName("Artist")
 .keyType(KeyType.HASH)
 .build(),
 KeySchemaElement.builder()

Create and manage MRSC global tables API Version 2012-08-10 2276

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

 .attributeName("SongTitle")
 .keyType(KeyType.RANGE)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .build();

 CreateTableResponse response =
 dynamoDbClient.createTable(createTableRequest);
 LOGGER.info("Regional table creation initiated. Status: "
 + response.tableDescription().tableStatus());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to create regional table: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to create regional table: " + tableName)
 .cause(e)
 .build();
 }
 }

Convert a regional table to MRSC with replicas and witness using Amazon SDK for Java 2.x.

 public static UpdateTableResponse convertToMRSCWithWitness(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {

Create and manage MRSC global tables API Version 2012-08-10 2277

Amazon DynamoDB Developer Guide

 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("Converting table to MRSC with replica in " +
 replicaRegion.id() + " and witness in "
 + witnessRegion.id());

 // Create replica update using ReplicationGroupUpdate
 ReplicationGroupUpdate replicaUpdate =
 ReplicationGroupUpdate.builder()
 .create(CreateReplicationGroupMemberAction.builder()
 .regionName(replicaRegion.id())
 .build())
 .build();

 // Create witness update
 GlobalTableWitnessGroupUpdate witnessUpdate =
 GlobalTableWitnessGroupUpdate.builder()
 .create(CreateGlobalTableWitnessGroupMemberAction.builder()
 .regionName(witnessRegion.id())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(List.of(replicaUpdate))
 .globalTableWitnessUpdates(List.of(witnessUpdate))
 .multiRegionConsistency(MultiRegionConsistency.STRONG)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("MRSC conversion initiated. Status: "
 + response.tableDescription().tableStatus());
 LOGGER.info("UpdateTableResponse full object: " + response);
 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to convert table to MRSC: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to convert table to MRSC: " + tableName)
 .cause(e)

Create and manage MRSC global tables API Version 2012-08-10 2278

Amazon DynamoDB Developer Guide

 .build();
 }
 }

Describe an MRSC global table configuration using Amazon SDK for Java 2.x.

 public static DescribeTableResponse describeMRSCTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Describing MRSC global table: " + tableName);

 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 DescribeTableResponse response =
 dynamoDbClient.describeTable(request);

 LOGGER.info("Table status: " + response.table().tableStatus());
 LOGGER.info("Multi-region consistency: " +
 response.table().multiRegionConsistency());

 if (response.table().replicas() != null
 && !response.table().replicas().isEmpty()) {
 LOGGER.info("Number of replicas: " +
 response.table().replicas().size());
 response.table()
 .replicas()
 .forEach(replica -> LOGGER.info(
 "Replica region: " + replica.regionName() + ", Status: "
 + replica.replicaStatus()));
 }

 if (response.table().globalTableWitnesses() != null

Create and manage MRSC global tables API Version 2012-08-10 2279

Amazon DynamoDB Developer Guide

 && !response.table().globalTableWitnesses().isEmpty()) {
 LOGGER.info("Number of witnesses: "
 + response.table().globalTableWitnesses().size());
 response.table()
 .globalTableWitnesses()
 .forEach(witness -> LOGGER.info(
 "Witness region: " + witness.regionName() + ", Status: "
 + witness.witnessStatus()));
 }

 return response;

 } catch (ResourceNotFoundException e) {
 LOGGER.severe("Table not found: " + tableName + " - " +
 e.getMessage());
 throw DynamoDbException.builder()
 .message("Table not found: " + tableName)
 .cause(e)
 .build();
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to describe table: " + tableName + " - " +
 e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to describe table: " + tableName)
 .cause(e)
 .build();
 }
 }

Add test items to verify MRSC strong consistency using Amazon SDK for Java 2.x.

 public static PutItemResponse putTestItem(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final String artist,
 final String songTitle,
 final String album,
 final String year) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }

Create and manage MRSC global tables API Version 2012-08-10 2280

Amazon DynamoDB Developer Guide

 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }

 try {
 LOGGER.info("Adding test item to MRSC global table: " + tableName);

 Map<String, AttributeValue> item = new HashMap<>();
 item.put("Artist", AttributeValue.builder().s(artist).build());
 item.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 if (album != null && !album.trim().isEmpty()) {
 item.put("Album", AttributeValue.builder().s(album).build());
 }
 if (year != null && !year.trim().isEmpty()) {
 item.put("Year", AttributeValue.builder().n(year).build());
 }

 PutItemRequest putItemRequest =
 PutItemRequest.builder().tableName(tableName).item(item).build();

 PutItemResponse response = dynamoDbClient.putItem(putItemRequest);
 LOGGER.info("Test item added successfully with strong consistency");

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add test item to table: " + tableName + " -
 " + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to add test item to table: " + tableName)
 .cause(e)
 .build();
 }
 }

Create and manage MRSC global tables API Version 2012-08-10 2281

Amazon DynamoDB Developer Guide

Read items with consistent reads from MRSC replicas using Amazon SDK for Java 2.x.

 public static GetItemResponse getItemWithConsistentRead(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 artist, final String songTitle) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }

 try {
 LOGGER.info("Reading item from MRSC global table with consistent
 read: " + tableName);

 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Artist", AttributeValue.builder().s(artist).build());
 key.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 GetItemRequest getItemRequest = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .consistentRead(true)
 .build();

 GetItemResponse response = dynamoDbClient.getItem(getItemRequest);

 if (response.hasItem()) {
 LOGGER.info("Item found with strong consistency - no wait time
 needed");
 } else {

Create and manage MRSC global tables API Version 2012-08-10 2282

Amazon DynamoDB Developer Guide

 LOGGER.info("Item not found");
 }

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to read item from table: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to read item from table: " + tableName)
 .cause(e)
 .build();
 }
 }

Perform conditional updates with MRSC guarantees using Amazon SDK for Java 2.x.

 public static UpdateItemResponse performConditionalUpdate(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final String artist,
 final String songTitle,
 final String rating) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");
 }
 if (rating == null || rating.trim().isEmpty()) {
 throw new IllegalArgumentException("Rating cannot be null or empty");
 }

Create and manage MRSC global tables API Version 2012-08-10 2283

Amazon DynamoDB Developer Guide

 try {
 LOGGER.info("Performing conditional update on MRSC global table: " +
 tableName);

 Map<String, AttributeValue> key = new HashMap<>();
 key.put("Artist", AttributeValue.builder().s(artist).build());
 key.put("SongTitle", AttributeValue.builder().s(songTitle).build());

 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#rating", "Rating");

 Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":rating", AttributeValue.builder().n(rating).build());

 UpdateItemRequest updateItemRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #rating = :rating")
 .conditionExpression("attribute_exists(Artist)")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 UpdateItemResponse response =
 dynamoDbClient.updateItem(updateItemRequest);
 LOGGER.info("Conditional update successful - demonstrates strong
 consistency");

 return response;

 } catch (ConditionalCheckFailedException e) {
 LOGGER.warning("Conditional check failed: " + e.getMessage());
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to perform conditional update: " + tableName +
 " - " + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to perform conditional update: " + tableName)
 .cause(e)
 .build();
 }
 }

Create and manage MRSC global tables API Version 2012-08-10 2284

Amazon DynamoDB Developer Guide

Wait for MRSC replicas and witnesses to become active using Amazon SDK for Java 2.x.

 public static void waitForMRSCReplicasActive(
 final DynamoDbClient dynamoDbClient, final String tableName, final int
 maxWaitTimeSeconds)
 throws InterruptedException {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (maxWaitTimeSeconds <= 0) {
 throw new IllegalArgumentException("Max wait time must be positive");
 }

 try {
 LOGGER.info("Waiting for MRSC replicas and witnesses to become
 active: " + tableName);

 final long startTime = System.currentTimeMillis();
 final long maxWaitTimeMillis = maxWaitTimeSeconds * 1000L;
 int backoffSeconds = 5; // Start with 5 second intervals
 final int maxBackoffSeconds = 30; // Cap at 30 seconds

 while (System.currentTimeMillis() - startTime < maxWaitTimeMillis) {
 DescribeTableResponse response =
 describeMRSCTable(dynamoDbClient, tableName);

 boolean allActive = true;
 StringBuilder statusReport = new StringBuilder();

 if (response.table().multiRegionConsistency() == null
 || !MultiRegionConsistency.STRONG
 .toString()

 .equals(response.table().multiRegionConsistency().toString())) {
 allActive = false;
 statusReport

Create and manage MRSC global tables API Version 2012-08-10 2285

Amazon DynamoDB Developer Guide

 .append("MultiRegionConsistency: ")
 .append(response.table().multiRegionConsistency())
 .append(" ");
 }
 if (response.table().replicas() == null
 || response.table().replicas().isEmpty()) {
 allActive = false;
 statusReport.append("No replicas found. ");
 }
 if (response.table().globalTableWitnesses() == null
 || response.table().globalTableWitnesses().isEmpty()) {
 allActive = false;
 statusReport.append("No witnesses found. ");
 }

 // Check table status
 if (!"ACTIVE".equals(response.table().tableStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Table: ")
 .append(response.table().tableStatus())
 .append(" ");
 }

 // Check replica status
 if (response.table().replicas() != null) {
 for (var replica : response.table().replicas()) {
 if (!"ACTIVE".equals(replica.replicaStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Replica(")
 .append(replica.regionName())
 .append("): ")
 .append(replica.replicaStatus())
 .append(" ");
 }
 }
 }

 // Check witness status
 if (response.table().globalTableWitnesses() != null) {
 for (var witness : response.table().globalTableWitnesses()) {

Create and manage MRSC global tables API Version 2012-08-10 2286

Amazon DynamoDB Developer Guide

 if (!"ACTIVE".equals(witness.witnessStatus().toString()))
 {
 allActive = false;
 statusReport
 .append("Witness(")
 .append(witness.regionName())
 .append("): ")
 .append(witness.witnessStatus())
 .append(" ");
 }
 }
 }

 if (allActive) {
 LOGGER.info("All MRSC replicas and witnesses are now active:
 " + tableName);
 return;
 }

 LOGGER.info("Waiting for MRSC components to become active.
 Status: " + statusReport.toString());
 LOGGER.info("Next check in " + backoffSeconds + " seconds...");

 tempWait(backoffSeconds);

 // Exponential backoff with cap
 backoffSeconds = Math.min(backoffSeconds * 2, maxBackoffSeconds);
 }

 throw DynamoDbException.builder()
 .message("Timeout waiting for MRSC replicas to become active
 after " + maxWaitTimeSeconds + " seconds")
 .build();

 } catch (DynamoDbException | InterruptedException e) {
 LOGGER.severe("Failed to wait for MRSC replicas to become active: " +
 tableName + " - " + e.getMessage());
 throw e;
 }
 }

Clean up MRSC replicas and witnesses using Amazon SDK for Java 2.x.

Create and manage MRSC global tables API Version 2012-08-10 2287

Amazon DynamoDB Developer Guide

 public static UpdateTableResponse cleanupMRSCReplicas(
 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {
 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("Cleaning up MRSC replicas and witnesses for table: " +
 tableName);

 // Remove replica using ReplicationGroupUpdate
 ReplicationGroupUpdate replicaUpdate =
 ReplicationGroupUpdate.builder()
 .delete(DeleteReplicationGroupMemberAction.builder()
 .regionName(replicaRegion.id())
 .build())
 .build();

 // Remove witness
 GlobalTableWitnessGroupUpdate witnessUpdate =
 GlobalTableWitnessGroupUpdate.builder()
 .delete(DeleteGlobalTableWitnessGroupMemberAction.builder()
 .regionName(witnessRegion.id())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(List.of(replicaUpdate))

Create and manage MRSC global tables API Version 2012-08-10 2288

Amazon DynamoDB Developer Guide

 .globalTableWitnessUpdates(List.of(witnessUpdate))
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("MRSC cleanup initiated - removing replica and witness.
 Response: " + response);

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to cleanup MRSC replicas: " + tableName + " - "
 + e.getMessage());
 throw DynamoDbException.builder()
 .message("Failed to cleanup MRSC replicas: " + tableName)
 .cause(e)
 .build();
 }
 }

Complete MRSC workflow demonstration using Amazon SDK for Java 2.x.

 public static void demonstrateCompleteMRSCWorkflow(
 final DynamoDbClient primaryClient,
 final DynamoDbClient replicaClient,
 final String tableName,
 final Region replicaRegion,
 final Region witnessRegion)
 throws InterruptedException {

 if (primaryClient == null) {
 throw new IllegalArgumentException("Primary DynamoDB client cannot be
 null");
 }
 if (replicaClient == null) {
 throw new IllegalArgumentException("Replica DynamoDB client cannot be
 null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

Create and manage MRSC global tables API Version 2012-08-10 2289

Amazon DynamoDB Developer Guide

 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (witnessRegion == null) {
 throw new IllegalArgumentException("Witness region cannot be null");
 }

 try {
 LOGGER.info("=== Starting Complete MRSC Workflow Demonstration ===");

 // Step 1: Create an empty single-Region table
 LOGGER.info("Step 1: Creating empty single-Region table");
 createRegionalTable(primaryClient, tableName);

 // Use the existing GlobalTableOperations method for basic table
 waiting
 LOGGER.info("Intermediate step: Waiting for table [" + tableName + "]
 to become active before continuing");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // Step 2: Convert to MRSC with replica and witness
 LOGGER.info("Step 2: Converting to MRSC with replica and witness");
 convertToMRSCWithWitness(primaryClient, tableName, replicaRegion,
 witnessRegion);

 // Wait for MRSC conversion to complete using MRSC-specific waiter
 LOGGER.info("Waiting for MRSC conversion to complete...");
 waitForMRSCReplicasActive(primaryClient, tableName);

 LOGGER.info("Intermediate step: Waiting for table [" + tableName + "]
 to become active before continuing");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // Step 3: Verify MRSC configuration
 LOGGER.info("Step 3: Verifying MRSC configuration");
 describeMRSCTable(primaryClient, tableName);

 // Step 4: Test strong consistency with data operations
 LOGGER.info("Step 4: Testing strong consistency with data
 operations");

 // Add test item to primary region
 putTestItem(primaryClient, tableName, "The Beatles", "Hey Jude", "The
 Beatles 1967-1970", "1968");

Create and manage MRSC global tables API Version 2012-08-10 2290

Amazon DynamoDB Developer Guide

 // Immediately read from replica region (no wait needed with MRSC)
 LOGGER.info("Reading from replica region immediately (strong
 consistency):");
 GetItemResponse getResponse =
 getItemWithConsistentRead(replicaClient, tableName, "The
 Beatles", "Hey Jude");

 if (getResponse.hasItem()) {
 LOGGER.info("# Strong consistency verified - item immediately
 available in replica region");
 } else {
 LOGGER.warning("# Item not found in replica region");
 }

 // Test conditional update from replica region
 LOGGER.info("Testing conditional update from replica region:");
 performConditionalUpdate(replicaClient, tableName, "The Beatles",
 "Hey Jude", "5");
 LOGGER.info("# Conditional update successful - demonstrates strong
 consistency");

 // Step 5: Cleanup
 LOGGER.info("Step 5: Cleaning up resources");
 cleanupMRSCReplicas(primaryClient, tableName, replicaRegion,
 witnessRegion);

 // Wait for cleanup to complete using basic table waiter
 LOGGER.info("Waiting for replica cleanup to complete...");
 GlobalTableOperations.waitForTableActive(primaryClient, tableName);

 // "Halt" until replica/witness cleanup is complete
 DescribeTableResponse cleanupVerification =
 describeMRSCTable(primaryClient, tableName);
 int backoffSeconds = 5; // Start with 5 second intervals
 while (cleanupVerification.table().multiRegionConsistency() != null)
 {
 LOGGER.info("Waiting additional time (" + backoffSeconds + "
 seconds) for MRSC cleanup to complete...");
 tempWait(backoffSeconds);

 // Exponential backoff with cap
 backoffSeconds = Math.min(backoffSeconds * 2, 30);

Create and manage MRSC global tables API Version 2012-08-10 2291

Amazon DynamoDB Developer Guide

 cleanupVerification = describeMRSCTable(primaryClient,
 tableName);
 }

 // Delete the primary table
 deleteTable(primaryClient, tableName);

 LOGGER.info("=== MRSC Workflow Demonstration Complete ===");
 LOGGER.info("");
 LOGGER.info("Key benefits of Multi-Region Strong Consistency
 (MRSC):");
 LOGGER.info("- Immediate consistency across all regions (no eventual
 consistency delays)");
 LOGGER.info("- Simplified application logic (no need to handle
 eventual consistency)");
 LOGGER.info("- Support for conditional writes and transactions across
 regions");
 LOGGER.info("- Consistent read operations from any region without
 waiting");

 } catch (DynamoDbException | InterruptedException e) {
 LOGGER.severe("MRSC workflow failed: " + e.getMessage());
 throw e;
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• UpdateItem

• UpdateTable

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Create and manage MRSC global tables API Version 2012-08-10 2292

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

Create and manage DynamoDB global tables demonstrating MREC
using an Amazon SDK

The following code example shows how to create and manage DynamoDB global tables with
replicas across multiple Regions.

• Create a table with Global Secondary Index and DynamoDB Streams.

• Add replicas in different Regions to create a global table.

• Remove replicas from a global table.

• Add test items to verify replication across Regions.

• Describe global table configuration and replica status.

Java

SDK for Java 2.x

Create a table with Global Secondary Index and DynamoDB Streams using Amazon SDK for
Java 2.x.

 public static CreateTableResponse createTableWithGSI(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 indexName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (indexName == null || indexName.trim().isEmpty()) {
 throw new IllegalArgumentException("Index name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Creating table: " + tableName + " with GSI: " +
 indexName);

 CreateTableRequest createTableRequest = CreateTableRequest.builder()

Create and manage global tables demonstrating MREC API Version 2012-08-10 2293

Amazon DynamoDB Developer Guide

 .tableName(tableName)
 .attributeDefinitions(
 AttributeDefinition.builder()
 .attributeName("Artist")
 .attributeType(ScalarAttributeType.S)
 .build(),
 AttributeDefinition.builder()
 .attributeName("SongTitle")
 .attributeType(ScalarAttributeType.S)
 .build())
 .keySchema(
 KeySchemaElement.builder()
 .attributeName("Artist")
 .keyType(KeyType.HASH)
 .build(),
 KeySchemaElement.builder()
 .attributeName("SongTitle")
 .keyType(KeyType.RANGE)
 .build())
 .billingMode(BillingMode.PAY_PER_REQUEST)
 .globalSecondaryIndexes(GlobalSecondaryIndex.builder()
 .indexName(indexName)
 .keySchema(KeySchemaElement.builder()
 .attributeName("SongTitle")
 .keyType(KeyType.HASH)
 .build())
 .projection(

 Projection.builder().projectionType(ProjectionType.ALL).build())
 .build())
 .streamSpecification(StreamSpecification.builder()
 .streamEnabled(true)
 .streamViewType(StreamViewType.NEW_AND_OLD_IMAGES)
 .build())
 .build();

 CreateTableResponse response =
 dynamoDbClient.createTable(createTableRequest);
 LOGGER.info("Table creation initiated. Status: "
 + response.tableDescription().tableStatus());

 return response;

 } catch (DynamoDbException e) {

Create and manage global tables demonstrating MREC API Version 2012-08-10 2294

Amazon DynamoDB Developer Guide

 LOGGER.severe("Failed to create table: " + tableName + " - " +
 e.getMessage());
 throw e;
 }
 }

Wait for a table to become active using Amazon SDK for Java 2.x.

 public static void waitForTableActive(final DynamoDbClient dynamoDbClient,
 final String tableName) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Waiting for table to become active: " + tableName);

 try (DynamoDbWaiter waiter =
 DynamoDbWaiter.builder().client(dynamoDbClient).build()) {
 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 waiter.waitUntilTableExists(request);
 LOGGER.info("Table is now active: " + tableName);
 }

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to wait for table to become active: " +
 tableName + " - " + e.getMessage());
 throw e;
 }
 }

Add a replica to create or extend a global table using Amazon SDK for Java 2.x.

 public static UpdateTableResponse addReplica(

Create and manage global tables demonstrating MREC API Version 2012-08-10 2295

Amazon DynamoDB Developer Guide

 final DynamoDbClient dynamoDbClient,
 final String tableName,
 final Region replicaRegion,
 final String indexName,
 final Long readCapacity) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }
 if (indexName == null || indexName.trim().isEmpty()) {
 throw new IllegalArgumentException("Index name cannot be null or
 empty");
 }
 if (readCapacity == null || readCapacity <= 0) {
 throw new IllegalArgumentException("Read capacity must be a positive
 number");
 }

 try {
 LOGGER.info("Adding replica in region: " + replicaRegion.id() + " for
 table: " + tableName);

 // Create a ReplicationGroupUpdate for adding a replica
 ReplicationGroupUpdate replicationGroupUpdate =
 ReplicationGroupUpdate.builder()
 .create(builder -> builder.regionName(replicaRegion.id())
 .globalSecondaryIndexes(ReplicaGlobalSecondaryIndex.builder()
 .indexName(indexName)

 .provisionedThroughputOverride(ProvisionedThroughputOverride.builder()
 .readCapacityUnits(readCapacity)
 .build())
 .build())
 .build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()

Create and manage global tables demonstrating MREC API Version 2012-08-10 2296

Amazon DynamoDB Developer Guide

 .tableName(tableName)
 .replicaUpdates(replicationGroupUpdate)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("Replica addition initiated in region: " +
 replicaRegion.id());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add replica in region: " +
 replicaRegion.id() + " - " + e.getMessage());
 throw e;
 }
 }

Remove a replica from a global table using Amazon SDK for Java 2.x.

 public static UpdateTableResponse removeReplica(
 final DynamoDbClient dynamoDbClient, final String tableName, final Region
 replicaRegion) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (replicaRegion == null) {
 throw new IllegalArgumentException("Replica region cannot be null");
 }

 try {
 LOGGER.info("Removing replica in region: " + replicaRegion.id() + "
 for table: " + tableName);

 // Create a ReplicationGroupUpdate for removing a replica
 ReplicationGroupUpdate replicationGroupUpdate =
 ReplicationGroupUpdate.builder()

Create and manage global tables demonstrating MREC API Version 2012-08-10 2297

Amazon DynamoDB Developer Guide

 .delete(builder ->
 builder.regionName(replicaRegion.id()).build())
 .build();

 UpdateTableRequest updateTableRequest = UpdateTableRequest.builder()
 .tableName(tableName)
 .replicaUpdates(replicationGroupUpdate)
 .build();

 UpdateTableResponse response =
 dynamoDbClient.updateTable(updateTableRequest);
 LOGGER.info("Replica removal initiated in region: " +
 replicaRegion.id());

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to remove replica in region: " +
 replicaRegion.id() + " - " + e.getMessage());
 throw e;
 }
 }

Add test items to verify replication using Amazon SDK for Java 2.x.

 public static PutItemResponse putTestItem(
 final DynamoDbClient dynamoDbClient, final String tableName, final String
 artist, final String songTitle) {

 if (dynamoDbClient == null) {
 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }
 if (artist == null || artist.trim().isEmpty()) {
 throw new IllegalArgumentException("Artist cannot be null or empty");
 }
 if (songTitle == null || songTitle.trim().isEmpty()) {
 throw new IllegalArgumentException("Song title cannot be null or
 empty");

Create and manage global tables demonstrating MREC API Version 2012-08-10 2298

Amazon DynamoDB Developer Guide

 }

 try {
 LOGGER.info("Adding test item to table: " + tableName);

 Map<String,
 software.amazon.awssdk.services.dynamodb.model.AttributeValue> item = new
 HashMap<>();
 item.put(
 "Artist",

 software.amazon.awssdk.services.dynamodb.model.AttributeValue.builder()
 .s(artist)
 .build());
 item.put(
 "SongTitle",

 software.amazon.awssdk.services.dynamodb.model.AttributeValue.builder()
 .s(songTitle)
 .build());

 PutItemRequest putItemRequest =
 PutItemRequest.builder().tableName(tableName).item(item).build();

 PutItemResponse response = dynamoDbClient.putItem(putItemRequest);
 LOGGER.info("Test item added successfully");

 return response;

 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to add test item to table: " + tableName + " -
 " + e.getMessage());
 throw e;
 }
 }

Describe global table configuration and replicas using Amazon SDK for Java 2.x.

 public static DescribeTableResponse describeTable(final DynamoDbClient
 dynamoDbClient, final String tableName) {

 if (dynamoDbClient == null) {

Create and manage global tables demonstrating MREC API Version 2012-08-10 2299

Amazon DynamoDB Developer Guide

 throw new IllegalArgumentException("DynamoDB client cannot be null");
 }
 if (tableName == null || tableName.trim().isEmpty()) {
 throw new IllegalArgumentException("Table name cannot be null or
 empty");
 }

 try {
 LOGGER.info("Describing table: " + tableName);

 DescribeTableRequest request =
 DescribeTableRequest.builder().tableName(tableName).build();

 DescribeTableResponse response =
 dynamoDbClient.describeTable(request);

 LOGGER.info("Table status: " + response.table().tableStatus());
 if (response.table().replicas() != null
 && !response.table().replicas().isEmpty()) {
 LOGGER.info("Number of replicas: " +
 response.table().replicas().size());
 response.table()
 .replicas()
 .forEach(replica -> LOGGER.info(
 "Replica region: " + replica.regionName() + ", Status: "
 + replica.replicaStatus()));
 }

 return response;

 } catch (ResourceNotFoundException e) {
 LOGGER.severe("Table not found: " + tableName + " - " +
 e.getMessage());
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.severe("Failed to describe table: " + tableName + " - " +
 e.getMessage());
 throw e;
 }
 }

Complete example of global table operations using Amazon SDK for Java 2.x.

Create and manage global tables demonstrating MREC API Version 2012-08-10 2300

Amazon DynamoDB Developer Guide

 public static void exampleUsage(final Region sourceRegion, final Region
 replicaRegion) {

 String tableName = "Music";
 String indexName = "SongTitleIndex";
 Long readCapacity = 15L;

 // Create DynamoDB client for the source region
 try (DynamoDbClient dynamoDbClient =
 DynamoDbClient.builder().region(sourceRegion).build()) {

 try {
 // Step 1: Create the initial table with GSI and streams
 LOGGER.info("Step 1: Creating table in source region: " +
 sourceRegion.id());
 createTableWithGSI(dynamoDbClient, tableName, indexName);

 // Step 2: Wait for table to become active
 LOGGER.info("Step 2: Waiting for table to become active");
 waitForTableActive(dynamoDbClient, tableName);

 // Step 3: Add replica in destination region
 LOGGER.info("Step 3: Adding replica in region: " +
 replicaRegion.id());
 addReplica(dynamoDbClient, tableName, replicaRegion, indexName,
 readCapacity);

 // Step 4: Wait a moment for replica creation to start
 Thread.sleep(5000);

 // Step 5: Describe table to view replica information
 LOGGER.info("Step 5: Describing table to view replicas");
 describeTable(dynamoDbClient, tableName);

 // Step 6: Add a test item to verify replication
 LOGGER.info("Step 6: Adding test item to verify replication");
 putTestItem(dynamoDbClient, tableName, "TestArtist", "TestSong");

 LOGGER.info("Global table setup completed successfully!");
 LOGGER.info("You can verify replication by checking the item in
 region: " + replicaRegion.id());

 // Step 7: Remove replica and clean up table

Create and manage global tables demonstrating MREC API Version 2012-08-10 2301

Amazon DynamoDB Developer Guide

 LOGGER.info("Step 7: Removing replica from region: " +
 replicaRegion.id());
 removeReplica(dynamoDbClient, tableName, replicaRegion);
 DeleteTableResponse deleteTableResponse =
 dynamoDbClient.deleteTable(
 DeleteTableRequest.builder().tableName(tableName).build());
 LOGGER.info("MREC global table demonstration completed
 successfully!");

 } catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 throw new RuntimeException("Thread was interrupted", e);
 } catch (DynamoDbException e) {
 LOGGER.severe("DynamoDB operation failed: " + e.getMessage());
 throw e;
 }
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• CreateTable

• DescribeTable

• PutItem

• UpdateTable

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Delete DynamoDB data using PartiQL DELETE statements with an
Amazon SDK

The following code example shows how to delete data using PartiQL DELETE statements.

Delete data using PartiQL DELETE API Version 2012-08-10 2302

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Delete items from a DynamoDB table using PartiQL DELETE statements with Amazon SDK
for JavaScript.

/**
 * This example demonstrates how to delete items from a DynamoDB table using
 PartiQL.
 * It shows different ways to delete documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Delete a single item by its partition key using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemByPartitionKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ?`,
 Parameters: [partitionKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted successfully");

Delete data using PartiQL DELETE API Version 2012-08-10 2303

Amazon DynamoDB Developer Guide

 return data;
 } catch (err) {
 console.error("Error deleting item:", err);
 throw err;
 }
};

/**
 * Delete an item by its composite key (partition key + sort key) using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemByCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${sortKeyName} = ?`,
 Parameters: [partitionKeyValue, sortKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted successfully");
 return data;
 } catch (err) {
 console.error("Error deleting item:", err);
 throw err;
 }
};

/**

Delete data using PartiQL DELETE API Version 2012-08-10 2304

Amazon DynamoDB Developer Guide

 * Delete an item with a condition to ensure the delete only happens if a
 condition is met.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param conditionAttribute - The attribute to check in the condition
 * @param conditionValue - The value to compare against in the condition
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemWithCondition = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 conditionAttribute: string,
 conditionValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${conditionAttribute} = ?`,
 Parameters: [partitionKeyValue, conditionValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item deleted with condition successfully");
 return data;
 } catch (err) {
 console.error("Error deleting item with condition:", err);
 throw err;
 }
};

/**
 * Batch delete multiple items using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param keys - Array of objects containing key information
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchDeleteItems = async (

Delete data using PartiQL DELETE API Version 2012-08-10 2305

Amazon DynamoDB Developer Guide

 tableName: string,
 keys: Array<{
 partitionKeyName: string;
 partitionKeyValue: string | number;
 sortKeyName?: string;
 sortKeyValue?: string | number;
 }>
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each delete
 const statements = keys.map((key) => {
 if (key.sortKeyName && key.sortKeyValue !== undefined) {
 return {
 Statement: `DELETE FROM "${tableName}" WHERE ${key.partitionKeyName} = ?
 AND ${key.sortKeyName} = ?`,
 Parameters: [key.partitionKeyValue, key.sortKeyValue],
 };
 } else {
 return {
 Statement: `DELETE FROM "${tableName}" WHERE ${key.partitionKeyName} = ?
`,
 Parameters: [key.partitionKeyValue],
 };
 }
 });

 const params = {
 Statements: statements,
 };

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items batch deleted successfully");
 return data;
 } catch (err) {
 console.error("Error batch deleting items:", err);
 throw err;
 }
};

/**
 * Delete multiple items that match a filter condition.

Delete data using PartiQL DELETE API Version 2012-08-10 2306

Amazon DynamoDB Developer Guide

 * Note: This performs a scan operation which can be expensive on large tables.
 *
 * @param tableName - The name of the DynamoDB table
 * @param filterAttribute - The attribute to filter on
 * @param filterValue - The value to filter by
 * @returns The response from the ExecuteStatementCommand
 */
export const deleteItemsByFilter = async (
 tableName: string,
 filterAttribute: string,
 filterValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `DELETE FROM "${tableName}" WHERE ${filterAttribute} = ?`,
 Parameters: [filterValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items deleted by filter successfully");
 return data;
 } catch (err) {
 console.error("Error deleting items by filter:", err);
 throw err;
 }
};

/**
 * Example usage showing how to delete items with different index types
 */
export const deleteExamples = async () => {
 // Delete an item by partition key (simple primary key)
 await deleteItemByPartitionKey("UsersTable", "userId", "user123");

 // Delete an item by composite key (partition key + sort key)
 await deleteItemByCompositeKey(
 "OrdersTable",
 "orderId",
 "order456",
 "productId",
 "prod789"

Delete data using PartiQL DELETE API Version 2012-08-10 2307

Amazon DynamoDB Developer Guide

);

 // Delete with a condition
 await deleteItemWithCondition(
 "UsersTable",
 "userId",
 "user789",
 "userStatus",
 "inactive"
);

 // Batch delete multiple items
 await batchDeleteItems("UsersTable", [
 { partitionKeyName: "userId", partitionKeyValue: "user234" },
 { partitionKeyName: "userId", partitionKeyValue: "user345" },
]);

 // Batch delete items with composite keys
 await batchDeleteItems("OrdersTable", [
 {
 partitionKeyName: "orderId",
 partitionKeyValue: "order567",
 sortKeyName: "productId",
 sortKeyValue: "prod123",
 },
 {
 partitionKeyName: "orderId",
 partitionKeyValue: "order678",
 sortKeyName: "productId",
 sortKeyValue: "prod456",
 },
]);

 // Delete items by filter (use with caution)
 await deleteItemsByFilter("UsersTable", "userStatus", "deleted");
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• BatchExecuteStatement

• ExecuteStatement

Delete data using PartiQL DELETE API Version 2012-08-10 2308

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Detect PPE in images with Amazon Rekognition using an Amazon SDK

The following code example shows how to build an app that uses Amazon Rekognition to detect
Personal Protective Equipment (PPE) in images.

Java

SDK for Java 2.x

Shows how to create an Amazon Lambda function that detects images with Personal
Protective Equipment.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon Rekognition

• Amazon S3

• Amazon SES

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Insert DynamoDB data using PartiQL INSERT statements with an
Amazon SDK

The following code example shows how to insert data using PartiQL INSERT statements.

Detect PPE in images API Version 2012-08-10 2309

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_ppe

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Insert items into a DynamoDB table using PartiQL INSERT statements with Amazon SDK for
JavaScript.

/**
 * This example demonstrates how to insert items into a DynamoDB table using
 PartiQL.
 * It shows different ways to insert documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Insert a single item into a DynamoDB table using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param item - The item to insert
 * @returns The response from the ExecuteStatementCommand
 */
export const insertItem = async (tableName: string, item: Record<string, any>) =>
 {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Convert the item to a string representation for PartiQL
 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');

 const params = {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString}`,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item inserted successfully");
 return data;
 } catch (err) {

Insert data using PartiQL INSERT API Version 2012-08-10 2310

Amazon DynamoDB Developer Guide

 console.error("Error inserting item:", err);
 throw err;
 }
};

/**
 * Insert multiple items into a DynamoDB table using PartiQL batch operation.
 * This is more efficient than inserting items one by one.
 *
 * @param tableName - The name of the DynamoDB table
 * @param items - Array of items to insert
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchInsertItems = async (tableName: string, items: Record<string,
 any>[]) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each item
 const statements = items.map((item) => {
 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');
 return {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString}`,
 };
 });

 const params = {
 Statements: statements,
 };

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items inserted successfully");
 return data;
 } catch (err) {
 console.error("Error batch inserting items:", err);
 throw err;
 }
};

/**
 * Insert an item with a condition to prevent overwriting existing items.
 * This is useful for ensuring you don't accidentally overwrite data.
 *

Insert data using PartiQL INSERT API Version 2012-08-10 2311

Amazon DynamoDB Developer Guide

 * @param tableName - The name of the DynamoDB table
 * @param item - The item to insert
 * @param partitionKeyName - The name of the partition key attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const insertItemWithCondition = async (
 tableName: string,
 item: Record<string, any>,
 partitionKeyName: string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const itemString = JSON.stringify(item).replace(/"([^"]+)":/g, '$1:');
 const partitionKeyValue = JSON.stringify(item[partitionKeyName]);

 const params = {
 Statement: `INSERT INTO "${tableName}" VALUE ${itemString} WHERE
 attribute_not_exists(${partitionKeyName})`,
 Parameters: [{ S: partitionKeyValue }],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item inserted with condition successfully");
 return data;
 } catch (err) {
 console.error("Error inserting item with condition:", err);
 throw err;
 }
};

/**
 * Example usage showing how to insert items with different index types
 */
export const insertExamples = async () => {
 // Example table with a simple primary key (just partition key)
 const simpleKeyItem = {
 userId: "user123",
 name: "John Doe",
 email: "john@example.com",
 };
 await insertItem("UsersTable", simpleKeyItem);

Insert data using PartiQL INSERT API Version 2012-08-10 2312

Amazon DynamoDB Developer Guide

 // Example table with composite key (partition key + sort key)
 const compositeKeyItem = {
 orderId: "order456",
 productId: "prod789",
 quantity: 2,
 price: 29.99,
 };
 await insertItem("OrdersTable", compositeKeyItem);

 // Example with Global Secondary Index (GSI)
 // The GSI might be on the email attribute
 const gsiItem = {
 userId: "user789",
 email: "jane@example.com",
 name: "Jane Smith",
 userType: "premium", // This could be part of a GSI
 };
 await insertItem("UsersTable", gsiItem);

 // Example with Local Secondary Index (LSI)
 // LSI uses the same partition key but different sort key
 const lsiItem = {
 orderId: "order567", // Partition key
 productId: "prod123", // Sort key for the table
 orderDate: "2023-11-15", // Potential sort key for an LSI
 quantity: 1,
 price: 19.99,
 };
 await insertItem("OrdersTable", lsiItem);

 // Batch insert example with multiple items
 const batchItems = [
 {
 userId: "user234",
 name: "Alice Johnson",
 email: "alice@example.com",
 },
 {
 userId: "user345",
 name: "Bob Williams",
 email: "bob@example.com",
 },
];
 await batchInsertItems("UsersTable", batchItems);

Insert data using PartiQL INSERT API Version 2012-08-10 2313

Amazon DynamoDB Developer Guide

};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• BatchExecuteStatement

• ExecuteStatement

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Invoke a Lambda function from a browser

The following code example shows how to invoke an Amazon Lambda function from a browser.

JavaScript

SDK for JavaScript (v2)

You can create a browser-based application that uses an Amazon Lambda function to
update an Amazon DynamoDB table with user selections.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

SDK for JavaScript (v3)

You can create a browser-based application that uses an Amazon Lambda function to
update an Amazon DynamoDB table with user selections. This app uses Amazon SDK for
JavaScript v3.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

Invoke a Lambda function from a browser API Version 2012-08-10 2314

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascript/example_code/lambda/lambda-for-browser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-for-browser

Amazon DynamoDB Developer Guide

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Manage DynamoDB Global Secondary Indexes using Amazon Command
Line Interface v2

The following code example shows how to manage the complete lifecycle of Global Secondary
Indexes.

• Create a table with a Global Secondary Index.

• Add a new GSI to an existing table.

• Update (increase) GSI warm throughput.

• Query data using GSIs.

• Delete a GSI.

Bash

Amazon CLI with Bash script

Create a table with a Global Secondary Index.

Create a table with a GSI
aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 AttributeName=AlbumTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --global-secondary-indexes \
 "IndexName=AlbumIndex,\
 KeySchema=[{AttributeName=AlbumTitle,KeyType=HASH}],\

Manage Global Secondary Indexes API Version 2012-08-10 2315

Amazon DynamoDB Developer Guide

 Projection={ProjectionType=ALL}"

Add a new (on-demand) GSI to an existing table.

Add a new GSI to an existing table
aws dynamodb update-table \
 --table-name MusicCollection \
 --attribute-definitions \
 AttributeName=Genre,AttributeType=S \
 --global-secondary-index-updates \
 "[{\"Create\":{\"IndexName\":\"GenreIndex\",\
 \"KeySchema\":[{\"AttributeName\":\"Genre\",\"KeyType\":\"HASH\"}],\
 \"Projection\":{\"ProjectionType\":\"ALL\"}}}]"

Update (increase) GSI warm throughput.

Increase the warm throughput of a GSI (default values are 12k reads, 4k writes)
aws dynamodb update-table \
 --table-name MusicCollection \
 --global-secondary-index-updates \
 "[{\"Update\":{\"IndexName\":\"AlbumIndex\",\
 \"WarmThroughput\":{\"ReadUnitsPerSecond\":15000,\"WriteUnitsPerSecond
\":6000}}}]"

Query data using GSIs.

Query the AlbumIndex GSI
aws dynamodb query \
 --table-name MusicCollection \
 --index-name AlbumIndex \
 --key-condition-expression "AlbumTitle = :album" \
 --expression-attribute-values '{":album":{"S":"Let It Be"}}'

Query the GenreIndex GSI
aws dynamodb query \
 --table-name MusicCollection \
 --index-name GenreIndex \
 --key-condition-expression "Genre = :genre" \
 --expression-attribute-values '{":genre":{"S":"Jazz"}}'

Manage Global Secondary Indexes API Version 2012-08-10 2316

Amazon DynamoDB Developer Guide

Delete a GSI.

Delete a GSI from a table
aws dynamodb update-table \
 --table-name MusicCollection \
 --global-secondary-index-updates \
 "[{\"Delete\":{\"IndexName\":\"GenreIndex\"}}]"

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteTable

• Query

• UpdateTable

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Manage DynamoDB resource-based policies using Amazon Command
Line Interface v2

The following code example shows how to manage the complete lifecycle of resource-based
policies for DynamoDB tables.

• Create a table with a resource policy.

• Get a resource policy.

• Update a resource policy.

• Delete a resource policy.

Bash

Amazon CLI with Bash script

Create a table with a resource policy.

Manage resource-based policies API Version 2012-08-10 2317

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

Step 1: Create a DynamoDB table
aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST

Step 2: Create a resource-based policy document
cat > policy.json << 'EOF'
{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/DynamoDBReadOnly"
 },
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection"
 }
]
}
EOF

Step 3: Attach the resource-based policy to the table
aws dynamodb put-resource-policy \
 --resource-arn arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection
 \
 --policy file://policy.json

Get a resource policy.

Get the resource-based policy attached to a table

Manage resource-based policies API Version 2012-08-10 2318

Amazon DynamoDB Developer Guide

aws dynamodb get-resource-policy \
 --resource-arn arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection

Update a resource policy.

Step 1: Create an updated policy document
cat > updated-policy.json << 'EOF'
{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:role/DynamoDBReadOnly",
 "arn:aws:iam::123456789012:role/DynamoDBAnalytics"
]
 },
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection"
 }
]
}
EOF

Step 2: Update the resource-based policy on the table
aws dynamodb put-resource-policy \
 --resource-arn arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection
 \
 --policy file://updated-policy.json

Delete a resource policy.

Delete the resource-based policy from a table
aws dynamodb delete-resource-policy \
 --resource-arn arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection

Manage resource-based policies API Version 2012-08-10 2319

Amazon DynamoDB Developer Guide

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteResourcePolicy

• GetResourcePolicy

• PutResourcePolicy

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Monitor performance of Amazon DynamoDB using an Amazon SDK

The following code example shows how to configure an application's use of DynamoDB to monitor
performance.

Java

SDK for Java 2.x

This example shows how to configure a Java application to monitor the performance of
DynamoDB. The application sends metric data to CloudWatch where you can monitor the
performance.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• CloudWatch

• DynamoDB

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Monitor DynamoDB performance API Version 2012-08-10 2320

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteResourcePolicy
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetResourcePolicy
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutResourcePolicy
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/monitor_dynamodb

Amazon DynamoDB Developer Guide

Perform advanced DynamoDB query operations using an Amazon SDK

The following code examples show how to perform advanced query operations in DynamoDB.

• Query tables using various filtering and condition techniques.

• Implement pagination for large result sets.

• Use Global Secondary Indexes for alternate access patterns.

• Apply consistency controls based on application requirements.

Java

SDK for Java 2.x

Query with strongly consistent reads using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithConsistentReads(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final boolean useConsistentRead) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

Perform advanced query operations API Version 2012-08-10 2321

Amazon DynamoDB Developer Guide

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .consistentRead(useConsistentRead)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 LOGGER.log(Level.INFO, "Query successful. Found {0} items",
 response.count());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying with consistent reads", e);
 throw e;
 }
 }

Query using a Global Secondary Index with Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;

Perform advanced query operations API Version 2012-08-10 2322

Amazon DynamoDB Developer Guide

 public QueryResponse queryTable(
 final String tableName, final String partitionKeyName, final String
 partitionKeyValue) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query on base table successful. Found " +
 response.count() + " items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw new DynamoDbQueryException("Table not found: " + tableName, e);
 } catch (DynamoDbException e) {
 System.err.println("Error querying base table: " + e.getMessage());
 throw new DynamoDbQueryException("Failed to execute query on base
 table", e);
 }
 }

Perform advanced query operations API Version 2012-08-10 2323

Amazon DynamoDB Developer Guide

 /**
 * Queries a DynamoDB Global Secondary Index (GSI) by partition key.
 *
 * @param tableName The name of the DynamoDB table
 * @param indexName The name of the GSI
 * @param partitionKeyName The name of the GSI partition key attribute
 * @param partitionKeyValue The value of the GSI partition key to query
 * @return The query response from DynamoDB
 * @throws ResourceNotFoundException if the table or index doesn't exist
 * @throws DynamoDbException if the query fails
 */
 public QueryResponse queryGlobalSecondaryIndex(
 final String tableName, final String indexName, final String
 partitionKeyName, final String partitionKeyValue) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Index name", indexName);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_IK,
 partitionKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_IK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .indexName(indexName)
 .keyConditionExpression(GSI_KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query on GSI successful. Found " +
 response.count() + " items");

Perform advanced query operations API Version 2012-08-10 2324

Amazon DynamoDB Developer Guide

 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(
 "Error: The Amazon DynamoDB table \"%s\" or index \"%s\" can't be
 found.\n", tableName, indexName);
 throw new DynamoDbQueryException("Table or index not found: " +
 tableName + "/" + indexName, e);
 } catch (DynamoDbException e) {
 System.err.println("Error querying GSI: " + e.getMessage());
 throw new DynamoDbQueryException("Failed to execute query on GSI",
 e);
 }
 }

Query with pagination using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

 public List<Map<String, AttributeValue>> queryWithPagination(
 final String tableName, final String partitionKeyName, final String
 partitionKeyValue, final int pageSize) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validatePositiveInteger("Page size", pageSize);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

Perform advanced query operations API Version 2012-08-10 2325

Amazon DynamoDB Developer Guide

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 QueryRequest.Builder queryRequestBuilder = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .limit(pageSize);

 // List to store all items from all pages
 final List<Map<String, AttributeValue>> allItems = new ArrayList<>();

 // Map to store the last evaluated key for pagination
 Map<String, AttributeValue> lastEvaluatedKey = null;
 int pageNumber = 1;

 try {
 do {
 // If we have a last evaluated key, use it for the next page
 if (lastEvaluatedKey != null) {
 queryRequestBuilder.exclusiveStartKey(lastEvaluatedKey);
 }

 // Execute the query
 final QueryResponse response =
 dynamoDbClient.query(queryRequestBuilder.build());

 // Process the current page of results
 final List<Map<String, AttributeValue>> pageItems =
 response.items();
 allItems.addAll(pageItems);

 // Get the last evaluated key for the next page
 lastEvaluatedKey = response.lastEvaluatedKey();
 if (lastEvaluatedKey != null && lastEvaluatedKey.isEmpty()) {
 lastEvaluatedKey = null;
 }

Perform advanced query operations API Version 2012-08-10 2326

Amazon DynamoDB Developer Guide

 System.out.println("Page " + pageNumber + ": Retrieved " +
 pageItems.size() + " items (Running total: "
 + allItems.size() + ")");

 pageNumber++;

 } while (lastEvaluatedKey != null);

 System.out.println("Query with pagination complete. Retrieved a total
 of " + allItems.size()
 + " items across " + (pageNumber - 1) + " pages");

 return allItems;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Error querying with pagination: " +
 e.getMessage());
 throw e;
 }
 }

Query with complex filters using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithComplexFilter(
 final String tableName,
 final String partitionKeyName,

Perform advanced query operations API Version 2012-08-10 2327

Amazon DynamoDB Developer Guide

 final String partitionKeyValue,
 final String statusAttrName,
 final String activeStatus,
 final String pendingStatus,
 final String priceAttrName,
 final double minPrice,
 final double maxPrice,
 final String categoryAttrName) {

 // Validate parameters
 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Status attribute name",
 statusAttrName);
 CodeSampleUtils.validateStringParameter("Active status", activeStatus);
 CodeSampleUtils.validateStringParameter("Pending status", pendingStatus);
 CodeSampleUtils.validateStringParameter("Price attribute name",
 priceAttrName);
 CodeSampleUtils.validateStringParameter("Category attribute name",
 categoryAttrName);
 CodeSampleUtils.validateNumericRange("Minimum price", minPrice, 0.0,
 Double.MAX_VALUE);
 CodeSampleUtils.validateNumericRange("Maximum price", maxPrice, minPrice,
 Double.MAX_VALUE);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#pk", partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_STATUS,
 statusAttrName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PRICE,
 priceAttrName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_CATEGORY,
 categoryAttrName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":pkValue", AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_ACTIVE,
 AttributeValue.builder().s(activeStatus).build());
 expressionAttributeValues.put(

Perform advanced query operations API Version 2012-08-10 2328

Amazon DynamoDB Developer Guide

 EXPRESSION_ATTRIBUTE_VALUE_PENDING,
 AttributeValue.builder().s(pendingStatus).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_MIN_PRICE,
 AttributeValue.builder().n(String.valueOf(minPrice)).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_MAX_PRICE,
 AttributeValue.builder().n(String.valueOf(maxPrice)).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(FILTER_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 return dynamoDbClient.query(queryRequest);
 }

Query with a dynamically constructed filter expression using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;

 public static QueryResponse queryWithDynamicFilter(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final Map<String, Object> filterCriteria,
 final Region region,
 final DynamoDbClient dynamoDbClient) {

Perform advanced query operations API Version 2012-08-10 2329

Amazon DynamoDB Developer Guide

 validateParameters(tableName, partitionKeyName, partitionKeyValue,
 filterCriteria);

 DynamoDbClient ddbClient = dynamoDbClient;
 boolean shouldClose = false;

 try {
 if (ddbClient == null) {
 ddbClient = createClient(region);
 shouldClose = true;
 }

 final QueryWithDynamicFilter queryHelper = new
 QueryWithDynamicFilter(ddbClient);
 return queryHelper.queryWithDynamicFilter(tableName,
 partitionKeyName, partitionKeyValue, filterCriteria);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Failed to execute dynamic filter query: " +
 e.getMessage());
 throw e;
 } catch (Exception e) {
 System.err.println("Unexpected error during query: " +
 e.getMessage());
 throw e;
 } finally {
 if (shouldClose && ddbClient != null) {
 ddbClient.close();
 }
 }
 }

 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <tableName> <partitionKeyName> <partitionKeyValue>
 <filterAttrName> <filterAttrValue> [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 partitionKeyName - The name of the partition key attribute.
 partitionKeyValue - The value of the partition key to query.

Perform advanced query operations API Version 2012-08-10 2330

Amazon DynamoDB Developer Guide

 filterAttrName - The name of the attribute to filter on.
 filterAttrValue - The value to filter by.
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

 if (args.length < 5) {
 System.out.println(usage);
 System.exit(1);
 }

 final String tableName = args[0];
 final String partitionKeyName = args[1];
 final String partitionKeyValue = args[2];
 final String filterAttrName = args[3];
 final String filterAttrValue = args[4];
 final Region region = args.length > 5 ? Region.of(args[5]) :
 Region.US_EAST_1;

 System.out.println("Querying items with dynamic filter: " +
 filterAttrName + " = " + filterAttrValue);

 try {
 // Using the builder pattern to create and execute the query
 final QueryResponse response = new DynamicFilterQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withFilterCriterion(filterAttrName, filterAttrValue)
 .withRegion(region)
 .execute();

 // Process the results
 System.out.println("Found " + response.count() + " items:");
 response.items().forEach(item -> System.out.println(item));

 // Demonstrate multiple filter criteria
 System.out.println("\nNow querying with multiple filter criteria:");

 Map<String, Object> multipleFilters = new HashMap<>();
 multipleFilters.put(filterAttrName, filterAttrValue);
 multipleFilters.put("status", "active");

Perform advanced query operations API Version 2012-08-10 2331

Amazon DynamoDB Developer Guide

 final QueryResponse multiFilterResponse = new
 DynamicFilterQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withFilterCriteria(multipleFilters)
 .withRegion(region)
 .execute();

 System.out.println("Found " + multiFilterResponse.count() + " items
 with multiple filters:");
 multiFilterResponse.items().forEach(item ->
 System.out.println(item));

 } catch (IllegalArgumentException e) {
 System.err.println("Invalid input: " + e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println("DynamoDB error: " + e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 System.err.println("Unexpected error: " + e.getMessage());
 System.exit(1);
 }
 }

Query with a filter expression and limit using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;

Perform advanced query operations API Version 2012-08-10 2332

Amazon DynamoDB Developer Guide

import java.util.logging.Logger;

 public QueryResponse queryWithFilterAndLimit(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String filterAttrName,
 final String filterAttrValue,
 final int limit) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Filter attribute name",
 filterAttrName);
 CodeSampleUtils.validateStringParameter("Filter attribute value",
 filterAttrValue);
 CodeSampleUtils.validatePositiveInteger("Limit", limit);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_FILTER,
 filterAttrName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_FILTER,
 AttributeValue.builder().s(filterAttrValue).build());

 // Create the filter expression
 final String filterExpression = "#filterAttr = :filterValue";

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(filterExpression)
 .expressionAttributeNames(expressionAttributeNames)

Perform advanced query operations API Version 2012-08-10 2333

Amazon DynamoDB Developer Guide

 .expressionAttributeValues(expressionAttributeValues)
 .limit(limit)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 LOGGER.log(Level.INFO, "Query with filter and limit successful. Found
 {0} items", response.count());
 LOGGER.log(
 Level.INFO, "ScannedCount: {0} (total items evaluated before
 filtering)", response.scannedCount());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying with filter and limit: {0}",
 e.getMessage());
 throw e;
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query with strongly consistent reads using Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with configurable read consistency
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {boolean} useConsistentRead - Whether to use strongly consistent reads
 * @returns {Promise<Object>} - The query response
 */

Perform advanced query operations API Version 2012-08-10 2334

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

async function queryWithConsistentRead(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 useConsistentRead = false
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 },
 ConsistentRead: useConsistentRead
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with consistent read: ${error}`);
 throw error;
 }
}

Query using a Global Secondary Index with Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table using the primary key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table

Perform advanced query operations API Version 2012-08-10 2335

Amazon DynamoDB Developer Guide

 * @param {string} userId - The user ID to query by (partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryTable(
 config,
 tableName,
 userId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the base table
 const input = {
 TableName: tableName,
 KeyConditionExpression: "user_id = :userId",
 ExpressionAttributeValues: {
 ":userId": { S: userId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying table: ${error}`);
 throw error;
 }
}

/**
 * Queries a DynamoDB Global Secondary Index (GSI)
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} indexName - The name of the GSI to query
 * @param {string} gameId - The game ID to query by (GSI partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryGSI(
 config,
 tableName,
 indexName,
 gameId

Perform advanced query operations API Version 2012-08-10 2336

Amazon DynamoDB Developer Guide

) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the GSI
 const input = {
 TableName: tableName,
 IndexName: indexName,
 KeyConditionExpression: "game_id = :gameId",
 ExpressionAttributeValues: {
 ":gameId": { S: gameId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying GSI: ${error}`);
 throw error;
 }
}

Query with pagination using Amazon SDK for JavaScript.

/**
 * Example demonstrating how to handle large query result sets in DynamoDB using
 pagination
 *
 * This example shows:
 * - How to use pagination to handle large result sets
 * - How to use LastEvaluatedKey to retrieve the next page of results
 * - How to construct subsequent query requests using ExclusiveStartKey
 */
const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with pagination to handle large result sets
 *
 * @param {Object} config - AWS SDK configuration object

Perform advanced query operations API Version 2012-08-10 2337

Amazon DynamoDB Developer Guide

 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number} pageSize - Number of items per page
 * @returns {Promise<Array>} - All items from the query
 */
async function queryWithPagination(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 pageSize = 25
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize variables for pagination
 let lastEvaluatedKey = undefined;
 const allItems = [];
 let pageCount = 0;

 // Loop until all pages are retrieved
 do {
 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 Limit: pageSize,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 }
 };

 // Add ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if (lastEvaluatedKey) {
 input.ExclusiveStartKey = lastEvaluatedKey;
 }

 // Execute the query

Perform advanced query operations API Version 2012-08-10 2338

Amazon DynamoDB Developer Guide

 const command = new QueryCommand(input);
 const response = await client.send(command);

 // Process the current page of results
 pageCount++;
 console.log(`Processing page ${pageCount} with ${response.Items.length}
 items`);

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems.push(...response.Items);
 }

 // Get the LastEvaluatedKey for the next page
 lastEvaluatedKey = response.LastEvaluatedKey;

 } while (lastEvaluatedKey); // Continue until there are no more pages

 console.log(`Query complete. Retrieved ${allItems.length} items in
 ${pageCount} pages.`);
 return allItems;
 } catch (error) {
 console.error(`Error querying with pagination: ${error}`);
 throw error;
 }
}

/**
 * Example usage:
 *
 * // Query all items in the "AWS DynamoDB" forum with pagination
 * const allItems = await queryWithPagination(
 * { region: "us-west-2" },
 * "ForumThreads",
 * "ForumName",
 * "AWS DynamoDB",
 * 25 // 25 items per page
 *);
 *
 * console.log(`Total items retrieved: ${allItems.length}`);
 *
 * // Notes on pagination:
 * // - LastEvaluatedKey contains the primary key of the last evaluated item

Perform advanced query operations API Version 2012-08-10 2339

Amazon DynamoDB Developer Guide

 * // - When LastEvaluatedKey is undefined/null, there are no more items to
 retrieve
 * // - ExclusiveStartKey tells DynamoDB where to start the next page
 * // - Pagination helps manage memory usage for large result sets
 * // - Each page requires a separate network request to DynamoDB
 */

module.exports = { queryWithPagination };

Query with complex filters using Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with a complex filter expression
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number|string} minViews - Minimum number of views for filtering
 * @param {number|string} minReplies - Minimum number of replies for filtering
 * @param {string} requiredTag - Tag that must be present in the item's tags set
 * @returns {Promise<Object>} - The query response
 */
async function queryWithComplexFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 minViews,
 minReplies,
 requiredTag
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",

Perform advanced query operations API Version 2012-08-10 2340

Amazon DynamoDB Developer Guide

 FilterExpression: "views >= :minViews AND replies >= :minReplies AND
 contains(tags, :tag)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":minViews": { N: minViews.toString() },
 ":minReplies": { N: minReplies.toString() },
 ":tag": { S: requiredTag }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with complex filter: ${error}`);
 throw error;
 }
}

Query with a dynamically constructed filter expression using Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

async function queryWithDynamicFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 sortKeyValue,
 filterParams = {}
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize filter expression components
 let filterExpressions = [];
 const expressionAttributeValues = {

Perform advanced query operations API Version 2012-08-10 2341

Amazon DynamoDB Developer Guide

 ":pkValue": { S: partitionKeyValue },
 ":skValue": { S: sortKeyValue }
 };
 const expressionAttributeNames = {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 };

 // Add status filter if provided
 if (filterParams.status) {
 filterExpressions.push("status = :status");
 expressionAttributeValues[":status"] = { S: filterParams.status };
 }

 // Add minimum views filter if provided
 if (filterParams.minViews !== undefined) {
 filterExpressions.push("views >= :minViews");
 expressionAttributeValues[":minViews"] = { N:
 filterParams.minViews.toString() };
 }

 // Add author filter if provided
 if (filterParams.author) {
 filterExpressions.push("author = :author");
 expressionAttributeValues[":author"] = { S: filterParams.author };
 }

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND #sk = :skValue"
 };

 // Add filter expression if any filters were provided
 if (filterExpressions.length > 0) {
 input.FilterExpression = filterExpressions.join(" AND ");
 }

 // Add expression attribute names and values
 input.ExpressionAttributeNames = expressionAttributeNames;
 input.ExpressionAttributeValues = expressionAttributeValues;

 // Execute the query
 const command = new QueryCommand(input);

Perform advanced query operations API Version 2012-08-10 2342

Amazon DynamoDB Developer Guide

 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with dynamic filter: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query with strongly consistent reads using Amazon SDK for Python (Boto3).

import time

import boto3
from boto3.dynamodb.conditions import Key

def query_with_consistent_read(
 table_name,
 partition_key_name,
 partition_key_value,
 sort_key_name=None,
 sort_key_value=None,
 consistent_read=True,
):
 """
 Query a DynamoDB table with the option for strongly consistent reads.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str, optional): The name of the sort key attribute.
 sort_key_value (str, optional): The value of the sort key to query.
 consistent_read (bool, optional): Whether to use strongly consistent
 reads. Defaults to True.

 Returns:

Perform advanced query operations API Version 2012-08-10 2343

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 if sort_key_name and sort_key_value:
 key_condition = key_condition & Key(sort_key_name).eq(sort_key_value)

 # Perform the query with the consistent read option
 response = table.query(KeyConditionExpression=key_condition,
 ConsistentRead=consistent_read)

 return response

Query using a Global Secondary Index with Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Key

def query_table(table_name, partition_key_name, partition_key_value):
 """
 Query a DynamoDB table using its primary key.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

Perform advanced query operations API Version 2012-08-10 2344

Amazon DynamoDB Developer Guide

 # Perform the query on the table's primary key
 response =
 table.query(KeyConditionExpression=Key(partition_key_name).eq(partition_key_value))

 return response

def query_gsi(table_name, index_name, partition_key_name, partition_key_value):
 """
 Query a Global Secondary Index (GSI) on a DynamoDB table.

 Args:
 table_name (str): The name of the DynamoDB table.
 index_name (str): The name of the Global Secondary Index.
 partition_key_name (str): The name of the GSI's partition key attribute.
 partition_key_value (str): The value of the GSI's partition key to query.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Perform the query on the GSI
 response = table.query(
 IndexName=index_name,
 KeyConditionExpression=Key(partition_key_name).eq(partition_key_value)
)

 return response

Query with pagination using Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Key

def query_with_pagination(

Perform advanced query operations API Version 2012-08-10 2345

Amazon DynamoDB Developer Guide

 table_name, partition_key_name, partition_key_value, page_size=25,
 max_pages=None
):
 """
 Query a DynamoDB table with pagination to handle large result sets.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 page_size (int, optional): The number of items to return per page.
 Defaults to 25.
 max_pages (int, optional): The maximum number of pages to retrieve. If
 None, retrieves all pages.

 Returns:
 list: All items retrieved from the query across all pages.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Initialize variables for pagination
 last_evaluated_key = None
 page_count = 0
 all_items = []

 # Paginate through the results
 while True:
 # Check if we've reached the maximum number of pages
 if max_pages is not None and page_count >= max_pages:
 break

 # Prepare the query parameters
 query_params = {
 "KeyConditionExpression":
 Key(partition_key_name).eq(partition_key_value),
 "Limit": page_size,
 }

 # Add the ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if last_evaluated_key:
 query_params["ExclusiveStartKey"] = last_evaluated_key

Perform advanced query operations API Version 2012-08-10 2346

Amazon DynamoDB Developer Guide

 # Execute the query
 response = table.query(**query_params)

 # Process the current page of results
 items = response.get("Items", [])
 all_items.extend(items)

 # Update pagination tracking
 page_count += 1

 # Get the LastEvaluatedKey for the next page, if any
 last_evaluated_key = response.get("LastEvaluatedKey")

 # If there's no LastEvaluatedKey, we've reached the end of the results
 if not last_evaluated_key:
 break

 return all_items

def query_with_pagination_generator(
 table_name, partition_key_name, partition_key_value, page_size=25
):
 """
 Query a DynamoDB table with pagination using a generator to handle large
 result sets.
 This approach is memory-efficient as it yields one page at a time.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 page_size (int, optional): The number of items to return per page.
 Defaults to 25.

 Yields:
 tuple: A tuple containing (items, page_number, last_page) where:
 - items is a list of items for the current page
 - page_number is the current page number (starting from 1)
 - last_page is a boolean indicating if this is the last page
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")

Perform advanced query operations API Version 2012-08-10 2347

Amazon DynamoDB Developer Guide

 table = dynamodb.Table(table_name)

 # Initialize variables for pagination
 last_evaluated_key = None
 page_number = 0

 # Paginate through the results
 while True:
 # Prepare the query parameters
 query_params = {
 "KeyConditionExpression":
 Key(partition_key_name).eq(partition_key_value),
 "Limit": page_size,
 }

 # Add the ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if last_evaluated_key:
 query_params["ExclusiveStartKey"] = last_evaluated_key

 # Execute the query
 response = table.query(**query_params)

 # Get the current page of results
 items = response.get("Items", [])
 page_number += 1

 # Get the LastEvaluatedKey for the next page, if any
 last_evaluated_key = response.get("LastEvaluatedKey")

 # Determine if this is the last page
 is_last_page = last_evaluated_key is None

 # Yield the current page of results
 yield (items, page_number, is_last_page)

 # If there's no LastEvaluatedKey, we've reached the end of the results
 if is_last_page:
 break

Perform advanced query operations API Version 2012-08-10 2348

Amazon DynamoDB Developer Guide

Query with complex filters using Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_complex_filter(
 table_name,
 partition_key_name,
 partition_key_value,
 min_rating=None,
 status_list=None,
 max_price=None,
):
 """
 Query a DynamoDB table with a complex filter expression.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 min_rating (float, optional): Minimum rating value for filtering.
 status_list (list, optional): List of status values to include.
 max_price (float, optional): Maximum price value for filtering.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Initialize the filter expression and expression attribute values
 filter_expression = None
 expression_attribute_values = {}

 # Build the filter expression based on provided parameters
 if min_rating is not None:
 filter_expression = Attr("rating").gte(min_rating)
 expression_attribute_values[":min_rating"] = min_rating

Perform advanced query operations API Version 2012-08-10 2349

Amazon DynamoDB Developer Guide

 if status_list and len(status_list) > 0:
 status_condition = None
 for i, status in enumerate(status_list):
 status_value_name = f":status{i}"
 expression_attribute_values[status_value_name] = status

 if status_condition is None:
 status_condition = Attr("status").eq(status)
 else:
 status_condition = status_condition | Attr("status").eq(status)

 if filter_expression is None:
 filter_expression = status_condition
 else:
 filter_expression = filter_expression & status_condition

 if max_price is not None:
 price_condition = Attr("price").lte(max_price)
 expression_attribute_values[":max_price"] = max_price

 if filter_expression is None:
 filter_expression = price_condition
 else:
 filter_expression = filter_expression & price_condition

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression
 if expression_attribute_values:
 query_params["ExpressionAttributeValues"] =
 expression_attribute_values

 # Execute the query
 response = table.query(**query_params)
 return response

def query_with_complex_filter_and_or(
 table_name,
 partition_key_name,
 partition_key_value,
 category=None,

Perform advanced query operations API Version 2012-08-10 2350

Amazon DynamoDB Developer Guide

 min_rating=None,
 max_price=None,
):
 """
 Query a DynamoDB table with a complex filter expression using AND and OR
 operators.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 category (str, optional): Category value for filtering.
 min_rating (float, optional): Minimum rating value for filtering.
 max_price (float, optional): Maximum price value for filtering.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Build a complex filter expression with AND and OR operators
 filter_expression = None
 expression_attribute_values = {}

 # Build the category condition
 if category:
 filter_expression = Attr("category").eq(category)
 expression_attribute_values[":category"] = category

 # Build the rating and price condition (rating >= min_rating OR price <=
 max_price)
 rating_price_condition = None

 if min_rating is not None:
 rating_price_condition = Attr("rating").gte(min_rating)
 expression_attribute_values[":min_rating"] = min_rating

 if max_price is not None:
 price_condition = Attr("price").lte(max_price)

Perform advanced query operations API Version 2012-08-10 2351

Amazon DynamoDB Developer Guide

 expression_attribute_values[":max_price"] = max_price

 if rating_price_condition is None:
 rating_price_condition = price_condition
 else:
 rating_price_condition = rating_price_condition | price_condition

 # Combine the conditions
 if rating_price_condition:
 if filter_expression is None:
 filter_expression = rating_price_condition
 else:
 filter_expression = filter_expression & rating_price_condition

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression
 if expression_attribute_values:
 query_params["ExpressionAttributeValues"] =
 expression_attribute_values

 # Execute the query
 response = table.query(**query_params)
 return response

Query with a dynamically constructed filter expression using Amazon SDK for Python
(Boto3).

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_dynamic_filter(
 table_name, partition_key_name, partition_key_value, filter_conditions=None
):
 """
 Query a DynamoDB table with a dynamically constructed filter expression.

Perform advanced query operations API Version 2012-08-10 2352

Amazon DynamoDB Developer Guide

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 filter_conditions (dict, optional): A dictionary of filter conditions
 where
 keys are attribute names and values are dictionaries with 'operator'
 and 'value'.
 Example: {'rating': {'operator': '>=', 'value': 4}, 'status':
 {'operator': '=', 'value': 'active'}}

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Initialize variables for the filter expression and attribute values
 filter_expression = None
 expression_attribute_values = {":pk_val": partition_key_value}

 # Dynamically build the filter expression if filter conditions are provided
 if filter_conditions:
 for attr_name, condition in filter_conditions.items():
 operator = condition.get("operator")
 value = condition.get("value")
 attr_value_name = f":{attr_name}"
 expression_attribute_values[attr_value_name] = value

 # Create the appropriate filter expression based on the operator
 current_condition = None
 if operator == "=":
 current_condition = Attr(attr_name).eq(value)
 elif operator == "!=":
 current_condition = Attr(attr_name).ne(value)
 elif operator == ">":
 current_condition = Attr(attr_name).gt(value)
 elif operator == ">=":
 current_condition = Attr(attr_name).gte(value)
 elif operator == "<":

Perform advanced query operations API Version 2012-08-10 2353

Amazon DynamoDB Developer Guide

 current_condition = Attr(attr_name).lt(value)
 elif operator == "<=":
 current_condition = Attr(attr_name).lte(value)
 elif operator == "contains":
 current_condition = Attr(attr_name).contains(value)
 elif operator == "begins_with":
 current_condition = Attr(attr_name).begins_with(value)

 # Combine with existing filter expression using AND
 if current_condition:
 if filter_expression is None:
 filter_expression = current_condition
 else:
 filter_expression = filter_expression & current_condition

 # Perform the query with the dynamically built filter expression
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression

 response = table.query(**query_params)
 return response

Query with a filter expression and limit using Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_filter_and_limit(
 table_name,
 partition_key_name,
 partition_key_value,
 filter_attribute=None,
 filter_value=None,
 limit=10,
):
 """

Perform advanced query operations API Version 2012-08-10 2354

Amazon DynamoDB Developer Guide

 Query a DynamoDB table with a filter expression and limit the number of
 results.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 filter_attribute (str, optional): The attribute name to filter on.
 filter_value (any, optional): The value to compare against in the filter.
 limit (int, optional): The maximum number of items to evaluate. Defaults
 to 10.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition, "Limit": limit}

 # Add the filter expression if filter attributes are provided
 if filter_attribute and filter_value is not None:
 query_params["FilterExpression"] =
 Attr(filter_attribute).gt(filter_value)
 query_params["ExpressionAttributeValues"] = {":filter_value":
 filter_value}

 # Execute the query
 response = table.query(**query_params)
 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Perform advanced query operations API Version 2012-08-10 2355

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Perform list operations in DynamoDB with an Amazon SDK

The following code examples show how to perform list operations in DynamoDB.

• Add elements to a list attribute.

• Remove elements from a list attribute.

• Update specific elements in a list by index.

• Use list append and list index functions.

Java

SDK for Java 2.x

Demonstrate list operations using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

 /**
 * Appends items to a list attribute.
 *
 * <p>This method demonstrates how to use the list_append function to add
 * items to the end of a list attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update

Perform list operations API Version 2012-08-10 2356

Amazon DynamoDB Developer Guide

 * @param listAttributeName The name of the list attribute
 * @param itemsToAppend The items to append to the list
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse appendToList(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String listAttributeName,
 List<AttributeValue> itemsToAppend) {

 // Create a list value from the items to append
 AttributeValue listValue =
 AttributeValue.builder().l(itemsToAppend).build();

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attrName =
 list_append(if_not_exists(#attrName, :emptyList), :newItems)")
 .expressionAttributeNames(Map.of("#attrName", listAttributeName))
 .expressionAttributeValues(Map.of(
 ":newItems",
 listValue,
 ":emptyList",
 AttributeValue.builder().l(new
 ArrayList<AttributeValue>()).build()))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Prepends items to a list attribute.
 *
 * <p>This method demonstrates how to use the list_append function to add
 * items to the beginning of a list attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table

Perform list operations API Version 2012-08-10 2357

Amazon DynamoDB Developer Guide

 * @param key The key of the item to update
 * @param listAttributeName The name of the list attribute
 * @param itemsToPrepend The items to prepend to the list
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse prependToList(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String listAttributeName,
 List<AttributeValue> itemsToPrepend) {

 // Create a list value from the items to prepend
 AttributeValue listValue =
 AttributeValue.builder().l(itemsToPrepend).build();

 // Define the update parameters
 // Note: To prepend, we put the new items first in the list_append
 function
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attrName = list_append(:newItems,
 if_not_exists(#attrName, :emptyList))")
 .expressionAttributeNames(Map.of("#attrName", listAttributeName))
 .expressionAttributeValues(Map.of(
 ":newItems",
 listValue,
 ":emptyList",
 AttributeValue.builder().l(new
 ArrayList<AttributeValue>()).build()))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Updates a specific element in a list attribute.
 *
 * <p>This method demonstrates how to update a specific element in a list
 * by its index.

Perform list operations API Version 2012-08-10 2358

Amazon DynamoDB Developer Guide

 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param listAttributeName The name of the list attribute
 * @param index The index of the element to update
 * @param newValue The new value for the element
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateListElement(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String listAttributeName,
 int index,
 AttributeValue newValue) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attrName[" + index + "] = :newValue")
 .expressionAttributeNames(Map.of("#attrName", listAttributeName))
 .expressionAttributeValues(Map.of(":newValue", newValue))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Removes a specific element from a list attribute.
 *
 * <p>This method demonstrates how to remove a specific element from a list
 * by its index.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param listAttributeName The name of the list attribute
 * @param index The index of the element to remove
 * @return The response from DynamoDB

Perform list operations API Version 2012-08-10 2359

Amazon DynamoDB Developer Guide

 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse removeListElement(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String listAttributeName,
 int index) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("REMOVE #attrName[" + index + "]")
 .expressionAttributeNames(Map.of("#attrName", listAttributeName))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Gets the current value of a list attribute.
 *
 * <p>Helper method to retrieve the current value of a list attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to get
 * @param listAttributeName The name of the list attribute
 * @return The list attribute value or null if not found
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static List<AttributeValue> getListAttribute(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, String listAttributeName) {

 // Define the get parameters
 GetItemRequest request = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .projectionExpression(listAttributeName)
 .build();

Perform list operations API Version 2012-08-10 2360

Amazon DynamoDB Developer Guide

 try {
 // Perform the get operation
 GetItemResponse response = dynamoDbClient.getItem(request);

 // Return the list attribute if it exists, otherwise null
 if (response.item() != null &&
 response.item().containsKey(listAttributeName)) {
 return response.item().get(listAttributeName).l();
 }

 return null;
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to get list attribute: " + e.getMessage())
 .cause(e)
 .build();
 }
 }

Example usage of list operations with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating list operations in DynamoDB");

 try {
 // Example 1: Append items to a list
 System.out.println("\nExample 1: Appending items to a list");
 List<AttributeValue> tagsToAppend = List.of(
 AttributeValue.builder().s("Electronics").build(),
 AttributeValue.builder().s("Gadget").build());

 UpdateItemResponse appendResponse = appendToList(dynamoDbClient,
 tableName, key, "Tags", tagsToAppend);

 System.out.println("Updated list attribute: " +
 appendResponse.attributes());

Perform list operations API Version 2012-08-10 2361

Amazon DynamoDB Developer Guide

 // Example 2: Prepend items to a list
 System.out.println("\nExample 2: Prepending items to a list");
 List<AttributeValue> tagsToPrepend = List.of(
 AttributeValue.builder().s("Featured").build(),
 AttributeValue.builder().s("New").build());

 UpdateItemResponse prependResponse = prependToList(dynamoDbClient,
 tableName, key, "Tags", tagsToPrepend);

 System.out.println("Updated list attribute: " +
 prependResponse.attributes());

 // Example 3: Update a specific element in a list
 System.out.println("\nExample 3: Updating a specific element in a
 list");
 UpdateItemResponse updateResponse = updateListElement(
 dynamoDbClient,
 tableName,
 key,
 "Tags",
 0,
 AttributeValue.builder().s("BestSeller").build());

 System.out.println("Updated list attribute: " +
 updateResponse.attributes());

 // Example 4: Remove a specific element from a list
 System.out.println("\nExample 4: Removing a specific element from a
 list");
 UpdateItemResponse removeResponse = removeListElement(dynamoDbClient,
 tableName, key, "Tags", 1);

 System.out.println("Updated list attribute: " +
 removeResponse.attributes());

 // Example 5: Get the current value of a list attribute
 System.out.println("\nExample 5: Getting the current value of a list
 attribute");
 List<AttributeValue> currentList = getListAttribute(dynamoDbClient,
 tableName, key, "Tags");

 if (currentList != null) {
 System.out.println("Current list attribute:");

Perform list operations API Version 2012-08-10 2362

Amazon DynamoDB Developer Guide

 for (int i = 0; i < currentList.size(); i++) {
 System.out.println(" [" + i + "]: " +
 currentList.get(i).s());
 }
 } else {
 System.out.println("List attribute not found");
 }

 // Explain list operations
 System.out.println("\nKey points about DynamoDB list operations:");
 System.out.println("1. Lists are ordered collections of attributes");
 System.out.println("2. Use list_append to add items to a list");
 System.out.println("3. To append items, use list_append(existingList,
 newItems)");
 System.out.println("4. To prepend items, use list_append(newItems,
 existingList)");
 System.out.println("5. Use index notation (list[0]) to access or
 update specific elements");
 System.out.println("6. Use REMOVE to delete elements from a list");
 System.out.println("7. List indices are zero-based");
 System.out.println("8. Use if_not_exists to handle the case where the
 list doesn't exist yet");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Demonstrate list operations using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand,

Perform list operations API Version 2012-08-10 2363

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Append elements to a list attribute.
 *
 * This function demonstrates how to use the list_append function to add elements
 * to the end of a list.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} values - The values to append to the list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function appendToList(
 config,
 tableName,
 key,
 listName,
 values
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} =
 list_append(if_not_exists(${listName}, :empty_list), :values)`,
 ExpressionAttributeValues: {
 ":empty_list": [],
 ":values": values
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;

Perform list operations API Version 2012-08-10 2364

Amazon DynamoDB Developer Guide

}

/**
 * Prepend elements to a list attribute.
 *
 * This function demonstrates how to use the list_append function to add elements
 * to the beginning of a list.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} values - The values to prepend to the list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function prependToList(
 config,
 tableName,
 key,
 listName,
 values
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 // Note: To prepend, we put the new values first in the list_append function
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} = list_append(:values,
 if_not_exists(${listName}, :empty_list))`,
 ExpressionAttributeValues: {
 ":empty_list": [],
 ":values": values
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;

Perform list operations API Version 2012-08-10 2365

Amazon DynamoDB Developer Guide

}

/**
 * Update a specific element in a list by index.
 *
 * This function demonstrates how to update a specific element in a list
 * using the index notation.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} index - The index of the element to update
 * @param {any} value - The new value for the element
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateListElement(
 config,
 tableName,
 key,
 listName,
 index,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using index notation
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName}[${index}] = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

Perform list operations API Version 2012-08-10 2366

Amazon DynamoDB Developer Guide

/**
 * Remove an element from a list by index.
 *
 * This function demonstrates how to remove a specific element from a list
 * using the REMOVE action with index notation.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} index - The index of the element to remove
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function removeListElement(
 config,
 tableName,
 key,
 listName,
 index
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using REMOVE with index notation
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `REMOVE ${listName}[${index}]`,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Concatenate two lists.
 *
 * This function demonstrates how to concatenate two lists using the list_append
 function.

Perform list operations API Version 2012-08-10 2367

Amazon DynamoDB Developer Guide

 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName1 - The name of the first list attribute
 * @param {string} listName2 - The name of the second list attribute
 * @param {string} resultListName - The name of the attribute to store the
 concatenated list
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function concatenateLists(
 config,
 tableName,
 key,
 listName1,
 listName2,
 resultListName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using list_append
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${resultListName} =
 list_append(if_not_exists(${listName1}, :empty_list),
 if_not_exists(${listName2}, :empty_list))`,
 ExpressionAttributeValues: {
 ":empty_list": []
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Create a nested list structure.
 *

Perform list operations API Version 2012-08-10 2368

Amazon DynamoDB Developer Guide

 * This function demonstrates how to create and work with nested lists.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {Array} nestedLists - An array of arrays to create a nested list
 structure
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function createNestedList(
 config,
 tableName,
 key,
 listName,
 nestedLists
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters to create a nested list
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName} = :nested_lists`,
 ExpressionAttributeValues: {
 ":nested_lists": nestedLists
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Update an element in a nested list.
 *
 * This function demonstrates how to update an element in a nested list
 * using multiple index notations.
 *

Perform list operations API Version 2012-08-10 2369

Amazon DynamoDB Developer Guide

 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} listName - The name of the list attribute
 * @param {number} outerIndex - The index in the outer list
 * @param {number} innerIndex - The index in the inner list
 * @param {any} value - The new value for the element
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateNestedListElement(
 config,
 tableName,
 key,
 listName,
 outerIndex,
 innerIndex,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using multiple index notations
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${listName}[${outerIndex}][${innerIndex}] = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *

Perform list operations API Version 2012-08-10 2370

Amazon DynamoDB Developer Guide

 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

Example usage of list operations with Amazon SDK for JavaScript.

/**
 * Example of how to work with lists in DynamoDB.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "UserProfiles";
 const key = { UserId: "U12345" };

 console.log("Demonstrating list operations in DynamoDB");

 try {
 // Example 1: Append elements to a list

Perform list operations API Version 2012-08-10 2371

Amazon DynamoDB Developer Guide

 console.log("\nExample 1: Appending elements to a list");
 const response1 = await appendToList(
 config,
 tableName,
 key,
 "RecentSearches",
 ["laptop", "headphones", "monitor"]
);

 console.log("Appended to list:", response1.Attributes);

 // Example 2: Prepend elements to a list
 console.log("\nExample 2: Prepending elements to a list");
 const response2 = await prependToList(
 config,
 tableName,
 key,
 "RecentSearches",
 ["keyboard", "mouse"]
);

 console.log("Prepended to list:", response2.Attributes);

 // Get the current state of the item
 let currentItem = await getItem(config, tableName, key);
 console.log("\nCurrent state of RecentSearches:",
 currentItem?.RecentSearches);

 // Example 3: Update a specific element in a list
 console.log("\nExample 3: Updating a specific element in a list");
 const response3 = await updateListElement(
 config,
 tableName,
 key,
 "RecentSearches",
 0, // Update the first element
 "mechanical keyboard" // New value
);

 console.log("Updated list element:", response3.Attributes);

 // Example 4: Remove an element from a list
 console.log("\nExample 4: Removing an element from a list");
 const response4 = await removeListElement(

Perform list operations API Version 2012-08-10 2372

Amazon DynamoDB Developer Guide

 config,
 tableName,
 key,
 "RecentSearches",
 2 // Remove the third element
);

 console.log("List after removing element:", response4.Attributes);

 // Example 5: Create and concatenate lists
 console.log("\nExample 5: Creating and concatenating lists");

 // First, create two separate lists
 await updateWithMultipleActions(
 config,
 tableName,
 key,
 "SET WishList = :wishlist, SavedItems = :saveditems",
 null,
 {
 ":wishlist": ["gaming laptop", "wireless earbuds"],
 ":saveditems": ["smartphone", "tablet"]
 }
);

 // Then, concatenate them
 const response5 = await concatenateLists(
 config,
 tableName,
 key,
 "WishList",
 "SavedItems",
 "AllItems"
);

 console.log("Concatenated lists:", response5.Attributes);

 // Example 6: Create a nested list structure
 console.log("\nExample 6: Creating a nested list structure");
 const response6 = await createNestedList(
 config,
 tableName,
 key,
 "Categories",

Perform list operations API Version 2012-08-10 2373

Amazon DynamoDB Developer Guide

 [
 ["Electronics", "Computers", "Accessories"],
 ["Books", "Magazines", "E-books"],
 ["Clothing", "Shoes", "Watches"]
]
);

 console.log("Created nested list:", response6.Attributes);

 // Example 7: Update an element in a nested list
 console.log("\nExample 7: Updating an element in a nested list");
 const response7 = await updateNestedListElement(
 config,
 tableName,
 key,
 "Categories",
 0, // First inner list
 1, // Second element in that list
 "Laptops" // New value
);

 console.log("Updated nested list element:", response7.Attributes);

 // Get the final state of the item
 currentItem = await getItem(config, tableName, key);
 console.log("\nFinal state of the item:", JSON.stringify(currentItem, null,
 2));

 // Explain list operations
 console.log("\nKey points about list operations in DynamoDB:");
 console.log("1. Use list_append to add elements to a list");
 console.log("2. To append elements, use list_append(existingList,
 newElements)");
 console.log("3. To prepend elements, use list_append(newElements,
 existingList)");
 console.log("4. Use if_not_exists to handle cases where the list might not
 exist yet");
 console.log("5. Use index notation (list[0]) to access or update specific
 elements");
 console.log("6. Use REMOVE with index notation to remove elements from a
 list");
 console.log("7. Lists can contain elements of different types");
 console.log("8. Lists can be nested (lists of lists)");

Perform list operations API Version 2012-08-10 2374

Amazon DynamoDB Developer Guide

 console.log("9. Use multiple index notations (list[0][1]) to access nested
 list elements");

 } catch (error) {
 console.error("Error:", error);
 }
}

/**
 * Helper function for the examples.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} updateExpression - The update expression
 * @param {Object} expressionAttributeNames - Expression attribute name
 placeholders
 * @param {Object} expressionAttributeValues - Expression attribute value
 placeholders
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleActions(
 config,
 tableName,
 key,
 updateExpression,
 expressionAttributeNames,
 expressionAttributeValues
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Prepare the update parameters
 const updateParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ReturnValues: "UPDATED_NEW"
 };

 // Add expression attribute names if provided
 if (expressionAttributeNames) {
 updateParams.ExpressionAttributeNames = expressionAttributeNames;

Perform list operations API Version 2012-08-10 2375

Amazon DynamoDB Developer Guide

 }

 // Add expression attribute values if provided
 if (expressionAttributeValues) {
 updateParams.ExpressionAttributeValues = expressionAttributeValues;
 }

 // Execute the update
 const response = await docClient.send(new UpdateCommand(updateParams));

 return response;
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Demonstrate list operations using Amazon SDK for Python (Boto3).

import boto3
import json
from typing import Any, Dict, List, Optional, Union

def create_list_attribute(
 table_name: str, key: Dict[str, Any], list_name: str, list_values: List[Any]
) -> Dict[str, Any]:
 """
 Create a new list attribute or replace an existing one.

 This function demonstrates how to create a new list attribute or replace
 an existing list with new values.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 list_values (List[Any]): The values to set in the list.

 Returns:

Perform list operations API Version 2012-08-10 2376

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use the SET operation to create or replace the list
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name} = :list_values",
 ExpressionAttributeValues={":list_values": list_values},
 ReturnValues="UPDATED_NEW",
)

 return response

def append_to_list(
 table_name: str, key: Dict[str, Any], list_name: str, values_to_append:
 List[Any]
) -> Dict[str, Any]:
 """
 Append values to the end of a list attribute.

 This function demonstrates how to use the list_append function to add
 elements
 to the end of a list attribute.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 values_to_append (List[Any]): The values to append to the list.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use list_append to add values to the end of the list

Perform list operations API Version 2012-08-10 2377

Amazon DynamoDB Developer Guide

 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name} = list_append({list_name}, :values)",
 ExpressionAttributeValues={":values": values_to_append},
 ReturnValues="UPDATED_NEW",
)

 return response

def prepend_to_list(
 table_name: str, key: Dict[str, Any], list_name: str, values_to_prepend:
 List[Any]
) -> Dict[str, Any]:
 """
 Prepend values to the beginning of a list attribute.

 This function demonstrates how to use the list_append function to add
 elements
 to the beginning of a list attribute.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 values_to_prepend (List[Any]): The values to prepend to the list.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use list_append with reversed order to add values to the beginning of the
 list
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name} = list_append(:values, {list_name})",
 ExpressionAttributeValues={":values": values_to_prepend},
 ReturnValues="UPDATED_NEW",
)

Perform list operations API Version 2012-08-10 2378

Amazon DynamoDB Developer Guide

 return response

def update_list_element(
 table_name: str, key: Dict[str, Any], list_name: str, index: int, new_value:
 Any
) -> Dict[str, Any]:
 """
 Update a specific element in a list attribute.

 This function demonstrates how to update a specific element in a list
 attribute
 using the index notation.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 index (int): The zero-based index of the element to update.
 new_value (Any): The new value for the element.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use the index notation to update a specific element
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name}[{index}] = :value",
 ExpressionAttributeValues={":value": new_value},
 ReturnValues="UPDATED_NEW",
)

 return response

def remove_list_element(
 table_name: str, key: Dict[str, Any], list_name: str, index: int
) -> Dict[str, Any]:
 """

Perform list operations API Version 2012-08-10 2379

Amazon DynamoDB Developer Guide

 Remove a specific element from a list attribute.

 This function demonstrates how to remove a specific element from a list
 attribute
 using the REMOVE action with index notation.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 index (int): The zero-based index of the element to remove.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use the REMOVE action with index notation to remove a specific element
 response = table.update_item(
 Key=key, UpdateExpression=f"REMOVE {list_name}[{index}]",
 ReturnValues="UPDATED_NEW"
)

 return response

def update_nested_list_element(
 table_name: str, key: Dict[str, Any], path: str, new_value: Any
) -> Dict[str, Any]:
 """
 Update an element in a nested list structure.

 This function demonstrates how to update an element in a nested list
 structure
 using expression attribute names for the path components.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 path (str): The path to the nested element (e.g., "parent[0].child[1]").
 new_value (Any): The new value for the element.

Perform list operations API Version 2012-08-10 2380

Amazon DynamoDB Developer Guide

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Define a type for path parts
 path_part = Dict[str, Union[str, int]]
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Parse the path to extract attribute names and indices
 path_parts: List[path_part] = []
 current_part = ""
 in_bracket = False

 for char in path:
 if char == "[":
 if current_part:
 path_parts.append({"type": "attribute", "value": current_part})
 current_part = ""
 in_bracket = True
 elif char == "]":
 if current_part:
 # Fix for mypy: Use a properly typed dictionary with Union type
 path_parts.append({"type": "index", "value": int(current_part)})
 current_part = ""
 in_bracket = False
 elif char == "." and not in_bracket:
 if current_part:
 path_parts.append({"type": "attribute", "value": current_part})
 current_part = ""
 else:
 current_part += char

 if current_part:
 path_parts.append({"type": "attribute", "value": current_part})

 # Build the update expression and attribute names
 update_expression = "SET "
 expression_attribute_names = {}

 # Build the path expression
 path_expression = ""

Perform list operations API Version 2012-08-10 2381

Amazon DynamoDB Developer Guide

 for i, part in enumerate(path_parts):
 if part["type"] == "attribute":
 name_placeholder = f"#attr{i}"
 expression_attribute_names[name_placeholder] = part["value"]

 if path_expression:
 path_expression += "."
 path_expression += name_placeholder
 elif part["type"] == "index":
 path_expression += f"[{part['value']}]"

 # Complete the update expression
 update_expression += f"{path_expression} = :value"

 # Execute the update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues={":value": new_value},
 ReturnValues="UPDATED_NEW",
)

 return response

def create_list_if_not_exists(
 table_name: str, key: Dict[str, Any], list_name: str, default_values:
 List[Any]
) -> Dict[str, Any]:
 """
 Create a list attribute if it doesn't exist.

 This function demonstrates how to use if_not_exists to create a list
 attribute
 with default values if it doesn't already exist.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 default_values (List[Any]): The default values for the list.

 Returns:

Perform list operations API Version 2012-08-10 2382

Amazon DynamoDB Developer Guide

 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use if_not_exists to create the list if it doesn't exist
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name} =
 if_not_exists({list_name}, :default)",
 ExpressionAttributeValues={":default": default_values},
 ReturnValues="UPDATED_NEW",
)

 return response

def append_to_list_safely(
 table_name: str,
 key: Dict[str, Any],
 list_name: str,
 values_to_append: List[Any],
 default_values: Optional[List[Any]] = None,
) -> Dict[str, Any]:
 """
 Append values to a list, creating it if it doesn't exist.

 This function demonstrates how to safely append values to a list attribute,
 creating the list with default values if it doesn't exist.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 list_name (str): The name of the list attribute.
 values_to_append (List[Any]): The values to append to the list.
 default_values (Optional[List[Any]]): The default values if the list
 doesn't exist.
 If not provided, values_to_append will be used as the default.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.

Perform list operations API Version 2012-08-10 2383

Amazon DynamoDB Developer Guide

 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # If default_values is not provided, use values_to_append
 if default_values is None:
 default_values = values_to_append

 # Use if_not_exists with list_append to safely append to the list
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {list_name} =
 list_append(if_not_exists({list_name}, :default), :values)",
 ExpressionAttributeValues={
 ":default": default_values if default_values else [],
 ":values": values_to_append,
 },
 ReturnValues="UPDATED_NEW",
)

 return response

Example usage of list operations with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use list operations in DynamoDB."""
 # Example parameters
 table_name = "UserData"
 key = {"UserId": "user123"}

 print("Example 1: Creating a list attribute")
 try:
 response = create_list_attribute(
 table_name=table_name,
 key=key,
 list_name="Interests",
 list_values=["Reading", "Hiking", "Photography"],
)
 print(

Perform list operations API Version 2012-08-10 2384

Amazon DynamoDB Developer Guide

 f"List attribute created successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error creating list attribute: {e}")

 print("\nExample 2: Appending values to a list")
 try:
 response = append_to_list(
 table_name=table_name,
 key=key,
 list_name="Interests",
 values_to_append=["Cooking", "Gardening"],
)
 print(
 f"Values appended to list successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error appending to list: {e}")

 print("\nExample 3: Prepending values to a list")
 try:
 response = prepend_to_list(
 table_name=table_name,
 key=key,
 list_name="Interests",
 values_to_prepend=["Travel", "Music"],
)
 print(
 f"Values prepended to list successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error prepending to list: {e}")

 print("\nExample 4: Updating a specific list element")
 try:
 response = update_list_element(
 table_name=table_name,
 key=key,
 list_name="Interests",
 index=2,
 new_value="Mountain Hiking",

Perform list operations API Version 2012-08-10 2385

Amazon DynamoDB Developer Guide

)
 print(
 f"List element updated successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error updating list element: {e}")

 print("\nExample 5: Removing a list element")
 try:
 response = remove_list_element(
 table_name=table_name, key=key, list_name="Interests", index=0
)
 print(
 f"List element removed successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error removing list element: {e}")

 print("\nExample 6: Working with nested lists")
 try:
 # First, create an item with a nested structure
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 table.update_item(
 Key={"UserId": "user456"},
 UpdateExpression="SET #skills = :skills",
 ExpressionAttributeNames={"#skills": "Skills"},
 ExpressionAttributeValues={
 ":skills": [
 {"Category": "Programming", "Languages": ["Python", "Java",
 "JavaScript"]},
 {"Category": "Database", "Systems": ["DynamoDB", "MongoDB",
 "PostgreSQL"]},
]
 },
)

 # Now update a nested element
 response = update_nested_list_element(
 table_name=table_name,
 key={"UserId": "user456"},

Perform list operations API Version 2012-08-10 2386

Amazon DynamoDB Developer Guide

 path="Skills[0].Languages[1]",
 new_value="TypeScript",
)
 print(
 f"Nested list element updated successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error working with nested lists: {e}")

 print("\nExample 7: Creating a list if it doesn't exist")
 try:
 response = create_list_if_not_exists(
 table_name=table_name,
 key={"UserId": "user789"},
 list_name="Preferences",
 default_values=["Default1", "Default2", "Default3"],
)
 print(
 f"List created with default values:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error creating list with default values: {e}")

 print("\nExample 8: Safely appending to a list")
 try:
 response = append_to_list_safely(
 table_name=table_name,
 key={"UserId": "user789"},
 list_name="Notifications",
 values_to_append=["New message received"],
 default_values=[],
)
 print(f"Safely appended to list: {json.dumps(response.get('Attributes',
 {}), default=str)}")
 except Exception as e:
 print(f"Error safely appending to list: {e}")

 print("\nKey Points About Working with Lists in DynamoDB:")
 print("1. Lists are ordered collections of elements that can be of different
 types")
 print("2. Use the SET operation with direct assignment to create or replace a
 list")

Perform list operations API Version 2012-08-10 2387

Amazon DynamoDB Developer Guide

 print("3. Use list_append() to add elements to a list without replacing the
 entire list")
 print("4. To append to the end: list_append(list_name, :values)")
 print("5. To prepend to the beginning: list_append(:values, list_name)")
 print("6. Use index notation list_name[index] to access or update specific
 elements")
 print("7. Use the REMOVE action with index notation to remove specific
 elements")
 print("8. Lists can contain nested structures like maps and other lists")
 print("9. Use if_not_exists() to create a list with default values if it
 doesn't exist")
 print("10. List indices are zero-based (the first element is at index 0)")
 print("11. Attempting to access an index beyond the list bounds will result
 in an error")

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Perform map operations in DynamoDB with an Amazon SDK

The following code examples show how to perform map operations in DynamoDB.

• Add and update nested attributes in map structures.

• Remove specific fields from maps.

• Work with deeply nested map attributes.

Java

SDK for Java 2.x

Demonstrate map operations using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;

Perform map operations API Version 2012-08-10 2388

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

 /**
 * Updates a map attribute that may not exist.
 *
 * <p>This method demonstrates how to safely update a map attribute
 * by using if_not_exists to handle the case where the map doesn't exist yet.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param mapName The name of the map attribute
 * @param mapKey The key within the map to update
 * @param value The value to set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateMapAttributeSafe(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String mapName,
 String mapKey,
 AttributeValue value) {

 // Create an empty map to use if the map doesn't exist
 Map<String, AttributeValue> emptyMap = new HashMap<>();
 AttributeValue emptyMapValue =
 AttributeValue.builder().m(emptyMap).build();

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #mapName = if_not_exists(#mapName, :emptyMap),
 #mapName.#mapKey = :value")
 .expressionAttributeNames(Map.of(

Perform map operations API Version 2012-08-10 2389

Amazon DynamoDB Developer Guide

 "#mapName", mapName,
 "#mapKey", mapKey))
 .expressionAttributeValues(Map.of(
 ":value",
 value,
 ":emptyMap",
 AttributeValue.builder().m(new HashMap<>()).build()))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Adds an attribute to a nested map.
 *
 * <p>This method demonstrates how to update a nested attribute without
 * overwriting the entire map.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param path The path to the nested attribute as a list
 * @param value The value to set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse addToNestedMap(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 List<String> path,
 AttributeValue value) {

 // Create expression attribute names for each part of the path
 Map<String, String> expressionAttributeNames = new HashMap<>();
 for (int i = 0; i < path.size(); i++) {
 expressionAttributeNames.put("#attr" + i, path.get(i));
 }

 // Build the attribute path using the expression attribute names
 StringBuilder attributePathExpression = new StringBuilder();
 for (int i = 0; i < path.size(); i++) {

Perform map operations API Version 2012-08-10 2390

Amazon DynamoDB Developer Guide

 if (i > 0) {
 attributePathExpression.append(".");
 }
 attributePathExpression.append("#attr").append(i);
 }

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET " + attributePathExpression.toString() + "
 = :value")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(Map.of(":value", value))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Removes an attribute from a map.
 *
 * <p>This method demonstrates how to remove a specific attribute from a map.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param mapName The name of the map attribute
 * @param mapKey The key within the map to remove
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse removeMapAttribute(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String mapName,
 String mapKey) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)

Perform map operations API Version 2012-08-10 2391

Amazon DynamoDB Developer Guide

 .key(key)
 .updateExpression("REMOVE #mapName.#mapKey")
 .expressionAttributeNames(Map.of(
 "#mapName", mapName,
 "#mapKey", mapKey))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Creates a map with multiple attributes in a single operation.
 *
 * <p>This method demonstrates how to create a map with multiple attributes
 * in a single update operation.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param mapName The name of the map attribute
 * @param attributes The attributes to set in the map
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse createMapWithAttributes(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String mapName,
 Map<String, AttributeValue> attributes) {

 // Create a map value from the attributes
 AttributeValue mapValue = AttributeValue.builder().m(attributes).build();

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #mapName = :mapValue")
 .expressionAttributeNames(Map.of("#mapName", mapName))
 .expressionAttributeValues(Map.of(":mapValue", mapValue))
 .returnValues("UPDATED_NEW")

Perform map operations API Version 2012-08-10 2392

Amazon DynamoDB Developer Guide

 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Gets the current value of a map attribute.
 *
 * <p>Helper method to retrieve the current value of a map attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to get
 * @param mapName The name of the map attribute
 * @return The map attribute value or null if not found
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static Map<String, AttributeValue> getMapAttribute(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, String mapName) {

 // Define the get parameters
 GetItemRequest request = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .projectionExpression(mapName)
 .build();

 try {
 // Perform the get operation
 GetItemResponse response = dynamoDbClient.getItem(request);

 // Return the map attribute if it exists, otherwise null
 if (response.item() != null && response.item().containsKey(mapName))
 {
 return response.item().get(mapName).m();
 }

 return null;
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to get map attribute: " + e.getMessage())
 .cause(e)

Perform map operations API Version 2012-08-10 2393

Amazon DynamoDB Developer Guide

 .build();
 }
 }

Example usage of map operations with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating map operations in DynamoDB");

 try {
 // Example 1: Create a map with multiple attributes
 System.out.println("\nExample 1: Creating a map with multiple
 attributes");
 Map<String, AttributeValue> productDetails = new HashMap<>();
 productDetails.put("Color",
 AttributeValue.builder().s("Red").build());
 productDetails.put("Weight",
 AttributeValue.builder().n("2.5").build());
 productDetails.put(
 "Dimensions", AttributeValue.builder().s("10x20x5").build());

 UpdateItemResponse createResponse =
 createMapWithAttributes(dynamoDbClient, tableName, key,
 "Details", productDetails);

 System.out.println("Created map attribute: " +
 createResponse.attributes());

 // Example 2: Update a specific attribute in a map
 System.out.println("\nExample 2: Updating a specific attribute in a
 map");
 UpdateItemResponse updateResponse = updateMapAttributeSafe(
 dynamoDbClient,
 tableName,
 key,
 "Details",
 "Color",

Perform map operations API Version 2012-08-10 2394

Amazon DynamoDB Developer Guide

 AttributeValue.builder().s("Blue").build());

 System.out.println("Updated map attribute: " +
 updateResponse.attributes());

 // Example 3: Add an attribute to a nested map
 System.out.println("\nExample 3: Adding an attribute to a nested
 map");
 UpdateItemResponse nestedResponse = addToNestedMap(
 dynamoDbClient,
 tableName,
 key,
 List.of("Specifications", "Technical", "Resolution"),
 AttributeValue.builder().s("1920x1080").build());

 System.out.println("Added to nested map: " +
 nestedResponse.attributes());

 // Example 4: Remove an attribute from a map
 System.out.println("\nExample 4: Removing an attribute from a map");
 UpdateItemResponse removeResponse =
 removeMapAttribute(dynamoDbClient, tableName, key, "Details",
 "Dimensions");

 System.out.println("Updated map after removal: " +
 removeResponse.attributes());

 // Example 5: Get the current value of a map attribute
 System.out.println("\nExample 5: Getting the current value of a map
 attribute");
 Map<String, AttributeValue> currentMap =
 getMapAttribute(dynamoDbClient, tableName, key, "Details");

 if (currentMap != null) {
 System.out.println("Current map attribute:");
 for (Map.Entry<String, AttributeValue> entry :
 currentMap.entrySet()) {
 System.out.println(" " + entry.getKey() + ": " +
 entry.getValue());
 }
 } else {
 System.out.println("Map attribute not found");
 }

Perform map operations API Version 2012-08-10 2395

Amazon DynamoDB Developer Guide

 // Explain map operations
 System.out.println("\nKey points about DynamoDB map operations:");
 System.out.println("1. Maps are unordered collections of name-value
 pairs");
 System.out.println("2. Use dot notation (map.key) to access or update
 specific attributes");
 System.out.println("3. You can update individual attributes without
 overwriting the entire map");
 System.out.println("4. Maps can be nested to create complex data
 structures");
 System.out.println("5. Use REMOVE to delete attributes from a map");
 System.out.println("6. You can create a map with multiple attributes
 in a single operation");
 System.out.println("7. Map keys are case-sensitive");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Demonstrate map operations using Amazon SDK for JavaScript.

/**
 * Example of updating map attributes in DynamoDB.
 *
 * This module demonstrates how to update map attributes that may not exist,
 * how to update nested attributes, and how to handle various map update
 scenarios.
 */

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,

Perform map operations API Version 2012-08-10 2396

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 GetCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Update a map attribute safely, handling the case where the map might not
 exist.
 *
 * This function demonstrates using the if_not_exists function to safely update
 * a map attribute that might not exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {string} mapKey - The key within the map to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMapAttributeSafe(
 config,
 tableName,
 key,
 mapName,
 mapKey,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName}.${mapKey} = :value`,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

Perform map operations API Version 2012-08-10 2397

Amazon DynamoDB Developer Guide

 return response;
 } catch (error) {
 // If the error is because the map doesn't exist, create it
 if (error.name === "ValidationException" &&
 error.message.includes("The document path provided in the update
 expression is invalid")) {

 // Create the map with the specified key-value pair
 const createParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName} = :map`,
 ExpressionAttributeValues: {
 ":map": { [mapKey]: value }
 },
 ReturnValues: "UPDATED_NEW"
 };

 return await docClient.send(new UpdateCommand(createParams));
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Update a map attribute using the if_not_exists function.
 *
 * This function demonstrates a more elegant approach using if_not_exists
 * to handle the case where the map doesn't exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {string} mapKey - The key within the map to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMapAttributeWithIfNotExists(
 config,
 tableName,
 key,

Perform map operations API Version 2012-08-10 2398

Amazon DynamoDB Developer Guide

 mapName,
 mapKey,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${mapName} = if_not_exists(${mapName}, :emptyMap),
 ${mapName}.${mapKey} = :value`,
 ExpressionAttributeValues: {
 ":emptyMap": {},
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Add a value to a deeply nested map, creating parent maps if they don't exist.
 *
 * This function demonstrates how to update a deeply nested attribute,
 * creating any parent maps that don't exist along the way.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string[]} path - The path to the nested attribute as an array of keys
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function addToNestedMap(
 config,
 tableName,
 key,

Perform map operations API Version 2012-08-10 2399

Amazon DynamoDB Developer Guide

 path,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression and expression attribute values
 let updateExpression = "SET";
 const expressionAttributeValues = {};

 // For each level in the path, create a map if it doesn't exist
 for (let i = 0; i < path.length; i++) {
 const currentPath = path.slice(0, i + 1).join(".");
 const parentPath = i > 0 ? path.slice(0, i).join(".") : null;

 if (parentPath) {
 updateExpression += ` ${parentPath} =
 if_not_exists(${parentPath}, :emptyMap${i}),`;
 expressionAttributeValues[`:emptyMap${i}`] = {};
 }
 }

 // Set the final value
 const fullPath = path.join(".");
 updateExpression += ` ${fullPath} = :value`;
 expressionAttributeValues[":value"] = value;

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**

Perform map operations API Version 2012-08-10 2400

Amazon DynamoDB Developer Guide

 * Update multiple fields in a map attribute in a single operation.
 *
 * This function demonstrates how to update multiple fields in a map
 * in a single DynamoDB operation.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} mapName - The name of the map attribute
 * @param {Object} updates - Object containing key-value pairs to update
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateMultipleMapFields(
 config,
 tableName,
 key,
 mapName,
 updates
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression and expression attribute values
 let updateExpression = `SET ${mapName} = if_not_exists(${mapName}, :emptyMap)`;
 const expressionAttributeValues = {
 ":emptyMap": {}
 };

 // Add each update to the expression
 Object.entries(updates).forEach(([field, value], index) => {
 updateExpression += `, ${mapName}.${field} = :val${index}`;
 expressionAttributeValues[`:val${index}`] = value;
 });

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

Perform map operations API Version 2012-08-10 2401

Amazon DynamoDB Developer Guide

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

/**
 * Example of how to use the map attribute update functions.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };

Perform map operations API Version 2012-08-10 2402

Amazon DynamoDB Developer Guide

 const tableName = "Users";
 const key = { UserId: "U12345" };

 console.log("Demonstrating different approaches to update map attributes in
 DynamoDB");

 try {
 // Example 1: Update a map attribute that might not exist (two-step approach)
 console.log("\nExample 1: Updating a map attribute that might not exist (two-
step approach)");
 const response1 = await updateMapAttributeSafe(
 config,
 tableName,
 key,
 "Preferences",
 "Theme",
 "Dark"
);

 console.log("Updated preferences:", response1.Attributes);

 // Example 2: Update a map attribute using if_not_exists (elegant approach)
 console.log("\nExample 2: Updating a map attribute using if_not_exists
 (elegant approach)");
 const response2 = await updateMapAttributeWithIfNotExists(
 config,
 tableName,
 key,
 "Settings",
 "NotificationsEnabled",
 true
);

 console.log("Updated settings:", response2.Attributes);

 // Example 3: Update a deeply nested attribute
 console.log("\nExample 3: Updating a deeply nested attribute");
 const response3 = await addToNestedMap(
 config,
 tableName,
 key,
 ["Profile", "Address", "City"],
 "Seattle"
);

Perform map operations API Version 2012-08-10 2403

Amazon DynamoDB Developer Guide

 console.log("Updated nested attribute:", response3.Attributes);

 // Example 4: Update multiple fields in a map
 console.log("\nExample 4: Updating multiple fields in a map");
 const response4 = await updateMultipleMapFields(
 config,
 tableName,
 key,
 "ContactInfo",
 {
 Email: "user@example.com",
 Phone: "555-123-4567",
 PreferredContact: "Email"
 }
);

 console.log("Updated multiple fields:", response4.Attributes);

 // Get the final state of the item
 console.log("\nFinal state of the item:");
 const item = await getItem(config, tableName, key);
 console.log(JSON.stringify(item, null, 2));

 // Explain the benefits of different approaches
 console.log("\nKey points about updating map attributes:");
 console.log("1. Use if_not_exists to handle maps that might not exist");
 console.log("2. Multiple updates can be combined in a single operation");
 console.log("3. Deeply nested attributes require creating parent maps");
 console.log("4. DynamoDB expressions are atomic - the entire update succeeds
 or fails");
 console.log("5. Using a single operation is more efficient than multiple
 separate updates");

 } catch (error) {
 console.error("Error:", error);
 }
}

// Export the functions
module.exports = {
 updateMapAttributeSafe,
 updateMapAttributeWithIfNotExists,
 addToNestedMap,

Perform map operations API Version 2012-08-10 2404

Amazon DynamoDB Developer Guide

 updateMultipleMapFields,
 getItem,
 exampleUsage
};

// Run the example if this file is executed directly
if (require.main === module) {
 exampleUsage();
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Demonstrate map operations using Amazon SDK for Python (Boto3).

"""
Example of updating map attributes in DynamoDB.

This module demonstrates how to update map attributes in DynamoDB, including
handling cases where the map attribute might not exist yet.
"""

import boto3
from typing import Any, Dict, Optional

def update_map_attribute_safe(
 table_name: str, key: Dict[str, Any], map_name: str, map_key: str, value: Any
) -> Dict[str, Any]:
 """
 Update a specific key in a map attribute, creating the map if it doesn't
 exist.

 This function demonstrates how to safely update a key within a map attribute,
 even if the map doesn't exist yet in the item.

Perform map operations API Version 2012-08-10 2405

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 map_name (str): The name of the map attribute.
 map_key (str): The key within the map to update.
 value (Any): The value to set for the map key.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use SET with attribute_not_exists to safely update the map
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #map.#key = :value",
 ExpressionAttributeNames={"#map": map_name, "#key": map_key},
 ExpressionAttributeValues={":value": value},
 ReturnValues="UPDATED_NEW",
)

 return response

def add_to_nested_map(
 table_name: str, key: Dict[str, Any], path: str, value: Any
) -> Dict[str, Any]:
 """
 Add or update a value in a deeply nested map structure.

 This function demonstrates how to update a value at a specific path in a
 nested map structure, creating any intermediate maps as needed.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 path (str): The path to the nested attribute (e.g.,
 "user.preferences.theme").
 value (Any): The value to set at the specified path.

 Returns:

Perform map operations API Version 2012-08-10 2406

Amazon DynamoDB Developer Guide

 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Split the path into components
 path_parts = path.split(".")

 # Build the update expression and attribute names
 update_expression = "SET "
 expression_attribute_names = {}

 # Build the path expression
 path_expression = ""
 for i, part in enumerate(path_parts):
 name_placeholder = f"#attr{i}"
 expression_attribute_names[name_placeholder] = part

 if i == 0:
 path_expression = name_placeholder
 else:
 path_expression += f".{name_placeholder}"

 # Complete the update expression
 update_expression += f"{path_expression} = :value"

 # Execute the update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues={":value": value},
 ReturnValues="UPDATED_NEW",
)

 return response

def update_map_with_if_not_exists(
 table_name: str,
 key: Dict[str, Any],
 map_name: str,

Perform map operations API Version 2012-08-10 2407

Amazon DynamoDB Developer Guide

 map_key: str,
 value: Any,
 default_map: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
 """
 Update a key in a map, creating the map with default values if it doesn't
 exist.

 This function demonstrates how to use if_not_exists to initialize a map with
 default values if it doesn't exist yet, and then update a specific key.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 map_name (str): The name of the map attribute.
 map_key (str): The key within the map to update.
 value (Any): The value to set for the map key.
 default_map (Optional[Dict[str, Any]]): Default map values if the map
 doesn't exist.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Set default map if not provided
 if default_map is None:
 default_map = {}

 # Create a map with the new key-value pair
 updated_map = default_map.copy()
 updated_map[map_key] = value

 # Use if_not_exists to initialize the map if it doesn't exist
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #map = if_not_exists(#map, :default_map)",
 ExpressionAttributeNames={"#map": map_name},
 ExpressionAttributeValues={":default_map": updated_map},
 ReturnValues="UPDATED_NEW",
)

Perform map operations API Version 2012-08-10 2408

Amazon DynamoDB Developer Guide

 return response

def merge_into_map(
 table_name: str, key: Dict[str, Any], map_name: str, values_to_merge:
 Dict[str, Any]
) -> Dict[str, Any]:
 """
 Merge multiple key-value pairs into a map attribute.

 This function demonstrates how to update multiple keys in a map attribute
 in a single operation, without overwriting the entire map.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 map_name (str): The name of the map attribute.
 values_to_merge (Dict[str, Any]): Key-value pairs to merge into the map.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the update expression for each key-value pair
 update_expression = "SET "
 expression_attribute_names = {"#map": map_name}
 expression_attribute_values = {}

 # Add each key-value pair to the update expression
 for i, (k, v) in enumerate(values_to_merge.items()):
 key_placeholder = f"#key{i}"
 value_placeholder = f":value{i}"

 expression_attribute_names[key_placeholder] = k
 expression_attribute_values[value_placeholder] = v

 if i > 0:
 update_expression += ", "
 update_expression += f"#map.{key_placeholder} = {value_placeholder}"

Perform map operations API Version 2012-08-10 2409

Amazon DynamoDB Developer Guide

 # Execute the update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues=expression_attribute_values,
 ReturnValues="UPDATED_NEW",
)

 return response

def example_usage():
 """Example of how to use the map attribute update functions."""
 # Example parameters
 table_name = "UserProfiles"
 key = {"UserId": "user123"}

 print("Example 1: Updating a specific key in a map attribute")
 try:
 response = update_map_attribute_safe(
 table_name=table_name, key=key, map_name="Preferences",
 map_key="Theme", value="Dark"
)
 print(f"Map attribute updated successfully: {response.get('Attributes',
 {})}")
 except Exception as e:
 print(f"Error updating map attribute: {e}")

 print("\nExample 2: Adding a value to a deeply nested map")
 try:
 response = add_to_nested_map(
 table_name=table_name, key=key, path="Settings.Notifications.Email",
 value=True
)
 print(f"Nested map updated successfully: {response.get('Attributes',
 {})}")
 except Exception as e:
 print(f"Error updating nested map: {e}")

Perform map operations API Version 2012-08-10 2410

Amazon DynamoDB Developer Guide

 print("\nExample 3: Initializing a map with default values if it doesn't
 exist")
 try:
 default_map = {"Language": "English", "Currency": "USD", "TimeZone":
 "UTC"}

 response = update_map_with_if_not_exists(
 table_name=table_name,
 key={"UserId": "newuser456"},
 map_name="Preferences",
 map_key="Theme",
 value="Light",
 default_map=default_map,
)
 print(f"Map initialized with defaults: {response.get('Attributes', {})}")
 except Exception as e:
 print(f"Error initializing map: {e}")

 print("\nExample 4: Merging multiple values into a map")
 try:
 values_to_merge = {
 "NotificationsEnabled": True,
 "EmailFrequency": "Daily",
 "PushNotifications": False,
 }

 response = merge_into_map(
 table_name=table_name,
 key=key,
 map_name="NotificationSettings",
 values_to_merge=values_to_merge,
)
 print(f"Multiple values merged into map: {response.get('Attributes',
 {})}")
 except Exception as e:
 print(f"Error merging values into map: {e}")

 print("\nBest practices for working with map attributes in DynamoDB:")
 print("1. Use dot notation to access and update nested attributes")
 print("2. Use ExpressionAttributeNames to handle reserved words and special
 characters")
 print("3. Use if_not_exists() to handle cases where attributes might not
 exist")
 print("4. Update specific map keys rather than overwriting the entire map")

Perform map operations API Version 2012-08-10 2411

Amazon DynamoDB Developer Guide

 print("5. Use a single update operation to modify multiple map keys for
 better performance")
 print("6. Consider your data model carefully to minimize the need for deeply
 nested attributes")

if __name__ == "__main__":
 example_usage()

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Perform set operations in DynamoDB with an Amazon SDK

The following code examples show how to perform set operations in DynamoDB.

• Add elements to a set attribute.

• Remove elements from a set attribute.

• Use ADD and DELETE operations with sets.

Java

SDK for Java 2.x

Demonstrate set operations using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ReturnValue;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;

Perform set operations API Version 2012-08-10 2412

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

import java.util.HashSet;
import java.util.Map;
import java.util.Set;

 /**
 * Adds values to a string set attribute.
 *
 * <p>This method demonstrates how to use the ADD operation to add values
 * to a string set attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param setAttributeName The name of the set attribute
 * @param valuesToAdd The values to add to the set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse addToStringSet(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String setAttributeName,
 Set<String> valuesToAdd) {

 // Create a string set value from the values to add
 AttributeValue setValue =
 AttributeValue.builder().ss(valuesToAdd).build();

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("ADD #setAttr :valuesToAdd")
 .expressionAttributeNames(Map.of("#setAttr", setAttributeName))
 .expressionAttributeValues(Map.of(":valuesToAdd", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**

Perform set operations API Version 2012-08-10 2413

Amazon DynamoDB Developer Guide

 * Adds values to a number set attribute.
 *
 * <p>This method demonstrates how to use the ADD operation to add values
 * to a number set attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param setAttributeName The name of the set attribute
 * @param valuesToAdd The values to add to the set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse addToNumberSet(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String setAttributeName,
 Set<Number> valuesToAdd) {

 // Convert numbers to strings for DynamoDB
 Set<String> stringValues = new HashSet<>();
 for (Number value : valuesToAdd) {
 stringValues.add(value.toString());
 }

 // Create a number set value from the values to add
 AttributeValue setValue =
 AttributeValue.builder().ns(stringValues).build();

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("ADD #setAttr :valuesToAdd")
 .expressionAttributeNames(Map.of("#setAttr", setAttributeName))
 .expressionAttributeValues(Map.of(":valuesToAdd", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

Perform set operations API Version 2012-08-10 2414

Amazon DynamoDB Developer Guide

 /**
 * Removes values from a set attribute.
 *
 * <p>This method demonstrates how to use the DELETE operation to remove
 values
 * from a set attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param setAttributeName The name of the set attribute
 * @param valuesToRemove The values to remove from the set
 * @param isNumberSet Whether the set is a number set (true) or string set
 (false)
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse removeFromSet(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String setAttributeName,
 Set<?> valuesToRemove,
 boolean isNumberSet) {

 AttributeValue setValue;

 if (isNumberSet) {
 // Convert numbers to strings for DynamoDB
 Set<String> stringValues = new HashSet<>();
 for (Object value : valuesToRemove) {
 if (value instanceof Number) {
 stringValues.add(value.toString());
 } else {
 throw new IllegalArgumentException("Values must be numbers
 for a number set");
 }
 }

 setValue = AttributeValue.builder().ns(stringValues).build();
 } else {
 // Convert objects to strings for DynamoDB
 Set<String> stringValues = new HashSet<>();
 for (Object value : valuesToRemove) {

Perform set operations API Version 2012-08-10 2415

Amazon DynamoDB Developer Guide

 stringValues.add(value.toString());
 }

 setValue = AttributeValue.builder().ss(stringValues).build();
 }

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("DELETE #setAttr :valuesToRemove")
 .expressionAttributeNames(Map.of("#setAttr", setAttributeName))
 .expressionAttributeValues(Map.of(":valuesToRemove", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Checks if a value exists in a set attribute.
 *
 * <p>This method demonstrates how to use the contains function to check
 * if a value exists in a set attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to check
 * @param setAttributeName The name of the set attribute
 * @param valueToCheck The value to check for
 * @return Map containing the result of the check
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static Map<String, Object> checkIfValueInSet(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String setAttributeName,
 String valueToCheck) {

 Map<String, Object> result = new HashMap<>();

 try {

Perform set operations API Version 2012-08-10 2416

Amazon DynamoDB Developer Guide

 // Define the update parameters with a condition expression
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #tempAttr = :tempVal")
 .conditionExpression("contains(#setAttr, :valueToCheck)")
 .expressionAttributeNames(Map.of("#setAttr", setAttributeName,
 "#tempAttr", "TempAttribute"))
 .expressionAttributeValues(Map.of(
 ":valueToCheck",
 AttributeValue.builder().s(valueToCheck).build(),
 ":tempVal", AttributeValue.builder().s("TempValue").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Attempt the update operation
 dynamoDbClient.updateItem(request);

 // If we get here, the condition was met
 result.put("exists", true);
 result.put("message", "Value '" + valueToCheck + "' exists in the
 set");

 // Clean up the temporary attribute
 UpdateItemRequest cleanupRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("REMOVE #tempAttr")
 .expressionAttributeNames(Map.of("#tempAttr", "TempAttribute"))
 .build();

 dynamoDbClient.updateItem(cleanupRequest);

 } catch (DynamoDbException e) {
 if (e.getMessage().contains("ConditionalCheckFailed")) {
 // The condition was not met
 result.put("exists", false);
 result.put("message", "Value '" + valueToCheck + "' does not
 exist in the set");
 } else {
 // Some other error occurred
 result.put("exists", false);
 result.put("message", "Error checking set: " + e.getMessage());
 result.put("error", e.getClass().getSimpleName());

Perform set operations API Version 2012-08-10 2417

Amazon DynamoDB Developer Guide

 }
 }

 return result;
 }

 /**
 * Creates a set with multiple values in a single operation.
 *
 * <p>This method demonstrates how to create a set with multiple values
 * in a single update operation.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param setAttributeName The name of the set attribute
 * @param setValues The values to include in the set
 * @param isNumberSet Whether to create a number set (true) or string set
 (false)
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse createSetWithValues(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String setAttributeName,
 Set<?> setValues,
 boolean isNumberSet) {

 AttributeValue setValue;

 if (isNumberSet) {
 // Convert numbers to strings for DynamoDB
 Set<String> stringValues = new HashSet<>();
 for (Object value : setValues) {
 if (value instanceof Number) {
 stringValues.add(value.toString());
 } else {
 throw new IllegalArgumentException("Values must be numbers
 for a number set");
 }
 }

Perform set operations API Version 2012-08-10 2418

Amazon DynamoDB Developer Guide

 setValue = AttributeValue.builder().ns(stringValues).build();
 } else {
 // Convert objects to strings for DynamoDB
 Set<String> stringValues = new HashSet<>();
 for (Object value : setValues) {
 stringValues.add(value.toString());
 }

 setValue = AttributeValue.builder().ss(stringValues).build();
 }

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #setAttr = :setValue")
 .expressionAttributeNames(Map.of("#setAttr", setAttributeName))
 .expressionAttributeValues(Map.of(":setValue", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Gets the current value of a set attribute.
 *
 * <p>Helper method to retrieve the current value of a set attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to get
 * @param setAttributeName The name of the set attribute
 * @return The set attribute value or null if not found
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static AttributeValue getSetAttribute(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, String setAttributeName) {

 // Define the get parameters
 GetItemRequest request = GetItemRequest.builder()
 .tableName(tableName)

Perform set operations API Version 2012-08-10 2419

Amazon DynamoDB Developer Guide

 .key(key)
 .projectionExpression(setAttributeName)
 .build();

 try {
 // Perform the get operation
 GetItemResponse response = dynamoDbClient.getItem(request);

 // Return the set attribute if it exists, otherwise null
 if (response.item() != null &&
 response.item().containsKey(setAttributeName)) {
 return response.item().get(setAttributeName);
 }

 return null;
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to get set attribute: " + e.getMessage())
 .cause(e)
 .build();
 }
 }

Example usage of set operations with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating set operations in DynamoDB");

 try {
 // Example 1: Create a string set with multiple values
 System.out.println("\nExample 1: Creating a string set with multiple
 values");
 Set<String> tags = new HashSet<>();
 tags.add("Electronics");
 tags.add("Gadget");
 tags.add("Smartphone");

Perform set operations API Version 2012-08-10 2420

Amazon DynamoDB Developer Guide

 UpdateItemResponse createResponse = createSetWithValues(
 dynamoDbClient, tableName, key, "Tags", tags, false // Not a
 number set
);

 System.out.println("Created set attribute: " +
 createResponse.attributes());

 // Example 2: Add values to a string set
 System.out.println("\nExample 2: Adding values to a string set");
 Set<String> additionalTags = new HashSet<>();
 additionalTags.add("Mobile");
 additionalTags.add("Wireless");

 UpdateItemResponse addResponse = addToStringSet(dynamoDbClient,
 tableName, key, "Tags", additionalTags);

 System.out.println("Updated set attribute: " +
 addResponse.attributes());

 // Example 3: Create a number set with multiple values
 System.out.println("\nExample 3: Creating a number set with multiple
 values");
 Set<Number> ratings = new HashSet<>();
 ratings.add(4);
 ratings.add(5);
 ratings.add(4.5);

 UpdateItemResponse createNumberSetResponse = createSetWithValues(
 dynamoDbClient, tableName, key, "Ratings", ratings, true // Is a
 number set
);

 System.out.println("Created number set attribute: " +
 createNumberSetResponse.attributes());

 // Example 4: Add values to a number set
 System.out.println("\nExample 4: Adding values to a number set");
 Set<Number> additionalRatings = new HashSet<>();
 additionalRatings.add(3.5);
 additionalRatings.add(4.2);

 UpdateItemResponse addNumberResponse =

Perform set operations API Version 2012-08-10 2421

Amazon DynamoDB Developer Guide

 addToNumberSet(dynamoDbClient, tableName, key, "Ratings",
 additionalRatings);

 System.out.println("Updated number set attribute: " +
 addNumberResponse.attributes());

 // Example 5: Remove values from a set
 System.out.println("\nExample 5: Removing values from a set");
 Set<String> tagsToRemove = new HashSet<>();
 tagsToRemove.add("Gadget");

 UpdateItemResponse removeResponse = removeFromSet(
 dynamoDbClient, tableName, key, "Tags", tagsToRemove, false //
 Not a number set
);

 System.out.println("Updated set after removal: " +
 removeResponse.attributes());

 // Example 6: Check if a value exists in a set
 System.out.println("\nExample 6: Checking if a value exists in a
 set");
 Map<String, Object> checkResult = checkIfValueInSet(dynamoDbClient,
 tableName, key, "Tags", "Electronics");

 System.out.println("Check result: " + checkResult.get("message"));

 // Example 7: Get the current value of a set attribute
 System.out.println("\nExample 7: Getting the current value of a set
 attribute");
 AttributeValue currentStringSet = getSetAttribute(dynamoDbClient,
 tableName, key, "Tags");

 if (currentStringSet != null && currentStringSet.ss() != null) {
 System.out.println("Current string set values: " +
 currentStringSet.ss());
 } else {
 System.out.println("String set attribute not found");
 }

 AttributeValue currentNumberSet = getSetAttribute(dynamoDbClient,
 tableName, key, "Ratings");

 if (currentNumberSet != null && currentNumberSet.ns() != null) {

Perform set operations API Version 2012-08-10 2422

Amazon DynamoDB Developer Guide

 System.out.println("Current number set values: " +
 currentNumberSet.ns());
 } else {
 System.out.println("Number set attribute not found");
 }

 // Explain set operations
 System.out.println("\nKey points about DynamoDB set operations:");
 System.out.println(
 "1. DynamoDB supports three set types: string sets (SS), number
 sets (NS), and binary sets (BS)");
 System.out.println("2. Sets can only contain elements of the same
 type");
 System.out.println("3. Use ADD to add elements to a set");
 System.out.println("4. Use DELETE to remove elements from a set");
 System.out.println("5. Sets automatically remove duplicate values");
 System.out.println("6. Sets are unordered collections");
 System.out.println("7. Use the contains function to check if a value
 exists in a set");
 System.out.println("8. You can create a set with multiple values in a
 single operation");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Demonstrate set operations using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand
} = require("@aws-sdk/lib-dynamodb");

Perform set operations API Version 2012-08-10 2423

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

/**
 * Add elements to a set attribute.
 *
 * This function demonstrates using the ADD operation to add elements to a set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The values to add to the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function addToSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {
 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using ADD
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `ADD ${setName} :values`,
 ExpressionAttributeValues: {

Perform set operations API Version 2012-08-10 2424

Amazon DynamoDB Developer Guide

 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Remove elements from a set attribute.
 *
 * This function demonstrates using the DELETE operation to remove elements from
 a set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The values to remove from the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function removeFromSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {

Perform set operations API Version 2012-08-10 2425

Amazon DynamoDB Developer Guide

 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using DELETE
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `DELETE ${setName} :values`,
 ExpressionAttributeValues: {
 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Create a new set attribute with initial values.
 *
 * This function demonstrates using the SET operation to create a new set
 attribute.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The initial values for the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function createSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {

Perform set operations API Version 2012-08-10 2426

Amazon DynamoDB Developer Guide

 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create the appropriate set type
 let setValues;
 if (setType === 'string') {
 setValues = new Set(values.map(String));
 } else if (setType === 'number') {
 setValues = new Set(values.map(Number));
 } else if (setType === 'binary') {
 setValues = new Set(values);
 } else {
 throw new Error(`Unsupported set type: ${setType}`);
 }

 // Define the update parameters using SET
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${setName} = :values`,
 ExpressionAttributeValues: {
 ":values": setValues
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Replace an entire set attribute with a new set of values.
 *
 * This function demonstrates using the SET operation to replace an entire set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @param {Array} values - The new values for the set
 * @param {string} setType - The type of set ('string', 'number', or 'binary')

Perform set operations API Version 2012-08-10 2427

Amazon DynamoDB Developer Guide

 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function replaceSet(
 config,
 tableName,
 key,
 setName,
 values,
 setType = 'string'
) {
 // This is the same as createSet, but included for clarity of intent
 return await createSet(config, tableName, key, setName, values, setType);
}

/**
 * Remove the last element from a set and handle the empty set case.
 *
 * This function demonstrates what happens when you delete the last element of a
 set.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} setName - The name of the set attribute
 * @returns {Promise<Object>} - The result of the operation
 */
async function removeLastElementFromSet(
 config,
 tableName,
 key,
 setName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // First, get the current item to check the set
 const currentItem = await getItem(config, tableName, key);

 // Check if the set exists and has elements
 if (!currentItem || !currentItem[setName] || currentItem[setName].size === 0) {
 return {
 success: false,
 message: "Set doesn't exist or is already empty",

Perform set operations API Version 2012-08-10 2428

Amazon DynamoDB Developer Guide

 item: currentItem
 };
 }

 // Get the set values
 const setValues = Array.from(currentItem[setName]);

 // If there's only one element left, remove the attribute entirely
 if (setValues.length === 1) {
 // Define the update parameters to remove the attribute
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `REMOVE ${setName}`,
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Last element removed, attribute has been deleted",
 removedValue: setValues[0]
 };
 } else {
 // Otherwise, remove just the last element
 // Create a set with just the last element
 const lastElement = setValues[setValues.length - 1];
 const setType = typeof lastElement === 'number' ? 'number' : 'string';

 // Remove the last element
 const response = await removeFromSet(
 config,
 tableName,
 key,
 setName,
 [lastElement],
 setType
);

 return {
 success: true,
 message: "Last element removed, set still contains elements",

Perform set operations API Version 2012-08-10 2429

Amazon DynamoDB Developer Guide

 removedValue: lastElement,
 remainingSet: response.Attributes[setName]
 };
 }
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

Example usage of set operations with Amazon SDK for JavaScript.

/**
 * Example of how to work with sets in DynamoDB.

Perform set operations API Version 2012-08-10 2430

Amazon DynamoDB Developer Guide

 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Users";
 const key = { UserId: "U12345" };

 console.log("Demonstrating set operations in DynamoDB");

 try {
 // Example 1: Create a string set
 console.log("\nExample 1: Creating a string set");
 const response1 = await createSet(
 config,
 tableName,
 key,
 "Interests",
 ["Reading", "Hiking", "Cooking"],
 "string"
);

 console.log("Created set:", response1.Attributes);

 // Example 2: Add elements to a set
 console.log("\nExample 2: Adding elements to a set");
 const response2 = await addToSet(
 config,
 tableName,
 key,
 "Interests",
 ["Photography", "Travel"],
 "string"
);

 console.log("Updated set after adding elements:", response2.Attributes);

 // Example 3: Remove elements from a set
 console.log("\nExample 3: Removing elements from a set");
 const response3 = await removeFromSet(
 config,
 tableName,
 key,
 "Interests",
 ["Cooking"],

Perform set operations API Version 2012-08-10 2431

Amazon DynamoDB Developer Guide

 "string"
);

 console.log("Updated set after removing elements:", response3.Attributes);

 // Example 4: Create a number set
 console.log("\nExample 4: Creating a number set");
 const response4 = await createSet(
 config,
 tableName,
 key,
 "FavoriteNumbers",
 [7, 42, 99],
 "number"
);

 console.log("Created number set:", response4.Attributes);

 // Example 5: Replace an entire set
 console.log("\nExample 5: Replacing an entire set");
 const response5 = await replaceSet(
 config,
 tableName,
 key,
 "Interests",
 ["Gaming", "Movies", "Music"],
 "string"
);

 console.log("Replaced set:", response5.Attributes);

 // Example 6: Remove the last element from a set
 console.log("\nExample 6: Removing the last element from a set");

 // First, create a set with just one element
 await createSet(
 config,
 tableName,
 { UserId: "U67890" },
 "Tags",
 ["LastTag"],
 "string"
);

Perform set operations API Version 2012-08-10 2432

Amazon DynamoDB Developer Guide

 // Then, remove the last element
 const response6 = await removeLastElementFromSet(
 config,
 tableName,
 { UserId: "U67890" },
 "Tags"
);

 console.log(response6.message);
 console.log("Removed value:", response6.removedValue);

 // Get the final state of the items
 console.log("\nFinal state of the items:");
 const item1 = await getItem(config, tableName, key);
 console.log("User U12345:", JSON.stringify(item1, null, 2));

 const item2 = await getItem(config, tableName, { UserId: "U67890" });
 console.log("User U67890:", JSON.stringify(item2, null, 2));

 // Explain set operations
 console.log("\nKey points about set operations in DynamoDB:");
 console.log("1. Use ADD to add elements to a set (duplicates are
 automatically removed)");
 console.log("2. Use DELETE to remove elements from a set");
 console.log("3. Use SET to create a new set or replace an existing one");
 console.log("4. DynamoDB supports three types of sets: string sets, number
 sets, and binary sets");
 console.log("5. When you delete the last element from a set, the attribute
 remains as an empty set");
 console.log("6. To remove an empty set, use the REMOVE operation");
 console.log("7. Sets automatically maintain unique values (no duplicates)");
 console.log("8. You cannot mix data types within a set");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Perform set operations API Version 2012-08-10 2433

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Demonstrate set operations using Amazon SDK for Python (Boto3).

import boto3
from typing import Any, Dict, List

def create_set_attribute(
 table_name: str,
 key: Dict[str, Any],
 set_name: str,
 set_values: List[Any],
 set_type: str = "string",
) -> Dict[str, Any]:
 """
 Create a new set attribute or add elements to an existing set.

 This function demonstrates how to use the ADD operation to create a new set
 or add elements to an existing set.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 set_name (str): The name of the set attribute.
 set_values (List[Any]): The values to add to the set.
 set_type (str, optional): The type of set to create: "string", "number",
 or "binary".
 Defaults to "string".

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Convert the list to a DynamoDB set based on the specified type
 if set_type == "string":
 dynamo_set = set(str(value) for value in set_values)
 elif set_type == "number":

Perform set operations API Version 2012-08-10 2434

Amazon DynamoDB Developer Guide

 # We need to use actual float values for the DynamoDB API
 # but mypy expects strings in sets, so we need to use type: ignore
 dynamo_set = set(float(value) for value in set_values) # type: ignore
 else: # binary set is not directly supported in high-level API, handled
 differently
 raise ValueError("Binary sets are not supported in this example")

 # Use the ADD operation to create or update the set
 response = table.update_item(
 Key=key,
 UpdateExpression="ADD #set_attr :set_values",
 ExpressionAttributeNames={"#set_attr": set_name},
 ExpressionAttributeValues={":set_values": dynamo_set},
 ReturnValues="UPDATED_NEW",
)

 return response

def add_to_set(
 table_name: str, key: Dict[str, Any], set_name: str, values_to_add: List[Any]
) -> Dict[str, Any]:
 """
 Add elements to an existing set attribute.

 This function demonstrates how to use the ADD operation to add elements to an
 existing set.
 If the set doesn't exist, it will be created.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 set_name (str): The name of the set attribute.
 values_to_add (List[Any]): The values to add to the set.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Convert the list to a set (assuming string set for simplicity)

Perform set operations API Version 2012-08-10 2435

Amazon DynamoDB Developer Guide

 dynamo_set = set(str(value) for value in values_to_add)

 # Use the ADD operation to add values to the set
 response = table.update_item(
 Key=key,
 UpdateExpression="ADD #set_attr :values_to_add",
 ExpressionAttributeNames={"#set_attr": set_name},
 ExpressionAttributeValues={":values_to_add": dynamo_set},
 ReturnValues="UPDATED_NEW",
)

 return response

def remove_from_set(
 table_name: str, key: Dict[str, Any], set_name: str, values_to_remove:
 List[Any]
) -> Dict[str, Any]:
 """
 Remove elements from a set attribute.

 This function demonstrates how to use the DELETE operation to remove elements
 from a set.
 If the last element is removed, the attribute will be deleted entirely.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 set_name (str): The name of the set attribute.
 values_to_remove (List[Any]): The values to remove from the set.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Convert the list to a set (assuming string set for simplicity)
 dynamo_set = set(str(value) for value in values_to_remove)

 # Use the DELETE operation to remove values from the set
 response = table.update_item(

Perform set operations API Version 2012-08-10 2436

Amazon DynamoDB Developer Guide

 Key=key,
 UpdateExpression="DELETE #set_attr :values_to_remove",
 ExpressionAttributeNames={"#set_attr": set_name},
 ExpressionAttributeValues={":values_to_remove": dynamo_set},
 ReturnValues="UPDATED_NEW",
)

 return response

def check_if_set_exists(table_name: str, key: Dict[str, Any], set_name: str) ->
 bool:
 """
 Check if a set attribute exists in an item.

 This function demonstrates how to check if a set attribute exists after
 potentially removing all elements from it.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to check.
 set_name (str): The name of the set attribute.

 Returns:
 bool: True if the set attribute exists, False otherwise.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Get the item
 response = table.get_item(
 Key=key, ProjectionExpression="#set_attr",
 ExpressionAttributeNames={"#set_attr": set_name}
)

 # Check if the item exists and has the set attribute
 return "Item" in response and set_name in response["Item"]

def demonstrate_last_element_removal(
 table_name: str, key: Dict[str, Any], set_name: str
) -> Dict[str, Any]:
 """

Perform set operations API Version 2012-08-10 2437

Amazon DynamoDB Developer Guide

 Demonstrate what happens when you remove the last element from a set.

 This function creates a set with a single element, then removes that element,
 showing that the attribute is completely removed when the last element is
 deleted.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 set_name (str): The name of the set attribute.

 Returns:
 Dict[str, Any]: A dictionary containing the results of the demonstration.
 """
 # Step 1: Create a set with a single element
 create_response = create_set_attribute(
 table_name=table_name,
 key=key,
 set_name=set_name,
 set_values=["last_element"],
 set_type="string",
)

 # Step 2: Check that the set exists
 exists_before = check_if_set_exists(table_name, key, set_name)

 # Step 3: Remove the last element
 delete_response = remove_from_set(
 table_name=table_name, key=key, set_name=set_name,
 values_to_remove=["last_element"]
)

 # Step 4: Check if the set still exists
 exists_after = check_if_set_exists(table_name, key, set_name)

 # Return the results
 return {
 "create_response": create_response,
 "exists_before": exists_before,
 "delete_response": delete_response,
 "exists_after": exists_after,
 }

Perform set operations API Version 2012-08-10 2438

Amazon DynamoDB Developer Guide

def work_with_number_set(
 table_name: str,
 key: Dict[str, Any],
 set_name: str,
 initial_values: List[float],
 values_to_add: List[float],
 values_to_remove: List[float],
) -> Dict[str, Any]:
 """
 Demonstrate working with a number set in DynamoDB.

 This function shows how to create and manipulate a set of numbers.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 set_name (str): The name of the set attribute.
 initial_values (List[float]): The initial values for the set.
 values_to_add (List[float]): Values to add to the set.
 values_to_remove (List[float]): Values to remove from the set.

 Returns:
 Dict[str, Any]: A dictionary containing the responses from each
 operation.
 """
 # Step 1: Create the number set
 create_response = create_set_attribute(
 table_name=table_name,
 key=key,
 set_name=set_name,
 set_values=initial_values,
 set_type="number",
)

 # Step 2: Add more numbers to the set
 add_response = add_to_set(
 table_name=table_name, key=key, set_name=set_name,
 values_to_add=values_to_add
)

 # Step 3: Remove some numbers from the set
 remove_response = remove_from_set(
 table_name=table_name, key=key, set_name=set_name,
 values_to_remove=values_to_remove

Perform set operations API Version 2012-08-10 2439

Amazon DynamoDB Developer Guide

)

 # Step 4: Get the final state
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 get_response = table.get_item(
 Key=key,
 ProjectionExpression=f"#{set_name}",
 ExpressionAttributeNames={f"#{set_name}": set_name},
)

 # Return all responses
 return {
 "create_response": create_response,
 "add_response": add_response,
 "remove_response": remove_response,
 "final_state": get_response.get("Item", {}),
 }

Example usage of set operations with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the set operations functions."""
 # Example parameters
 table_name = "UserPreferences"
 key = {"UserId": "user123"}

 print("Example 1: Creating a string set attribute")
 try:
 response = create_set_attribute(
 table_name=table_name,
 key=key,
 set_name="FavoriteTags",
 set_values=["AWS", "DynamoDB", "NoSQL"],
 set_type="string",
)
 print(f"Set attribute created successfully: {response.get('Attributes',
 {})}")
 except Exception as e:

Perform set operations API Version 2012-08-10 2440

Amazon DynamoDB Developer Guide

 print(f"Error creating set attribute: {e}")

 print("\nExample 2: Adding elements to an existing set")
 try:
 response = add_to_set(
 table_name=table_name,
 key=key,
 set_name="FavoriteTags",
 values_to_add=["Database", "Serverless"],
)
 print(f"Elements added to set successfully: {response.get('Attributes',
 {})}")
 except Exception as e:
 print(f"Error adding to set: {e}")

 print("\nExample 3: Removing elements from a set")
 try:
 response = remove_from_set(
 table_name=table_name, key=key, set_name="FavoriteTags",
 values_to_remove=["NoSQL"]
)
 print(f"Elements removed from set successfully:
 {response.get('Attributes', {})}")
 except Exception as e:
 print(f"Error removing from set: {e}")

 print("\nExample 4: Demonstrating what happens when you remove the last
 element from a set")
 try:
 results = demonstrate_last_element_removal(
 table_name=table_name, key={"UserId": "tempUser"},
 set_name="SingleElementSet"
)

 print(f"Set exists before removal: {results['exists_before']}")
 print(f"Set exists after removal: {results['exists_after']}")

 if not results["exists_after"]:
 print("The set attribute was completely removed when the last element
 was deleted.")
 else:
 print("The set attribute still exists after removing the last
 element.")
 except Exception as e:

Perform set operations API Version 2012-08-10 2441

Amazon DynamoDB Developer Guide

 print(f"Error in last element removal demonstration: {e}")

 print("\nExample 5: Working with a number set")
 try:
 results = work_with_number_set(
 table_name=table_name,
 key={"UserId": "user456"},
 set_name="LuckyNumbers",
 initial_values=[7, 13, 42],
 values_to_add=[99, 100],
 values_to_remove=[13],
)

 print(f"Initial number set: {results['create_response'].get('Attributes',
 {})}")
 print(f"After adding numbers: {results['add_response'].get('Attributes',
 {})}")
 print(f"After removing numbers:
 {results['remove_response'].get('Attributes', {})}")
 print(f"Final state: {results['final_state']}")
 except Exception as e:
 print(f"Error working with number set: {e}")

 print("\nKey Points About DynamoDB Sets:")
 print("1. Sets can only contain elements of the same type (string, number, or
 binary)")
 print("2. Sets automatically eliminate duplicate values")
 print("3. The ADD operation creates a set if it doesn't exist")
 print("4. The DELETE operation removes specified elements from a set")
 print("5. When the last element is removed from a set, the entire attribute
 is deleted")
 print("6. Empty sets are not allowed in DynamoDB")
 print("7. Sets are unordered collections")
 print("8. The ADD operation is atomic for sets")

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

Perform set operations API Version 2012-08-10 2442

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table by using batches of PartiQL statements and
an Amazon SDK

The following code examples show how to:

• Get a batch of items by running multiple SELECT statements.

• Add a batch of items by running multiple INSERT statements.

• Update a batch of items by running multiple UPDATE statements.

• Delete a batch of items by running multiple DELETE statements.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Before you run this example, download 'movies.json' from
// https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
GettingStarted.Js.02.html,
// and put it in the same folder as the example.

// Separator for the console display.
var SepBar = new string('-', 80);
const string tableName = "movie_table";
const string movieFileName = @"..\..\..\..\..\..\..\..\resources\sample_files
\movies.json";

DisplayInstructions();

// Create the table and wait for it to be active.

Query a table by using batches of PartiQL statements API Version 2012-08-10 2443

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

Console.WriteLine($"Creating the movie table: {tableName}");

var success = await DynamoDBMethods.CreateMovieTableAsync(tableName);
if (success)
{
 Console.WriteLine($"Successfully created table: {tableName}.");
}

WaitForEnter();

// Add movie information to the table from moviedata.json. See the
// instructions at the top of this file to download the JSON file.
Console.WriteLine($"Inserting movies into the new table. Please wait...");
success = await PartiQLBatchMethods.InsertMovies(tableName, movieFileName);
if (success)
{
 Console.WriteLine("Movies successfully added to the table.");
}
else
{
 Console.WriteLine("Movies could not be added to the table.");
}

WaitForEnter();

// Update multiple movies by using the BatchExecute statement.
var title1 = "Star Wars";
var year1 = 1977;
var title2 = "Wizard of Oz";
var year2 = 1939;

Console.WriteLine($"Updating two movies with producer information: {title1} and
 {title2}.");
success = await PartiQLBatchMethods.GetBatch(tableName, title1, title2, year1,
 year2);
if (success)
{
 Console.WriteLine($"Successfully retrieved {title1} and {title2}.");
}
else
{
 Console.WriteLine("Select statement failed.");
}

Query a table by using batches of PartiQL statements API Version 2012-08-10 2444

Amazon DynamoDB Developer Guide

WaitForEnter();

// Update multiple movies by using the BatchExecute statement.
var producer1 = "LucasFilm";
var producer2 = "MGM";

Console.WriteLine($"Updating two movies with producer information: {title1} and
 {title2}.");
success = await PartiQLBatchMethods.UpdateBatch(tableName, producer1, title1,
 year1, producer2, title2, year2);
if (success)
{
 Console.WriteLine($"Successfully updated {title1} and {title2}.");
}
else
{
 Console.WriteLine("Update failed.");
}

WaitForEnter();

// Delete multiple movies by using the BatchExecute statement.
Console.WriteLine($"Now we will delete {title1} and {title2} from the table.");
success = await PartiQLBatchMethods.DeleteBatch(tableName, title1, year1, title2,
 year2);

if (success)
{
 Console.WriteLine($"Deleted {title1} and {title2}");
}
else
{
 Console.WriteLine($"could not delete {title1} or {title2}");
}

WaitForEnter();

// DNow that the PartiQL Batch scenario is complete, delete the movie table.
success = await DynamoDBMethods.DeleteTableAsync(tableName);

if (success)
{
 Console.WriteLine($"Successfully deleted {tableName}");
}

Query a table by using batches of PartiQL statements API Version 2012-08-10 2445

Amazon DynamoDB Developer Guide

else
{
 Console.WriteLine($"Could not delete {tableName}");
}

/// <summary>
/// Displays the description of the application on the console.
/// </summary>
void DisplayInstructions()
{
 Console.Clear();
 Console.WriteLine();
 Console.Write(new string(' ', 24));
 Console.WriteLine("DynamoDB PartiQL Basics Example");
 Console.WriteLine(SepBar);
 Console.WriteLine("This demo application shows the basics of using Amazon
 DynamoDB with the AWS SDK for");
 Console.WriteLine(".NET version 3.7 and .NET 6.");
 Console.WriteLine(SepBar);
 Console.WriteLine("Creates a table by using the CreateTable method.");
 Console.WriteLine("Gets multiple movies by using a PartiQL SELECT
 statement.");
 Console.WriteLine("Updates multiple movies by using the ExecuteBatch
 method.");
 Console.WriteLine("Deletes multiple movies by using a PartiQL DELETE
 statement.");
 Console.WriteLine("Cleans up the resources created for the demo by deleting
 the table.");
 Console.WriteLine(SepBar);

 WaitForEnter();
}

/// <summary>
/// Simple method to wait for the <Enter> key to be pressed.
/// </summary>
void WaitForEnter()
{
 Console.WriteLine("\nPress <Enter> to continue.");
 Console.Write(SepBar);
 _ = Console.ReadLine();
}

Query a table by using batches of PartiQL statements API Version 2012-08-10 2446

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Gets movies from the movie table by
 /// using an Amazon DynamoDB PartiQL SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year1">The year of the first movie.</param>
 /// <param name="year2">The year of the second movie.</param>
 /// <returns>True if successful.</returns>
 public static async Task<bool> GetBatch(
 string tableName,
 string title1,
 string title2,
 int year1,
 int year2)
 {
 var getBatch = $"SELECT * FROM {tableName} WHERE title = ? AND year
 = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = getBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest

Query a table by using batches of PartiQL statements API Version 2012-08-10 2447

Amazon DynamoDB Developer Guide

 {
 Statements = statements,
 });

 if (response.Responses.Count > 0)
 {
 response.Responses.ForEach(r =>
 {
 if (r.Item.Any())
 {

 Console.WriteLine($"{r.Item["title"]}\t{r.Item["year"]}");
 }
 });
 return true;
 }
 else
 {
 Console.WriteLine($"Couldn't find either {title1} or {title2}.");
 return false;
 }

 }

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>
 /// <param name="tableName">The name of the table into which the movie
 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

 var success = false;

 if (movies is not null)
 {

Query a table by using batches of PartiQL statements API Version 2012-08-10 2448

Amazon DynamoDB Developer Guide

 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE
 {{'title': ?, 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset +=
 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },
 new AttributeValue { N =
 movies[i].Year.ToString() },
 },
 });
 }

 var response = await
 Client.BatchExecuteStatementAsync(new BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 // Wait between batches for movies to be successfully
 added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();
 }
 }
 catch (AmazonDynamoDBException ex)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2449

Amazon DynamoDB Developer Guide

 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);
 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }
 else
 {
 return null!;
 }
 }

 /// <summary>
 /// Updates information for multiple movies.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// movies to be updated.</param>
 /// <param name="producer1">The producer name for the first movie
 /// to update.</param>
 /// <param name="title1">The title of the first movie.</param>

Query a table by using batches of PartiQL statements API Version 2012-08-10 2450

Amazon DynamoDB Developer Guide

 /// <param name="year1">The year that the first movie was released.</
param>
 /// <param name="producer2">The producer name for the second
 /// movie to update.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year that the second movie was released.</
param>
 /// <returns>A Boolean value that indicates the success of the update.</
returns>
 public static async Task<bool> UpdateBatch(
 string tableName,
 string producer1,
 string title1,
 int year1,
 string producer2,
 string title2,
 int year2)
 {

 string updateBatch = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer1 },
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer2 },
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2451

Amazon DynamoDB Developer Guide

 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Deletes multiple movies using a PartiQL BatchExecuteAsync
 /// statement.
 /// </summary>
 /// <param name="tableName">The name of the table containing the
 /// moves that will be deleted.</param>
 /// <param name="title1">The title of the first movie.</param>
 /// <param name="year1">The year the first movie was released.</param>
 /// <param name="title2">The title of the second movie.</param>
 /// <param name="year2">The year the second movie was released.</param>
 /// <returns>A Boolean value indicating the success of the operation.</
returns>
 public static async Task<bool> DeleteBatch(
 string tableName,
 string title1,
 int year1,
 string title2,
 int year2)
 {

 string updateBatch = $"DELETE FROM {tableName} WHERE title = ? AND
 year = ?";
 var statements = new List<BatchStatementRequest>
 {
 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title1 },
 new AttributeValue { N = year1.ToString() },
 },
 },

Query a table by using batches of PartiQL statements API Version 2012-08-10 2452

Amazon DynamoDB Developer Guide

 new BatchStatementRequest
 {
 Statement = updateBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = title2 },
 new AttributeValue { N = year2.ToString() },
 },
 }
 };

 var response = await Client.BatchExecuteStatementAsync(new
 BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

• For API details, see BatchExecuteStatement in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // 1. Create a table. (CreateTable)
 if (AwsDoc::DynamoDB::createMoviesDynamoDBTable(clientConfig)) {

 AwsDoc::DynamoDB::partiqlBatchExecuteScenario(clientConfig);

 // 7. Delete the table. (DeleteTable)
 AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(clientConfig);

Query a table by using batches of PartiQL statements API Version 2012-08-10 2453

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 }

//! Scenario to modify and query a DynamoDB table using PartiQL batch statements.
/*!
 \sa partiqlBatchExecuteScenario()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool AwsDoc::DynamoDB::partiqlBatchExecuteScenario(
 const Aws::Client::ClientConfiguration &clientConfiguration) {

 // 2. Add multiple movies using "Insert" statements. (BatchExecuteStatement)
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 std::vector<Aws::String> titles;
 std::vector<float> ratings;
 std::vector<int> years;
 std::vector<Aws::String> plots;
 Aws::String doAgain = "n";
 do {
 Aws::String aTitle = askQuestion(
 "Enter the title of a movie you want to add to the table: ");
 titles.push_back(aTitle);
 int aYear = askQuestionForInt("What year was it released? ");
 years.push_back(aYear);
 float aRating = askQuestionForFloatRange(
 "On a scale of 1 - 10, how do you rate it? ",
 1, 10);
 ratings.push_back(aRating);
 Aws::String aPlot = askQuestion("Summarize the plot for me: ");
 plots.push_back(aPlot);

 doAgain = askQuestion(Aws::String("Would you like to add more movies? (y/
n) "));
 } while (doAgain == "y");

 std::cout << "Adding " << titles.size()
 << (titles.size() == 1 ? " movie " : " movies ")
 << "to the table using a batch \"INSERT\" statement." << std::endl;

 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());

Query a table by using batches of PartiQL statements API Version 2012-08-10 2454

Amazon DynamoDB Developer Guide

 std::stringstream sqlStream;
 sqlStream << "INSERT INTO \"" << MOVIE_TABLE_NAME << "\" VALUE {'"
 << TITLE_KEY << "': ?, '" << YEAR_KEY << "': ?, '"
 << INFO_KEY << "': ?}";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));

 // Create attribute for the info map.
 Aws::DynamoDB::Model::AttributeValue infoMapAttribute;

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> ratingAttribute
 = Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 ratingAttribute->SetN(ratings[i]);
 infoMapAttribute.AddMEntry(RATING_KEY, ratingAttribute);

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> plotAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 plotAttribute->SetS(plots[i]);
 infoMapAttribute.AddMEntry(PLOT_KEY, plotAttribute);
 attributes.push_back(infoMapAttribute);
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to add the movies: " <<
 outcome.GetError().GetMessage()

Query a table by using batches of PartiQL statements API Version 2012-08-10 2455

Amazon DynamoDB Developer Guide

 << std::endl;
 return false;
 }
 }

 std::cout << "Retrieving the movie data with a batch \"SELECT\" statement."
 << std::endl;

 // 3. Get the data for multiple movies using "Select" statements.
 (BatchExecuteStatement)
 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (outcome.IsSuccess()) {
 const Aws::DynamoDB::Model::BatchExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::DynamoDB::Model::BatchStatementResponse>
 &responses = result.GetResponses();

Query a table by using batches of PartiQL statements API Version 2012-08-10 2456

Amazon DynamoDB Developer Guide

 for (const Aws::DynamoDB::Model::BatchStatementResponse &response:
 responses) {
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 &item = response.GetItem();

 printMovieInfo(item);
 }
 }
 else {
 std::cerr << "Failed to retrieve the movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 // 4. Update the data for multiple movies using "Update" statements.
 (BatchExecuteStatement)

 for (size_t i = 0; i < titles.size(); ++i) {
 ratings[i] = askQuestionForFloatRange(
 Aws::String("\nLet's update your the movie, \"") + titles[i] +
 ".\nYou rated it " + std::to_string(ratings[i])
 + ", what new rating would you give it? ", 1, 10);
 }

 std::cout << "Updating the movie with a batch \"UPDATE\" statement." <<
 std::endl;

 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());

 std::stringstream sqlStream;
 sqlStream << "UPDATE \"" << MOVIE_TABLE_NAME << "\" SET "
 << INFO_KEY << "." << RATING_KEY << "=? WHERE "
 << TITLE_KEY << "=? AND " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;

Query a table by using batches of PartiQL statements API Version 2012-08-10 2457

Amazon DynamoDB Developer Guide

 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetN(ratings[i]));
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);
 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to update movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 std::cout << "Retrieving the updated movie data with a batch \"SELECT\"
 statement."
 << std::endl;

 // 5. Get the updated data for multiple movies using "Select" statements.
 (BatchExecuteStatement)
 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));

Query a table by using batches of PartiQL statements API Version 2012-08-10 2458

Amazon DynamoDB Developer Guide

 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);
 if (outcome.IsSuccess()) {
 const Aws::DynamoDB::Model::BatchExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::DynamoDB::Model::BatchStatementResponse>
 &responses = result.GetResponses();

 for (const Aws::DynamoDB::Model::BatchStatementResponse &response:
 responses) {
 const Aws::Map<Aws::String, Aws::DynamoDB::Model::AttributeValue>
 &item = response.GetItem();

 printMovieInfo(item);
 }
 }
 else {
 std::cerr << "Failed to retrieve the movies information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 std::cout << "Deleting the movie data with a batch \"DELETE\" statement."
 << std::endl;

 // 6. Delete multiple movies using "Delete" statements.
 (BatchExecuteStatement)
 {
 Aws::Vector<Aws::DynamoDB::Model::BatchStatementRequest> statements(
 titles.size());
 std::stringstream sqlStream;
 sqlStream << "DELETE FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

Query a table by using batches of PartiQL statements API Version 2012-08-10 2459

Amazon DynamoDB Developer Guide

 std::string sql(sqlStream.str());

 for (size_t i = 0; i < statements.size(); ++i) {
 statements[i].SetStatement(sql);
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(
 Aws::DynamoDB::Model::AttributeValue().SetS(titles[i]));

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(years[i]));
 statements[i].SetParameters(attributes);
 }

 Aws::DynamoDB::Model::BatchExecuteStatementRequest request;

 request.SetStatements(statements);

 Aws::DynamoDB::Model::BatchExecuteStatementOutcome outcome =
 dynamoClient.BatchExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to delete the movies: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 return true;
}

//! Create a DynamoDB table to be used in sample code scenarios.
/*!
 \sa createMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::createMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 bool movieTableAlreadyExisted = false;

 {
 Aws::DynamoDB::Model::CreateTableRequest request;

Query a table by using batches of PartiQL statements API Version 2012-08-10 2460

Amazon DynamoDB Developer Guide

 Aws::DynamoDB::Model::AttributeDefinition yearAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(YEAR_KEY);
 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::N);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::AttributeDefinition titleAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(TITLE_KEY);
 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::S);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::KeySchemaElement yearKeySchema;
 yearKeySchema.WithAttributeName(YEAR_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::HASH);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::KeySchemaElement titleKeySchema;
 yearKeySchema.WithAttributeName(TITLE_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::RANGE);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::ProvisionedThroughput throughput;
 throughput.WithReadCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS).WithWriteCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS);
 request.SetProvisionedThroughput(throughput);
 request.SetTableName(MOVIE_TABLE_NAME);

 std::cout << "Creating table '" << MOVIE_TABLE_NAME << "'..." <<
 std::endl;
 const Aws::DynamoDB::Model::CreateTableOutcome &result =
 dynamoClient.CreateTable(
 request);
 if (!result.IsSuccess()) {
 if (result.GetError().GetErrorType() ==
 Aws::DynamoDB::DynamoDBErrors::RESOURCE_IN_USE) {
 std::cout << "Table already exists." << std::endl;
 movieTableAlreadyExisted = true;
 }
 else {
 std::cerr << "Failed to create table: "
 << result.GetError().GetMessage();

Query a table by using batches of PartiQL statements API Version 2012-08-10 2461

Amazon DynamoDB Developer Guide

 return false;
 }
 }
 }

 // Wait for table to become active.
 if (!movieTableAlreadyExisted) {
 std::cout << "Waiting for table '" << MOVIE_TABLE_NAME
 << "' to become active...." << std::endl;
 if (!AwsDoc::DynamoDB::waitTableActive(MOVIE_TABLE_NAME,
 clientConfiguration)) {
 return false;
 }
 std::cout << "Table '" << MOVIE_TABLE_NAME << "' created and active."
 << std::endl;
 }

 return true;
}

//! Delete the DynamoDB table used for sample code scenarios.
/*!
 \sa deleteMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteTableRequest request;
 request.SetTableName(MOVIE_TABLE_NAME);

 const Aws::DynamoDB::Model::DeleteTableOutcome &result =
 dynamoClient.DeleteTable(
 request);
 if (result.IsSuccess()) {
 std::cout << "Your table \""
 << result.GetResult().GetTableDescription().GetTableName()
 << " was deleted.\n";
 }
 else {
 std::cerr << "Failed to delete table: " << result.GetError().GetMessage()
 << std::endl;

Query a table by using batches of PartiQL statements API Version 2012-08-10 2462

Amazon DynamoDB Developer Guide

 }

 return result.IsSuccess();
}

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2463

Amazon DynamoDB Developer Guide

 return false;
}

• For API details, see BatchExecuteStatement in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run a scenario that creates a table and runs batches of PartiQL queries.

import (
 "context"
 "fmt"
 "log"
 "strings"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/dynamodb/actions"
)

// RunPartiQLBatchScenario shows you how to use the AWS SDK for Go
// to run batches of PartiQL statements to query a table that stores data about
 movies.
//
// - Use batches of PartiQL statements to add, get, update, and delete data for
// individual movies.
//
// This example creates an Amazon DynamoDB service client from the specified
 sdkConfig so that
// you can replace it with a mocked or stubbed config for unit testing.
//

Query a table by using batches of PartiQL statements API Version 2012-08-10 2464

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

// This example creates and deletes a DynamoDB table to use during the scenario.
func RunPartiQLBatchScenario(ctx context.Context, sdkConfig aws.Config, tableName
 string) {
 defer func() {
 if r := recover(); r != nil {
 fmt.Printf("Something went wrong with the demo.")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the Amazon DynamoDB PartiQL batch demo.")
 log.Println(strings.Repeat("-", 88))

 tableBasics := actions.TableBasics{
 DynamoDbClient: dynamodb.NewFromConfig(sdkConfig),
 TableName: tableName,
 }
 runner := actions.PartiQLRunner{
 DynamoDbClient: dynamodb.NewFromConfig(sdkConfig),
 TableName: tableName,
 }

 exists, err := tableBasics.TableExists(ctx)
 if err != nil {
 panic(err)
 }
 if !exists {
 log.Printf("Creating table %v...\n", tableName)
 _, err = tableBasics.CreateMovieTable(ctx)
 if err != nil {
 panic(err)
 } else {
 log.Printf("Created table %v.\n", tableName)
 }
 } else {
 log.Printf("Table %v already exists.\n", tableName)
 }
 log.Println(strings.Repeat("-", 88))

 currentYear, _, _ := time.Now().Date()
 customMovies := []actions.Movie{{
 Title: "House PartiQL",
 Year: currentYear - 5,
 Info: map[string]interface{}{

Query a table by using batches of PartiQL statements API Version 2012-08-10 2465

Amazon DynamoDB Developer Guide

 "plot": "Wacky high jinks result from querying a mysterious database.",
 "rating": 8.5}}, {
 Title: "House PartiQL 2",
 Year: currentYear - 3,
 Info: map[string]interface{}{
 "plot": "Moderate high jinks result from querying another mysterious
 database.",
 "rating": 6.5}}, {
 Title: "House PartiQL 3",
 Year: currentYear - 1,
 Info: map[string]interface{}{
 "plot": "Tepid high jinks result from querying yet another mysterious
 database.",
 "rating": 2.5},
 },
 }

 log.Printf("Inserting a batch of movies into table '%v'.\n", tableName)
 err = runner.AddMovieBatch(ctx, customMovies)
 if err == nil {
 log.Printf("Added %v movies to the table.\n", len(customMovies))
 }
 log.Println(strings.Repeat("-", 88))

 log.Println("Getting data for a batch of movies.")
 movies, err := runner.GetMovieBatch(ctx, customMovies)
 if err == nil {
 for _, movie := range movies {
 log.Println(movie)
 }
 }
 log.Println(strings.Repeat("-", 88))

 newRatings := []float64{7.7, 4.4, 1.1}
 log.Println("Updating a batch of movies with new ratings.")
 err = runner.UpdateMovieBatch(ctx, customMovies, newRatings)
 if err == nil {
 log.Printf("Updated %v movies with new ratings.\n", len(customMovies))
 }
 log.Println(strings.Repeat("-", 88))

 log.Println("Getting projected data from the table to verify our update.")
 log.Println("Using a page size of 2 to demonstrate paging.")
 projections, err := runner.GetAllMovies(ctx, 2)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2466

Amazon DynamoDB Developer Guide

 if err == nil {
 log.Println("All movies:")
 for _, projection := range projections {
 log.Println(projection)
 }
 }
 log.Println(strings.Repeat("-", 88))

 log.Println("Deleting a batch of movies.")
 err = runner.DeleteMovieBatch(ctx, customMovies)
 if err == nil {
 log.Printf("Deleted %v movies.\n", len(customMovies))
 }

 err = tableBasics.DeleteTable(ctx)
 if err == nil {
 log.Printf("Deleted table %v.\n", tableBasics.TableName)
 }

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2467

Amazon DynamoDB Developer Guide

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }
 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

Create a struct and methods that run PartiQL statements.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"

Query a table by using batches of PartiQL statements API Version 2012-08-10 2468

Amazon DynamoDB Developer Guide

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// PartiQLRunner encapsulates the Amazon DynamoDB service actions used in the
// PartiQL examples. It contains a DynamoDB service client that is used to act on
 the
// specified table.
type PartiQLRunner struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// AddMovieBatch runs a batch of PartiQL INSERT statements to add multiple movies
 to the
// DynamoDB table.
func (runner PartiQLRunner) AddMovieBatch(ctx context.Context, movies []Movie)
 error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year, movie.Info})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(fmt.Sprintf(
 "INSERT INTO \"%v\" VALUE {'title': ?, 'year': ?, 'info': ?}",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't insert a batch of items with PartiQL. Here's why: %v\n",
 err)
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2469

Amazon DynamoDB Developer Guide

 return err
}

// GetMovieBatch runs a batch of PartiQL SELECT statements to get multiple movies
 from
// the DynamoDB table by title and year.
func (runner PartiQLRunner) GetMovieBatch(ctx context.Context, movies []Movie)
 ([]Movie, error) {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("SELECT * FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 output, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 var outMovies []Movie
 if err != nil {
 log.Printf("Couldn't get a batch of items with PartiQL. Here's why: %v\n", err)
 } else {
 for _, response := range output.Responses {
 var movie Movie
 err = attributevalue.UnmarshalMap(response.Item, &movie)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 } else {
 outMovies = append(outMovies, movie)
 }
 }
 }
 return outMovies, err

Query a table by using batches of PartiQL statements API Version 2012-08-10 2470

Amazon DynamoDB Developer Guide

}

// GetAllMovies runs a PartiQL SELECT statement to get all movies from the
 DynamoDB table.
// pageSize is not typically required and is used to show how to paginate the
 results.
// The results are projected to return only the title and rating of each movie.
func (runner PartiQLRunner) GetAllMovies(ctx context.Context, pageSize int32)
 ([]map[string]interface{}, error) {
 var output []map[string]interface{}
 var response *dynamodb.ExecuteStatementOutput
 var err error
 var nextToken *string
 for moreData := true; moreData; {
 response, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("SELECT title, info.rating FROM \"%v\"", runner.TableName)),
 Limit: aws.Int32(pageSize),
 NextToken: nextToken,
 })
 if err != nil {
 log.Printf("Couldn't get movies. Here's why: %v\n", err)
 moreData = false
 } else {
 var pageOutput []map[string]interface{}
 err = attributevalue.UnmarshalListOfMaps(response.Items, &pageOutput)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 } else {
 log.Printf("Got a page of length %v.\n", len(response.Items))
 output = append(output, pageOutput...)
 }
 nextToken = response.NextToken
 moreData = nextToken != nil
 }
 }
 return output, err
}

Query a table by using batches of PartiQL statements API Version 2012-08-10 2471

Amazon DynamoDB Developer Guide

// UpdateMovieBatch runs a batch of PartiQL UPDATE statements to update the
 rating of
// multiple movies that already exist in the DynamoDB table.
func (runner PartiQLRunner) UpdateMovieBatch(ctx context.Context, movies []Movie,
 ratings []float64) error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{ratings[index],
 movie.Title, movie.Year})
 if err != nil {
 panic(err)
 }
 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("UPDATE \"%v\" SET info.rating=? WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't update the batch of movies. Here's why: %v\n", err)
 }
 return err
}

// DeleteMovieBatch runs a batch of PartiQL DELETE statements to remove multiple
 movies
// from the DynamoDB table.
func (runner PartiQLRunner) DeleteMovieBatch(ctx context.Context, movies []Movie)
 error {
 statementRequests := make([]types.BatchStatementRequest, len(movies))
 for index, movie := range movies {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2472

Amazon DynamoDB Developer Guide

 statementRequests[index] = types.BatchStatementRequest{
 Statement: aws.String(
 fmt.Sprintf("DELETE FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 }
 }

 _, err := runner.DynamoDbClient.BatchExecuteStatement(ctx,
 &dynamodb.BatchExecuteStatementInput{
 Statements: statementRequests,
 })
 if err != nil {
 log.Printf("Couldn't delete the batch of movies. Here's why: %v\n", err)
 }
 return err
}

• For API details, see BatchExecuteStatement in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

public class ScenarioPartiQLBatch {
 public static void main(String[] args) throws IOException {
 String tableName = "MoviesPartiQBatch";
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 System.out.println("Creating an Amazon DynamoDB table named " + tableName
 + " with a key named year and a sort key named title.");

Query a table by using batches of PartiQL statements API Version 2012-08-10 2473

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 createTable(ddb, tableName);

 System.out.println("Adding multiple records into the " + tableName
 + " table using a batch command.");
 putRecordBatch(ddb);

 // Update multiple movies by using the BatchExecute statement.
 String title1 = "Star Wars";
 int year1 = 1977;
 String title2 = "Wizard of Oz";
 int year2 = 1939;

 System.out.println("Query two movies.");
 getBatch(ddb, tableName, title1, title2, year1, year2);

 System.out.println("Updating multiple records using a batch command.");
 updateTableItemBatch(ddb);

 System.out.println("Deleting multiple records using a batch command.");
 deleteItemBatch(ddb);

 System.out.println("Deleting the Amazon DynamoDB table.");
 deleteDynamoDBTable(ddb, tableName);
 ddb.close();
 }

 public static boolean getBatch(DynamoDbClient ddb, String tableName, String
 title1, String title2, int year1, int year2) {
 String getBatch = "SELECT * FROM " + tableName + " WHERE title = ? AND
 year = ?";

 List<BatchStatementRequest> statements = new ArrayList<>();
 statements.add(BatchStatementRequest.builder()
 .statement(getBatch)
 .parameters(AttributeValue.builder().s(title1).build(),
 AttributeValue.builder().n(String.valueOf(year1)).build())
 .build());
 statements.add(BatchStatementRequest.builder()
 .statement(getBatch)
 .parameters(AttributeValue.builder().s(title2).build(),
 AttributeValue.builder().n(String.valueOf(year2)).build())
 .build());

Query a table by using batches of PartiQL statements API Version 2012-08-10 2474

Amazon DynamoDB Developer Guide

 BatchExecuteStatementRequest batchExecuteStatementRequest =
 BatchExecuteStatementRequest.builder()
 .statements(statements)
 .build();

 try {
 BatchExecuteStatementResponse response =
 ddb.batchExecuteStatement(batchExecuteStatementRequest);
 if (!response.responses().isEmpty()) {
 response.responses().forEach(r -> {
 System.out.println(r.item().get("title") + "\\t" +
 r.item().get("year"));
 });
 return true;
 } else {
 System.out.println("Couldn't find either " + title1 + " or " +
 title2 + ".");
 return false;
 }
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 return false;
 }
 }

 public static void createTable(DynamoDbClient ddb, String tableName) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<>();

 // Define attributes.
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("year")
 .attributeType("N")
 .build());

 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("title")
 .attributeType("S")
 .build());

 ArrayList<KeySchemaElement> tableKey = new ArrayList<>();
 KeySchemaElement key = KeySchemaElement.builder()
 .attributeName("year")
 .keyType(KeyType.HASH)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2475

Amazon DynamoDB Developer Guide

 .build();

 KeySchemaElement key2 = KeySchemaElement.builder()
 .attributeName("title")
 .keyType(KeyType.RANGE) // Sort
 .build();

 // Add KeySchemaElement objects to the list.
 tableKey.add(key);
 tableKey.add(key2);

 CreateTableRequest request = CreateTableRequest.builder()
 .keySchema(tableKey)
 .billingMode(BillingMode.PAY_PER_REQUEST) // DynamoDB automatically
 scales based on traffic.
 .attributeDefinitions(attributeDefinitions)
 .tableName(tableName)
 .build();

 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse = dbWaiter
 .waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 String newTable = response.tableDescription().tableName();
 System.out.println("The " + newTable + " was successfully created.");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void putRecordBatch(DynamoDbClient ddb) {
 String sqlStatement = "INSERT INTO MoviesPartiQBatch VALUE {'year':?,
 'title' : ?, 'info' : ?}";
 try {
 // Create three movies to add to the Amazon DynamoDB table.
 // Set data for Movie 1.

Query a table by using batches of PartiQL statements API Version 2012-08-10 2476

Amazon DynamoDB Developer Guide

 List<AttributeValue> parameters = new ArrayList<>();

 AttributeValue att1 = AttributeValue.builder()
 .n("1977")
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s("Star Wars")
 .build();

 AttributeValue att3 = AttributeValue.builder()
 .s("No Information")
 .build();

 parameters.add(att1);
 parameters.add(att2);
 parameters.add(att3);

 BatchStatementRequest statementRequestMovie1 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parameters)
 .build();

 // Set data for Movie 2.
 List<AttributeValue> parametersMovie2 = new ArrayList<>();
 AttributeValue attMovie2 = AttributeValue.builder()
 .n("1939")
 .build();

 AttributeValue attMovie2A = AttributeValue.builder()
 .s("Wizard of Oz")
 .build();

 AttributeValue attMovie2B = AttributeValue.builder()
 .s("No Information")
 .build();

 parametersMovie2.add(attMovie2);
 parametersMovie2.add(attMovie2A);
 parametersMovie2.add(attMovie2B);

 BatchStatementRequest statementRequestMovie2 =
 BatchStatementRequest.builder()

Query a table by using batches of PartiQL statements API Version 2012-08-10 2477

Amazon DynamoDB Developer Guide

 .statement(sqlStatement)
 .parameters(parametersMovie2)
 .build();

 // Set data for Movie 3.
 List<AttributeValue> parametersMovie3 = new ArrayList<>();
 AttributeValue attMovie3 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue attMovie3A = AttributeValue.builder()
 .s("My Movie 3")
 .build();

 AttributeValue attMovie3B = AttributeValue.builder()
 .s("No Information")
 .build();

 parametersMovie3.add(attMovie3);
 parametersMovie3.add(attMovie3A);
 parametersMovie3.add(attMovie3B);

 BatchStatementRequest statementRequestMovie3 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersMovie3)
 .build();

 // Add all three movies to the list.
 List<BatchStatementRequest> myBatchStatementList = new ArrayList<>();
 myBatchStatementList.add(statementRequestMovie1);
 myBatchStatementList.add(statementRequestMovie2);
 myBatchStatementList.add(statementRequestMovie3);

 BatchExecuteStatementRequest batchRequest =
 BatchExecuteStatementRequest.builder()
 .statements(myBatchStatementList)
 .build();

 BatchExecuteStatementResponse response =
 ddb.batchExecuteStatement(batchRequest);
 System.out.println("ExecuteStatement successful: " +
 response.toString());
 System.out.println("Added new movies using a batch command.");

Query a table by using batches of PartiQL statements API Version 2012-08-10 2478

Amazon DynamoDB Developer Guide

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void updateTableItemBatch(DynamoDbClient ddb) {
 String sqlStatement = "UPDATE MoviesPartiQBatch SET info = 'directors\":
[\"Merian C. Cooper\",\"Ernest B. Schoedsack' where year=? and title=?";
 List<AttributeValue> parametersRec1 = new ArrayList<>();

 // Update three records.
 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s("My Movie 1")
 .build();

 parametersRec1.add(att1);
 parametersRec1.add(att2);

 BatchStatementRequest statementRequestRec1 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersRec1)
 .build();

 // Update record 2.
 List<AttributeValue> parametersRec2 = new ArrayList<>();
 AttributeValue attRec2 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue attRec2a = AttributeValue.builder()
 .s("My Movie 2")
 .build();

 parametersRec2.add(attRec2);
 parametersRec2.add(attRec2a);
 BatchStatementRequest statementRequestRec2 =
 BatchStatementRequest.builder()

Query a table by using batches of PartiQL statements API Version 2012-08-10 2479

Amazon DynamoDB Developer Guide

 .statement(sqlStatement)
 .parameters(parametersRec2)
 .build();

 // Update record 3.
 List<AttributeValue> parametersRec3 = new ArrayList<>();
 AttributeValue attRec3 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue attRec3a = AttributeValue.builder()
 .s("My Movie 3")
 .build();

 parametersRec3.add(attRec3);
 parametersRec3.add(attRec3a);
 BatchStatementRequest statementRequestRec3 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersRec3)
 .build();

 // Add all three movies to the list.
 List<BatchStatementRequest> myBatchStatementList = new ArrayList<>();
 myBatchStatementList.add(statementRequestRec1);
 myBatchStatementList.add(statementRequestRec2);
 myBatchStatementList.add(statementRequestRec3);

 BatchExecuteStatementRequest batchRequest =
 BatchExecuteStatementRequest.builder()
 .statements(myBatchStatementList)
 .build();

 try {
 BatchExecuteStatementResponse response =
 ddb.batchExecuteStatement(batchRequest);
 System.out.println("ExecuteStatement successful: " +
 response.toString());
 System.out.println("Updated three movies using a batch command.");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2480

Amazon DynamoDB Developer Guide

 System.out.println("Item was updated!");
 }

 public static void deleteItemBatch(DynamoDbClient ddb) {
 String sqlStatement = "DELETE FROM MoviesPartiQBatch WHERE year = ? and
 title=?";
 List<AttributeValue> parametersRec1 = new ArrayList<>();

 // Specify three records to delete.
 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s("My Movie 1")
 .build();

 parametersRec1.add(att1);
 parametersRec1.add(att2);

 BatchStatementRequest statementRequestRec1 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersRec1)
 .build();

 // Specify record 2.
 List<AttributeValue> parametersRec2 = new ArrayList<>();
 AttributeValue attRec2 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue attRec2a = AttributeValue.builder()
 .s("My Movie 2")
 .build();

 parametersRec2.add(attRec2);
 parametersRec2.add(attRec2a);
 BatchStatementRequest statementRequestRec2 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersRec2)
 .build();

Query a table by using batches of PartiQL statements API Version 2012-08-10 2481

Amazon DynamoDB Developer Guide

 // Specify record 3.
 List<AttributeValue> parametersRec3 = new ArrayList<>();
 AttributeValue attRec3 = AttributeValue.builder()
 .n(String.valueOf("2022"))
 .build();

 AttributeValue attRec3a = AttributeValue.builder()
 .s("My Movie 3")
 .build();

 parametersRec3.add(attRec3);
 parametersRec3.add(attRec3a);

 BatchStatementRequest statementRequestRec3 =
 BatchStatementRequest.builder()
 .statement(sqlStatement)
 .parameters(parametersRec3)
 .build();

 // Add all three movies to the list.
 List<BatchStatementRequest> myBatchStatementList = new ArrayList<>();
 myBatchStatementList.add(statementRequestRec1);
 myBatchStatementList.add(statementRequestRec2);
 myBatchStatementList.add(statementRequestRec3);

 BatchExecuteStatementRequest batchRequest =
 BatchExecuteStatementRequest.builder()
 .statements(myBatchStatementList)
 .build();

 try {
 ddb.batchExecuteStatement(batchRequest);
 System.out.println("Deleted three movies using a batch command.");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void deleteDynamoDBTable(DynamoDbClient ddb, String tableName)
 {
 DeleteTableRequest request = DeleteTableRequest.builder()
 .tableName(tableName)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2482

Amazon DynamoDB Developer Guide

 .build();

 try {
 ddb.deleteTable(request);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println(tableName + " was successfully deleted!");
 }

 private static ExecuteStatementResponse
 executeStatementRequest(DynamoDbClient ddb, String statement,

 List<AttributeValue> parameters) {
 ExecuteStatementRequest request = ExecuteStatementRequest.builder()
 .statement(statement)
 .parameters(parameters)
 .build();

 return ddb.executeStatement(request);
 }
}

• For API details, see BatchExecuteStatement in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Execute batch PartiQL statements.

import {
 BillingMode,

Query a table by using batches of PartiQL statements API Version 2012-08-10 2483

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 CreateTableCommand,
 DeleteTableCommand,
 DescribeTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";
import { ScenarioInput } from "@aws-doc-sdk-examples/lib/scenario";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);
const tableName = "Cities";

export const main = async (confirmAll = false) => {
 /**
 * Delete table if it exists.
 */
 try {
 await client.send(new DescribeTableCommand({ TableName: tableName }));
 // If no error was thrown, the table exists.
 const input = new ScenarioInput(
 "deleteTable",
 `A table named ${tableName} already exists. If you choose not to delete
this table, the scenario cannot continue. Delete it?`,
 { type: "confirm", confirmAll },
);
 const deleteTable = await input.handle({}, { confirmAll });
 if (deleteTable) {
 await client.send(new DeleteTableCommand({ tableName }));
 } else {
 console.warn(
 "Scenario could not run. Either delete ${tableName} or provide a unique
 table name.",
);
 return;
 }
 } catch (caught) {
 if (
 caught instanceof Error &&

Query a table by using batches of PartiQL statements API Version 2012-08-10 2484

Amazon DynamoDB Developer Guide

 caught.name === "ResourceNotFoundException"
) {
 // Do nothing. This means the table is not there.
 } else {
 throw caught;
 }
 }

 /**
 * Create a table.
 */

 log("Creating a table.");
 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.
 AttributeDefinitions: [
 {
 AttributeName: "name",
 // 'S' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "S",
 },
],
 // The KeySchema defines the primary key. The primary key can be
 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [{ AttributeName: "name", KeyType: "HASH" }],
 });
 await client.send(createTableCommand);
 log(`Table created: ${tableName}.`);

 /**
 * Wait until the table is active.
 */

Query a table by using batches of PartiQL statements API Version 2012-08-10 2485

Amazon DynamoDB Developer Guide

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Insert items.
 */

 log("Inserting cities into the table.");
 const addItemsStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.insert.html
 Statements: [
 {
 Statement: `INSERT INTO ${tableName} value {'name':?, 'population':?}`,
 Parameters: ["Alachua", 10712],
 },
 {
 Statement: `INSERT INTO ${tableName} value {'name':?, 'population':?}`,
 Parameters: ["High Springs", 6415],
 },
],
 });
 await docClient.send(addItemsStatementCommand);
 log("Cities inserted.");

 /**
 * Select items.
 */

 log("Selecting cities from the table.");
 const selectItemsStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.select.html
 Statements: [
 {
 Statement: `SELECT * FROM ${tableName} WHERE name=?`,
 Parameters: ["Alachua"],
 },
 {
 Statement: `SELECT * FROM ${tableName} WHERE name=?`,
 Parameters: ["High Springs"],

Query a table by using batches of PartiQL statements API Version 2012-08-10 2486

Amazon DynamoDB Developer Guide

 },
],
 });
 const selectItemResponse = await docClient.send(selectItemsStatementCommand);
 log(
 `Got cities: ${selectItemResponse.Responses.map(
 (r) => `${r.Item.name} (${r.Item.population})`,
).join(", ")}`,
);

 /**
 * Update items.
 */

 log("Modifying the populations.");
 const updateItemStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.update.html
 Statements: [
 {
 Statement: `UPDATE ${tableName} SET population=? WHERE name=?`,
 Parameters: [10, "Alachua"],
 },
 {
 Statement: `UPDATE ${tableName} SET population=? WHERE name=?`,
 Parameters: [5, "High Springs"],
 },
],
 });
 await docClient.send(updateItemStatementCommand);
 log("Updated cities.");

 /**
 * Delete the items.
 */

 log("Deleting the cities.");
 const deleteItemStatementCommand = new BatchExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.delete.html
 Statements: [
 {
 Statement: `DELETE FROM ${tableName} WHERE name=?`,
 Parameters: ["Alachua"],

Query a table by using batches of PartiQL statements API Version 2012-08-10 2487

Amazon DynamoDB Developer Guide

 },
 {
 Statement: `DELETE FROM ${tableName} WHERE name=?`,
 Parameters: ["High Springs"],
 },
],
 });
 await docClient.send(deleteItemStatementCommand);
 log("Cities deleted.");

 /**
 * Delete the table.
 */

 log("Deleting the table.");
 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

• For API details, see BatchExecuteStatement in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun main() {
 val ddb = DynamoDbClient.fromEnvironment { region = "us-east-1" }
 val tableName = "MoviesPartiQBatch"
 println("Creating an Amazon DynamoDB table named $tableName with a key named
 id and a sort key named title.")
 createTablePartiQLBatch(ddb, tableName, "year")
 putRecordBatch(ddb)
 updateTableItemBatchBatch(ddb)
 deleteItemsBatch(ddb)

Query a table by using batches of PartiQL statements API Version 2012-08-10 2488

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 deleteTablePartiQLBatch(tableName)
}

suspend fun createTablePartiQLBatch(
 ddb: DynamoDbClient,
 tableNameVal: String,
 key: String,
) {
 val attDef =
 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.N
 }

 val attDef1 =
 AttributeDefinition {
 attributeName = "title"
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val keySchemaVal1 =
 KeySchemaElement {
 attributeName = "title"
 keyType = KeyType.Range
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef, attDef1)
 keySchema = listOf(keySchemaVal, keySchemaVal1)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {
 // suspend call
 tableName = tableNameVal

Query a table by using batches of PartiQL statements API Version 2012-08-10 2489

Amazon DynamoDB Developer Guide

 }
 println("The table was successfully created
 ${response.tableDescription?.tableArn}")
}

suspend fun putRecordBatch(ddb: DynamoDbClient) {
 val sqlStatement = "INSERT INTO MoviesPartiQBatch VALUE {'year':?,
 'title' : ?, 'info' : ?}"

 // Create three movies to add to the Amazon DynamoDB table.
 val parametersMovie1 = mutableListOf<AttributeValue>()
 parametersMovie1.add(AttributeValue.N("2022"))
 parametersMovie1.add(AttributeValue.S("My Movie 1"))
 parametersMovie1.add(AttributeValue.S("No Information"))

 val statementRequestMovie1 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersMovie1
 }

 // Set data for Movie 2.
 val parametersMovie2 = mutableListOf<AttributeValue>()
 parametersMovie2.add(AttributeValue.N("2022"))
 parametersMovie2.add(AttributeValue.S("My Movie 2"))
 parametersMovie2.add(AttributeValue.S("No Information"))

 val statementRequestMovie2 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersMovie2
 }

 // Set data for Movie 3.
 val parametersMovie3 = mutableListOf<AttributeValue>()
 parametersMovie3.add(AttributeValue.N("2022"))
 parametersMovie3.add(AttributeValue.S("My Movie 3"))
 parametersMovie3.add(AttributeValue.S("No Information"))

 val statementRequestMovie3 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersMovie3
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2490

Amazon DynamoDB Developer Guide

 // Add all three movies to the list.
 val myBatchStatementList = mutableListOf<BatchStatementRequest>()
 myBatchStatementList.add(statementRequestMovie1)
 myBatchStatementList.add(statementRequestMovie2)
 myBatchStatementList.add(statementRequestMovie3)

 val batchRequest =
 BatchExecuteStatementRequest {
 statements = myBatchStatementList
 }
 val response = ddb.batchExecuteStatement(batchRequest)
 println("ExecuteStatement successful: " + response.toString())
 println("Added new movies using a batch command.")
}

suspend fun updateTableItemBatchBatch(ddb: DynamoDbClient) {
 val sqlStatement =
 "UPDATE MoviesPartiQBatch SET info = 'directors\":[\"Merian C. Cooper\",
\"Ernest B. Schoedsack' where year=? and title=?"
 val parametersRec1 = mutableListOf<AttributeValue>()
 parametersRec1.add(AttributeValue.N("2022"))
 parametersRec1.add(AttributeValue.S("My Movie 1"))
 val statementRequestRec1 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec1
 }

 // Update record 2.
 val parametersRec2 = mutableListOf<AttributeValue>()
 parametersRec2.add(AttributeValue.N("2022"))
 parametersRec2.add(AttributeValue.S("My Movie 2"))
 val statementRequestRec2 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec2
 }

 // Update record 3.
 val parametersRec3 = mutableListOf<AttributeValue>()
 parametersRec3.add(AttributeValue.N("2022"))
 parametersRec3.add(AttributeValue.S("My Movie 3"))
 val statementRequestRec3 =

Query a table by using batches of PartiQL statements API Version 2012-08-10 2491

Amazon DynamoDB Developer Guide

 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec3
 }

 // Add all three movies to the list.
 val myBatchStatementList = mutableListOf<BatchStatementRequest>()
 myBatchStatementList.add(statementRequestRec1)
 myBatchStatementList.add(statementRequestRec2)
 myBatchStatementList.add(statementRequestRec3)

 val batchRequest =
 BatchExecuteStatementRequest {
 statements = myBatchStatementList
 }

 val response = ddb.batchExecuteStatement(batchRequest)
 println("ExecuteStatement successful: $response")
 println("Updated three movies using a batch command.")
 println("Items were updated!")
}

suspend fun deleteItemsBatch(ddb: DynamoDbClient) {
 // Specify three records to delete.
 val sqlStatement = "DELETE FROM MoviesPartiQBatch WHERE year = ? and title=?"
 val parametersRec1 = mutableListOf<AttributeValue>()
 parametersRec1.add(AttributeValue.N("2022"))
 parametersRec1.add(AttributeValue.S("My Movie 1"))

 val statementRequestRec1 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec1
 }

 // Specify record 2.
 val parametersRec2 = mutableListOf<AttributeValue>()
 parametersRec2.add(AttributeValue.N("2022"))
 parametersRec2.add(AttributeValue.S("My Movie 2"))
 val statementRequestRec2 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec2
 }

Query a table by using batches of PartiQL statements API Version 2012-08-10 2492

Amazon DynamoDB Developer Guide

 // Specify record 3.
 val parametersRec3 = mutableListOf<AttributeValue>()
 parametersRec3.add(AttributeValue.N("2022"))
 parametersRec3.add(AttributeValue.S("My Movie 3"))
 val statementRequestRec3 =
 BatchStatementRequest {
 statement = sqlStatement
 parameters = parametersRec3
 }

 // Add all three movies to the list.
 val myBatchStatementList = mutableListOf<BatchStatementRequest>()
 myBatchStatementList.add(statementRequestRec1)
 myBatchStatementList.add(statementRequestRec2)
 myBatchStatementList.add(statementRequestRec3)

 val batchRequest =
 BatchExecuteStatementRequest {
 statements = myBatchStatementList
 }

 ddb.batchExecuteStatement(batchRequest)
 println("Deleted three movies using a batch command.")
}

suspend fun deleteTablePartiQLBatch(tableNameVal: String) {
 val request =
 DeleteTableRequest {
 tableName = tableNameVal
 }

 DynamoDbClient { region = "us-east-1" }.use { ddb ->
 ddb.deleteTable(request)
 println("$tableNameVal was deleted")
 }
}

• For API details, see BatchExecuteStatement in Amazon SDK for Kotlin API reference.

Query a table by using batches of PartiQL statements API Version 2012-08-10 2493

https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon DynamoDB Developer Guide

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace DynamoDb\PartiQL_Basics;

use Aws\DynamoDb\Marshaler;
use DynamoDb;
use DynamoDb\DynamoDBAttribute;

use function AwsUtilities\loadMovieData;
use function AwsUtilities\testable_readline;

class GettingStartedWithPartiQLBatch
{
 public function run()
 {
 echo("\n");
 echo("--------------------------------------\n");
 print("Welcome to the Amazon DynamoDB - PartiQL getting started demo
 using PHP!\n");
 echo("--------------------------------------\n");

 $uuid = uniqid();
 $service = new DynamoDb\DynamoDBService();

 $tableName = "partiql_demo_table_$uuid";
 $service->createTable(
 $tableName,
 [
 new DynamoDBAttribute('year', 'N', 'HASH'),
 new DynamoDBAttribute('title', 'S', 'RANGE')
]
);

 echo "Waiting for table...";

Query a table by using batches of PartiQL statements API Version 2012-08-10 2494

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 $service->dynamoDbClient->waitUntil("TableExists", ['TableName' =>
 $tableName]);
 echo "table $tableName found!\n";

 echo "What's the name of the last movie you watched?\n";
 while (empty($movieName)) {
 $movieName = testable_readline("Movie name: ");
 }
 echo "And what year was it released?\n";
 $movieYear = "year";
 while (!is_numeric($movieYear) || intval($movieYear) != $movieYear) {
 $movieYear = testable_readline("Year released: ");
 }
 $key = [
 'Item' => [
 'year' => [
 'N' => "$movieYear",
],
 'title' => [
 'S' => $movieName,
],
],
];
 list($statement, $parameters) = $service-
>buildStatementAndParameters("INSERT", $tableName, $key);
 $service->insertItemByPartiQLBatch($statement, $parameters);

 echo "How would you rate the movie from 1-10?\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 echo "What was the movie about?\n";
 while (empty($plot)) {
 $plot = testable_readline("Plot summary: ");
 }
 $attributes = [
 new DynamoDBAttribute('rating', 'N', 'HASH', $rating),
 new DynamoDBAttribute('plot', 'S', 'RANGE', $plot),
];

 list($statement, $parameters) = $service-
>buildStatementAndParameters("UPDATE", $tableName, $key, $attributes);

Query a table by using batches of PartiQL statements API Version 2012-08-10 2495

Amazon DynamoDB Developer Guide

 $service->updateItemByPartiQLBatch($statement, $parameters);
 echo "Movie added and updated.\n";

 $batch = json_decode(loadMovieData());

 $service->writeBatch($tableName, $batch);

 $movie = $service->getItemByPartiQLBatch($tableName, [$key]);
 echo "\nThe movie {$movie['Responses'][0]['Item']['title']['S']}
 was released in {$movie['Responses'][0]['Item']['year']['N']}.\n";
 echo "What rating would you like to give {$movie['Responses'][0]['Item']
['title']['S']}?\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 $attributes = [
 new DynamoDBAttribute('rating', 'N', 'HASH', $rating),
 new DynamoDBAttribute('plot', 'S', 'RANGE', $plot)
];
 list($statement, $parameters) = $service-
>buildStatementAndParameters("UPDATE", $tableName, $key, $attributes);
 $service->updateItemByPartiQLBatch($statement, $parameters);

 $movie = $service->getItemByPartiQLBatch($tableName, [$key]);
 echo "Okay, you have rated {$movie['Responses'][0]['Item']['title']
['S']}
 as a {$movie['Responses'][0]['Item']['rating']['N']}\n";

 $service->deleteItemByPartiQLBatch($statement, $parameters);
 echo "But, bad news, this was a trap. That movie has now been deleted
 because of your rating...harsh.\n";

 echo "That's okay though. The book was better. Now, for something
 lighter, in what year were you born?\n";
 $birthYear = "not a number";
 while (!is_numeric($birthYear) || $birthYear >= date("Y")) {
 $birthYear = testable_readline("Birth year: ");
 }
 $birthKey = [
 'Key' => [
 'year' => [
 'N' => "$birthYear",

Query a table by using batches of PartiQL statements API Version 2012-08-10 2496

Amazon DynamoDB Developer Guide

],
],
];
 $result = $service->query($tableName, $birthKey);
 $marshal = new Marshaler();
 echo "Here are the movies in our collection released the year you were
 born:\n";
 $oops = "Oops! There were no movies released in that year (that we know
 of).\n";
 $display = "";
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 $display .= $movie['title'] . "\n";
 }
 echo ($display) ?: $oops;

 $yearsKey = [
 'Key' => [
 'year' => [
 'N' => [
 'minRange' => 1990,
 'maxRange' => 1999,
],
],
],
];
 $filter = "year between 1990 and 1999";
 echo "\nHere's a list of all the movies released in the 90s:\n";
 $result = $service->scan($tableName, $yearsKey, $filter);
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 echo $movie['title'] . "\n";
 }

 echo "\nCleaning up this demo by deleting table $tableName...\n";
 $service->deleteTable($tableName);
 }
}

 public function insertItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [

Query a table by using batches of PartiQL statements API Version 2012-08-10 2497

Amazon DynamoDB Developer Guide

 [
 'Statement' => "$statement",
 'Parameters' => $parameters,
],
],
]);
 }

 public function getItemByPartiQLBatch(string $tableName, array $keys): Result
 {
 $statements = [];
 foreach ($keys as $key) {
 list($statement, $parameters) = $this-
>buildStatementAndParameters("SELECT", $tableName, $key['Item']);
 $statements[] = [
 'Statement' => "$statement",
 'Parameters' => $parameters,
];
 }

 return $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => $statements,
]);
 }

 public function updateItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [
 [
 'Statement' => "$statement",
 'Parameters' => $parameters,
],
],
]);
 }

 public function deleteItemByPartiQLBatch(string $statement, array
 $parameters)
 {
 $this->dynamoDbClient->batchExecuteStatement([
 'Statements' => [
 [

Query a table by using batches of PartiQL statements API Version 2012-08-10 2498

Amazon DynamoDB Developer Guide

 'Statement' => "$statement",
 'Parameters' => $parameters,
],
],
]);
 }

• For API details, see BatchExecuteStatement in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a class that can run batches of PartiQL statements.

from datetime import datetime
from decimal import Decimal
import logging
from pprint import pprint

import boto3
from botocore.exceptions import ClientError

from scaffold import Scaffold

logger = logging.getLogger(__name__)

class PartiQLBatchWrapper:
 """
 Encapsulates a DynamoDB resource to run PartiQL statements.
 """

 def __init__(self, dyn_resource):
 """
 :param dyn_resource: A Boto3 DynamoDB resource.

Query a table by using batches of PartiQL statements API Version 2012-08-10 2499

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 """
 self.dyn_resource = dyn_resource

 def run_partiql(self, statements, param_list):
 """
 Runs a PartiQL statement. A Boto3 resource is used even though
 `execute_statement` is called on the underlying `client` object because
 the
 resource transforms input and output from plain old Python objects
 (POPOs) to
 the DynamoDB format. If you create the client directly, you must do these
 transforms yourself.

 :param statements: The batch of PartiQL statements.
 :param param_list: The batch of PartiQL parameters that are associated
 with
 each statement. This list must be in the same order as
 the
 statements.
 :return: The responses returned from running the statements, if any.
 """
 try:
 output = self.dyn_resource.meta.client.batch_execute_statement(
 Statements=[
 {"Statement": statement, "Parameters": params}
 for statement, params in zip(statements, param_list)
]
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Couldn't execute batch of PartiQL statements because the
 table "
 "does not exist."
)
 else:
 logger.error(
 "Couldn't execute batch of PartiQL statements. Here's why:
 %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise

Query a table by using batches of PartiQL statements API Version 2012-08-10 2500

Amazon DynamoDB Developer Guide

 else:
 return output

Run a scenario that creates a table and runs PartiQL queries in batches.

def run_scenario(scaffold, wrapper, table_name):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the Amazon DynamoDB PartiQL batch statement demo.")
 print("-" * 88)

 print(f"Creating table '{table_name}' for the demo...")
 scaffold.create_table(table_name)
 print("-" * 88)

 movie_data = [
 {
 "title": f"House PartiQL",
 "year": datetime.now().year - 5,
 "info": {
 "plot": "Wacky high jinks result from querying a mysterious
 database.",
 "rating": Decimal("8.5"),
 },
 },
 {
 "title": f"House PartiQL 2",
 "year": datetime.now().year - 3,
 "info": {
 "plot": "Moderate high jinks result from querying another
 mysterious database.",
 "rating": Decimal("6.5"),
 },
 },
 {
 "title": f"House PartiQL 3",
 "year": datetime.now().year - 1,
 "info": {

Query a table by using batches of PartiQL statements API Version 2012-08-10 2501

Amazon DynamoDB Developer Guide

 "plot": "Tepid high jinks result from querying yet another
 mysterious database.",
 "rating": Decimal("2.5"),
 },
 },
]

 print(f"Inserting a batch of movies into table '{table_name}.")
 statements = [
 f'INSERT INTO "{table_name}" ' f"VALUE {{'title': ?, 'year': ?,
 'info': ?}}"
] * len(movie_data)
 params = [list(movie.values()) for movie in movie_data]
 wrapper.run_partiql(statements, params)
 print("Success!")
 print("-" * 88)

 print(f"Getting data for a batch of movies.")
 statements = [f'SELECT * FROM "{table_name}" WHERE title=? AND year=?'] *
 len(
 movie_data
)
 params = [[movie["title"], movie["year"]] for movie in movie_data]
 output = wrapper.run_partiql(statements, params)
 for item in output["Responses"]:
 print(f"\n{item['Item']['title']}, {item['Item']['year']}")
 pprint(item["Item"])
 print("-" * 88)

 ratings = [Decimal("7.7"), Decimal("5.5"), Decimal("1.3")]
 print(f"Updating a batch of movies with new ratings.")
 statements = [
 f'UPDATE "{table_name}" SET info.rating=? ' f"WHERE title=? AND year=?"
] * len(movie_data)
 params = [
 [rating, movie["title"], movie["year"]]
 for rating, movie in zip(ratings, movie_data)
]
 wrapper.run_partiql(statements, params)
 print("Success!")
 print("-" * 88)

 print(f"Getting projected data from the table to verify our update.")
 output = wrapper.dyn_resource.meta.client.execute_statement(

Query a table by using batches of PartiQL statements API Version 2012-08-10 2502

Amazon DynamoDB Developer Guide

 Statement=f'SELECT title, info.rating FROM "{table_name}"'
)
 pprint(output["Items"])
 print("-" * 88)

 print(f"Deleting a batch of movies from the table.")
 statements = [f'DELETE FROM "{table_name}" WHERE title=? AND year=?'] * len(
 movie_data
)
 params = [[movie["title"], movie["year"]] for movie in movie_data]
 wrapper.run_partiql(statements, params)
 print("Success!")
 print("-" * 88)

 print(f"Deleting table '{table_name}'...")
 scaffold.delete_table()
 print("-" * 88)

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 dyn_res = boto3.resource("dynamodb")
 scaffold = Scaffold(dyn_res)
 movies = PartiQLBatchWrapper(dyn_res)
 run_scenario(scaffold, movies, "doc-example-table-partiql-movies")
 except Exception as e:
 print(f"Something went wrong with the demo! Here's what: {e}")

• For API details, see BatchExecuteStatement in Amazon SDK for Python (Boto3) API
Reference.

Query a table by using batches of PartiQL statements API Version 2012-08-10 2503

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/BatchExecuteStatement

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run a scenario that creates a table and runs batch PartiQL queries.

 table_name = "doc-example-table-movies-partiql-#{rand(10**4)}"
 scaffold = Scaffold.new(table_name)
 sdk = DynamoDBPartiQLBatch.new(table_name)

 new_step(1, 'Create a new DynamoDB table if none already exists.')
 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Populate DynamoDB table with movie data.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")
 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

 new_step(3, 'Select a batch of items from the movies table.')
 puts "Let's select some popular movies for side-by-side comparison."
 response = sdk.batch_execute_select([['Mean Girls', 2004], ['Goodfellas',
 1977], ['The Prancing of the Lambs', 2005]])
 puts("Items selected: #{response['responses'].length}\n")
 print "\nDone!\n".green

 new_step(4, 'Delete a batch of items from the movies table.')
 sdk.batch_execute_write([['Mean Girls', 2004], ['Goodfellas', 1977], ['The
 Prancing of the Lambs', 2005]])
 print "\nDone!\n".green

Query a table by using batches of PartiQL statements API Version 2012-08-10 2504

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 new_step(5, 'Delete the table.')
 return unless scaffold.exists?(table_name)

 scaffold.delete_table
end

• For API details, see BatchExecuteStatement in Amazon SDK for Ruby API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table using PartiQL and an Amazon SDK

The following code examples show how to:

• Get an item by running a SELECT statement.

• Add an item by running an INSERT statement.

• Update an item by running an UPDATE statement.

• Delete an item by running a DELETE statement.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace PartiQL_Basics_Scenario
{
 public class PartiQLMethods
 {
 private static readonly AmazonDynamoDBClient Client = new
 AmazonDynamoDBClient();

Query a table using PartiQL API Version 2012-08-10 2505

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/BatchExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Inserts movies imported from a JSON file into the movie table by
 /// using an Amazon DynamoDB PartiQL INSERT statement.
 /// </summary>
 /// <param name="tableName">The name of the table where the movie
 /// information will be inserted.</param>
 /// <param name="movieFileName">The name of the JSON file that contains
 /// movie information.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the insert operation.</returns>
 public static async Task<bool> InsertMovies(string tableName, string
 movieFileName)
 {
 // Get the list of movies from the JSON file.
 var movies = ImportMovies(movieFileName);

 var success = false;

 if (movies is not null)
 {
 // Insert the movies in a batch using PartiQL. Because the
 // batch can contain a maximum of 25 items, insert 25 movies
 // at a time.
 string insertBatch = $"INSERT INTO {tableName} VALUE
 {{'title': ?, 'year': ?}}";
 var statements = new List<BatchStatementRequest>();

 try
 {
 for (var indexOffset = 0; indexOffset < 250; indexOffset +=
 25)
 {
 for (var i = indexOffset; i < indexOffset + 25; i++)
 {
 statements.Add(new BatchStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movies[i].Title },
 new AttributeValue { N =
 movies[i].Year.ToString() },

Query a table using PartiQL API Version 2012-08-10 2506

Amazon DynamoDB Developer Guide

 },
 });
 }

 var response = await
 Client.BatchExecuteStatementAsync(new BatchExecuteStatementRequest
 {
 Statements = statements,
 });

 // Wait between batches for movies to be successfully
 added.
 System.Threading.Thread.Sleep(3000);

 success = response.HttpStatusCode ==
 System.Net.HttpStatusCode.OK;

 // Clear the list of statements for the next batch.
 statements.Clear();
 }
 }
 catch (AmazonDynamoDBException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 return success;
 }

 /// <summary>
 /// Loads the contents of a JSON file into a list of movies to be
 /// added to the DynamoDB table.
 /// </summary>
 /// <param name="movieFileName">The full path to the JSON file.</param>
 /// <returns>A generic list of movie objects.</returns>
 public static List<Movie> ImportMovies(string movieFileName)
 {
 if (!File.Exists(movieFileName))
 {
 return null!;
 }

 using var sr = new StreamReader(movieFileName);

Query a table using PartiQL API Version 2012-08-10 2507

Amazon DynamoDB Developer Guide

 string json = sr.ReadToEnd();
 var allMovies = JsonConvert.DeserializeObject<List<Movie>>(json);

 if (allMovies is not null)
 {
 // Return the first 250 entries.
 return allMovies.GetRange(0, 250);
 }
 else
 {
 return null!;
 }
 }

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>
 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

Query a table using PartiQL API Version 2012-08-10 2508

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Retrieve multiple movies by year using a SELECT statement.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="year">The year the movies were released.</param>
 /// <returns></returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetMovies(string tableName, int year)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE year = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { N = year.ToString() },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

 /// <summary>
 /// Inserts a single movie into the movies table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)
 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {

Query a table using PartiQL API Version 2012-08-10 2509

Amazon DynamoDB Developer Guide

 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Updates a single movie in the table, adding information for the
 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>
 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Query a table using PartiQL API Version 2012-08-10 2510

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Deletes a single movie from the table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>
 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Displays the list of movies returned from a database query.
 /// </summary>
 /// <param name="items">The list of movie information to display.</param>
 private static void DisplayMovies(List<Dictionary<string,
 AttributeValue>> items)
 {
 if (items.Count > 0)
 {
 Console.WriteLine($"Found {items.Count} movies.");
 items.ForEach(item =>
 Console.WriteLine($"{item["year"].N}\t{item["title"].S}"));
 }

Query a table using PartiQL API Version 2012-08-10 2511

Amazon DynamoDB Developer Guide

 else
 {
 Console.WriteLine($"Didn't find a movie that matched the supplied
 criteria.");
 }
 }

 }
}

 /// <summary>
 /// Uses a PartiQL SELECT statement to retrieve a single movie from the
 /// movie database.
 /// </summary>
 /// <param name="tableName">The name of the movie table.</param>
 /// <param name="movieTitle">The title of the movie to retrieve.</param>
 /// <returns>A list of movie data. If no movie matches the supplied
 /// title, the list is empty.</returns>
 public static async Task<List<Dictionary<string, AttributeValue>>>
 GetSingleMovie(string tableName, string movieTitle)
 {
 string selectSingle = $"SELECT * FROM {tableName} WHERE title = ?";
 var parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 };

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = selectSingle,
 Parameters = parameters,
 });

 return response.Items;
 }

 /// <summary>
 /// Inserts a single movie into the movies table.

Query a table using PartiQL API Version 2012-08-10 2512

Amazon DynamoDB Developer Guide

 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to insert.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success or failure of
 /// the INSERT operation.</returns>
 public static async Task<bool> InsertSingleMovie(string tableName, string
 movieTitle, int year)
 {
 string insertBatch = $"INSERT INTO {tableName} VALUE {{'title': ?,
 'year': ?}}";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertBatch,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Updates a single movie in the table, adding information for the
 /// producer.
 /// </summary>
 /// <param name="tableName">the name of the table.</param>
 /// <param name="producer">The name of the producer.</param>
 /// <param name="movieTitle">The movie title.</param>
 /// <param name="year">The year the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// UPDATE operation.</returns>
 public static async Task<bool> UpdateSingleMovie(string tableName, string
 producer, string movieTitle, int year)
 {
 string insertSingle = $"UPDATE {tableName} SET Producer=? WHERE title
 = ? AND year = ?";

Query a table using PartiQL API Version 2012-08-10 2513

Amazon DynamoDB Developer Guide

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = insertSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = producer },
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

 /// <summary>
 /// Deletes a single movie from the table.
 /// </summary>
 /// <param name="tableName">The name of the table.</param>
 /// <param name="movieTitle">The title of the movie to delete.</param>
 /// <param name="year">The year that the movie was released.</param>
 /// <returns>A Boolean value that indicates the success of the
 /// DELETE operation.</returns>
 public static async Task<bool> DeleteSingleMovie(string tableName, string
 movieTitle, int year)
 {
 var deleteSingle = $"DELETE FROM {tableName} WHERE title = ? AND year
 = ?";

 var response = await Client.ExecuteStatementAsync(new
 ExecuteStatementRequest
 {
 Statement = deleteSingle,
 Parameters = new List<AttributeValue>
 {
 new AttributeValue { S = movieTitle },
 new AttributeValue { N = year.ToString() },
 },
 });

 return response.HttpStatusCode == System.Net.HttpStatusCode.OK;
 }

Query a table using PartiQL API Version 2012-08-10 2514

Amazon DynamoDB Developer Guide

• For API details, see ExecuteStatement in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 // 1. Create a table. (CreateTable)
 if (AwsDoc::DynamoDB::createMoviesDynamoDBTable(clientConfig)) {

 AwsDoc::DynamoDB::partiqlExecuteScenario(clientConfig);

 // 7. Delete the table. (DeleteTable)
 AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(clientConfig);
 }

//! Scenario to modify and query a DynamoDB table using single PartiQL
 statements.
/*!
 \sa partiqlExecuteScenario()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
 */
bool
AwsDoc::DynamoDB::partiqlExecuteScenario(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 // 2. Add a new movie using an "Insert" statement. (ExecuteStatement)
 Aws::String title;
 float rating;
 int year;
 Aws::String plot;
 {

Query a table using PartiQL API Version 2012-08-10 2515

https://docs.amazonaws.cn/goto/DotNetSDKV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 title = askQuestion(
 "Enter the title of a movie you want to add to the table: ");
 year = askQuestionForInt("What year was it released? ");
 rating = askQuestionForFloatRange("On a scale of 1 - 10, how do you rate
 it? ",
 1, 10);
 plot = askQuestion("Summarize the plot for me: ");

 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "INSERT INTO \"" << MOVIE_TABLE_NAME << "\" VALUE {'"
 << TITLE_KEY << "': ?, '" << YEAR_KEY << "': ?, '"
 << INFO_KEY << "': ?}";

 request.SetStatement(sqlStream.str());

 // Create the parameter attributes.
 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));

 Aws::DynamoDB::Model::AttributeValue infoMapAttribute;

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> ratingAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 ratingAttribute->SetN(rating);
 infoMapAttribute.AddMEntry(RATING_KEY, ratingAttribute);

 std::shared_ptr<Aws::DynamoDB::Model::AttributeValue> plotAttribute =
 Aws::MakeShared<Aws::DynamoDB::Model::AttributeValue>(
 ALLOCATION_TAG.c_str());
 plotAttribute->SetS(plot);
 infoMapAttribute.AddMEntry(PLOT_KEY, plotAttribute);
 attributes.push_back(infoMapAttribute);
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to add a movie: " <<
 outcome.GetError().GetMessage()

Query a table using PartiQL API Version 2012-08-10 2516

Amazon DynamoDB Developer Guide

 << std::endl;
 return false;
 }
 }

 std::cout << "\nAdded '" << title << "' to '" << MOVIE_TABLE_NAME << "'."
 << std::endl;

 // 3. Get the data for the movie using a "Select" statement.
 (ExecuteStatement)
 {
 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to retrieve movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 else {
 // Print the retrieved movie information.
 const Aws::DynamoDB::Model::ExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = result.GetItems();

 if (items.size() == 1) {
 printMovieInfo(items[0]);
 }
 else {

Query a table using PartiQL API Version 2012-08-10 2517

Amazon DynamoDB Developer Guide

 std::cerr << "Error: " << items.size() << " movies were
 retrieved. "
 << " There should be only one movie." << std::endl;
 }
 }
 }

 // 4. Update the data for the movie using an "Update" statement.
 (ExecuteStatement)
 {
 rating = askQuestionForFloatRange(
 Aws::String("\nLet's update your movie.\nYou rated it ") +
 std::to_string(rating)
 + ", what new rating would you give it? ", 1, 10);

 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "UPDATE \"" << MOVIE_TABLE_NAME << "\" SET "
 << INFO_KEY << "." << RATING_KEY << "=? WHERE "
 << TITLE_KEY << "=? AND " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;

 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(rating));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));

 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);

 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to update a movie: "
 << outcome.GetError().GetMessage();
 return false;
 }
 }

 std::cout << "\nUpdated '" << title << "' with new attributes:" << std::endl;

Query a table using PartiQL API Version 2012-08-10 2518

Amazon DynamoDB Developer Guide

 // 5. Get the updated data for the movie using a "Select" statement.
 (ExecuteStatement)
 {
 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "SELECT * FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to retrieve the movie information: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 else {
 const Aws::DynamoDB::Model::ExecuteStatementResult &result =
 outcome.GetResult();

 const Aws::Vector<Aws::Map<Aws::String,
 Aws::DynamoDB::Model::AttributeValue>> &items = result.GetItems();

 if (items.size() == 1) {
 printMovieInfo(items[0]);
 }
 else {
 std::cerr << "Error: " << items.size() << " movies were
 retrieved. "
 << " There should be only one movie." << std::endl;
 }
 }
 }

 std::cout << "Deleting the movie" << std::endl;

 // 6. Delete the movie using a "Delete" statement. (ExecuteStatement)

Query a table using PartiQL API Version 2012-08-10 2519

Amazon DynamoDB Developer Guide

 {
 Aws::DynamoDB::Model::ExecuteStatementRequest request;
 std::stringstream sqlStream;
 sqlStream << "DELETE FROM \"" << MOVIE_TABLE_NAME << "\" WHERE "
 << TITLE_KEY << "=? and " << YEAR_KEY << "=?";

 request.SetStatement(sqlStream.str());

 Aws::Vector<Aws::DynamoDB::Model::AttributeValue> attributes;
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetS(title));
 attributes.push_back(Aws::DynamoDB::Model::AttributeValue().SetN(year));
 request.SetParameters(attributes);

 Aws::DynamoDB::Model::ExecuteStatementOutcome outcome =
 dynamoClient.ExecuteStatement(
 request);
 if (!outcome.IsSuccess()) {
 std::cerr << "Failed to delete the movie: "
 << outcome.GetError().GetMessage() << std::endl;
 return false;
 }
 }

 std::cout << "Movie successfully deleted." << std::endl;
 return true;
}

//! Create a DynamoDB table to be used in sample code scenarios.
/*!
 \sa createMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::createMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 bool movieTableAlreadyExisted = false;

 {
 Aws::DynamoDB::Model::CreateTableRequest request;

 Aws::DynamoDB::Model::AttributeDefinition yearAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(YEAR_KEY);

Query a table using PartiQL API Version 2012-08-10 2520

Amazon DynamoDB Developer Guide

 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::N);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::AttributeDefinition titleAttributeDefinition;
 yearAttributeDefinition.SetAttributeName(TITLE_KEY);
 yearAttributeDefinition.SetAttributeType(
 Aws::DynamoDB::Model::ScalarAttributeType::S);
 request.AddAttributeDefinitions(yearAttributeDefinition);

 Aws::DynamoDB::Model::KeySchemaElement yearKeySchema;
 yearKeySchema.WithAttributeName(YEAR_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::HASH);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::KeySchemaElement titleKeySchema;
 yearKeySchema.WithAttributeName(TITLE_KEY).WithKeyType(
 Aws::DynamoDB::Model::KeyType::RANGE);
 request.AddKeySchema(yearKeySchema);

 Aws::DynamoDB::Model::ProvisionedThroughput throughput;
 throughput.WithReadCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS).WithWriteCapacityUnits(
 PROVISIONED_THROUGHPUT_UNITS);
 request.SetProvisionedThroughput(throughput);
 request.SetTableName(MOVIE_TABLE_NAME);

 std::cout << "Creating table '" << MOVIE_TABLE_NAME << "'..." <<
 std::endl;
 const Aws::DynamoDB::Model::CreateTableOutcome &result =
 dynamoClient.CreateTable(
 request);
 if (!result.IsSuccess()) {
 if (result.GetError().GetErrorType() ==
 Aws::DynamoDB::DynamoDBErrors::RESOURCE_IN_USE) {
 std::cout << "Table already exists." << std::endl;
 movieTableAlreadyExisted = true;
 }
 else {
 std::cerr << "Failed to create table: "
 << result.GetError().GetMessage();
 return false;
 }
 }

Query a table using PartiQL API Version 2012-08-10 2521

Amazon DynamoDB Developer Guide

 }

 // Wait for table to become active.
 if (!movieTableAlreadyExisted) {
 std::cout << "Waiting for table '" << MOVIE_TABLE_NAME
 << "' to become active...." << std::endl;
 if (!AwsDoc::DynamoDB::waitTableActive(MOVIE_TABLE_NAME,
 clientConfiguration)) {
 return false;
 }
 std::cout << "Table '" << MOVIE_TABLE_NAME << "' created and active."
 << std::endl;
 }

 return true;
}

//! Delete the DynamoDB table used for sample code scenarios.
/*!
 \sa deleteMoviesDynamoDBTable()
 \param clientConfiguration: AWS client configuration.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::deleteMoviesDynamoDBTable(
 const Aws::Client::ClientConfiguration &clientConfiguration) {
 Aws::DynamoDB::DynamoDBClient dynamoClient(clientConfiguration);

 Aws::DynamoDB::Model::DeleteTableRequest request;
 request.SetTableName(MOVIE_TABLE_NAME);

 const Aws::DynamoDB::Model::DeleteTableOutcome &result =
 dynamoClient.DeleteTable(
 request);
 if (result.IsSuccess()) {
 std::cout << "Your table \""
 << result.GetResult().GetTableDescription().GetTableName()
 << " was deleted.\n";
 }
 else {
 std::cerr << "Failed to delete table: " << result.GetError().GetMessage()
 << std::endl;
 }

 return result.IsSuccess();

Query a table using PartiQL API Version 2012-08-10 2522

Amazon DynamoDB Developer Guide

}

//! Query a newly created DynamoDB table until it is active.
/*!
 \sa waitTableActive()
 \param waitTableActive: The DynamoDB table's name.
 \param dynamoClient: A DynamoDB client.
 \return bool: Function succeeded.
*/
bool AwsDoc::DynamoDB::waitTableActive(const Aws::String &tableName,
 const Aws::DynamoDB::DynamoDBClient
 &dynamoClient) {

 // Repeatedly call DescribeTable until table is ACTIVE.
 const int MAX_QUERIES = 20;
 Aws::DynamoDB::Model::DescribeTableRequest request;
 request.SetTableName(tableName);

 int count = 0;
 while (count < MAX_QUERIES) {
 const Aws::DynamoDB::Model::DescribeTableOutcome &result =
 dynamoClient.DescribeTable(
 request);
 if (result.IsSuccess()) {
 Aws::DynamoDB::Model::TableStatus status =
 result.GetResult().GetTable().GetTableStatus();

 if (Aws::DynamoDB::Model::TableStatus::ACTIVE != status) {
 std::this_thread::sleep_for(std::chrono::seconds(1));
 }
 else {
 return true;
 }
 }
 else {
 std::cerr << "Error DynamoDB::waitTableActive "
 << result.GetError().GetMessage() << std::endl;
 return false;
 }
 count++;
 }
 return false;
}

Query a table using PartiQL API Version 2012-08-10 2523

Amazon DynamoDB Developer Guide

• For API details, see ExecuteStatement in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run a scenario that creates a table and runs PartiQL queries.

import (
 "context"
 "fmt"
 "log"
 "strings"
 "time"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/dynamodb/actions"
)

// RunPartiQLSingleScenario shows you how to use the AWS SDK for Go
// to use PartiQL to query a table that stores data about movies.
//
// * Use PartiQL statements to add, get, update, and delete data for individual
 movies.
//
// This example creates an Amazon DynamoDB service client from the specified
 sdkConfig so that
// you can replace it with a mocked or stubbed config for unit testing.
//
// This example creates and deletes a DynamoDB table to use during the scenario.
func RunPartiQLSingleScenario(ctx context.Context, sdkConfig aws.Config,
 tableName string) {

Query a table using PartiQL API Version 2012-08-10 2524

https://docs.amazonaws.cn/goto/SdkForCpp/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 defer func() {
 if r := recover(); r != nil {
 fmt.Printf("Something went wrong with the demo.")
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Println("Welcome to the Amazon DynamoDB PartiQL single action demo.")
 log.Println(strings.Repeat("-", 88))

 tableBasics := actions.TableBasics{
 DynamoDbClient: dynamodb.NewFromConfig(sdkConfig),
 TableName: tableName,
 }
 runner := actions.PartiQLRunner{
 DynamoDbClient: dynamodb.NewFromConfig(sdkConfig),
 TableName: tableName,
 }

 exists, err := tableBasics.TableExists(ctx)
 if err != nil {
 panic(err)
 }
 if !exists {
 log.Printf("Creating table %v...\n", tableName)
 _, err = tableBasics.CreateMovieTable(ctx)
 if err != nil {
 panic(err)
 } else {
 log.Printf("Created table %v.\n", tableName)
 }
 } else {
 log.Printf("Table %v already exists.\n", tableName)
 }
 log.Println(strings.Repeat("-", 88))

 currentYear, _, _ := time.Now().Date()
 customMovie := actions.Movie{
 Title: "24 Hour PartiQL People",
 Year: currentYear,
 Info: map[string]interface{}{
 "plot": "A group of data developers discover a new query language they can't
 stop using.",
 "rating": 9.9,

Query a table using PartiQL API Version 2012-08-10 2525

Amazon DynamoDB Developer Guide

 },
 }

 log.Printf("Inserting movie '%v' released in %v.", customMovie.Title,
 customMovie.Year)
 err = runner.AddMovie(ctx, customMovie)
 if err == nil {
 log.Printf("Added %v to the movie table.\n", customMovie.Title)
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Getting data for movie '%v' released in %v.", customMovie.Title,
 customMovie.Year)
 movie, err := runner.GetMovie(ctx, customMovie.Title, customMovie.Year)
 if err == nil {
 log.Println(movie)
 }
 log.Println(strings.Repeat("-", 88))

 newRating := 6.6
 log.Printf("Updating movie '%v' with a rating of %v.", customMovie.Title,
 newRating)
 err = runner.UpdateMovie(ctx, customMovie, newRating)
 if err == nil {
 log.Printf("Updated %v with a new rating.\n", customMovie.Title)
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Getting data again to verify the update.")
 movie, err = runner.GetMovie(ctx, customMovie.Title, customMovie.Year)
 if err == nil {
 log.Println(movie)
 }
 log.Println(strings.Repeat("-", 88))

 log.Printf("Deleting movie '%v'.\n", customMovie.Title)
 err = runner.DeleteMovie(ctx, customMovie)
 if err == nil {
 log.Printf("Deleted %v.\n", customMovie.Title)
 }

 err = tableBasics.DeleteTable(ctx)
 if err == nil {
 log.Printf("Deleted table %v.\n", tableBasics.TableName)

Query a table using PartiQL API Version 2012-08-10 2526

Amazon DynamoDB Developer Guide

 }

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Define a Movie struct that is used in this example.

import (
 "archive/zip"
 "bytes"
 "encoding/json"
 "fmt"
 "io"
 "log"
 "net/http"

 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// Movie encapsulates data about a movie. Title and Year are the composite
 primary key
// of the movie in Amazon DynamoDB. Title is the sort key, Year is the partition
 key,
// and Info is additional data.
type Movie struct {
 Title string `dynamodbav:"title"`
 Year int `dynamodbav:"year"`
 Info map[string]interface{} `dynamodbav:"info"`
}

// GetKey returns the composite primary key of the movie in a format that can be
// sent to DynamoDB.
func (movie Movie) GetKey() map[string]types.AttributeValue {
 title, err := attributevalue.Marshal(movie.Title)
 if err != nil {
 panic(err)
 }

Query a table using PartiQL API Version 2012-08-10 2527

Amazon DynamoDB Developer Guide

 year, err := attributevalue.Marshal(movie.Year)
 if err != nil {
 panic(err)
 }
 return map[string]types.AttributeValue{"title": title, "year": year}
}

// String returns the title, year, rating, and plot of a movie, formatted for the
 example.
func (movie Movie) String() string {
 return fmt.Sprintf("%v\n\tReleased: %v\n\tRating: %v\n\tPlot: %v\n",
 movie.Title, movie.Year, movie.Info["rating"], movie.Info["plot"])
}

Create a struct and methods that run PartiQL statements.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// PartiQLRunner encapsulates the Amazon DynamoDB service actions used in the
// PartiQL examples. It contains a DynamoDB service client that is used to act on
 the
// specified table.
type PartiQLRunner struct {
 DynamoDbClient *dynamodb.Client
 TableName string
}

// AddMovie runs a PartiQL INSERT statement to add a movie to the DynamoDB table.
func (runner PartiQLRunner) AddMovie(ctx context.Context, movie Movie) error {

Query a table using PartiQL API Version 2012-08-10 2528

Amazon DynamoDB Developer Guide

 params, err := attributevalue.MarshalList([]interface{}{movie.Title, movie.Year,
 movie.Info})
 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("INSERT INTO \"%v\" VALUE {'title': ?, 'year': ?, 'info': ?}",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't insert an item with PartiQL. Here's why: %v\n", err)
 }
 return err
}

// GetMovie runs a PartiQL SELECT statement to get a movie from the DynamoDB
 table by
// title and year.
func (runner PartiQLRunner) GetMovie(ctx context.Context, title string, year int)
 (Movie, error) {
 var movie Movie
 params, err := attributevalue.MarshalList([]interface{}{title, year})
 if err != nil {
 panic(err)
 }
 response, err := runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("SELECT * FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't get info about %v. Here's why: %v\n", title, err)
 } else {
 err = attributevalue.UnmarshalMap(response.Items[0], &movie)
 if err != nil {
 log.Printf("Couldn't unmarshal response. Here's why: %v\n", err)
 }

Query a table using PartiQL API Version 2012-08-10 2529

Amazon DynamoDB Developer Guide

 }
 return movie, err
}

// UpdateMovie runs a PartiQL UPDATE statement to update the rating of a movie
 that
// already exists in the DynamoDB table.
func (runner PartiQLRunner) UpdateMovie(ctx context.Context, movie Movie, rating
 float64) error {
 params, err := attributevalue.MarshalList([]interface{}{rating, movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("UPDATE \"%v\" SET info.rating=? WHERE title=? AND year=?",
 runner.TableName)),
 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't update movie %v. Here's why: %v\n", movie.Title, err)
 }
 return err
}

// DeleteMovie runs a PartiQL DELETE statement to remove a movie from the
 DynamoDB table.
func (runner PartiQLRunner) DeleteMovie(ctx context.Context, movie Movie) error {
 params, err := attributevalue.MarshalList([]interface{}{movie.Title,
 movie.Year})
 if err != nil {
 panic(err)
 }
 _, err = runner.DynamoDbClient.ExecuteStatement(ctx,
 &dynamodb.ExecuteStatementInput{
 Statement: aws.String(
 fmt.Sprintf("DELETE FROM \"%v\" WHERE title=? AND year=?",
 runner.TableName)),

Query a table using PartiQL API Version 2012-08-10 2530

Amazon DynamoDB Developer Guide

 Parameters: params,
 })
 if err != nil {
 log.Printf("Couldn't delete %v from the table. Here's why: %v\n", movie.Title,
 err)
 }
 return err
}

• For API details, see ExecuteStatement in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

public class ScenarioPartiQ {
 public static void main(String[] args) throws IOException {
 String fileName = "../../../resources/sample_files/movies.json";
 String tableName = "MoviesPartiQ";
 Region region = Region.US_EAST_1;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 System.out.println(
 "******* Creating an Amazon DynamoDB table named MoviesPartiQ with a
 key named year and a sort key named title.");
 createTable(ddb, tableName);

 System.out.println("Loading data into the MoviesPartiQ table.");
 loadData(ddb, fileName);

 System.out.println("Getting data from the MoviesPartiQ table.");
 getItem(ddb);

Query a table using PartiQL API Version 2012-08-10 2531

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/dynamodb#Client.ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 System.out.println("Putting a record into the MoviesPartiQ table.");
 putRecord(ddb);

 System.out.println("Updating a record.");
 updateTableItem(ddb);

 System.out.println("Querying the movies released in 2013.");
 queryTable(ddb);

 System.out.println("Deleting the Amazon DynamoDB table.");
 deleteDynamoDBTable(ddb, tableName);
 ddb.close();
 }

 public static void createTable(DynamoDbClient ddb, String tableName) {
 DynamoDbWaiter dbWaiter = ddb.waiter();
 ArrayList<AttributeDefinition> attributeDefinitions = new ArrayList<>();

 // Define attributes.
 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("year")
 .attributeType("N")
 .build());

 attributeDefinitions.add(AttributeDefinition.builder()
 .attributeName("title")
 .attributeType("S")
 .build());

 ArrayList<KeySchemaElement> tableKey = new ArrayList<>();
 KeySchemaElement key = KeySchemaElement.builder()
 .attributeName("year")
 .keyType(KeyType.HASH)
 .build();

 KeySchemaElement key2 = KeySchemaElement.builder()
 .attributeName("title")
 .keyType(KeyType.RANGE) // Sort
 .build();

 // Add KeySchemaElement objects to the list.
 tableKey.add(key);
 tableKey.add(key2);

Query a table using PartiQL API Version 2012-08-10 2532

Amazon DynamoDB Developer Guide

 CreateTableRequest request = CreateTableRequest.builder()
 .keySchema(tableKey)
 .billingMode(BillingMode.PAY_PER_REQUEST) //Scales based on traffic.
 .attributeDefinitions(attributeDefinitions)
 .tableName(tableName)
 .build();

 try {
 CreateTableResponse response = ddb.createTable(request);
 DescribeTableRequest tableRequest = DescribeTableRequest.builder()
 .tableName(tableName)
 .build();

 // Wait until the Amazon DynamoDB table is created.
 WaiterResponse<DescribeTableResponse> waiterResponse =
 dbWaiter.waitUntilTableExists(tableRequest);
 waiterResponse.matched().response().ifPresent(System.out::println);
 String newTable = response.tableDescription().tableName();
 System.out.println("The " + newTable + " was successfully created.");

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 // Load data into the table.
 public static void loadData(DynamoDbClient ddb, String fileName) throws
 IOException {

 String sqlStatement = "INSERT INTO MoviesPartiQ VALUE {'year':?,
 'title' : ?, 'info' : ?}";
 JsonParser parser = new JsonFactory().createParser(new File(fileName));
 com.fasterxml.jackson.databind.JsonNode rootNode = new
 ObjectMapper().readTree(parser);
 Iterator<JsonNode> iter = rootNode.iterator();
 ObjectNode currentNode;
 int t = 0;
 List<AttributeValue> parameters = new ArrayList<>();
 while (iter.hasNext()) {

 // Add 200 movies to the table.
 if (t == 200)

Query a table using PartiQL API Version 2012-08-10 2533

Amazon DynamoDB Developer Guide

 break;
 currentNode = (ObjectNode) iter.next();

 int year = currentNode.path("year").asInt();
 String title = currentNode.path("title").asText();
 String info = currentNode.path("info").toString();

 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf(year))
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s(title)
 .build();

 AttributeValue att3 = AttributeValue.builder()
 .s(info)
 .build();

 parameters.add(att1);
 parameters.add(att2);
 parameters.add(att3);

 // Insert the movie into the Amazon DynamoDB table.
 executeStatementRequest(ddb, sqlStatement, parameters);
 System.out.println("Added Movie " + title);

 parameters.remove(att1);
 parameters.remove(att2);
 parameters.remove(att3);
 t++;
 }
 }

 public static void getItem(DynamoDbClient ddb) {

 String sqlStatement = "SELECT * FROM MoviesPartiQ where year=? and
 title=?";
 List<AttributeValue> parameters = new ArrayList<>();
 AttributeValue att1 = AttributeValue.builder()
 .n("2012")
 .build();

 AttributeValue att2 = AttributeValue.builder()

Query a table using PartiQL API Version 2012-08-10 2534

Amazon DynamoDB Developer Guide

 .s("The Perks of Being a Wallflower")
 .build();

 parameters.add(att1);
 parameters.add(att2);

 try {
 ExecuteStatementResponse response = executeStatementRequest(ddb,
 sqlStatement, parameters);
 System.out.println("ExecuteStatement successful: " +
 response.toString());

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void putRecord(DynamoDbClient ddb) {

 String sqlStatement = "INSERT INTO MoviesPartiQ VALUE {'year':?,
 'title' : ?, 'info' : ?}";
 try {
 List<AttributeValue> parameters = new ArrayList<>();

 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf("2020"))
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s("My Movie")
 .build();

 AttributeValue att3 = AttributeValue.builder()
 .s("No Information")
 .build();

 parameters.add(att1);
 parameters.add(att2);
 parameters.add(att3);

 executeStatementRequest(ddb, sqlStatement, parameters);
 System.out.println("Added new movie.");

Query a table using PartiQL API Version 2012-08-10 2535

Amazon DynamoDB Developer Guide

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void updateTableItem(DynamoDbClient ddb) {

 String sqlStatement = "UPDATE MoviesPartiQ SET info = 'directors\":
[\"Merian C. Cooper\",\"Ernest B. Schoedsack' where year=? and title=?";
 List<AttributeValue> parameters = new ArrayList<>();
 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf("2013"))
 .build();

 AttributeValue att2 = AttributeValue.builder()
 .s("The East")
 .build();

 parameters.add(att1);
 parameters.add(att2);

 try {
 executeStatementRequest(ddb, sqlStatement, parameters);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println("Item was updated!");
 }

 // Query the table where the year is 2013.
 public static void queryTable(DynamoDbClient ddb) {
 String sqlStatement = "SELECT * FROM MoviesPartiQ where year = ? ORDER BY
 year";
 try {

 List<AttributeValue> parameters = new ArrayList<>();
 AttributeValue att1 = AttributeValue.builder()
 .n(String.valueOf("2013"))
 .build();
 parameters.add(att1);

Query a table using PartiQL API Version 2012-08-10 2536

Amazon DynamoDB Developer Guide

 // Get items in the table and write out the ID value.
 ExecuteStatementResponse response = executeStatementRequest(ddb,
 sqlStatement, parameters);
 System.out.println("ExecuteStatement successful: " +
 response.toString());

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 }

 public static void deleteDynamoDBTable(DynamoDbClient ddb, String tableName)
 {

 DeleteTableRequest request = DeleteTableRequest.builder()
 .tableName(tableName)
 .build();

 try {
 ddb.deleteTable(request);

 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }
 System.out.println(tableName + " was successfully deleted!");
 }

 private static ExecuteStatementResponse
 executeStatementRequest(DynamoDbClient ddb, String statement,

 List<AttributeValue> parameters) {
 ExecuteStatementRequest request = ExecuteStatementRequest.builder()
 .statement(statement)
 .parameters(parameters)
 .build();

 return ddb.executeStatement(request);
 }

 private static void processResults(ExecuteStatementResponse
 executeStatementResult) {

Query a table using PartiQL API Version 2012-08-10 2537

Amazon DynamoDB Developer Guide

 System.out.println("ExecuteStatement successful: " +
 executeStatementResult.toString());
 }
}

• For API details, see ExecuteStatement in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Execute single PartiQL statements.

import {
 BillingMode,
 CreateTableCommand,
 DeleteTableCommand,
 DescribeTableCommand,
 DynamoDBClient,
 waitUntilTableExists,
} from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";
import { ScenarioInput } from "@aws-doc-sdk-examples/lib/scenario";

const client = new DynamoDBClient({});
const docClient = DynamoDBDocumentClient.from(client);

const log = (msg) => console.log(`[SCENARIO] ${msg}`);
const tableName = "SingleOriginCoffees";

export const main = async (confirmAll = false) => {
 /**

Query a table using PartiQL API Version 2012-08-10 2538

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 * Delete table if it exists.
 */
 try {
 await client.send(new DescribeTableCommand({ TableName: tableName }));
 // If no error was thrown, the table exists.
 const input = new ScenarioInput(
 "deleteTable",
 `A table named ${tableName} already exists. If you choose not to delete
this table, the scenario cannot continue. Delete it?`,
 { type: "confirm", confirmAll },
);
 const deleteTable = await input.handle({});
 if (deleteTable) {
 await client.send(new DeleteTableCommand({ tableName }));
 } else {
 console.warn(
 "Scenario could not run. Either delete ${tableName} or provide a unique
 table name.",
);
 return;
 }
 } catch (caught) {
 if (
 caught instanceof Error &&
 caught.name === "ResourceNotFoundException"
) {
 // Do nothing. This means the table is not there.
 } else {
 throw caught;
 }
 }

 /**
 * Create a table.
 */

 log("Creating a table.");
 const createTableCommand = new CreateTableCommand({
 TableName: tableName,
 // This example performs a large write to the database.
 // Set the billing mode to PAY_PER_REQUEST to
 // avoid throttling the large write.
 BillingMode: BillingMode.PAY_PER_REQUEST,
 // Define the attributes that are necessary for the key schema.

Query a table using PartiQL API Version 2012-08-10 2539

Amazon DynamoDB Developer Guide

 AttributeDefinitions: [
 {
 AttributeName: "varietal",
 // 'S' is a data type descriptor that represents a number type.
 // For a list of all data type descriptors, see the following link.
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Programming.LowLevelAPI.html#Programming.LowLevelAPI.DataTypeDescriptors
 AttributeType: "S",
 },
],
 // The KeySchema defines the primary key. The primary key can be
 // a partition key, or a combination of a partition key and a sort key.
 // Key schema design is important. For more info, see
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-
practices.html
 KeySchema: [{ AttributeName: "varietal", KeyType: "HASH" }],
 });
 await client.send(createTableCommand);
 log(`Table created: ${tableName}.`);

 /**
 * Wait until the table is active.
 */

 // This polls with DescribeTableCommand until the requested table is 'ACTIVE'.
 // You can't write to a table before it's active.
 log("Waiting for the table to be active.");
 await waitUntilTableExists({ client }, { TableName: tableName });
 log("Table active.");

 /**
 * Insert an item.
 */

 log("Inserting a coffee into the table.");
 const addItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.insert.html
 Statement: `INSERT INTO ${tableName} value {'varietal':?, 'profile':?}`,
 Parameters: ["arabica", ["chocolate", "floral"]],
 });
 await client.send(addItemStatementCommand);
 log("Coffee inserted.");

Query a table using PartiQL API Version 2012-08-10 2540

Amazon DynamoDB Developer Guide

 /**
 * Select an item.
 */

 log("Selecting the coffee from the table.");
 const selectItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.select.html
 Statement: `SELECT * FROM ${tableName} WHERE varietal=?`,
 Parameters: ["arabica"],
 });
 const selectItemResponse = await docClient.send(selectItemStatementCommand);
 log(`Got coffee: ${JSON.stringify(selectItemResponse.Items[0])}`);

 /**
 * Update the item.
 */

 log("Add a flavor profile to the coffee.");
 const updateItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.update.html
 Statement: `UPDATE ${tableName} SET profile=list_append(profile, ?) WHERE
 varietal=?`,
 Parameters: [["fruity"], "arabica"],
 });
 await client.send(updateItemStatementCommand);
 log("Updated coffee");

 /**
 * Delete the item.
 */

 log("Deleting the coffee.");
 const deleteItemStatementCommand = new ExecuteStatementCommand({
 // https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-
reference.delete.html
 Statement: `DELETE FROM ${tableName} WHERE varietal=?`,
 Parameters: ["arabica"],
 });
 await docClient.send(deleteItemStatementCommand);
 log("Coffee deleted.");

 /**

Query a table using PartiQL API Version 2012-08-10 2541

Amazon DynamoDB Developer Guide

 * Delete the table.
 */

 log("Deleting the table.");
 const deleteTableCommand = new DeleteTableCommand({ TableName: tableName });
 await client.send(deleteTableCommand);
 log("Table deleted.");
};

• For API details, see ExecuteStatement in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun main() {
 val ddb = DynamoDbClient.fromEnvironment { region = "us-east-1" }
 val tableName = "MoviesPartiQ"
 val fileName = "../../../resources/sample_files/movies.json"
 println("Creating an Amazon DynamoDB table named MoviesPartiQ with a key
 named id and a sort key named title.")
 createTablePartiQL(ddb, tableName, "year")
 loadDataPartiQL(ddb, fileName)

 println("******* Getting data from the MoviesPartiQ table.")
 getMoviePartiQL(ddb)

 println("******* Putting a record into the MoviesPartiQ table.")
 putRecordPartiQL(ddb)

 println("******* Updating a record.")
 updateTableItemPartiQL(ddb)

 println("******* Querying the movies released in 2013.")
 queryTablePartiQL(ddb)

Query a table using PartiQL API Version 2012-08-10 2542

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 println("******* Deleting the MoviesPartiQ table.")
 deleteTablePartiQL(tableName)
}

suspend fun createTablePartiQL(
 ddb: DynamoDbClient,
 tableNameVal: String,
 key: String,
) {
 val attDef =
 AttributeDefinition {
 attributeName = key
 attributeType = ScalarAttributeType.N
 }

 val attDef1 =
 AttributeDefinition {
 attributeName = "title"
 attributeType = ScalarAttributeType.S
 }

 val keySchemaVal =
 KeySchemaElement {
 attributeName = key
 keyType = KeyType.Hash
 }

 val keySchemaVal1 =
 KeySchemaElement {
 attributeName = "title"
 keyType = KeyType.Range
 }

 val request =
 CreateTableRequest {
 attributeDefinitions = listOf(attDef, attDef1)
 keySchema = listOf(keySchemaVal, keySchemaVal1)
 billingMode = BillingMode.PayPerRequest
 tableName = tableNameVal
 }

 val response = ddb.createTable(request)
 ddb.waitUntilTableExists {

Query a table using PartiQL API Version 2012-08-10 2543

Amazon DynamoDB Developer Guide

 // suspend call
 tableName = tableNameVal
 }
 println("The table was successfully created
 ${response.tableDescription?.tableArn}")
}

suspend fun loadDataPartiQL(
 ddb: DynamoDbClient,
 fileName: String,
) {
 val sqlStatement = "INSERT INTO MoviesPartiQ VALUE {'year':?, 'title' : ?,
 'info' : ?}"
 val parser = JsonFactory().createParser(File(fileName))
 val rootNode = ObjectMapper().readTree<JsonNode>(parser)
 val iter: Iterator<JsonNode> = rootNode.iterator()
 var currentNode: ObjectNode
 var t = 0

 while (iter.hasNext()) {
 if (t == 200) {
 break
 }

 currentNode = iter.next() as ObjectNode
 val year = currentNode.path("year").asInt()
 val title = currentNode.path("title").asText()
 val info = currentNode.path("info").toString()

 val parameters: MutableList<AttributeValue> = ArrayList<AttributeValue>()
 parameters.add(AttributeValue.N(year.toString()))
 parameters.add(AttributeValue.S(title))
 parameters.add(AttributeValue.S(info))

 executeStatementPartiQL(ddb, sqlStatement, parameters)
 println("Added Movie $title")
 parameters.clear()
 t++
 }
}

suspend fun getMoviePartiQL(ddb: DynamoDbClient) {
 val sqlStatement = "SELECT * FROM MoviesPartiQ where year=? and title=?"
 val parameters: MutableList<AttributeValue> = ArrayList<AttributeValue>()

Query a table using PartiQL API Version 2012-08-10 2544

Amazon DynamoDB Developer Guide

 parameters.add(AttributeValue.N("2012"))
 parameters.add(AttributeValue.S("The Perks of Being a Wallflower"))
 val response = executeStatementPartiQL(ddb, sqlStatement, parameters)
 println("ExecuteStatement successful: $response")
}

suspend fun putRecordPartiQL(ddb: DynamoDbClient) {
 val sqlStatement = "INSERT INTO MoviesPartiQ VALUE {'year':?, 'title' : ?,
 'info' : ?}"
 val parameters: MutableList<AttributeValue> = java.util.ArrayList()
 parameters.add(AttributeValue.N("2020"))
 parameters.add(AttributeValue.S("My Movie"))
 parameters.add(AttributeValue.S("No Info"))
 executeStatementPartiQL(ddb, sqlStatement, parameters)
 println("Added new movie.")
}

suspend fun updateTableItemPartiQL(ddb: DynamoDbClient) {
 val sqlStatement = "UPDATE MoviesPartiQ SET info = 'directors\":[\"Merian C.
 Cooper\",\"Ernest B. Schoedsack\' where year=? and title=?"
 val parameters: MutableList<AttributeValue> = java.util.ArrayList()
 parameters.add(AttributeValue.N("2013"))
 parameters.add(AttributeValue.S("The East"))
 executeStatementPartiQL(ddb, sqlStatement, parameters)
 println("Item was updated!")
}

// Query the table where the year is 2013.
suspend fun queryTablePartiQL(ddb: DynamoDbClient) {
 val sqlStatement = "SELECT * FROM MoviesPartiQ where year = ?"
 val parameters: MutableList<AttributeValue> = java.util.ArrayList()
 parameters.add(AttributeValue.N("2013"))
 val response = executeStatementPartiQL(ddb, sqlStatement, parameters)
 println("ExecuteStatement successful: $response")
}

suspend fun deleteTablePartiQL(tableNameVal: String) {
 val request =
 DeleteTableRequest {
 tableName = tableNameVal
 }

 DynamoDbClient { region = "us-east-1" }.use { ddb ->
 ddb.deleteTable(request)

Query a table using PartiQL API Version 2012-08-10 2545

Amazon DynamoDB Developer Guide

 println("$tableNameVal was deleted")
 }
}

suspend fun executeStatementPartiQL(
 ddb: DynamoDbClient,
 statementVal: String,
 parametersVal: List<AttributeValue>,
): ExecuteStatementResponse {
 val request =
 ExecuteStatementRequest {
 statement = statementVal
 parameters = parametersVal
 }

 return ddb.executeStatement(request)
}

• For API details, see ExecuteStatement in Amazon SDK for Kotlin API reference.

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace DynamoDb\PartiQL_Basics;

use Aws\DynamoDb\Marshaler;
use DynamoDb;
use DynamoDb\DynamoDBAttribute;

use function AwsUtilities\testable_readline;
use function AwsUtilities\loadMovieData;

class GettingStartedWithPartiQL
{

Query a table using PartiQL API Version 2012-08-10 2546

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 public function run()
 {
 echo("\n");
 echo("--------------------------------------\n");
 print("Welcome to the Amazon DynamoDB - PartiQL getting started demo
 using PHP!\n");
 echo("--------------------------------------\n");

 $uuid = uniqid();
 $service = new DynamoDb\DynamoDBService();

 $tableName = "partiql_demo_table_$uuid";
 $service->createTable(
 $tableName,
 [
 new DynamoDBAttribute('year', 'N', 'HASH'),
 new DynamoDBAttribute('title', 'S', 'RANGE')
]
);

 echo "Waiting for table...";
 $service->dynamoDbClient->waitUntil("TableExists", ['TableName' =>
 $tableName]);
 echo "table $tableName found!\n";

 echo "What's the name of the last movie you watched?\n";
 while (empty($movieName)) {
 $movieName = testable_readline("Movie name: ");
 }
 echo "And what year was it released?\n";
 $movieYear = "year";
 while (!is_numeric($movieYear) || intval($movieYear) != $movieYear) {
 $movieYear = testable_readline("Year released: ");
 }
 $key = [
 'Item' => [
 'year' => [
 'N' => "$movieYear",
],
 'title' => [
 'S' => $movieName,
],
],
];

Query a table using PartiQL API Version 2012-08-10 2547

Amazon DynamoDB Developer Guide

 list($statement, $parameters) = $service-
>buildStatementAndParameters("INSERT", $tableName, $key);
 $service->insertItemByPartiQL($statement, $parameters);

 echo "How would you rate the movie from 1-10?\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 echo "What was the movie about?\n";
 while (empty($plot)) {
 $plot = testable_readline("Plot summary: ");
 }
 $attributes = [
 new DynamoDBAttribute('rating', 'N', 'HASH', $rating),
 new DynamoDBAttribute('plot', 'S', 'RANGE', $plot),
];

 list($statement, $parameters) = $service-
>buildStatementAndParameters("UPDATE", $tableName, $key, $attributes);
 $service->updateItemByPartiQL($statement, $parameters);
 echo "Movie added and updated.\n";

 $batch = json_decode(loadMovieData());

 $service->writeBatch($tableName, $batch);

 $movie = $service->getItemByPartiQL($tableName, $key);
 echo "\nThe movie {$movie['Items'][0]['title']['S']} was released in
 {$movie['Items'][0]['year']['N']}.\n";
 echo "What rating would you like to give {$movie['Items'][0]['title']
['S']}?\n";
 $rating = 0;
 while (!is_numeric($rating) || intval($rating) != $rating || $rating < 1
 || $rating > 10) {
 $rating = testable_readline("Rating (1-10): ");
 }
 $attributes = [
 new DynamoDBAttribute('rating', 'N', 'HASH', $rating),
 new DynamoDBAttribute('plot', 'S', 'RANGE', $plot)
];

Query a table using PartiQL API Version 2012-08-10 2548

Amazon DynamoDB Developer Guide

 list($statement, $parameters) = $service-
>buildStatementAndParameters("UPDATE", $tableName, $key, $attributes);
 $service->updateItemByPartiQL($statement, $parameters);

 $movie = $service->getItemByPartiQL($tableName, $key);
 echo "Okay, you have rated {$movie['Items'][0]['title']['S']} as a
 {$movie['Items'][0]['rating']['N']}\n";

 $service->deleteItemByPartiQL($statement, $parameters);
 echo "But, bad news, this was a trap. That movie has now been deleted
 because of your rating...harsh.\n";

 echo "That's okay though. The book was better. Now, for something
 lighter, in what year were you born?\n";
 $birthYear = "not a number";
 while (!is_numeric($birthYear) || $birthYear >= date("Y")) {
 $birthYear = testable_readline("Birth year: ");
 }
 $birthKey = [
 'Key' => [
 'year' => [
 'N' => "$birthYear",
],
],
];
 $result = $service->query($tableName, $birthKey);
 $marshal = new Marshaler();
 echo "Here are the movies in our collection released the year you were
 born:\n";
 $oops = "Oops! There were no movies released in that year (that we know
 of).\n";
 $display = "";
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 $display .= $movie['title'] . "\n";
 }
 echo ($display) ?: $oops;

 $yearsKey = [
 'Key' => [
 'year' => [
 'N' => [
 'minRange' => 1990,
 'maxRange' => 1999,

Query a table using PartiQL API Version 2012-08-10 2549

Amazon DynamoDB Developer Guide

],
],
],
];
 $filter = "year between 1990 and 1999";
 echo "\nHere's a list of all the movies released in the 90s:\n";
 $result = $service->scan($tableName, $yearsKey, $filter);
 foreach ($result['Items'] as $movie) {
 $movie = $marshal->unmarshalItem($movie);
 echo $movie['title'] . "\n";
 }

 echo "\nCleaning up this demo by deleting table $tableName...\n";
 $service->deleteTable($tableName);
 }
}

 public function insertItemByPartiQL(string $statement, array $parameters)
 {
 $this->dynamoDbClient->executeStatement([
 'Statement' => "$statement",
 'Parameters' => $parameters,
]);
 }

 public function getItemByPartiQL(string $tableName, array $key): Result
 {
 list($statement, $parameters) = $this-
>buildStatementAndParameters("SELECT", $tableName, $key['Item']);

 return $this->dynamoDbClient->executeStatement([
 'Parameters' => $parameters,
 'Statement' => $statement,
]);
 }

 public function updateItemByPartiQL(string $statement, array $parameters)
 {
 $this->dynamoDbClient->executeStatement([
 'Statement' => $statement,
 'Parameters' => $parameters,
]);
 }

Query a table using PartiQL API Version 2012-08-10 2550

Amazon DynamoDB Developer Guide

 public function deleteItemByPartiQL(string $statement, array $parameters)
 {
 $this->dynamoDbClient->executeStatement([
 'Statement' => $statement,
 'Parameters' => $parameters,
]);
 }

• For API details, see ExecuteStatement in Amazon SDK for PHP API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a class that can run PartiQL statements.

from datetime import datetime
from decimal import Decimal
import logging
from pprint import pprint

import boto3
from botocore.exceptions import ClientError

from scaffold import Scaffold

logger = logging.getLogger(__name__)

class PartiQLWrapper:
 """
 Encapsulates a DynamoDB resource to run PartiQL statements.
 """

 def __init__(self, dyn_resource):
 """

Query a table using PartiQL API Version 2012-08-10 2551

https://docs.amazonaws.cn/goto/SdkForPHPV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 :param dyn_resource: A Boto3 DynamoDB resource.
 """
 self.dyn_resource = dyn_resource

 def run_partiql(self, statement, params):
 """
 Runs a PartiQL statement. A Boto3 resource is used even though
 `execute_statement` is called on the underlying `client` object because
 the
 resource transforms input and output from plain old Python objects
 (POPOs) to
 the DynamoDB format. If you create the client directly, you must do these
 transforms yourself.

 :param statement: The PartiQL statement.
 :param params: The list of PartiQL parameters. These are applied to the
 statement in the order they are listed.
 :return: The items returned from the statement, if any.
 """
 try:
 output = self.dyn_resource.meta.client.execute_statement(
 Statement=statement, Parameters=params
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Couldn't execute PartiQL '%s' because the table does not
 exist.",
 statement,
)
 else:
 logger.error(
 "Couldn't execute PartiQL '%s'. Here's why: %s: %s",
 statement,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return output

Query a table using PartiQL API Version 2012-08-10 2552

Amazon DynamoDB Developer Guide

Run a scenario that creates a table and runs PartiQL queries.

def run_scenario(scaffold, wrapper, table_name):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the Amazon DynamoDB PartiQL single statement demo.")
 print("-" * 88)

 print(f"Creating table '{table_name}' for the demo...")
 scaffold.create_table(table_name)
 print("-" * 88)

 title = "24 Hour PartiQL People"
 year = datetime.now().year
 plot = "A group of data developers discover a new query language they can't
 stop using."
 rating = Decimal("9.9")

 print(f"Inserting movie '{title}' released in {year}.")
 wrapper.run_partiql(
 f"INSERT INTO \"{table_name}\" VALUE {{'title': ?, 'year': ?,
 'info': ?}}",
 [title, year, {"plot": plot, "rating": rating}],
)
 print("Success!")
 print("-" * 88)

 print(f"Getting data for movie '{title}' released in {year}.")
 output = wrapper.run_partiql(
 f'SELECT * FROM "{table_name}" WHERE title=? AND year=?', [title, year]
)
 for item in output["Items"]:
 print(f"\n{item['title']}, {item['year']}")
 pprint(output["Items"])
 print("-" * 88)

 rating = Decimal("2.4")
 print(f"Updating movie '{title}' with a rating of {float(rating)}.")
 wrapper.run_partiql(
 f'UPDATE "{table_name}" SET info.rating=? WHERE title=? AND year=?',

Query a table using PartiQL API Version 2012-08-10 2553

Amazon DynamoDB Developer Guide

 [rating, title, year],
)
 print("Success!")
 print("-" * 88)

 print(f"Getting data again to verify our update.")
 output = wrapper.run_partiql(
 f'SELECT * FROM "{table_name}" WHERE title=? AND year=?', [title, year]
)
 for item in output["Items"]:
 print(f"\n{item['title']}, {item['year']}")
 pprint(output["Items"])
 print("-" * 88)

 print(f"Deleting movie '{title}' released in {year}.")
 wrapper.run_partiql(
 f'DELETE FROM "{table_name}" WHERE title=? AND year=?', [title, year]
)
 print("Success!")
 print("-" * 88)

 print(f"Deleting table '{table_name}'...")
 scaffold.delete_table()
 print("-" * 88)

 print("\nThanks for watching!")
 print("-" * 88)

if __name__ == "__main__":
 try:
 dyn_res = boto3.resource("dynamodb")
 scaffold = Scaffold(dyn_res)
 movies = PartiQLWrapper(dyn_res)
 run_scenario(scaffold, movies, "doc-example-table-partiql-movies")
 except Exception as e:
 print(f"Something went wrong with the demo! Here's what: {e}")

• For API details, see ExecuteStatement in Amazon SDK for Python (Boto3) API Reference.

Query a table using PartiQL API Version 2012-08-10 2554

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/ExecuteStatement

Amazon DynamoDB Developer Guide

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run a scenario that creates a table and runs PartiQL queries.

 table_name = "doc-example-table-movies-partiql-#{rand(10**8)}"
 scaffold = Scaffold.new(table_name)
 sdk = DynamoDBPartiQLSingle.new(table_name)

 new_step(1, 'Create a new DynamoDB table if none already exists.')
 unless scaffold.exists?(table_name)
 puts("\nNo such table: #{table_name}. Creating it...")
 scaffold.create_table(table_name)
 print "Done!\n".green
 end

 new_step(2, 'Populate DynamoDB table with movie data.')
 download_file = 'moviedata.json'
 puts("Downloading movie database to #{download_file}...")
 movie_data = scaffold.fetch_movie_data(download_file)
 puts("Writing movie data from #{download_file} into your table...")
 scaffold.write_batch(movie_data)
 puts("Records added: #{movie_data.length}.")
 print "Done!\n".green

 new_step(3, 'Select a single item from the movies table.')
 response = sdk.select_item_by_title('Star Wars')
 puts("Items selected for title 'Star Wars': #{response.items.length}\n")
 print response.items.first.to_s.yellow
 print "\n\nDone!\n".green

 new_step(4, 'Update a single item from the movies table.')
 puts "Let's correct the rating on The Big Lebowski to 10.0."
 sdk.update_rating_by_title('The Big Lebowski', 1998, 10.0)
 print "\nDone!\n".green

Query a table using PartiQL API Version 2012-08-10 2555

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 new_step(5, 'Delete a single item from the movies table.')
 puts "Let's delete The Silence of the Lambs because it's just too scary."
 sdk.delete_item_by_title('The Silence of the Lambs', 1991)
 print "\nDone!\n".green

 new_step(6, 'Insert a new item into the movies table.')
 puts "Let's create a less-scary movie called The Prancing of the Lambs."
 sdk.insert_item('The Prancing of the Lambs', 2005, 'A movie about happy
 livestock.', 5.0)
 print "\nDone!\n".green

 new_step(7, 'Delete the table.')
 return unless scaffold.exists?(table_name)

 scaffold.delete_table
end

• For API details, see ExecuteStatement in Amazon SDK for Ruby API Reference.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn make_table(
 client: &Client,
 table: &str,
 key: &str,
) -> Result<(), SdkError<CreateTableError>> {
 let ad = AttributeDefinition::builder()
 .attribute_name(key)
 .attribute_type(ScalarAttributeType::S)
 .build()
 .expect("creating AttributeDefinition");

 let ks = KeySchemaElement::builder()

Query a table using PartiQL API Version 2012-08-10 2556

https://docs.amazonaws.cn/goto/SdkForRubyV3/dynamodb-2012-08-10/ExecuteStatement
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/dynamodb#code-examples

Amazon DynamoDB Developer Guide

 .attribute_name(key)
 .key_type(KeyType::Hash)
 .build()
 .expect("creating KeySchemaElement");

 match client
 .create_table()
 .table_name(table)
 .key_schema(ks)
 .attribute_definitions(ad)
 .billing_mode(BillingMode::PayPerRequest)
 .send()
 .await
 {
 Ok(_) => Ok(()),
 Err(e) => Err(e),
 }
}

async fn add_item(client: &Client, item: Item) -> Result<(),
 SdkError<ExecuteStatementError>> {
 match client
 .execute_statement()
 .statement(format!(
 r#"INSERT INTO "{}" VALUE {{
 "{}": ?,
 "acount_type": ?,
 "age": ?,
 "first_name": ?,
 "last_name": ?
 }} "#,
 item.table, item.key
))
 .set_parameters(Some(vec![
 AttributeValue::S(item.utype),
 AttributeValue::S(item.age),
 AttributeValue::S(item.first_name),
 AttributeValue::S(item.last_name),
]))
 .send()
 .await
 {
 Ok(_) => Ok(()),
 Err(e) => Err(e),

Query a table using PartiQL API Version 2012-08-10 2557

Amazon DynamoDB Developer Guide

 }
}

async fn query_item(client: &Client, item: Item) -> bool {
 match client
 .execute_statement()
 .statement(format!(
 r#"SELECT * FROM "{}" WHERE "{}" = ?"#,
 item.table, item.key
))
 .set_parameters(Some(vec![AttributeValue::S(item.value)]))
 .send()
 .await
 {
 Ok(resp) => {
 if !resp.items().is_empty() {
 println!("Found a matching entry in the table:");
 println!("{:?}", resp.items.unwrap_or_default().pop());
 true
 } else {
 println!("Did not find a match.");
 false
 }
 }
 Err(e) => {
 println!("Got an error querying table:");
 println!("{}", e);
 process::exit(1);
 }
 }
}

async fn remove_item(client: &Client, table: &str, key: &str, value: String) ->
 Result<(), Error> {
 client
 .execute_statement()
 .statement(format!(r#"DELETE FROM "{table}" WHERE "{key}" = ?"#))
 .set_parameters(Some(vec![AttributeValue::S(value)]))
 .send()
 .await?;

 println!("Deleted item.");

 Ok(())

Query a table using PartiQL API Version 2012-08-10 2558

Amazon DynamoDB Developer Guide

}

async fn remove_table(client: &Client, table: &str) -> Result<(), Error> {
 client.delete_table().table_name(table).send().await?;

 Ok(())
}

• For API details, see ExecuteStatement in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table using a Global Secondary Index with an
Amazon SDK

The following code examples show how to query a table using a Global Secondary Index.

• Query a DynamoDB table using its primary key.

• Query a Global Secondary Index (GSI) for alternate access patterns.

• Compare table queries and GSI queries.

Java

SDK for Java 2.x

Query a DynamoDB table using its primary key and a Global Secondary Index (GSI) with
Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;

Query a table using a Global Secondary Index API Version 2012-08-10 2559

https://docs.rs/aws-sdk-dynamodb/latest/aws_sdk_dynamodb/client/struct.Client.html#method.execute_statement

Amazon DynamoDB Developer Guide

import java.util.Map;

 public QueryResponse queryTable(
 final String tableName, final String partitionKeyName, final String
 partitionKeyValue) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query on base table successful. Found " +
 response.count() + " items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw new DynamoDbQueryException("Table not found: " + tableName, e);
 } catch (DynamoDbException e) {
 System.err.println("Error querying base table: " + e.getMessage());
 throw new DynamoDbQueryException("Failed to execute query on base
 table", e);
 }
 }

Query a table using a Global Secondary Index API Version 2012-08-10 2560

Amazon DynamoDB Developer Guide

 /**
 * Queries a DynamoDB Global Secondary Index (GSI) by partition key.
 *
 * @param tableName The name of the DynamoDB table
 * @param indexName The name of the GSI
 * @param partitionKeyName The name of the GSI partition key attribute
 * @param partitionKeyValue The value of the GSI partition key to query
 * @return The query response from DynamoDB
 * @throws ResourceNotFoundException if the table or index doesn't exist
 * @throws DynamoDbException if the query fails
 */
 public QueryResponse queryGlobalSecondaryIndex(
 final String tableName, final String indexName, final String
 partitionKeyName, final String partitionKeyValue) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Index name", indexName);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_IK,
 partitionKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_IK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .indexName(indexName)
 .keyConditionExpression(GSI_KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);

Query a table using a Global Secondary Index API Version 2012-08-10 2561

Amazon DynamoDB Developer Guide

 System.out.println("Query on GSI successful. Found " +
 response.count() + " items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(
 "Error: The Amazon DynamoDB table \"%s\" or index \"%s\" can't be
 found.\n", tableName, indexName);
 throw new DynamoDbQueryException("Table or index not found: " +
 tableName + "/" + indexName, e);
 } catch (DynamoDbException e) {
 System.err.println("Error querying GSI: " + e.getMessage());
 throw new DynamoDbQueryException("Failed to execute query on GSI",
 e);
 }
 }

Compare querying a table directly versus querying a GSI with Amazon SDK for Java 2.x.

 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <tableName> <basePartitionKeyName> <basePartitionKeyValue>
 <gsiName> <gsiPartitionKeyName> <gsiPartitionKeyValue> [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 basePartitionKeyName - The name of the base table partition
 key attribute.
 basePartitionKeyValue - The value of the base table partition
 key to query.
 gsiName - The name of the Global Secondary Index.
 gsiPartitionKeyName - The name of the GSI partition key
 attribute.
 gsiPartitionKeyValue - The value of the GSI partition key to
 query.
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

 if (args.length < 6) {
 System.out.println(usage);
 System.exit(1);

Query a table using a Global Secondary Index API Version 2012-08-10 2562

Amazon DynamoDB Developer Guide

 }

 final String tableName = args[0];
 final String basePartitionKeyName = args[1];
 final String basePartitionKeyValue = args[2];
 final String gsiName = args[3];
 final String gsiPartitionKeyName = args[4];
 final String gsiPartitionKeyValue = args[5];
 final Region region = args.length > 6 ? Region.of(args[6]) :
 Region.US_EAST_1;

 try (DynamoDbClient ddb =
 DynamoDbClient.builder().region(region).build()) {
 final QueryTableAndGSI queryHelper = new QueryTableAndGSI(ddb);

 // Query the base table
 System.out.println("Querying base table where " +
 basePartitionKeyName + " = " + basePartitionKeyValue);
 final QueryResponse tableResponse =
 queryHelper.queryTable(tableName, basePartitionKeyName,
 basePartitionKeyValue);

 System.out.println("Found " + tableResponse.count() + " items in base
 table:");
 tableResponse.items().forEach(item -> System.out.println(item));

 // Query the GSI
 System.out.println(
 "\nQuerying GSI '" + gsiName + "' where " + gsiPartitionKeyName +
 " = " + gsiPartitionKeyValue);
 final QueryResponse gsiResponse =
 queryHelper.queryGlobalSecondaryIndex(tableName, gsiName,
 gsiPartitionKeyName, gsiPartitionKeyValue);

 System.out.println("Found " + gsiResponse.count() + " items in
 GSI:");
 gsiResponse.items().forEach(item -> System.out.println(item));

 // Explain the differences between querying a table and a GSI
 System.out.println("\nKey differences between querying a table and a
 GSI:");
 System.out.println("1. When querying a GSI, you must specify the
 indexName parameter");

Query a table using a Global Secondary Index API Version 2012-08-10 2563

Amazon DynamoDB Developer Guide

 System.out.println("2. GSIs may not contain all attributes from the
 base table (projection)");
 System.out.println("3. GSIs consume read capacity units from the
 GSI's capacity, not the base table's");
 System.out.println("4. GSIs may have eventually consistent data
 (cannot use ConsistentRead=true)");

 } catch (IllegalArgumentException e) {
 System.err.println("Invalid input: " + e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table or index not found: " + e.getMessage());
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println("DynamoDB error: " + e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 System.err.println("Unexpected error: " + e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table using the primary key with Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table using the primary key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} userId - The user ID to query by (partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryTable(
 config,

Query a table using a Global Secondary Index API Version 2012-08-10 2564

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 tableName,
 userId
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the base table
 const input = {
 TableName: tableName,
 KeyConditionExpression: "user_id = :userId",
 ExpressionAttributeValues: {
 ":userId": { S: userId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying table: ${error}`);
 throw error;
 }
}

Query a DynamoDB Global Secondary Index (GSI) with Amazon SDK for JavaScript.

/**
 * Queries a DynamoDB Global Secondary Index (GSI)
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} indexName - The name of the GSI to query
 * @param {string} gameId - The game ID to query by (GSI partition key)
 * @returns {Promise<Object>} - The query response
 */
async function queryGSI(
 config,
 tableName,
 indexName,
 gameId
) {

Query a table using a Global Secondary Index API Version 2012-08-10 2565

Amazon DynamoDB Developer Guide

 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input for the GSI
 const input = {
 TableName: tableName,
 IndexName: indexName,
 KeyConditionExpression: "game_id = :gameId",
 ExpressionAttributeValues: {
 ":gameId": { S: gameId }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying GSI: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table using its primary key and a Global Secondary Index (GSI) with
Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Key

def query_table(table_name, partition_key_name, partition_key_value):
 """
 Query a DynamoDB table using its primary key.

 Args:
 table_name (str): The name of the DynamoDB table.

Query a table using a Global Secondary Index API Version 2012-08-10 2566

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Perform the query on the table's primary key
 response =
 table.query(KeyConditionExpression=Key(partition_key_name).eq(partition_key_value))

 return response

def query_gsi(table_name, index_name, partition_key_name, partition_key_value):
 """
 Query a Global Secondary Index (GSI) on a DynamoDB table.

 Args:
 table_name (str): The name of the DynamoDB table.
 index_name (str): The name of the Global Secondary Index.
 partition_key_name (str): The name of the GSI's partition key attribute.
 partition_key_value (str): The value of the GSI's partition key to query.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Perform the query on the GSI
 response = table.query(
 IndexName=index_name,
 KeyConditionExpression=Key(partition_key_name).eq(partition_key_value)
)

 return response

Query a table using a Global Secondary Index API Version 2012-08-10 2567

Amazon DynamoDB Developer Guide

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table using a begins_with condition with an
Amazon SDK

The following code examples show how to query a table using a begins_with condition.

• Use the begins_with function in a key condition expression.

• Filter items based on a prefix pattern in the sort key.

Java

SDK for Java 2.x

Query a DynamoDB table using a begins_with condition on the sort key with Amazon SDK
for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithBeginsWithCondition(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String sortKeyName,

Query a table using a begins_with condition API Version 2012-08-10 2568

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 final String sortKeyPrefix) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Sort key name", sortKeyName);
 CodeSampleUtils.validateStringParameter("Sort key prefix",
 sortKeyPrefix);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_SK, sortKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_SK_PREFIX,
 AttributeValue.builder().s(sortKeyPrefix).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 LOGGER.log(Level.INFO, "Query with begins_with condition successful.
 Found {0} items", response.count());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying with begins_with condition",
 e);
 throw e;

Query a table using a begins_with condition API Version 2012-08-10 2569

Amazon DynamoDB Developer Guide

 }
 }

Demonstrate using begins_with with different prefix lengths with Amazon SDK for Java 2.x.

 public static void main(String[] args) {
 try {
 CodeSampleUtils.BeginsWithQueryConfig config =
 CodeSampleUtils.BeginsWithQueryConfig.fromArgs(args);
 LOGGER.log(Level.INFO, "Querying items where {0} = {1} and {2} begins
 with ''{3}''", new Object[] {
 config.getPartitionKeyName(),
 config.getPartitionKeyValue(),
 config.getSortKeyName(),
 config.getSortKeyPrefix()
 });

 // Using the builder pattern to create and execute the query
 final QueryResponse response = new BeginsWithQueryBuilder()
 .withTableName(config.getTableName())
 .withPartitionKeyName(config.getPartitionKeyName())
 .withPartitionKeyValue(config.getPartitionKeyValue())
 .withSortKeyName(config.getSortKeyName())
 .withSortKeyPrefix(config.getSortKeyPrefix())
 .withRegion(config.getRegion())
 .execute();

 // Process the results
 LOGGER.log(Level.INFO, "Found {0} items:", response.count());
 response.items().forEach(item -> LOGGER.info(item.toString()));

 // Demonstrate with a different prefix
 if (!config.getSortKeyPrefix().isEmpty()) {
 String shorterPrefix = config.getSortKeyPrefix()
 .substring(0, Math.max(1,
 config.getSortKeyPrefix().length() / 2));
 LOGGER.log(Level.INFO, "\nNow querying with a shorter prefix:
 ''{0}''", shorterPrefix);

 final QueryResponse response2 = new BeginsWithQueryBuilder()
 .withTableName(config.getTableName())
 .withPartitionKeyName(config.getPartitionKeyName())

Query a table using a begins_with condition API Version 2012-08-10 2570

Amazon DynamoDB Developer Guide

 .withPartitionKeyValue(config.getPartitionKeyValue())
 .withSortKeyName(config.getSortKeyName())
 .withSortKeyPrefix(shorterPrefix)
 .withRegion(config.getRegion())
 .execute();

 LOGGER.log(Level.INFO, "Found {0} items with shorter prefix:",
 response2.count());
 response2.items().forEach(item -> LOGGER.info(item.toString()));
 }
 } catch (IllegalArgumentException e) {
 LOGGER.log(Level.SEVERE, "Invalid input: {0}", e.getMessage());
 printUsage();
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found", e);
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "DynamoDB error", e);
 } catch (Exception e) {
 LOGGER.log(Level.SEVERE, "Unexpected error", e);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table using a begins_with condition on the sort key with Amazon SDK
for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items where the sort key begins with a specific
 prefix
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key

Query a table using a begins_with condition API Version 2012-08-10 2571

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 * @param {string} prefix - The prefix to match at the beginning of the sort key
 * @returns {Promise<Object>} - The query response
 */
async function queryWithBeginsWith(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 prefix
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND begins_with(#sk, :prefix)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":prefix": { S: prefix }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with begins_with: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Query a table using a begins_with condition API Version 2012-08-10 2572

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Query a DynamoDB table using a begins_with condition on the sort key with Amazon SDK
for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Key

def query_with_begins_with(
 table_name, partition_key_name, partition_key_value, sort_key_name, prefix
):
 """
 Query a DynamoDB table with a begins_with condition on the sort key.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str): The name of the sort key attribute.
 prefix (str): The prefix to match at the beginning of the sort key.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Perform the query with a begins_with condition on the sort key
 key_condition = Key(partition_key_name).eq(partition_key_value) & Key(
 sort_key_name
).begins_with(prefix)
 response = table.query(KeyConditionExpression=key_condition)

 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Query a table using a begins_with condition API Version 2012-08-10 2573

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table using a date range in the sort key with an
Amazon SDK

The following code examples show how to query a table using a date range in the sort key.

• Query items within a specific date range.

• Use comparison operators on date-formatted sort keys.

Java

SDK for Java 2.x

Query a DynamoDB table for items within a date range with Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.time.LocalDate;
import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithDateRange(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String dateKeyName,
 final LocalDate startDate,
 final LocalDate endDate) {

 // Focus on query logic, assuming parameters are valid

Query a table using a date range API Version 2012-08-10 2574

Amazon DynamoDB Developer Guide

 if (startDate == null || endDate == null) {
 throw new IllegalArgumentException("Start date and end date cannot be
 null");
 }

 if (endDate.isBefore(startDate)) {
 throw new IllegalArgumentException("End date must be after start
 date");
 }

 // Format dates as ISO strings for DynamoDB (using just the date part)
 final String formattedStartDate = startDate.toString();
 final String formattedEndDate = endDate.toString();

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_SK, dateKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_START_DATE,
 AttributeValue.builder().s(formattedStartDate).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_END_DATE,
 AttributeValue.builder().s(formattedEndDate).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);

Query a table using a date range API Version 2012-08-10 2575

Amazon DynamoDB Developer Guide

 LOGGER.log(Level.INFO, "Query by date range successful. Found {0}
 items", response.count());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying by date range: {0}",
 e.getMessage());
 throw e;
 }
 }

Demonstrates how to query a DynamoDB table with date range filtering.

 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <tableName> <partitionKeyName> <partitionKeyValue>
 <dateKeyName> <startDate> <endDate> [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 partitionKeyName - The name of the partition key attribute.
 partitionKeyValue - The value of the partition key to query.
 dateKeyName - The name of the date attribute to filter on.
 startDate - The start date for the range query (YYYY-MM-DD).
 endDate - The end date for the range query (YYYY-MM-DD).
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

 if (args.length < 6) {
 System.out.println(usage);
 System.exit(1);
 }

 try {
 // Parse command line arguments into a config object
 CodeSampleUtils.DateRangeQueryConfig config =
 CodeSampleUtils.DateRangeQueryConfig.fromArgs(args);

Query a table using a date range API Version 2012-08-10 2576

Amazon DynamoDB Developer Guide

 LOGGER.log(
 Level.INFO, "Querying items from {0} to {1}", new Object[]
 {config.getStartDate(), config.getEndDate()
 });

 // Using the builder pattern to create and execute the query
 final QueryResponse response = new DateRangeQueryBuilder()
 .withTableName(config.getTableName())
 .withPartitionKeyName(config.getPartitionKeyName())
 .withPartitionKeyValue(config.getPartitionKeyValue())
 .withDateKeyName(config.getDateKeyName())
 .withStartDate(config.getStartDate())
 .withEndDate(config.getEndDate())
 .withRegion(config.getRegion())
 .execute();

 // Process the results
 LOGGER.log(Level.INFO, "Found {0} items:", response.count());
 response.items().forEach(item -> {
 LOGGER.info(item.toString());

 // Extract and display the date attribute for clarity
 if (item.containsKey(config.getDateKeyName())) {
 LOGGER.log(
 Level.INFO,
 " Date attribute: {0}",
 item.get(config.getDateKeyName()).s());
 }
 });

 // Demonstrate with a different date range
 LocalDate narrowerStartDate = config.getStartDate().plusDays(1);
 LocalDate narrowerEndDate = config.getEndDate().minusDays(1);

 if (!narrowerStartDate.isAfter(narrowerEndDate)) {
 LOGGER.log(Level.INFO, "\nNow querying with a narrower date
 range: {0} to {1}", new Object[] {
 narrowerStartDate, narrowerEndDate
 });

 final QueryResponse response2 = new DateRangeQueryBuilder()
 .withTableName(config.getTableName())
 .withPartitionKeyName(config.getPartitionKeyName())
 .withPartitionKeyValue(config.getPartitionKeyValue())

Query a table using a date range API Version 2012-08-10 2577

Amazon DynamoDB Developer Guide

 .withDateKeyName(config.getDateKeyName())
 .withStartDate(narrowerStartDate)
 .withEndDate(narrowerEndDate)
 .withRegion(config.getRegion())
 .execute();

 LOGGER.log(Level.INFO, "Found {0} items with narrower date
 range:", response2.count());
 response2.items().forEach(item -> LOGGER.info(item.toString()));
 }

 LOGGER.info("\nNote: When storing dates in DynamoDB:");
 LOGGER.info("1. Use ISO format (YYYY-MM-DD) for lexicographical
 ordering");
 LOGGER.info("2. Use the BETWEEN operator for inclusive date range
 queries");
 LOGGER.info("3. Consider using ISO-8601 format for timestamps with
 time components");

 } catch (IllegalArgumentException e) {
 LOGGER.log(Level.SEVERE, "Invalid input: {0}", e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", e.getMessage());
 System.exit(1);
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "DynamoDB error: {0}", e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 LOGGER.log(Level.SEVERE, "Unexpected error: {0}", e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table for items within a date range with Amazon SDK for JavaScript.

Query a table using a date range API Version 2012-08-10 2578

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range on the sort
 key
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key (must be a date/time
 attribute)
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRangeOnSortKey(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: '#pk = :pkValue AND #sk BETWEEN :startDate
 AND :endDate',
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {

Query a table using a date range API Version 2012-08-10 2579

Amazon DynamoDB Developer Guide

 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying by date range on sort key: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table for items within a date range with Amazon SDK for Python
(Boto3).

from datetime import datetime, timedelta

import boto3
from boto3.dynamodb.conditions import Key

def query_with_date_range(
 table_name, partition_key_name, partition_key_value, sort_key_name,
 start_date, end_date
):
 """
 Query a DynamoDB table with a date range on the sort key.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.

Query a table using a date range API Version 2012-08-10 2580

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 sort_key_name (str): The name of the sort key attribute (containing date
 values).
 start_date (datetime): The start date for the query range.
 end_date (datetime): The end date for the query range.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Format the date values as ISO 8601 strings
 # DynamoDB works well with ISO format for date values
 start_date_str = start_date.isoformat()
 end_date_str = end_date.isoformat()

 # Perform the query with a date range on the sort key using BETWEEN operator
 key_condition = Key(partition_key_name).eq(partition_key_value) &
 Key(sort_key_name).between(
 start_date_str, end_date_str
)

 response = table.query(
 KeyConditionExpression=key_condition,
 ExpressionAttributeValues={
 ":pk_val": partition_key_value,
 ":start_date": start_date_str,
 ":end_date": end_date_str,
 },
)

 return response

def query_with_date_range_by_month(
 table_name, partition_key_name, partition_key_value, sort_key_name, year,
 month
):
 """
 Query a DynamoDB table for a specific month's data.

 Args:
 table_name (str): The name of the DynamoDB table.

Query a table using a date range API Version 2012-08-10 2581

Amazon DynamoDB Developer Guide

 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str): The name of the sort key attribute (containing date
 values).
 year (int): The year to query.
 month (int): The month to query (1-12).

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Calculate the start and end dates for the specified month
 if month == 12:
 next_year = year + 1
 next_month = 1
 else:
 next_year = year
 next_month = month + 1

 start_date = datetime(year, month, 1)
 end_date = datetime(next_year, next_month, 1) - timedelta(microseconds=1)

 # Format the date values as ISO 8601 strings
 start_date_str = start_date.isoformat()
 end_date_str = end_date.isoformat()

 # Perform the query with a date range on the sort key
 key_condition = Key(partition_key_name).eq(partition_key_value) &
 Key(sort_key_name).between(
 start_date_str, end_date_str
)

 response = table.query(KeyConditionExpression=key_condition)

 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Query a table using a date range API Version 2012-08-10 2582

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table with a complex filter expression with an
Amazon SDK

The following code examples show how to query a table with a complex filter expression.

• Apply complex filter expressions to query results.

• Combine multiple conditions using logical operators.

• Filter items based on non-key attributes.

Java

SDK for Java 2.x

Query a DynamoDB table with a complex filter expression using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithComplexFilter(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String statusAttrName,
 final String activeStatus,
 final String pendingStatus,
 final String priceAttrName,
 final double minPrice,

Query a table with a complex filter expression API Version 2012-08-10 2583

Amazon DynamoDB Developer Guide

 final double maxPrice,
 final String categoryAttrName) {

 // Validate parameters
 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Status attribute name",
 statusAttrName);
 CodeSampleUtils.validateStringParameter("Active status", activeStatus);
 CodeSampleUtils.validateStringParameter("Pending status", pendingStatus);
 CodeSampleUtils.validateStringParameter("Price attribute name",
 priceAttrName);
 CodeSampleUtils.validateStringParameter("Category attribute name",
 categoryAttrName);
 CodeSampleUtils.validateNumericRange("Minimum price", minPrice, 0.0,
 Double.MAX_VALUE);
 CodeSampleUtils.validateNumericRange("Maximum price", maxPrice, minPrice,
 Double.MAX_VALUE);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#pk", partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_STATUS,
 statusAttrName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PRICE,
 priceAttrName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_CATEGORY,
 categoryAttrName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":pkValue", AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_ACTIVE,
 AttributeValue.builder().s(activeStatus).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PENDING,
 AttributeValue.builder().s(pendingStatus).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_MIN_PRICE,
 AttributeValue.builder().n(String.valueOf(minPrice)).build());
 expressionAttributeValues.put(

Query a table with a complex filter expression API Version 2012-08-10 2584

Amazon DynamoDB Developer Guide

 EXPRESSION_ATTRIBUTE_VALUE_MAX_PRICE,
 AttributeValue.builder().n(String.valueOf(maxPrice)).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(FILTER_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 return dynamoDbClient.query(queryRequest);
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table with a complex filter expression using Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with a complex filter expression
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number|string} minViews - Minimum number of views for filtering
 * @param {number|string} minReplies - Minimum number of replies for filtering
 * @param {string} requiredTag - Tag that must be present in the item's tags set
 * @returns {Promise<Object>} - The query response
 */
async function queryWithComplexFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,

Query a table with a complex filter expression API Version 2012-08-10 2585

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 minViews,
 minReplies,
 requiredTag
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 FilterExpression: "views >= :minViews AND replies >= :minReplies AND
 contains(tags, :tag)",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":minViews": { N: minViews.toString() },
 ":minReplies": { N: minReplies.toString() },
 ":tag": { S: requiredTag }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with complex filter: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table with a complex filter expression using Amazon SDK for Python
(Boto3).

Query a table with a complex filter expression API Version 2012-08-10 2586

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_complex_filter(
 table_name,
 partition_key_name,
 partition_key_value,
 min_rating=None,
 status_list=None,
 max_price=None,
):
 """
 Query a DynamoDB table with a complex filter expression.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 min_rating (float, optional): Minimum rating value for filtering.
 status_list (list, optional): List of status values to include.
 max_price (float, optional): Maximum price value for filtering.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Initialize the filter expression and expression attribute values
 filter_expression = None
 expression_attribute_values = {}

 # Build the filter expression based on provided parameters
 if min_rating is not None:
 filter_expression = Attr("rating").gte(min_rating)
 expression_attribute_values[":min_rating"] = min_rating

 if status_list and len(status_list) > 0:

Query a table with a complex filter expression API Version 2012-08-10 2587

Amazon DynamoDB Developer Guide

 status_condition = None
 for i, status in enumerate(status_list):
 status_value_name = f":status{i}"
 expression_attribute_values[status_value_name] = status

 if status_condition is None:
 status_condition = Attr("status").eq(status)
 else:
 status_condition = status_condition | Attr("status").eq(status)

 if filter_expression is None:
 filter_expression = status_condition
 else:
 filter_expression = filter_expression & status_condition

 if max_price is not None:
 price_condition = Attr("price").lte(max_price)
 expression_attribute_values[":max_price"] = max_price

 if filter_expression is None:
 filter_expression = price_condition
 else:
 filter_expression = filter_expression & price_condition

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression
 if expression_attribute_values:
 query_params["ExpressionAttributeValues"] =
 expression_attribute_values

 # Execute the query
 response = table.query(**query_params)
 return response

def query_with_complex_filter_and_or(
 table_name,
 partition_key_name,
 partition_key_value,
 category=None,
 min_rating=None,

Query a table with a complex filter expression API Version 2012-08-10 2588

Amazon DynamoDB Developer Guide

 max_price=None,
):
 """
 Query a DynamoDB table with a complex filter expression using AND and OR
 operators.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 category (str, optional): Category value for filtering.
 min_rating (float, optional): Minimum rating value for filtering.
 max_price (float, optional): Maximum price value for filtering.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Build a complex filter expression with AND and OR operators
 filter_expression = None
 expression_attribute_values = {}

 # Build the category condition
 if category:
 filter_expression = Attr("category").eq(category)
 expression_attribute_values[":category"] = category

 # Build the rating and price condition (rating >= min_rating OR price <=
 max_price)
 rating_price_condition = None

 if min_rating is not None:
 rating_price_condition = Attr("rating").gte(min_rating)
 expression_attribute_values[":min_rating"] = min_rating

 if max_price is not None:
 price_condition = Attr("price").lte(max_price)
 expression_attribute_values[":max_price"] = max_price

Query a table with a complex filter expression API Version 2012-08-10 2589

Amazon DynamoDB Developer Guide

 if rating_price_condition is None:
 rating_price_condition = price_condition
 else:
 rating_price_condition = rating_price_condition | price_condition

 # Combine the conditions
 if rating_price_condition:
 if filter_expression is None:
 filter_expression = rating_price_condition
 else:
 filter_expression = filter_expression & rating_price_condition

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression
 if expression_attribute_values:
 query_params["ExpressionAttributeValues"] =
 expression_attribute_values

 # Execute the query
 response = table.query(**query_params)
 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table with a dynamic filter expression with an
Amazon SDK

The following code examples show how to query a table with a dynamic filter expression.

• Build filter expressions dynamically at runtime.

Query a table with a dynamic filter expression API Version 2012-08-10 2590

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

• Construct filter conditions based on user input or application state.

• Add or remove filter criteria conditionally.

Java

SDK for Java 2.x

Query a DynamoDB table with a dynamically constructed filter expression using Amazon
SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;

 public static QueryResponse queryWithDynamicFilter(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final Map<String, Object> filterCriteria,
 final Region region,
 final DynamoDbClient dynamoDbClient) {

 validateParameters(tableName, partitionKeyName, partitionKeyValue,
 filterCriteria);

 DynamoDbClient ddbClient = dynamoDbClient;
 boolean shouldClose = false;

 try {
 if (ddbClient == null) {
 ddbClient = createClient(region);
 shouldClose = true;
 }

Query a table with a dynamic filter expression API Version 2012-08-10 2591

Amazon DynamoDB Developer Guide

 final QueryWithDynamicFilter queryHelper = new
 QueryWithDynamicFilter(ddbClient);
 return queryHelper.queryWithDynamicFilter(tableName,
 partitionKeyName, partitionKeyValue, filterCriteria);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Failed to execute dynamic filter query: " +
 e.getMessage());
 throw e;
 } catch (Exception e) {
 System.err.println("Unexpected error during query: " +
 e.getMessage());
 throw e;
 } finally {
 if (shouldClose && ddbClient != null) {
 ddbClient.close();
 }
 }
 }

Demonstrates how to use dynamic filter expressions with Amazon SDK for Java 2.x.

 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <tableName> <partitionKeyName> <partitionKeyValue>
 <filterAttrName> <filterAttrValue> [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 partitionKeyName - The name of the partition key attribute.
 partitionKeyValue - The value of the partition key to query.
 filterAttrName - The name of the attribute to filter on.
 filterAttrValue - The value to filter by.
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

 if (args.length < 5) {
 System.out.println(usage);

Query a table with a dynamic filter expression API Version 2012-08-10 2592

Amazon DynamoDB Developer Guide

 System.exit(1);
 }

 final String tableName = args[0];
 final String partitionKeyName = args[1];
 final String partitionKeyValue = args[2];
 final String filterAttrName = args[3];
 final String filterAttrValue = args[4];
 final Region region = args.length > 5 ? Region.of(args[5]) :
 Region.US_EAST_1;

 System.out.println("Querying items with dynamic filter: " +
 filterAttrName + " = " + filterAttrValue);

 try {
 // Using the builder pattern to create and execute the query
 final QueryResponse response = new DynamicFilterQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withFilterCriterion(filterAttrName, filterAttrValue)
 .withRegion(region)
 .execute();

 // Process the results
 System.out.println("Found " + response.count() + " items:");
 response.items().forEach(item -> System.out.println(item));

 // Demonstrate multiple filter criteria
 System.out.println("\nNow querying with multiple filter criteria:");

 Map<String, Object> multipleFilters = new HashMap<>();
 multipleFilters.put(filterAttrName, filterAttrValue);
 multipleFilters.put("status", "active");

 final QueryResponse multiFilterResponse = new
 DynamicFilterQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withFilterCriteria(multipleFilters)
 .withRegion(region)
 .execute();

Query a table with a dynamic filter expression API Version 2012-08-10 2593

Amazon DynamoDB Developer Guide

 System.out.println("Found " + multiFilterResponse.count() + " items
 with multiple filters:");
 multiFilterResponse.items().forEach(item ->
 System.out.println(item));

 } catch (IllegalArgumentException e) {
 System.err.println("Invalid input: " + e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println("DynamoDB error: " + e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 System.err.println("Unexpected error: " + e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table with a dynamically constructed filter expression using Amazon
SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

async function queryWithDynamicFilter(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 sortKeyValue,
 filterParams = {}
) {
 try {
 // Create DynamoDB client

Query a table with a dynamic filter expression API Version 2012-08-10 2594

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 const client = new DynamoDBClient(config);

 // Initialize filter expression components
 let filterExpressions = [];
 const expressionAttributeValues = {
 ":pkValue": { S: partitionKeyValue },
 ":skValue": { S: sortKeyValue }
 };
 const expressionAttributeNames = {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 };

 // Add status filter if provided
 if (filterParams.status) {
 filterExpressions.push("status = :status");
 expressionAttributeValues[":status"] = { S: filterParams.status };
 }

 // Add minimum views filter if provided
 if (filterParams.minViews !== undefined) {
 filterExpressions.push("views >= :minViews");
 expressionAttributeValues[":minViews"] = { N:
 filterParams.minViews.toString() };
 }

 // Add author filter if provided
 if (filterParams.author) {
 filterExpressions.push("author = :author");
 expressionAttributeValues[":author"] = { S: filterParams.author };
 }

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue AND #sk = :skValue"
 };

 // Add filter expression if any filters were provided
 if (filterExpressions.length > 0) {
 input.FilterExpression = filterExpressions.join(" AND ");
 }

 // Add expression attribute names and values

Query a table with a dynamic filter expression API Version 2012-08-10 2595

Amazon DynamoDB Developer Guide

 input.ExpressionAttributeNames = expressionAttributeNames;
 input.ExpressionAttributeValues = expressionAttributeValues;

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with dynamic filter: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table with a dynamically constructed filter expression using Amazon
SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_dynamic_filter(
 table_name, partition_key_name, partition_key_value, filter_conditions=None
):
 """
 Query a DynamoDB table with a dynamically constructed filter expression.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 filter_conditions (dict, optional): A dictionary of filter conditions
 where
 keys are attribute names and values are dictionaries with 'operator'
 and 'value'.
 Example: {'rating': {'operator': '>=', 'value': 4}, 'status':
 {'operator': '=', 'value': 'active'}}

Query a table with a dynamic filter expression API Version 2012-08-10 2596

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Start with the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Initialize variables for the filter expression and attribute values
 filter_expression = None
 expression_attribute_values = {":pk_val": partition_key_value}

 # Dynamically build the filter expression if filter conditions are provided
 if filter_conditions:
 for attr_name, condition in filter_conditions.items():
 operator = condition.get("operator")
 value = condition.get("value")
 attr_value_name = f":{attr_name}"
 expression_attribute_values[attr_value_name] = value

 # Create the appropriate filter expression based on the operator
 current_condition = None
 if operator == "=":
 current_condition = Attr(attr_name).eq(value)
 elif operator == "!=":
 current_condition = Attr(attr_name).ne(value)
 elif operator == ">":
 current_condition = Attr(attr_name).gt(value)
 elif operator == ">=":
 current_condition = Attr(attr_name).gte(value)
 elif operator == "<":
 current_condition = Attr(attr_name).lt(value)
 elif operator == "<=":
 current_condition = Attr(attr_name).lte(value)
 elif operator == "contains":
 current_condition = Attr(attr_name).contains(value)
 elif operator == "begins_with":
 current_condition = Attr(attr_name).begins_with(value)

 # Combine with existing filter expression using AND
 if current_condition:
 if filter_expression is None:

Query a table with a dynamic filter expression API Version 2012-08-10 2597

Amazon DynamoDB Developer Guide

 filter_expression = current_condition
 else:
 filter_expression = filter_expression & current_condition

 # Perform the query with the dynamically built filter expression
 query_params = {"KeyConditionExpression": key_condition}

 if filter_expression:
 query_params["FilterExpression"] = filter_expression

 response = table.query(**query_params)
 return response

Demonstrates how to use dynamic filter expressions with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the query_with_dynamic_filter function."""
 # Example parameters
 table_name = "Products"
 partition_key_name = "Category"
 partition_key_value = "Electronics"

 # Define dynamic filter conditions based on user input or runtime conditions
 user_min_rating = 4 # This could come from user input
 user_status_filter = "active" # This could come from user input

 filter_conditions = {}

 # Only add conditions that are actually specified
 if user_min_rating is not None:
 filter_conditions["rating"] = {"operator": ">=", "value":
 user_min_rating}

 if user_status_filter:
 filter_conditions["status"] = {"operator": "=", "value":
 user_status_filter}

 print(
 f"Querying products in category '{partition_key_value}' with filter
 conditions: {filter_conditions}"

Query a table with a dynamic filter expression API Version 2012-08-10 2598

Amazon DynamoDB Developer Guide

)

 # Execute the query with dynamic filter
 response = query_with_dynamic_filter(
 table_name, partition_key_name, partition_key_value, filter_conditions
)

 # Process the results
 items = response.get("Items", [])
 print(f"Found {len(items)} items")

 for item in items:
 print(f"Product: {item}")

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table with a filter expression and limit with an
Amazon SDK

The following code examples show how to query a table with a filter expression and limit.

• Apply filter expressions to query results with a limit on items evaluated.

• Understand how limit affects filtered query results.

• Control the maximum number of items processed in a query.

Java

SDK for Java 2.x

Query a DynamoDB table with a filter expression and limit using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

Query a table with a filter expression and limit API Version 2012-08-10 2599

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithFilterAndLimit(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String filterAttrName,
 final String filterAttrValue,
 final int limit) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Filter attribute name",
 filterAttrName);
 CodeSampleUtils.validateStringParameter("Filter attribute value",
 filterAttrValue);
 CodeSampleUtils.validatePositiveInteger("Limit", limit);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_FILTER,
 filterAttrName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_FILTER,
 AttributeValue.builder().s(filterAttrValue).build());

Query a table with a filter expression and limit API Version 2012-08-10 2600

Amazon DynamoDB Developer Guide

 // Create the filter expression
 final String filterExpression = "#filterAttr = :filterValue";

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(filterExpression)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .limit(limit)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 LOGGER.log(Level.INFO, "Query with filter and limit successful. Found
 {0} items", response.count());
 LOGGER.log(
 Level.INFO, "ScannedCount: {0} (total items evaluated before
 filtering)", response.scannedCount());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying with filter and limit: {0}",
 e.getMessage());
 throw e;
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table with a filter expression and limit using Amazon SDK for Python
(Boto3).

import boto3
from boto3.dynamodb.conditions import Attr, Key

Query a table with a filter expression and limit API Version 2012-08-10 2601

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

def query_with_filter_and_limit(
 table_name,
 partition_key_name,
 partition_key_value,
 filter_attribute=None,
 filter_value=None,
 limit=10,
):
 """
 Query a DynamoDB table with a filter expression and limit the number of
 results.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 filter_attribute (str, optional): The attribute name to filter on.
 filter_value (any, optional): The value to compare against in the filter.
 limit (int, optional): The maximum number of items to evaluate. Defaults
 to 10.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Prepare the query parameters
 query_params = {"KeyConditionExpression": key_condition, "Limit": limit}

 # Add the filter expression if filter attributes are provided
 if filter_attribute and filter_value is not None:
 query_params["FilterExpression"] =
 Attr(filter_attribute).gt(filter_value)
 query_params["ExpressionAttributeValues"] = {":filter_value":
 filter_value}

 # Execute the query

Query a table with a filter expression and limit API Version 2012-08-10 2602

Amazon DynamoDB Developer Guide

 response = table.query(**query_params)
 return response

Demonstrates how to use filter expressions with limits in Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the query_with_filter_and_limit function."""
 # Example parameters
 table_name = "ProductReviews"
 partition_key_name = "ProductId"
 partition_key_value = "P123456"
 filter_attribute = "Rating"
 filter_value = 3 # Filter for ratings > 3
 limit = 5

 print(f"Querying reviews for product '{partition_key_value}' with rating >
 {filter_value}")
 print(f"Limiting to {limit} evaluated items")

 # Execute the query with filter and limit
 response = query_with_filter_and_limit(
 table_name, partition_key_name, partition_key_value, filter_attribute,
 filter_value, limit
)

 # Process the results
 items = response.get("Items", [])
 print(f"\nReturned {len(items)} items that passed the filter")

 for item in items:
 print(f"Review: {item}")

 # Explain the difference between Limit and actual results
 explain_limit_vs_results(response)

 # Check if there are more results
 if "LastEvaluatedKey" in response:
 print("\nThere are more results available. Use the LastEvaluatedKey for
 pagination.")
 else:

Query a table with a filter expression and limit API Version 2012-08-10 2603

Amazon DynamoDB Developer Guide

 print("\nAll matching results have been retrieved.")

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table with nested attributes using an Amazon SDK

The following code examples show how to query a table with nested attributes.

• Access and filter by nested attributes in DynamoDB items.

• Use document path expressions to reference nested elements.

Java

SDK for Java 2.x

Query a DynamoDB table with nested attributes using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;

 public QueryResponse queryWithNestedAttributes(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String nestedPath,
 final String nestedAttr,

Query a table with nested attributes API Version 2012-08-10 2604

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 final String nestedValue) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Nested path", nestedPath);
 CodeSampleUtils.validateStringParameter("Nested attribute", nestedAttr);
 CodeSampleUtils.validateStringParameter("Nested value", nestedValue);

 // Split the nested path into components
 final String[] pathComponents = nestedPath.split("\\.");

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

 // Build the nested attribute reference using document path notation
 final StringBuilder nestedAttributeRef = new StringBuilder();
 for (int i = 0; i < pathComponents.length; i++) {
 final String aliasName = "#n" + i;
 expressionAttributeNames.put(aliasName, pathComponents[i]);

 if (i > 0) {
 nestedAttributeRef.append(".");
 }
 nestedAttributeRef.append(aliasName);
 }

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_NESTED,
 AttributeValue.builder().s(nestedValue).build());

 // Create the filter expression using the nested attribute reference
 final String filterExpression = nestedAttributeRef + " = :nestedValue";

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)

Query a table with nested attributes API Version 2012-08-10 2605

Amazon DynamoDB Developer Guide

 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(filterExpression)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query with nested attribute filter successful.
 Found " + response.count() + " items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Error querying with nested attribute filter: " +
 e.getMessage());
 throw e;
 }
 }

Demonstrates how to query a DynamoDB table with nested attributes.

 public static void main(String[] args) {
 final String usage =
 """
 Usage:
 <tableName> <partitionKeyName> <partitionKeyValue>
 <nestedPath> <nestedAttr> <nestedValue> [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 partitionKeyName - The name of the partition key attribute.
 partitionKeyValue - The value of the partition key to query.
 nestedPath - The path to the nested map attribute (e.g.,
 "address").
 nestedAttr - The name of the nested attribute (e.g., "city").
 nestedValue - The value to filter by (e.g., "Seattle").
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

Query a table with nested attributes API Version 2012-08-10 2606

Amazon DynamoDB Developer Guide

 if (args.length < 6) {
 System.out.println(usage);
 System.exit(1);
 }

 final String tableName = args[0];
 final String partitionKeyName = args[1];
 final String partitionKeyValue = args[2];
 final String nestedPath = args[3];
 final String nestedAttr = args[4];
 final String nestedValue = args[5];
 final Region region = args.length > 6 ? Region.of(args[6]) :
 Region.US_EAST_1;

 System.out.println("Querying items where " + partitionKeyName + " = " +
 partitionKeyValue + " and " + nestedPath
 + "." + nestedAttr + " = " + nestedValue);

 try {
 // Using the builder pattern to create and execute the query
 final QueryResponse response = new NestedAttributeQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withNestedPath(nestedPath)
 .withNestedAttribute(nestedAttr)
 .withNestedValue(nestedValue)
 .withRegion(region)
 .execute();

 // Process the results
 System.out.println("Found " + response.count() + " items:");
 response.items().forEach(item -> {
 System.out.println(item);

 // Extract and display the nested attribute for clarity
 if (item.containsKey(nestedPath) && item.get(nestedPath).hasM())
 {
 Map<String, AttributeValue> nestedMap =
 item.get(nestedPath).m();
 if (nestedMap.containsKey(nestedAttr)) {
 System.out.println(" Nested attribute " + nestedPath +
 "." + nestedAttr + ": "
 + formatAttributeValue(nestedMap.get(nestedAttr)));

Query a table with nested attributes API Version 2012-08-10 2607

Amazon DynamoDB Developer Guide

 }
 }
 });

 System.out.println("\nNote: When working with nested attributes in
 DynamoDB:");
 System.out.println("1. Use dot notation in filter expressions to
 access nested attributes");
 System.out.println("2. Use expression attribute names for each
 component of the path");
 System.out.println("3. Check if the nested attribute exists before
 accessing it");

 } catch (IllegalArgumentException e) {
 System.err.println("Invalid input: " + e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println("DynamoDB error: " + e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 System.err.println("Unexpected error: " + e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table with nested attributes using Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table filtering on a nested attribute
 *
 * @param {Object} config - AWS SDK configuration object

Query a table with nested attributes API Version 2012-08-10 2608

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} productId - The product ID to query by (partition key)
 * @param {string} category - The category to filter by (nested attribute)
 * @returns {Promise<Object>} - The query response
 */
async function queryWithNestedAttribute(
 config,
 tableName,
 productId,
 category
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "product_id = :productId",
 FilterExpression: "details.category = :category",
 ExpressionAttributeValues: {
 ":productId": { S: productId },
 ":category": { S: category }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with nested attribute: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table with nested attributes using Amazon SDK for Python (Boto3).

Query a table with nested attributes API Version 2012-08-10 2609

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

from typing import Any, Dict, List

import boto3
from boto3.dynamodb.conditions import Attr, Key

def query_with_nested_attributes(
 table_name: str,
 partition_key_name: str,
 partition_key_value: str,
 nested_path: str,
 comparison_operator: str,
 comparison_value: Any,
) -> Dict[str, Any]:
 """
 Query a DynamoDB table and filter by nested attributes.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 nested_path (str): The path to the nested attribute (e.g.,
 'specs.weight').
 comparison_operator (str): The comparison operator to use ('=', '!=',
 '<', '<=', '>', '>=').
 comparison_value (any): The value to compare against.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Build the filter expression based on the nested attribute path and
 comparison operator
 filter_expression = None
 if comparison_operator == "=":
 filter_expression = Attr(nested_path).eq(comparison_value)
 elif comparison_operator == "!=":

Query a table with nested attributes API Version 2012-08-10 2610

Amazon DynamoDB Developer Guide

 filter_expression = Attr(nested_path).ne(comparison_value)
 elif comparison_operator == "<":
 filter_expression = Attr(nested_path).lt(comparison_value)
 elif comparison_operator == "<=":
 filter_expression = Attr(nested_path).lte(comparison_value)
 elif comparison_operator == ">":
 filter_expression = Attr(nested_path).gt(comparison_value)
 elif comparison_operator == ">=":
 filter_expression = Attr(nested_path).gte(comparison_value)
 elif comparison_operator == "contains":
 filter_expression = Attr(nested_path).contains(comparison_value)
 elif comparison_operator == "begins_with":
 filter_expression = Attr(nested_path).begins_with(comparison_value)

 # Execute the query with the filter expression
 response = table.query(KeyConditionExpression=key_condition,
 FilterExpression=filter_expression)

 return response

def query_with_multiple_nested_attributes(
 table_name: str,
 partition_key_name: str,
 partition_key_value: str,
 nested_conditions: List[Dict[str, Any]],
) -> Dict[str, Any]:
 """
 Query a DynamoDB table and filter by multiple nested attributes.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 nested_conditions (list): A list of dictionaries, each containing:
 - path (str): The path to the nested attribute
 - operator (str): The comparison operator
 - value (any): The value to compare against

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")

Query a table with nested attributes API Version 2012-08-10 2611

Amazon DynamoDB Developer Guide

 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 # Build the combined filter expression for all nested attributes
 combined_filter = None

 for condition in nested_conditions:
 if not isinstance(condition, dict):
 continue
 path = condition.get("path", "")
 operator = condition.get("operator", "")
 value = condition.get("value")

 if not path or not operator:
 continue

 # Build the individual filter expression
 current_filter = None
 if operator == "=":
 current_filter = Attr(path).eq(value)
 elif operator == "!=":
 current_filter = Attr(path).ne(value)
 elif operator == "<":
 current_filter = Attr(path).lt(value)
 elif operator == "<=":
 current_filter = Attr(path).lte(value)
 elif operator == ">":
 current_filter = Attr(path).gt(value)
 elif operator == ">=":
 current_filter = Attr(path).gte(value)
 elif operator == "contains":
 current_filter = Attr(path).contains(value)
 elif operator == "begins_with":
 current_filter = Attr(path).begins_with(value)

 # Combine with the existing filter using AND
 if current_filter:
 if combined_filter is None:
 combined_filter = current_filter
 else:
 combined_filter = combined_filter & current_filter

Query a table with nested attributes API Version 2012-08-10 2612

Amazon DynamoDB Developer Guide

 # Execute the query with the combined filter expression
 response = table.query(KeyConditionExpression=key_condition,
 FilterExpression=combined_filter)

 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table with pagination using an Amazon SDK

The following code examples show how to query a table with pagination.

• Implement pagination for DynamoDB query results.

• Use the LastEvaluatedKey to retrieve subsequent pages.

• Control the number of items per page with the Limit parameter.

Java

SDK for Java 2.x

Query a DynamoDB table with pagination using Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

Query a table with pagination API Version 2012-08-10 2613

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 public List<Map<String, AttributeValue>> queryWithPagination(
 final String tableName, final String partitionKeyName, final String
 partitionKeyValue, final int pageSize) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validatePositiveInteger("Page size", pageSize);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 QueryRequest.Builder queryRequestBuilder = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .limit(pageSize);

 // List to store all items from all pages
 final List<Map<String, AttributeValue>> allItems = new ArrayList<>();

 // Map to store the last evaluated key for pagination
 Map<String, AttributeValue> lastEvaluatedKey = null;
 int pageNumber = 1;

 try {
 do {
 // If we have a last evaluated key, use it for the next page
 if (lastEvaluatedKey != null) {
 queryRequestBuilder.exclusiveStartKey(lastEvaluatedKey);
 }

 // Execute the query

Query a table with pagination API Version 2012-08-10 2614

Amazon DynamoDB Developer Guide

 final QueryResponse response =
 dynamoDbClient.query(queryRequestBuilder.build());

 // Process the current page of results
 final List<Map<String, AttributeValue>> pageItems =
 response.items();
 allItems.addAll(pageItems);

 // Get the last evaluated key for the next page
 lastEvaluatedKey = response.lastEvaluatedKey();
 if (lastEvaluatedKey != null && lastEvaluatedKey.isEmpty()) {
 lastEvaluatedKey = null;
 }

 System.out.println("Page " + pageNumber + ": Retrieved " +
 pageItems.size() + " items (Running total: "
 + allItems.size() + ")");

 pageNumber++;

 } while (lastEvaluatedKey != null);

 System.out.println("Query with pagination complete. Retrieved a total
 of " + allItems.size()
 + " items across " + (pageNumber - 1) + " pages");

 return allItems;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Error querying with pagination: " +
 e.getMessage());
 throw e;
 }
 }

Demonstrates how to query a DynamoDB table with pagination.

 public static void main(String[] args) {
 final String usage =

Query a table with pagination API Version 2012-08-10 2615

Amazon DynamoDB Developer Guide

 """
 Usage:
 <tableName> <partitionKeyName> <partitionKeyValue> [pageSize]
 [region]
 Where:
 tableName - The Amazon DynamoDB table to query.
 partitionKeyName - The name of the partition key attribute.
 partitionKeyValue - The value of the partition key to query.
 pageSize (optional) - The maximum number of items to return
 per page. (Default: 10)
 region (optional) - The AWS region where the table exists.
 (Default: us-east-1)
 """;

 if (args.length < 3) {
 System.out.println(usage);
 System.exit(1);
 }

 final String tableName = args[0];
 final String partitionKeyName = args[1];
 final String partitionKeyValue = args[2];
 final int pageSize = args.length > 3 ? Integer.parseInt(args[3]) : 10;
 final Region region = args.length > 4 ? Region.of(args[4]) :
 Region.US_EAST_1;

 System.out.println("Querying items with pagination (page size: " +
 pageSize + ")");

 try {
 // Using the builder pattern to create and execute the query
 final List<Map<String, AttributeValue>> allItems = new
 PaginationQueryBuilder()
 .withTableName(tableName)
 .withPartitionKeyName(partitionKeyName)
 .withPartitionKeyValue(partitionKeyValue)
 .withPageSize(pageSize)
 .withRegion(region)
 .executeWithPagination();

 // Process the results
 System.out.println("\nSummary: Retrieved a total of " +
 allItems.size() + " items");

Query a table with pagination API Version 2012-08-10 2616

Amazon DynamoDB Developer Guide

 // Display the first few items as a sample
 final int sampleSize = Math.min(5, allItems.size());
 if (sampleSize > 0) {
 System.out.println("\nSample of retrieved items (first " +
 sampleSize + "):");
 for (int i = 0; i < sampleSize; i++) {
 System.out.println(allItems.get(i));
 }

 if (allItems.size() > sampleSize) {
 System.out.println("... and " + (allItems.size() -
 sampleSize) + " more items");
 }
 }
 } catch (IllegalArgumentException e) {
 System.err.println("Invalid input: " + e.getMessage());
 System.exit(1);
 } catch (ResourceNotFoundException e) {
 System.err.println("Table not found: " + tableName);
 System.exit(1);
 } catch (DynamoDbException e) {
 System.err.println("DynamoDB error: " + e.getMessage());
 System.exit(1);
 } catch (Exception e) {
 System.err.println("Unexpected error: " + e.getMessage());
 System.exit(1);
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table with pagination using Amazon SDK for JavaScript.

/**
 * Example demonstrating how to handle large query result sets in DynamoDB using
 pagination
 *

Query a table with pagination API Version 2012-08-10 2617

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 * This example shows:
 * - How to use pagination to handle large result sets
 * - How to use LastEvaluatedKey to retrieve the next page of results
 * - How to construct subsequent query requests using ExclusiveStartKey
 */
const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table with pagination to handle large result sets
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {number} pageSize - Number of items per page
 * @returns {Promise<Array>} - All items from the query
 */
async function queryWithPagination(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 pageSize = 25
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Initialize variables for pagination
 let lastEvaluatedKey = undefined;
 const allItems = [];
 let pageCount = 0;

 // Loop until all pages are retrieved
 do {
 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 Limit: pageSize,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {

Query a table with pagination API Version 2012-08-10 2618

Amazon DynamoDB Developer Guide

 ":pkValue": { S: partitionKeyValue }
 }
 };

 // Add ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if (lastEvaluatedKey) {
 input.ExclusiveStartKey = lastEvaluatedKey;
 }

 // Execute the query
 const command = new QueryCommand(input);
 const response = await client.send(command);

 // Process the current page of results
 pageCount++;
 console.log(`Processing page ${pageCount} with ${response.Items.length}
 items`);

 // Add the items from this page to our collection
 if (response.Items && response.Items.length > 0) {
 allItems.push(...response.Items);
 }

 // Get the LastEvaluatedKey for the next page
 lastEvaluatedKey = response.LastEvaluatedKey;

 } while (lastEvaluatedKey); // Continue until there are no more pages

 console.log(`Query complete. Retrieved ${allItems.length} items in
 ${pageCount} pages.`);
 return allItems;
 } catch (error) {
 console.error(`Error querying with pagination: ${error}`);
 throw error;
 }
}

/**
 * Example usage:
 *
 * // Query all items in the "AWS DynamoDB" forum with pagination
 * const allItems = await queryWithPagination(
 * { region: "us-west-2" },

Query a table with pagination API Version 2012-08-10 2619

Amazon DynamoDB Developer Guide

 * "ForumThreads",
 * "ForumName",
 * "AWS DynamoDB",
 * 25 // 25 items per page
 *);
 *
 * console.log(`Total items retrieved: ${allItems.length}`);
 *
 * // Notes on pagination:
 * // - LastEvaluatedKey contains the primary key of the last evaluated item
 * // - When LastEvaluatedKey is undefined/null, there are no more items to
 retrieve
 * // - ExclusiveStartKey tells DynamoDB where to start the next page
 * // - Pagination helps manage memory usage for large result sets
 * // - Each page requires a separate network request to DynamoDB
 */

module.exports = { queryWithPagination };

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query a DynamoDB table with pagination using Amazon SDK for Python (Boto3).

import boto3
from boto3.dynamodb.conditions import Key

def query_with_pagination(
 table_name, partition_key_name, partition_key_value, page_size=25,
 max_pages=None
):
 """
 Query a DynamoDB table with pagination to handle large result sets.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.

Query a table with pagination API Version 2012-08-10 2620

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 page_size (int, optional): The number of items to return per page.
 Defaults to 25.
 max_pages (int, optional): The maximum number of pages to retrieve. If
 None, retrieves all pages.

 Returns:
 list: All items retrieved from the query across all pages.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Initialize variables for pagination
 last_evaluated_key = None
 page_count = 0
 all_items = []

 # Paginate through the results
 while True:
 # Check if we've reached the maximum number of pages
 if max_pages is not None and page_count >= max_pages:
 break

 # Prepare the query parameters
 query_params = {
 "KeyConditionExpression":
 Key(partition_key_name).eq(partition_key_value),
 "Limit": page_size,
 }

 # Add the ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if last_evaluated_key:
 query_params["ExclusiveStartKey"] = last_evaluated_key

 # Execute the query
 response = table.query(**query_params)

 # Process the current page of results
 items = response.get("Items", [])
 all_items.extend(items)

 # Update pagination tracking
 page_count += 1

Query a table with pagination API Version 2012-08-10 2621

Amazon DynamoDB Developer Guide

 # Get the LastEvaluatedKey for the next page, if any
 last_evaluated_key = response.get("LastEvaluatedKey")

 # If there's no LastEvaluatedKey, we've reached the end of the results
 if not last_evaluated_key:
 break

 return all_items

def query_with_pagination_generator(
 table_name, partition_key_name, partition_key_value, page_size=25
):
 """
 Query a DynamoDB table with pagination using a generator to handle large
 result sets.
 This approach is memory-efficient as it yields one page at a time.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 page_size (int, optional): The number of items to return per page.
 Defaults to 25.

 Yields:
 tuple: A tuple containing (items, page_number, last_page) where:
 - items is a list of items for the current page
 - page_number is the current page number (starting from 1)
 - last_page is a boolean indicating if this is the last page
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Initialize variables for pagination
 last_evaluated_key = None
 page_number = 0

 # Paginate through the results
 while True:
 # Prepare the query parameters
 query_params = {

Query a table with pagination API Version 2012-08-10 2622

Amazon DynamoDB Developer Guide

 "KeyConditionExpression":
 Key(partition_key_name).eq(partition_key_value),
 "Limit": page_size,
 }

 # Add the ExclusiveStartKey if we have a LastEvaluatedKey from a previous
 query
 if last_evaluated_key:
 query_params["ExclusiveStartKey"] = last_evaluated_key

 # Execute the query
 response = table.query(**query_params)

 # Get the current page of results
 items = response.get("Items", [])
 page_number += 1

 # Get the LastEvaluatedKey for the next page, if any
 last_evaluated_key = response.get("LastEvaluatedKey")

 # Determine if this is the last page
 is_last_page = last_evaluated_key is None

 # Yield the current page of results
 yield (items, page_number, is_last_page)

 # If there's no LastEvaluatedKey, we've reached the end of the results
 if is_last_page:
 break

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a table with pagination API Version 2012-08-10 2623

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

Query a DynamoDB table with strongly consistent reads using an
Amazon SDK

The following code examples show how to query a table with strongly consistent reads.

• Configure the consistency level for DynamoDB queries.

• Use strongly consistent reads to get the most up-to-date data.

• Understand the tradeoffs between eventual consistency and strong consistency.

Java

SDK for Java 2.x

Query a DynamoDB table with configurable read consistency using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithConsistentReads(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final boolean useConsistentRead) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);

Query a table with strongly consistent reads API Version 2012-08-10 2624

Amazon DynamoDB Developer Guide

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .consistentRead(useConsistentRead)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 LOGGER.log(Level.INFO, "Query successful. Found {0} items",
 response.count());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying with consistent reads", e);
 throw e;
 }
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query a DynamoDB table with configurable read consistency using Amazon SDK for
JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**

Query a table with strongly consistent reads API Version 2012-08-10 2625

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 * Queries a DynamoDB table with configurable read consistency
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {boolean} useConsistentRead - Whether to use strongly consistent reads
 * @returns {Promise<Object>} - The query response
 */
async function queryWithConsistentRead(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 useConsistentRead = false
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pkValue",
 ExpressionAttributeNames: {
 "#pk": partitionKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue }
 },
 ConsistentRead: useConsistentRead
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying with consistent read: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Query a table with strongly consistent reads API Version 2012-08-10 2626

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Query a DynamoDB table with the option for strongly consistent reads using Amazon SDK
for Python (Boto3).

import time

import boto3
from boto3.dynamodb.conditions import Key

def query_with_consistent_read(
 table_name,
 partition_key_name,
 partition_key_value,
 sort_key_name=None,
 sort_key_value=None,
 consistent_read=True,
):
 """
 Query a DynamoDB table with the option for strongly consistent reads.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str, optional): The name of the sort key attribute.
 sort_key_value (str, optional): The value of the sort key to query.
 consistent_read (bool, optional): Whether to use strongly consistent
 reads. Defaults to True.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the key condition expression
 key_condition = Key(partition_key_name).eq(partition_key_value)

 if sort_key_name and sort_key_value:

Query a table with strongly consistent reads API Version 2012-08-10 2627

Amazon DynamoDB Developer Guide

 key_condition = key_condition & Key(sort_key_name).eq(sort_key_value)

 # Perform the query with the consistent read option
 response = table.query(KeyConditionExpression=key_condition,
 ConsistentRead=consistent_read)

 return response

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query DynamoDB data using PartiQL SELECT statements with an
Amazon SDK

The following code example shows how to query data using PartiQL SELECT statements.

JavaScript

SDK for JavaScript (v3)

Query items from a DynamoDB table using PartiQL SELECT statements with Amazon SDK
for JavaScript.

/**
 * This example demonstrates how to query items from a DynamoDB table using
 PartiQL.
 * It shows different ways to select data with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

Query data using PartiQL SELECT API Version 2012-08-10 2628

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

/**
 * Select all items from a DynamoDB table using PartiQL.
 * Note: This should be used with caution on large tables.
 *
 * @param tableName - The name of the DynamoDB table
 * @returns The response from the ExecuteStatementCommand
 */
export const selectAllItems = async (tableName: string) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}"`,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Select an item by its primary key using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemByPartitionKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${partitionKeyName} = ?`,
 Parameters: [partitionKeyValue],

Query data using PartiQL SELECT API Version 2012-08-10 2629

Amazon DynamoDB Developer Guide

 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving item:", err);
 throw err;
 }
};

/**
 * Select an item by its composite key (partition key + sort key) using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemByCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${partitionKeyName} = ? AND
 ${sortKeyName} = ?`,
 Parameters: [partitionKeyValue, sortKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving item:", err);

Query data using PartiQL SELECT API Version 2012-08-10 2630

Amazon DynamoDB Developer Guide

 throw err;
 }
};

/**
 * Select items using a filter condition with PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param filterAttribute - The attribute to filter on
 * @param filterValue - The value to filter by
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemsWithFilter = async (
 tableName: string,
 filterAttribute: string,
 filterValue: string | number
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE ${filterAttribute} = ?`,
 Parameters: [filterValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Select items using a begins_with function for prefix matching.
 * This is useful for querying hierarchical data.
 *
 * @param tableName - The name of the DynamoDB table
 * @param attributeName - The attribute to check for prefix
 * @param prefix - The prefix to match
 * @returns The response from the ExecuteStatementCommand
 */

Query data using PartiQL SELECT API Version 2012-08-10 2631

Amazon DynamoDB Developer Guide

export const selectItemsByPrefix = async (
 tableName: string,
 attributeName: string,
 prefix: string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `SELECT * FROM "${tableName}" WHERE
 begins_with(${attributeName}, ?)`,
 Parameters: [prefix],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Select items using a between condition for range queries.
 *
 * @param tableName - The name of the DynamoDB table
 * @param attributeName - The attribute to check for range
 * @param startValue - The start value of the range
 * @param endValue - The end value of the range
 * @returns The response from the ExecuteStatementCommand
 */
export const selectItemsByRange = async (
 tableName: string,
 attributeName: string,
 startValue: number | string,
 endValue: number | string
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {

Query data using PartiQL SELECT API Version 2012-08-10 2632

Amazon DynamoDB Developer Guide

 Statement: `SELECT * FROM "${tableName}" WHERE ${attributeName} BETWEEN ?
 AND ?`,
 Parameters: [startValue, endValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Items retrieved successfully");
 return data;
 } catch (err) {
 console.error("Error retrieving items:", err);
 throw err;
 }
};

/**
 * Example usage showing how to select items with different index types
 */
export const selectExamples = async () => {
 // Select all items from a table (use with caution on large tables)
 await selectAllItems("UsersTable");

 // Select by partition key (simple primary key)
 await selectItemByPartitionKey("UsersTable", "userId", "user123");

 // Select by composite key (partition key + sort key)
 await selectItemByCompositeKey("OrdersTable", "orderId", "order456",
 "productId", "prod789");

 // Select with a filter condition (can use any attribute)
 await selectItemsWithFilter("UsersTable", "userType", "premium");

 // Select items with a prefix (useful for hierarchical data)
 await selectItemsByPrefix("ProductsTable", "category", "electronics");

 // Select items within a range (useful for numeric or date ranges)
 await selectItemsByRange("OrdersTable", "orderDate", "2023-01-01",
 "2023-12-31");
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• BatchExecuteStatement

Query data using PartiQL SELECT API Version 2012-08-10 2633

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand

Amazon DynamoDB Developer Guide

• ExecuteStatement

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query a DynamoDB table for TTL items using an Amazon SDK

The following code examples show how to query for TTL items.

Java

SDK for Java 2.x

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.util.Map;
import java.util.Optional;

 final QueryRequest request = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .filterExpression(FILTER_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try (DynamoDbClient ddb = dynamoDbClient != null
 ? dynamoDbClient
 : DynamoDbClient.builder().region(region).build()) {
 final QueryResponse response = ddb.query(request);
 System.out.println("Query successful. Found " + response.count() + "
 items that have not expired yet.");

Query for TTL items API Version 2012-08-10 2634

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

Amazon DynamoDB Developer Guide

 // Print each item
 response.items().forEach(item -> {
 System.out.println("Item: " + item);
 });

 return 0;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
JavaScript.

import { DynamoDBClient, QueryCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const queryFiltered = async (tableName, primaryKey, region = 'us-east-1')
 => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);

 const params = {
 TableName: tableName,
 KeyConditionExpression: "#pk = :pk",
 FilterExpression: "#ea > :ea",
 ExpressionAttributeNames: {
 "#pk": "primaryKey",

Query for TTL items API Version 2012-08-10 2635

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 "#ea": "expireAt"
 },
 ExpressionAttributeValues: marshall({
 ":pk": primaryKey,
 ":ea": currentTime
 })
 };

 try {
 const { Items } = await client.send(new QueryCommand(params));
 Items.forEach(item => {
 console.log(unmarshall(item))
 });
 return Items;
 } catch (err) {
 console.error(`Error querying items: ${err}`);
 throw err;
 }
}

// Example usage (commented out for testing)
// queryFiltered('your-table-name', 'your-partition-key-value');

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query Filtered Expression to gather TTL items in a DynamoDB table using Amazon SDK for
Python (Boto3).

from datetime import datetime

import boto3

def query_dynamodb_items(table_name, partition_key):
 """

 :param table_name: Name of the DynamoDB table
 :param partition_key:

Query for TTL items API Version 2012-08-10 2636

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 :return:
 """
 try:
 # Initialize a DynamoDB resource
 dynamodb = boto3.resource("dynamodb", region_name="us-east-1")

 # Specify your table
 table = dynamodb.Table(table_name)

 # Get the current time in epoch format
 current_time = int(datetime.now().timestamp())

 # Perform the query operation with a filter expression to exclude expired
 items
 # response = table.query(
 #
 KeyConditionExpression=boto3.dynamodb.conditions.Key('partitionKey').eq(partition_key),
 #
 FilterExpression=boto3.dynamodb.conditions.Attr('expireAt').gt(current_time)
 #)
 response = table.query(

 KeyConditionExpression=dynamodb.conditions.Key("partitionKey").eq(partition_key),

 FilterExpression=dynamodb.conditions.Attr("expireAt").gt(current_time),
)

 # Print the items that are not expired
 for item in response["Items"]:
 print(item)

 except Exception as e:
 print(f"Error querying items: {e}")

Call the function with your values
query_dynamodb_items("Music", "your-partition-key-value")

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

Query for TTL items API Version 2012-08-10 2637

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Query DynamoDB tables using date and time patterns with an Amazon
SDK

The following code examples show how to query tables using date and time patterns.

• Store and query date/time values in DynamoDB.

• Implement date range queries using sort keys.

• Format date strings for effective querying.

Java

SDK for Java 2.x

Query using date ranges in sort keys with Amazon SDK for Java 2.x.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.time.LocalDate;
import java.util.HashMap;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

 public QueryResponse queryWithDateRange(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String dateKeyName,
 final LocalDate startDate,
 final LocalDate endDate) {

Query tables using date and time patterns API Version 2012-08-10 2638

Amazon DynamoDB Developer Guide

 // Focus on query logic, assuming parameters are valid
 if (startDate == null || endDate == null) {
 throw new IllegalArgumentException("Start date and end date cannot be
 null");
 }

 if (endDate.isBefore(startDate)) {
 throw new IllegalArgumentException("End date must be after start
 date");
 }

 // Format dates as ISO strings for DynamoDB (using just the date part)
 final String formattedStartDate = startDate.toString();
 final String formattedEndDate = endDate.toString();

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_SK, dateKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_START_DATE,
 AttributeValue.builder().s(formattedStartDate).build());
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_END_DATE,
 AttributeValue.builder().s(formattedEndDate).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);

Query tables using date and time patterns API Version 2012-08-10 2639

Amazon DynamoDB Developer Guide

 LOGGER.log(Level.INFO, "Query by date range successful. Found {0}
 items", response.count());
 return response;
 } catch (ResourceNotFoundException e) {
 LOGGER.log(Level.SEVERE, "Table not found: {0}", tableName);
 throw e;
 } catch (DynamoDbException e) {
 LOGGER.log(Level.SEVERE, "Error querying by date range: {0}",
 e.getMessage());
 throw e;
 }
 }

Query using date-time variables with Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.util.HashMap;
import java.util.Map;

 public QueryResponse queryWithDateTime(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String dateKeyName,
 final String startDate,
 final String endDate) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateDateRangeParameters(dateKeyName, startDate,
 endDate);
 CodeSampleUtils.validateDateFormat("Start date", startDate);
 CodeSampleUtils.validateDateFormat("End date", endDate);

Query tables using date and time patterns API Version 2012-08-10 2640

Amazon DynamoDB Developer Guide

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put("#dateKey", dateKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 ":startDate", AttributeValue.builder().s(startDate).build());
 expressionAttributeValues.put(
 ":endDate", AttributeValue.builder().s(endDate).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query successful. Found " + response.count() + "
 items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Error querying with date range: " +
 e.getMessage());
 throw e;
 }
 }

Query tables using date and time patterns API Version 2012-08-10 2641

Amazon DynamoDB Developer Guide

Query within date ranges in Unix epoch timestamps with Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.util.HashMap;
import java.util.Map;

 public QueryResponse queryWithDateTimeEpoch(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String dateKeyName,
 final long startEpoch,
 final long endEpoch) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Date key name", dateKeyName);
 CodeSampleUtils.validateEpochTimestamp("Start epoch", startEpoch);
 CodeSampleUtils.validateEpochTimestamp("End epoch", endEpoch);

 // Create expression attribute names for the column names
 final Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put(EXPRESSION_ATTRIBUTE_NAME_PK,
 partitionKeyName);
 expressionAttributeNames.put("#dateKey", dateKeyName);

 // Create expression attribute values for the column values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 EXPRESSION_ATTRIBUTE_VALUE_PK,
 AttributeValue.builder().s(partitionKeyValue).build());
 expressionAttributeValues.put(
 ":startDate",
 AttributeValue.builder().n(String.valueOf(startEpoch)).build());

Query tables using date and time patterns API Version 2012-08-10 2642

Amazon DynamoDB Developer Guide

 expressionAttributeValues.put(
 ":endDate",
 AttributeValue.builder().n(String.valueOf(endEpoch)).build());

 // Create the query request
 final QueryRequest queryRequest = QueryRequest.builder()
 .tableName(tableName)
 .keyConditionExpression(KEY_CONDITION_EXPRESSION)
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final QueryResponse response = dynamoDbClient.query(queryRequest);
 System.out.println("Query successful. Found " + response.count() + "
 items");
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format("Error: The Amazon DynamoDB table \"%s\" can't be
 found.\n", tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println("Error querying with epoch timestamps: " +
 e.getMessage());
 throw e;
 }
 }

Query within date ranges using LocalDateTime objects with Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;

import java.time.Instant;
import java.time.LocalDateTime;
import java.time.ZoneOffset;
import java.util.HashMap;
import java.util.Map;

Query tables using date and time patterns API Version 2012-08-10 2643

Amazon DynamoDB Developer Guide

 public QueryResponse queryWithDateTimeLocalDateTime(
 final String tableName,
 final String partitionKeyName,
 final String partitionKeyValue,
 final String dateKeyName,
 final LocalDateTime startDateTime,
 final LocalDateTime endDateTime) {

 CodeSampleUtils.validateTableParameters(tableName, partitionKeyName,
 partitionKeyValue);
 CodeSampleUtils.validateStringParameter("Date key name", dateKeyName);
 if (startDateTime == null || endDateTime == null) {
 throw new IllegalArgumentException("Start and end LocalDateTime must
 not be null");
 }

 // Convert LocalDateTime to ISO-8601 strings in UTC with the correct
 format
 final String startDate =
 startDateTime.atZone(ZoneOffset.UTC).format(DATE_TIME_FORMATTER);
 final String endDate =
 endDateTime.atZone(ZoneOffset.UTC).format(DATE_TIME_FORMATTER);

 return queryWithDateTime(tableName, partitionKeyName, partitionKeyValue,
 dateKeyName, startDate, endDate);
 }

• For API details, see Query in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Query using date ranges in sort keys with Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range on the sort
 key
 *

Query tables using date and time patterns API Version 2012-08-10 2644

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} sortKeyName - The name of the sort key (must be a date/time
 attribute)
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRangeOnSortKey(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 sortKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input
 const input = {
 TableName: tableName,
 KeyConditionExpression: '#pk = :pkValue AND #sk BETWEEN :startDate
 AND :endDate',
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#sk": sortKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query

Query tables using date and time patterns API Version 2012-08-10 2645

Amazon DynamoDB Developer Guide

 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying by date range on sort key: ${error}`);
 throw error;
 }
}

Query using date-time variables with Amazon SDK for JavaScript.

const { DynamoDBClient, QueryCommand } = require("@aws-sdk/client-dynamodb");

/**
 * Queries a DynamoDB table for items within a specific date range
 *
 * @param {Object} config - AWS SDK configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key
 * @param {string} partitionKeyValue - The value of the partition key
 * @param {string} dateKeyName - The name of the date attribute to filter on
 * @param {Date} startDate - The start date for the range query
 * @param {Date} endDate - The end date for the range query
 * @returns {Promise<Object>} - The query response
 */
async function queryByDateRange(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 dateKeyName,
 startDate,
 endDate
) {
 try {
 // Create DynamoDB client
 const client = new DynamoDBClient(config);

 // Format dates as ISO strings for DynamoDB
 const formattedStartDate = startDate.toISOString();
 const formattedEndDate = endDate.toISOString();

 // Construct the query input

Query tables using date and time patterns API Version 2012-08-10 2646

Amazon DynamoDB Developer Guide

 const input = {
 TableName: tableName,
 KeyConditionExpression: `#pk = :pkValue AND #dateAttr BETWEEN :startDate
 AND :endDate`,
 ExpressionAttributeNames: {
 "#pk": partitionKeyName,
 "#dateAttr": dateKeyName
 },
 ExpressionAttributeValues: {
 ":pkValue": { S: partitionKeyValue },
 ":startDate": { S: formattedStartDate },
 ":endDate": { S: formattedEndDate }
 }
 };

 // Execute the query
 const command = new QueryCommand(input);
 return await client.send(command);
 } catch (error) {
 console.error(`Error querying by date range: ${error}`);
 throw error;
 }
}

• For API details, see Query in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Query using date ranges in sort keys with Amazon SDK for Python (Boto3).

from datetime import datetime, timedelta

import boto3
from boto3.dynamodb.conditions import Key

def query_with_date_range(
 table_name, partition_key_name, partition_key_value, sort_key_name,
 start_date, end_date
):

Query tables using date and time patterns API Version 2012-08-10 2647

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand

Amazon DynamoDB Developer Guide

 """
 Query a DynamoDB table with a date range on the sort key.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str): The name of the sort key attribute (containing date
 values).
 start_date (datetime): The start date for the query range.
 end_date (datetime): The end date for the query range.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Format the date values as ISO 8601 strings
 # DynamoDB works well with ISO format for date values
 start_date_str = start_date.isoformat()
 end_date_str = end_date.isoformat()

 # Perform the query with a date range on the sort key using BETWEEN operator
 key_condition = Key(partition_key_name).eq(partition_key_value) &
 Key(sort_key_name).between(
 start_date_str, end_date_str
)

 response = table.query(
 KeyConditionExpression=key_condition,
 ExpressionAttributeValues={
 ":pk_val": partition_key_value,
 ":start_date": start_date_str,
 ":end_date": end_date_str,
 },
)

 return response

def query_with_date_range_by_month(

Query tables using date and time patterns API Version 2012-08-10 2648

Amazon DynamoDB Developer Guide

 table_name, partition_key_name, partition_key_value, sort_key_name, year,
 month
):
 """
 Query a DynamoDB table for a specific month's data.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str): The name of the sort key attribute (containing date
 values).
 year (int): The year to query.
 month (int): The month to query (1-12).

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Calculate the start and end dates for the specified month
 if month == 12:
 next_year = year + 1
 next_month = 1
 else:
 next_year = year
 next_month = month + 1

 start_date = datetime(year, month, 1)
 end_date = datetime(next_year, next_month, 1) - timedelta(microseconds=1)

 # Format the date values as ISO 8601 strings
 start_date_str = start_date.isoformat()
 end_date_str = end_date.isoformat()

 # Perform the query with a date range on the sort key
 key_condition = Key(partition_key_name).eq(partition_key_value) &
 Key(sort_key_name).between(
 start_date_str, end_date_str
)

 response = table.query(KeyConditionExpression=key_condition)

Query tables using date and time patterns API Version 2012-08-10 2649

Amazon DynamoDB Developer Guide

 return response

Query using date-time variables with Amazon SDK for Python (Boto3).

from datetime import datetime, timedelta

import boto3
from boto3.dynamodb.conditions import Key

def query_with_datetime(
 table_name, partition_key_name, partition_key_value, sort_key_name,
 start_date, end_date
):
 """
 Query a DynamoDB table with a date range filter on the sort key.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 sort_key_name (str): The name of the sort key attribute (containing date/
time values).
 start_date (datetime): The start date/time for the query range.
 end_date (datetime): The end date/time for the query range.

 Returns:
 dict: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Format the date/time values as ISO 8601 strings
 # DynamoDB works well with ISO format for date/time values
 start_date_str = start_date.isoformat()
 end_date_str = end_date.isoformat()

 # Perform the query with a date range on the sort key

Query tables using date and time patterns API Version 2012-08-10 2650

Amazon DynamoDB Developer Guide

 key_condition = Key(partition_key_name).eq(partition_key_value) &
 Key(sort_key_name).between(
 start_date_str, end_date_str
)

 response = table.query(
 KeyConditionExpression=key_condition,
 ExpressionAttributeValues={
 ":pk_val": partition_key_value,
 ":start_date": start_date_str,
 ":end_date": end_date_str,
 },
)

 return response

def example_usage():
 """Example of how to use the query_with_datetime function."""
 # Example parameters
 table_name = "Events"
 partition_key_name = "EventType"
 partition_key_value = "UserLogin"
 sort_key_name = "Timestamp"

 # Create date/time variables for the query
 end_date = datetime.now()
 start_date = end_date - timedelta(days=7) # Query events from the last 7
 days

 print(f"Querying events from {start_date.isoformat()} to
 {end_date.isoformat()}")

 # Execute the query
 response = query_with_datetime(
 table_name, partition_key_name, partition_key_value, sort_key_name,
 start_date, end_date
)

 # Process the results
 items = response.get("Items", [])
 print(f"Found {len(items)} items")

Query tables using date and time patterns API Version 2012-08-10 2651

Amazon DynamoDB Developer Guide

 for item in items:
 print(f"Event: {item}")

• For API details, see Query in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Save EXIF and other image information using an Amazon SDK

The following code example shows how to:

• Get EXIF information from a a JPG, JPEG, or PNG file.

• Upload the image file to an Amazon S3 bucket.

• Use Amazon Rekognition to identify the three top attributes (labels) in the file.

• Add the EXIF and label information to an Amazon DynamoDB table in the Region.

Rust

SDK for Rust

Get EXIF information from a JPG, JPEG, or PNG file, upload the image file to an Amazon
S3 bucket, use Amazon Rekognition to identify the three top attributes (labels in Amazon
Rekognition) in the file, and add the EXIF and label information to a Amazon DynamoDB
table in the Region.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Amazon Rekognition

• Amazon S3

Save EXIF and other image information API Version 2012-08-10 2652

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/rustv1/cross_service/detect_labels/src/main.rs

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Set up Attribute-Based Access Control for DynamoDB using Amazon
Command Line Interface v2

The following code example shows how to implement Attribute-Based Access Control (ABAC) for
DynamoDB.

• Create an IAM policy for ABAC.

• Create tables with tags for different departments.

• List and filter tables based on tags.

Bash

Amazon CLI with Bash script

Create an IAM policy for ABAC.

Step 1: Create a policy document for ABAC
cat > abac-policy.json << 'EOF'
{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Department": "${aws:PrincipalTag/Department}"
 }
 }
 },
 {

Set up Attribute-Based Access Control API Version 2012-08-10 2653

Amazon DynamoDB Developer Guide

 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Department": "${aws:PrincipalTag/Department}",
 "aws:ResourceTag/Environment": "Development"
 }
 }
 }
]
}
EOF

Step 2: Create the IAM policy
aws iam create-policy \
 --policy-name DynamoDBDepartmentBasedAccess \
 --policy-document file://abac-policy.json

Create tables with tags for different departments.

Create a DynamoDB table with tags for ABAC
aws dynamodb create-table \
 --table-name FinanceData \
 --attribute-definitions \
 AttributeName=RecordID,AttributeType=S \
 --key-schema \
 AttributeName=RecordID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --tags \
 Key=Department,Value=Finance \
 Key=Environment,Value=Development

Create another table with different tags
aws dynamodb create-table \
 --table-name MarketingData \
 --attribute-definitions \

Set up Attribute-Based Access Control API Version 2012-08-10 2654

Amazon DynamoDB Developer Guide

 AttributeName=RecordID,AttributeType=S \
 --key-schema \
 AttributeName=RecordID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --tags \
 Key=Department,Value=Marketing \
 Key=Environment,Value=Production

List and filter tables based on tags.

List all DynamoDB tables
echo "Listing all tables:"
aws dynamodb list-tables

Get ARNs for all tables
echo -e "\nGetting ARNs for all tables:"
TABLE_ARNS=$(aws dynamodb list-tables --query "TableNames[*]" --output text |
 xargs -I {} aws dynamodb describe-table --table-name {} --query "Table.TableArn"
 --output text)

For each table ARN, list its tags
echo -e "\nListing tags for each table:"
for ARN in $TABLE_ARNS; do
 TABLE_NAME=$(echo $ARN | awk -F/ '{print $2}')
 echo -e "\nTags for table: $TABLE_NAME"
 aws dynamodb list-tags-of-resource --resource-arn $ARN
done

Example: Find tables with a specific tag
echo -e "\nFinding tables with Environment=Production tag:"
for ARN in $TABLE_ARNS; do
 TABLE_NAME=$(echo $ARN | awk -F/ '{print $2}')
 TAGS=$(aws dynamodb list-tags-of-resource --resource-arn $ARN --query "Tags[?
Key=='Environment' && Value=='Production']" --output text)
 if [! -z "$TAGS"]; then
 echo "Table with Production tag: $TABLE_NAME"
 fi
done

• For API details, see the following topics in Amazon CLI Command Reference.

• CreatePolicy

Set up Attribute-Based Access Control API Version 2012-08-10 2655

https://docs.amazonaws.cn/goto/aws-cli/iam-2010-05-08/CreatePolicy

Amazon DynamoDB Developer Guide

• CreateTable

• ListTables

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Understand update expression order in DynamoDB with an Amazon
SDK

The following code examples show how to understand update expression order.

• Learn how DynamoDB processes update expressions.

• Understand the order of operations in update expressions.

• Avoid unexpected results by understanding expression evaluation.

Java

SDK for Java 2.x

Demonstrate update expression order using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ReturnValue;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;

 /**
 * Demonstrates the effect of update expression order.
 *
 * <p>This method shows how the order of operations in an update expression
 * affects the result of the update.

Understand update expression order API Version 2012-08-10 2656

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/ListTables

Amazon DynamoDB Developer Guide

 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @return Map containing the results of different update orders
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static Map<String, Object> demonstrateUpdateOrder(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key) {

 Map<String, Object> results = new HashMap<>();

 try {
 // Initialize the item with a counter
 UpdateItemRequest initRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET Counter = :zero, OldCounter = :zero")
 .expressionAttributeValues(
 Map.of(":zero", AttributeValue.builder().n("0").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 dynamoDbClient.updateItem(initRequest);

 // Example 1: SET first, then ADD
 UpdateItemRequest setFirstRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET Counter = :value ADD
 OldCounter :increment")
 .expressionAttributeValues(Map.of(
 ":value", AttributeValue.builder().n("10").build(),
 ":increment", AttributeValue.builder().n("5").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse setFirstResponse =
 dynamoDbClient.updateItem(setFirstRequest);
 results.put("setFirstResponse", setFirstResponse);

 // Reset the item
 dynamoDbClient.updateItem(initRequest);

Understand update expression order API Version 2012-08-10 2657

Amazon DynamoDB Developer Guide

 // Example 2: ADD first, then SET
 UpdateItemRequest addFirstRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("ADD Counter :increment SET OldCounter
 = :value")
 .expressionAttributeValues(Map.of(
 ":value", AttributeValue.builder().n("10").build(),
 ":increment", AttributeValue.builder().n("5").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse addFirstResponse =
 dynamoDbClient.updateItem(addFirstRequest);
 results.put("addFirstResponse", addFirstResponse);

 // Reset the item
 dynamoDbClient.updateItem(initRequest);

 // Example 3: SET with multiple attributes
 UpdateItemRequest multiSetRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET Counter = :value, OldCounter = Counter")
 .expressionAttributeValues(
 Map.of(":value", AttributeValue.builder().n("10").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse multiSetResponse =
 dynamoDbClient.updateItem(multiSetRequest);
 results.put("multiSetResponse", multiSetResponse);

 // Reset the item
 dynamoDbClient.updateItem(initRequest);

 // Example 4: SET with expression using the same attribute
 UpdateItemRequest selfReferenceRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET Counter = Counter + :increment, OldCounter
 = Counter")
 .expressionAttributeValues(

Understand update expression order API Version 2012-08-10 2658

Amazon DynamoDB Developer Guide

 Map.of(":increment",
 AttributeValue.builder().n("5").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse selfReferenceResponse =
 dynamoDbClient.updateItem(selfReferenceRequest);
 results.put("selfReferenceResponse", selfReferenceResponse);

 results.put("success", true);

 } catch (DynamoDbException e) {
 results.put("success", false);
 results.put("error", e.getMessage());
 }

 return results;
 }

 /**
 * Updates an item with SET first, then REMOVE.
 *
 * <p>This method demonstrates updating an item with SET operation first,
 * followed by a REMOVE operation.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param attributeToSet The attribute to set
 * @param setValue The value to set
 * @param attributeToRemove The attribute to remove
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateWithSetFirst(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String attributeToSet,
 AttributeValue setValue,
 String attributeToRemove) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()

Understand update expression order API Version 2012-08-10 2659

Amazon DynamoDB Developer Guide

 .tableName(tableName)
 .key(key)
 .updateExpression("SET #setAttr = :setValue REMOVE #removeAttr")
 .expressionAttributeNames(Map.of(
 "#setAttr", attributeToSet,
 "#removeAttr", attributeToRemove))
 .expressionAttributeValues(Map.of(":setValue", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 try {
 return dynamoDbClient.updateItem(request);
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to update item with SET first: " +
 e.getMessage())
 .cause(e)
 .build();
 }
 }

 /**
 * Updates an item with REMOVE first, then SET.
 *
 * <p>This method demonstrates updating an item with REMOVE operation first,
 * followed by a SET operation.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param attributeToSet The attribute to set
 * @param setValue The value to set
 * @param attributeToRemove The attribute to remove
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateWithRemoveFirst(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String attributeToSet,
 AttributeValue setValue,
 String attributeToRemove) {

Understand update expression order API Version 2012-08-10 2660

Amazon DynamoDB Developer Guide

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("REMOVE #removeAttr SET #setAttr = :setValue")
 .expressionAttributeNames(Map.of(
 "#setAttr", attributeToSet,
 "#removeAttr", attributeToRemove))
 .expressionAttributeValues(Map.of(":setValue", setValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 try {
 return dynamoDbClient.updateItem(request);
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to update item with REMOVE first: " +
 e.getMessage())
 .cause(e)
 .build();
 }
 }

 /**
 * Updates an item with all operation types in a specific order.
 *
 * <p>This method demonstrates using all operation types (SET, REMOVE, ADD,
 DELETE)
 * in a specific order in a single update expression.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateWithAllOperationTypes(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()

Understand update expression order API Version 2012-08-10 2661

Amazon DynamoDB Developer Guide

 .tableName(tableName)
 .key(key)
 .updateExpression("SET #stringAttr = :stringVal, #mapAttr.#nestedAttr
 = :nestedVal " + "REMOVE #oldAttr "
 + "ADD #counterAttr :increment "
 + "DELETE #stringSetAttr :stringSetVal")
 .expressionAttributeNames(Map.of(
 "#stringAttr", "StringAttribute",
 "#mapAttr", "MapAttribute",
 "#nestedAttr", "NestedAttribute",
 "#oldAttr", "OldAttribute",
 "#counterAttr", "CounterAttribute",
 "#stringSetAttr", "StringSetAttribute"))
 .expressionAttributeValues(Map.of(
 ":stringVal", AttributeValue.builder().s("New Value").build(),
 ":nestedVal", AttributeValue.builder().s("Nested Value").build(),
 ":increment", AttributeValue.builder().n("1").build(),
 ":stringSetVal", AttributeValue.builder().ss("Value1").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 try {
 return dynamoDbClient.updateItem(request);
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to update item with all operation types: " +
 e.getMessage())
 .cause(e)
 .build();
 }
 }

 /**
 * Gets the current state of an item.
 *
 * <p>Helper method to retrieve the current state of an item.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to get
 * @return The item or null if not found
 * @throws DynamoDbException if an error occurs during the operation
 */

Understand update expression order API Version 2012-08-10 2662

Amazon DynamoDB Developer Guide

 public static Map<String, AttributeValue> getItem(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key) {

 // Define the get parameters
 GetItemRequest request =
 GetItemRequest.builder().tableName(tableName).key(key).build();

 // Perform the get operation
 try {
 GetItemResponse response = dynamoDbClient.getItem(request);

 // Return the item if it exists, otherwise null
 return response.item();
 } catch (DynamoDbException e) {
 throw DynamoDbException.builder()
 .message("Failed to get item: " + e.getMessage())
 .cause(e)
 .build();
 }
 }

Example usage of update expression order with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating update expression order in DynamoDB");

 try {
 // Example 1: Demonstrate update order effects
 System.out.println("\nExample 1: Demonstrating update order
 effects");
 Map<String, Object> orderResults =
 demonstrateUpdateOrder(dynamoDbClient, tableName, key);

 if ((boolean) orderResults.get("success")) {
 System.out.println("SET first, then ADD:");
 System.out.println(" " + orderResults.get("setFirstResponse"));

Understand update expression order API Version 2012-08-10 2663

Amazon DynamoDB Developer Guide

 System.out.println("ADD first, then SET:");
 System.out.println(" " + orderResults.get("addFirstResponse"));

 System.out.println("SET with multiple attributes:");
 System.out.println(" " + orderResults.get("multiSetResponse"));

 System.out.println("SET with self-reference:");
 System.out.println(" " +
 orderResults.get("selfReferenceResponse"));
 } else {
 System.out.println("Error: " + orderResults.get("error"));
 }

 // Example 2: Update with SET first, then REMOVE
 System.out.println("\nExample 2: Update with SET first, then
 REMOVE");
 UpdateItemResponse setFirstResponse = updateWithSetFirst(
 dynamoDbClient,
 tableName,
 key,
 "Status",
 AttributeValue.builder().s("Active").build(),
 "OldStatus");

 System.out.println("Updated attributes: " +
 setFirstResponse.attributes());

 // Example 3: Update with REMOVE first, then SET
 System.out.println("\nExample 3: Update with REMOVE first, then
 SET");
 UpdateItemResponse removeFirstResponse = updateWithRemoveFirst(
 dynamoDbClient,
 tableName,
 key,
 "Status",
 AttributeValue.builder().s("Inactive").build(),
 "OldStatus");

 System.out.println("Updated attributes: " +
 removeFirstResponse.attributes());

 // Example 4: Update with all operation types
 System.out.println("\nExample 4: Update with all operation types");

Understand update expression order API Version 2012-08-10 2664

Amazon DynamoDB Developer Guide

 UpdateItemResponse allOpsResponse =
 updateWithAllOperationTypes(dynamoDbClient, tableName, key);

 System.out.println("Updated attributes: " +
 allOpsResponse.attributes());

 // Example 5: Get the current state of the item
 System.out.println("\nExample 5: Current state of the item");
 Map<String, AttributeValue> item = getItem(dynamoDbClient, tableName,
 key);

 if (item != null) {
 System.out.println("Item: " + item);
 } else {
 System.out.println("Item not found");
 }

 // Explain update expression order
 System.out.println("\nKey points about update expression order in
 DynamoDB:");
 System.out.println("1. Update expressions are processed in this
 order: SET, REMOVE, ADD, DELETE");
 System.out.println("2. Within each clause, operations are processed
 from left to right");
 System.out.println("3. SET operations use the item state before any
 updates in the expression");
 System.out.println("4. When an attribute is referenced multiple
 times, the first operation wins");
 System.out.println("5. To reference a new value, split the update
 into multiple operations");
 System.out.println("6. The order of clauses in the expression doesn't
 change the evaluation order");
 System.out.println("7. For complex updates, consider using multiple
 separate update operations");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

Understand update expression order API Version 2012-08-10 2665

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

JavaScript

SDK for JavaScript (v3)

Demonstrate update expression order using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand,
 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Update an item with multiple actions in a single update expression.
 *
 * This function demonstrates how to use multiple actions in a single update
 expression
 * and how DynamoDB processes these actions.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to update
 * @param {string} updateExpression - The update expression with multiple actions
 * @param {Object} [expressionAttributeNames] - Expression attribute name
 placeholders
 * @param {Object} [expressionAttributeValues] - Expression attribute value
 placeholders
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleActions(
 config,
 tableName,
 key,
 updateExpression,
 expressionAttributeNames,
 expressionAttributeValues
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Prepare the update parameters

Understand update expression order API Version 2012-08-10 2666

Amazon DynamoDB Developer Guide

 const updateParams = {
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ReturnValues: "UPDATED_NEW"
 };

 // Add expression attribute names if provided
 if (expressionAttributeNames) {
 updateParams.ExpressionAttributeNames = expressionAttributeNames;
 }

 // Add expression attribute values if provided
 if (expressionAttributeValues) {
 updateParams.ExpressionAttributeValues = expressionAttributeValues;
 }

 // Execute the update
 const response = await docClient.send(new UpdateCommand(updateParams));

 return response;
}

/**
 * Demonstrate that variables hold copies of existing values before
 modifications.
 *
 * This function creates an item with initial values, then updates it with an
 expression
 * that uses the values of attributes before they are modified in the same
 expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateValueCopying(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client

Understand update expression order API Version 2012-08-10 2667

Amazon DynamoDB Developer Guide

 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = { ...key, a: 1, b: 2, c: 3 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with an expression that uses values before they are
 modified
 // This expression removes 'a', then sets 'b' to the value of 'a', and 'c' to
 the value of 'b'
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: "REMOVE a SET b = a, c = b",
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };

Understand update expression order API Version 2012-08-10 2668

Amazon DynamoDB Developer Guide

}

/**
 * Demonstrate the order in which different action types are processed.
 *
 * This function creates an item with initial values, then updates it with an
 expression
 * that includes multiple action types (SET, REMOVE, ADD, DELETE) to show the
 order
 * in which they are processed.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateActionOrder(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = {
 ...key,
 counter: 10,
 set_attr: new Set(["A", "B", "C"]),
 to_remove: "This will be removed",
 to_modify: "Original value"
 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key

Understand update expression order API Version 2012-08-10 2669

Amazon DynamoDB Developer Guide

 }));

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with multiple action types
 // The actions will be processed in this order: REMOVE, SET, ADD, DELETE
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: "REMOVE to_remove SET to_modify = :new_value ADD
 counter :increment DELETE set_attr :elements",
 ExpressionAttributeValues: {
 ":new_value": "Updated value",
 ":increment": 5,
 ":elements": new Set(["B"])
 },
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };
}

/**
 * Update multiple attributes with a single SET action.
 *
 * This function demonstrates how to update multiple attributes in a single SET
 action,
 * which is more efficient than using multiple separate update operations.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table

Understand update expression order API Version 2012-08-10 2670

Amazon DynamoDB Developer Guide

 * @param {Object} key - The primary key of the item to update
 * @param {Object} attributes - The attributes to update and their new values
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithMultipleSetActions(
 config,
 tableName,
 key,
 attributes
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression and expression attribute values
 let updateExpression = "SET ";
 const expressionAttributeValues = {};

 // Add each attribute to the update expression
 Object.entries(attributes).forEach(([attrName, attrValue], index) => {
 const valuePlaceholder = `:val${index}`;

 if (index > 0) {
 updateExpression += ", ";
 }
 updateExpression += `${attrName} = ${valuePlaceholder}`;

 expressionAttributeValues[valuePlaceholder] = attrValue;
 });

 // Execute the update
 const response = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: updateExpression,
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 }));

 return response;
}

/**
 * Update an attribute with a value from another attribute or a default value.

Understand update expression order API Version 2012-08-10 2671

Amazon DynamoDB Developer Guide

 *
 * This function demonstrates how to use if_not_exists to conditionally copy a
 value
 * from one attribute to another, or use a default value if the source doesn't
 exist.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to update
 * @param {string} sourceAttribute - The attribute to copy the value from
 * @param {string} targetAttribute - The attribute to update
 * @param {any} defaultValue - The default value to use if the source attribute
 doesn't exist
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateWithConditionalValueCopying(
 config,
 tableName,
 key,
 sourceAttribute,
 targetAttribute,
 defaultValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Use if_not_exists to conditionally copy the value
 const response = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${targetAttribute} =
 if_not_exists(${sourceAttribute}, :default)`,
 ExpressionAttributeValues: {
 ":default": defaultValue
 },
 ReturnValues: "UPDATED_NEW"
 }));

 return response;
}

/**

Understand update expression order API Version 2012-08-10 2672

Amazon DynamoDB Developer Guide

 * Demonstrate complex update expressions with multiple operations on the same
 attribute.
 *
 * This function shows how DynamoDB processes multiple operations on the same
 attribute
 * in a single update expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The primary key of the item to create and update
 * @returns {Promise<Object>} - A dictionary containing the results of the
 demonstration
 */
async function demonstrateMultipleOperationsOnSameAttribute(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Step 1: Create an item with initial values
 const initialItem = {
 ...key,
 counter: 10,
 list_attr: [1, 2, 3],
 map_attr: {
 nested1: "value1",
 nested2: "value2"
 }
 };

 await docClient.send(new PutCommand({
 TableName: tableName,
 Item: initialItem
 }));

 // Step 2: Get the item to verify initial state
 const responseBefore = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

Understand update expression order API Version 2012-08-10 2673

Amazon DynamoDB Developer Guide

 const itemBefore = responseBefore.Item || {};

 // Step 3: Update the item with multiple operations on the same attributes
 const updateResponse = await docClient.send(new UpdateCommand({
 TableName: tableName,
 Key: key,
 UpdateExpression: `
 SET counter = counter + :inc1,
 counter = counter + :inc2,
 map_attr.nested1 = :new_val1,
 map_attr.nested3 = :new_val3,
 list_attr[0] = list_attr[1],
 list_attr[1] = list_attr[2]
 `,
 ExpressionAttributeValues: {
 ":inc1": 5,
 ":inc2": 3,
 ":new_val1": "updated_value1",
 ":new_val3": "new_value3"
 },
 ReturnValues: "UPDATED_NEW"
 }));

 // Step 4: Get the item to verify final state
 const responseAfter = await docClient.send(new GetCommand({
 TableName: tableName,
 Key: key
 }));

 const itemAfter = responseAfter.Item || {};

 // Return the results
 return {
 initialState: itemBefore,
 updateResponse: updateResponse,
 finalState: itemAfter
 };
}

Example usage of update expression order with Amazon SDK for JavaScript.

/**

Understand update expression order API Version 2012-08-10 2674

Amazon DynamoDB Developer Guide

 * Example of how to use update expression order of operations in DynamoDB.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "OrderProcessing";

 console.log("Demonstrating update expression order of operations in DynamoDB");

 try {
 // Example 1: Demonstrating value copying in update expressions
 console.log("\nExample 1: Demonstrating value copying in update
 expressions");
 const results1 = await demonstrateValueCopying(
 config,
 tableName,
 { OrderId: "order123" }
);

 console.log("Initial state:", JSON.stringify(results1.initialState, null,
 2));
 console.log("Update response:", JSON.stringify(results1.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results1.finalState, null, 2));

 console.log("\nExplanation:");
 console.log("1. The initial state had a=1, b=2, c=3");
 console.log("2. The update expression 'REMOVE a SET b = a, c = b' did the
 following:");
 console.log(" - Copied the value of 'a' (which was 1) to be used for 'b'");
 console.log(" - Copied the value of 'b' (which was 2) to be used for 'c'");
 console.log(" - Removed the attribute 'a'");
 console.log("3. The final state has b=1, c=2, and 'a' is removed");
 console.log("4. This demonstrates that DynamoDB uses the values of attributes
 as they were BEFORE any modifications");

 // Example 2: Demonstrating the order of different action types
 console.log("\nExample 2: Demonstrating the order of different action
 types");
 const results2 = await demonstrateActionOrder(
 config,
 tableName,
 { OrderId: "order456" }
);

Understand update expression order API Version 2012-08-10 2675

Amazon DynamoDB Developer Guide

 console.log("Initial state:", JSON.stringify(results2.initialState, null,
 2));
 console.log("Update response:", JSON.stringify(results2.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results2.finalState, null, 2));

 console.log("\nExplanation:");
 console.log("1. The update expression contained multiple action types:
 REMOVE, SET, ADD, DELETE");
 console.log("2. DynamoDB processes these actions in this order: REMOVE, SET,
 ADD, DELETE");
 console.log("3. First, 'to_remove' was removed");
 console.log("4. Then, 'to_modify' was set to a new value");
 console.log("5. Next, 'counter' was incremented by 5");
 console.log("6. Finally, 'B' was removed from the set attribute");

 // Example 3: Updating multiple attributes in a single SET action
 console.log("\nExample 3: Updating multiple attributes in a single SET
 action");
 const response3 = await updateWithMultipleSetActions(
 config,
 tableName,
 { OrderId: "order789" },
 {
 Status: "Shipped",
 ShippingDate: "2025-05-28",
 TrackingNumber: "1Z999AA10123456784"
 }
);

 console.log("Multiple attributes updated successfully:",
 JSON.stringify(response3.Attributes, null, 2));

 // Example 4: Conditional value copying with if_not_exists
 console.log("\nExample 4: Conditional value copying with if_not_exists");
 const response4 = await updateWithConditionalValueCopying(
 config,
 tableName,
 { OrderId: "order101" },
 "PreferredShippingMethod",
 "ShippingMethod",
 "Standard"
);

Understand update expression order API Version 2012-08-10 2676

Amazon DynamoDB Developer Guide

 console.log("Conditional value copying result:",
 JSON.stringify(response4.Attributes, null, 2));

 // Example 5: Multiple operations on the same attribute
 console.log("\nExample 5: Multiple operations on the same attribute");
 const results5 = await demonstrateMultipleOperationsOnSameAttribute(
 config,
 tableName,
 { OrderId: "order202" }
);

 console.log("Initial state:", JSON.stringify(results5.initialState, null,
 2));
 console.log("Update response:", JSON.stringify(results5.updateResponse, null,
 2));
 console.log("Final state:", JSON.stringify(results5.finalState, null, 2));

 console.log("\nExplanation:");
 console.log("1. The counter was incremented twice (first by 5, then by 3) for
 a total of +8");
 console.log("2. The map attribute had one value updated and a new nested
 attribute added");
 console.log("3. The list attribute had values shifted (value at index 1 moved
 to index 0, value at index 2 moved to index 1)");
 console.log("4. All operations within the SET action are processed from left
 to right");

 // Key points about update expression order of operations
 console.log("\nKey Points About Update Expression Order of Operations:");
 console.log("1. Variables in expressions hold copies of attribute values as
 they existed BEFORE any modifications");
 console.log("2. Multiple actions in an update expression are processed in
 this order: REMOVE, SET, ADD, DELETE");
 console.log("3. Within each action type, operations are processed from left
 to right");
 console.log("4. You can reference the same attribute multiple times in an
 expression");
 console.log("5. You can use if_not_exists() to conditionally set values based
 on attribute existence");
 console.log("6. Using a single update expression with multiple actions is
 more efficient than multiple separate updates");
 console.log("7. The update expression is atomic - either all actions succeed
 or none do");

Understand update expression order API Version 2012-08-10 2677

Amazon DynamoDB Developer Guide

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Demonstrate update expression order using Amazon SDK for Python (Boto3).

import boto3
import json
from typing import Any, Dict, Optional

def update_with_multiple_actions(
 table_name: str,
 key: Dict[str, Any],
 update_expression: str,
 expression_attribute_names: Optional[Dict[str, str]] = None,
 expression_attribute_values: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
 """
 Update an item with multiple actions in a single update expression.

 This function demonstrates how to use multiple actions in a single update
 expression
 and how DynamoDB processes these actions.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 update_expression (str): The update expression with multiple actions.
 expression_attribute_names (Optional[Dict[str, str]]): Expression
 attribute name placeholders.
 expression_attribute_values (Optional[Dict[str, Any]]): Expression
 attribute value placeholders.

Understand update expression order API Version 2012-08-10 2678

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Prepare the update parameters
 update_params = {
 "Key": key,
 "UpdateExpression": update_expression,
 "ReturnValues": "UPDATED_NEW",
 }

 # Add expression attribute names if provided
 if expression_attribute_names:
 update_params["ExpressionAttributeNames"] = expression_attribute_names

 # Add expression attribute values if provided
 if expression_attribute_values:
 update_params["ExpressionAttributeValues"] = expression_attribute_values

 # Execute the update
 response = table.update_item(**update_params)

 return response

def demonstrate_value_copying(table_name: str, key: Dict[str, Any]) -> Dict[str,
 Any]:
 """
 Demonstrate that variables hold copies of existing values before
 modifications.

 This function creates an item with initial values, then updates it with an
 expression
 that uses the values of attributes before they are modified in the same
 expression.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to create and update.

Understand update expression order API Version 2012-08-10 2679

Amazon DynamoDB Developer Guide

 Returns:
 Dict[str, Any]: A dictionary containing the results of the demonstration.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Step 1: Create an item with initial values
 initial_item = key.copy()
 initial_item.update({"a": 1, "b": 2, "c": 3})

 table.put_item(Item=initial_item)

 # Step 2: Get the item to verify initial state
 response_before = table.get_item(Key=key)
 item_before = response_before.get("Item", {})

 # Step 3: Update the item with an expression that uses values before they are
 modified
 # This expression removes 'a', then sets 'b' to the value of 'a', and 'c' to
 the value of 'b'
 update_response = table.update_item(
 Key=key, UpdateExpression="REMOVE a SET b = a, c = b",
 ReturnValues="UPDATED_NEW"
)

 # Step 4: Get the item to verify final state
 response_after = table.get_item(Key=key)
 item_after = response_after.get("Item", {})

 # Return the results
 return {
 "initial_state": item_before,
 "update_response": update_response,
 "final_state": item_after,
 }

def demonstrate_action_order(table_name: str, key: Dict[str, Any]) -> Dict[str,
 Any]:
 """
 Demonstrate the order in which different action types are processed.

Understand update expression order API Version 2012-08-10 2680

Amazon DynamoDB Developer Guide

 This function creates an item with initial values, then updates it with an
 expression
 that includes multiple action types (SET, REMOVE, ADD, DELETE) to show the
 order
 in which they are processed.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to create and update.

 Returns:
 Dict[str, Any]: A dictionary containing the results of the demonstration.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Step 1: Create an item with initial values
 initial_item = key.copy()
 initial_item.update(
 {
 "counter": 10,
 "set_attr": set(["A", "B", "C"]),
 "to_remove": "This will be removed",
 "to_modify": "Original value",
 }
)

 table.put_item(Item=initial_item)

 # Step 2: Get the item to verify initial state
 response_before = table.get_item(Key=key)
 item_before = response_before.get("Item", {})

 # Step 3: Update the item with multiple action types
 # The actions will be processed in this order: REMOVE, SET, ADD, DELETE
 update_response = table.update_item(
 Key=key,
 UpdateExpression="REMOVE to_remove SET to_modify = :new_value ADD
 counter :increment DELETE set_attr :elements",
 ExpressionAttributeValues={
 ":new_value": "Updated value",
 ":increment": 5,
 ":elements": set(["B"]),

Understand update expression order API Version 2012-08-10 2681

Amazon DynamoDB Developer Guide

 },
 ReturnValues="UPDATED_NEW",
)

 # Step 4: Get the item to verify final state
 response_after = table.get_item(Key=key)
 item_after = response_after.get("Item", {})

 # Return the results
 return {
 "initial_state": item_before,
 "update_response": update_response,
 "final_state": item_after,
 }

def update_with_multiple_set_actions(
 table_name: str, key: Dict[str, Any], attributes: Dict[str, Any]
) -> Dict[str, Any]:
 """
 Update multiple attributes with a single SET action.

 This function demonstrates how to update multiple attributes in a single SET
 action,
 which is more efficient than using multiple separate update operations.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 attributes (Dict[str, Any]): The attributes to update and their new
 values.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Build the update expression and expression attribute values
 update_expression = "SET "
 expression_attribute_values = {}

Understand update expression order API Version 2012-08-10 2682

Amazon DynamoDB Developer Guide

 # Add each attribute to the update expression
 for i, (attr_name, attr_value) in enumerate(attributes.items()):
 value_placeholder = f":val{i}"

 if i > 0:
 update_expression += ", "
 update_expression += f"{attr_name} = {value_placeholder}"

 expression_attribute_values[value_placeholder] = attr_value

 # Execute the update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeValues=expression_attribute_values,
 ReturnValues="UPDATED_NEW",
)

 return response

def update_with_conditional_value_copying(
 table_name: str,
 key: Dict[str, Any],
 source_attribute: str,
 target_attribute: str,
 default_value: Any,
) -> Dict[str, Any]:
 """
 Update an attribute with a value from another attribute or a default value.

 This function demonstrates how to use if_not_exists to conditionally copy a
 value
 from one attribute to another, or use a default value if the source doesn't
 exist.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 source_attribute (str): The attribute to copy the value from.
 target_attribute (str): The attribute to update.
 default_value (Any): The default value to use if the source attribute
 doesn't exist.

Understand update expression order API Version 2012-08-10 2683

Amazon DynamoDB Developer Guide

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use if_not_exists to conditionally copy the value
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {target_attribute} =
 if_not_exists({source_attribute}, :default)",
 ExpressionAttributeValues={":default": default_value},
 ReturnValues="UPDATED_NEW",
)

 return response

Example usage of update expression order with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use update expression order of operations in
 DynamoDB."""
 # Example parameters
 table_name = "OrderProcessing"
 key = {"OrderId": "order123"}

 print("Example 1: Demonstrating value copying in update expressions")
 try:
 results = demonstrate_value_copying(table_name=table_name, key=key)

 print(f"Initial state: {json.dumps(results['initial_state'],
 default=str)}")
 print(f"Update response: {json.dumps(results['update_response'],
 default=str)}")
 print(f"Final state: {json.dumps(results['final_state'], default=str)}")

 print("\nExplanation:")
 print("1. The initial state had a=1, b=2, c=3")

Understand update expression order API Version 2012-08-10 2684

Amazon DynamoDB Developer Guide

 print("2. The update expression 'REMOVE a SET b = a, c = b' did the
 following:")
 print(" - Copied the value of 'a' (which was 1) to be used for 'b'")
 print(" - Copied the value of 'b' (which was 2) to be used for 'c'")
 print(" - Removed the attribute 'a'")
 print("3. The final state has b=1, c=2, and 'a' is removed")
 print(
 "4. This demonstrates that DynamoDB uses the values of attributes as
 they were BEFORE any modifications"
)
 except Exception as e:
 print(f"Error demonstrating value copying: {e}")

 print("\nExample 2: Demonstrating the order of different action types")
 try:
 results = demonstrate_action_order(table_name=table_name, key={"OrderId":
 "order456"})

 print(f"Initial state: {json.dumps(results['initial_state'],
 default=str)}")
 print(f"Update response: {json.dumps(results['update_response'],
 default=str)}")
 print(f"Final state: {json.dumps(results['final_state'], default=str)}")

 print("\nExplanation:")
 print("1. The update expression contained multiple action types: REMOVE,
 SET, ADD, DELETE")
 print("2. DynamoDB processes these actions in this order: REMOVE, SET,
 ADD, DELETE")
 print("3. First, 'to_remove' was removed")
 print("4. Then, 'to_modify' was set to a new value")
 print("5. Next, 'counter' was incremented by 5")
 print("6. Finally, 'B' was removed from the set attribute")
 except Exception as e:
 print(f"Error demonstrating action order: {e}")

 print("\nExample 3: Updating multiple attributes in a single SET action")
 try:
 response = update_with_multiple_set_actions(
 table_name=table_name,
 key={"OrderId": "order789"},
 attributes={
 "Status": "Shipped",
 "ShippingDate": "2025-05-14",

Understand update expression order API Version 2012-08-10 2685

Amazon DynamoDB Developer Guide

 "TrackingNumber": "1Z999AA10123456784",
 },
)

 print(
 f"Multiple attributes updated successfully:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error updating multiple attributes: {e}")

 print("\nExample 4: Conditional value copying with if_not_exists")
 try:
 response = update_with_conditional_value_copying(
 table_name=table_name,
 key={"OrderId": "order101"},
 source_attribute="PreferredShippingMethod",
 target_attribute="ShippingMethod",
 default_value="Standard",
)

 print(
 f"Conditional value copying result:
 {json.dumps(response.get('Attributes', {}), default=str)}"
)
 except Exception as e:
 print(f"Error with conditional value copying: {e}")

 print("\nKey Points About Update Expression Order of Operations:")
 print(
 "1. Variables in expressions hold copies of attribute values as they
 existed BEFORE any modifications"
)
 print(
 "2. Multiple actions in an update expression are processed in this order:
 REMOVE, SET, ADD, DELETE"
)
 print("3. Within each action type, operations are processed from left to
 right")
 print("4. You can reference the same attribute multiple times in an
 expression")
 print("5. You can use if_not_exists() to conditionally set values based on
 attribute existence")
 print(

Understand update expression order API Version 2012-08-10 2686

Amazon DynamoDB Developer Guide

 "6. Using a single update expression with multiple actions is more
 efficient than multiple separate updates"
)
 print("7. The update expression is atomic - either all actions succeed or
 none do")

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Update a DynamoDB table setting with warm throughput using an
Amazon SDK

The following code examples show how to update a table's warm throughput setting.

Java

SDK for Java 2.x

Update warm throughput setting on an existing DynamoDB table using Amazon SDK for
Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GlobalSecondaryIndexUpdate;
import
 software.amazon.awssdk.services.dynamodb.model.UpdateGlobalSecondaryIndexAction;
import software.amazon.awssdk.services.dynamodb.model.UpdateTableRequest;
import software.amazon.awssdk.services.dynamodb.model.WarmThroughput;

 public static WarmThroughput buildWarmThroughput(final Long
 readUnitsPerSecond, final Long writeUnitsPerSecond) {
 return WarmThroughput.builder()
 .readUnitsPerSecond(readUnitsPerSecond)
 .writeUnitsPerSecond(writeUnitsPerSecond)
 .build();
 }

Update a table's warm throughput setting API Version 2012-08-10 2687

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 /**
 * Updates a DynamoDB table with warm throughput settings for both the table
 and a global secondary index.
 *
 * @param ddb The DynamoDB client
 * @param tableName The name of the table to update
 * @param tableReadUnitsPerSecond Read units per second for the table
 * @param tableWriteUnitsPerSecond Write units per second for the table
 * @param globalSecondaryIndexName The name of the global secondary index to
 update
 * @param globalSecondaryIndexReadUnitsPerSecond Read units per second for
 the GSI
 * @param globalSecondaryIndexWriteUnitsPerSecond Write units per second for
 the GSI
 */
 public static void updateDynamoDBTable(
 final DynamoDbClient ddb,
 final String tableName,
 final Long tableReadUnitsPerSecond,
 final Long tableWriteUnitsPerSecond,
 final String globalSecondaryIndexName,
 final Long globalSecondaryIndexReadUnitsPerSecond,
 final Long globalSecondaryIndexWriteUnitsPerSecond) {

 final WarmThroughput tableWarmThroughput =
 buildWarmThroughput(tableReadUnitsPerSecond,
 tableWriteUnitsPerSecond);
 final WarmThroughput gsiWarmThroughput =
 buildWarmThroughput(globalSecondaryIndexReadUnitsPerSecond,
 globalSecondaryIndexWriteUnitsPerSecond);

 final GlobalSecondaryIndexUpdate globalSecondaryIndexUpdate =
 GlobalSecondaryIndexUpdate.builder()
 .update(UpdateGlobalSecondaryIndexAction.builder()
 .indexName(globalSecondaryIndexName)
 .warmThroughput(gsiWarmThroughput)
 .build())
 .build();

 final UpdateTableRequest request = UpdateTableRequest.builder()
 .tableName(tableName)
 .globalSecondaryIndexUpdates(globalSecondaryIndexUpdate)
 .warmThroughput(tableWarmThroughput)

Update a table's warm throughput setting API Version 2012-08-10 2688

Amazon DynamoDB Developer Guide

 .build();

 try {
 ddb.updateTable(request);
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }

 System.out.println(SUCCESS_MESSAGE);
 }

• For API details, see UpdateTable in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Update warm throughput setting on an existing DynamoDB table using Amazon SDK for
JavaScript.

import { DynamoDBClient, UpdateTableCommand } from "@aws-sdk/client-dynamodb";

export async function updateDynamoDBTableWarmThroughput(
 tableName,
 tableReadUnits,
 tableWriteUnits,
 gsiName,
 gsiReadUnits,
 gsiWriteUnits,
 region = "us-east-1"
) {
 try {
 const ddbClient = new DynamoDBClient({ region: region });

 // Construct the update table request
 const updateTableRequest = {
 TableName: tableName,
 GlobalSecondaryIndexUpdates: [
 {
 Update: {
 IndexName: gsiName,

Update a table's warm throughput setting API Version 2012-08-10 2689

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

 WarmThroughput: {
 ReadUnitsPerSecond: gsiReadUnits,
 WriteUnitsPerSecond: gsiWriteUnits,
 },
 },
 },
],
 WarmThroughput: {
 ReadUnitsPerSecond: tableReadUnits,
 WriteUnitsPerSecond: tableWriteUnits,
 },
 };

 const command = new UpdateTableCommand(updateTableRequest);
 const response = await ddbClient.send(command);
 console.log(`Table updated successfully! Response:
 ${JSON.stringify(response)}`);
 return response;
 } catch (error) {
 console.error(`Error updating table: ${error}`);
 throw error;
 }
}

// Example usage (commented out for testing)
/*
updateDynamoDBTableWarmThroughput(
 'example-table',
 5, 5,
 'example-index',
 2, 2
);
*/

• For API details, see UpdateTable in Amazon SDK for JavaScript API Reference.

Update a table's warm throughput setting API Version 2012-08-10 2690

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateTableCommand

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Update warm throughput setting on an existing DynamoDB table using Amazon SDK for
Python (Boto3).

from boto3 import client
from botocore.exceptions import ClientError

def update_dynamodb_table_warm_throughput(
 table_name,
 table_read_units,
 table_write_units,
 gsi_name,
 gsi_read_units,
 gsi_write_units,
 region_name="us-east-1",
):
 """
 Updates the warm throughput of a DynamoDB table and a global secondary index.

 :param table_name: The name of the table to update.
 :param table_read_units: The new read units per second for the table's warm
 throughput.
 :param table_write_units: The new write units per second for the table's warm
 throughput.
 :param gsi_name: The name of the global secondary index to update.
 :param gsi_read_units: The new read units per second for the GSI's warm
 throughput.
 :param gsi_write_units: The new write units per second for the GSI's warm
 throughput.
 :param region_name: The AWS Region name to target. defaults to us-east-1
 :return: The response from the update_table operation
 """
 try:
 ddb = client("dynamodb", region_name=region_name)

 # Update the table's warm throughput
 table_warm_throughput = {
 "ReadUnitsPerSecond": table_read_units,
 "WriteUnitsPerSecond": table_write_units,
 }

Update a table's warm throughput setting API Version 2012-08-10 2691

Amazon DynamoDB Developer Guide

 # Update the global secondary index's warm throughput
 gsi_warm_throughput = {
 "ReadUnitsPerSecond": gsi_read_units,
 "WriteUnitsPerSecond": gsi_write_units,
 }

 # Construct the global secondary index update
 global_secondary_index_update = [
 {"Update": {"IndexName": gsi_name, "WarmThroughput":
 gsi_warm_throughput}}
]

 # Construct the update table request
 update_table_request = {
 "TableName": table_name,
 "GlobalSecondaryIndexUpdates": global_secondary_index_update,
 "WarmThroughput": table_warm_throughput,
 }

 # Update the table
 response = ddb.update_table(**update_table_request)
 print("Table updated successfully!")
 return response # Make sure to return the response
 except ClientError as e:
 print(f"Error updating table: {e}")
 raise e

• For API details, see UpdateTable in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Update a DynamoDB item with a TTL using an Amazon SDK

The following code examples show how to update an item's TTL.

Update an item's TTL API Version 2012-08-10 2692

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Update TTL on an existing DynamoDB item in a table.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.ResourceNotFoundException;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;
import java.util.Optional;

 public UpdateItemResponse updateItemWithTTL(
 final String tableName, final String primaryKeyValue, final String
 sortKeyValue) {
 // Get current time in epoch second format
 final long currentTime = System.currentTimeMillis() / 1000;

 // Calculate expiration time 90 days from now in epoch second format
 final long expireDate = currentTime + (DAYS_TO_EXPIRE * SECONDS_PER_DAY);

 // Create the key map for the item to update
 final Map<String, AttributeValue> keyMap = new HashMap<>();
 keyMap.put(PRIMARY_KEY_ATTR,
 AttributeValue.builder().s(primaryKeyValue).build());
 keyMap.put(SORT_KEY_ATTR,
 AttributeValue.builder().s(sortKeyValue).build());

 // Create the expression attribute values
 final Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();
 expressionAttributeValues.put(
 ":c",
 AttributeValue.builder().n(String.valueOf(currentTime)).build());
 expressionAttributeValues.put(
 ":e",
 AttributeValue.builder().n(String.valueOf(expireDate)).build());

Update an item's TTL API Version 2012-08-10 2693

Amazon DynamoDB Developer Guide

 final UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(keyMap)
 .updateExpression(UPDATE_EXPRESSION)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 try {
 final UpdateItemResponse response =
 dynamoDbClient.updateItem(request);
 System.out.println(String.format(SUCCESS_MESSAGE, tableName));
 return response;
 } catch (ResourceNotFoundException e) {
 System.err.format(TABLE_NOT_FOUND_ERROR, tableName);
 throw e;
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 throw e;
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

import { DynamoDBClient, UpdateItemCommand } from "@aws-sdk/client-dynamodb";
import { marshall, unmarshall } from "@aws-sdk/util-dynamodb";

export const updateItem = async (tableName, partitionKey, sortKey, region = 'us-
east-1') => {
 const client = new DynamoDBClient({
 region: region,
 endpoint: `https://dynamodb.${region}.amazonaws.com`
 });

 const currentTime = Math.floor(Date.now() / 1000);
 const expireAt = Math.floor((Date.now() + 90 * 24 * 60 * 60 * 1000) / 1000);

 const params = {
 TableName: tableName,

Update an item's TTL API Version 2012-08-10 2694

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 Key: marshall({
 partitionKey: partitionKey,
 sortKey: sortKey
 }),
 UpdateExpression: "SET updatedAt = :c, expireAt = :e",
 ExpressionAttributeValues: marshall({
 ":c": currentTime,
 ":e": expireAt
 }),
 };

 try {
 const data = await client.send(new UpdateItemCommand(params));
 const responseData = unmarshall(data.Attributes);
 console.log("Item updated successfully: %s", responseData);
 return responseData;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
}

// Example usage (commented out for testing)
// updateItem('your-table-name', 'your-partition-key-value', 'your-sort-key-
value');

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

from datetime import datetime, timedelta

import boto3

def update_dynamodb_item(table_name, region, primary_key, sort_key):
 """
 Update an existing DynamoDB item with a TTL.
 :param table_name: Name of the DynamoDB table

Update an item's TTL API Version 2012-08-10 2695

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 :param region: AWS Region of the table - example `us-east-1`
 :param primary_key: one attribute known as the partition key.
 :param sort_key: Also known as a range attribute.
 :return: Void (nothing)
 """
 try:
 # Create the DynamoDB resource.
 dynamodb = boto3.resource("dynamodb", region_name=region)
 table = dynamodb.Table(table_name)

 # Get the current time in epoch second format
 current_time = int(datetime.now().timestamp())

 # Calculate the expireAt time (90 days from now) in epoch second format
 expire_at = int((datetime.now() + timedelta(days=90)).timestamp())

 table.update_item(
 Key={"partitionKey": primary_key, "sortKey": sort_key},
 UpdateExpression="set updatedAt=:c, expireAt=:e",
 ExpressionAttributeValues={":c": current_time, ":e": expire_at},
)

 print("Item updated successfully.")
 except Exception as e:
 print(f"Error updating item: {e}")

Replace with your own values
update_dynamodb_item(
 "your-table-name", "us-west-2", "your-partition-key-value", "your-sort-key-
value"
)

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Update an item's TTL API Version 2012-08-10 2696

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Update DynamoDB data using PartiQL UPDATE statements with an
Amazon SDK

The following code example shows how to update data using PartiQL UPDATE statements.

JavaScript

SDK for JavaScript (v3)

Update items in a DynamoDB table using PartiQL UPDATE statements with Amazon SDK for
JavaScript.

/**
 * This example demonstrates how to update items in a DynamoDB table using
 PartiQL.
 * It shows different ways to update documents with various index types.
 */
import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 DynamoDBDocumentClient,
 ExecuteStatementCommand,
 BatchExecuteStatementCommand,
} from "@aws-sdk/lib-dynamodb";

/**
 * Update a single attribute of an item using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeName - The name of the attribute to update
 * @param attributeValue - The new value for the attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const updateSingleAttribute = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeName: string,
 attributeValue: any
) => {
 const client = new DynamoDBClient({});

Update data using PartiQL UPDATE API Version 2012-08-10 2697

Amazon DynamoDB Developer Guide

 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ?`,
 Parameters: [attributeValue, partitionKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update multiple attributes of an item using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeUpdates - Object containing attribute names and their new
 values
 * @returns The response from the ExecuteStatementCommand
 */
export const updateMultipleAttributes = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeUpdates: Record<string, any>
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create SET clause for each attribute
 const setClause = Object.keys(attributeUpdates)
 .map((attr, index) => `${attr} = ?`)
 .join(", ");

 // Create parameters array with attribute values followed by the partition key
 value

Update data using PartiQL UPDATE API Version 2012-08-10 2698

Amazon DynamoDB Developer Guide

 const parameters = [...Object.values(attributeUpdates), partitionKeyValue];

 const params = {
 Statement: `UPDATE "${tableName}" SET ${setClause} WHERE ${partitionKeyName}
 = ?`,
 Parameters: parameters,
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update an item identified by a composite key (partition key + sort key) using
 PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param sortKeyName - The name of the sort key attribute
 * @param sortKeyValue - The value of the sort key
 * @param attributeName - The name of the attribute to update
 * @param attributeValue - The new value for the attribute
 * @returns The response from the ExecuteStatementCommand
 */
export const updateItemWithCompositeKey = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 sortKeyName: string,
 sortKeyValue: string | number,
 attributeName: string,
 attributeValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {

Update data using PartiQL UPDATE API Version 2012-08-10 2699

Amazon DynamoDB Developer Guide

 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ? AND ${sortKeyName} = ?`,
 Parameters: [attributeValue, partitionKeyValue, sortKeyValue],
 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated successfully");
 return data;
 } catch (err) {
 console.error("Error updating item:", err);
 throw err;
 }
};

/**
 * Update an item with a condition to ensure the update only happens if a
 condition is met.
 *
 * @param tableName - The name of the DynamoDB table
 * @param partitionKeyName - The name of the partition key attribute
 * @param partitionKeyValue - The value of the partition key
 * @param attributeName - The name of the attribute to update
 * @param attributeValue - The new value for the attribute
 * @param conditionAttribute - The attribute to check in the condition
 * @param conditionValue - The value to compare against in the condition
 * @returns The response from the ExecuteStatementCommand
 */
export const updateItemWithCondition = async (
 tableName: string,
 partitionKeyName: string,
 partitionKeyValue: string | number,
 attributeName: string,
 attributeValue: any,
 conditionAttribute: string,
 conditionValue: any
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 const params = {
 Statement: `UPDATE "${tableName}" SET ${attributeName} = ? WHERE
 ${partitionKeyName} = ? AND ${conditionAttribute} = ?`,
 Parameters: [attributeValue, partitionKeyValue, conditionValue],

Update data using PartiQL UPDATE API Version 2012-08-10 2700

Amazon DynamoDB Developer Guide

 };

 try {
 const data = await docClient.send(new ExecuteStatementCommand(params));
 console.log("Item updated with condition successfully");
 return data;
 } catch (err) {
 console.error("Error updating item with condition:", err);
 throw err;
 }
};

/**
 * Batch update multiple items using PartiQL.
 *
 * @param tableName - The name of the DynamoDB table
 * @param updates - Array of objects containing key and update information
 * @returns The response from the BatchExecuteStatementCommand
 */
export const batchUpdateItems = async (
 tableName: string,
 updates: Array<{
 partitionKeyName: string;
 partitionKeyValue: string | number;
 attributeName: string;
 attributeValue: any;
 }>
) => {
 const client = new DynamoDBClient({});
 const docClient = DynamoDBDocumentClient.from(client);

 // Create statements for each update
 const statements = updates.map((update) => {
 return {
 Statement: `UPDATE "${tableName}" SET ${update.attributeName} = ? WHERE
 ${update.partitionKeyName} = ?`,
 Parameters: [update.attributeValue, update.partitionKeyValue],
 };
 });

 const params = {
 Statements: statements,
 };

Update data using PartiQL UPDATE API Version 2012-08-10 2701

Amazon DynamoDB Developer Guide

 try {
 const data = await docClient.send(new BatchExecuteStatementCommand(params));
 console.log("Items batch updated successfully");
 return data;
 } catch (err) {
 console.error("Error batch updating items:", err);
 throw err;
 }
};

/**
 * Example usage showing how to update items with different index types
 */
export const updateExamples = async () => {
 // Update a single attribute using a simple primary key
 await updateSingleAttribute("UsersTable", "userId", "user123", "email",
 "newemail@example.com");

 // Update multiple attributes at once
 await updateMultipleAttributes("UsersTable", "userId", "user123", {
 email: "newemail@example.com",
 name: "John Smith",
 lastLogin: new Date().toISOString(),
 });

 // Update an item with a composite key (partition key + sort key)
 await updateItemWithCompositeKey(
 "OrdersTable",
 "orderId",
 "order456",
 "productId",
 "prod789",
 "quantity",
 5
);

 // Update with a condition
 await updateItemWithCondition(
 "UsersTable",
 "userId",
 "user123",
 "userStatus",
 "active",
 "userType",

Update data using PartiQL UPDATE API Version 2012-08-10 2702

Amazon DynamoDB Developer Guide

 "premium"
);

 // Batch update multiple items
 await batchUpdateItems("UsersTable", [
 {
 partitionKeyName: "userId",
 partitionKeyValue: "user123",
 attributeName: "lastLogin",
 attributeValue: new Date().toISOString(),
 },
 {
 partitionKeyName: "userId",
 partitionKeyValue: "user456",
 attributeName: "lastLogin",
 attributeValue: new Date().toISOString(),
 },
]);
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• BatchExecuteStatement

• ExecuteStatement

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use API Gateway to invoke a Lambda function

The following code examples show how to create an Amazon Lambda function invoked by Amazon
API Gateway.

Java

SDK for Java 2.x

Shows how to create an Amazon Lambda function by using the Lambda Java runtime API.
This example invokes different Amazon services to perform a specific use case. This example
demonstrates how to create a Lambda function invoked by Amazon API Gateway that scans

Use API Gateway to invoke a Lambda function API Version 2012-08-10 2703

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/BatchExecuteStatementCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/ExecuteStatementCommand

Amazon DynamoDB Developer Guide

an Amazon DynamoDB table for work anniversaries and uses Amazon Simple Notification
Service (Amazon SNS) to send a text message to your employees that congratulates them at
their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon Lambda function by using the Lambda JavaScript runtime
API. This example invokes different Amazon services to perform a specific use case.
This example demonstrates how to create a Lambda function invoked by Amazon API
Gateway that scans an Amazon DynamoDB table for work anniversaries and uses Amazon
Simple Notification Service (Amazon SNS) to send a text message to your employees that
congratulates them at their one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

Use API Gateway to invoke a Lambda function API Version 2012-08-10 2704

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_lambda_apigateway
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-api-gateway
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/api-gateway-invoking-lambda-example.html

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

This example shows how to create and use an Amazon API Gateway REST API that targets
an Amazon Lambda function. The Lambda handler demonstrates how to route based on
HTTP methods; how to get data from the query string, header, and body; and how to return
a JSON response.

• Deploy a Lambda function.

• Create an API Gateway REST API.

• Create a REST resource that targets the Lambda function.

• Grant permission to let API Gateway invoke the Lambda function.

• Use the Requests package to send requests to the REST API.

• Clean up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

• Amazon SNS

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use Step Functions to invoke Lambda functions

The following code example shows how to create an Amazon Step Functions state machine that
invokes Amazon Lambda functions in sequence.

Use Step Functions to invoke Lambda functions API Version 2012-08-10 2705

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme

Amazon DynamoDB Developer Guide

Java

SDK for Java 2.x

Shows how to create an Amazon serverless workflow by using Amazon Step Functions and
the Amazon SDK for Java 2.x. Each workflow step is implemented using an Amazon Lambda
function.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• DynamoDB

• Lambda

• Amazon SES

• Step Functions

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use a document model for DynamoDB using an Amazon SDK

The following code example shows how to perform Create, Read, Update, and Delete (CRUD) and
batch operations using a document model for DynamoDB and an Amazon SDK.

For more information, see Document model.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Perform CRUD operations using a document model.

Use a document model API Version 2012-08-10 2706

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_workflows_stepfunctions
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb/mid-level-api#code-examples

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Performs CRUD operations on an Amazon DynamoDB table.
 /// </summary>
 public class MidlevelItemCRUD
 {
 public static async Task Main()
 {
 var tableName = "ProductCatalog";
 var sampleBookId = 555;

 var client = new AmazonDynamoDBClient();
 var productCatalog = LoadTable(client, tableName);

 await CreateBookItem(productCatalog, sampleBookId);
 RetrieveBook(productCatalog, sampleBookId);

 // Couple of sample updates.
 UpdateMultipleAttributes(productCatalog, sampleBookId);
 UpdateBookPriceConditionally(productCatalog, sampleBookId);

 // Delete.
 await DeleteBook(productCatalog, sampleBookId);
 }

 /// <summary>
 /// Loads the contents of a DynamoDB table.
 /// </summary>
 /// <param name="client">An initialized DynamoDB client object.</param>
 /// <param name="tableName">The name of the table to load.</param>
 /// <returns>A DynamoDB table object.</returns>
 public static Table LoadTable(IAmazonDynamoDB client, string tableName)
 {
 Table productCatalog = Table.LoadTable(client, tableName);
 return productCatalog;
 }

 /// <summary>
 /// Creates an example book item and adds it to the DynamoDB table
 /// ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>

Use a document model API Version 2012-08-10 2707

Amazon DynamoDB Developer Guide

 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async Task CreateBookItem(Table productCatalog, int
 sampleBookId)
 {
 Console.WriteLine("\n*** Executing CreateBookItem() ***");
 var book = new Document
 {
 ["Id"] = sampleBookId,
 ["Title"] = "Book " + sampleBookId,
 ["Price"] = 19.99,
 ["ISBN"] = "111-1111111111",
 ["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" },
 ["PageCount"] = 500,
 ["Dimensions"] = "8.5x11x.5",
 ["InPublication"] = new DynamoDBBool(true),
 ["InStock"] = new DynamoDBBool(false),
 ["QuantityOnHand"] = 0,
 };

 // Adds the book to the ProductCatalog table.
 await productCatalog.PutItemAsync(book);
 }

 /// <summary>
 /// Retrieves an item, a book, from the DynamoDB ProductCatalog table.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void RetrieveBook(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\n*** Executing RetrieveBook() ***");

 // Optional configuration.
 var config = new GetItemOperationConfig
 {
 AttributesToGet = new List<string> { "Id", "ISBN", "Title",
 "Authors", "Price" },
 ConsistentRead = true,
 };

Use a document model API Version 2012-08-10 2708

Amazon DynamoDB Developer Guide

 Document document = await productCatalog.GetItemAsync(sampleBookId,
 config);
 Console.WriteLine("RetrieveBook: Printing book retrieved...");
 PrintDocument(document);
 }

 /// <summary>
 /// Updates multiple attributes for a book and writes the changes to the
 /// DynamoDB table ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void UpdateMultipleAttributes(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\nUpdating multiple attributes....");
 int partitionKey = sampleBookId;

 var book = new Document
 {
 ["Id"] = partitionKey,

 // List of attribute updates.
 // The following replaces the existing authors list.
 ["Authors"] = new List<string> { "Author x", "Author y" },
 ["newAttribute"] = "New Value",
 ["ISBN"] = null, // Remove it.
 };

 // Optional parameters.
 var config = new UpdateItemOperationConfig
 {
 // Gets updated item in response.
 ReturnValues = ReturnValues.AllNewAttributes,
 };

 Document updatedBook = await productCatalog.UpdateItemAsync(book,
 config);
 Console.WriteLine("UpdateMultipleAttributes: Printing item after
 updates ...");
 PrintDocument(updatedBook);

Use a document model API Version 2012-08-10 2709

Amazon DynamoDB Developer Guide

 }

 /// <summary>
 /// Updates a book item if it meets the specified criteria.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async void UpdateBookPriceConditionally(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\n*** Executing UpdateBookPriceConditionally()
 ***");

 int partitionKey = sampleBookId;

 var book = new Document
 {
 ["Id"] = partitionKey,
 ["Price"] = 29.99,
 };

 // For conditional price update, creating a condition expression.
 var expr = new Expression
 {
 ExpressionStatement = "Price = :val",
 };
 expr.ExpressionAttributeValues[":val"] = 19.00;

 // Optional parameters.
 var config = new UpdateItemOperationConfig
 {
 ConditionalExpression = expr,
 ReturnValues = ReturnValues.AllNewAttributes,
 };

 Document updatedBook = await productCatalog.UpdateItemAsync(book,
 config);
 Console.WriteLine("UpdateBookPriceConditionally: Printing item whose
 price was conditionally updated");
 PrintDocument(updatedBook);
 }

Use a document model API Version 2012-08-10 2710

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Deletes the book with the supplied Id value from the DynamoDB table
 /// ProductCatalog.
 /// </summary>
 /// <param name="productCatalog">A DynamoDB table object.</param>
 /// <param name="sampleBookId">An integer value representing the book's
 ID.</param>
 public static async Task DeleteBook(
 Table productCatalog,
 int sampleBookId)
 {
 Console.WriteLine("\n*** Executing DeleteBook() ***");

 // Optional configuration.
 var config = new DeleteItemOperationConfig
 {
 // Returns the deleted item.
 ReturnValues = ReturnValues.AllOldAttributes,
 };
 Document document = await
 productCatalog.DeleteItemAsync(sampleBookId, config);
 Console.WriteLine("DeleteBook: Printing deleted just deleted...");

 PrintDocument(document);
 }

 /// <summary>
 /// Prints the information for the supplied DynamoDB document.
 /// </summary>
 /// <param name="updatedDocument">A DynamoDB document object.</param>
 public static void PrintDocument(Document updatedDocument)
 {
 if (updatedDocument is null)
 {
 return;
 }

 foreach (var attribute in updatedDocument.GetAttributeNames())
 {
 string stringValue = null;
 var value = updatedDocument[attribute];

 if (value is null)
 {

Use a document model API Version 2012-08-10 2711

Amazon DynamoDB Developer Guide

 continue;
 }

 if (value is Primitive)
 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}", attribute,
 stringValue);
 }
 }
 }

Perform batch write operations using a document model.

 /// <summary>
 /// Shows how to use mid-level Amazon DynamoDB API calls to perform batch
 /// operations.
 /// </summary>
 public class MidLevelBatchWriteItem
 {
 public static async Task Main()
 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

 await SingleTableBatchWrite(client);
 await MultiTableBatchWrite(client);
 }

 /// <summary>
 /// Perform a batch operation on a single DynamoDB table.
 /// </summary>

Use a document model API Version 2012-08-10 2712

Amazon DynamoDB Developer Guide

 /// <param name="client">An initialized DynamoDB object.</param>
 public static async Task SingleTableBatchWrite(IAmazonDynamoDB client)
 {
 Table productCatalog = Table.LoadTable(client, "ProductCatalog");
 var batchWrite = productCatalog.CreateBatchWrite();

 var book1 = new Document
 {
 ["Id"] = 902,
 ["Title"] = "My book1 in batch write using .NET helper classes",
 ["ISBN"] = "902-11-11-1111",
 ["Price"] = 10,
 ["ProductCategory"] = "Book",
 ["Authors"] = new List<string> { "Author 1", "Author 2", "Author
 3" },
 ["Dimensions"] = "8.5x11x.5",
 ["InStock"] = new DynamoDBBool(true),
 ["QuantityOnHand"] = new DynamoDBNull(), // Quantity is unknown
 at this time.
 };

 batchWrite.AddDocumentToPut(book1);

 // Specify delete item using overload that takes PK.
 batchWrite.AddKeyToDelete(12345);
 Console.WriteLine("Performing batch write in
 SingleTableBatchWrite()");
 await batchWrite.ExecuteAsync();
 }

 /// <summary>
 /// Perform a batch operation involving multiple DynamoDB tables.
 /// </summary>
 /// <param name="client">An initialized DynamoDB client object.</param>
 public static async Task MultiTableBatchWrite(IAmazonDynamoDB client)
 {
 // Specify item to add in the Forum table.
 Table forum = Table.LoadTable(client, "Forum");
 var forumBatchWrite = forum.CreateBatchWrite();

 var forum1 = new Document
 {
 ["Name"] = "Test BatchWrite Forum",
 ["Threads"] = 0,

Use a document model API Version 2012-08-10 2713

Amazon DynamoDB Developer Guide

 };
 forumBatchWrite.AddDocumentToPut(forum1);

 // Specify item to add in the Thread table.
 Table thread = Table.LoadTable(client, "Thread");
 var threadBatchWrite = thread.CreateBatchWrite();

 var thread1 = new Document
 {
 ["ForumName"] = "S3 forum",
 ["Subject"] = "My sample question",
 ["Message"] = "Message text",
 ["KeywordTags"] = new List<string> { "S3", "Bucket" },
 };
 threadBatchWrite.AddDocumentToPut(thread1);

 // Specify item to delete from the Thread table.
 threadBatchWrite.AddKeyToDelete("someForumName", "someSubject");

 // Create multi-table batch.
 var superBatch = new MultiTableDocumentBatchWrite();
 superBatch.AddBatch(forumBatchWrite);
 superBatch.AddBatch(threadBatchWrite);
 Console.WriteLine("Performing batch write in
 MultiTableBatchWrite()");

 // Execute the batch.
 await superBatch.ExecuteAsync();
 }
 }

Scan a table using a document model.

 /// <summary>
 /// Shows how to use mid-level Amazon DynamoDB API calls to scan a DynamoDB
 /// table for values.
 /// </summary>
 public class MidLevelScanOnly
 {
 public static async Task Main()

Use a document model API Version 2012-08-10 2714

Amazon DynamoDB Developer Guide

 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

 Table productCatalogTable = Table.LoadTable(client,
 "ProductCatalog");

 await FindProductsWithNegativePrice(productCatalogTable);
 await FindProductsWithNegativePriceWithConfig(productCatalogTable);
 }

 /// <summary>
 /// Retrieves any products that have a negative price in a DynamoDB
 table.
 /// </summary>
 /// <param name="productCatalogTable">A DynamoDB table object.</param>
 public static async Task FindProductsWithNegativePrice(
 Table productCatalogTable)
 {
 // Assume there is a price error. So we scan to find items priced <
 0.
 var scanFilter = new ScanFilter();
 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

 Search search = productCatalogTable.Scan(scanFilter);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindProductsWithNegativePrice:
 printing");

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Finds any items in the ProductCatalog table using a DynamoDB
 /// configuration object.
 /// </summary>
 /// <param name="productCatalogTable">A DynamoDB table object.</param>

Use a document model API Version 2012-08-10 2715

Amazon DynamoDB Developer Guide

 public static async Task FindProductsWithNegativePriceWithConfig(
 Table productCatalogTable)
 {
 // Assume there is a price error. So we scan to find items priced <
 0.
 var scanFilter = new ScanFilter();
 scanFilter.AddCondition("Price", ScanOperator.LessThan, 0);

 var config = new ScanOperationConfig()
 {
 Filter = scanFilter,
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string> { "Title", "Id" },
 };

 Search search = productCatalogTable.Scan(config);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindProductsWithNegativePriceWithConfig:
 printing");

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Displays the details of the passed DynamoDB document object on the
 /// console.
 /// </summary>
 /// <param name="document">A DynamoDB document object.</param>
 public static void PrintDocument(Document document)
 {
 Console.WriteLine();
 foreach (var attribute in document.GetAttributeNames())
 {
 string stringValue = null;
 var value = document[attribute];
 if (value is Primitive)

Use a document model API Version 2012-08-10 2716

Amazon DynamoDB Developer Guide

 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}");
 }
 }
 }

Query and scan a table using a document model.

 /// <summary>
 /// Shows how to perform mid-level query procedures on an Amazon DynamoDB
 /// table.
 /// </summary>
 public class MidLevelQueryAndScan
 {
 public static async Task Main()
 {
 IAmazonDynamoDB client = new AmazonDynamoDBClient();

 // Query examples.
 Table replyTable = Table.LoadTable(client, "Reply");
 string forumName = "Amazon DynamoDB";
 string threadSubject = "DynamoDB Thread 2";

 await FindRepliesInLast15Days(replyTable);
 await FindRepliesInLast15DaysWithConfig(replyTable, forumName,
 threadSubject);
 await FindRepliesPostedWithinTimePeriod(replyTable, forumName,
 threadSubject);

 // Get Example.

Use a document model API Version 2012-08-10 2717

Amazon DynamoDB Developer Guide

 Table productCatalogTable = Table.LoadTable(client,
 "ProductCatalog");
 int productId = 101;

 await GetProduct(productCatalogTable, productId);
 }

 /// <summary>
 /// Retrieves information about a product from the DynamoDB table
 /// ProductCatalog based on the product ID and displays the information
 /// on the console.
 /// </summary>
 /// <param name="tableName">The name of the table from which to retrieve
 /// product information.</param>
 /// <param name="productId">The ID of the product to retrieve.</param>
 public static async Task GetProduct(Table tableName, int productId)
 {
 Console.WriteLine("*** Executing GetProduct() ***");
 Document productDocument = await tableName.GetItemAsync(productId);
 if (productDocument != null)
 {
 PrintDocument(productDocument);
 }
 else
 {
 Console.WriteLine("Error: product " + productId + " does not
 exist");
 }
 }

 /// <summary>
 /// Retrieves replies from the passed DynamoDB table object.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 public static async Task FindRepliesInLast15Days(
 Table table)
 {
 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
 var filter = new QueryFilter("Id", QueryOperator.Equal, "Id");
 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
 twoWeeksAgoDate);

 // Use Query overloads that take the minimum required query
 parameters.

Use a document model API Version 2012-08-10 2718

Amazon DynamoDB Developer Guide

 Search search = table.Query(filter);

 do
 {
 var documentSet = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesInLast15Days:
 printing");

 foreach (var document in documentSet)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Retrieve replies made during a specific time period.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">The subject of the thread, which we are
 /// searching for replies.</param>
 public static async Task FindRepliesPostedWithinTimePeriod(
 Table table,
 string forumName,
 string threadSubject)
 {
 DateTime startDate = DateTime.UtcNow.Subtract(new TimeSpan(21, 0, 0,
 0));
 DateTime endDate = DateTime.UtcNow.Subtract(new TimeSpan(1, 0, 0,
 0));

 var filter = new QueryFilter("Id", QueryOperator.Equal, forumName +
 "#" + threadSubject);
 filter.AddCondition("ReplyDateTime", QueryOperator.Between,
 startDate, endDate);

 var config = new QueryOperationConfig()
 {
 Limit = 2, // 2 items/page.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>

Use a document model API Version 2012-08-10 2719

Amazon DynamoDB Developer Guide

 {
 "Message",
 "ReplyDateTime",
 "PostedBy",
 },
 ConsistentRead = true,
 Filter = filter,
 };

 Search search = table.Query(config);

 do
 {
 var documentList = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesPostedWithinTimePeriod: printing
 replies posted within dates: {0} and {1}", startDate, endDate);

 foreach (var document in documentList)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Perform a query for replies made in the last 15 days using a DynamoDB
 /// QueryOperationConfig object.
 /// </summary>
 /// <param name="table">The table we want to query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadName">The bane of the thread that we are searching
 /// for replies.</param>
 public static async Task FindRepliesInLast15DaysWithConfig(
 Table table,
 string forumName,
 string threadName)
 {
 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);
 var filter = new QueryFilter("Id", QueryOperator.Equal, forumName +
 "#" + threadName);
 filter.AddCondition("ReplyDateTime", QueryOperator.GreaterThan,
 twoWeeksAgoDate);

Use a document model API Version 2012-08-10 2720

Amazon DynamoDB Developer Guide

 var config = new QueryOperationConfig()
 {
 Filter = filter,

 // Optional parameters.
 Select = SelectValues.SpecificAttributes,
 AttributesToGet = new List<string>
 {
 "Message",
 "ReplyDateTime",
 "PostedBy",
 },
 ConsistentRead = true,
 };

 Search search = table.Query(config);

 do
 {
 var documentSet = await search.GetNextSetAsync();
 Console.WriteLine("\nFindRepliesInLast15DaysWithConfig:
 printing");

 foreach (var document in documentSet)
 {
 PrintDocument(document);
 }
 }
 while (!search.IsDone);
 }

 /// <summary>
 /// Displays the contents of the passed DynamoDB document on the console.
 /// </summary>
 /// <param name="document">A DynamoDB document to display.</param>
 public static void PrintDocument(Document document)
 {
 Console.WriteLine();
 foreach (var attribute in document.GetAttributeNames())
 {
 string stringValue = null;
 var value = document[attribute];

Use a document model API Version 2012-08-10 2721

Amazon DynamoDB Developer Guide

 if (value is Primitive)
 {
 stringValue = value.AsPrimitive().Value.ToString();
 }
 else if (value is PrimitiveList)
 {
 stringValue = string.Join(",", (from primitive
 in value.AsPrimitiveList().Entries
 select
 primitive.Value).ToArray());
 }

 Console.WriteLine($"{attribute} - {stringValue}");
 }
 }
 }

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use a high-level object persistence model for DynamoDB using an
Amazon SDK

The following code example shows how to perform Create, Read, Update, and Delete (CRUD) and
batch operations using an object persistence model for DynamoDB and an Amazon SDK.

For more information, see Object persistence model.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Use a high-level object persistence model API Version 2012-08-10 2722

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/dynamodb/high-level-api#code-examples

Amazon DynamoDB Developer Guide

Perform CRUD operations using a high-level object persistence model.

 /// <summary>
 /// Shows how to perform high-level CRUD operations on an Amazon DynamoDB
 /// table.
 /// </summary>
 public class HighLevelItemCrud
 {
 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);
 await PerformCRUDOperations(context);
 }

 public static async Task PerformCRUDOperations(IDynamoDBContext context)
 {
 int bookId = 1001; // Some unique value.
 Book myBook = new Book
 {
 Id = bookId,
 Title = "object persistence-AWS SDK for.NET SDK-Book 1001",
 Isbn = "111-1111111001",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 };

 // Save the book to the ProductCatalog table.
 await context.SaveAsync(myBook);

 // Retrieve the book from the ProductCatalog table.
 Book bookRetrieved = await context.LoadAsync<Book>(bookId);

 // Update some properties.
 bookRetrieved.Isbn = "222-2222221001";

 // Update existing authors list with the following values.
 bookRetrieved.BookAuthors = new List<string> { " Author 1", "Author
 x" };
 await context.SaveAsync(bookRetrieved);

 // Retrieve the updated book. This time, add the optional
 // ConsistentRead parameter using DynamoDBContextConfig object.
 await context.LoadAsync<Book>(bookId, new DynamoDBContextConfig

Use a high-level object persistence model API Version 2012-08-10 2723

Amazon DynamoDB Developer Guide

 {
 ConsistentRead = true,
 });

 // Delete the book.
 await context.DeleteAsync<Book>(bookId);

 // Try to retrieve deleted book. It should return null.
 Book deletedBook = await context.LoadAsync<Book>(bookId, new
 DynamoDBContextConfig
 {
 ConsistentRead = true,
 });

 if (deletedBook == null)
 {
 Console.WriteLine("Book is deleted");
 }
 }
 }

Perform batch write operations using a high-level object persistence model.

 /// <summary>
 /// Performs high-level batch write operations to an Amazon DynamoDB table.
 /// This example was written using the AWS SDK for .NET version 3.7 and .NET
 /// Core 5.0.
 /// </summary>
 public class HighLevelBatchWriteItem
 {
 public static async Task SingleTableBatchWrite(IDynamoDBContext context)
 {
 Book book1 = new Book
 {
 Id = 902,
 InPublication = true,
 Isbn = "902-11-11-1111",
 PageCount = "100",
 Price = 10,
 ProductCategory = "Book",

Use a high-level object persistence model API Version 2012-08-10 2724

Amazon DynamoDB Developer Guide

 Title = "My book3 in batch write",
 };

 Book book2 = new Book
 {
 Id = 903,
 InPublication = true,
 Isbn = "903-11-11-1111",
 PageCount = "200",
 Price = 10,
 ProductCategory = "Book",
 Title = "My book4 in batch write",
 };

 var bookBatch = context.CreateBatchWrite<Book>();
 bookBatch.AddPutItems(new List<Book> { book1, book2 });

 Console.WriteLine("Adding two books to ProductCatalog table.");
 await bookBatch.ExecuteAsync();
 }

 public static async Task MultiTableBatchWrite(IDynamoDBContext context)
 {
 // New Forum item.
 Forum newForum = new Forum
 {
 Name = "Test BatchWrite Forum",
 Threads = 0,
 };
 var forumBatch = context.CreateBatchWrite<Forum>();
 forumBatch.AddPutItem(newForum);

 // New Thread item.
 Thread newThread = new Thread
 {
 ForumName = "S3 forum",
 Subject = "My sample question",
 KeywordTags = new List<string> { "S3", "Bucket" },
 Message = "Message text",
 };

 DynamoDBOperationConfig config = new DynamoDBOperationConfig();
 config.SkipVersionCheck = true;
 var threadBatch = context.CreateBatchWrite<Thread>(config);

Use a high-level object persistence model API Version 2012-08-10 2725

Amazon DynamoDB Developer Guide

 threadBatch.AddPutItem(newThread);
 threadBatch.AddDeleteKey("some partition key value", "some sort key
 value");

 var superBatch = new MultiTableBatchWrite(forumBatch, threadBatch);

 Console.WriteLine("Performing batch write in
 MultiTableBatchWrite().");
 await superBatch.ExecuteAsync();
 }

 public static async Task Main()
 {
 AmazonDynamoDBClient client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);

 await SingleTableBatchWrite(context);
 await MultiTableBatchWrite(context);
 }
 }

Map arbitrary data to a table using a high-level object persistence model.

 /// <summary>
 /// Shows how to map arbitrary data to an Amazon DynamoDB table.
 /// </summary>
 public class HighLevelMappingArbitraryData
 {
 /// <summary>
 /// Creates a book, adds it to the DynamoDB ProductCatalog table,
 retrieves
 /// the new book from the table, updates the dimensions and writes the
 /// changed item back to the table.
 /// </summary>
 /// <param name="context">The DynamoDB context object used to write and
 /// read data from the table.</param>
 public static async Task AddRetrieveUpdateBook(IDynamoDBContext context)
 {
 // Create a book.
 DimensionType myBookDimensions = new DimensionType()

Use a high-level object persistence model API Version 2012-08-10 2726

Amazon DynamoDB Developer Guide

 {
 Length = 8M,
 Height = 11M,
 Thickness = 0.5M,
 };

 Book myBook = new Book
 {
 Id = 501,
 Title = "AWS SDK for .NET Object Persistence Model Handling
 Arbitrary Data",
 Isbn = "999-9999999999",
 BookAuthors = new List<string> { "Author 1", "Author 2" },
 Dimensions = myBookDimensions,
 };

 // Add the book to the DynamoDB table ProductCatalog.
 await context.SaveAsync(myBook);

 // Retrieve the book.
 Book bookRetrieved = await context.LoadAsync<Book>(501);

 // Update the book dimensions property.
 bookRetrieved.Dimensions.Height += 1;
 bookRetrieved.Dimensions.Length += 1;
 bookRetrieved.Dimensions.Thickness += 0.2M;

 // Write the changed item to the table.
 await context.SaveAsync(bookRetrieved);
 }

 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();
 DynamoDBContext context = new DynamoDBContext(client);
 await AddRetrieveUpdateBook(context);
 }
 }

Query and scan a table using a high-level object persistence model.

Use a high-level object persistence model API Version 2012-08-10 2727

Amazon DynamoDB Developer Guide

 /// <summary>
 /// Shows how to perform high-level query and scan operations to Amazon
 /// DynamoDB tables.
 /// </summary>
 public class HighLevelQueryAndScan
 {
 public static async Task Main()
 {
 var client = new AmazonDynamoDBClient();

 DynamoDBContext context = new DynamoDBContext(client);

 // Get an item.
 await GetBook(context, 101);

 // Sample forum and thread to test queries.
 string forumName = "Amazon DynamoDB";
 string threadSubject = "DynamoDB Thread 1";

 // Sample queries.
 await FindRepliesInLast15Days(context, forumName, threadSubject);
 await FindRepliesPostedWithinTimePeriod(context, forumName,
 threadSubject);

 // Scan table.
 await FindProductsPricedLessThanZero(context);
 }

 public static async Task GetBook(IDynamoDBContext context, int productId)
 {
 Book bookItem = await context.LoadAsync<Book>(productId);

 Console.WriteLine("\nGetBook: Printing result.....");
 Console.WriteLine($"Title: {bookItem.Title} \n ISBN:{bookItem.Isbn}
 \n No. of pages: {bookItem.PageCount}");
 }

 /// <summary>
 /// Queries a DynamoDB table to find replies posted within the last 15
 days.
 /// </summary>

Use a high-level object persistence model API Version 2012-08-10 2728

Amazon DynamoDB Developer Guide

 /// <param name="context">The DynamoDB context used to perform the
 query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">The thread object containing the query
 parameters.</param>
 public static async Task FindRepliesInLast15Days(
 IDynamoDBContext context,
 string forumName,
 string threadSubject)
 {
 string replyId = $"{forumName} #{threadSubject}";
 DateTime twoWeeksAgoDate = DateTime.UtcNow - TimeSpan.FromDays(15);

 List<object> times = new List<object>();
 times.Add(twoWeeksAgoDate);

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc = new ScanCondition("PostedBy", ScanOperator.GreaterThan,
 times.ToArray());
 scs.Add(sc);

 var cfg = new DynamoDBOperationConfig
 {
 QueryFilter = scs,
 };

 AsyncSearch<Reply> response = context.QueryAsync<Reply>(replyId,
 cfg);
 IEnumerable<Reply> latestReplies = await
 response.GetRemainingAsync();

 Console.WriteLine("\nReplies in last 15 days:");

 foreach (Reply r in latestReplies)
 {

 Console.WriteLine($"{r.Id}\t{r.PostedBy}\t{r.Message}\t{r.ReplyDateTime}");
 }
 }

 /// <summary>
 /// Queries for replies posted within a specific time period.
 /// </summary>

Use a high-level object persistence model API Version 2012-08-10 2729

Amazon DynamoDB Developer Guide

 /// <param name="context">The DynamoDB context used to perform the
 query.</param>
 /// <param name="forumName">The name of the forum that we're interested
 in.</param>
 /// <param name="threadSubject">Information about the subject that we're
 /// interested in.</param>
 public static async Task FindRepliesPostedWithinTimePeriod(
 IDynamoDBContext context,
 string forumName,
 string threadSubject)
 {
 string forumId = forumName + "#" + threadSubject;
 Console.WriteLine("\nReplies posted within time period:");

 DateTime startDate = DateTime.UtcNow - TimeSpan.FromDays(30);
 DateTime endDate = DateTime.UtcNow - TimeSpan.FromDays(1);

 List<object> times = new List<object>();
 times.Add(startDate);
 times.Add(endDate);

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc = new ScanCondition("LastPostedBy", ScanOperator.Between,
 times.ToArray());
 scs.Add(sc);

 var cfg = new DynamoDBOperationConfig
 {
 QueryFilter = scs,
 };

 AsyncSearch<Reply> response = context.QueryAsync<Reply>(forumId,
 cfg);
 IEnumerable<Reply> repliesInAPeriod = await
 response.GetRemainingAsync();

 foreach (Reply r in repliesInAPeriod)
 {

 Console.WriteLine("{r.Id}\t{r.PostedBy}\t{r.Message}\t{r.ReplyDateTime}");
 }
 }

 /// <summary>

Use a high-level object persistence model API Version 2012-08-10 2730

Amazon DynamoDB Developer Guide

 /// Queries the DynamoDB ProductCatalog table for products costing less
 /// than zero.
 /// </summary>
 /// <param name="context">The DynamoDB context object used to perform the
 /// query.</param>
 public static async Task FindProductsPricedLessThanZero(IDynamoDBContext
 context)
 {
 int price = 0;

 List<ScanCondition> scs = new List<ScanCondition>();
 var sc1 = new ScanCondition("Price", ScanOperator.LessThan, price);
 var sc2 = new ScanCondition("ProductCategory", ScanOperator.Equal,
 "Book");
 scs.Add(sc1);
 scs.Add(sc2);

 AsyncSearch<Book> response = context.ScanAsync<Book>(scs);

 IEnumerable<Book> itemsWithWrongPrice = await
 response.GetRemainingAsync();

 Console.WriteLine("\nFindProductsPricedLessThanZero: Printing
 result.....");

 foreach (Book r in itemsWithWrongPrice)
 {
 Console.WriteLine($"{r.Id}\t{r.Title}\t{r.Price}\t{r.Isbn}");
 }
 }
 }

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use atomic counter operations in DynamoDB with an Amazon SDK

The following code examples show how to use atomic counter operations in DynamoDB.

Use atomic counter operations API Version 2012-08-10 2731

Amazon DynamoDB Developer Guide

• Increment counters atomically using ADD and SET operations.

• Safely increment counters that might not exist.

• Implement optimistic locking for counter operations.

Java

SDK for Java 2.x

Demonstrate atomic counter operations using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ReturnValue;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;

 /**
 * Increments a counter using the ADD operation.
 *
 * <p>This method demonstrates how to use the ADD operation to atomically
 * increment a counter attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param counterName The name of the counter attribute
 * @param incrementValue The value to increment by
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse incrementCounterWithAdd(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String counterName,
 int incrementValue) {

Use atomic counter operations API Version 2012-08-10 2732

Amazon DynamoDB Developer Guide

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("ADD #counterName :increment")
 .expressionAttributeNames(Map.of("#counterName", counterName))
 .expressionAttributeValues(Map.of(
 ":increment",

 AttributeValue.builder().n(String.valueOf(incrementValue)).build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Increments a counter using the SET operation.
 *
 * <p>This method demonstrates how to use the SET operation with an
 expression
 * to increment a counter attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param counterName The name of the counter attribute
 * @param incrementValue The value to increment by
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse incrementCounterWithSet(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String counterName,
 int incrementValue) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)

Use atomic counter operations API Version 2012-08-10 2733

Amazon DynamoDB Developer Guide

 .updateExpression("SET #counterName = #counterName + :increment")
 .expressionAttributeNames(Map.of("#counterName", counterName))
 .expressionAttributeValues(Map.of(
 ":increment",

 AttributeValue.builder().n(String.valueOf(incrementValue)).build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Increments a counter safely, handling the case where the counter doesn't
 exist yet.
 *
 * <p>This method demonstrates how to use if_not_exists to safely increment a
 counter
 * that may not exist yet.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param counterName The name of the counter attribute
 * @param incrementValue The value to increment by
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse incrementCounterSafely(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String counterName,
 int incrementValue) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #counterName =
 if_not_exists(#counterName, :zero) + :increment")
 .expressionAttributeNames(Map.of("#counterName", counterName))
 .expressionAttributeValues(Map.of(

Use atomic counter operations API Version 2012-08-10 2734

Amazon DynamoDB Developer Guide

 ":increment",

 AttributeValue.builder().n(String.valueOf(incrementValue)).build(),
 ":zero", AttributeValue.builder().n("0").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Decrements a counter safely, ensuring it doesn't go below zero.
 *
 * <p>This method demonstrates how to use a condition expression to safely
 * decrement a counter without going below zero.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param counterName The name of the counter attribute
 * @param decrementValue The value to decrement by
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation or if
 the counter would go below zero
 */
 public static UpdateItemResponse decrementCounterSafely(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String counterName,
 int decrementValue) {

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #counterName = #counterName - :decrement")
 .conditionExpression("#counterName >= :decrement")
 .expressionAttributeNames(Map.of("#counterName", counterName))
 .expressionAttributeValues(Map.of(
 ":decrement",

 AttributeValue.builder().n(String.valueOf(decrementValue)).build()))

Use atomic counter operations API Version 2012-08-10 2735

Amazon DynamoDB Developer Guide

 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Compares the ADD and SET approaches for incrementing counters.
 *
 * <p>This method demonstrates the differences between using ADD and SET
 * for incrementing counters in DynamoDB.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @return Map containing the comparison results
 */
 public static Map<String, Object> compareAddVsSet(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key) {

 Map<String, Object> results = new HashMap<>();

 try {
 // Reset counters to ensure a fair comparison
 UpdateItemRequest resetRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET AddCounter = :zero, SetCounter = :zero")
 .expressionAttributeValues(
 Map.of(":zero", AttributeValue.builder().n("0").build()))
 .build();

 dynamoDbClient.updateItem(resetRequest);

 // Increment with ADD
 long addStartTime = System.nanoTime();
 UpdateItemResponse addResponse =
 incrementCounterWithAdd(dynamoDbClient, tableName, key, "AddCounter", 1);
 long addEndTime = System.nanoTime();
 long addDuration = addEndTime - addStartTime;

 // Increment with SET

Use atomic counter operations API Version 2012-08-10 2736

Amazon DynamoDB Developer Guide

 long setStartTime = System.nanoTime();
 UpdateItemResponse setResponse =
 incrementCounterWithSet(dynamoDbClient, tableName, key, "SetCounter", 1);
 long setEndTime = System.nanoTime();
 long setDuration = setEndTime - setStartTime;

 // Record results
 results.put("addResponse", addResponse);
 results.put("setResponse", setResponse);
 results.put("addDuration", addDuration);
 results.put("setDuration", setDuration);
 results.put("success", true);

 } catch (DynamoDbException e) {
 results.put("success", false);
 results.put("error", e.getMessage());
 }

 return results;
 }

 /**
 * Gets the current value of a counter attribute.
 *
 * <p>Helper method to retrieve the current value of a counter attribute.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to get
 * @param counterName The name of the counter attribute
 * @return The counter value or null if not found
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static Integer getCounterValue(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, String counterName) {

 // Define the get parameters
 GetItemRequest request = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .projectionExpression(counterName)
 .build();

Use atomic counter operations API Version 2012-08-10 2737

Amazon DynamoDB Developer Guide

 // Perform the get operation
 GetItemResponse response = dynamoDbClient.getItem(request);

 // Return the counter value if it exists, otherwise null
 if (response.item() != null && response.item().containsKey(counterName))
 {
 return Integer.parseInt(response.item().get(counterName).n());
 }

 return null;
 }

Example usage of atomic counter operations with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating atomic counter operations in
 DynamoDB");

 try {
 // Example 1: Increment a counter using ADD
 System.out.println("\nExample 1: Incrementing a counter using ADD");
 UpdateItemResponse addResponse =
 incrementCounterWithAdd(dynamoDbClient, tableName, key, "ViewCount", 1);

 System.out.println("Updated counter: " + addResponse.attributes());

 // Example 2: Increment a counter using SET
 System.out.println("\nExample 2: Incrementing a counter using SET");
 UpdateItemResponse setResponse =
 incrementCounterWithSet(dynamoDbClient, tableName, key, "LikeCount", 1);

 System.out.println("Updated counter: " + setResponse.attributes());

 // Example 3: Increment a counter safely
 System.out.println("\nExample 3: Incrementing a counter safely");
 UpdateItemResponse safeResponse =
 incrementCounterSafely(dynamoDbClient, tableName, key, "ShareCount", 1);

Use atomic counter operations API Version 2012-08-10 2738

Amazon DynamoDB Developer Guide

 System.out.println("Updated counter: " + safeResponse.attributes());

 // Example 4: Decrement a counter safely
 System.out.println("\nExample 4: Decrementing a counter safely");
 try {
 UpdateItemResponse decrementResponse =
 decrementCounterSafely(dynamoDbClient, tableName, key,
 "InventoryCount", 1);

 System.out.println("Updated counter: " +
 decrementResponse.attributes());
 } catch (DynamoDbException e) {
 if (e.getMessage().contains("ConditionalCheckFailed")) {
 System.out.println("Cannot decrement counter below zero");
 } else {
 throw e;
 }
 }

 // Example 5: Compare ADD vs SET
 System.out.println("\nExample 5: Comparing ADD vs SET");
 Map<String, Object> comparison = compareAddVsSet(dynamoDbClient,
 tableName, key);

 if ((boolean) comparison.get("success")) {
 System.out.println("ADD duration: " +
 comparison.get("addDuration") + " ns");
 System.out.println("SET duration: " +
 comparison.get("setDuration") + " ns");
 System.out.println("ADD response: " +
 comparison.get("addResponse"));
 System.out.println("SET response: " +
 comparison.get("setResponse"));
 } else {
 System.out.println("Comparison failed: " +
 comparison.get("error"));
 }

 // Explain atomic counter operations
 System.out.println("\nKey points about DynamoDB atomic counter
 operations:");
 System.out.println("1. Both ADD and SET can be used for atomic
 counters");

Use atomic counter operations API Version 2012-08-10 2739

Amazon DynamoDB Developer Guide

 System.out.println("2. ADD is more concise for simple increments");
 System.out.println("3. SET with an expression is more flexible for
 complex operations");
 System.out.println("4. Use if_not_exists to handle the case where the
 counter doesn't exist yet");
 System.out.println("5. Use condition expressions to prevent counters
 from going below zero");
 System.out.println("6. Atomic operations are guaranteed to be
 isolated from other writes");
 System.out.println("7. ADD can only be used with number and set data
 types");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see UpdateItem in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Demonstrate atomic counter operations using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Increment a counter using the ADD operation.
 *
 * This function demonstrates using the ADD operation for atomic increments.
 * The ADD operation is atomic and is the recommended way to increment counters.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update

Use atomic counter operations API Version 2012-08-10 2740

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithAdd(
 config,
 tableName,
 key,
 counterName,
 incrementValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using ADD
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `ADD ${counterName} :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter using the SET operation with an expression.
 *
 * This function demonstrates using the SET operation with an expression for
 increments.
 * While this approach works, it's less idiomatic for simple increments than
 using ADD.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute

Use atomic counter operations API Version 2012-08-10 2741

Amazon DynamoDB Developer Guide

 * @param {number} incrementValue - The value to increment by
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithSet(
 config,
 tableName,
 key,
 counterName,
 incrementValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with an expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} = ${counterName} + :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter safely, handling the case where the counter might not
 exist.
 *
 * This function demonstrates using the if_not_exists function with SET to safely
 * increment a counter that might not exist yet.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @param {number} defaultValue - The default value if the counter doesn't exist

Use atomic counter operations API Version 2012-08-10 2742

Amazon DynamoDB Developer Guide

 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterSafely(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 defaultValue = 0
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using SET with if_not_exists
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} =
 if_not_exists(${counterName}, :default) + :increment`,
 ExpressionAttributeValues: {
 ":increment": incrementValue,
 ":default": defaultValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Increment a counter with optimistic locking to prevent race conditions.
 *
 * This function demonstrates using a condition expression to implement
 optimistic
 * locking, which prevents race conditions when multiple processes try to update
 * the same counter.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update

Use atomic counter operations API Version 2012-08-10 2743

Amazon DynamoDB Developer Guide

 * @param {string} counterName - The name of the counter attribute
 * @param {number} incrementValue - The value to increment by
 * @param {number} expectedValue - The expected current value of the counter
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function incrementCounterWithLocking(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 expectedValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${counterName} = ${counterName} + :increment`,
 ConditionExpression: `${counterName} = :expected`,
 ExpressionAttributeValues: {
 ":increment": incrementValue,
 ":expected": expectedValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));
 return {
 success: true,
 data: response
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 error: "Optimistic locking failed: the counter value has changed"
 };

Use atomic counter operations API Version 2012-08-10 2744

Amazon DynamoDB Developer Guide

 }
 // Re-throw other errors
 throw error;
 }
}

/**
 * Get the current value of a counter.
 *
 * Helper function to retrieve the current value of a counter attribute.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @param {string} counterName - The name of the counter attribute
 * @returns {Promise<number|null>} - The current counter value or null if not
 found
 */
async function getCounterValue(
 config,
 tableName,
 key,
 counterName
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the counter value if it exists, otherwise null
 return response.Item && counterName in response.Item
 ? response.Item[counterName]
 : null;
}

Use atomic counter operations API Version 2012-08-10 2745

Amazon DynamoDB Developer Guide

Example usage of atomic counter operations with Amazon SDK for JavaScript.

/**
 * Example of how to use the atomic counter operations.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };
 const counterName = "ViewCount";
 const incrementValue = 1;

 console.log("Demonstrating different approaches to increment counters in
 DynamoDB");

 try {
 // Example 1: Using ADD operation (recommended for simple increments)
 console.log("\nExample 1: Incrementing counter with ADD operation");
 const response1 = await incrementCounterWithAdd(
 config,
 tableName,
 key,
 counterName,
 incrementValue
);

 console.log(`Counter incremented to: ${response1.Attributes[counterName]}`);

 // Example 2: Using SET operation with an expression
 console.log("\nExample 2: Incrementing counter with SET operation");
 const response2 = await incrementCounterWithSet(
 config,
 tableName,
 key,
 counterName,
 incrementValue
);

 console.log(`Counter incremented to: ${response2.Attributes[counterName]}`);

 // Example 3: Safely incrementing a counter that might not exist
 console.log("\nExample 3: Safely incrementing counter that might not exist");
 const newKey = { ProductId: "P67890" };

Use atomic counter operations API Version 2012-08-10 2746

Amazon DynamoDB Developer Guide

 const response3 = await incrementCounterSafely(
 config,
 tableName,
 newKey,
 counterName,
 incrementValue,
 0
);

 console.log(`Counter initialized and incremented to:
 ${response3.Attributes[counterName]}`);

 // Example 4: Incrementing with optimistic locking
 console.log("\nExample 4: Incrementing with optimistic locking");

 // First, get the current counter value
 const currentValue = await getCounterValue(config, tableName, key,
 counterName);
 console.log(`Current counter value: ${currentValue}`);

 // Then, try to increment with optimistic locking
 const response4 = await incrementCounterWithLocking(
 config,
 tableName,
 key,
 counterName,
 incrementValue,
 currentValue
);

 if (response4.success) {
 console.log(`Counter successfully incremented to:
 ${response4.data.Attributes[counterName]}`);
 } else {
 console.log(response4.error);
 }

 // Explain the differences between ADD and SET
 console.log("\nKey differences between ADD and SET for counter operations:");
 console.log("1. ADD is more concise and idiomatic for simple increments");
 console.log("2. SET with expressions is more flexible for complex
 operations");
 console.log("3. Both operations are atomic and safe for concurrent updates");

Use atomic counter operations API Version 2012-08-10 2747

Amazon DynamoDB Developer Guide

 console.log("4. SET with if_not_exists is required when the attribute might
 not exist");
 console.log("5. Optimistic locking can be added to either approach for
 additional safety");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see UpdateItem in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Demonstrate atomic counter operations using Amazon SDK for Python (Boto3).

import boto3
from botocore.exceptions import ClientError
from typing import Any, Dict, Union

def increment_counter_with_add(
 table_name: str, key: Dict[str, Any], counter_name: str, increment_value: int
 = 1
) -> Dict[str, Any]:
 """
 Increment a counter attribute using the ADD operation.

 This function demonstrates the atomic ADD operation, which is ideal for
 incrementing counters without the risk of race conditions.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 counter_name (str): The name of the counter attribute.
 increment_value (int, optional): The value to increment by. Defaults to
 1.

 Returns:

Use atomic counter operations API Version 2012-08-10 2748

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use the ADD operation to atomically increment the counter
 response = table.update_item(
 Key=key,
 UpdateExpression="ADD #counter :increment",
 ExpressionAttributeNames={"#counter": counter_name},
 ExpressionAttributeValues={":increment": increment_value},
 ReturnValues="UPDATED_NEW",
)

 return response

def increment_counter_with_set(
 table_name: str, key: Dict[str, Any], counter_name: str, increment_value: int
 = 1
) -> Dict[str, Any]:
 """
 Increment a counter attribute using the SET operation with an expression.

 This function demonstrates using SET with an expression to increment a
 counter.
 While this works, it's generally recommended to use ADD for simple
 increments.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 counter_name (str): The name of the counter attribute.
 increment_value (int, optional): The value to increment by. Defaults to
 1.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")

Use atomic counter operations API Version 2012-08-10 2749

Amazon DynamoDB Developer Guide

 table = dynamodb.Table(table_name)

 # Use the SET operation with an expression to increment the counter
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #counter = #counter + :increment",
 ExpressionAttributeNames={"#counter": counter_name},
 ExpressionAttributeValues={":increment": increment_value},
 ReturnValues="UPDATED_NEW",
)

 return response

def increment_counter_safely(
 table_name: str,
 key: Dict[str, Any],
 counter_name: str,
 increment_value: int = 1,
 initial_value: int = 0,
) -> Dict[str, Any]:
 """
 Increment a counter attribute safely, handling the case where it might not
 exist.

 This function demonstrates a best practice for incrementing counters by using
 the if_not_exists function to handle the case where the counter doesn't exist
 yet.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 counter_name (str): The name of the counter attribute.
 increment_value (int, optional): The value to increment by. Defaults to
 1.
 initial_value (int, optional): The initial value if the counter doesn't
 exist. Defaults to 0.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")

Use atomic counter operations API Version 2012-08-10 2750

Amazon DynamoDB Developer Guide

 table = dynamodb.Table(table_name)

 # Use SET with if_not_exists to safely increment the counter
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #counter = if_not_exists(#counter, :initial)
 + :increment",
 ExpressionAttributeNames={"#counter": counter_name},
 ExpressionAttributeValues={":increment": increment_value, ":initial":
 initial_value},
 ReturnValues="UPDATED_NEW",
)

 return response

def atomic_conditional_increment(
 table_name: str,
 key: Dict[str, Any],
 counter_name: str,
 condition_attribute: str,
 condition_value: Any,
 increment_value: int = 1,
) -> Union[Dict[str, Any], None]:
 """
 Atomically increment a counter only if a condition is met.

 This function demonstrates combining atomic counter operations with
 conditional expressions for more complex update scenarios.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 counter_name (str): The name of the counter attribute.
 condition_attribute (str): The attribute to check in the condition.
 condition_value (Any): The value to compare against.
 increment_value (int, optional): The value to increment by. Defaults to
 1.

 Returns:
 Optional[Dict[str, Any]]: The response from DynamoDB if successful, None
 if condition failed.
 """
 # Initialize the DynamoDB resource

Use atomic counter operations API Version 2012-08-10 2751

Amazon DynamoDB Developer Guide

 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 try:
 # Use ADD with a condition expression
 response = table.update_item(
 Key=key,
 UpdateExpression="ADD #counter :increment",
 ConditionExpression="#condition = :value",
 ExpressionAttributeNames={"#counter": counter_name, "#condition":
 condition_attribute},
 ExpressionAttributeValues={":increment": increment_value, ":value":
 condition_value},
 ReturnValues="UPDATED_NEW",
)
 return response
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 # Condition was not met
 return None
 else:
 # Other error occurred
 raise

Example usage of atomic counter operations with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the atomic counter operations functions."""
 # Example parameters
 table_name = "GameScores"
 key = {"UserId": "user123", "GameId": "game456"}
 counter_name = "Score"

 print("Example 1: Incrementing a counter with ADD operation")
 try:
 response = increment_counter_with_add(
 table_name=table_name, key=key, counter_name=counter_name,
 increment_value=10
)
 print(

Use atomic counter operations API Version 2012-08-10 2752

Amazon DynamoDB Developer Guide

 f"Counter incremented successfully. New value:
 {response.get('Attributes', {}).get(counter_name)}"
)
 except Exception as e:
 print(f"Error incrementing counter with ADD: {e}")

 print("\nExample 2: Incrementing a counter with SET operation")
 try:
 response = increment_counter_with_set(
 table_name=table_name, key=key, counter_name=counter_name,
 increment_value=5
)
 print(
 f"Counter incremented successfully. New value:
 {response.get('Attributes', {}).get(counter_name)}"
)
 except Exception as e:
 print(f"Error incrementing counter with SET: {e}")

 print("\nExample 3: Safely incrementing a counter that might not exist")
 try:
 new_key = {"UserId": "newuser789", "GameId": "game456"}
 response = increment_counter_safely(
 table_name=table_name,
 key=new_key,
 counter_name=counter_name,
 increment_value=15,
 initial_value=100,
)
 print(
 f"Counter safely incremented. New value: {response.get('Attributes',
 {}).get(counter_name)}"
)
 except Exception as e:
 print(f"Error safely incrementing counter: {e}")

 print("\nExample 4: Conditional counter increment")
 try:
 # Fix for mypy: Handle the case where response might be None
 result = atomic_conditional_increment(
 table_name=table_name,
 key=key,
 counter_name="Achievements",
 condition_attribute="Level",

Use atomic counter operations API Version 2012-08-10 2753

Amazon DynamoDB Developer Guide

 condition_value=5,
 increment_value=1,
)

 if result is not None:
 print(
 f"Conditional increment succeeded. New value:
 {result.get('Attributes', {}).get('Achievements')}"
)
 else:
 print("Conditional increment failed because condition was not met.")
 if response:
 print(
 f"Conditional increment succeeded. New value:
 {response.get('Attributes', {}).get('Achievements')}"
)
 else:
 print("Conditional increment failed because condition was not met.")
 except Exception as e:
 print(f"Error with conditional increment: {e}")

 print("\nComparison of ADD vs SET for counter operations:")
 print("1. ADD is specifically designed for atomic numeric increments and set
 operations")
 print("2. SET with an expression can be used for more complex calculations")
 print("3. Both operations are atomic, preventing race conditions")
 print("4. ADD is more concise for simple increments")
 print("5. SET with if_not_exists() is recommended when the attribute might
 not exist")
 print("6. For counters, ADD is generally preferred for clarity and
 simplicity")

• For API details, see UpdateItem in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use atomic counter operations API Version 2012-08-10 2754

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

Use conditional operations in DynamoDB with an Amazon SDK

The following code examples show how to use conditional operations in DynamoDB.

• Implement conditional writes to prevent overwriting data.

• Use condition expressions to enforce business rules.

• Handle conditional check failures gracefully.

Java

SDK for Java 2.x

Demonstrate conditional operations using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import
 software.amazon.awssdk.services.dynamodb.model.ConditionalCheckFailedException;
import software.amazon.awssdk.services.dynamodb.model.DeleteItemRequest;
import software.amazon.awssdk.services.dynamodb.model.DeleteItemResponse;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.GetItemRequest;
import software.amazon.awssdk.services.dynamodb.model.GetItemResponse;
import software.amazon.awssdk.services.dynamodb.model.ReturnValue;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.HashMap;
import java.util.Map;

 /**
 * Performs a conditional update on an item.
 *
 * <p>This method demonstrates how to use a condition expression to update an
 item
 * only if a specific condition is met.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param conditionAttribute The attribute to check in the condition
 * @param conditionValue The value to compare against

Use conditional operations API Version 2012-08-10 2755

Amazon DynamoDB Developer Guide

 * @param updateAttribute The attribute to update
 * @param updateValue The new value to set
 * @return Map containing the operation result and status
 */
 public static Map<String, Object> conditionalUpdate(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String conditionAttribute,
 AttributeValue conditionValue,
 String updateAttribute,
 AttributeValue updateValue) {

 Map<String, Object> result = new HashMap<>();

 try {
 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #updateAttr = :updateVal")
 .conditionExpression("#condAttr = :condVal")
 .expressionAttributeNames(Map.of(
 "#condAttr", conditionAttribute,
 "#updateAttr", updateAttribute))
 .expressionAttributeValues(Map.of(
 ":condVal", conditionValue,
 ":updateVal", updateValue))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 UpdateItemResponse response = dynamoDbClient.updateItem(request);

 // Record success result
 result.put("success", true);
 result.put("message", "Condition was met and update was performed");
 result.put("attributes", response.attributes());

 } catch (ConditionalCheckFailedException e) {
 // Record failure due to condition not being met
 result.put("success", false);
 result.put("message", "Condition was not met, update was not
 performed");

Use conditional operations API Version 2012-08-10 2756

Amazon DynamoDB Developer Guide

 result.put("error", "ConditionalCheckFailedException");

 } catch (DynamoDbException e) {
 // Record failure due to other errors
 result.put("success", false);
 result.put("message", "Error occurred: " + e.getMessage());
 result.put("error", e.getClass().getSimpleName());
 }

 return result;
 }

 /**
 * Performs a conditional delete on an item.
 *
 * <p>This method demonstrates how to use a condition expression to delete an
 item
 * only if a specific condition is met.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to delete
 * @param conditionAttribute The attribute to check in the condition
 * @param conditionValue The value to compare against
 * @return Map containing the operation result and status
 */
 public static Map<String, Object> conditionalDelete(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String conditionAttribute,
 AttributeValue conditionValue) {

 Map<String, Object> result = new HashMap<>();

 try {
 // Define the delete parameters
 DeleteItemRequest request = DeleteItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .conditionExpression("#condAttr = :condVal")
 .expressionAttributeNames(Map.of("#condAttr",
 conditionAttribute))
 .expressionAttributeValues(Map.of(":condVal", conditionValue))

Use conditional operations API Version 2012-08-10 2757

Amazon DynamoDB Developer Guide

 .returnValues(ReturnValue.ALL_OLD)
 .build();

 // Perform the delete operation
 DeleteItemResponse response = dynamoDbClient.deleteItem(request);

 // Record success result
 result.put("success", true);
 result.put("message", "Condition was met and delete was performed");
 result.put("attributes", response.attributes());

 } catch (ConditionalCheckFailedException e) {
 // Record failure due to condition not being met
 result.put("success", false);
 result.put("message", "Condition was not met, delete was not
 performed");
 result.put("error", "ConditionalCheckFailedException");

 } catch (DynamoDbException e) {
 // Record failure due to other errors
 result.put("success", false);
 result.put("message", "Error occurred: " + e.getMessage());
 result.put("error", e.getClass().getSimpleName());
 }

 return result;
 }

 /**
 * Demonstrates optimistic locking using a version attribute.
 *
 * <p>This method shows how to implement optimistic locking by using a
 version
 * attribute that is incremented with each update.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param versionAttribute The name of the version attribute
 * @return Map containing the operation result
 */
 public static Map<String, Object> optimisticLockingExample(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> key, String versionAttribute) {

Use conditional operations API Version 2012-08-10 2758

Amazon DynamoDB Developer Guide

 Map<String, Object> result = new HashMap<>();

 try {
 // Get the current version of the item
 GetItemRequest getRequest = GetItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .projectionExpression(versionAttribute)
 .build();

 GetItemResponse getResponse = dynamoDbClient.getItem(getRequest);

 // Check if the item exists
 if (getResponse.item() == null || !
getResponse.item().containsKey(versionAttribute)) {
 // Item doesn't exist or doesn't have a version attribute
 // Initialize with version 1
 UpdateItemRequest initRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #verAttr = :newVer, #dataAttr
 = :data")
 .expressionAttributeNames(Map.of("#verAttr",
 versionAttribute, "#dataAttr", "Data"))
 .expressionAttributeValues(Map.of(
 ":newVer", AttributeValue.builder().n("1").build(),
 ":data", AttributeValue.builder().s("Initial
 data").build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse initResponse =
 dynamoDbClient.updateItem(initRequest);

 result.put("operation", "initialize");
 result.put("success", true);
 result.put("attributes", initResponse.attributes());

 return result;
 }

 // Get the current version number
 int currentVersion =

Use conditional operations API Version 2012-08-10 2759

Amazon DynamoDB Developer Guide

 Integer.parseInt(getResponse.item().get(versionAttribute).n());
 int newVersion = currentVersion + 1;

 // Update the item with a condition on the version
 UpdateItemRequest updateRequest = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #verAttr = :newVer, #dataAttr = :newData")
 .conditionExpression("#verAttr = :curVer")
 .expressionAttributeNames(Map.of("#verAttr", versionAttribute,
 "#dataAttr", "Data"))
 .expressionAttributeValues(Map.of(
 ":curVer",
 AttributeValue.builder()
 .n(String.valueOf(currentVersion))
 .build(),
 ":newVer",

 AttributeValue.builder().n(String.valueOf(newVersion)).build(),
 ":newData",
 AttributeValue.builder()
 .s("Updated data at version " + newVersion)
 .build()))
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 UpdateItemResponse updateResponse =
 dynamoDbClient.updateItem(updateRequest);

 // Record success result
 result.put("operation", "update");
 result.put("success", true);
 result.put("oldVersion", currentVersion);
 result.put("newVersion", newVersion);
 result.put("attributes", updateResponse.attributes());

 } catch (ConditionalCheckFailedException e) {
 // Record failure due to version mismatch
 result.put("operation", "update");
 result.put("success", false);
 result.put("message", "Version mismatch, another process may have
 updated the item");
 result.put("error", "ConditionalCheckFailedException");

Use conditional operations API Version 2012-08-10 2760

Amazon DynamoDB Developer Guide

 } catch (DynamoDbException e) {
 // Record failure due to other errors
 result.put("operation", "update");
 result.put("success", false);
 result.put("message", "Error occurred: " + e.getMessage());
 result.put("error", e.getClass().getSimpleName());
 }

 return result;
 }

 /**
 * Performs a conditional update with multiple conditions.
 *
 * <p>This method demonstrates how to use multiple conditions in a condition
 expression.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param conditions Map of attribute names to values for conditions
 * @param updateAttribute The attribute to update
 * @param updateValue The new value to set
 * @return Map containing the operation result and status
 */
 public static Map<String, Object> conditionalUpdateWithMultipleConditions(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 Map<String, AttributeValue> conditions,
 String updateAttribute,
 AttributeValue updateValue) {

 Map<String, Object> result = new HashMap<>();

 try {
 // Build the condition expression and attribute names/values
 StringBuilder conditionExpression = new StringBuilder();
 Map<String, String> expressionAttributeNames = new HashMap<>();
 Map<String, AttributeValue> expressionAttributeValues = new
 HashMap<>();

 // Add update attribute
 expressionAttributeNames.put("#updateAttr", updateAttribute);

Use conditional operations API Version 2012-08-10 2761

Amazon DynamoDB Developer Guide

 expressionAttributeValues.put(":updateVal", updateValue);

 // Add conditions
 int i = 0;
 for (Map.Entry<String, AttributeValue> condition :
 conditions.entrySet()) {
 String attrName = condition.getKey();
 AttributeValue attrValue = condition.getValue();

 String nameKey = "#cond" + i;
 String valueKey = ":val" + i;

 expressionAttributeNames.put(nameKey, attrName);
 expressionAttributeValues.put(valueKey, attrValue);

 // Add AND between conditions (except for the first one)
 if (i > 0) {
 conditionExpression.append(" AND ");
 }

 conditionExpression.append(nameKey).append(" =
 ").append(valueKey);
 i++;
 }

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #updateAttr = :updateVal")
 .conditionExpression(conditionExpression.toString())
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .returnValues(ReturnValue.UPDATED_NEW)
 .build();

 // Perform the update operation
 UpdateItemResponse response = dynamoDbClient.updateItem(request);

 // Record success result
 result.put("success", true);
 result.put("message", "All conditions were met and update was
 performed");
 result.put("attributes", response.attributes());

Use conditional operations API Version 2012-08-10 2762

Amazon DynamoDB Developer Guide

 } catch (ConditionalCheckFailedException e) {
 // Record failure due to condition not being met
 result.put("success", false);
 result.put("message", "One or more conditions were not met, update
 was not performed");
 result.put("error", "ConditionalCheckFailedException");

 } catch (DynamoDbException e) {
 // Record failure due to other errors
 result.put("success", false);
 result.put("message", "Error occurred: " + e.getMessage());
 result.put("error", e.getClass().getSimpleName());
 }

 return result;
 }

Example usage of conditional operations with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating conditional operations in DynamoDB");

 try {
 // Example 1: Conditional update
 System.out.println("\nExample 1: Conditional update");
 Map<String, Object> updateResult = conditionalUpdate(
 dynamoDbClient,
 tableName,
 key,
 "InStock",
 AttributeValue.builder().bool(true).build(),
 "Status",
 AttributeValue.builder().s("Available").build());

 System.out.println("Update result: " + updateResult.get("message"));
 if ((boolean) updateResult.get("success")) {

Use conditional operations API Version 2012-08-10 2763

Amazon DynamoDB Developer Guide

 System.out.println("Updated attributes: " +
 updateResult.get("attributes"));
 }

 // Example 2: Conditional delete
 System.out.println("\nExample 2: Conditional delete");
 Map<String, Object> deleteResult = conditionalDelete(
 dynamoDbClient,
 tableName,
 key,
 "Status",
 AttributeValue.builder().s("Discontinued").build());

 System.out.println("Delete result: " + deleteResult.get("message"));
 if ((boolean) deleteResult.get("success")) {
 System.out.println("Deleted item: " +
 deleteResult.get("attributes"));
 }

 // Example 3: Optimistic locking
 System.out.println("\nExample 3: Optimistic locking");
 Map<String, Object> lockingResult =
 optimisticLockingExample(dynamoDbClient, tableName, key, "Version");

 System.out.println("Optimistic locking result:");
 System.out.println(" Operation: " + lockingResult.get("operation"));
 System.out.println(" Success: " + lockingResult.get("success"));
 if (lockingResult.get("operation").equals("update") && (boolean)
 lockingResult.get("success")) {
 System.out.println(" Old version: " +
 lockingResult.get("oldVersion"));
 System.out.println(" New version: " +
 lockingResult.get("newVersion"));
 }
 System.out.println(" Attributes: " +
 lockingResult.get("attributes"));

 // Example 4: Multiple conditions
 System.out.println("\nExample 4: Multiple conditions");
 Map<String, AttributeValue> conditions = new HashMap<>();
 conditions.put("Price",
 AttributeValue.builder().n("199.99").build());
 conditions.put("Category",
 AttributeValue.builder().s("Electronics").build());

Use conditional operations API Version 2012-08-10 2764

Amazon DynamoDB Developer Guide

 Map<String, Object> multiConditionResult =
 conditionalUpdateWithMultipleConditions(
 dynamoDbClient,
 tableName,
 key,
 conditions,
 "OnSale",
 AttributeValue.builder().bool(true).build());

 System.out.println("Multiple conditions result: " +
 multiConditionResult.get("message"));
 if ((boolean) multiConditionResult.get("success")) {
 System.out.println("Updated attributes: " +
 multiConditionResult.get("attributes"));
 }

 // Explain conditional operations
 System.out.println("\nKey points about DynamoDB conditional
 operations:");
 System.out.println("1. Conditional operations only succeed if the
 condition is met");
 System.out.println("2. ConditionalCheckFailedException is thrown when
 the condition fails");
 System.out.println("3. No changes are made to the item if the
 condition fails");
 System.out.println("4. Conditions can be used with update, delete,
 and put operations");
 System.out.println("5. Multiple conditions can be combined with AND
 and OR");
 System.out.println("6. Optimistic locking can be implemented using a
 version attribute");
 System.out.println(
 "7. Conditional operations consume the same amount of write
 capacity whether they succeed or fail");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

Use conditional operations API Version 2012-08-10 2765

Amazon DynamoDB Developer Guide

• DeleteItem

• PutItem

• UpdateItem

JavaScript

SDK for JavaScript (v3)

Demonstrate conditional operations using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 DeleteCommand,
 GetCommand,
 PutCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Perform a conditional update operation.
 *
 * This function demonstrates how to update an item only if a condition is met.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} conditionAttribute - The attribute to check in the condition
 * @param {any} conditionValue - The value to compare against
 * @param {string} updateAttribute - The attribute to update
 * @param {any} updateValue - The new value to set
 * @returns {Promise<Object>} - Result of the operation
 */
async function conditionalUpdate(
 config,
 tableName,
 key,
 conditionAttribute,
 conditionValue,
 updateAttribute,
 updateValue
) {

Use conditional operations API Version 2012-08-10 2766

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${updateAttribute} = :value`,
 ConditionExpression: `${conditionAttribute} = :condition`,
 ExpressionAttributeValues: {
 ":value": updateValue,
 ":condition": conditionValue
 },
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Condition was met and update was performed",
 updatedAttributes: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Condition was not met, update was not performed",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Perform a conditional delete operation.
 *

Use conditional operations API Version 2012-08-10 2767

Amazon DynamoDB Developer Guide

 * This function demonstrates how to delete an item only if a condition is met.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to delete
 * @param {string} conditionAttribute - The attribute to check in the condition
 * @param {any} conditionValue - The value to compare against
 * @returns {Promise<Object>} - Result of the operation
 */
async function conditionalDelete(
 config,
 tableName,
 key,
 conditionAttribute,
 conditionValue
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the delete parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 ConditionExpression: `${conditionAttribute} = :condition`,
 ExpressionAttributeValues: {
 ":condition": conditionValue
 },
 ReturnValues: "ALL_OLD"
 };

 try {
 // Perform the delete operation
 const response = await docClient.send(new DeleteCommand(params));

 return {
 success: true,
 message: "Condition was met and item was deleted",
 deletedItem: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {

Use conditional operations API Version 2012-08-10 2768

Amazon DynamoDB Developer Guide

 success: false,
 message: "Condition was not met, item was not deleted",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Implement optimistic locking with a version number.
 *
 * This function demonstrates how to use a version number for optimistic locking
 * to prevent race conditions when multiple processes update the same item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {Object} updates - The attributes to update
 * @param {number} expectedVersion - The expected current version number
 * @returns {Promise<Object>} - Result of the operation
 */
async function updateWithOptimisticLocking(
 config,
 tableName,
 key,
 updates,
 expectedVersion
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Build the update expression
 const updateExpressions = [];
 const expressionAttributeValues = {
 ":expectedVersion": expectedVersion,
 ":newVersion": expectedVersion + 1
 };

 // Add each update to the expression
 Object.entries(updates).forEach(([attribute, value], index) => {

Use conditional operations API Version 2012-08-10 2769

Amazon DynamoDB Developer Guide

 updateExpressions.push(`${attribute} = :val${index}`);
 expressionAttributeValues[`:val${index}`] = value;
 });

 // Add the version update
 updateExpressions.push("version = :newVersion");

 // Define the update parameters with a condition expression
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${updateExpressions.join(", ")}`,
 ConditionExpression: "version = :expectedVersion",
 ExpressionAttributeValues: expressionAttributeValues,
 ReturnValues: "UPDATED_NEW"
 };

 try {
 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return {
 success: true,
 message: "Update succeeded with optimistic locking",
 newVersion: expectedVersion + 1,
 updatedAttributes: response.Attributes
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Optimistic locking failed: the item was modified by another
 process",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**

Use conditional operations API Version 2012-08-10 2770

Amazon DynamoDB Developer Guide

 * Implement a conditional write that creates an item only if it doesn't exist.
 *
 * This function demonstrates how to use attribute_not_exists to create an item
 * only if it doesn't already exist (similar to an "INSERT IF NOT EXISTS"
 operation).
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} item - The item to create
 * @returns {Promise<Object>} - Result of the operation
 */
async function createIfNotExists(
 config,
 tableName,
 item
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Extract the primary key attributes
 const keyAttributes = Object.keys(item).filter(attr =>
 attr === "id" || attr === "ID" || attr === "Id" ||
 attr.endsWith("Id") || attr.endsWith("ID") ||
 attr.endsWith("Key")
);

 if (keyAttributes.length === 0) {
 throw new Error("Could not determine primary key attributes");
 }

 // Create a condition expression that checks if the item doesn't exist
 const conditionExpression = `attribute_not_exists(${keyAttributes[0]})`;

 // Define the put parameters with a condition expression
 const params = {
 TableName: tableName,
 Item: item,
 ConditionExpression: conditionExpression
 };

 try {
 // Perform the put operation
 await docClient.send(new PutCommand(params));

Use conditional operations API Version 2012-08-10 2771

Amazon DynamoDB Developer Guide

 return {
 success: true,
 message: "Item was created because it didn't exist",
 item
 };
 } catch (error) {
 // Check if the error is due to the condition check failing
 if (error.name === "ConditionalCheckFailedException") {
 return {
 success: false,
 message: "Item already exists, creation was skipped",
 error: "ConditionalCheckFailedException"
 };
 }

 // Re-throw other errors
 throw error;
 }
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key

Use conditional operations API Version 2012-08-10 2772

Amazon DynamoDB Developer Guide

 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

Example usage of conditional operations with Amazon SDK for JavaScript.

/**
 * Example of how to use conditional operations.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating conditional operations in DynamoDB");

 try {
 // Example 1: Conditional update based on attribute value
 console.log("\nExample 1: Conditional update based on attribute value");
 const updateResult = await conditionalUpdate(
 config,
 tableName,
 key,
 "Category",
 "Electronics",
 "Price",
 299.99
);

 console.log(`Result: ${updateResult.message}`);
 if (updateResult.success) {
 console.log("Updated attributes:", updateResult.updatedAttributes);
 }

 // Example 2: Conditional delete based on attribute value
 console.log("\nExample 2: Conditional delete based on attribute value");

Use conditional operations API Version 2012-08-10 2773

Amazon DynamoDB Developer Guide

 const deleteResult = await conditionalDelete(
 config,
 tableName,
 key,
 "InStock",
 false
);

 console.log(`Result: ${deleteResult.message}`);
 if (deleteResult.success) {
 console.log("Deleted item:", deleteResult.deletedItem);
 }

 // Example 3: Optimistic locking with version number
 console.log("\nExample 3: Optimistic locking with version number");

 // First, get the current item to check its version
 const currentItem = await getItem(config, tableName, { ProductId:
 "P67890" });
 const currentVersion = currentItem ? (currentItem.version || 0) : 0;

 console.log(`Current version: ${currentVersion}`);

 // Then, update with optimistic locking
 const lockingResult = await updateWithOptimisticLocking(
 config,
 tableName,
 { ProductId: "P67890" },
 {
 Name: "Updated Product Name",
 Description: "This is an updated description"
 },
 currentVersion
);

 console.log(`Result: ${lockingResult.message}`);
 if (lockingResult.success) {
 console.log(`New version: ${lockingResult.newVersion}`);
 console.log("Updated attributes:", lockingResult.updatedAttributes);
 }

 // Example 4: Create item only if it doesn't exist
 console.log("\nExample 4: Create item only if it doesn't exist");
 const createResult = await createIfNotExists(

Use conditional operations API Version 2012-08-10 2774

Amazon DynamoDB Developer Guide

 config,
 tableName,
 {
 ProductId: "P99999",
 Name: "New Product",
 Category: "Accessories",
 Price: 19.99,
 InStock: true
 }
);

 console.log(`Result: ${createResult.message}`);
 if (createResult.success) {
 console.log("Created item:", createResult.item);
 }

 // Explain conditional operations
 console.log("\nKey points about conditional operations:");
 console.log("1. Conditional operations only succeed if the condition is
 met");
 console.log("2. ConditionalCheckFailedException indicates the condition
 wasn't met");
 console.log("3. Optimistic locking prevents race conditions in concurrent
 updates");
 console.log("4. attribute_exists and attribute_not_exists are useful for
 checking if attributes are present");
 console.log("5. Conditional operations are atomic - they either succeed
 completely or fail completely");
 console.log("6. You can use any valid comparison operators and functions in
 condition expressions");
 console.log("7. Conditional operations don't consume write capacity if the
 condition fails");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• DeleteItem

• PutItem

Use conditional operations API Version 2012-08-10 2775

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/DeleteItemCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/PutItemCommand

Amazon DynamoDB Developer Guide

• UpdateItem

Python

SDK for Python (Boto3)

Demonstrate conditional operations using Amazon SDK for Python (Boto3).

import boto3
from botocore.exceptions import ClientError
from typing import Any, Dict, Optional, Tuple, Union

def conditional_update(
 table_name: str,
 key: Dict[str, Any],
 condition_attribute: str,
 condition_value: Any,
 update_attribute: str,
 update_value: Any,
) -> Tuple[bool, Optional[Dict[str, Any]]]:
 """
 Update an item only if a condition is met.

 This function demonstrates how to perform a conditional update operation
 and determine if the condition was met.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 condition_attribute (str): The attribute to check in the condition.
 condition_value (Any): The value to compare against.
 update_attribute (str): The attribute to update.
 update_value (Any): The new value to set.

 Returns:
 Tuple[bool, Optional[Dict[str, Any]]]: A tuple containing:
 - A boolean indicating if the update succeeded
 - The response from DynamoDB if successful, None otherwise
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

Use conditional operations API Version 2012-08-10 2776

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

 try:
 # Perform the conditional update
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #update_attr = :update_val",
 ConditionExpression="#cond_attr = :cond_val",
 ExpressionAttributeNames={
 "#update_attr": update_attribute,
 "#cond_attr": condition_attribute,
 },
 ExpressionAttributeValues={":update_val": update_value, ":cond_val":
 condition_value},
 ReturnValues="UPDATED_NEW",
)
 # Update succeeded, condition was met
 return True, response
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 # Condition was not met
 return False, None
 else:
 # Other error occurred
 raise

def conditional_delete(
 table_name: str, key: Dict[str, Any], condition_attribute: str,
 condition_value: Any
) -> bool:
 """
 Delete an item only if a condition is met.

 This function demonstrates how to perform a conditional delete operation
 and determine if the condition was met.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to delete.
 condition_attribute (str): The attribute to check in the condition.
 condition_value (Any): The value to compare against.

 Returns:
 bool: True if the delete succeeded (condition was met), False otherwise.

Use conditional operations API Version 2012-08-10 2777

Amazon DynamoDB Developer Guide

 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 try:
 # Perform the conditional delete
 table.delete_item(
 Key=key,
 ConditionExpression="#attr = :val",
 ExpressionAttributeNames={"#attr": condition_attribute},
 ExpressionAttributeValues={":val": condition_value},
)
 # Delete succeeded, condition was met
 return True
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 # Condition was not met
 return False
 else:
 # Other error occurred
 raise

def optimistic_locking_update(
 table_name: str,
 key: Dict[str, Any],
 version_attribute: str,
 update_attribute: str,
 update_value: Any,
) -> Tuple[bool, Optional[Dict[str, Any]]]:
 """
 Update an item using optimistic locking with a version attribute.

 This function demonstrates how to implement optimistic locking using
 a version attribute that is incremented with each update.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 version_attribute (str): The name of the version attribute.
 update_attribute (str): The attribute to update.
 update_value (Any): The new value to set.

Use conditional operations API Version 2012-08-10 2778

Amazon DynamoDB Developer Guide

 Returns:
 Tuple[bool, Optional[Dict[str, Any]]]: A tuple containing:
 - A boolean indicating if the update succeeded
 - The response from DynamoDB if successful, None otherwise
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # First, get the current version
 try:
 response = table.get_item(
 Key=key,
 ProjectionExpression=f"#{version_attribute}",
 ExpressionAttributeNames={f"#{version_attribute}":
 version_attribute},
)

 item = response.get("Item", {})
 current_version = item.get(version_attribute, 0)

 # Now, try to update with a condition on the version
 try:
 update_response = table.update_item(
 Key=key,
 UpdateExpression=f"SET #{update_attribute} = :update_val,
 #{version_attribute} = :new_version",
 ConditionExpression=f"#{version_attribute} = :current_version",
 ExpressionAttributeNames={
 f"#{update_attribute}": update_attribute,
 f"#{version_attribute}": version_attribute,
 },
 ExpressionAttributeValues={
 ":update_val": update_value,
 ":current_version": current_version,
 ":new_version": current_version + 1,
 },
 ReturnValues="UPDATED_NEW",
)
 # Update succeeded
 return True, update_response
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 # Version has changed, optimistic locking failed

Use conditional operations API Version 2012-08-10 2779

Amazon DynamoDB Developer Guide

 return False, None
 else:
 # Other error occurred
 raise
 except ClientError:
 # Error getting the item
 raise

def conditional_check_and_update(
 table_name: str,
 key: Dict[str, Any],
 check_attribute: str,
 check_value: Any,
 update_attribute: str,
 update_value: Any,
 create_if_not_exists: bool = False,
) -> Union[Dict[str, Any], None]:
 """
 Check if an attribute has a specific value and update another attribute if it
 does.

 This function demonstrates a more complex conditional update that can also
 create the item if it doesn't exist.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 check_attribute (str): The attribute to check in the condition.
 check_value (Any): The value to compare against.
 update_attribute (str): The attribute to update.
 update_value (Any): The new value to set.
 create_if_not_exists (bool, optional): Whether to create the item if it
 doesn't exist.

 Returns:
 Union[Dict[str, Any], None]: The response from DynamoDB if successful,
 None otherwise.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 try:

Use conditional operations API Version 2012-08-10 2780

Amazon DynamoDB Developer Guide

 if create_if_not_exists:
 # Use attribute_not_exists to create the item if it doesn't exist
 condition_expression = "attribute_not_exists(#pk) OR #check_attr
 = :check_val"
 update_expression = "SET #update_attr = :update_val, #check_attr =
 if_not_exists(#check_attr, :check_val)"

 # Get the partition key name from the key dictionary
 pk_name = next(iter(key))

 expression_attribute_names = {
 "#pk": pk_name,
 "#check_attr": check_attribute,
 "#update_attr": update_attribute,
 }
 else:
 # Only update if the check attribute has the expected value
 condition_expression = "#check_attr = :check_val"
 update_expression = "SET #update_attr = :update_val"

 expression_attribute_names = {
 "#check_attr": check_attribute,
 "#update_attr": update_attribute,
 }

 # Perform the conditional update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ConditionExpression=condition_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues={":check_val": check_value, ":update_val":
 update_value},
 ReturnValues="UPDATED_NEW",
)
 return response
 except ClientError as e:
 if e.response["Error"]["Code"] == "ConditionalCheckFailedException":
 # Condition was not met
 return None
 else:
 # Other error occurred
 raise

Use conditional operations API Version 2012-08-10 2781

Amazon DynamoDB Developer Guide

Example usage of conditional operations with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use the conditional operations functions."""
 # Example parameters
 table_name = "Products"
 key = {"ProductId": "prod123"}

 print("Example 1: Conditional Update")
 try:
 # Update the price only if the current stock is greater than 10
 success, response = conditional_update(
 table_name=table_name,
 key=key,
 condition_attribute="Stock",
 condition_value=10,
 update_attribute="Price",
 update_value=99.99,
)

 if success:
 # Fix for mypy: Handle the case where response might be None
 attributes = {} if response is None else response.get("Attributes",
 {})
 print(f"Update succeeded! New values: {attributes}")
 else:
 print("Update failed because the condition was not met.")
 except Exception as e:
 print(f"Error during conditional update: {e}")

 print("\nExample 2: Conditional Delete")
 try:
 # Delete the product only if it's discontinued
 success = conditional_delete(
 table_name=table_name,
 key=key,
 condition_attribute="Status",
 condition_value="Discontinued",
)

Use conditional operations API Version 2012-08-10 2782

Amazon DynamoDB Developer Guide

 if success:
 print("Delete succeeded! The item was deleted.")
 else:
 print("Delete failed because the condition was not met.")
 except Exception as e:
 print(f"Error during conditional delete: {e}")

 print("\nExample 3: Optimistic Locking")
 try:
 # Update with optimistic locking using a version attribute
 success, response = optimistic_locking_update(
 table_name=table_name,
 key=key,
 version_attribute="Version",
 update_attribute="Description",
 update_value="Updated product description",
)

 if success:
 # Fix for mypy: Handle the case where response might be None
 attributes = {} if response is None else response.get("Attributes",
 {})
 print(f"Optimistic locking update succeeded! New values:
 {attributes}")
 else:
 print("Optimistic locking update failed because the version has
 changed.")
 except Exception as e:
 print(f"Error during optimistic locking update: {e}")

 print("\nExample 4: Conditional Check and Update")
 try:
 # Update the featured status if the product is in stock
 response = conditional_check_and_update(
 table_name=table_name,
 key=key,
 check_attribute="InStock",
 check_value=True,
 update_attribute="Featured",
 update_value=True,
 create_if_not_exists=True,
)

 if response:

Use conditional operations API Version 2012-08-10 2783

Amazon DynamoDB Developer Guide

 print(
 f"Conditional check and update succeeded! New values:
 {response.get('Attributes', {})}"
)
 else:
 print("Conditional check and update failed because the condition was
 not met.")
 except Exception as e:
 print(f"Error during conditional check and update: {e}")

 print("\nUnderstanding Conditional Operations in DynamoDB:")
 print("1. Conditional operations help maintain data integrity")
 print("2. They prevent race conditions in concurrent environments")
 print("3. Failed conditions result in ConditionalCheckFailedException")
 print("4. No DynamoDB capacity is consumed when conditions fail")
 print("5. Optimistic locking is a common pattern using version attributes")
 print("6. Conditions can be combined with logical operators (AND, OR, NOT)")
 print("7. Conditions can use comparison operators (=, <>, <, <=, >, >=)")
 print(
 "8. attribute_exists() and attribute_not_exists() are useful for checking
 attribute presence"
)

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• DeleteItem

• PutItem

• UpdateItem

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use expression attribute names in DynamoDB with an Amazon SDK

The following code examples show how to use expression attribute names in DynamoDB.

• Work with reserved words in DynamoDB expressions.

• Use expression attribute name placeholders.

Use expression attribute names API Version 2012-08-10 2784

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/DeleteItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

• Handle special characters in attribute names.

Java

SDK for Java 2.x

Demonstrate expression attribute names using Amazon SDK for Java 2.x.

import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.AttributeValue;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.QueryRequest;
import software.amazon.awssdk.services.dynamodb.model.QueryResponse;
import software.amazon.awssdk.services.dynamodb.model.ScanRequest;
import software.amazon.awssdk.services.dynamodb.model.ScanResponse;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemRequest;
import software.amazon.awssdk.services.dynamodb.model.UpdateItemResponse;

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

 /**
 * Updates an attribute that is a reserved word in DynamoDB.
 *
 * <p>This method demonstrates how to use expression attribute names to
 update
 * attributes that are reserved words in DynamoDB.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param reservedWordAttribute The reserved word attribute to update
 * @param value The value to set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateReservedWordAttribute(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String reservedWordAttribute,

Use expression attribute names API Version 2012-08-10 2785

Amazon DynamoDB Developer Guide

 AttributeValue value) {

 // Define the update parameters using expression attribute names
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attr = :value")
 .expressionAttributeNames(Map.of("#attr", reservedWordAttribute))
 .expressionAttributeValues(Map.of(":value", value))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Updates an attribute that contains special characters.
 *
 * <p>This method demonstrates how to use expression attribute names to
 update
 * attributes that contain special characters.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param specialCharAttribute The attribute with special characters to
 update
 * @param value The value to set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateSpecialCharacterAttribute(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 String specialCharAttribute,
 AttributeValue value) {

 // Define the update parameters using expression attribute names
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET #attr = :value")

Use expression attribute names API Version 2012-08-10 2786

Amazon DynamoDB Developer Guide

 .expressionAttributeNames(Map.of("#attr", specialCharAttribute))
 .expressionAttributeValues(Map.of(":value", value))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Queries items using an attribute that is a reserved word.
 *
 * <p>This method demonstrates how to use expression attribute names in a
 query
 * when the attribute is a reserved word.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param partitionKeyName The name of the partition key attribute
 * @param partitionKeyValue The value of the partition key
 * @param reservedWordAttribute The reserved word attribute to filter on
 * @param value The value to compare against
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static QueryResponse queryWithReservedWordAttribute(
 DynamoDbClient dynamoDbClient,
 String tableName,
 String partitionKeyName,
 AttributeValue partitionKeyValue,
 String reservedWordAttribute,
 AttributeValue value) {

 // Define the query parameters using expression attribute names
 Map<String, String> expressionAttributeNames = new HashMap<>();
 expressionAttributeNames.put("#pkName", partitionKeyName);
 expressionAttributeNames.put("#attr", reservedWordAttribute);

 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
 expressionAttributeValues.put(":pkValue", partitionKeyValue);
 expressionAttributeValues.put(":value", value);

 QueryRequest request = QueryRequest.builder()
 .tableName(tableName)

Use expression attribute names API Version 2012-08-10 2787

Amazon DynamoDB Developer Guide

 .keyConditionExpression("#pkName = :pkValue")
 .filterExpression("#attr = :value")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 // Perform the query operation
 return dynamoDbClient.query(request);
 }

 /**
 * Updates a nested attribute with a path that contains reserved words.
 *
 * <p>This method demonstrates how to use expression attribute names to
 update
 * nested attributes where the path contains reserved words.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param key The key of the item to update
 * @param attributePath The path to the nested attribute as an array
 * @param value The value to set
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static UpdateItemResponse updateNestedReservedWordAttribute(
 DynamoDbClient dynamoDbClient,
 String tableName,
 Map<String, AttributeValue> key,
 List<String> attributePath,
 AttributeValue value) {

 // Create expression attribute names for each part of the path
 Map<String, String> expressionAttributeNames = new HashMap<>();
 for (int i = 0; i < attributePath.size(); i++) {
 expressionAttributeNames.put("#attr" + i, attributePath.get(i));
 }

 // Build the attribute path using the expression attribute names
 StringBuilder attributePathExpression = new StringBuilder();
 for (int i = 0; i < attributePath.size(); i++) {
 if (i > 0) {
 attributePathExpression.append(".");
 }

Use expression attribute names API Version 2012-08-10 2788

Amazon DynamoDB Developer Guide

 attributePathExpression.append("#attr").append(i);
 }

 // Define the update parameters
 UpdateItemRequest request = UpdateItemRequest.builder()
 .tableName(tableName)
 .key(key)
 .updateExpression("SET " + attributePathExpression.toString() + "
 = :value")
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(Map.of(":value", value))
 .returnValues("UPDATED_NEW")
 .build();

 // Perform the update operation
 return dynamoDbClient.updateItem(request);
 }

 /**
 * Scans a table with multiple attribute name placeholders.
 *
 * <p>This method demonstrates how to use multiple expression attribute names
 * in a complex filter expression.
 *
 * @param dynamoDbClient The DynamoDB client
 * @param tableName The name of the DynamoDB table
 * @param filters Object mapping attribute names to filter values
 * @return The response from DynamoDB
 * @throws DynamoDbException if an error occurs during the operation
 */
 public static ScanResponse scanWithMultipleAttributeNames(
 DynamoDbClient dynamoDbClient, String tableName, Map<String,
 AttributeValue> filters) {

 // Create expression attribute names and values
 Map<String, String> expressionAttributeNames = new HashMap<>();
 Map<String, AttributeValue> expressionAttributeValues = new HashMap<>();
 StringBuilder filterExpression = new StringBuilder();

 // Build the filter expression
 int index = 0;
 for (Map.Entry<String, AttributeValue> entry : filters.entrySet()) {
 String attrName = entry.getKey();
 AttributeValue attrValue = entry.getValue();

Use expression attribute names API Version 2012-08-10 2789

Amazon DynamoDB Developer Guide

 String nameKey = "#attr" + index;
 String valueKey = ":val" + index;

 expressionAttributeNames.put(nameKey, attrName);
 expressionAttributeValues.put(valueKey, attrValue);

 // Add AND between conditions (except for the first one)
 if (index > 0) {
 filterExpression.append(" AND ");
 }

 filterExpression.append(nameKey).append(" = ").append(valueKey);
 index++;
 }

 // Define the scan parameters
 ScanRequest request = ScanRequest.builder()
 .tableName(tableName)
 .filterExpression(filterExpression.toString())
 .expressionAttributeNames(expressionAttributeNames)
 .expressionAttributeValues(expressionAttributeValues)
 .build();

 // Perform the scan operation
 return dynamoDbClient.scan(request);
 }

Example usage of expression attribute names with Amazon SDK for Java 2.x.

 public static void exampleUsage(DynamoDbClient dynamoDbClient, String
 tableName) {
 // Example key
 Map<String, AttributeValue> key = new HashMap<>();
 key.put("ProductId", AttributeValue.builder().s("P12345").build());

 System.out.println("Demonstrating expression attribute names in
 DynamoDB");

 try {
 // Example 1: Update an attribute that is a reserved word

Use expression attribute names API Version 2012-08-10 2790

Amazon DynamoDB Developer Guide

 System.out.println("\nExample 1: Updating an attribute that is a
 reserved word");
 UpdateItemResponse response1 = updateReservedWordAttribute(
 dynamoDbClient,
 tableName,
 key,
 "Size", // "SIZE" is a reserved word in DynamoDB
 AttributeValue.builder().s("Large").build());

 System.out.println("Updated attribute: " + response1.attributes());

 // Example 2: Update an attribute with special characters
 System.out.println("\nExample 2: Updating an attribute with special
 characters");
 UpdateItemResponse response2 = updateSpecialCharacterAttribute(
 dynamoDbClient,
 tableName,
 key,
 "Product-Type", // Contains a hyphen, which is a special
 character
 AttributeValue.builder().s("Electronics").build());

 System.out.println("Updated attribute: " + response2.attributes());

 // Example 3: Query with a reserved word attribute
 System.out.println("\nExample 3: Querying with a reserved word
 attribute");
 QueryResponse response3 = queryWithReservedWordAttribute(
 dynamoDbClient,
 tableName,
 "Category",
 AttributeValue.builder().s("Electronics").build(),
 "Count", // "COUNT" is a reserved word in DynamoDB
 AttributeValue.builder().n("10").build());

 System.out.println("Found " + response3.count() + " items");

 // Example 4: Update a nested attribute with reserved words in the
 path
 System.out.println("\nExample 4: Updating a nested attribute with
 reserved words in the path");
 UpdateItemResponse response4 = updateNestedReservedWordAttribute(
 dynamoDbClient,
 tableName,

Use expression attribute names API Version 2012-08-10 2791

Amazon DynamoDB Developer Guide

 key,
 Arrays.asList("Dimensions", "Size", "Height"), // "SIZE" is a
 reserved word
 AttributeValue.builder().n("30").build());

 System.out.println("Updated nested attribute: " +
 response4.attributes());

 // Example 5: Scan with multiple attribute name placeholders
 System.out.println("\nExample 5: Scanning with multiple attribute
 name placeholders");
 Map<String, AttributeValue> filters = new HashMap<>();
 filters.put("Size", AttributeValue.builder().s("Large").build());
 filters.put("Count", AttributeValue.builder().n("10").build());
 filters.put(
 "Product-Type",
 AttributeValue.builder().s("Electronics").build());

 ScanResponse response5 =
 scanWithMultipleAttributeNames(dynamoDbClient, tableName, filters);

 System.out.println("Found " + response5.count() + " items");

 // Show some common reserved words
 System.out.println("\nSome common DynamoDB reserved words:");
 List<String> commonReservedWords = getDynamoDBReservedWords();
 System.out.println(String.join(", ", commonReservedWords));

 // Explain expression attribute names
 System.out.println("\nKey points about expression attribute names:");
 System.out.println("1. Use expression attribute names (#name) for
 reserved words");
 System.out.println("2. Use expression attribute names for attributes
 with special characters");
 System.out.println(
 "3. Special characters include: spaces, hyphens, dots, and other
 non-alphanumeric characters");
 System.out.println("4. Expression attribute names are required for
 nested attributes with reserved words");
 System.out.println("5. You can use multiple expression attribute
 names in a single expression");
 System.out.println("6. Expression attribute names are case-
sensitive");

Use expression attribute names API Version 2012-08-10 2792

Amazon DynamoDB Developer Guide

 System.out.println("7. Expression attribute names are only used in
 expressions, not in the actual data");

 } catch (DynamoDbException e) {
 System.err.println("Error: " + e.getMessage());
 e.printStackTrace();
 }
 }

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• Query

• UpdateItem

JavaScript

SDK for JavaScript (v3)

Demonstrate expression attribute names using Amazon SDK for JavaScript.

const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
const {
 DynamoDBDocumentClient,
 UpdateCommand,
 GetCommand,
 QueryCommand,
 ScanCommand
} = require("@aws-sdk/lib-dynamodb");

/**
 * Update an attribute that is a reserved word in DynamoDB.
 *
 * This function demonstrates how to use expression attribute names to update
 * attributes that are reserved words in DynamoDB.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} reservedWordAttribute - The reserved word attribute to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */

Use expression attribute names API Version 2012-08-10 2793

https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/SdkForJavaV2/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

async function updateReservedWordAttribute(
 config,
 tableName,
 key,
 reservedWordAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using expression attribute names
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: "SET #attr = :value",
 ExpressionAttributeNames: {
 "#attr": reservedWordAttribute
 },
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Update an attribute that contains special characters.
 *
 * This function demonstrates how to use expression attribute names to update
 * attributes that contain special characters.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to update
 * @param {string} specialCharAttribute - The attribute with special characters
 to update
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB

Use expression attribute names API Version 2012-08-10 2794

Amazon DynamoDB Developer Guide

 */
async function updateSpecialCharacterAttribute(
 config,
 tableName,
 key,
 specialCharAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the update parameters using expression attribute names
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: "SET #attr = :value",
 ExpressionAttributeNames: {
 "#attr": specialCharAttribute
 },
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

/**
 * Query items using an attribute that is a reserved word.
 *
 * This function demonstrates how to use expression attribute names in a query
 * when the attribute is a reserved word.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {string} partitionKeyName - The name of the partition key attribute
 * @param {any} partitionKeyValue - The value of the partition key
 * @param {string} reservedWordAttribute - The reserved word attribute to filter
 on

Use expression attribute names API Version 2012-08-10 2795

Amazon DynamoDB Developer Guide

 * @param {any} value - The value to compare against
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function queryWithReservedWordAttribute(
 config,
 tableName,
 partitionKeyName,
 partitionKeyValue,
 reservedWordAttribute,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the query parameters using expression attribute names
 const params = {
 TableName: tableName,
 KeyConditionExpression: "#pkName = :pkValue",
 FilterExpression: "#attr = :value",
 ExpressionAttributeNames: {
 "#pkName": partitionKeyName,
 "#attr": reservedWordAttribute
 },
 ExpressionAttributeValues: {
 ":pkValue": partitionKeyValue,
 ":value": value
 }
 };

 // Perform the query operation
 const response = await docClient.send(new QueryCommand(params));

 return response;
}

/**
 * Update a nested attribute with a path that contains reserved words.
 *
 * This function demonstrates how to use expression attribute names to update
 * nested attributes where the path contains reserved words.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table

Use expression attribute names API Version 2012-08-10 2796

Amazon DynamoDB Developer Guide

 * @param {Object} key - The key of the item to update
 * @param {string[]} attributePath - The path to the nested attribute as an array
 * @param {any} value - The value to set
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function updateNestedReservedWordAttribute(
 config,
 tableName,
 key,
 attributePath,
 value
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create expression attribute names for each part of the path
 const expressionAttributeNames = {};
 for (let i = 0; i < attributePath.length; i++) {
 expressionAttributeNames[`#attr${i}`] = attributePath[i];
 }

 // Build the attribute path using the expression attribute names
 const attributePathExpression = attributePath
 .map((_, i) => `#attr${i}`)
 .join(".");

 // Define the update parameters
 const params = {
 TableName: tableName,
 Key: key,
 UpdateExpression: `SET ${attributePathExpression} = :value`,
 ExpressionAttributeNames: expressionAttributeNames,
 ExpressionAttributeValues: {
 ":value": value
 },
 ReturnValues: "UPDATED_NEW"
 };

 // Perform the update operation
 const response = await docClient.send(new UpdateCommand(params));

 return response;
}

Use expression attribute names API Version 2012-08-10 2797

Amazon DynamoDB Developer Guide

/**
 * Scan a table with multiple attribute name placeholders.
 *
 * This function demonstrates how to use multiple expression attribute names
 * in a complex filter expression.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} filters - Object mapping attribute names to filter values
 * @returns {Promise<Object>} - The response from DynamoDB
 */
async function scanWithMultipleAttributeNames(
 config,
 tableName,
 filters
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Create expression attribute names and values
 const expressionAttributeNames = {};
 const expressionAttributeValues = {};
 const filterConditions = [];

 // Build the filter expression
 Object.entries(filters).forEach(([attrName, value], index) => {
 const nameKey = `#attr${index}`;
 const valueKey = `:val${index}`;

 expressionAttributeNames[nameKey] = attrName;
 expressionAttributeValues[valueKey] = value;
 filterConditions.push(`${nameKey} = ${valueKey}`);
 });

 // Join the filter conditions with AND
 const filterExpression = filterConditions.join(" AND ");

 // Define the scan parameters
 const params = {
 TableName: tableName,
 FilterExpression: filterExpression,
 ExpressionAttributeNames: expressionAttributeNames,

Use expression attribute names API Version 2012-08-10 2798

Amazon DynamoDB Developer Guide

 ExpressionAttributeValues: expressionAttributeValues
 };

 // Perform the scan operation
 const response = await docClient.send(new ScanCommand(params));

 return response;
}

/**
 * Get the current value of an item.
 *
 * Helper function to retrieve the current value of an item.
 *
 * @param {Object} config - AWS configuration object
 * @param {string} tableName - The name of the DynamoDB table
 * @param {Object} key - The key of the item to get
 * @returns {Promise<Object|null>} - The item or null if not found
 */
async function getItem(
 config,
 tableName,
 key
) {
 // Initialize the DynamoDB client
 const client = new DynamoDBClient(config);
 const docClient = DynamoDBDocumentClient.from(client);

 // Define the get parameters
 const params = {
 TableName: tableName,
 Key: key
 };

 // Perform the get operation
 const response = await docClient.send(new GetCommand(params));

 // Return the item if it exists, otherwise null
 return response.Item || null;
}

Example usage of expression attribute names with Amazon SDK for JavaScript.

Use expression attribute names API Version 2012-08-10 2799

Amazon DynamoDB Developer Guide

/**
 * Example of how to use expression attribute names.
 */
async function exampleUsage() {
 // Example parameters
 const config = { region: "us-west-2" };
 const tableName = "Products";
 const key = { ProductId: "P12345" };

 console.log("Demonstrating expression attribute names in DynamoDB");

 try {
 // Example 1: Update an attribute that is a reserved word
 console.log("\nExample 1: Updating an attribute that is a reserved word");
 const response1 = await updateReservedWordAttribute(
 config,
 tableName,
 key,
 "Size", // "SIZE" is a reserved word in DynamoDB
 "Large"
);

 console.log("Updated attribute:", response1.Attributes);

 // Example 2: Update an attribute with special characters
 console.log("\nExample 2: Updating an attribute with special characters");
 const response2 = await updateSpecialCharacterAttribute(
 config,
 tableName,
 key,
 "Product-Type", // Contains a hyphen, which is a special character
 "Electronics"
);

 console.log("Updated attribute:", response2.Attributes);

 // Example 3: Query with a reserved word attribute
 console.log("\nExample 3: Querying with a reserved word attribute");
 const response3 = await queryWithReservedWordAttribute(
 config,
 tableName,
 "Category",
 "Electronics",

Use expression attribute names API Version 2012-08-10 2800

Amazon DynamoDB Developer Guide

 "Count", // "COUNT" is a reserved word in DynamoDB
 10
);

 console.log(`Found ${response3.Items.length} items`);

 // Example 4: Update a nested attribute with reserved words in the path
 console.log("\nExample 4: Updating a nested attribute with reserved words in
 the path");
 const response4 = await updateNestedReservedWordAttribute(
 config,
 tableName,
 key,
 ["Dimensions", "Size", "Height"], // "SIZE" is a reserved word
 30
);

 console.log("Updated nested attribute:", response4.Attributes);

 // Example 5: Scan with multiple attribute name placeholders
 console.log("\nExample 5: Scanning with multiple attribute name
 placeholders");
 const response5 = await scanWithMultipleAttributeNames(
 config,
 tableName,
 {
 "Size": "Large",
 "Count": 10,
 "Product-Type": "Electronics"
 }
);

 console.log(`Found ${response5.Items.length} items`);

 // Get the final state of the item
 console.log("\nFinal state of the item:");
 const item = await getItem(config, tableName, key);
 console.log(JSON.stringify(item, null, 2));

 // Show some common reserved words
 console.log("\nSome common DynamoDB reserved words:");
 const commonReservedWords = [
 "ABORT", "ABSOLUTE", "ACTION", "ADD", "ALL", "ALTER", "AND", "ANY", "AS",
 "ASC", "BETWEEN", "BY", "CASE", "CAST", "COLUMN", "CONNECT", "COUNT",

Use expression attribute names API Version 2012-08-10 2801

Amazon DynamoDB Developer Guide

 "CREATE", "CURRENT", "DATE", "DELETE", "DESC", "DROP", "ELSE", "EXISTS",
 "FOR", "FROM", "GRANT", "GROUP", "HAVING", "IN", "INDEX", "INSERT", "INTO",
 "IS", "JOIN", "KEY", "LEVEL", "LIKE", "LIMIT", "LOCAL", "MAX", "MIN",
 "NAME",
 "NOT", "NULL", "OF", "ON", "OR", "ORDER", "OUTER", "REPLACE", "RETURN",
 "SELECT", "SET", "SIZE", "TABLE", "THEN", "TO", "UPDATE", "USER", "VALUES",
 "VIEW", "WHERE"
];
 console.log(commonReservedWords.join(", "));

 // Explain expression attribute names
 console.log("\nKey points about expression attribute names:");
 console.log("1. Use expression attribute names (#name) for reserved words");
 console.log("2. Use expression attribute names for attributes with special
 characters");
 console.log("3. Special characters include: spaces, hyphens, dots, and other
 non-alphanumeric characters");
 console.log("4. Expression attribute names are required for nested attributes
 with reserved words");
 console.log("5. You can use multiple expression attribute names in a single
 expression");
 console.log("6. Expression attribute names are case-sensitive");
 console.log("7. Expression attribute names are only used in expressions, not
 in the actual data");

 } catch (error) {
 console.error("Error:", error);
 }
}

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• Query

• UpdateItem

Python

SDK for Python (Boto3)

Demonstrate expression attribute names using Amazon SDK for Python (Boto3).

import boto3

Use expression attribute names API Version 2012-08-10 2802

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/QueryCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/dynamodb/command/UpdateItemCommand

Amazon DynamoDB Developer Guide

from botocore.exceptions import ClientError
from typing import Any, Dict, List

def use_reserved_word_attribute(
 table_name: str, key: Dict[str, Any], reserved_word: str, value: Any
) -> Dict[str, Any]:
 """
 Update an attribute whose name is a DynamoDB reserved word.

 This function demonstrates how to use expression attribute names to work with
 attributes that have names that are DynamoDB reserved words.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 reserved_word (str): The reserved word to use as an attribute name.
 value (Any): The value to set for the attribute.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use expression attribute names to handle the reserved word
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #reserved_attr = :value",
 ExpressionAttributeNames={"#reserved_attr": reserved_word},
 ExpressionAttributeValues={":value": value},
 ReturnValues="UPDATED_NEW",
)

 return response

def use_special_character_attribute(
 table_name: str, key: Dict[str, Any], attribute_with_special_chars: str,
 value: Any
) -> Dict[str, Any]:
 """

Use expression attribute names API Version 2012-08-10 2803

Amazon DynamoDB Developer Guide

 Update an attribute whose name contains special characters.

 This function demonstrates how to use expression attribute names to work with
 attributes that have names containing special characters like spaces, dots,
 or hyphens.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.
 attribute_with_special_chars (str): The attribute name with special
 characters.
 value (Any): The value to set for the attribute.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use expression attribute names to handle special characters
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #special_attr = :value",
 ExpressionAttributeNames={"#special_attr": attribute_with_special_chars},
 ExpressionAttributeValues={":value": value},
 ReturnValues="UPDATED_NEW",
)

 return response

def query_with_attribute_names(
 table_name: str,
 partition_key_name: str,
 partition_key_value: str,
 filter_attribute_name: str,
 filter_value: Any,
) -> Dict[str, Any]:
 """
 Query a table using expression attribute names for both key and filter
 attributes.

Use expression attribute names API Version 2012-08-10 2804

Amazon DynamoDB Developer Guide

 This function demonstrates how to use expression attribute names in a query
 operation
 for both the key condition expression and filter expression.

 Args:
 table_name (str): The name of the DynamoDB table.
 partition_key_name (str): The name of the partition key attribute.
 partition_key_value (str): The value of the partition key to query.
 filter_attribute_name (str): The name of the attribute to filter on.
 filter_value (Any): The value to compare against in the filter.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the query results.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Use expression attribute names for both key condition and filter
 response = table.query(
 KeyConditionExpression="#pk = :pk_val",
 FilterExpression="#filter_attr = :filter_val",
 ExpressionAttributeNames={"#pk": partition_key_name, "#filter_attr":
 filter_attribute_name},
 ExpressionAttributeValues={":pk_val": partition_key_value, ":filter_val":
 filter_value},
)

 return response

def update_nested_attribute_with_dots(
 table_name: str, key: Dict[str, Any], path_with_dots: str, value: Any
) -> Dict[str, Any]:
 """
 Update a nested attribute using a path with dot notation.

 This function demonstrates how to use expression attribute names to work with
 nested attributes specified using dot notation.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.

Use expression attribute names API Version 2012-08-10 2805

Amazon DynamoDB Developer Guide

 path_with_dots (str): The path to the nested attribute using dot notation
 (e.g., "a.b.c").
 value (Any): The value to set for the nested attribute.

 Returns:
 Dict[str, Any]: The response from DynamoDB containing the updated
 attribute values.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Split the path into components
 path_parts = path_with_dots.split(".")

 # Build the update expression and attribute names
 update_expression = "SET "
 expression_attribute_names = {}

 # Build the path expression
 path_expression = ""
 for i, part in enumerate(path_parts):
 name_placeholder = f"#attr{i}"
 expression_attribute_names[name_placeholder] = part

 if i == 0:
 path_expression = name_placeholder
 else:
 path_expression += f".{name_placeholder}"

 # Complete the update expression
 update_expression += f"{path_expression} = :value"

 # Execute the update
 response = table.update_item(
 Key=key,
 UpdateExpression=update_expression,
 ExpressionAttributeNames=expression_attribute_names,
 ExpressionAttributeValues={":value": value},
 ReturnValues="UPDATED_NEW",
)

 return response

Use expression attribute names API Version 2012-08-10 2806

Amazon DynamoDB Developer Guide

def demonstrate_attribute_name_requirements(table_name: str, key: Dict[str, Any])
 -> Dict[str, Any]:
 """
 Demonstrate the requirements and allowed characters for attribute names.

 This function shows examples of valid and invalid attribute names and how to
 handle them using expression attribute names.

 Args:
 table_name (str): The name of the DynamoDB table.
 key (Dict[str, Any]): The primary key of the item to update.

 Returns:
 Dict[str, Any]: A dictionary containing the results of the demonstration.
 """
 # Initialize the DynamoDB resource
 dynamodb = boto3.resource("dynamodb")
 table = dynamodb.Table(table_name)

 # Examples of attribute names with different characteristics
 examples = {
 "valid_standard": "NormalAttribute", # Standard attribute name (no
 placeholder needed)
 "valid_with_underscore": "Normal_Attribute", # Underscore is allowed
 "valid_with_number": "Attribute123", # Numbers are allowed
 "reserved_word": "Timestamp", # Reserved word (requires placeholder)
 "starts_with_number": "123Attribute", # Starts with number (valid but
 may need placeholder in some contexts)
 "with_space": "Attribute Name", # Contains space (requires placeholder)
 "with_dot": "Attribute.Name", # Contains dot (requires placeholder)
 "with_hyphen": "Attribute-Name", # Contains hyphen (requires
 placeholder)
 "with_special_chars": "Attribute#$%", # Contains special characters
 (requires placeholder)
 }

 results = {}

 # Try to update each attribute type
 for example_type, attr_name in examples.items():
 try:
 # For attributes that don't need placeholders, try direct reference

Use expression attribute names API Version 2012-08-10 2807

Amazon DynamoDB Developer Guide

 if example_type in ["valid_standard", "valid_with_underscore",
 "valid_with_number"]:
 try:
 # Try without expression attribute names first
 response = table.update_item(
 Key=key,
 UpdateExpression=f"SET {attr_name} = :value",
 ExpressionAttributeValues={":value": f"Value for
 {attr_name}"},
 ReturnValues="UPDATED_NEW",
)
 results[example_type] = {
 "attribute_name": attr_name,
 "success": True,
 "needed_placeholder": False,
 "response": response,
 }
 except ClientError:
 # If direct reference fails, try with placeholder
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #attr = :value",
 ExpressionAttributeNames={"#attr": attr_name},
 ExpressionAttributeValues={":value": f"Value for
 {attr_name}"},
 ReturnValues="UPDATED_NEW",
)
 results[example_type] = {
 "attribute_name": attr_name,
 "success": True,
 "needed_placeholder": True,
 "response": response,
 }
 else:
 # For attributes that definitely need placeholders
 response = table.update_item(
 Key=key,
 UpdateExpression="SET #attr = :value",
 ExpressionAttributeNames={"#attr": attr_name},
 ExpressionAttributeValues={":value": f"Value for
 {attr_name}"},
 ReturnValues="UPDATED_NEW",
)
 results[example_type] = {

Use expression attribute names API Version 2012-08-10 2808

Amazon DynamoDB Developer Guide

 "attribute_name": attr_name,
 "success": True,
 "needed_placeholder": True,
 "response": response,
 }
 except ClientError as e:
 results[example_type] = {"attribute_name": attr_name, "success":
 False, "error": str(e)}

 return results

Example usage of expression attribute names with Amazon SDK for Python (Boto3).

def example_usage():
 """Example of how to use expression attribute names in DynamoDB."""
 # Example parameters
 table_name = "Products"
 key = {"ProductId": "prod123"}

 print("Example 1: Using a reserved word as an attribute name")
 try:
 response = use_reserved_word_attribute(
 table_name=table_name, key=key, reserved_word="Timestamp",
 value="2025-05-14T12:00:00Z"
)
 print(f"Reserved word attribute updated successfully:
 {response.get('Attributes', {})}")
 except Exception as e:
 print(f"Error updating reserved word attribute: {e}")

 print("\nExample 2: Using an attribute name with special characters")
 try:
 response = use_special_character_attribute(
 table_name=table_name,
 key=key,
 attribute_with_special_chars="Product Info",
 value="Special product information",
)
 print(f"Special character attribute updated successfully:
 {response.get('Attributes', {})}")

Use expression attribute names API Version 2012-08-10 2809

Amazon DynamoDB Developer Guide

 except Exception as e:
 print(f"Error updating special character attribute: {e}")

 print("\nExample 3: Querying with expression attribute names")
 try:
 response = query_with_attribute_names(
 table_name=table_name,
 partition_key_name="Category",
 partition_key_value="Electronics",
 filter_attribute_name="Price",
 filter_value=500,
)
 print(
 f"Query with expression attribute names returned
 {len(response.get('Items', []))} items"
)
 except Exception as e:
 print(f"Error querying with expression attribute names: {e}")

 print("\nExample 4: Updating a nested attribute with dot notation")
 try:
 response = update_nested_attribute_with_dots(
 table_name=table_name,
 key=key,
 path_with_dots="Product.Details.Specifications",
 value={"Weight": "2.5 kg", "Dimensions": "30x20x10 cm"},
)
 print(f"Nested attribute updated successfully:
 {response.get('Attributes', {})}")
 except Exception as e:
 print(f"Error updating nested attribute: {e}")

 print("\nExample 5: Demonstrating attribute name requirements")
 try:
 results = demonstrate_attribute_name_requirements(table_name=table_name,
 key=key)

 print("Attribute Name Requirements Results:")
 for example_type, result in results.items():
 if result.get("success", False):
 needed_placeholder = result.get("needed_placeholder", True)
 print(
 f" - {example_type}: '{result['attribute_name']}' -
 {'Requires' if needed_placeholder else 'Does not require'} placeholder"

Use expression attribute names API Version 2012-08-10 2810

Amazon DynamoDB Developer Guide

)
 else:
 print(
 f" - {example_type}: '{result['attribute_name']}' - Failed:
 {result.get('error', 'Unknown error')}"
)
 except Exception as e:
 print(f"Error demonstrating attribute name requirements: {e}")

 print("\nCommon DynamoDB Reserved Words (sample):")
 reserved_words = get_common_reserved_words()
 print(", ".join(reserved_words[:20]) + "... (and many more)")

 print("\nWhen to Use Expression Attribute Names:")
 print("1. When the attribute name is a DynamoDB reserved word")
 print("2. When the attribute name contains special characters (spaces, dots,
 hyphens)")
 print("3. When the attribute name begins with a number")
 print("4. When working with nested attributes using dot notation")
 print("5. When you need to reference the same attribute multiple times in an
 expression")

 print("\nExpression Attribute Name Requirements:")
 print("1. Must begin with a pound sign (#)")
 print("2. After the pound sign, must contain at least one character")
 print("3. Can contain alphanumeric characters and underscore (_)")
 print("4. Are case-sensitive")
 print("5. Must be unique within a single expression")

 print("\nAttribute Name Requirements in DynamoDB:")
 print("1. Can begin with a-z, A-Z, or 0-9")
 print("2. Can contain a-z, A-Z, 0-9, underscore (_), dash (-), and dot (.)")
 print("3. Are case-sensitive")
 print("4. No length restrictions, but practical limits apply")
 print("5. Cannot be a DynamoDB reserved word if used directly in
 expressions")

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• Query

• UpdateItem

Use expression attribute names API Version 2012-08-10 2811

https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/Query
https://docs.amazonaws.cn/goto/boto3/dynamodb-2012-08-10/UpdateItem

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use scheduled events to invoke a Lambda function

The following code examples show how to create an Amazon Lambda function invoked by an
Amazon EventBridge scheduled event.

Java

SDK for Java 2.x

Shows how to create an Amazon EventBridge scheduled event that invokes an Amazon
Lambda function. Configure EventBridge to use a cron expression to schedule when the
Lambda function is invoked. In this example, you create a Lambda function by using the
Lambda Java runtime API. This example invokes different Amazon services to perform a
specific use case. This example demonstrates how to create an app that sends a mobile text
message to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• CloudWatch Logs

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

JavaScript

SDK for JavaScript (v3)

Shows how to create an Amazon EventBridge scheduled event that invokes an Amazon
Lambda function. Configure EventBridge to use a cron expression to schedule when the
Lambda function is invoked. In this example, you create a Lambda function by using the
Lambda JavaScript runtime API. This example invokes different Amazon services to perform

Use scheduled events to invoke a Lambda function API Version 2012-08-10 2812

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/usecases/creating_scheduled_events

Amazon DynamoDB Developer Guide

a specific use case. This example demonstrates how to create an app that sends a mobile
text message to your employees that congratulates them at the one year anniversary date.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

This example is also available in the Amazon SDK for JavaScript v3 developer guide.

Services used in this example

• CloudWatch Logs

• DynamoDB

• EventBridge

• Lambda

• Amazon SNS

Python

SDK for Python (Boto3)

This example shows how to register an Amazon Lambda function as the target of a
scheduled Amazon EventBridge event. The Lambda handler writes a friendly message and
the full event data to Amazon CloudWatch Logs for later retrieval.

• Deploys a Lambda function.

• Creates an EventBridge scheduled event and makes the Lambda function the target.

• Grants permission to let EventBridge invoke the Lambda function.

• Prints the latest data from CloudWatch Logs to show the result of the scheduled
invocations.

• Cleans up all resources created during the demo.

This example is best viewed on GitHub. For complete source code and instructions on how to
set up and run, see the full example on GitHub.

Services used in this example

• CloudWatch Logs

• DynamoDB

Use scheduled events to invoke a Lambda function API Version 2012-08-10 2813

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/lambda-scheduled-events
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/scheduled-events-invoking-lambda-example.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/lambda#readme

Amazon DynamoDB Developer Guide

• EventBridge

• Lambda

• Amazon SNS

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with DynamoDB Local Secondary Indexes using Amazon
Command Line Interface v2

The following code example shows how to create and query tables with Local Secondary Indexes.

• Create a table with a Local Secondary Index (LSI).

• Create a table with multiple LSIs with different projection types.

• Query data using LSIs.

Bash

Amazon CLI with Bash script

Create a table with a Local Secondary Index.

Create a table with a Local Secondary Index
aws dynamodb create-table \
 --table-name CustomerOrders \
 --attribute-definitions \
 AttributeName=CustomerID,AttributeType=S \
 AttributeName=OrderID,AttributeType=S \
 AttributeName=OrderDate,AttributeType=S \
 --key-schema \
 AttributeName=CustomerID,KeyType=HASH \
 AttributeName=OrderID,KeyType=RANGE \
 --local-secondary-indexes \
 "IndexName=OrderDateIndex,\
 KeySchema=[{AttributeName=CustomerID,KeyType=HASH},
{AttributeName=OrderDate,KeyType=RANGE}],\
 Projection={ProjectionType=ALL}" \
 --billing-mode PAY_PER_REQUEST

Work with Local Secondary Indexes API Version 2012-08-10 2814

Amazon DynamoDB Developer Guide

Create a table with multiple LSIs.

Create a table with multiple Local Secondary Indexes
aws dynamodb create-table \
 --table-name CustomerDetails \
 --attribute-definitions \
 AttributeName=CustomerID,AttributeType=S \
 AttributeName=Name,AttributeType=S \
 AttributeName=Email,AttributeType=S \
 AttributeName=RegistrationDate,AttributeType=S \
 --key-schema \
 AttributeName=CustomerID,KeyType=HASH \
 AttributeName=Name,KeyType=RANGE \
 --local-secondary-indexes \
 "[
 {
 \"IndexName\": \"EmailIndex\",
 \"KeySchema\": [
 {\"AttributeName\":\"CustomerID\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"Email\",\"KeyType\":\"RANGE\"}
],
 \"Projection\": {\"ProjectionType\":\"INCLUDE\",
\"NonKeyAttributes\":[\"Address\",\"Phone\"]}
 },
 {
 \"IndexName\": \"RegistrationIndex\",
 \"KeySchema\": [
 {\"AttributeName\":\"CustomerID\",\"KeyType\":\"HASH\"},
 {\"AttributeName\":\"RegistrationDate\",\"KeyType\":\"RANGE
\"}
],
 \"Projection\": {\"ProjectionType\":\"KEYS_ONLY\"}
 }
]" \
 --billing-mode PAY_PER_REQUEST

Query data using LSIs.

Query the OrderDateIndex LSI
aws dynamodb query \

Work with Local Secondary Indexes API Version 2012-08-10 2815

Amazon DynamoDB Developer Guide

 --table-name CustomerOrders \
 --index-name OrderDateIndex \
 --key-condition-expression "CustomerID = :custId AND OrderDate BETWEEN :date1
 AND :date2" \
 --expression-attribute-values '{
 ":custId": {"S": "C1"},
 ":date1": {"S": "2023-01-01"},
 ":date2": {"S": "2023-02-01"}
 }'

Query with a filter expression
aws dynamodb query \
 --table-name CustomerOrders \
 --index-name OrderDateIndex \
 --key-condition-expression "CustomerID = :custId" \
 --filter-expression "Amount > :amount" \
 --expression-attribute-values '{
 ":custId": {"S": "C1"},
 ":amount": {"N": "150"}
 }'

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• Query

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with DynamoDB Streams and Time-to-Live using Amazon
Command Line Interface v2

The following code example shows how to manage DynamoDB Streams and Time-to-Live features.

• Create a table with Streams enabled.

• Describe Streams.

• Create a Lambda function for processing Streams.

• Enable TTL on a table.

Work with Streams and Time-to-Live API Version 2012-08-10 2816

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/Query

Amazon DynamoDB Developer Guide

• Add items with TTL attributes.

• Describe TTL settings.

Bash

Amazon CLI with Bash script

Create a table with Streams enabled.

Create a table with DynamoDB Streams enabled
aws dynamodb create-table \
 --table-name StreamsDemo \
 --attribute-definitions \
 AttributeName=ID,AttributeType=S \
 --key-schema \
 AttributeName=ID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES

Describe Streams.

Get information about the stream
aws dynamodb describe-table \
 --table-name StreamsDemo \
 --query "Table.StreamSpecification"

Get the stream ARN
STREAM_ARN=$(aws dynamodb describe-table \
 --table-name StreamsDemo \
 --query "Table.LatestStreamArn" \
 --output text)

echo "Stream ARN: $STREAM_ARN"

Describe the stream
aws dynamodbstreams describe-stream \
 --stream-arn $STREAM_ARN

Create a Lambda function for Streams.

Work with Streams and Time-to-Live API Version 2012-08-10 2817

Amazon DynamoDB Developer Guide

Step 1: Create an IAM role for the Lambda function
cat > trust-policy.json << 'EOF'
{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}
EOF

aws iam create-role \
 --role-name DynamoDBStreamsLambdaRole \
 --assume-role-policy-document file://trust-policy.json

Step 2: Attach permissions to the role
aws iam attach-role-policy \
 --role-name DynamoDBStreamsLambdaRole \
 --policy-arn arn:aws:iam::aws:policy/service-role/
AWSLambdaDynamoDBExecutionRole

Step 3: Create a Lambda function (code would be in a separate file)
echo "Lambda function creation would be done separately with appropriate code"

Step 4: Create an event source mapping
echo "Example command to create event source mapping:"
echo "aws lambda create-event-source-mapping \\"
echo " --function-name ProcessDynamoDBRecords \\"
echo " --event-source $STREAM_ARN \\"
echo " --batch-size 100 \\"
echo " --starting-position LATEST"

Enable TTL on a table.

Create a table for TTL demonstration
aws dynamodb create-table \
 --table-name TTLDemo \

Work with Streams and Time-to-Live API Version 2012-08-10 2818

Amazon DynamoDB Developer Guide

 --attribute-definitions \
 AttributeName=ID,AttributeType=S \
 --key-schema \
 AttributeName=ID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST

Wait for table to become active
aws dynamodb wait table-exists --table-name TTLDemo

Enable TTL on the table
aws dynamodb update-time-to-live \
 --table-name TTLDemo \
 --time-to-live-specification "Enabled=true, AttributeName=ExpirationTime"

Add items with TTL attributes.

Calculate expiration time (current time + 1 day in seconds)
EXPIRATION_TIME=$(date -d "+1 day" +%s)

Add an item with TTL attribute
aws dynamodb put-item \
 --table-name TTLDemo \
 --item '{
 "ID": {"S": "item1"},
 "Data": {"S": "This item will expire in 1 day"},
 "ExpirationTime": {"N": "'$EXPIRATION_TIME'"}
 }'

Add an item that expires in 1 hour
EXPIRATION_TIME_HOUR=$(date -d "+1 hour" +%s)
aws dynamodb put-item \
 --table-name TTLDemo \
 --item '{
 "ID": {"S": "item2"},
 "Data": {"S": "This item will expire in 1 hour"},
 "ExpirationTime": {"N": "'$EXPIRATION_TIME_HOUR'"}
 }'

Describe TTL settings.

Describe TTL settings for a table

Work with Streams and Time-to-Live API Version 2012-08-10 2819

Amazon DynamoDB Developer Guide

aws dynamodb describe-time-to-live \
 --table-name TTLDemo

• For API details, see the following topics in Amazon CLI Command Reference.

• AttachRolePolicy

• CreateRole

• CreateTable

• DescribeTable

• DescribeTimeToLive

• PutItem

• UpdateTimeToLive

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with DynamoDB global tables and multi-Region replication with
eventual consistency (MREC) using Amazon Command Line Interface v2

The following code example shows how to manage DynamoDB global tables with multi-Region
replication with eventual consistency (MREC).

• Create a table with multi-Region replication (MREC).

• Put and get items from replica tables.

• Remove replicas one-by-one.

• Clean up by deleting the table.

Bash

Amazon CLI with Bash script

Create a table with multi-Region replication.

Step 1: Create a new table (MusicTable) in US East (Ohio), with DynamoDB
 Streams enabled (NEW_AND_OLD_IMAGES)

Work with global tables and multi-Region replication eventual consistency (MREC) API Version 2012-08-10 2820

https://docs.amazonaws.cn/goto/aws-cli/iam-2010-05-08/AttachRolePolicy
https://docs.amazonaws.cn/goto/aws-cli/iam-2010-05-08/CreateRole
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTimeToLive
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTimeToLive

Amazon DynamoDB Developer Guide

aws dynamodb create-table \
 --table-name MusicTable \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --billing-mode PAY_PER_REQUEST \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \
 --region us-east-2

Step 2: Create an identical MusicTable table in US East (N. Virginia)
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Create": {
 "RegionName": "us-east-1"
 }
 }
]
}' \
--region us-east-2

Step 3: Create a table in Europe (Ireland)
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Create": {
 "RegionName": "eu-west-1"
 }
 }
]
}' \
--region us-east-2

Describe the multi-Region table.

Work with global tables and multi-Region replication eventual consistency (MREC) API Version 2012-08-10 2821

Amazon DynamoDB Developer Guide

Step 4: View the list of replicas created using describe-table
aws dynamodb describe-table \
 --table-name MusicTable \
 --region us-east-2 \
 --query 'Table.
{TableName:TableName,TableStatus:TableStatus,MultiRegionConsistency:MultiRegionConsistency,Replicas:Replicas[*].
{Region:RegionName,Status:ReplicaStatus}}'

Put items in a replica table.

Step 5: To verify that replication is working, add a new item to the Music
 table in US East (Ohio)
aws dynamodb put-item \
 --table-name MusicTable \
 --item '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-2

Get items from replica tables.

Step 6: Wait for a few seconds, and then check to see whether the item has
 been
successfully replicated to US East (N. Virginia) and Europe (Ireland)
aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-1

aws dynamodb get-item \
 --table-name MusicTable \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region eu-west-1

Remove replicas.

Step 7: Delete the replica table in Europe (Ireland) Region
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":

Work with global tables and multi-Region replication eventual consistency (MREC) API Version 2012-08-10 2822

Amazon DynamoDB Developer Guide

 [
 {
 "Delete": {
 "RegionName": "eu-west-1"
 }
 }
]
}' \
--region us-east-2

Delete the replica table in US East (N. Virginia) Region
aws dynamodb update-table --table-name MusicTable --cli-input-json \
'{
 "ReplicaUpdates":
 [
 {
 "Delete": {
 "RegionName": "us-east-1"
 }
 }
]
}' \
--region us-east-2

Clean up by deleting the table.

Clean up: Delete the primary table
aws dynamodb delete-table --table-name MusicTable --region us-east-2

echo "Global table demonstration complete."

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• DeleteTable

• DescribeTable

• GetItem

• PutItem

• UpdateTable

Work with global tables and multi-Region replication eventual consistency (MREC) API Version 2012-08-10 2823

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DeleteTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/GetItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/PutItem
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with DynamoDB resource tagging using Amazon Command Line
Interface v2

The following code example shows how to manage tags for DynamoDB resources.

• Create a table with tags.

• List tags for a resource.

• Add tags to a resource.

• Remove tags from a resource.

• Filter tables by tags.

Bash

Amazon CLI with Bash script

Create a table with tags.

Create a table with tags
aws dynamodb create-table \
 --table-name TaggedTable \
 --attribute-definitions \
 AttributeName=ID,AttributeType=S \
 --key-schema \
 AttributeName=ID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --tags \
 Key=Environment,Value=Production \
 Key=Project,Value=Analytics \
 Key=Owner,Value=DataTeam

List tags for a resource.

Get the table ARN

Work with resource tagging API Version 2012-08-10 2824

Amazon DynamoDB Developer Guide

TABLE_ARN=$(aws dynamodb describe-table \
 --table-name TaggedTable \
 --query "Table.TableArn" \
 --output text)

List tags for the table
aws dynamodb list-tags-of-resource \
 --resource-arn $TABLE_ARN

Add tags to a resource.

Add tags to an existing table
aws dynamodb tag-resource \
 --resource-arn $TABLE_ARN \
 --tags \
 Key=CostCenter,Value=12345 \
 Key=BackupSchedule,Value=Daily

Remove tags from a resource.

Remove tags from a table
aws dynamodb untag-resource \
 --resource-arn $TABLE_ARN \
 --tag-keys Owner BackupSchedule

Filter tables by tags.

Create another table with different tags
aws dynamodb create-table \
 --table-name AnotherTaggedTable \
 --attribute-definitions \
 AttributeName=ID,AttributeType=S \
 --key-schema \
 AttributeName=ID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --tags \
 Key=Environment,Value=Development \
 Key=Project,Value=Testing

Work with resource tagging API Version 2012-08-10 2825

Amazon DynamoDB Developer Guide

Wait for table to become active
aws dynamodb wait table-exists --table-name AnotherTaggedTable

List all tables
echo "All tables:"
aws dynamodb list-tables

Get ARNs for all tables
echo -e "\nFiltering tables by Environment=Production tag:"
TABLE_ARNS=$(aws dynamodb list-tables --query "TableNames[*]" --output text |
 xargs -I {} aws dynamodb describe-table --table-name {} --query "Table.TableArn"
 --output text)

Find tables with specific tag
for ARN in $TABLE_ARNS; do
 TABLE_NAME=$(echo $ARN | awk -F/ '{print $2}')
 TAGS=$(aws dynamodb list-tags-of-resource --resource-arn $ARN --query "Tags[?
Key=='Environment' && Value=='Production']" --output text)
 if [! -z "$TAGS"]; then
 echo "Table with Production tag: $TABLE_NAME"
 fi
done

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateTable

• ListTagsOfResource

• TagResource

• UntagResource

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Work with DynamoDB table encryption using Amazon Command Line
Interface v2

The following code example shows how to manage encryption options for DynamoDB tables.

• Create a table with default encryption.

Work with table encryption API Version 2012-08-10 2826

https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/ListTagsOfResource
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/TagResource
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UntagResource

Amazon DynamoDB Developer Guide

• Create a table with a customer managed CMK.

• Update table encryption settings.

• Describe table encryption.

Bash

Amazon CLI with Bash script

Create a table with default encryption.

Create a table with default encryption (AWS owned key)
aws dynamodb create-table \
 --table-name CustomerData \
 --attribute-definitions \
 AttributeName=CustomerID,AttributeType=S \
 --key-schema \
 AttributeName=CustomerID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \
 --sse-specification Enabled=true,SSEType=KMS

Create a table with a customer managed CMK.

Step 1: Create a customer managed key in KMS
aws kms create-key \
 --description "Key for DynamoDB table encryption" \
 --key-usage ENCRYPT_DECRYPT \
 --customer-master-key-spec SYMMETRIC_DEFAULT

Store the key ID for later use
KEY_ID=$(aws kms list-keys --query "Keys[?contains(KeyArn, 'Key for
 DynamoDB')].KeyId" --output text)

Step 2: Create a table with the customer managed key
aws dynamodb create-table \
 --table-name SensitiveData \
 --attribute-definitions \
 AttributeName=RecordID,AttributeType=S \
 --key-schema \
 AttributeName=RecordID,KeyType=HASH \
 --billing-mode PAY_PER_REQUEST \

Work with table encryption API Version 2012-08-10 2827

Amazon DynamoDB Developer Guide

 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=$KEY_ID

Update table encryption.

Update a table to use a different KMS key
aws dynamodb update-table \
 --table-name CustomerData \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=$KEY_ID

Describe table encryption.

Describe the table to see encryption settings
aws dynamodb describe-table \
 --table-name CustomerData \
 --query "Table.SSEDescription"

• For API details, see the following topics in Amazon CLI Command Reference.

• CreateKey

• CreateTable

• DescribeTable

• UpdateTable

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Serverless examples for DynamoDB

The following code examples show how to use DynamoDB with Amazon SDKs.

Examples

• Invoke a Lambda function from a DynamoDB trigger

• Reporting batch item failures for Lambda functions with a DynamoDB trigger

Serverless examples API Version 2012-08-10 2828

https://docs.amazonaws.cn/goto/aws-cli/kms-2014-11-01/CreateKey
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/CreateTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/DescribeTable
https://docs.amazonaws.cn/goto/aws-cli/dynamodb-2012-08-10/UpdateTable

Amazon DynamoDB Developer Guide

Invoke a Lambda function from a DynamoDB trigger

The following code examples show how to implement a Lambda function that receives an event
triggered by receiving records from a DynamoDB stream. The function retrieves the DynamoDB
payload and logs the record contents.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

public class Function
{
 public void FunctionHandler(DynamoDBEvent dynamoEvent, ILambdaContext
 context)
 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");

 foreach (var record in dynamoEvent.Records)
 {

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2829

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

 context.Logger.LogInformation($"Event ID: {record.EventID}");
 context.Logger.LogInformation($"Event Name: {record.EventName}");

 context.Logger.LogInformation(JsonSerializer.Serialize(record));
 }

 context.Logger.LogInformation("Stream processing complete.");
 }
}

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
 "fmt"
)

func HandleRequest(ctx context.Context, event events.DynamoDBEvent) (*string,
 error) {
 if len(event.Records) == 0 {
 return nil, fmt.Errorf("received empty event")
 }

 for _, record := range event.Records {
 LogDynamoDBRecord(record)

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2830

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

 }

 message := fmt.Sprintf("Records processed: %d", len(event.Records))
 return &message, nil
}

func main() {
 lambda.Start(HandleRequest)
}

func LogDynamoDBRecord(record events.DynamoDBEventRecord){
 fmt.Println(record.EventID)
 fmt.Println(record.EventName)
 fmt.Printf("%+v\n", record.Change)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Java.

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import
 com.amazonaws.services.lambda.runtime.events.DynamodbEvent.DynamodbStreamRecord;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;

public class example implements RequestHandler<DynamodbEvent, Void> {

 private static final Gson GSON = new
 GsonBuilder().setPrettyPrinting().create();

 @Override

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2831

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

 public Void handleRequest(DynamodbEvent event, Context context) {
 System.out.println(GSON.toJson(event));
 event.getRecords().forEach(this::logDynamoDBRecord);
 return null;
 }

 private void logDynamoDBRecord(DynamodbStreamRecord record) {
 System.out.println(record.getEventID());
 System.out.println(record.getEventName());
 System.out.println("DynamoDB Record: " +
 GSON.toJson(record.getDynamodb()));
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using JavaScript.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
exports.handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
};

const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2832

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

Consuming a DynamoDB event with Lambda using TypeScript.

export const handler = async (event, context) => {
 console.log(JSON.stringify(event, null, 2));
 event.Records.forEach(record => {
 logDynamoDBRecord(record);
 });
}
const logDynamoDBRecord = (record) => {
 console.log(record.eventID);
 console.log(record.eventName);
 console.log(`DynamoDB Record: ${JSON.stringify(record.dynamodb)}`);
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\DynamoDb\DynamoDbHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler extends DynamoDbHandler
{
 private StderrLogger $logger;

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2833

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handleDynamoDb(DynamoDbEvent $event, Context $context): void
 {
 $this->logger->info("Processing DynamoDb table items");
 $records = $event->getRecords();

 foreach ($records as $record) {
 $eventName = $record->getEventName();
 $keys = $record->getKeys();
 $old = $record->getOldImage();
 $new = $record->getNewImage();

 $this->logger->info("Event Name:".$eventName."\n");
 $this->logger->info("Keys:". json_encode($keys)."\n");
 $this->logger->info("Old Image:". json_encode($old)."\n");
 $this->logger->info("New Image:". json_encode($new));

 // TODO: Do interesting work based on the new data

 // Any exception thrown will be logged and the invocation will be
 marked as failed
 }

 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords items");
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2834

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Python.

import json

def lambda_handler(event, context):
 print(json.dumps(event, indent=2))

 for record in event['Records']:
 log_dynamodb_record(record)

def log_dynamodb_record(record):
 print(record['eventID'])
 print(record['eventName'])
 print(f"DynamoDB Record: {json.dumps(record['dynamodb'])}")

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Ruby.

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2835

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

def lambda_handler(event:, context:)
 return 'received empty event' if event['Records'].empty?

 event['Records'].each do |record|
 log_dynamodb_record(record)
 end

 "Records processed: #{event['Records'].length}"
 end

 def log_dynamodb_record(record)
 puts record['eventID']
 puts record['eventName']
 puts "DynamoDB Record: #{JSON.generate(record['dynamodb'])}"
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Consuming a DynamoDB event with Lambda using Rust.

use lambda_runtime::{service_fn, tracing, Error, LambdaEvent};
use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord},
 };

// Built with the following dependencies:
//lambda_runtime = "0.11.1"
//serde_json = "1.0"
//tokio = { version = "1", features = ["macros"] }
//tracing = { version = "0.1", features = ["log"] }

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2836

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda

Amazon DynamoDB Developer Guide

//tracing-subscriber = { version = "0.3", default-features = false, features =
 ["fmt"] }
//aws_lambda_events = "0.15.0"

async fn function_handler(event: LambdaEvent<Event>) ->Result<(), Error> {

 let records = &event.payload.records;
 tracing::info!("event payload: {:?}",records);
 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(());
 }

 for record in records{
 log_dynamo_dbrecord(record);
 }

 tracing::info!("Dynamo db records processed");

 // Prepare the response
 Ok(())

}

fn log_dynamo_dbrecord(record: &EventRecord)-> Result<(), Error>{
 tracing::info!("EventId: {}", record.event_id);
 tracing::info!("EventName: {}", record.event_name);
 tracing::info!("DynamoDB Record: {:?}", record.change);
 Ok(())

}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 .with_target(false)
 .without_time()
 .init();

 let func = service_fn(function_handler);
 lambda_runtime::run(func).await?;
 Ok(())

Invoke a Lambda function from a DynamoDB trigger API Version 2012-08-10 2837

Amazon DynamoDB Developer Guide

}

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Reporting batch item failures for Lambda functions with a DynamoDB
trigger

The following code examples show how to implement partial batch response for Lambda functions
that receive events from a DynamoDB stream. The function reports the batch item failures in the
response, signaling to Lambda to retry those messages later.

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using .NET.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
using System.Text.Json;
using System.Text;
using Amazon.Lambda.Core;
using Amazon.Lambda.DynamoDBEvents;

// Assembly attribute to enable the Lambda function's JSON input to be converted
 into a .NET class.
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace AWSLambda_DDB;

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2838

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

public class Function
{
 public StreamsEventResponse FunctionHandler(DynamoDBEvent dynamoEvent,
 ILambdaContext context)

 {
 context.Logger.LogInformation($"Beginning to process
 {dynamoEvent.Records.Count} records...");
 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 List<StreamsEventResponse.BatchItemFailure>();
 StreamsEventResponse streamsEventResponse = new StreamsEventResponse();

 foreach (var record in dynamoEvent.Records)
 {
 try
 {
 var sequenceNumber = record.Dynamodb.SequenceNumber;
 context.Logger.LogInformation(sequenceNumber);
 }
 catch (Exception ex)
 {
 context.Logger.LogError(ex.Message);
 batchItemFailures.Add(new StreamsEventResponse.BatchItemFailure()
 { ItemIdentifier = record.Dynamodb.SequenceNumber });
 }
 }

 if (batchItemFailures.Count > 0)
 {
 streamsEventResponse.BatchItemFailures = batchItemFailures;
 }

 context.Logger.LogInformation("Stream processing complete.");
 return streamsEventResponse;
 }
}

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2839

Amazon DynamoDB Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Go.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
package main

import (
 "context"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
)

type BatchItemFailure struct {
 ItemIdentifier string `json:"ItemIdentifier"`
}

type BatchResult struct {
 BatchItemFailures []BatchItemFailure `json:"BatchItemFailures"`
}

func HandleRequest(ctx context.Context, event events.DynamoDBEvent)
 (*BatchResult, error) {
 var batchItemFailures []BatchItemFailure
 curRecordSequenceNumber := ""

 for _, record := range event.Records {
 // Process your record
 curRecordSequenceNumber = record.Change.SequenceNumber
 }

 if curRecordSequenceNumber != "" {
 batchItemFailures = append(batchItemFailures, BatchItemFailure{ItemIdentifier:
 curRecordSequenceNumber})

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2840

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

 }

 batchResult := BatchResult{
 BatchItemFailures: batchItemFailures,
 }

 return &batchResult, nil
}

func main() {
 lambda.Start(HandleRequest)
}

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Java.

// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.DynamodbEvent;
import com.amazonaws.services.lambda.runtime.events.StreamsEventResponse;
import com.amazonaws.services.lambda.runtime.events.models.dynamodb.StreamRecord;

import java.util.ArrayList;
import java.util.List;

public class ProcessDynamodbRecords implements RequestHandler<DynamodbEvent,
 StreamsEventResponse> {

 @Override

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2841

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

 public StreamsEventResponse handleRequest(DynamodbEvent input, Context
 context) {

 List<StreamsEventResponse.BatchItemFailure> batchItemFailures = new
 ArrayList<>();
 String curRecordSequenceNumber = "";

 for (DynamodbEvent.DynamodbStreamRecord dynamodbStreamRecord :
 input.getRecords()) {
 try {
 //Process your record
 StreamRecord dynamodbRecord = dynamodbStreamRecord.getDynamodb();
 curRecordSequenceNumber = dynamodbRecord.getSequenceNumber();

 } catch (Exception e) {
 /* Since we are working with streams, we can return the failed
 item immediately.
 Lambda will immediately begin to retry processing from this
 failed item onwards. */
 batchItemFailures.add(new
 StreamsEventResponse.BatchItemFailure(curRecordSequenceNumber));
 return new StreamsEventResponse(batchItemFailures);
 }
 }

 return new StreamsEventResponse();
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using JavaScript.

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2842

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

export const handler = async (event) => {
 const records = event.Records;
 let curRecordSequenceNumber = "";

 for (const record of records) {
 try {
 // Process your record
 curRecordSequenceNumber = record.dynamodb.SequenceNumber;
 } catch (e) {
 // Return failed record's sequence number
 return { batchItemFailures: [{ itemIdentifier:
 curRecordSequenceNumber }] };
 }
 }

 return { batchItemFailures: [] };
};

Reporting DynamoDB batch item failures with Lambda using TypeScript.

import {
 DynamoDBBatchResponse,
 DynamoDBBatchItemFailure,
 DynamoDBStreamEvent,
} from "aws-lambda";

export const handler = async (
 event: DynamoDBStreamEvent
): Promise<DynamoDBBatchResponse> => {
 const batchItemFailures: DynamoDBBatchItemFailure[] = [];
 let curRecordSequenceNumber;

 for (const record of event.Records) {
 curRecordSequenceNumber = record.dynamodb?.SequenceNumber;

 if (curRecordSequenceNumber) {
 batchItemFailures.push({
 itemIdentifier: curRecordSequenceNumber,
 });
 }
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2843

Amazon DynamoDB Developer Guide

 return { batchItemFailures: batchItemFailures };
};

PHP

SDK for PHP

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using PHP.

<?php

using bref/bref and bref/logger for simplicity

use Bref\Context\Context;
use Bref\Event\DynamoDb\DynamoDbEvent;
use Bref\Event\Handler as StdHandler;
use Bref\Logger\StderrLogger;

require __DIR__ . '/vendor/autoload.php';

class Handler implements StdHandler
{
 private StderrLogger $logger;
 public function __construct(StderrLogger $logger)
 {
 $this->logger = $logger;
 }

 /**
 * @throws JsonException
 * @throws \Bref\Event\InvalidLambdaEvent
 */
 public function handle(mixed $event, Context $context): array
 {
 $dynamoDbEvent = new DynamoDbEvent($event);

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2844

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

 $this->logger->info("Processing records");

 $records = $dynamoDbEvent->getRecords();
 $failedRecords = [];
 foreach ($records as $record) {
 try {
 $data = $record->getData();
 $this->logger->info(json_encode($data));
 // TODO: Do interesting work based on the new data
 } catch (Exception $e) {
 $this->logger->error($e->getMessage());
 // failed processing the record
 $failedRecords[] = $record->getSequenceNumber();
 }
 }
 $totalRecords = count($records);
 $this->logger->info("Successfully processed $totalRecords records");

 // change format for the response
 $failures = array_map(
 fn(string $sequenceNumber) => ['itemIdentifier' => $sequenceNumber],
 $failedRecords
);

 return [
 'batchItemFailures' => $failures
];
 }
}

$logger = new StderrLogger();
return new Handler($logger);

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2845

Amazon DynamoDB Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Python.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
def handler(event, context):
 records = event.get("Records")
 curRecordSequenceNumber = ""

 for record in records:
 try:
 # Process your record
 curRecordSequenceNumber = record["dynamodb"]["SequenceNumber"]
 except Exception as e:
 # Return failed record's sequence number
 return {"batchItemFailures":[{"itemIdentifier":
 curRecordSequenceNumber}]}

 return {"batchItemFailures":[]}

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2846

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling
https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

Reporting DynamoDB batch item failures with Lambda using Ruby.

def lambda_handler(event:, context:)
 records = event["Records"]
 cur_record_sequence_number = ""

 records.each do |record|
 begin
 # Process your record
 cur_record_sequence_number = record["dynamodb"]["SequenceNumber"]
 rescue StandardError => e
 # Return failed record's sequence number
 return {"batchItemFailures" => [{"itemIdentifier" =>
 cur_record_sequence_number}]}
 end
 end

 {"batchItemFailures" => []}
 end

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Serverless examples repository.

Reporting DynamoDB batch item failures with Lambda using Rust.

use aws_lambda_events::{
 event::dynamodb::{Event, EventRecord, StreamRecord},
 streams::{DynamoDbBatchItemFailure, DynamoDbEventResponse},
};
use lambda_runtime::{run, service_fn, Error, LambdaEvent};

/// Process the stream record
fn process_record(record: &EventRecord) -> Result<(), Error> {
 let stream_record: &StreamRecord = &record.change;

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2847

https://github.com/aws-samples/serverless-snippets/tree/main/integration-ddb-to-lambda-with-batch-item-handling

Amazon DynamoDB Developer Guide

 // process your stream record here...
 tracing::info!("Data: {:?}", stream_record);

 Ok(())
}

/// Main Lambda handler here...
async fn function_handler(event: LambdaEvent<Event>) ->
 Result<DynamoDbEventResponse, Error> {
 let mut response = DynamoDbEventResponse {
 batch_item_failures: vec![],
 };

 let records = &event.payload.records;

 if records.is_empty() {
 tracing::info!("No records found. Exiting.");
 return Ok(response);
 }

 for record in records {
 tracing::info!("EventId: {}", record.event_id);

 // Couldn't find a sequence number
 if record.change.sequence_number.is_none() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: Some("".to_string()),
 });
 return Ok(response);
 }

 // Process your record here...
 if process_record(record).is_err() {
 response.batch_item_failures.push(DynamoDbBatchItemFailure {
 item_identifier: record.change.sequence_number.clone(),
 });
 /* Since we are working with streams, we can return the failed item
 immediately.
 Lambda will immediately begin to retry processing from this failed
 item onwards. */
 return Ok(response);
 }
 }

Reporting batch item failures for Lambda functions with a DynamoDB trigger API Version 2012-08-10 2848

Amazon DynamoDB Developer Guide

 tracing::info!("Successfully processed {} record(s)", records.len());

 Ok(response)
}

#[tokio::main]
async fn main() -> Result<(), Error> {
 tracing_subscriber::fmt()
 .with_max_level(tracing::Level::INFO)
 // disable printing the name of the module in every log line.
 .with_target(false)
 // disabling time is handy because CloudWatch will add the ingestion
 time.
 .without_time()
 .init();

 run(service_fn(function_handler)).await
}

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Amazon community contributions for DynamoDB

Amazon community contributions are examples that were created and are maintained by multiple
teams across Amazon. To provide feedback, use the mechanism provided in the linked repositories.

Examples

• Build and test a serverless application

Build and test a serverless application

The following code examples show how to build and test a serverless application using API
Gateway with Lambda and DynamoDB

Amazon community contributions API Version 2012-08-10 2849

Amazon DynamoDB Developer Guide

.NET

Amazon SDK for .NET

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the .NET SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Go

SDK for Go V2

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Go SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Java

SDK for Java 2.x

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Java SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Build and test a serverless application API Version 2012-08-10 2850

https://github.com/aws-samples/serverless-dotnet-demo
https://github.com/aws-samples/serverless-go-demo
https://github.com/aws-samples/serverless-java-frameworks-samples

Amazon DynamoDB Developer Guide

Services used in this example

• API Gateway

• DynamoDB

• Lambda

Rust

SDK for Rust

Shows how to build and test a serverless application that consists of an API Gateway with
Lambda and DynamoDB using the Rust SDK.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• API Gateway

• DynamoDB

• Lambda

For a complete list of Amazon SDK developer guides and code examples, see Using DynamoDB
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Build and test a serverless application API Version 2012-08-10 2851

https://github.com/aws-samples/serverless-rust-demo

Amazon DynamoDB Developer Guide

Security and compliance in Amazon DynamoDB

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. The effectiveness of our security is regularly tested and verified by third-party auditors
as part of the Amazon compliance programs. To learn about the compliance programs that apply
to DynamoDB, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you
use. You are also responsible for other factors including the sensitivity of your data, your
organization’s requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using DynamoDB. The following topics show you how to configure DynamoDB to meet your
security and compliance objectives. You'll also learn how to use other Amazon services that can
help you to monitor and secure your DynamoDB resources.

Topics

• Amazon managed policies for Amazon DynamoDB

• Using resource-based policies for DynamoDB

• Using attribute-based access control with DynamoDB

• Data protection in DynamoDB

• Amazon Identity and Access Management (IAM) and DynamoDB

• Compliance validation by industry for DynamoDB

• Resilience and disaster recovery in Amazon DynamoDB

• Infrastructure security in Amazon DynamoDB

• Amazon PrivateLink for DynamoDB

• Configuration and vulnerability analysis in Amazon DynamoDB

API Version 2012-08-10 2852

http://www.amazonaws.cn/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon DynamoDB Developer Guide

• Security best practices for Amazon DynamoDB

Amazon managed policies for Amazon DynamoDB

DynamoDB uses Amazon managed policies to define a set of permissions the service needs to
perform specific actions. DynamoDB maintains and updates its Amazon managed policies. You
can't change the permissions in Amazon managed policies. For more information about Amazon
managed policies, see Amazon managed policies in the IAM User Guide.

DynamoDB may occasionally add additional permissions to an Amazon managed policy to support
new features. This type of update affects all identities (users, groups, and roles) where the policy is
attached. An Amazon managed policy is most likely to be updated when a new feature is launched
or when new operations become available. DynamoDB will not remove permissions from an
Amazon managed policy, so policy updates won't break your existing permissions. For a full list of
Amazon managed policies, see Amazon managed policies.

Amazon managed policy: DynamoDBReplicationServiceRolePolicy

You can’t attach the DynamoDBReplicationServiceRolePolicy policy to your IAM entities.
This policy is attached to a service-linked role that allows DynamoDB to perform actions on your
behalf. For more information, see Using IAM with global tables.

This policy grants permissions that allow the service-linked role to perform data replication
between global table replicas. It also grants administrative permissions to manage global table
replicas on your behalf.

Permissions details

This policy grants permissions to do the following:

• dynamodb – Perform data replication and manage table replicas.

• application-autoscaling – Retrieve and manage table Auto Scaling settings

• account – Retrieve region status for evaluating replica accessibility.

• iam – To create the service-linked role for application Auto Scaling in the event that the service-
linked role does not already exist.

The definition of this managed policy can be found here.

Amazon managed policies API Version 2012-08-10 2853

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/policy-list.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/DynamoDBReplicationServiceRolePolicy.html

Amazon DynamoDB Developer Guide

Amazon managed policy: AmazonDynamoDBFullAccess_v2

The scoped-down AmazonDynamoDBFullAccess_v2 policy grants specific access privileges
to users. You can attach the AmazonDynamoDBFullAccess_v2 policy to your IAM identities.
This policy grants administrative access to Amazon DynamoDB resources and grants an IAM
identity (such as a user, group, or role) access to the Amazon Web Services services that DynamoDB
is integrated with to use all of DynamoDB features. Using this policy allows access to all of
DynamoDB features that are available in the Amazon Web Services Management Console.

Permissions details

This policy includes the following permissions:

• Amazon DynamoDB

• DynamoDB Accelerator

• Amazon KMS

• Amazon Resource Groups Tagging

• Lambda

• Application Auto Scaling

• CloudWatch

• Amazon Kinesis

• Amazon EC2

• IAM

To review the policy in JSON format, see AmazonDynamoDBFullAccess_v2.

Amazon managed policy: AmazonDynamoDBReadOnlyAccess

You can attach the AmazonDynamoDBReadOnlyAccess policy to your IAM identities.

This policy grants read-only access to Amazon DynamoDB.

Permissions details

This policy includes the following permissions:

• Amazon DynamoDB – Provides read-only access to Amazon DynamoDB.

Amazon managed policy: AmazonDynamoDBFullAccess_v2 API Version 2012-08-10 2854

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess_v2.html

Amazon DynamoDB Developer Guide

• Amazon DynamoDB Accelerator (DAX) – Provides read-only access to Amazon DynamoDB
Accelerator (DAX).

• Application Auto Scaling – Allows principals to view configurations from Application Auto
Scaling. This is required so that users can view automatic scaling policies that are attached to a
table.

• CloudWatch – Allows principals to view metric data and alarms configured in CloudWatch.
This is required so users can view the billable table size and CloudWatch alarms that have been
configured for a table.

• Amazon Data Pipeline – Allows principals to view Amazon Data Pipeline and associated
objects.

• Amazon EC2 – Allows principals to view Amazon EC2 VPCs, subnets, and security groups.

• IAM – Allows principals to view IAM roles.

• Amazon KMS – Allows principals to view keys configured in Amazon KMS. This is required so
users can view Amazon KMS keys that they create and manage in their account.

• Amazon SNS – Allows principals to list Amazon SNS topics and subscriptions by topic.

• Amazon Resource Groups – Allows principals to view resource groups and their queries.

• Amazon Resource Groups Tagging – Allows principals to list all the tagged or previously
tagged resources in a Region.

• Kinesis – Allows principals to view Kinesis data streams descriptions.

• Amazon CloudWatch Contributor Insights – Allow principals to view time series data
collected by Contributor Insights rules.

To review the policy in JSON format, see AmazonDynamoDBReadOnlyAccess.

DynamoDB updates to Amazon managed policies

This table shows updates to the Amazon access management policies for DynamoDB.

Change Description Date Changed

AmazonDyn
amoDBFull
Access –
Deprecated

This policy has been replaced
by a scoped-down policy named
AmazonDynamoDBFull
Access_v2 .

April 28, 2025

DynamoDB updates to Amazon managed policies API Version 2012-08-10 2855

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBReadOnlyAccess.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

After April, 2025, you can't attach
the AmazonDynamoDBFull
Access policy to any new users,
groups, or roles. For more informati
on, see Amazon managed policy:
AmazonDynamoDBFullAccess_v2.

AmazonDyn
amoDBRead
OnlyAcces
s update to an
existing policy

AmazonDynamoDBRead
OnlyAccess added the permissio
ns: dynamodb:GetAbacStatus
and dynamodb:UpdateAba
cStatus . These permissions allow
you to view the ABAC status and
enable ABAC for your Amazon Web
Services account in the current
Region.

November 18, 2024

AmazonDyn
amoDBRead
OnlyAcces
s update to an
existing policy

AmazonDynamoDBRead
OnlyAccess added the permissio
n dynamodb:GetResour
cePolicy . This permission
provides access to read resource-
based policies attached to
DynamoDB resources.

March 20, 2024

DynamoDBR
eplicatio
nServiceR
olePolicy

 update to an
existing policy

DynamoDBReplicatio
nServiceRolePolicy
added the permission dynamodb:
GetResourcePolicy . This
permission allows the service-linked
role to read resource-based policies
attached to DynamoDB resources.

December 15, 2023

DynamoDB updates to Amazon managed policies API Version 2012-08-10 2856

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDBR
eplicatio
nServiceR
olePolicy

 update to an
existing policy

DynamoDBReplicatio
nServiceRolePolicy
added the permission account:L
istRegions . This permission
allows the service-linked role to
evaluate replica accessibility

May 10, 2023

DynamoDBR
eplicatio
nServiceR
olePolicy

 added to list
of managed
policies

Added information about the
managed policy DynamoDBR
eplicationServiceR
olePolicy , which is used by the
DynamoDB global tables service-l
inked role.

May 10, 2023

DynamoDB
global tables
started tracking
changes

DynamoDB global tables started
tracking changes for its Amazon
managed policies.

May 10, 2023

Using resource-based policies for DynamoDB

DynamoDB supports resource-based policies for tables, indexes, and streams. Resource-based
policies let you define access permissions by specifying who has access to each resource, and the
actions they are allowed to perform on each resource.

You can attach a resource-based policy to DynamoDB resources, such as a table or a stream. In
this policy, you specify permissions for Identity and Access Management (IAM) principals that can
perform specific actions on these DynamoDB resources. For example, the policy attached to a table
will contain permissions for access to the table and its indexes. As a result, resource-based policies
can help you simplify access control for your DynamoDB tables, indexes, and streams, by defining
permissions at the resource level. The maximum size of a policy you can attach to a DynamoDB
resource is 20 KB.

Resource-based policies API Version 2012-08-10 2857

https://docs.amazonaws.cn/IAM/latest/UserGuide/intro-structure.html#intro-structure-principal

Amazon DynamoDB Developer Guide

A significant benefit of using resource-based policies is to simplify cross-account access control for
providing cross-account access to IAM principals in different Amazon Web Services accounts. For
more information, see Resource-based policy for cross-account access.

Resource-based policies also support integrations with IAM Access Analyzer external access
analyzer and Block Public Access (BPA) capabilities. IAM Access Analyzer reports cross-account
access to external entities specified in resource-based policies. It also provides visibility to help you
refine permissions and conform to the least privilege principle. BPA helps you prevent public access
to your DynamoDB tables, indexes, and streams, and is automatically enabled in the resource-
based policies creation and modification workflows.

Topics

• Create a table with a resource-based policy

• Attach a policy to an DynamoDB existing table

• Attach a resource-based policy to a DynamoDB stream

• Remove a resource-based policy from a DynamoDB table

• Cross-account access with resource-based policies in DynamoDB

• Blocking public access with resource-based policies in DynamoDB

• DynamoDB API operations supported by resource-based policies

• Authorization with IAM identity-based policies and DynamoDB resource-based policies

• DynamoDB resource-based policy examples

• DynamoDB resource-based policy considerations

• DynamoDB resource-based policy best practices

Create a table with a resource-based policy

You can add a resource-based policy while you create a table by using the DynamoDB console,
CreateTable API, Amazon CLI, Amazon SDK, or an Amazon CloudFormation template.

Amazon CLI

The following example creates a table named MusicCollection using the create-table
Amazon CLI command. This command also includes the resource-policy parameter that
adds a resource-based policy to the table. This policy allows the user John to perform the
RestoreTableToPointInTime, GetItem, and PutItem API actions on the table.

Create table API Version 2012-08-10 2858

https://docs.amazonaws.cn/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableToPointInTime.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

Remember to replace the italicized text with your resource-specific information.

aws dynamodb create-table \
 --table-name MusicCollection \
 --attribute-definitions AttributeName=Artist,AttributeType=S
 AttributeName=SongTitle,AttributeType=S \
 --key-schema AttributeName=Artist,KeyType=HASH
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --resource-policy \
 "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"AWS\": \"arn:aws-cn:iam::123456789012:user/John\"
 },
 \"Action\": [
 \"dynamodb:RestoreTableToPointInTime\",
 \"dynamodb:GetItem\",
 \"dynamodb:DescribeTable\"
],
 \"Resource\": \"arn:aws-cn:dynamodb:us-
west-2:123456789012:table/MusicCollection\"
 }
]
 }"

Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. On the dashboard, choose Create table.

3. In Table details, enter the table name, partition key, and sort key details.

4. In Table settings, choose Customize settings.

5. (Optional) Specify your options for Table class, Capacity calculator, Read/write capacity
settings, Secondary indexes, Encryption at rest, and Deletion protection.

Create table API Version 2012-08-10 2859

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

6. In Resource-based policy, add a policy to define the access permissions for the table and its
indexes. In this policy, you specify who has access to these resources, and the actions they are
allowed to perform on each resource. To add a policy, do one of the following:

• Type or paste a JSON policy document. For details about the IAM policy language, see
Creating policies using the JSON editor in the IAM User Guide.

Tip

To see examples of resource-based policies in the Amazon DynamoDB Developer
Guide, choose Policy examples.

• Choose Add new statement to add a new statement and enter the information in the
provided fields. Repeat this step for as many statements as you would like to add.

Important

Make sure that you resolve any security warnings, errors, or suggestions before you
save your policy.

The following IAM policy example allows the user John to perform the
RestoreTableToPointInTime, GetItem, and PutItem API actions on the table
MusicCollection.

Remember to replace the italicized text with your resource-specific information.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::123456789012:user/username"
 },
 "Action": [
 "dynamodb:RestoreTableToPointInTime",

Create table API Version 2012-08-10 2860

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableToPointInTime.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

 "dynamodb:GetItem",
 "dynamodb:PutItem"
],
 "Resource": "arn:aws-cn:dynamodb:us-
east-1:123456789012:table/MusicCollection"
 }
]
}

7. (Optional) Choose Preview external access in the lower-right corner to preview how your
new policy affects public and cross-account access to your resource. Before you save your
policy, you can check whether it introduces new IAM Access Analyzer findings or resolves
existing findings. If you don’t see an active analyzer, choose Go to Access Analyzer to create
an account analyzer in IAM Access Analyzer. For more information, see Preview access.

8. Choose Create table.

Amazon CloudFormation template

Using the Amazon::DynamoDB::Table resource

The following CloudFormation template creates a table with a stream using the
Amazon::DynamoDB::Table resource. This template also includes resource-based policies that
are attached to both the table and the stream.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MusicCollectionTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "Artist",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "Artist",
 "KeyType": "HASH"
 }
],

Create table API Version 2012-08-10 2861

https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-access-preview.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html

Amazon DynamoDB Developer Guide

 "BillingMode": "PROVISIONED",
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 5,
 "WriteCapacityUnits": 5
 },
 "StreamSpecification": {
 "StreamViewType": "OLD_IMAGE",
 "ResourcePolicy": {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "AWS": "arn:aws-cn:iam::111122223333:user/John"
 },
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream"
],
 "Resource": "*"
 }
]
 }
 }
 },
 "TableName": "MusicCollection",
 "ResourcePolicy": {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": {
 "AWS": [
 "arn:aws-cn:iam::111122223333:user/John"
]
 },
 "Effect": "Allow",
 "Action": "dynamodb:GetItem",
 "Resource": "*"
 }
]
 }

Create table API Version 2012-08-10 2862

Amazon DynamoDB Developer Guide

 }
 }

 }
 }
}

Using the Amazon::DynamoDB::GlobalTable resource

The following CloudFormation template creates a table with the
Amazon::DynamoDB::GlobalTable resource and attaches a resource-based policy to the table
and its stream.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "GlobalMusicCollection": {
 "Type": "AWS::DynamoDB::GlobalTable",
 "Properties": {
 "TableName": "MusicCollection",
 "AttributeDefinitions": [{
 "AttributeName": "Artist",
 "AttributeType": "S"
 }],
 "KeySchema": [{
 "AttributeName": "Artist",
 "KeyType": "HASH"
 }],
 "BillingMode": "PAY_PER_REQUEST",
 "StreamSpecification": {
 "StreamViewType": "NEW_AND_OLD_IMAGES"
 },
 "Replicas": [
 {
 "Region": "us-east-1",
 "ResourcePolicy": {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Principal": {
 "AWS": [
 "arn:aws-cn:iam::111122223333:user/John"
]

Create table API Version 2012-08-10 2863

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html

Amazon DynamoDB Developer Guide

 },
 "Effect": "Allow",
 "Action": "dynamodb:GetItem",
 "Resource": "*"
 }]
 }
 },
 "ReplicaStreamSpecification": {
 "ResourcePolicy": {
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [{
 "Principal": {
 "AWS": "arn:aws-
cn:iam::111122223333:user/John"
 },
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream"
],
 "Resource": "*"
 }]
 }
 }
 }
 }
]
 }
 }
 }
}

Attach a policy to an DynamoDB existing table

You can attach a resource-based policy to an existing table or modify an existing policy by using
the DynamoDB console, PutResourcePolicy API, the Amazon CLI, Amazon SDK, or an Amazon
CloudFormation template.

Attach resource-based policy API Version 2012-08-10 2864

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutResourcePolicy.html

Amazon DynamoDB Developer Guide

Amazon CLI example to attach a new policy

The following IAM policy example uses the put-resource-policy Amazon CLI command to
attach a resource-based policy to an existing table. This example allows the user John to perform
the GetItem, PutItem, UpdateItem, and UpdateTable API actions on an existing table named
MusicCollection.

Remember to replace the italicized text with your resource-specific information.

aws dynamodb put-resource-policy \
 --resource-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection \
 --policy \
 "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"AWS\": \"arn:aws-cn:iam::111122223333:user/John\"
 },
 \"Action\": [
 \"dynamodb:GetItem\",
 \"dynamodb:PutItem\",
 \"dynamodb:UpdateItem\",
 \"dynamodb:UpdateTable\"
],
 \"Resource\": \"arn:aws-cn:dynamodb:us-
west-2:123456789012:table/MusicCollection\"
 }
]
 }"

Amazon CLI example to conditionally update an existing policy

To conditionally update an existing resource-based policy of a table, you can use the optional
expected-revision-id parameter. The following example will only update the policy if it
exists in DynamoDB and its current revision ID matches the provided expected-revision-id
parameter.

aws dynamodb put-resource-policy \
 --resource-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection \
 --expected-revision-id 1709841168699 \

Attach resource-based policy API Version 2012-08-10 2865

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

 --policy \
 "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"AWS\": \"arn:aws-cn:iam::111122223333:user/John\"
 },
 \"Action\": [
 \"dynamodb:GetItem\",
 \"dynamodb:UpdateItem\",
 \"dynamodb:UpdateTable\"
],
 \"Resource\": \"arn:aws-cn:dynamodb:us-
west-2:123456789012:table/MusicCollection\"
 }
]
 }"

Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. From the dashboard, choose an existing table.

3. Navigate to the Permissions tab, and choose Create table policy.

4. In the resource-based policy editor, add the policy you would like to attach and choose Create
policy.

The following IAM policy example allows the user John to perform the GetItem, PutItem,
UpdateItem, and UpdateTable API actions on an existing table named MusicCollection.

Remember to replace the italicized text with your resource-specific information.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {

Attach resource-based policy API Version 2012-08-10 2866

https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::111122223333:user/username"
 },
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:UpdateTable"
],
 "Resource": "arn:aws-cn:dynamodb:us-
east-1:123456789012:table/MusicCollection"
 }
]
}

Amazon SDK for Java 2.x

The following IAM policy example uses the putResourcePolicy method to attach a resource-
based policy to an existing table. This policy allows a user to perform the GetItem API action on an
existing table.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
import software.amazon.awssdk.services.dynamodb.model.DynamoDbException;
import software.amazon.awssdk.services.dynamodb.model.PutResourcePolicyRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * Get started with the Amazon SDK for Java 2.x
 */
public class PutResourcePolicy {

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableArn> <allowedAWSPrincipal>

Attach resource-based policy API Version 2012-08-10 2867

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/get-started.html

Amazon DynamoDB Developer Guide

 Where:
 tableArn - The Amazon DynamoDB table ARN to attach the policy to.
 For example, arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection.
 allowedAmazonPrincipal - Allowed Amazon principal
 ARN that the example policy will give access to. For example, arn:aws-
cn:iam::123456789012:user/John.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String tableArn = args[0];
 String allowedAWSPrincipal = args[1];
 System.out.println("Attaching a resource-based policy to the Amazon DynamoDB
 table with ARN " +
 tableArn);
 Region region = Region.US_WEST_2;
 DynamoDbClient ddb = DynamoDbClient.builder()
 .region(region)
 .build();

 String result = putResourcePolicy(ddb, tableArn, allowedAWSPrincipal);
 System.out.println("Revision ID for the attached policy is " + result);
 ddb.close();
 }

 public static String putResourcePolicy(DynamoDbClient ddb, String tableArn, String
 allowedAWSPrincipal) {
 String policy = generatePolicy(tableArn, allowedAWSPrincipal);
 PutResourcePolicyRequest request = PutResourcePolicyRequest.builder()
 .policy(policy)
 .resourceArn(tableArn)
 .build();

 try {
 return ddb.putResourcePolicy(request).revisionId();
 } catch (DynamoDbException e) {
 System.err.println(e.getMessage());
 System.exit(1);
 }

Attach resource-based policy API Version 2012-08-10 2868

Amazon DynamoDB Developer Guide

 return "";
 }

 private static String generatePolicy(String tableArn, String allowedAWSPrincipal) {
 return "{\n" +
 " \"Version\": \"2012-10-17\",\n" +,
 " \"Statement\": [\n" +
 " {\n" +
 " \"Effect\": \"Allow\",\n" +
 " \"Principal\": {\"AWS\":\"" + allowedAWSPrincipal + "\"},
\n" +
 " \"Action\": [\n" +
 " \"dynamodb:GetItem\"\n" +
 "],\n" +
 " \"Resource\": \"" + tableArn + "\"\n" +
 " }\n" +
 "]\n" +
 "}";
 }
}

Attach a resource-based policy to a DynamoDB stream

You can attach a resource-based policy to an existing table's stream or modify an existing policy by
using the DynamoDB console, PutResourcePolicy API, the Amazon CLI, Amazon SDK, or an Amazon
CloudFormation template.

Note

You can't attach a policy to a stream while creating it using the CreateTable or UpdateTable
APIs. However, you can modify or delete a policy after a table is deleted. You can also
modify or delete the policy of a disabled stream.

Amazon CLI

The following IAM policy example uses the put-resource-policy Amazon CLI command to
attach a resource-based policy to the stream of a table named MusicCollection. This example
allows the user John to perform the GetRecords, GetShardIterator, and DescribeStream API actions
on the stream.

Attach policy to a stream API Version 2012-08-10 2869

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutResourcePolicy.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html

Amazon DynamoDB Developer Guide

Remember to replace the italicized text with your resource-specific information.

aws dynamodb put-resource-policy \
 --resource-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection/
stream/2024-02-12T18:57:26.492 \
 --policy \
 "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Principal\": {
 \"AWS\": \"arn:aws-cn:iam::111122223333:user/John\"
 },
 \"Action\": [
 \"dynamodb:GetRecords\",
 \"dynamodb:GetShardIterator\",
 \"dynamodb:DescribeStream\"
],
 \"Resource\": \"arn:aws-cn:dynamodb:us-
west-2:123456789012:table/MusicCollection/stream/2024-02-12T18:57:26.492\"
 }
]
 }"

Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. On the DynamoDB console dashboard, choose Tables and then select an existing table.

Make sure the table you select has streams turned on. For information about turning on
streams for a table, see Enabling a stream.

3. Choose the Permissions tab.

4. In Resource-based policy for active stream, choose Create stream policy.

5. In the Resource-based policy editor, add a policy to define the access permissions for the
stream. In this policy, you specify who has access to the stream and the actions they are
allowed to perform on the stream. To add a policy, do one of the following:

Attach policy to a stream API Version 2012-08-10 2870

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

• Type or paste a JSON policy document. For details about the IAM policy language, see
Creating policies using the JSON editor in the IAM User Guide.

Tip

To see examples of resource-based policies in the Amazon DynamoDB Developer
Guide, choose Policy examples.

• Choose Add new statement to add a new statement and enter the information in the
provided fields. Repeat this step for as many statements as you would like to add.

Important

Make sure that you resolve any security warnings, errors, or suggestions before you
save your policy.

6. (Optional) Choose Preview external access in the lower-right corner to preview how your
new policy affects public and cross-account access to your resource. Before you save your
policy, you can check whether it introduces new IAM Access Analyzer findings or resolves
existing findings. If you don’t see an active analyzer, choose Go to Access Analyzer to create
an account analyzer in IAM Access Analyzer. For more information, see Preview access.

7. Choose Create policy.

The following IAM policy example attaches a resource-based policy to the stream of a table
named MusicCollection. This example allows the user John to perform the GetRecords,
GetShardIterator, and DescribeStream API actions on the stream.

Remember to replace the italicized text with your resource-specific information.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

Attach policy to a stream API Version 2012-08-10 2871

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-access-preview.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html

Amazon DynamoDB Developer Guide

 "AWS": "arn:aws-cn:iam::111122223333:user/username"
 },
 "Action": [
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream"
],
 "Resource": [
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection/
stream/2024-02-12T18:57:26.492"
]
 }
]
}

Remove a resource-based policy from a DynamoDB table

You can delete a resource-based policy from an existing table by using the DynamoDB console,
DeleteResourcePolicy API, the Amazon CLI, Amazon SDK, or an Amazon CloudFormation template.

Amazon CLI

The following example uses the delete-resource-policy Amazon CLI command to remove a
resource-based policy from a table named MusicCollection.

Remember to replace the italicized text with your resource-specific information.

aws dynamodb delete-resource-policy \
 --resource-arn arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection

Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. On the DynamoDB console dashboard, choose Tables and then select an existing table.

3. Choose Permissions.

4. From the Manage policy dropdown, choose Delete policy.

5. In the Delete resource-based policy for table dialog box, type confirm to confirm the delete
action.

Remove resource-based policy API Version 2012-08-10 2872

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteResourcePolicy.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

6. Choose Delete.

Cross-account access with resource-based policies in DynamoDB

Using a resource-based policy, you can provide cross-account access to resources available in
different Amazon Web Services accounts. All cross-account access allowed by the resource-based
policies will be reported through IAM Access Analyzer external access findings if you have an
analyzer in the same Amazon Web Services Region as the resource. IAM Access Analyzer runs
policy checks to validate your policy against IAM policy grammar and best practices. These checks
generate findings and provide actionable recommendations to help you author policies that are
functional and conform to security best practices. You can view the active findings from IAM Access
Analyzer in the Permissions tab of the DynamoDB console.

For information about validating policies by using IAM Access Analyzer, see IAM Access Analyzer
policy validation in the IAM User Guide. To view a list of the warnings, errors, and suggestions that
are returned by IAM Access Analyzer, see IAM Access Analyzer policy check reference.

To grant GetItem permission to a user A in account A for accessing a table B in account B, perform
the following steps:

1. Attach a resource-based policy to table B that grants permission to user A for performing the
GetItem action.

2. Attach an identity-based policy to user A that grants it permission to perform the GetItem
action on table B.

Using the Preview external access option available in DynamoDB console, you can preview how
your new policy affects public and cross-account access to your resource. Before you save your
policy, you can check whether it introduces new IAM Access Analyzer findings or resolves existing
findings. If you don’t see an active analyzer, choose Go to Access Analyzer to create an account
analyzer in IAM Access Analyzer. For more information, see Preview access.

The table name parameter in the DynamoDB data plane and control plane APIs accept complete
Amazon Resource Name (ARN) of the table to support cross-account operations. If you only provide
the table name parameter instead of a complete ARN, the API operation will be performed on the
table in the account to which the requestor belongs. For an example of a policy that uses cross-
account access, see Resource-based policy for cross-account access.

Cross-account access API Version 2012-08-10 2873

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_grammar.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://console.amazonaws.cn/dynamodb/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-enabling
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-access-preview.html

Amazon DynamoDB Developer Guide

The resource owner’s account will be charged even when a principal from another account is
reading from or writing to the DynamoDB table in the owner’s account. If the table has provisioned
throughput, the sum of all the requests from the owner accounts and the requestors in other
accounts will determine if the request will be throttled (if autoscaling is disabled) or scaled up/
down if autoscaling is enabled.

The requests will be logged in the CloudTrail logs of both the owner and the requestor accounts so
that each of the two accounts can track which account accessed what data.

Share access with cross-account Amazon Lambda functions

Lambda functions in account A

1. Go to the IAM console to create an IAM role that will be used as the Lambda execution
role for your Amazon Lambda function in account A. Add the managed IAM policy
AWSLambdaDynamoDBExecutionRole which has the required DynamoDB Streams and Lambda
invocation permissions. This policy also grants access to all potential DynamoDB Streams
resources you may have access to in account A.

2. In the Lambda console, create an Amazon Lambda function to process records in a DynamoDB
stream and during the setup for the execution role, choose the role you created in the previous
step.

3. Provide the Lambda function execution role to the DynamoDB Streams' owner of account B to
configure the resource-based policy for cross-account read access.

4. Finish setting up the Lambda function.

DynamoDB Stream in Account B

1. Get the cross-account Lambda execution role from account A that will invoke the Lambda
function.

2. On the Amazon DynamoDB console in account B, choose the table for Lambda cross-account
trigger. Under the Exports and streams tab, locate your DynamoDB stream ARN. Ensure that
DynamoDB Stream status is On and note the full stream ARN as you will need it for the resource
policy.

3. Under the Permissions tab, click the create stream policy button to start the visual policy
editor. Click the Add new statement button or edit the policy if one already exists.

4. Create a policy that specifies the Lambda execution role in account A as the principal
and grant the required DynamoDB Stream actions. Make sure to include the actions

Cross-account access API Version 2012-08-10 2874

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://console.aws.amazon.com/lambda/

Amazon DynamoDB Developer Guide

dynamodb:DescribeStream, dynamodb:GetRecords, dynamodb:GetShardIterator, and
dynamodb:ListShards. For more information on example resource policies for DynamoDB
Streams, see DynamoDB resource-based policy examples.

Note

The cross-account access of control plane APIs has a lower transactions per second (TPS)
limit of 500 requests.

Blocking public access with resource-based policies in DynamoDB

Block Public Access (BPA) is a feature that identifies and prevents the attaching of resource-based
policies that grant public access to your DynamoDB tables, indexes, or streams across your Amazon
Web Services (Amazon) accounts. With BPA, you can prevent public access to your DynamoDB
resources. BPA performs checks during the creation or modification of a resource-based policy and
helps improve your security posture with DynamoDB.

BPA uses automated reasoning to analyze the access granted by your resource-based policy and
alerts you if such permissions are found at the time of administering a resource-based policy.
The analysis verifies access across all resource-based policy statements, actions, and the set of
condition keys used in your policies.

Important

BPA helps protect your resources by preventing public access from being granted through
the resource-based policies that are directly attached to your DynamoDB resources, such
as tables, indexes, and streams. In addition to using BPA, carefully inspect the following
policies to confirm that they do not grant public access:

• Identity-based policies attached to associated Amazon principals (for example, IAM roles)

• Resource-based policies attached to associated Amazon resources (for example, Amazon
Key Management Service (KMS) keys)

You must ensure that the principal doesn't include a * entry or that one of the specified condition
keys restrict access from principals to the resource. If the resource-based policy grants public access

Blocking public access API Version 2012-08-10 2875

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-examples.html
https://aws.amazon.com/
https://aws.amazon.com/
https://www.amazonaws.cn/what-is/automated-reasoning/
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon DynamoDB Developer Guide

to your table, indexes, or stream across Amazon Web Services accounts, DynamoDB will block you
from creating or modifying the policy until the specification within the policy is corrected and
deemed non-public.

You can make a policy non-public by specifying one or more principals inside the Principal
block. The following resource-based policy example blocks public access by specifying two
principals.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "123456789012",
 "111122223333"
]
 },
 "Action": "dynamodb:*",
 "Resource": "*"
}

Policies that restrict access by specifying certain condition keys are also not considered public.
Along with evaluation of the principal specified in the resource-based policy, the following trusted
condition keys are used to complete the evaluation of a resource-based policy for non-public
access:

• aws:PrincipalAccount

• aws:PrincipalArn

• aws:PrincipalOrgID

• aws:PrincipalOrgPaths

• aws:SourceAccount

• aws:SourceArn

• aws:SourceVpc

• aws:SourceVpce

• aws:UserId

• aws:PrincipalServiceName

• aws:PrincipalServiceNamesList

• aws:PrincipalIsAWSService

Blocking public access API Version 2012-08-10 2876

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon DynamoDB Developer Guide

• aws:Ec2InstanceSourceVpc

• aws:SourceOrgID

• aws:SourceOrgPaths

Additionally, for a resource-based policy to be non-public, the values for Amazon Resource Name
(ARN) and string keys must not contain wildcards or variables. If your resource-based policy uses
the aws:PrincipalIsAWSService key, you must make sure that you've set the key value to true.

The following policy limits access to the user John in the specified account. The condition makes
the Principal constrained and not be considered as public.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "dynamodb:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:PrincipalArn": "arn:aws-cn:iam::123456789012:user/John"
 }
 }
}

The following example of a non-public resource-based policy constrains sourceVPC using the
StringEquals operator.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "dynamodb:*",

Blocking public access API Version 2012-08-10 2877

Amazon DynamoDB Developer Guide

 "Resource": "arn:aws-cn:dynamodb:us-east-1:123456789012:table/
MusicCollection",
 "Condition": {
 "StringEquals": {
 "aws:SourceVpc": [
 "vpc-91237329"
]
 }
 }
 }
]
}

DynamoDB API operations supported by resource-based policies

This topic lists the API operations that are supported by resource-based policies. However,
for cross-account access, you can only use a certain set of DynamoDB APIs through resource-
based policies. You can't attach resource-based policies to resource types, such as backups and
imports. The IAM actions, which correspond with the APIs operating on these resource types, are
excluded from the supported IAM actions in resource-based policies. Because table administrators
configure internal table settings within the same account, APIs, such as UpdateTimeToLive and
DisableKinesisStreamingDestination, don't support cross-account access through resource-based
policies.

The DynamoDB data plane and control plane APIs that support cross-account access also support
table name overloading, which lets you specify the table ARN instead of the table name. You
can specify table ARN in the TableName parameter of these APIs. However, not all of these APIs
support cross-account access.

Topics

• Data plane API operations

• PartiQL API operations

• Control plane API operations

• Version 2019.11.21 (Current) global tables API operations

• Version 2017.11.29 (Legacy) global tables API operations

• Tags API operations

• Backup and Restore API operations

API operations API Version 2012-08-10 2878

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTimeToLive.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DisableKinesisStreamingDestination.html

Amazon DynamoDB Developer Guide

• Continuous Backup/Restore (PITR) API operations

• Contributor Insights API operations

• Export API operations

• Import API operations

• Amazon Kinesis Data Streams API operations

• Resource-based policy API operations

• Time-to-Live API operations

• Other API operations

• DynamoDB Streams API operations

Data plane API operations

The following table lists the API-level support provided by data plane API operations for resource-
based policies and cross-account access.

Data Plane - Tables/indexes
APIs

Resource-based policy
support

Cross-account support

DeleteItem Yes Yes

GetItem Yes Yes

PutItem Yes Yes

Query Yes Yes

Scan Yes Yes

UpdateItem Yes Yes

TransactGetItems Yes Yes

TransactWriteItems Yes Yes

BatchGetItem Yes Yes

BatchWriteItem Yes Yes

API operations API Version 2012-08-10 2879

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html

Amazon DynamoDB Developer Guide

PartiQL API operations

The following table lists the API-level support provided by PartiQL API operations for resource-
based policies and cross-account access.

PartiQL APIs Resource-based policy
support

Cross-account support

BatchExecuteStatement Yes No

ExecuteStatement Yes No

ExecuteTransaction Yes No

Control plane API operations

The following table lists the API-level support provided by control plane API operations for
resource-based policies and cross-account access.

Control Plane - Tables APIs Resource-based policy
support

Cross-account support

CreateTable No No

DeleteTable Yes Yes

DescribeTable Yes Yes

UpdateTable Yes Yes

Version 2019.11.21 (Current) global tables API operations

The following table lists the API-level support provided by Version 2019.11.21 (Current) global
tables API operations for resource-based policies and cross-account access.

API operations API Version 2012-08-10 2880

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchExecuteStatement.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteStatement.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteTransaction.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

Version 2019.11.21 (Current)
global tables APIs

Resource-based policy
support

Cross-account support

DescribeTableReplicaAutoSca
ling

Yes No

UpdateTableReplicaAutoScali
ng

Yes No

Version 2017.11.29 (Legacy) global tables API operations

The following table lists the API-level support provided by Version 2017.11.29 (Legacy) global
tables API operations for resource-based policies and cross-account access.

Version 2017.11.29 (Legacy)
global tables APIs

Resource-based policy
support

Cross-account support

CreateGlobalTable No No

DescribeGlobalTable No No

DescribeGlobalTableSettings No No

ListGlobalTables No No

UpdateGlobalTable No No

UpdateGlobalTableSettings No No

Tags API operations

The following table lists the API-level support provided by API operations related to tags for
resource-based policies and cross-account access.

API operations API Version 2012-08-10 2881

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTableReplicaAutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTableReplicaAutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTableReplicaAutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTableReplicaAutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeGlobalTableSettings.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListGlobalTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTableSettings.html

Amazon DynamoDB Developer Guide

Tags APIs Resource-based policy
support

Cross-account support

ListTagsOfResource Yes Yes

TagResource Yes Yes

UntagResource Yes Yes

Backup and Restore API operations

The following table lists the API-level support provided by API operations related to backup and
restore for resource-based policies and cross-account access.

Backup and Restore APIs Resource-based policy
support

Cross-account support

CreateBackup Yes No

DescribeBackup No No

DeleteBackup No No

RestoreTableFromBackup No No

Continuous Backup/Restore (PITR) API operations

The following table lists the API-level support provided by API operations related to Continuous
Backup/Restore (PITR) for resource-based policies and cross-account access.

Continuous Backup/Restore
(PITR) APIs

Resource-based policy
support

Cross-account support

DescribeContinuousBackups Yes No

RestoreTableToPointInTime Yes No

UpdateContinuousBackups Yes No

API operations API Version 2012-08-10 2882

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListTagsOfResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableFromBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeContinuousBackups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableToPointInTime.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateContinuousBackups.html

Amazon DynamoDB Developer Guide

Contributor Insights API operations

The following table lists the API-level support provided by API operations related to Continuous
Backup/Restore (PITR) for resource-based policies and cross-account access.

Contributor Insights APIs Resource-based policy
support

Cross-account support

DescribeContributorInsights Yes No

ListContributorInsights No No

UpdateContributorInsights Yes No

Export API operations

The following table lists the API-level support provided by Export API operations for resource-
based policies and cross-account access.

Export APIs Resource-based policy
support

Cross-account support

DescribeExport No No

ExportTableToPointInTime Yes No

ListExports No No

Import API operations

The following table lists the API-level support provided by Import API operations for resource-
based policies and cross-account access.

Import APIs Resource-based policy
support

Cross-account support

DescribeImport No No

API operations API Version 2012-08-10 2883

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeContributorInsights.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListContributorInsights.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateContributorInsights.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeExport.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExportTableToPointInTime.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListExports.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeImport.html

Amazon DynamoDB Developer Guide

Import APIs Resource-based policy
support

Cross-account support

ImportTable No No

ListImports No No

Amazon Kinesis Data Streams API operations

The following table lists the API-level support provided by Kinesis Data Streams API operations for
resource-based policies and cross-account access.

Kinesis APIs Resource-based policy
support

Cross-account support

DescribeKinesisStreamingDes
tination

Yes No

DisableKinesisStreamingDest
ination

Yes No

EnableKinesisStreamingDesti
nation

Yes No

UpdateKinesisStreamingDesti
nation

Yes No

Resource-based policy API operations

The following table lists the API-level support provided by resource-based policy API operations for
resource-based policies and cross-account access.

Resource-based policy APIs Resource-based policy
support

Cross-account support

GetResourcePolicy Yes No

API operations API Version 2012-08-10 2884

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ImportTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListImports.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DisableKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DisableKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_EnableKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_EnableKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateKinesisStreamingDestination.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetResourcePolicy.html

Amazon DynamoDB Developer Guide

Resource-based policy APIs Resource-based policy
support

Cross-account support

PutResourcePolicy Yes No

DeleteResourcePolicy Yes No

Time-to-Live API operations

The following table lists the API-level support provided by time to live (TTL) API operations for
resource-based policies and cross-account access.

TTL APIs Resource-based policy
support

Cross-account support

DescribeTimeToLive Yes No

UpdateTimeToLive Yes No

Other API operations

The following table lists the API-level support provided by other miscellaneous API operations for
resource-based policies and cross-account access.

Other APIs Resource-based policy
support

Cross-account support

DescribeLimits No No

DescribeEndpoints No No

ListBackups No No

ListTables No No

API operations API Version 2012-08-10 2885

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutResourcePolicy.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteResourcePolicy.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTimeToLive.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTimeToLive.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeLimits.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeEndpoints.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListBackups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListTables.html

Amazon DynamoDB Developer Guide

DynamoDB Streams API operations

The following table lists the API-level support of DynamoDB Streams APIs for resource-based
policies and cross-account access.

DynamoDB Streams APIs Resource-based policy
support

Cross-account support

DescribeStream Yes Yes

GetRecords Yes Yes

GetShardIterator Yes Yes

ListStreams No No

Authorization with IAM identity-based policies and DynamoDB
resource-based policies

Identity-based policies are attached to an identity, such as IAM users, groups of users, and roles.
These are IAM policy documents that control what actions an identity can perform, on which
resources, and under what conditions. Identity-based policies can be managed or inline policies.

Resource-based policies are IAM policy documents that you attach to a resource, such as a
DynamoDB table. These policies grant the specified principal permission to perform specific actions
on that resource and defines under what conditions this applies. For example, the resource-based
policy for a DynamoDB table also includes the index associated with the table. Resource-based
policies are inline policies. There are no managed resource-based policies.

For more information about these policies, see Identity-based policies and resource-based policies
in the IAM User Guide.

If the IAM principal is from the same account as the resource owner, a resource-based policy
is sufficient to specify access permissions to the resource. You can still choose to have an IAM
identity-based policy along with a resource-based policy. For cross-account access, you must
explicitly allow access in both the identity and resource policies as specified in Cross-account
access with resource-based policies in DynamoDB. When you use both types of policies, a policy is
evaluated as described in Determining whether a request is allowed or denied within an account.

IAM authorization API Version 2012-08-10 2886

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_ListStreams.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

Amazon DynamoDB Developer Guide

DynamoDB resource-based policy examples

When you specify an ARN in the Resource field of a resource-based policy, the policy takes effect
only if the specified ARN matches the ARN of the DynamoDB resource to which it is attached.

Note

Remember to replace the italicized text with your resource-specific information.

Resource-based policy for a table

The following resource-based policy attached to a DynamoDB table named MusicCollection,
gives the IAM users John and Jane permission to perform GetItem and BatchGetItem actions on
the MusicCollection resource.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "1111",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws-cn:iam::111122223333:user/username",
 "arn:aws-cn:iam::111122223333:user/Jane"
]
 },
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem"
],
 "Resource": [
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection"
]
 }
]
}

Examples API Version 2012-08-10 2887

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html

Amazon DynamoDB Developer Guide

Resource-based policy for a stream

The following resource-based policy attached to a DynamoDB stream named
2024-02-12T18:57:26.492 gives the IAM users John and Jane permission to
perform GetRecords, GetShardIterator, and DescribeStream API actions on the
2024-02-12T18:57:26.492 resource.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "1111",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws-cn:iam::111122223333:user/username",
 "arn:aws-cn:iam::111122223333:user/Jane"
]
 },
 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator"
],
 "Resource": [
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection/
stream/2024-02-12T18:57:26.492"
]
 }
]
}

Examples API Version 2012-08-10 2888

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html

Amazon DynamoDB Developer Guide

Resource-based policy for access to perform all actions on specified resources

To allow a user to perform all actions on a table and all associated indexes with a table, you can
use a wildcard (*) to represent the actions and the resources associated with the table. Using a
wild card character for the resources, will allow the user access to the DynamoDB table and all its
associated indexes, including the ones that haven’t yet been created. For example, the following
policy will give the user John permission to perform any actions on the MusicCollection table
and all of its indexes, including any indexes that will be created in the future.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "1111",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::111122223333:user/role-name"
 },
 "Action": "dynamodb:*",
 "Resource": [
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection",
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection/
index/index-name"
]
 }
]
}

Resource-based policy for cross-account access

You can specify permissions for a cross-account IAM identity to access DynamoDB resources. For
example, you might need a user from a trusted account to get access to read the contents of your
table, with the condition that they access only specific items and specific attributes in those items.
The following policy allows access to user John from a trusted Amazon Web Services account ID
111111111111 to access data from a table in account 123456789012 by using the GetItem API.

Examples API Version 2012-08-10 2889

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html

Amazon DynamoDB Developer Guide

The policy ensures that the user can access only items with a primary key Jane and that the user
can only retrieve the attributes Artist and SongTitle, but no other attributes.

Important

If you do not specify the SPECIFIC_ATTRIBUTES condition, you'll see all attributes for the
items returned.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountTablePolicy",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111111111111:user/John"
 },
 "Action": "dynamodb:GetItem",
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": "Jane",
 "dynamodb:Attributes": [
 "Artist",
 "SongTitle"
]
 },
 "StringEquals": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

Examples API Version 2012-08-10 2890

Amazon DynamoDB Developer Guide

In addition to the preceding resource-based policy, the identity-based policy attached to the
user John also needs to allow the GetItem API action for the cross-account access to work. The
following is an example of an identity-based policy that you must attach to the user John.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "CrossAccountIdentityBasedPolicy",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem"
],
 "Resource": [
 "arn:aws-cn:dynamodb:us-
east-1:123456789012:table/MusicCollection"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": "Jane",
 "dynamodb:Attributes": [
 "Artist",
 "SongTitle"
]
 },
 "StringEquals": {
 "dynamodb:Select": "SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

The user John can make a GetItem request by specifying the table ARN in the table-name
parameter for accessing the table MusicCollection in the account 123456789012.

aws dynamodb get-item \
 --table-name arn:aws-cn:dynamodb:us-west-2:123456789012:table/MusicCollection \
 --key '{"Artist": {"S": "Jane"}' \

Examples API Version 2012-08-10 2891

Amazon DynamoDB Developer Guide

 --projection-expression 'Artist, SongTitle' \
 --return-consumed-capacity TOTAL

Resource-based policy with IP address conditions

You can apply a condition to restrict source IP addresses, virtual private clouds (VPCs), and VPC
endpoint (VPCE). You can specify permissions based on the source addresses of the originating
request. For example, you might want to allow a user to access DynamoDB resources only if they
are being accessed from a specific IP source, such as a corporate VPN endpoint. Specify these IP
addresses in the Condition statement.

The following example allows the user John access to any DynamoDB resource when the source IPs
are 54.240.143.0/24 and 2001:DB8:1234:5678::/64.

JSON

{
 "Id":"PolicyId2",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowIPmix",
 "Effect":"Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::111111111111:user/username"
 },
 "Action":"dynamodb:*",
 "Resource":"*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "54.240.143.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }
 }
]
}

Examples API Version 2012-08-10 2892

Amazon DynamoDB Developer Guide

You can also deny all access to DynamoDB resources except when the source is a specific VPC
endpoint, for example vpce-1a2b3c4d.

Important

When you use DAX with DynamoDB tables that have IP-based resource policies in IPv6-only
environments, you must configure additional access rules. If your resource policy restricts
access to the IPv4 address space 0.0.0.0/0 on tables, you must allow access for the IAM
role associated with your DAX cluster. Add an ArnNotEquals condition to your policy to
ensure DAX maintains access to your DynamoDB tables. For more information see, DAX and
IPv6.

JSON

{
 "Id":"PolicyId",
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AccessToSpecificVPCEOnly",
 "Principal": "*",
 "Action": "dynamodb:*",
 "Effect": "Deny",
 "Resource": "*",
 "Condition": {
 "StringNotEquals":{
 "aws:sourceVpce":"vpce-1a2b3c4d"
 }
 }
 }
]
}

Resource-based policy using an IAM role

You can also specify an IAM service role in the resource-based policy. IAM entities that assume
this role are bounded by the permissible actions specified for the role and to the specific set of
resources within the resource-based policy.

Examples API Version 2012-08-10 2893

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.create-cluster.DAX_and_IPV6.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.create-cluster.DAX_and_IPV6.html

Amazon DynamoDB Developer Guide

The following example allows an IAM entity to perform all DynamoDB actions on the
MusicCollection and MusicCollection DynamoDB resources.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "1111",
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws-cn:iam::111122223333:role/role-name" },
 "Action": "dynamodb:*",
 "Resource": [
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection",
 "arn:aws-cn:dynamodb:us-east-1:123456789012:table/MusicCollection/*"
]
 }
]
}

DynamoDB resource-based policy considerations

When you define resource-based policies for your DynamoDB resources, the following
considerations apply:

General considerations

• The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts
whitespaces when calculating the size of a policy against this limit.

• Subsequent updates to a policy for a given resource are blocked for 15 seconds after a successful
update of the policy for the same resource.

• Currently, you can only attach a resource-based policy to existing streams. You can't attach a
policy to a stream while creating it.

Global table considerations

• Resource-based policies aren't supported for Global table version 2017.11.29 (Legacy) replicas.

Considerations API Version 2012-08-10 2894

Amazon DynamoDB Developer Guide

• Within a resource-based policy, if the action for a DynamoDB service-linked role (SLR) to
replicate data for a global table is denied, adding or deleting a replica will fail with an error.

• The Amazon::DynamoDB::GlobalTable resource doesn’t support creating a replica and adding a
resource-based policy to that replica in the same stack update in Regions other than the Region
where you deploy the stack update.

Cross-account considerations

• Cross-account access using resource-based policies doesn't support encrypted tables with
Amazon managed keys because you can't grant cross-account access to the Amazon managed
KMS policy.

Amazon CloudFormation considerations

• Resource-based policies don't support drift detection. If you update a resource-based
policy outside of the Amazon CloudFormation stack template, you'll need to update the
CloudFormation stack with the changes.

• Resource-based policies don't support out of band changes. If you add, update, or delete a
policy outside of the CloudFormation template, the change won't be overwritten if there are no
changes to the policy within the template.

For example, say that your template contains a resource-based policy which you later update
outside of the template. If you don't make any changes to the policy in the template, the
updated policy in DynamoDB won’t be synced with the policy in the template.

Conversely, say that your template doesn’t contain a resource-based policy, but you add a policy
outside of the template. This policy won’t be removed from DynamoDB as long as you don’t add
it to the template. When you add a policy to the template and update the stack, the existing
policy in DynamoDB will be updated to match the one defined in the template.

DynamoDB resource-based policy best practices

This topic describes the best practices for defining access permissions for your DynamoDB
resources and the actions allowed on these resources.

Best practices API Version 2012-08-10 2895

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html#

Amazon DynamoDB Developer Guide

Simplify access control to DynamoDB resources

If the Amazon Identity and Access Management principals that need access to a DynamoDB
resource are part of the same Amazon Web Services account as the resource owner, an IAM
identity-based policy is not required for each principal. A resource-based policy that is attached to
the given resources will suffice. This type of configuration simplifies access control.

Protect your DynamoDB resources with resource-based policies

For all DynamoDB tables and streams, create resource-based policies to enforce access control
for these resources. Resource-based policies enable you to centralize permissions at the resource
level, simplify access control to DynamoDB tables, indexes, and streams, and reduce administration
overhead. If no resource-based policy is specified for a table or a stream, access to the table or
stream will be implicitly denied, unless identity-based policies associated with the IAM principals
allow access.

Apply least-privilege permissions

When you set permissions with resource-based policies for DynamoDB resources, grant only the
permissions required to perform an action. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. You might
start with broad permissions while you explore the permissions that are required for your workload
or use case. As your use case matures, you can work to reduce the permissions that you grant to
work toward least privilege.

Analyze cross-account access activity for generating least-privilege policies

IAM Access Analyzer reports cross-account access to external entities specified in resource-based
policies, and provides visibility to help you refine permissions and conform to least privilege. For
more information about policy generation, see IAM Access Analyzer policy generation.

Use IAM Access Analyzer to generate least-privilege policies

To grant only the permissions required to perform a task, you can generate policies based on your
access activity that is logged in Amazon CloudTrail. IAM Access Analyzer analyzes the services and
actions that your policies use.

Best practices API Version 2012-08-10 2896

https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-generation.html

Amazon DynamoDB Developer Guide

Using attribute-based access control with DynamoDB

Attribute-based access control (ABAC) is an authorization strategy that defines access permissions
based on tag conditions in your identity-based policies or other Amazon policies, such as resource-
based policies and organization IAM policies. You can attach tags to DynamoDB tables, which are
then evaluated against the tag-based conditions. The indexes associated with a table inherit the
tags you add to the table. You can add up to 50 tags for each DynamoDB table. The maximum
size supported for all the tags in a table is 10 KB. For more information about tagging DynamoDB
resources and tagging restrictions, see Tagging resources in DynamoDB and the section called
“Tagging restrictions in DynamoDB”.

For more information about using tags to control access to Amazon resources, see the following
topics in the IAM User Guide:

• What is ABAC for Amazon

• Controlling access to Amazon resources using tags

Using ABAC, you can enforce different access levels for your teams and applications to perform
actions on DynamoDB tables using fewer policies. You can specify a tag in the condition element of
an IAM policy to control access to your DynamoDB tables or indexes. These conditions determine
the level of access an IAM principal, a user, or role, has to DynamoDB tables and indexes. When
an IAM principal makes an access request to DynamoDB, the resource and identity’s tags are
evaluated against the tag conditions in the IAM policy. Thereafter, the policy becomes effective
only if tag conditions are met. This enables you to create an IAM policy that effectively says one of
the following:

• Allow the user to manage only those resources that have a tag with a key X and a value Y.

• Deny access to all users to resources tagged with a key X.

For example, you can create a policy that allows users to update a table only if it has the tag key-
value pair: "environment": "staging". You can use the aws:ResourceTag condition key to
allow or deny access to a table based on the tags that are attached to that table.

You can include attribute-based conditions while creating the policy or later using the Amazon
Web Services Management Console, Amazon API, Amazon Command Line Interface (Amazon CLI),
Amazon SDK, or Amazon CloudFormation.

Attribute-based access control API Version 2012-08-10 2897

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Tagging.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Tagging.Operations.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon DynamoDB Developer Guide

The following example allows the UpdateItem action on a table named MusicTable if it includes a
tag key with the name environment and value production.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/MusicTable",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "production"
 }
 }
 }
]
}

Topics

• Why should I use ABAC?

• Condition keys to implement ABAC with DynamoDB

• Considerations for using ABAC with DynamoDB

• Enabling ABAC in DynamoDB

• Using ABAC with DynamoDB tables and indexes

• Examples for using ABAC with DynamoDB tables and indexes

• Troubleshooting common ABAC errors for DynamoDB tables and indexes

Why should I use ABAC?

• Simpler policy management: You use fewer policies because you don't have to create different
policies to define the level of access for each IAM principal.

Why should I use ABAC? API Version 2012-08-10 2898

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html

Amazon DynamoDB Developer Guide

• Scalable access control: Scaling access control is easier with ABAC because you don't have to
update your policies when you create new DynamoDB resources. You can use tags to authorize
access to IAM principals that contain tags matching the resource's tags. You can onboard new
IAM principals or DynamoDB resources and apply appropriate tags to automatically grant the
necessary permissions without having to make any policy changes.

• Fine-grained permission management: It's a best practice to grant least privilege when you
create policies. Using ABAC, you can create tags for the IAM principal, and use them to grant
access to specific actions and resources that match the tags on the IAM principal.

• Alignment with corporate directory: You can map tags with existing employee attributes from
your corporate directory to align your access control policies with your organizational structure.

Condition keys to implement ABAC with DynamoDB

You can use the following condition keys in your Amazon policies to control the level of access to
your DynamoDB tables and indexes:

• aws:ResourceTag/tag-key: Controls access based on whether or not the tag key-value pair on
a DynamoDB table or index matches the tag key and value in a policy. This condition key is
relevant to all APIs that operate on an existing table or index.

The dynamodb:ResourceTag conditions are evaluated as if you didn't attach any tags to a
resource.

• aws:RequestTag/tag-key: Allows comparing the tag key-value pair that was passed in the request
with the tag pair that you specify in the policy. This condition key is relevant to APIs that contain
tags as part of the request payload. These APIs include CreateTable and TagResource.

• aws:TagKeys: Compares the tag keys in a request with the keys that you specify in the policy.
This condition key is relevant to APIs that contain tags as part of the request payload. These APIs
include CreateTable, TagResource, and UntagResource.

Considerations for using ABAC with DynamoDB

When you use ABAC with DynamoDB tables or indexes, the following considerations apply:

• Tagging and ABAC aren't supported for DynamoDB Streams.

• Tagging and ABAC aren't supported for DynamoDB backups. To use ABAC with backups, we
recommend that you use Amazon Backup.

Condition keys API Version 2012-08-10 2899

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys
https://docs.amazonaws.cn/aws-backup/latest/devguide/whatisbackup.html

Amazon DynamoDB Developer Guide

• Tags aren't preserved in restored tables. You need to add tags to restored tables before you can
use tag-based conditions in your policies.

Enabling ABAC in DynamoDB

For most of the Amazon Web Services accounts, ABAC is enabled by default. Using the DynamoDB
console, you can confirm if ABAC is enabled for your account. To do this, make sure that you open
the DynamoDB console with a role that has the dynamodb:GetAbacStatus permission. Then, open
the Settings page of the DynamoDB console.

If you don’t see the Attribute-based access control card or if the card displays a status of On, it
means ABAC is enabled for your account. However, if you see the Attribute-based access control
card with a status of Off, as shown in the following image, ABAC isn’t enabled for your account.

Attribute-based access control – not enabled

ABAC isn't enabled for Amazon Web Services accounts for which tag-based conditions specified in
their identity-based policies or other policies still need to be audited. If ABAC isn't enabled for your
account, the tag-based conditions in your policies that are intended to act on DynamoDB tables
or indexes are evaluated as if no tags are present for your resources or API requests. When ABAC
is enabled for your account, the tag-based conditions in the policies of your account are evaluated
considering the tags attached to your tables or API requests.

Enabling ABAC in DynamoDB API Version 2012-08-10 2900

https://console.amazonaws.cn/dynamodb/
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

To enable ABAC for your account, we recommend that you first audit your policies as described in
the Policy audit section. Then, include the required permissions for ABAC in your IAM policy. Finally,
perform the steps described in Enabling ABAC in console to enable ABAC for your account in the
current Region. After you enable ABAC, you can opt out within the next seven calendar days of
opting in.

Topics

• Auditing your policies before enabling ABAC

• IAM permissions required to enable ABAC

• Enabling ABAC in console

Auditing your policies before enabling ABAC

Before you enable ABAC for your account, audit your policies to confirm that the tag-based
conditions which might exist in the policies within your account are set up as intended. Auditing
your policies will help avoid surprises from authorization changes with your DynamoDB workflows
after ABAC is enabled. To view examples of using attribute-based conditions with tags, and the
before and after behavior of ABAC implementation, see Examples for using ABAC with DynamoDB
tables and indexes.

IAM permissions required to enable ABAC

You need the dynamodb:UpdateAbacStatus permission to enable ABAC for your account
in the current Region. To confirm if ABAC is enabled for your account, you must also have the
dynamodb:GetAbacStatus permission. With this permission, you can view the ABAC status for
an account in any Region. You need these permissions in addition to the permission needed for
accessing the DynamoDB console.

The following IAM policy grants the permission to enable ABAC and view its status for an account
in the current Region.

{
"version": "2012-10-17", &TCX5-2025-waiver;
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateAbacStatus",
 "dynamodb:GetAbacStatus"

Enabling ABAC in DynamoDB API Version 2012-08-10 2901

Amazon DynamoDB Developer Guide

],
 "Resource": "*"
 }
]
}

Enabling ABAC in console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. From the top navigation pane, choose the Region for which you want to enable ABAC.

3. On the left navigation pane, choose Settings.

4. On the Settings page, do the following:

a. In the Attribute-based access control card, choose Enable.

b. In the Confirm attribute-based access control setting box, choose Enable to confirm
your choice.

This enables ABAC for the current Region and the Attribute-based access control card
shows the status of On.

If you want to opt out after enabling ABAC on the console, you can do so within the next
seven calendar days of opting in. To opt out, choose Disable in the Attribute-based access
control card on the Settings page.

Note

Updating the status of ABAC is an asynchronous operation. If the tags in your
policies aren't evaluated right away, you might need to wait for some time because
the application of the changes is eventually consistent.

Using ABAC with DynamoDB tables and indexes

The following steps show how to set up permissions using ABAC. In this example scenario, you'll
add tags to a DynamoDB table and create an IAM role with a policy that includes tag-based
conditions. Then, you'll test the allowed permissions on the DynamoDB table by matching the tag
conditions.

Using ABAC API Version 2012-08-10 2902

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Topics

• Step 1: Add tags to a DynamoDB table

• Step 2: Create an IAM role with a policy including tag-based conditions

• Step 3: Test allowed permissions

Step 1: Add tags to a DynamoDB table

You can add tags to new or existing DynamoDB tables using the Amazon Web Services
Management Console, Amazon API, Amazon Command Line Interface (Amazon CLI), Amazon SDK,
or Amazon CloudFormation. For example, the following tag-resource CLI command adds a tag to a
table named MusicTable.

aws dynamodb tag-resource —resource-arn arn:aws-cn:dynamodb:us-
east-1:123456789012:table/MusicTable —tags Key=environment,Value=staging

Step 2: Create an IAM role with a policy including tag-based conditions

Create an IAM policy using the aws:ResourceTag/tag-key condition key to compare the tag key-
value pair that's specified in the IAM policy with the key-value pair that's attached to the table. The
following example policy allows users to put or update items in tables if these tables contain the
tag key-value pair: "environment": "staging". If a table doesn't have the specified tag key-
value pair, these actions are denied.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/environment": "staging"

Using ABAC API Version 2012-08-10 2903

https://docs.amazonaws.cn/cli/latest/reference/dynamodb/tag-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html#access_policies_create-json-editor
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag

Amazon DynamoDB Developer Guide

 }
 }
 }
]
}

Step 3: Test allowed permissions

1. Attach the IAM policy to a test user or role in your Amazon Web Services account. Make sure
that the IAM principal you use doesn’t already have access to the DynamoDB table through a
different policy.

2. Make sure that your DynamoDB table contains the "environment" tag key with a value of
"staging".

3. Perform the dynamodb:PutItem and dynamodb:UpdateItem actions on the tagged table.
These actions should succeed if the "environment": "staging" tag key-value pair is
present.

If you perform these actions on a table that doesn’t have the "environment": "staging"
tag key-value pair, your request will fail with an AccessDeniedException.

You can also review the other sample use cases described in the following section to implement
ABAC and perform more tests.

Examples for using ABAC with DynamoDB tables and indexes

The following examples depict some use cases to implement attribute-based conditions using tags.

Topics

• Example 1: Allow an action using aws:ResourceTag

• Example 2: Allow an action using aws:RequestTag

• Example 3: Deny an action using aws:TagKeys

Example 1: Allow an action using aws:ResourceTag

Using the aws:ResourceTag/tag-key condition key, you can compare the tag key-value pair
that's specified in an IAM policy with the key-value pair that's attached in a DynamoDB table. For

Example use cases API Version 2012-08-10 2904

Amazon DynamoDB Developer Guide

example, you can allow a specific action, such as PutItem, if the tag conditions match in an IAM
policy and a table. To do this, perform the following steps:

Using the Amazon CLI

1. Create a table. The following example uses the create-table Amazon CLI command to
create a table named myMusicTable.

aws dynamodb create-table \
 --table-name myMusicTable \
 --attribute-definitions AttributeName=id,AttributeType=S \
 --key-schema AttributeName=id,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \
 --region us-east-1

2. Add a tag to this table. The following tag-resource Amazon CLI command example adds the
tag key-value pair Title: ProductManager to the myMusicTable.

aws dynamodb tag-resource --region us-east-1 --resource-arn arn:aws-
cn:dynamodb:us-east-1:123456789012:table/myMusicTable --tags
 Key=Title,Value=ProductManager

3. Create an inline policy and add it to a role which has the
AmazonDynamoDBReadOnlyAccess Amazon managed policy attached to it, as shown in the
following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Title": "ProductManager"
 }
 }
 }

Example use cases API Version 2012-08-10 2905

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/cli/latest/reference/dynamodb/create-table.html
https://docs.amazonaws.cn/cli/latest/reference/dynamodb/tag-resource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBReadOnlyAccess.html

Amazon DynamoDB Developer Guide

]
}

This policy allows the PutItem action on the table when the tag key and value attached to
the table matches with the tags specified in the policy.

4. Assume the role with the policies described in Step 3.

5. Use the put-item Amazon CLI command to put an item to the myMusicTable.

aws dynamodb put-item \
 --table-name myMusicTable --region us-east-1 \
 --item '{
 "id": {"S": "2023"},
 "title": {"S": "Happy Day"},
 "info": {"M": {
 "rating": {"N": "9"},
 "Artists": {"L": [{"S": "Acme Band"}, {"S": "No One You Know"}]},
 "release_date": {"S": "2023-07-21"}
 }}
 }'

6. Scan the table to verify if the item was added to the table.

aws dynamodb scan --table-name myMusicTable --region us-east-1

Using the Amazon SDK for Java 2.x

1. Create a table. The following example uses the CreateTable API to create a table named
myMusicTable.

DynamoDbClient dynamoDB = DynamoDbClient.builder().region(region).build();
CreateTableRequest createTableRequest = CreateTableRequest.builder()
 .attributeDefinitions(
 Arrays.asList(
 AttributeDefinition.builder()
 .attributeName("id")
 .attributeType(ScalarAttributeType.S)
 .build()
)
)

Example use cases API Version 2012-08-10 2906

https://docs.amazonaws.cn/cli/latest/reference/dynamodb/put-item.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html

Amazon DynamoDB Developer Guide

 .keySchema(
 Arrays.asList(
 KeySchemaElement.builder()
 .attributeName("id")
 .keyType(KeyType.HASH)
 .build()
)
)
 .provisionedThroughput(ProvisionedThroughput.builder()
 .readCapacityUnits(5L)
 .writeCapacityUnits(5L)
 .build()
)
 .tableName("myMusicTable")
 .build();

CreateTableResponse createTableResponse =
 dynamoDB.createTable(createTableRequest);
String tableArn = createTableResponse.tableDescription().tableArn();
String tableName = createTableResponse.tableDescription().tableName();

2. Add a tag to this table. The TagResource API in the following example adds the tag key-
value pair Title: ProductManager to the myMusicTable.

TagResourceRequest tagResourceRequest = TagResourceRequest.builder()
 .resourceArn(tableArn)
 .tags(
 Arrays.asList(
 Tag.builder()
 .key("Title")
 .value("ProductManager")
 .build()
)
)
 .build();
dynamoDB.tagResource(tagResourceRequest);

3. Create an inline policy and add it to a role which has the
AmazonDynamoDBReadOnlyAccess Amazon managed policy attached to it, as shown in the
following example.

Example use cases API Version 2012-08-10 2907

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBReadOnlyAccess.html

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Title": "ProductManager"
 }
 }
 }
]
}

This policy allows the PutItem action on the table when the tag key and value attached to
the table matches with the tags specified in the policy.

4. Assume the role with the policies described in Step 3.

5. Use the PutItem API to put an item to the myMusicTable.

HashMap<String, AttributeValue> info = new HashMap<>();
info.put("rating", AttributeValue.builder().s("9").build());
info.put("artists", AttributeValue.builder().ss(List.of("Acme Band","No One You
 Know").build());
info.put("release_date", AttributeValue.builder().s("2023-07-21").build());

HashMap<String, AttributeValue> itemValues = new HashMap<>();
itemValues.put("id", AttributeValue.builder().s("2023").build());
itemValues.put("title", AttributeValue.builder().s("Happy Day").build());
itemValues.put("info", AttributeValue.builder().m(info).build());

PutItemRequest putItemRequest = PutItemRequest.builder()
 .tableName(tableName)
 .item(itemValues)
 .build();

Example use cases API Version 2012-08-10 2908

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

dynamoDB.putItem(putItemRequest);

6. Scan the table to verify if the item was added to the table.

ScanRequest scanRequest = ScanRequest.builder()
 .tableName(tableName)
 .build();

ScanResponse scanResponse = dynamoDB.scan(scanRequest);

Using the Amazon SDK for Python (Boto3)

1. Create a table. The following example uses the CreateTable API to create a table named
myMusicTable.

create_table_response = ddb_client.create_table(
 AttributeDefinitions=[
 {
 'AttributeName': 'id',
 'AttributeType': 'S'
 },
],
 TableName='myMusicTable',
 KeySchema=[
 {
 'AttributeName': 'id',
 'KeyType': 'HASH'
 },
],
 ProvisionedThroughput={
 'ReadCapacityUnits': 5,
 'WriteCapacityUnits': 5
 },
)

table_arn = create_table_response['TableDescription']['TableArn']

2. Add a tag to this table. The TagResource API in the following example adds the tag key-
value pair Title: ProductManager to the myMusicTable.

tag_resouce_response = ddb_client.tag_resource(

Example use cases API Version 2012-08-10 2909

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html

Amazon DynamoDB Developer Guide

 ResourceArn=table_arn,
 Tags=[
 {
 'Key': 'Title',
 'Value': 'ProductManager'
 },
]
)

3. Create an inline policy and add it to a role which has the
AmazonDynamoDBReadOnlyAccess Amazon managed policy attached to it, as shown in the
following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Title": "ProductManager"
 }
 }
 }
]
 }

This policy allows the PutItem action on the table when the tag key and value attached to
the table matches with the tags specified in the policy.

4. Assume the role with the policies described in Step 3.

5. Use the PutItem API to put an item to the myMusicTable.

put_item_response = client.put_item(
 TableName = 'myMusicTable'
 Item = {
 'id': '2023',

Example use cases API Version 2012-08-10 2910

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBReadOnlyAccess.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

 'title': 'Happy Day',
 'info': {
 'rating': '9',
 'artists': ['Acme Band','No One You Know'],
 'release_date': '2023-07-21'
 }
 }
)

6. Scan the table to verify if the item was added to the table.

scan_response = client.scan(
 TableName='myMusicTable'
)

Without ABAC

If ABAC isn't enabled for your Amazon Web Services account, the tag conditions in the IAM
policy and the DynamoDB table aren’t matched. Consequently, the PutItem action returns an
AccessDeniedException because of the effect of the AmazonDynamoDBReadOnlyAccess
policy.

An error occurred (AccessDeniedException) when calling the PutItem operation:
 User: arn:aws-cn:sts::123456789012:assumed-role/DynamoDBReadOnlyAccess/Alice is
 not authorized to perform: dynamodb:PutItem on resource: arn:aws-cn:dynamodb:us-
east-1:123456789012:table/myMusicTable because no identity-based policy allows the
 dynamodb:PutItem action.

With ABAC

If ABAC is enabled for your Amazon Web Services account, the put-item action completes
successfully and adds a new item to your table. This is because the inline policy on the table allows
the PutItem action if the tag conditions in the IAM policy and the table match.

Example 2: Allow an action using aws:RequestTag

Using the aws:RequestTag/tag-key condition key, you can compare the tag key-value pair that's
passed in your request with the tag pair that's specified in the IAM policy. For example, you can
allow a specific action, such as CreateTable, using the aws:RequestTag if the tag conditions
don't match. To do this, perform the following steps:

Example use cases API Version 2012-08-10 2911

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag

Amazon DynamoDB Developer Guide

Using the Amazon CLI

1. Create an inline policy and add it to a role which has the
AmazonDynamoDBReadOnlyAccess Amazon managed policy attached to it, as shown in the
following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:TagResource"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Owner": "John"
 }
 }
 }
]
}

2. Create a table that contains the tag key-value pair of "Owner": "John".

aws dynamodb create-table \
--attribute-definitions AttributeName=ID,AttributeType=S \
--key-schema AttributeName=ID,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1000,WriteCapacityUnits=500 \
--region us-east-1 \
--tags Key=Owner,Value=John \
--table-name myMusicTable

Example use cases API Version 2012-08-10 2912

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/ReadOnlyAccess.html

Amazon DynamoDB Developer Guide

Using the Amazon SDK for Python (Boto3)

1. Create an inline policy and add it to a role which has the
AmazonDynamoDBReadOnlyAccess Amazon managed policy attached to it, as shown in the
following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:TagResource"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/Owner": "John"
 }
 }
 }
]
}

2. Create a table that contains the tag key-value pair of "Owner": "John".

ddb_client = boto3.client('dynamodb')

create_table_response = ddb_client.create_table(
 AttributeDefinitions=[
 {
 'AttributeName': 'id',
 'AttributeType': 'S'
 },
],
 TableName='myMusicTable',
 KeySchema=[
 {
 'AttributeName': 'id',

Example use cases API Version 2012-08-10 2913

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBReadOnlyAccess.html

Amazon DynamoDB Developer Guide

 'KeyType': 'HASH'
 },
],
 ProvisionedThroughput={
 'ReadCapacityUnits': 1000,
 'WriteCapacityUnits': 500
 },
 Tags=[
 {
 'Key': 'Owner',
 'Value': 'John'
 },
],
)

Without ABAC

If ABAC isn't enabled for your Amazon Web Services account, the tag conditions in the inline policy
and the DynamoDB table aren’t matched. Consequently, the CreateTable request fails and your
table isn’t created.

An error occurred (AccessDeniedException) when calling the CreateTable operation: User:
 arn:aws-cn:sts::123456789012:assumed-role/Admin/John is not authorized to perform:
 dynamodb:CreateTable on resource: arn:aws-cn:dynamodb:us-east-1:123456789012:table/
myMusicTable because no identity-based policy allows the dynamodb:CreateTable action.

With ABAC

If ABAC is enabled for your Amazon Web Services account, your table creation request completes
successfully. Because the tag key-value pair of "Owner": "John" is present in the CreateTable
request, the inline policy allows the user John to perform the CreateTable action.

Example 3: Deny an action using aws:TagKeys

Using the aws:TagKeys condition key, you can compare the tag keys in a request with the keys that
are specified in the IAM policy. For example, you can deny a specific action, such as CreateTable,
using aws:TagKeys if a specific tag key is not present in the request. To do this, perform the
following steps:

Example use cases API Version 2012-08-10 2914

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys

Amazon DynamoDB Developer Guide

Using the Amazon CLI

1. Add a customer managed policy to a role which has the AmazonDynamoDBFullAccess
Amazon managed policy attached to it, as shown in the following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:TagResource"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "Null": {
 "aws:TagKeys": "false"
 },
 "ForAllValues:StringNotEquals": {
 "aws:TagKeys": "CostCenter"
 }
 }
 }
]
}

2. Assume the role to which the policy was attached, and create a table with the tag key
Title.

aws dynamodb create-table \
--attribute-definitions AttributeName=ID,AttributeType=S \
--key-schema AttributeName=ID,KeyType=HASH \
--provisioned-throughput ReadCapacityUnits=1000,WriteCapacityUnits=500 \
--region us-east-1 \
--tags Key=Title,Value=ProductManager \
--table-name myMusicTable

Example use cases API Version 2012-08-10 2915

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html

Amazon DynamoDB Developer Guide

Using the Amazon SDK for Python (Boto3)

1. Add a customer managed policy to a role which has the AmazonDynamoDBFullAccess
Amazon managed policy attached to it, as shown in the following example.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:CreateTable",
 "dynamodb:TagResource"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "Null": {
 "aws:TagKeys": "false"
 },
 "ForAllValues:StringNotEquals": {
 "aws:TagKeys": "CostCenter"
 }
 }
 }
]
}

2. Assume the role to which the policy was attached, and create a table with the tag key
Title.

ddb_client = boto3.client('dynamodb')

create_table_response = ddb_client.create_table(
 AttributeDefinitions=[
 {
 'AttributeName': 'id',
 'AttributeType': 'S'
 },
],
 TableName='myMusicTable',

Example use cases API Version 2012-08-10 2916

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AmazonDynamoDBFullAccess.html

Amazon DynamoDB Developer Guide

 KeySchema=[
 {
 'AttributeName': 'id',
 'KeyType': 'HASH'
 },
],
 ProvisionedThroughput={
 'ReadCapacityUnits': 1000,
 'WriteCapacityUnits': 500
 },
 Tags=[
 {
 'Key': 'Title',
 'Value': 'ProductManager'
 },
],
)

Without ABAC

If ABAC isn't enabled for your Amazon Web Services account, DynamoDB doesn’t send the tag
keys in the create-table command to IAM. The Null condition ensures that the condition
evaluates to false if there are no tag keys in the request. Because the Deny policy doesn't match,
the create-table command completes successfully.

With ABAC

If ABAC is enabled for your Amazon Web Services account, the tag keys passed in the create-
table command are passed to IAM. The tag key Title is evaluated against the condition-
based tag key, CostCenter, present in the Deny policy. The tag key Title doesn't match the
tag key present in the Deny policy because of the StringNotEquals operator. Therefore, the
CreateTable action fails and your table isn’t created. Running the create-table command
returns an AccessDeniedException.

An error occurred (AccessDeniedException) when calling the CreateTable operation: User:
 arn:aws-cn:sts::123456789012:assumed-role/DynamoFullAccessRole/ProductManager is
 not authorized to perform: dynamodb:CreateTable on resource: arn:aws-cn:dynamodb:us-
east-1:123456789012:table/myMusicTable with an explicit deny in an identity-based
 policy.

Example use cases API Version 2012-08-10 2917

Amazon DynamoDB Developer Guide

Troubleshooting common ABAC errors for DynamoDB tables and
indexes

This topic provides troubleshooting advice for common errors and issues that you might encounter
while implementing ABAC in DynamoDB tables or indexes.

Service-specific condition keys in policies result in an error

Service-specific condition keys aren't considered as valid condition keys. If you've used such keys
in your policies, these will result in an error. To fix this issue, you must replace the service-specific
condition keys with an appropriate condition key to implement ABAC in DynamoDB.

For example, say that you've used the dynamodb:ResourceTag condition key in an
inline policy that performs the PutItem request. Imagine that the request fails with an
AccessDeniedException. The following example shows the erroneous inline policy with the
dynamodb:ResourceTag condition key.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "dynamodb:ResourceTag/Owner": "John"
 }
 }
 }
]
}

To fix this issue, replace the dynamodb:ResourceTag condition key with aws:ResourceTag, as
shown in the following example.

Troubleshooting API Version 2012-08-10 2918

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#inline-policies
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": "arn:aws-cn:dynamodb:*:*:table/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "John"
 }
 }
 }
]
}

Unable to opt out of ABAC

If ABAC was enabled for your account through Amazon Web Services Support, you won't be able
to opt out of ABAC through the DynamoDB console. To opt out, contact Amazon Web Services
Support.

You can opt out of ABAC yourself only if the following are true:

• You used the self-service way of opting in through the DynamoDB console.

• You're opting out within seven calendar days of opting in.

Data protection in DynamoDB

Amazon DynamoDB provides a highly durable storage infrastructure designed for mission-critical
and primary data storage. Data is redundantly stored on multiple devices across multiple facilities
in an Amazon DynamoDB Region.

Data protection API Version 2012-08-10 2919

https://console.aws.amazon.com/support
https://console.aws.amazon.com/support

Amazon DynamoDB Developer Guide

DynamoDB protects user data stored at rest and also data in transit between on-premises clients
and DynamoDB, and between DynamoDB and other Amazon resources within the same Amazon
Region.

Topics

• DynamoDB encryption at rest

• Securing DynamoDB connections using VPC endpoints and IAM policies"

DynamoDB encryption at rest

All user data stored in Amazon DynamoDB is fully encrypted at rest. DynamoDB encryption at
rest provides enhanced security by encrypting all your data at rest using encryption keys stored in
Amazon Key Management Service (Amazon KMS). This functionality helps reduce the operational
burden and complexity involved in protecting sensitive data. With encryption at rest, you can build
security-sensitive applications that meet strict encryption compliance and regulatory requirements.

DynamoDB encryption at rest provides an additional layer of data protection by always securing
your data in an encrypted table—including its primary key, local and global secondary indexes,
streams, global tables, backups, and DynamoDB Accelerator (DAX) clusters whenever the data
is stored in durable media. Organizational policies, industry or government regulations, and
compliance requirements often require the use of encryption at rest to increase the data security of
your applications. For more information about encryption for database applications, see Amazon
Database Encryption SDK.

Encryption at rest integrates with Amazon KMS for managing the encryption keys that are
used to encrypt your tables. For more information about key types and states, see Amazon Key
Management Service concepts in the Amazon Key Management Service Developer Guide.

When creating a new table, you can choose one of the following Amazon KMS key types to encrypt
your table. You can switch between these key types at any time.

• Amazon owned key – Default encryption type. The key is owned by DynamoDB (no additional
charge).

• Amazon managed key – The key is stored in your account and is managed by Amazon KMS
(Amazon KMS charges apply).

• Customer managed key – The key is stored in your account and is created, owned, and managed
by you. You have full control over the KMS key (Amazon KMS charges apply).

Encryption at rest API Version 2012-08-10 2920

https://aws.amazon.com/kms/
https://docs.amazonaws.cn/database-encryption-sdk/latest/devguide/what-is-database-encryption-sdk.html
https://docs.amazonaws.cn/database-encryption-sdk/latest/devguide/what-is-database-encryption-sdk.html
https://docs.amazonaws.cn/kms/latest/developerguide/key-state.html#key-state-cmk-type
https://docs.amazonaws.cn/kms/latest/developerguide/key-state.html#key-state-cmk-type

Amazon DynamoDB Developer Guide

For more information about key types, see Customer keys and Amazon keys.

Note

• When creating a new DAX cluster with encryption at rest enabled, an Amazon managed
key will be used to encrypt data at rest in the cluster.

• If your table has a sort key, some of the sort keys that mark range boundaries are stored
in plaintext in the table metadata.

When you access an encrypted table, DynamoDB decrypts the table data transparently. You
don't have to change any code or applications to use or manage encrypted tables. DynamoDB
continues to deliver the same single-digit millisecond latency that you have come to expect, and all
DynamoDB queries work seamlessly on your encrypted data.

You can specify an encryption key when you create a new table or switch the encryption keys on
an existing table by using the Amazon Web Services Management Console, Amazon Command
Line Interface (Amazon CLI), or the Amazon DynamoDB API. To learn how, see Managing encrypted
tables in DynamoDB.

Encryption at rest using the Amazon owned key is offered at no additional charge. However,
Amazon KMS charges apply for an Amazon managed key and for a customer managed key. For
more information about pricing, see Amazon KMS pricing.

DynamoDB encryption at rest is available in all Amazon Regions, including the Amazon China
(Beijing) and Amazon China (Ningxia) Regions and the Amazon GovCloud (US) Regions. For more
information, see DynamoDB encryption at rest: How it works and DynamoDB encryption at rest
usage notes.

DynamoDB encryption at rest: How it works

Amazon DynamoDB encryption at rest encrypts your data using 256-bit Advanced Encryption
Standard (AES-256), which helps secure your data from unauthorized access to the underlying
storage.

Encryption at rest integrates with Amazon Key Management Service (Amazon KMS) for managing
the encryption keys that are used to encrypt your tables.

Encryption at rest API Version 2012-08-10 2921

http://www.amazonaws.cn/kms/pricing

Amazon DynamoDB Developer Guide

Note

In May 2022, Amazon KMS changed the rotation schedule for Amazon managed keys from
every three years (approximately 1,095 days) to every year (approximately 365 days).
New Amazon managed keys are automatically rotated one year after they are created, and
approximately every year thereafter.
Existing Amazon managed keys are automatically rotated one year after their most recent
rotation, and every year thereafter.

Amazon owned keys

Amazon owned keys are not stored in your Amazon account. They are part of a collection of KMS
keys that Amazon owns and manages for use in multiple Amazon accounts. Amazon services can
use Amazon owned keys to protect your data. Amazon owned keys used by DynamoDB are rotated
every year (approximately 365 days).

You cannot view, manage, or use Amazon owned keys, or audit their use. However, you do not need
to do any work or change any programs to protect the keys that encrypt your data.

You are not charged a monthly fee or a usage fee for use of Amazon owned keys, and they do not
count against Amazon KMS quotas for your account.

Amazon managed keys

Amazon managed keys are KMS keys in your account that are created, managed, and used on
your behalf by an Amazon service that is integrated with Amazon KMS. You can view the Amazon
managed keys in your account, view their key policies, and audit their use in Amazon CloudTrail
logs. However, you cannot manage these KMS keys or change their permissions.

Encryption at rest automatically integrates with Amazon KMS for managing the Amazon
managed keys for DynamoDB (aws/dynamodb) that are used to encrypt your tables. If an Amazon
managed key doesn't exist when you create your encrypted DynamoDB table, Amazon KMS
automatically creates a new key for you. This key is used with encrypted tables that are created in
the future. Amazon KMS combines secure, highly available hardware and software to provide a key
management system scaled for the cloud.

For more information about managing permissions of the Amazon managed key, see Authorizing
use of the Amazon managed key in the Amazon Key Management Service Developer Guide.

Encryption at rest API Version 2012-08-10 2922

https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-authz
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-authz

Amazon DynamoDB Developer Guide

Customer managed keys

Customer managed keys are KMS keys in your Amazon account that you create, own, and manage.
You have full control over these KMS keys, including establishing and maintaining their key policies,
IAM policies, and grants; enabling and disabling them; rotating their cryptographic material;
adding tags; creating aliases that refer to them; and scheduling them for deletion. For more
information about managing permissions of a customer managed key, see Customer managed
keys.

When you specify a customer managed key as the table-level encryption key, the DynamoDB table,
local and global secondary indexes, and streams are encrypted with the same customer managed
key. On-demand backups are encrypted with the table-level encryption key that is specified at
the time the backup is created. Updating the table-level encryption key does not change the
encryption key that is associated with existing on-demand backups.

Setting the state of the customer managed key to disabled or scheduling it for deletion prevents
all users and the DynamoDB service from being able to encrypt or decrypt data and to perform
read and write operations on the table. DynamoDB must have access to your encryption key to
ensure that you can continue to access your table and to prevent data loss.

If you disable your customer managed key or schedule it for deletion, your table status becomes
Inaccessible. To ensure that you can continue working with the table, you must provide DynamoDB
access to the specified encryption key within seven days. As soon as the service detects that your
encryption key is inaccessible, DynamoDB sends you an email notification to alert you.

Note

• If your customer managed key remains inaccessible to the DynamoDB service for longer
than seven days, the table is archived and can no longer be accessed. DynamoDB creates
an on-demand backup of your table, and you are billed for it. You can use this on-
demand backup to restore your data to a new table. To initiate the restore, the last
customer managed key on the table must be enabled, and DynamoDB must have access
to it.

• If your customer managed key that was used to encrypt a global table replica is
inaccessible DynamoDB will remove this replica from the replication group. The replica
will not be deleted and replication will stop from and to this region, 20 hours after
detecting the customer managed key as inaccessible.

Encryption at rest API Version 2012-08-10 2923

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk

Amazon DynamoDB Developer Guide

For more information, see enabling keys and deleting keys.

Notes on using Amazon managed keys

Amazon DynamoDB can't read your table data unless it has access to the KMS key stored in your
Amazon KMS account. DynamoDB uses envelope encryption and key hierarchy to encrypt data.
Your Amazon KMS encryption key is used to encrypt the root key of this key hierarchy. For more
information, see Envelope encryption in the Amazon Key Management Service Developer Guide.

DynamoDB doesn't call Amazon KMS for every DynamoDB operation. The key is refreshed once
every 5 minutes per caller with active traffic.

Ensure that you have configured the SDK to reuse connections. Otherwise, you will experience
latencies from DynamoDB having to reestablish new Amazon KMS cache entries for each
DynamoDB operation. In addition, you might potentially have to face higher Amazon KMS and
CloudTrail costs. For example, to do this using the Node.js SDK, you can create a new HTTPS agent
with keepAlive turned on. For more information, see Configuring keepAlive in Node.js in the
Amazon SDK for JavaScript Developer Guide.

DynamoDB encryption at rest usage notes

Consider the following when you are using encryption at rest in Amazon DynamoDB.

All table data is encrypted

Server-side encryption at rest is enabled on all DynamoDB table data and cannot be disabled. You
cannot encrypt only a subset of items in a table.

Encryption at rest only encrypts data while it is static (at rest) on a persistent storage media. If data
security is a concern for data in transit or data in use, you might need to take additional measures:

• Data in transit: All your data in DynamoDB is encrypted in transit. By default, communications
to and from DynamoDB use the HTTPS protocol, which protects network traffic by using Secure
Sockets Layer (SSL)/Transport Layer Security (TLS) encryption.

• Data in use: Protect your data before sending it to DynamoDB using client-side encryption.
For more information, see Client-side and server-side encryption in the Amazon DynamoDB
Encryption Client Developer Guide.

You can use streams with encrypted tables. DynamoDB streams are always encrypted with a table-
level encryption key. For more information, see Change data capture for DynamoDB Streams.

Encryption at rest API Version 2012-08-10 2924

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#enveloping
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/node-reusing-connections.html
https://docs.amazonaws.cn/dynamodb-encryption-client/latest/devguide/client-server-side.html

Amazon DynamoDB Developer Guide

DynamoDB backups are encrypted, and the table that is restored from a backup also has
encryption enabled. You can use the Amazon owned key, Amazon managed key, or customer
managed key to encrypt your backup data. For more information, see Backup and restore for
DynamoDB.

Local secondary indexes and global secondary indexes are encrypted using the same key as the
base table.

Encryption types

Note

Customer managed keys are not supported in Global Table Version 2017. If you want to use
a customer managed key in a DynamoDB Global Table, you need to upgrade the table to
Global Table Version 2019 and then enable it.

On the Amazon Web Services Management Console, the encryption type is KMS when you use
the Amazon managed key or customer managed key to encrypt your data. The encryption type
is DEFAULT when you use the Amazon owned key. In the Amazon DynamoDB API, the encryption
type is KMS when you use the Amazon managed key or customer managed key. In the absence of
encryption type, your data is encrypted using the Amazon owned key. You can switch between the
Amazon owned key, Amazon managed key, and customer managed key at any given time. You can
use the console, the Amazon Command Line Interface (Amazon CLI), or the Amazon DynamoDB API
to switch the encryption keys.

Note the following limitations when using customer managed keys:

• You cannot use a customer managed key with DynamoDB Accelerator (DAX) clusters. For more
information, see DAX encryption at rest.

• You can use a customer managed key to encrypt tables that use transactions. However, to ensure
durability for propagation of transactions, a copy of the transaction request is temporarily stored
by the service and encrypted using an Amazon owned key. Committed data in your tables and
secondary indexes is always encrypted at rest using your customer managed key.

• You can use a customer managed key to encrypt tables that use Contributor Insights. However,
data that is transmitted to Amazon CloudWatch is encrypted with an Amazon owned key.

• When you transition to a new customer managed key, be sure to keep the original key enabled
until the process is complete. Amazon will still need the original key to decrypt the data before

Encryption at rest API Version 2012-08-10 2925

Amazon DynamoDB Developer Guide

encrypting it with the new key. The process will be complete when the table's SSEDescription
Status is ENABLED and the KMSMasterKeyArn of the new customer managed key is displayed. At
this point the original key can be disabled or scheduled for deletion.

• Once the new customer managed key is displayed, the table and any new on-demand backups
are encrypted with the new key.

• Any existing on-demand backups remain encrypted with the customer managed key that
was used when those backups were created. You will need that same key to restore those
backups. You can identify the key for the period when each backup was created by using the
DescribeBackup API to view that backup's SSEDescription.

• If you disable your customer managed key or schedule it for deletion, any data in DynamoDB
Streams is still subject to a 24-hour lifetime. Any unretrieved activity data is eligible for trimming
when it is older than 24 hours.

• If you disable your customer managed key or schedule it for deletion, Time to Live (TTL) deletes
continue for 30 minutes. These TTL deletes continue to be emitted to DynamoDB Streams and
are subject to the standard trimming/retention interval.

For more information, see enabling keys and deleting keys.

Using KMS keys and data keys

The DynamoDB encryption at rest feature uses an Amazon KMS key and a hierarchy of data keys
to protect your table data. DynamoDB uses the same key hierarchy to protect DynamoDB streams,
global tables, and backups when they are written to durable media.

We recommend that you plan your encryption strategy before implementing your table in
DynamoDB. If you store sensitive or confidential data in DynamoDB, consider including client-side
encryption in your plan. This way you can encrypt data as close as possible to its origin, and ensure
its protection throughout its lifecycle. For more information see the DynamoDB encryption client
documentation.

Amazon KMS key

Encryption at rest protects your DynamoDB tables under an Amazon KMS key. By default,
DynamoDB uses an Amazon owned key, a multi-tenant encryption key that is created and
managed in a DynamoDB service account. But you can encrypt your DynamoDB tables under a
customer managed key for DynamoDB (aws/dynamodb) in your Amazon Web Services account.

Encryption at rest API Version 2012-08-10 2926

https://docs.amazonaws.cn/dynamodb-encryption-client/latest/devguide/what-is-ddb-encrypt.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk

Amazon DynamoDB Developer Guide

You can select a different KMS key for each table. The KMS key you select for a table is also
used to encrypt its local and global secondary indexes, streams, and backups.

You select the KMS key for a table when you create or update the table. You can change the
KMS key for a table at any time, either in the DynamoDB console or by using the UpdateTable
operation. The process of switching keys is seamless and does not require downtime or degrade
service.

Important

DynamoDB supports only symmetric KMS keys. You cannot use an asymmetric KMS key
to encrypt your DynamoDB tables.

Use a customer managed key to get the following features:

• You create and manage the KMS key, including setting the key policies, IAM policies and
grants to control access to the KMS key. You can enable and disable the KMS key, enable and
disable automatic key rotation, and delete the KMS key when it is no longer in use.

• You can use a customer managed key with imported key material or a customer managed key
in a custom key store that you own and manage.

• You can audit the encryption and decryption of your DynamoDB table by examining the
DynamoDB API calls to Amazon KMS in Amazon CloudTrail logs.

Use the Amazon managed key if you need any of the following features:

• You can view the KMS key and view its key policy. (You cannot change the key policy.)

• You can audit the encryption and decryption of your DynamoDB table by examining the
DynamoDB API calls to Amazon KMS in Amazon CloudTrail logs.

However, the Amazon owned key is free of charge and its use does not count against Amazon
KMS resource or request quotas. Customer managed keys and Amazon managed keys incur a
charge for each API call and Amazon KMS quotas apply to these KMS keys.

Table keys

DynamoDB uses the KMS key for the table to generate and encrypt a unique data key for the
table, known as the table key. The table key persists for the lifetime of the encrypted table.

The table key is used as a key encryption key. DynamoDB uses this table key to protect data
encryption keys that are used to encrypt the table data. DynamoDB generates a unique data

Encryption at rest API Version 2012-08-10 2927

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.amazonaws.cn/kms/latest/developerguide/symmetric-asymmetric.html#asymmetric-cmks
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/iam-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/grants.html
https://docs.amazonaws.cn/kms/latest/developerguide/enabling-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/rotate-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/deleting-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/importing-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/custom-key-store-overview.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-cmk-trail
https://docs.amazonaws.cn/kms/latest/developerguide/viewing-keys.html
https://docs.amazonaws.cn/kms/latest/developerguide/key-policy-viewing.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-cmk-trail
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html
https://docs.amazonaws.cn/kms/latest/developerguide/limits.html
https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#data-keys

Amazon DynamoDB Developer Guide

encryption key for each underlying structure in a table, but multiple table items might be
protected by the same data encryption key.

When you first access an encrypted table, DynamoDB sends a request to Amazon KMS to use
the KMS key to decrypt the table key. Then, it uses the plaintext table key to decrypt the data
encryption keys, and uses the plaintext data encryption keys to decrypt table data.

Encryption at rest API Version 2012-08-10 2928

Amazon DynamoDB Developer Guide

DynamoDB stores and uses the table key and data encryption keys outside of Amazon KMS. It
protects all keys with Advanced Encryption Standard (AES) encryption and 256-bit encryption
keys. Then, it stores the encrypted keys with the encrypted data so they are available to decrypt
the table data on demand.

If you change the KMS key for your table, DynamoDB generates a new table key. Then, it uses
the new table key to re-encrypt the data encryption keys.

Table key caching

To avoid calling Amazon KMS for every DynamoDB operation, DynamoDB caches the plaintext
table keys for each caller in memory. If DynamoDB gets a request for the cached table key after
five minutes of inactivity, it sends a new request to Amazon KMS to decrypt the table key. This
call will capture any changes made to the access policies of the KMS key in Amazon KMS or
Amazon Identity and Access Management (IAM) since the last request to decrypt the table key.

Authorizing use of your KMS key

If you use a customer managed key or the Amazon managed key in your account to protect your
DynamoDB table, the policies on that KMS key must give DynamoDB permission to use it on your
behalf. The authorization context on the Amazon managed key for DynamoDB includes its key
policy and grants that delegate the permissions to use it.

You have full control over the policies and grants on a customer managed key Because the Amazon
managed key is in your account, you can view its policies and grants. But, because it is managed by
Amazon, you cannot change the policies.

DynamoDB does not need additional authorization to use the default Amazon owned key to
protect the DynamoDB tables in your Amazon Web Services account.

Topics

• Key policy for an Amazon managed key

• Key policy for a customer managed key

• Using grants to authorize DynamoDB

Key policy for an Amazon managed key

When DynamoDB uses the Amazon managed key for DynamoDB (aws/dynamodb) in cryptographic
operations, it does so on behalf of the user who is accessing the DynamoDB resource. The key

Encryption at rest API Version 2012-08-10 2929

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#kms_keys
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/access-control-overview.html

Amazon DynamoDB Developer Guide

policy on the Amazon managed key gives all users in the account permission to use the Amazon
managed key for specified operations. But permission is granted only when DynamoDB makes the
request on the user's behalf. The ViaService condition in the key policy does not allow any user to
use the Amazon managed key unless the request originates with the DynamoDB service.

This key policy, like the policies of all Amazon managed keys, is established by Amazon. You cannot
change it, but you can view it at any time. For details, see Viewing a key policy.

The policy statements in the key policy have the following effect:

• Allow users in the account to use the Amazon managed key for DynamoDB in cryptographic
operations when the request comes from DynamoDB on their behalf. The policy also allows users
to create grants for the KMS key.

• Allows authorized IAM identities in the account to view the properties of the Amazon managed
key for DynamoDB and to revoke the grant that allows DynamoDB to use the KMS key.
DynamoDB uses grants for ongoing maintenance operations.

• Allows DynamoDB to perform read-only operations to find the Amazon managed key for
DynamoDB in your account.

JSON

{
 "Version":"2012-10-17",
 "Id" : "auto-dynamodb-1",
 "Statement" : [{
 "Sid" : "Allow access through Amazon DynamoDB for all principals in the
 account that are authorized to use Amazon DynamoDB",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "*"
 },
 "Action" : ["kms:Encrypt", "kms:Decrypt", "kms:ReEncrypt*",
 "kms:GenerateDataKey*", "kms:CreateGrant", "kms:DescribeKey"],
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "kms:CallerAccount" : "111122223333",
 "kms:ViaService" : "dynamodb.us-west-2.amazonaws.com"
 }

Encryption at rest API Version 2012-08-10 2930

https://docs.amazonaws.cn/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.amazonaws.cn//kms/latest/developerguide/key-policy-viewing.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-grants
https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-grants

Amazon DynamoDB Developer Guide

 }
 }, {
 "Sid" : "Allow direct access to key metadata to the account",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : ["kms:Describe*", "kms:Get*", "kms:List*", "kms:RevokeGrant"],
 "Resource" : "*"
 }, {
 "Sid" : "Allow DynamoDB Service with service principal name
 dynamodb.amazonaws.com to describe the key directly",
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "dynamodb.amazonaws.com"
 },
 "Action" : ["kms:Describe*", "kms:Get*", "kms:List*"],
 "Resource" : "*"
 }]
}

Key policy for a customer managed key

When you select a customer managed key to protect a DynamoDB table, DynamoDB gets
permission to use the KMS key on behalf of the principal who makes the selection. That principal, a
user or role, must have the permissions on the KMS key that DynamoDB requires. You can provide
these permissions in a key policy, an IAM policy, or a grant.

At a minimum, DynamoDB requires the following permissions on a customer managed key:

• kms:Encrypt

• kms:Decrypt

• kms:ReEncrypt* (for kms:ReEncryptFrom and kms:ReEncryptTo)

• kms:GenerateDataKey* (for kms:GenerateDataKey and kms:GenerateDataKeyWithoutPlaintext)

• kms:DescribeKey

• kms:CreateGrant

For example, the following example key policy provides only the required permissions. The policy
has the following effects:

Encryption at rest API Version 2012-08-10 2931

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/key-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/iam-policies.html
https://docs.amazonaws.cn/kms/latest/developerguide/grants.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Encrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_ReEncrypt.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon DynamoDB Developer Guide

• Allows DynamoDB to use the KMS key in cryptographic operations and create grants, but only
when it is acting on behalf of principals in the account who have permission to use DynamoDB. If
the principals specified in the policy statement don't have permission to use DynamoDB, the call
fails, even when it comes from the DynamoDB service.

• The kms:ViaService condition key allows the permissions only when the request comes
from DynamoDB on behalf of the principals listed in the policy statement. These
principals can't call these operations directly. Note that the kms:ViaService value,
dynamodb.*.amazonaws.com, has an asterisk (*) in the Region position. DynamoDB requires
the permission to be independent of any particular Amazon Web Services Region so it can make
cross-Region calls to support DynamoDB global tables.

• Gives the KMS key administrators (users who can assume the db-team role) read-only access to
the KMS key and permission to revoke grants, including the grants that DynamoDB requires to
protect the table.

Before using an example key policy, replace the example principals with actual principals from your
Amazon Web Services account.

JSON

{
 "Id": "key-policy-dynamodb",
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid" : "Allow access through Amazon DynamoDB for all principals in the
 account that are authorized to use Amazon DynamoDB",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/db-lead"},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {

Encryption at rest API Version 2012-08-10 2932

https://docs.amazonaws.cn/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GlobalTables.html

Amazon DynamoDB Developer Guide

 "kms:ViaService" : "dynamodb.*.amazonaws.com"
 }
 }
 },
 {
 "Sid": "Allow administrators to view the KMS key and revoke grants",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/db-team"
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*",
 "kms:RevokeGrant"
],
 "Resource": "*"
 }
]
}

Using grants to authorize DynamoDB

In addition to key policies, DynamoDB uses grants to set permissions on a customer managed key
or the Amazon managed key for DynamoDB (aws/dynamodb). To view the grants on a KMS key
in your account, use the ListGrants operation. DynamoDB does not need grants, or any additional
permissions, to use the Amazon owned key to protect your table.

DynamoDB uses the grant permissions when it performs background system maintenance and
continuous data protection tasks. It also uses grants to generate table keys.

Each grant is specific to a table. If the account includes multiple tables encrypted under the same
KMS key, there is a grant of each type for each table. The grant is constrained by the DynamoDB
encryption context, which includes the table name and the Amazon Web Services account ID, and it
includes permission to the retire the grant if it is no longer needed.

To create the grants, DynamoDB must have permission to call CreateGrant on behalf of the user
who created the encrypted table. For Amazon managed keys, DynamoDB gets kms:CreateGrant
permission from the key policy, which allows account users to call CreateGrant on the KMS key only
when DynamoDB makes the request on an authorized user's behalf.

Encryption at rest API Version 2012-08-10 2933

https://docs.amazonaws.cn/kms/latest/APIReference/API_ListGrants.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html#dynamodb-encrypt
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon DynamoDB Developer Guide

The key policy can also allow the account to revoke the grant on the KMS key. However, if you
revoke the grant on an active encrypted table, DynamoDB will not be able to protect and maintain
the table.

DynamoDB encryption context

An encryption context is a set of key–value pairs that contain arbitrary nonsecret data. When you
include an encryption context in a request to encrypt data, Amazon KMS cryptographically binds
the encryption context to the encrypted data. To decrypt the data, you must pass in the same
encryption context.

DynamoDB uses the same encryption context in all Amazon KMS cryptographic operations. If you
use a customer managed key or an Amazon managed key to protect your DynamoDB table, you can
use the encryption context to identify use of the KMS key in audit records and logs. It also appears
in plaintext in logs, such as Amazon CloudTrail and Amazon CloudWatch Logs.

The encryption context can also be used as a condition for authorization in policies and grants.
DynamoDB uses the encryption context to constrain the grants that allow access to the customer
managed key or Amazon managed key in your account and region.

In its requests to Amazon KMS, DynamoDB uses an encryption context with two key–value pairs.

"encryptionContextSubset": {
 "aws:dynamodb:tableName": "Books"
 "aws:dynamodb:subscriberId": "111122223333"
}

• Table – The first key–value pair identifies the table that DynamoDB is encrypting. The key is
aws:dynamodb:tableName. The value is the name of the table.

"aws:dynamodb:tableName": "<table-name>"

For example:

"aws:dynamodb:tableName": "Books"

• Account – The second key–value pair identifies the Amazon Web Services account. The key is
aws:dynamodb:subscriberId. The value is the account ID.

"aws:dynamodb:subscriberId": "<account-id>"

Encryption at rest API Version 2012-08-10 2934

https://docs.amazonaws.cn/kms/latest/APIReference/API_RevokeGrant.html
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

Amazon DynamoDB Developer Guide

For example:

"aws:dynamodb:subscriberId": "111122223333"

Monitoring DynamoDB interaction with Amazon KMS

If you use a customer managed key or an Amazon managed key to protect your DynamoDB tables,
you can use Amazon CloudTrail logs to track the requests that DynamoDB sends to Amazon KMS
on your behalf.

The GenerateDataKey, Decrypt, and CreateGrant requests are discussed in this section. In
addition, DynamoDB uses a DescribeKey operation to determine whether the KMS key you selected
exists in the account and region. It also uses a RetireGrant operation to remove a grant when you
delete a table.

GenerateDataKey

When you enable encryption at rest on a table, DynamoDB creates a unique table key. It sends a
GenerateDataKey request to Amazon KMS that specifies the KMS key for the table.

The event that records the GenerateDataKey operation is similar to the following example
event. The user is the DynamoDB service account. The parameters include the Amazon Resource
Name (ARN) of the KMS key, a key specifier that requires a 256-bit key, and the encryption
context that identifies the table and the Amazon Web Services account.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T00:15:17Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:dynamodb:tableName": "Services",

Encryption at rest API Version 2012-08-10 2935

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_RetireGrant.html
https://docs.amazonaws.cn/kms/latest/APIReference/API_GenerateDataKey.html

Amazon DynamoDB Developer Guide

 "aws:dynamodb:subscriberId": "111122223333"
 },
 "keySpec": "AES_256",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "229386c1-111c-11e8-9e21-c11ed5a52190",
 "eventID": "e3c436e9-ebca-494e-9457-8123a1f5e979",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws-cn:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "sharedEventID": "bf915fa6-6ceb-4659-8912-e36b69846aad"
}

Decrypt

When you access an encrypted DynamoDB table, DynamoDB needs to decrypt the table key so
that it can decrypt the keys below it in the hierarchy. It then decrypts the data in the table. To
decrypt the table key. DynamoDB sends a Decrypt request to Amazon KMS that specifies the
KMS key for the table.

The event that records the Decrypt operation is similar to the following example event. The
user is the principal in your Amazon Web Services account who is accessing the table. The
parameters include the encrypted table key (as a ciphertext blob) and the encryption context
that identifies the table and the Amazon Web Services account. Amazon KMS derives the ID of
the KMS key from the ciphertext.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",

Encryption at rest API Version 2012-08-10 2936

https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html

Amazon DynamoDB Developer Guide

 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T16:42:15Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDT3HGFQZX4RY6RU",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 }
 },
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T16:42:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters":
 {
 "encryptionContext":
 {
 "aws:dynamodb:tableName": "Books",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "responseElements": null,
 "requestID": "11cab293-11a6-11e8-8386-13160d3e5db5",
 "eventID": "b7d16574-e887-4b5b-a064-bf92f8ec9ad3",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws-cn:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"

Encryption at rest API Version 2012-08-10 2937

Amazon DynamoDB Developer Guide

}

CreateGrant

When you use a customer managed key or an Amazon managed key to protect your DynamoDB
table, DynamoDB uses grants to allow the service to perform continuous data protection and
maintenance and durability tasks. These grants are not required on Amazon owned key.

The grants that DynamoDB creates are specific to a table. The principal in the CreateGrant
request is the user who created the table.

The event that records the CreateGrant operation is similar to the following example event.
The parameters include the Amazon Resource Name (ARN) of the KMS key for the table, the
grantee principal and retiring principal (the DynamoDB service), and the operations that the
grant covers. It also includes a constraint that requires all encryption operation use the specified
encryption context.

{
 "eventVersion": "1.05",
 "userIdentity":
 {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T00:12:02Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 }
 },
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T00:15:15Z",
 "eventSource": "kms.amazonaws.com",

Encryption at rest API Version 2012-08-10 2938

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.amazonaws.cn/kms/latest/APIReference/API_CreateGrant.html

Amazon DynamoDB Developer Guide

 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters": {
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "retiringPrincipal": "dynamodb.us-west-2.amazonaws.com",
 "constraints": {
 "encryptionContextSubset": {
 "aws:dynamodb:tableName": "Books",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "granteePrincipal": "dynamodb.us-west-2.amazonaws.com",
 "operations": [
 "DescribeKey",
 "GenerateDataKey",
 "Decrypt",
 "Encrypt",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant"
]
 },
 "responseElements": {
 "grantId":
 "5c5cd4a3d68e65e77795f5ccc2516dff057308172b0cd107c85b5215c6e48bde"
 },
 "requestID": "2192b82a-111c-11e8-a528-f398979205d8",
 "eventID": "a03d65c3-9fee-4111-9816-8bf96b73df01",
 "readOnly": false,
 "resources": [
 {
 "ARN": "arn:aws-cn:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Encryption at rest API Version 2012-08-10 2939

Amazon DynamoDB Developer Guide

Managing encrypted tables in DynamoDB

You can use the Amazon Web Services Management Console or the Amazon Command Line
Interface (Amazon CLI) to specify the encryption key on new tables and update the encryption keys
on existing tables in Amazon DynamoDB.

Topics

• Specifying the encryption key for a new table

• Updating an encryption key

Specifying the encryption key for a new table

Follow these steps to specify the encryption key on a new table using the Amazon DynamoDB
console or the Amazon CLI.

Creating an encrypted table (console)

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose Create Table. For the Table name, enter Music. For the primary key, enter Artist,
and for the sort key, enter SongTitle, both as strings.

4. In Settings, make sure that Customize settings is selected.

Note

If Use default settings is selected, tables are encrypted at rest with the Amazon owned
key at no additional cost.

5. Under Encryption at rest, choose an encryption type - Amazon owned key, Amazon managed
key, or customer managed key.

• Owned by Amazon DynamoDB. Amazon owned key, specifically owned and managed by
DynamoDB. You are not charged an additional fee for using this key.

• Amazon managed key. Key alias: aws/dynamodb. The key is stored in your account and is
managed by Amazon Key Management Service (Amazon KMS). Amazon KMS charges apply.

Encryption at rest API Version 2012-08-10 2940

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

• Stored in your account, and owned and managed by you. Customer managed key. The
key is stored in your account and is managed by Amazon Key Management Service (Amazon
KMS). Amazon KMS charges apply.

Note

If you select to own and manage your own key, make sure the KMS Key Policy is
appropriately set. For more information including examples, see Key policy for a
customer managed key.

6. Choose Create table to create the encrypted table. To confirm the encryption type, select the
table details on the Overview tab and review the Additional details section.

Creating an encrypted table (Amazon CLI)

Use the Amazon CLI to create a table with the default Amazon owned key, the Amazon managed
key, or a customer managed key for Amazon DynamoDB.

To create an encrypted table with the default Amazon owned key

• Create the encrypted Music table as follows.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5

Note

This table is now encrypted using the default Amazon owned key in the DynamoDB
service account.

Encryption at rest API Version 2012-08-10 2941

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk

Amazon DynamoDB Developer Guide

To create an encrypted table with the Amazon managed key for DynamoDB

• Create the encrypted Music table as follows.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --sse-specification Enabled=true,SSEType=KMS

The SSEDescription status of the table description is set to ENABLED and the SSEType is
KMS.

"SSEDescription": {
 "SSEType": "KMS",
 "Status": "ENABLED",
 "KMSMasterKeyArn": "arn:aws:kms:us-east-1:123456789012:key/abcd1234-abcd-1234-
a123-ab1234a1b234",
}

To create an encrypted table with a customer managed key for DynamoDB

• Create the encrypted Music table as follows.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \

Encryption at rest API Version 2012-08-10 2942

Amazon DynamoDB Developer Guide

 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-abcd-1234-
a123-ab1234a1b234

The SSEDescription status of the table description is set to ENABLED and the SSEType is
KMS.

"SSEDescription": {
 "SSEType": "KMS",
 "Status": "ENABLED",
 "KMSMasterKeyArn": "arn:aws:kms:us-east-1:123456789012:key/abcd1234-abcd-1234-
a123-ab1234a1b234",
}

Updating an encryption key

You can also use the DynamoDB console or the Amazon CLI to update the encryption keys of an
existing table between an Amazon owned key, Amazon managed key, and customer managed key
at any time.

Updating an encryption key (console)

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose the table that you want to update.

4. Select the Actions dropdown, and then select the Update settings option.

5. Go to the Additional settings tab.

6. Under Encryption, choose Manage encryption.

7. Choose an encryption type:

• Owned by Amazon DynamoDB. The Amazon KMS key is owned and managed by
DynamoDB. You are not charged an additional fee for using this key.

• Amazon managed key Key alias: aws/dynamodb. The key is stored in your account and is
managed by Amazon Key Management Service. (Amazon KMS). Amazon KMS charges apply.

• Stored in your account, and owned and managed by you. The key is stored in your account
and is managed by Amazon Key Management Service. (Amazon KMS). Amazon KMS charges
apply.

Encryption at rest API Version 2012-08-10 2943

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Note

If you select to own and manage your own key, make sure the KMS Key Policy is
appropriately set. For more information see Key policy for a customer managed key.

Then choose Save to update the encrypted table. To confirm the encryption type, check the
table details under the Overview tab.

Updating an encryption key (Amazon CLI)

The following examples show how to update an encrypted table using the Amazon CLI.

To update an encrypted table with the default Amazon owned key

• Update the encrypted Music table, as in the following example.

aws dynamodb update-table \
 --table-name Music \
 --sse-specification Enabled=false

Note

This table is now encrypted using the default Amazon owned key in the DynamoDB
service account.

To update an encrypted table with the Amazon managed key for DynamoDB

• Update the encrypted Music table, as in the following example.

aws dynamodb update-table \
 --table-name Music \
 --sse-specification Enabled=true

The SSEDescription status of the table description is set to ENABLED and the SSEType is
KMS.

Encryption at rest API Version 2012-08-10 2944

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk

Amazon DynamoDB Developer Guide

"SSEDescription": {
 "SSEType": "KMS",
 "Status": "ENABLED",
 "KMSMasterKeyArn": "arn:aws:kms:us-east-1:123456789012:key/abcd1234-abcd-1234-
a123-ab1234a1b234",
}

To update an encrypted table with a customer managed key for DynamoDB

• Update the encrypted Music table, as in the following example.

aws dynamodb update-table \
 --table-name Music \
 --sse-specification Enabled=true,SSEType=KMS,KMSMasterKeyId=abcd1234-abcd-1234-
a123-ab1234a1b234

The SSEDescription status of the table description is set to ENABLED and the SSEType is
KMS.

"SSEDescription": {
 "SSEType": "KMS",
 "Status": "ENABLED",
 "KMSMasterKeyArn": "arn:aws:kms:us-east-1:123456789012:key/abcd1234-abcd-1234-
a123-ab1234a1b234",
}

Securing DynamoDB connections using VPC endpoints and IAM
policies"

Connections are protected both between Amazon DynamoDB and on-premises applications and
between DynamoDB and other Amazon resources within the same Amazon Region.

Required policy for endpoints

Amazon DynamoDB provides a DescribeEndpoints API that enables you to enumerate regional
endpoint information. For requests to the public DynamoDB endpoints, the API responds
regardless of the configured DynamoDB IAM policy, even if there is an explicit or implicit deny in

Securing DynamoDB connections API Version 2012-08-10 2945

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeEndpoints.html

Amazon DynamoDB Developer Guide

the IAM or VPC endpoint policy. This is because DynamoDB intentionally skips authorization for the
DescribeEndpoints API.

For requests from a VPC endpoint, both the IAM and Virtual Private Cloud (VPC) endpoint
policies must authorize the DescribeEndpoints API call for the requesting Identity and Access
Management (IAM) principal(s) using the IAM dynamodb:DescribeEndpoints action. Otherwise,
access to the DescribeEndpoints API will be denied.

The following is an example of an endpoints policy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "dynamodb:DescribeEndpoints",
 "Resource": "*"
 }
]
}

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and Amazon:

• An Amazon Site-to-Site VPN connection. For more information, see What is Amazon Site-to-Site
VPN? in the Amazon Site-to-Site VPN User Guide.

• An Amazon Direct Connect connection. For more information, see What is Amazon Direct
Connect? in the Amazon Direct Connect User Guide.

Access to DynamoDB via the network is through Amazon published APIs. Clients must support
Transport Layer Security (TLS) 1.2. We recommend TLS 1.3. Clients must also support cipher suites
with Perfect Forward Secrecy (PFS), such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Diffie-Hellman Ephemeral (ECDHE). Most modern systems such as Java 7 and later support these

Securing DynamoDB connections API Version 2012-08-10 2946

https://docs.amazonaws.cn/vpn/latest/s2svpn/VPC_VPN.html
https://docs.amazonaws.cn/vpn/latest/s2svpn/VPC_VPN.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/directconnect/latest/UserGuide/Welcome.html

Amazon DynamoDB Developer Guide

modes. Additionally, you must sign requests using an access key ID and a secret access key that
are associated with an IAM principal, or you can use the Amazon Security Token Service (STS) to
generate temporary security credentials to sign requests.

Traffic between Amazon resources in the same Region

An Amazon Virtual Private Cloud (Amazon VPC) endpoint for DynamoDB is a logical entity within
a VPC that allows connectivity only to DynamoDB. The Amazon VPC routes requests to DynamoDB
and routes responses back to the VPC. For more information, see VPC endpoints in the Amazon VPC
User Guide. For example policies that you can use to control access from VPC endpoints, see Using
IAM policies to control access to DynamoDB.

Note

Amazon VPC endpoints are not accessible via Amazon Site-to-Site VPN or Amazon Direct
Connect.

Amazon Identity and Access Management (IAM) and DynamoDB

Amazon Identity and Access Management is an Amazon service that helps an administrator
securely control access to Amazon resources. Administrators control who can be authenticated
(signed in) and authorized (have permissions) to use Amazon DynamoDB and DynamoDB
Accelerator resources. You can use IAM to manage access permissions and implement security
policies for both Amazon DynamoDB and DynamoDB Accelerator. IAM is an Amazon service that
you can use with no additional charge.

Topics

• Identity and Access Management for Amazon DynamoDB

• Using IAM policy conditions for fine-grained access control

Identity and Access Management for Amazon DynamoDB

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can be

IAM API Version 2012-08-10 2947

https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-ddb.html
https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-ddb.html

Amazon DynamoDB Developer Guide

authenticated (signed in) and authorized (have permissions) to use DynamoDB resources. IAM is an
Amazon Web Services service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon DynamoDB works with IAM

• Identity-based policy examples for Amazon DynamoDB

• Troubleshooting Amazon DynamoDB identity and access

• IAM policy to prevent the purchase of DynamoDB reserved capacity

Audience

How you use Amazon Identity and Access Management (IAM) differs based on your role:

• Service user - request permissions from your administrator if you cannot access features (see
Troubleshooting Amazon DynamoDB identity and access)

• Service administrator - determine user access and submit permission requests (see How Amazon
DynamoDB works with IAM)

• IAM administrator - write policies to manage access (see Identity-based policy examples for
Amazon DynamoDB)

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated as the Amazon Web Services account root user, an IAM user, or by assuming an IAM
role.

For programmatic access, Amazon provides an SDK and CLI to cryptographically sign requests. For
more information, see Amazon Signature Version 4 for API requests in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity called the
Amazon Web Services account root user that has complete access to all Amazon Web Services

Identity and Access Management API Version 2012-08-10 2948

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html

Amazon DynamoDB Developer Guide

services and resources. We strongly recommend that you don't use the root user for everyday tasks.
For tasks that require root user credentials, see Tasks that require root user credentials in the IAM
User Guide.

Federated identity

As a best practice, require human users to use federation with an identity provider to access
Amazon Web Services services using temporary credentials.

A federated identity is a user from your enterprise directory, web identity provider, or Amazon
Directory Service that accesses Amazon Web Services services using credentials from an identity
source. Federated identities assume roles that provide temporary credentials.

IAM users and groups

An IAM user is an identity with specific permissions for a single person or application. We
recommend using temporary credentials instead of IAM users with long-term credentials. For more
information, see Require human users to use federation with an identity provider to access Amazon
using temporary credentials in the IAM User Guide.

An IAM group specifies a collection of IAM users and makes permissions easier to manage for large
sets of users. For more information, see Use cases for IAM users in the IAM User Guide.

IAM roles

An IAM role is an identity with specific permissions that provides temporary credentials. You can
assume a role by switching from a user to an IAM role (console) or by calling an Amazon CLI or
Amazon API operation. For more information, see Methods to assume a role in the IAM User Guide.

IAM roles are useful for federated user access, temporary IAM user permissions, cross-account
access, cross-service access, and applications running on Amazon EC2. For more information, see
Cross account resource access in IAM in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy defines permissions when associated with an identity or resource. Amazon
evaluates these policies when a principal makes a request. Most policies are stored in Amazon as
JSON documents. For more information about JSON policy documents, see Overview of JSON
policies in the IAM User Guide.

Identity and Access Management API Version 2012-08-10 2949

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon DynamoDB Developer Guide

Using policies, administrators specify who has access to what by defining which principal can
perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. An IAM administrator creates IAM policies and
adds them to roles, which users can then assume. IAM policies define permissions regardless of the
method used to perform the operation.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you attach to an identity (user,
group, or role). These policies control what actions identities can perform, on which resources, and
under what conditions. To learn how to create an identity-based policy, see Define custom IAM
permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be inline policies (embedded directly into a single identity) or managed
policies (standalone policies attached to multiple identities). To learn how to choose between
managed and inline policies, see Choose between managed policies and inline policies in the IAM
User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples
include IAM role trust policies and Amazon S3 bucket policies. In services that support resource-
based policies, service administrators can use them to control access to a specific resource. You
must specify a principal in a resource-based policy.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Other policy types

Amazon supports additional policy types that can set the maximum permissions granted by more
common policy types:

• Permissions boundaries – Set the maximum permissions that an identity-based policy can grant
to an IAM entity. For more information, see Permissions boundaries for IAM entities in the IAM
User Guide.

• Service control policies (SCPs) – Specify the maximum permissions for an organization or
organizational unit in Amazon Organizations. For more information, see Service control policies
in the Amazon Organizations User Guide.

Identity and Access Management API Version 2012-08-10 2950

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon DynamoDB Developer Guide

• Resource control policies (RCPs) – Set the maximum available permissions for resources
in your accounts. For more information, see Resource control policies (RCPs) in the Amazon
Organizations User Guide.

• Session policies – Advanced policies passed as a parameter when creating a temporary session
for a role or federated user. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon DynamoDB works with IAM

Before you use IAM to manage access to DynamoDB, learn what IAM features are available to use
with DynamoDB.

IAM feature DynamoDB support

Identity-based policies Yes

Resource-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Yes

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Identity and Access Management API Version 2012-08-10 2951

https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon DynamoDB Developer Guide

IAM feature DynamoDB support

Service-linked roles Yes

To get a high-level view of how DynamoDB and other Amazon services work with most IAM
features, see Amazon services that work with IAM in the IAM User Guide.

Identity-based policies for DynamoDB

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. To learn about all of the elements
that you can use in a JSON policy, see IAM JSON policy elements reference in the IAM User Guide.

Identity-based policy examples for DynamoDB

To view examples of DynamoDB identity-based policies, see Identity-based policy examples for
Amazon DynamoDB.

Resource-based policies within DynamoDB

Supports resource-based policies: Yes

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. For more information, see Cross account
resource access in IAM in the IAM User Guide.

Identity and Access Management API Version 2012-08-10 2952

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon DynamoDB Developer Guide

Policy actions for DynamoDB

Supports policy actions: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Include actions in a policy to grant permissions to perform the associated
operation.

To see a list of DynamoDB actions, see Actions defined by Amazon DynamoDB in the Service
Authorization Reference.

Policy actions in DynamoDB use the following prefix before the action:

aws

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "aws:action1",
 "aws:action2"
]

To view examples of DynamoDB identity-based policies, see Identity-based policy examples for
Amazon DynamoDB.

Policy resources for DynamoDB

Supports policy resources: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies. As
a best practice, specify a resource using its Amazon Resource Name (ARN). For actions that don't

Identity and Access Management API Version 2012-08-10 2953

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html

Amazon DynamoDB Developer Guide

support resource-level permissions, use a wildcard (*) to indicate that the statement applies to all
resources.

"Resource": "*"

To see a list of DynamoDB resource types and their ARNs, see Resources defined by Amazon
DynamoDB in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Actions defined by Amazon DynamoDB.

To view examples of DynamoDB identity-based policies, see Identity-based policy examples for
Amazon DynamoDB.

Policy condition keys for DynamoDB

Supports service-specific policy condition keys: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element specifies when statements execute based on defined criteria. You can
create conditional expressions that use condition operators, such as equals or less than, to match
the condition in the policy with values in the request. To see all Amazon global condition keys, see
Amazon global condition context keys in the IAM User Guide.

To see a list of DynamoDB condition keys, see Condition keys for Amazon DynamoDB in the Service
Authorization Reference. To learn with which actions and resources you can use a condition key, see
Actions defined by Amazon DynamoDB.

To view examples of DynamoDB identity-based policies, see Identity-based policy examples for
Amazon DynamoDB.

Access control lists (ACLs) in DynamoDB

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Identity and Access Management API Version 2012-08-10 2954

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-policy-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html#amazondynamodb-actions-as-permissions

Amazon DynamoDB Developer Guide

Attribute-based access control (ABAC) with DynamoDB

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes called tags. You can attach tags to IAM entities and Amazon resources, then design
ABAC policies to allow operations when the principal's tag matches the tag on the resource.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using Temporary credentials with DynamoDB

Supports temporary credentials: Yes

Temporary credentials provide short-term access to Amazon resources and are automatically
created when you use federation or switch roles. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM and Amazon Web Services services that work with IAM in the
IAM User Guide.

Cross-service principal permissions for DynamoDB

Supports forward access sessions (FAS): Yes

Forward access sessions (FAS) use the permissions of the principal calling an Amazon Web
Services service, combined with the requesting Amazon Web Services service to make requests to
downstream services. For policy details when making FAS requests, see Forward access sessions.

Service roles for DynamoDB

Supports service roles: Yes

Identity and Access Management API Version 2012-08-10 2955

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html

Amazon DynamoDB Developer Guide

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an Amazon Web Services service in the IAM User Guide.

Warning

Changing the permissions for a service role might break DynamoDB functionality. Edit
service roles only when DynamoDB provides guidance to do so.

Service-linked roles for DynamoDB

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an Amazon Web Services service. The
service can assume the role to perform an action on your behalf. Service-linked roles appear in
your Amazon Web Services account and are owned by the service. An IAM administrator can view,
but not edit the permissions for service-linked roles.

For details about creating or managing service-linked roles, see Amazon services that work with
IAM. Find a service in the table that includes a Yes in the Service-linked role column. Choose the
Yes link to view the service-linked role documentation for that service.

Supported service-linked roles in DynamoDB

The following service-linked roles are supported in DynamoDB.

• DynamoDB uses the service-linked role AWSServiceRoleForDynamoDBReplication for global
tables replication across Amazon Web Services Regions. See DynamoDB global tables security for
more information about the AWSServiceRoleForDynamoDBReplication service-linked role.

• DynamoDB Accelerator (DAX) uses the service-linked role AWSServiceRoleForDAX for
configuring and maintaining a DAX cluster. See the section called “Using service-linked roles for
DAX” for more information about the AWSServiceRoleForDAX service-linked role.

In addition to these DynamoDB service-linked roles, DynamoDB uses the Application
Auto Scaling service for automatically managing throughput settings on provisioned
capacity mode tables. The Application Auto Scaling service uses the service-linked role
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable to manage throughput settings

Identity and Access Management API Version 2012-08-10 2956

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon DynamoDB Developer Guide

on DynamoDB tables that have auto scaling enabled. See Service-linked roles for Application Auto
Scaling for more information.

Identity-based policy examples for Amazon DynamoDB

By default, users and roles don't have permission to create or modify DynamoDB resources. To
grant users permission to perform actions on the resources that they need, an IAM administrator
can create IAM policies.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by DynamoDB, including the format of
the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
DynamoDB in the Service Authorization Reference.

Topics

• Policy best practices

• Using the DynamoDB console

• Allow users to view their own permissions

• Using identity-based policies with Amazon DynamoDB

Policy best practices

Identity-based policies determine whether someone can create, access, or delete DynamoDB
resources in your account. These actions can incur costs for your Amazon Web Services account.
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more

Identity and Access Management API Version 2012-08-10 2957

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html

Amazon DynamoDB Developer Guide

information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific Amazon Web Services service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Secure API access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the DynamoDB console

To access the Amazon DynamoDB console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the DynamoDB resources in your Amazon
Web Services account. If you create an identity-based policy that is more restrictive than the
minimum required permissions, the console won't function as intended for entities (users or roles)
with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that they're trying to perform.

To ensure that users and roles can still use the DynamoDB console, also attach the DynamoDB
ConsoleAccess or ReadOnly Amazon managed policy to the entities. For more information, see
Adding permissions to a user in the IAM User Guide.

Identity and Access Management API Version 2012-08-10 2958

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon DynamoDB Developer Guide

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Using identity-based policies with Amazon DynamoDB

This topic covers using identity-based Amazon Identity and Access Management (IAM) policies with
Amazon DynamoDB and provides examples. The examples show how an account administrator

Identity and Access Management API Version 2012-08-10 2959

Amazon DynamoDB Developer Guide

can attach permissions policies to IAM identities (users, groups, and roles) and thereby grant
permissions to perform operations on Amazon DynamoDB resources.

The sections in this topic cover the following:

• IAM permissions required to use the Amazon DynamoDB console

• Amazon managed (predefined) IAM policies for Amazon DynamoDB

• Customer managed policy examples

The following is an example of a permissions policy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DescribeQueryScanBooksTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource": "arn:aws:dynamodb:us-west-2:111122223333:table/Books"
 }
]
}

The preceding policy has one statement that grants permissions for three DynamoDB actions
(dynamodb:DescribeTable, dynamodb:Query, and dynamodb:Scan) on a table in the us-
west-2 Amazon Region, which is owned by the Amazon account specified by account-id. The
Amazon Resource Name (ARN) in the Resource value specifies the table that the permissions apply
to.

Identity and Access Management API Version 2012-08-10 2960

Amazon DynamoDB Developer Guide

IAM permissions required to use the Amazon DynamoDB console

To work with the DynamoDB console, a user must have a minimum set of permissions that allow
the user to work with their Amazon account's DynamoDB resources. In addition to these DynamoDB
permissions, the console requires permissions:

• Amazon CloudWatch permissions to display metrics and graphs.

• Amazon Data Pipeline permissions to export and import DynamoDB data.

• Amazon Identity and Access Management permissions to access roles necessary for exports and
imports.

• Amazon Simple Notification Service permissions to notify you whenever a CloudWatch alarm is
triggered.

• Amazon Lambda permissions to process DynamoDB Streams records.

If you create an IAM policy that is more restrictive than the minimum required permissions, the
console won't function as intended for users with that IAM policy. To ensure that those users can
still use the DynamoDB console, also attach the AmazonDynamoDBReadOnlyAccess Amazon
managed policy to the user, as described in Amazon managed (predefined) IAM policies for Amazon
DynamoDB.

You don't need to allow minimum console permissions for users who are making calls only to the
Amazon CLI or the Amazon DynamoDB API.

Note

If you refer to a VPC endpoint, you will also need to authorize the DescribeEndpoints API
call for the requesting IAM principal(s) with the IAM action (dynamodb:DescribeEndpoints).
For more information see Required policy for endpoints.

Amazon managed (predefined) IAM policies for Amazon DynamoDB

Amazon addresses some common use cases by providing standalone IAM policies that are created
and administered by Amazon. These Amazon managed policies grant necessary permissions for
common use cases so that you can avoid having to investigate which permissions are needed. For
more information, see Amazon Managed Policies in the IAM User Guide.

Identity and Access Management API Version 2012-08-10 2961

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

Amazon DynamoDB Developer Guide

The following Amazon managed policies, which you can attach to users in your account, are specific
to DynamoDB and are grouped by use-case scenario:

• AmazonDynamoDBReadOnlyAccess – Grants read-only access to DynamoDB resources through
the Amazon Web Services Management Console.

• AmazonDynamoDBFullAccess – Grants full access to DynamoDB resources through the Amazon
Web Services Management Console.

You can review these Amazon managed permissions policies by signing in to the IAM console and
searching for specific policies there.

Important

The best practice is to create custom IAM policies that grant least-privilege to the users,
roles, or groups that require them.

Customer managed policy examples

In this section, you can find policy examples that grant permissions for various DynamoDB actions.
These policies work when you use Amazon SDKs or the Amazon CLI. When you use the console, you
need to grant additional permissions that are specific to the console. For more information, see
IAM permissions required to use the Amazon DynamoDB console.

Note

All of the following policy examples use one of the Amazon Regions and contain fictitious
account IDs and table names.

Examples:

• IAM policy to grant permissions to all DynamoDB actions on a table

• IAM policy to grant read-only permissions on items in a DynamoDB table

• IAM policy to grant access to a specific DynamoDB table and its indexes

• IAM policy to read, write, update, and delete access on a DynamoDB table

• IAM policy to separate DynamoDB environments in the same Amazon account

Identity and Access Management API Version 2012-08-10 2962

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon DynamoDB Developer Guide

• IAM policy to prevent the purchase of DynamoDB reserved capacity

• IAM policy to grant read access for a DynamoDB stream only (not for the table)

• IAM policy to allow an Amazon Lambda function to access DynamoDB stream records

• IAM policy for read and write access to a DynamoDB Accelerator (DAX) cluster

The IAM User Guide, includes three additional DynamoDB examples:

• Amazon DynamoDB: Allows Access to a Specific Table

• Amazon DynamoDB: Allows Access to Specific Columns

• Amazon DynamoDB: Allows Row-Level Access to DynamoDB Based on an Amazon Cognito ID

IAM policy to grant permissions to all DynamoDB actions on a table

The following policy grants permissions for all DynamoDB actions on a table called Books.
The resource ARN specified in the Resource identifies a table in a specific Amazon Region.
If you replace the table name Books in the Resource ARN with a wildcard character (*), all
DynamoDB actions are allowed on all tables in the account. Carefully consider the possible security
implications before using a wildcard character on this or any IAM policy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllAPIActionsOnBooks",
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

Identity and Access Management API Version 2012-08-10 2963

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_dynamodb_specific-table.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_dynamodb_columns.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_examples_dynamodb_rows.html

Amazon DynamoDB Developer Guide

Note

This is an example of using a wildcard character (*) to allow all actions, including
administration, data operations, monitoring, and purchase of DynamoDB reserved capacity.
Instead, it is a best practice to explicitly specify each action to be granted and only what
that user, role, or group needs.

IAM policy to grant read-only permissions on items in a DynamoDB table

The following permissions policy grants permissions for the GetItem, BatchGetItem, Scan,
Query, and ConditionCheckItem DynamoDB actions only, and as a result, sets read-only access
on the Books table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "ReadOnlyAPIActionsOnBooks",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 }
]
}

IAM policy to grant access to a specific DynamoDB table and its indexes

The following policy grants permissions for data modification actions on a DynamoDB table called
Books and all of that table's indexes. For more information about how indexes work, see Improving
data access with secondary indexes in DynamoDB.

Identity and Access Management API Version 2012-08-10 2964

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AccessTableAllIndexesOnBooks",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:ConditionCheckItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/*"
]
 }
]
}

IAM policy to read, write, update, and delete access on a DynamoDB table

Use this policy if you need to allow your application to create, read, update, and delete data in
Amazon DynamoDB tables, indexes, and streams. Substitute the Amazon Region name, your
account ID, and the table name or wildcard character (*) where appropriate.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "DynamoDBIndexAndStreamAccess",

Identity and Access Management API Version 2012-08-10 2965

Amazon DynamoDB Developer Guide

 "Effect": "Allow",
 "Action": [
 "dynamodb:GetShardIterator",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:ListStreams"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/*",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books/stream/*"
]
 },
 {
 "Sid": "DynamoDBTableAccess",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem",
 "dynamodb:PutItem",
 "dynamodb:DescribeTable",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books"
 },
 {
 "Sid": "DynamoDBDescribeLimitsAccess",
 "Effect": "Allow",
 "Action": "dynamodb:DescribeLimits",
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books",
 "arn:aws:dynamodb:us-west-2:123456789012:table/Books/index/*"
]
 }
]
}

Identity and Access Management API Version 2012-08-10 2966

Amazon DynamoDB Developer Guide

To expand this policy to cover all DynamoDB tables in all Amazon Regions for this account, use a
wildcard (*) for the Region and table name. For example:

"Resource":[
 "arn:aws:dynamodb:*:123456789012:table/*",
 "arn:aws:dynamodb:*:123456789012:table/*/index/*"
]

IAM policy to separate DynamoDB environments in the same Amazon account

Suppose that you have separate environments where each environment maintains its own version
of a table named ProductCatalog. If you create two ProductCatalog tables in the same
Amazon account, work in one environment might affect the other environment because of the
way that permissions are set up. For example, quotas on the number of concurrent control plane
operations (such as CreateTable) are set at the Amazon account level.

As a result, each action in one environment reduces the number of operations available in the other
environment. There is also a risk that the code in one environment might accidentally access tables
in the other environment.

Note

If you want to separate production and test workloads to help control an event's potential
"blast radius," the best practice is to create separate Amazon accounts for test and
production workloads. For more information, see Amazon Account Management and
Separation.

Suppose further that you have two developers, Amit and Alice, who are testing the
ProductCatalog table. Instead of each developer requiring a separate Amazon account, your
developers can share the same test Amazon account. In this test account, you can create a
copy of the same table for each developer to work on, such as Alice_ProductCatalog and
Amit_ProductCatalog. In this case, you can create users Alice and Amit in the Amazon account
that you created for the test environment. You then can grant permissions to these users to
perform DynamoDB actions on the tables that they own.

To grant these IAM user permissions, you can do either of the following:

Identity and Access Management API Version 2012-08-10 2967

https://docs.amazonaws.cn//wellarchitected/latest/security-pillar/aws-account-management-and-separation.html
https://docs.amazonaws.cn//wellarchitected/latest/security-pillar/aws-account-management-and-separation.html

Amazon DynamoDB Developer Guide

• Create a separate policy for each user, and then attach each policy to its user separately. For
example, you can attach the following policy to user Alice to allow her access to DynamoDB
actions on the Alice_ProductCatalog table:

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllAPIActionsOnAliceTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:DescribeContributorInsights",
 "dynamodb:RestoreTableToPointInTime",
 "dynamodb:ListTagsOfResource",
 "dynamodb:CreateTableReplica",
 "dynamodb:UpdateContributorInsights",
 "dynamodb:CreateBackup",
 "dynamodb:DeleteTable",
 "dynamodb:UpdateTableReplicaAutoScaling",
 "dynamodb:UpdateContinuousBackups",
 "dynamodb:TagResource",
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:DescribeContinuousBackups",
 "dynamodb:BatchGetItem",
 "dynamodb:UpdateTimeToLive",
 "dynamodb:BatchWriteItem",
 "dynamodb:ConditionCheckItem",
 "dynamodb:UntagResource",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteTableReplica",
 "dynamodb:DescribeTimeToLive",
 "dynamodb:RestoreTableFromBackup",
 "dynamodb:UpdateTable",
 "dynamodb:DescribeTableReplicaAutoScaling",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream",

Identity and Access Management API Version 2012-08-10 2968

Amazon DynamoDB Developer Guide

 "dynamodb:GetRecords",
 "dynamodb:DescribeLimits",
 "dynamodb:ListStreams"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/
Alice_ProductCatalog/*"
 }
]
}

Then, you can create a similar policy with a different resource (the Amit_ProductCatalog
table) for user Amit.

• Instead of attaching policies to individual users, you can use IAM policy variables to write a
single policy and attach it to a group. You need to create a group and, for this example, add
both users Alice and Amit to the group. The following example grants permissions to perform
all DynamoDB actions on the ${aws:username}_ProductCatalog table. The policy variable
${aws:username} is replaced by the requester's user name when the policy is evaluated. For
example, if Alice sends a request to add an item, the action is allowed only if Alice is adding
items to the Alice_ProductCatalog table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "ActionsOnUserSpecificTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem",
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:ConditionCheckItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/
${aws:username}_ProductCatalog"
 },

Identity and Access Management API Version 2012-08-10 2969

Amazon DynamoDB Developer Guide

 {
 "Sid": "AdditionalPrivileges",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables",
 "dynamodb:DescribeTable",
 "dynamodb:DescribeContributorInsights"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/*"
 }
]
}

Note

When using IAM policy variables, you must explicitly specify the 2012-10-17 version
of the IAM policy language in the policy. The default version of the IAM policy language
(2008-10-17) does not support policy variables.

Instead of identifying a specific table as a resource as you normally would, you could use a wildcard
character (*) to grant permissions on all tables where the table name is prefixed with the user that
is making the request, as shown in the following example.

"Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/${aws:username}_*"

IAM policy to prevent the purchase of DynamoDB reserved capacity

With Amazon DynamoDB reserved capacity, you pay a one-time, upfront fee and commit to paying
for a minimum usage level at significant savings over a period of time. You can use the Amazon
Web Services Management Console to view and purchase reserved capacity. However, you might
not want all of the users in your organization to be able to purchase reserved capacity. For more
information about reserved capacity, see Amazon DynamoDB pricing.

DynamoDB provides the following API operations for controlling access to reserved capacity
management:

• dynamodb:DescribeReservedCapacity – Returns the reserved capacity purchases that are
currently in effect.

Identity and Access Management API Version 2012-08-10 2970

http://www.amazonaws.cn/dynamodb/pricing

Amazon DynamoDB Developer Guide

• dynamodb:DescribeReservedCapacityOfferings – Returns details about the reserved
capacity plans that are currently offered by Amazon.

• dynamodb:PurchaseReservedCapacityOfferings – Performs an actual purchase of
reserved capacity.

The Amazon Web Services Management Console uses these API actions to display reserved
capacity information and make purchases. You cannot call these operations from an application
program because they can be accessed only from the console. However, you can allow or deny
access to these operations in an IAM permissions policy.

The following policy allows users to view reserved capacity purchases and offerings by using the
Amazon Web Services Management Console — but new purchases are denied.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowReservedCapacityDescriptions",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeReservedCapacity",
 "dynamodb:DescribeReservedCapacityOfferings"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:*"
 },
 {
 "Sid": "DenyReservedCapacityPurchases",
 "Effect": "Deny",
 "Action": "dynamodb:PurchaseReservedCapacityOfferings",
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:*"
 }
]
}

Note that this policy uses the wildcard character (*) to allow describe permissions for all, and to
deny the purchase of DynamoDB reserved capacity for all.

Identity and Access Management API Version 2012-08-10 2971

Amazon DynamoDB Developer Guide

IAM policy to grant read access for a DynamoDB stream only (not for the table)

When you enable DynamoDB Streams on a table, information is captured about every modification
to items in the table. For more information, see Change data capture for DynamoDB Streams.

In some cases, you might want to prevent an application from reading data from a DynamoDB
table, but still allow access to that table's streams. For example, you can configure Amazon Lambda
to poll a stream and invoke a Lambda function when item updates are detected, and then perform
additional processing.

The following actions are available for controlling access to DynamoDB streams:

• dynamodb:DescribeStream

• dynamodb:GetRecords

• dynamodb:GetShardIterator

• dynamodb:ListStreams

The following example policy grants users permissions to access the streams of a table named
GameScores. The wildcard character (*) in the ARN matches any stream associated with that table.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AccessGameScoresStreamOnly",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:ListStreams"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/*"
 }
]
}

Identity and Access Management API Version 2012-08-10 2972

Amazon DynamoDB Developer Guide

Note that this policy grants access to the GameScores table's streams, but not to the table itself.

IAM policy to allow an Amazon Lambda function to access DynamoDB stream records

If you want certain actions to be performed based on events in a DynamoDB stream, you can
write an Amazon Lambda function that is triggered by these events. A Lambda function such as
this needs permissions to read data from a DynamoDB stream. For more information about using
Lambda with DynamoDB Streams, see DynamoDB Streams and Amazon Lambda triggers.

To grant permissions to Lambda, use the permissions policy that is associated with the Lambda
function's IAM role (also known as an execution role). Specify this policy when you create the
Lambda function.

For example, you can associate the following permissions policy with an execution role to grant
Lambda permissions to perform the DynamoDB Streams actions listed.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "APIAccessForDynamoDBStreams",
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream",
 "dynamodb:ListStreams"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/
GameScores/stream/*"
 }
]
}

For more information, see Amazon Lambda permissions in the Amazon Lambda Developer Guide.

Identity and Access Management API Version 2012-08-10 2973

https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html

Amazon DynamoDB Developer Guide

IAM policy for read and write access to a DynamoDB Accelerator (DAX) cluster

The following policy allows read, write, update, and delete access to a DynamoDB Accelerator
(DAX) cluster, but not to the associated DynamoDB table. To use this policy, substitute the Amazon
Region name, your account ID, and the name of your DAX cluster.

Note

This policy gives access to DAX cluster, but not to the associated DynamoDB table. Make
sure that your DAX cluster has the correct policy to perform these same operations on the
DynamoDB table on your behalf.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AmazonDynamoDBDAXDataOperations",
 "Effect": "Allow",
 "Action": [
 "dax:GetItem",
 "dax:PutItem",
 "dax:ConditionCheckItem",
 "dax:BatchGetItem",
 "dax:BatchWriteItem",
 "dax:DeleteItem",
 "dax:Query",
 "dax:UpdateItem",
 "dax:Scan"
],
 "Resource": "arn:aws:dax:eu-west-1:123456789012:cache/MyDAXCluster"
 }
]
}

To expand this policy to cover DAX access for all Amazon Regions for an account, use a wildcard
character (*) for the Region name.

Identity and Access Management API Version 2012-08-10 2974

Amazon DynamoDB Developer Guide

"Resource": "arn:aws:dax:*:123456789012:cache/MyDAXCluster"

Troubleshooting Amazon DynamoDB identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with DynamoDB and IAM.

Topics

• I am not authorized to perform an action in DynamoDB

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my Amazon Web Services account to access my DynamoDB
resources

I am not authorized to perform an action in DynamoDB

If the Amazon Web Services Management Console tells you that you're not authorized to perform
an action, then you must contact your administrator for assistance. Your administrator is the
person that provided you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
aws:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 aws:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the aws:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to DynamoDB.

Some Amazon Web Services services allow you to pass an existing role to that service instead of
creating a new service role or service-linked role. To do this, you must have permissions to pass the
role to the service.

Identity and Access Management API Version 2012-08-10 2975

Amazon DynamoDB Developer Guide

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in DynamoDB. However, the action requires the service to have permissions
that are granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I want to allow people outside of my Amazon Web Services account to access my DynamoDB
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether DynamoDB supports these features, see How Amazon DynamoDB works with
IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

• To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Identity and Access Management API Version 2012-08-10 2976

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon DynamoDB Developer Guide

IAM policy to prevent the purchase of DynamoDB reserved capacity

With Amazon DynamoDB reserved capacity, you pay a one-time, upfront fee and commit to paying
for a minimum usage level at significant savings over a period of time. You can use the Amazon
Web Services Management Console to view and purchase reserved capacity. However, you might
not want all of the users in your organization to be able to purchase reserved capacity. For more
information about reserved capacity, see Amazon DynamoDB pricing.

DynamoDB provides the following API operations for controlling access to reserved capacity
management:

• dynamodb:DescribeReservedCapacity – Returns the reserved capacity purchases that are
currently in effect.

• dynamodb:DescribeReservedCapacityOfferings – Returns details about the reserved
capacity plans that are currently offered by Amazon.

• dynamodb:PurchaseReservedCapacityOfferings – Performs an actual purchase of
reserved capacity.

The Amazon Web Services Management Console uses these API actions to display reserved
capacity information and make purchases. You cannot call these operations from an application
program because they can be accessed only from the console. However, you can allow or deny
access to these operations in an IAM permissions policy.

The following policy allows users to view reserved capacity purchases and offerings by using the
Amazon Web Services Management Console — but new purchases are denied.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowReservedCapacityDescriptions",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeReservedCapacity",
 "dynamodb:DescribeReservedCapacityOfferings"
],

Identity and Access Management API Version 2012-08-10 2977

http://www.amazonaws.cn/dynamodb/pricing

Amazon DynamoDB Developer Guide

 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:*"
 },
 {
 "Sid": "DenyReservedCapacityPurchases",
 "Effect": "Deny",
 "Action": "dynamodb:PurchaseReservedCapacityOfferings",
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:*"
 }
]
}

Note that this policy uses the wildcard character (*) to allow describe permissions for all, and to
deny the purchase of DynamoDB reserved capacity for all.

Using IAM policy conditions for fine-grained access control

When you grant permissions in DynamoDB, you can specify conditions that determine how a
permissions policy takes effect.

Overview

In DynamoDB, you have the option to specify conditions when granting permissions using an IAM
policy (see Identity and Access Management for Amazon DynamoDB). For example, you can:

• Grant permissions to allow users read-only access to certain items and attributes in a table or a
secondary index.

• Grant permissions to allow users write-only access to certain attributes in a table, based upon
the identity of that user.

In DynamoDB, you can specify conditions in an IAM policy using condition keys, as illustrated in the
use case in the following section.

Permissions use case

In addition to controlling access to DynamoDB API actions, you can also control access to individual
data items and attributes. For example, you can do the following:

• Grant permissions on a table, but restrict access to specific items in that table based on certain
primary key values. An example might be a social networking app for games, where all users'

Using conditions API Version 2012-08-10 2978

Amazon DynamoDB Developer Guide

saved game data is stored in a single table, but no users can access data items that they do not
own, as shown in the following illustration:

• Hide information so that only a subset of attributes is visible to the user. An example might be
an app that displays flight data for nearby airports, based on the user's location. Airline names,
arrival and departure times, and flight numbers are all displayed. However, attributes such as
pilot names or the number of passengers are hidden, as shown in the following illustration:

To implement this kind of fine-grained access control, you write an IAM permissions policy that
specifies conditions for accessing security credentials and the associated permissions. You then
apply the policy to users, groups, or roles that you create using the IAM console. Your IAM policy
can restrict access to individual items in a table, access to the attributes in those items, or both at
the same time.

You can optionally use web identity federation to control access by users who are authenticated by
Login with Amazon, Facebook, or Google. For more information, see Using web identity federation.

Using conditions API Version 2012-08-10 2979

Amazon DynamoDB Developer Guide

You use the IAM Condition element to implement a fine-grained access control policy. By adding
a Condition element to a permissions policy, you can allow or deny access to items and attributes
in DynamoDB tables and indexes, based upon your particular business requirements.

The video below explains fine-grained access control in DynamoDB using IAM policy conditions.

Understanding Fine-Grained Access Control in DynamoDB

Fine-grained access control in DynamoDB allows you to create precise permissions boundaries at
multiple levels:

1. Item-level access control: Restrict users to only access items that contain specific key values,
typically matching their identity or permission scope.

2. Attribute-level access control: Limit which attributes (columns) users can view or modify,
enabling you to protect sensitive information while allowing access to non-sensitive data within
the same items.

3. Operation-specific controls: Apply different permission rules based on the type of operation
being performed.

These controls are implemented through IAM policies using DynamoDB-specific condition keys.

Specifying conditions: Using condition keys

Amazon provides a set of predefined condition keys (Amazon-wide condition keys) for all Amazon
services that support IAM for access control. For example, you can use the aws:SourceIp
condition key to check the requester's IP address before allowing an action to be performed. For
more information and a list of the Amazon-wide keys, see Available Keys for Conditions in the IAM
User Guide.

The following are the DynamoDB service-specific condition keys that apply to DynamoDB.

dynamodb:LeadingKeys

Represents the first key attribute of a table—in other words, the partition key. The key name
LeadingKeys is plural, even if the key is used with single-item actions. In addition, you must
use the ForAllValues modifier when using LeadingKeys in a condition.

dynamodb:Select

Represents the Select parameter of a request. Select can be any of the following values:

Using conditions API Version 2012-08-10 2980

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys

Amazon DynamoDB Developer Guide

• ALL_ATTRIBUTES

• ALL_PROJECTED_ATTRIBUTES

• SPECIFIC_ATTRIBUTES

• COUNT

Note

While often associated with Query and Scan operations, this condition key applies to
all DynamoDB operations that return item attributes and is essential for controlling
attribute access across all API actions. Using StringEqualsIfExists or similar constraints
on this condition key will apply constraints on operations where this condition key
applies, while ignoring it on operations where it does not apply.

dynamodb:Attributes

Represents a list of the top-level attributes accessed by a request. A top-level attribute is
accessed by a request if it, or any nested attribute that it contains, is specified in the request
parameters. For example, a GetItem request that specifies a ProjectionExpression
of "Name, Address.City", the dynamodb:Attributes list would include "Name" and
"Address". If the Attributes parameter is enumerated in a fine grained access control policy
then consider also restricting ReturnValues and Select parameters to ensure restricted
access to specified attributes across multiple API actions like GetItem, Query, and Scan.

Note

This condition is evaluated only on the attributes specified in the request (such as in
a ProjectionExpression), not on attributes in the response. If no ProjectionExpression
is provided in the request, all attributes will be returned regardless of any attribute
restrictions in the policy. See the section "Ensuring attribute-based restrictions are
enforced" below for details on how to properly secure attribute access.

dynamodb:ReturnValues

Represents the ReturnValues parameter of a request. Depending on the API action,
ReturnValues could be any of the following values:

• ALL_OLD

Using conditions API Version 2012-08-10 2981

Amazon DynamoDB Developer Guide

• UPDATED_OLD

• ALL_NEW

• UPDATED_NEW

• NONE

dynamodb:ReturnConsumedCapacity

Represents the ReturnConsumedCapacity parameter of a request.
ReturnConsumedCapacity can be one of the following values:

• TOTAL

• NONE

dynamodb:FirstPartitionKeyValues

Represents the first key attribute of a table—in other words, the first partition key. The key
name FirstPartitionKeyValues is plural, even if the key is used with single-item actions. In
addition, you must use the ForAllValues modifier when using FirstPartitionKeyValues
in a condition. FirstPartitionKeyValues and LeadingKeys can used exchangeable.

dynamodb:SecondPartitionKeyValues

Similar to dynamodb:FirstPartitionKeyValues. Represents resources' second partition
key. The key name SecondPartitionKeyValues is plural, even if the key is used with single-
item actions.

dynamodb:ThirdPartitionKeyValues

Similar to dynamodb:FirstPartitionKeyValues. Represents resources' third partition key.
The key name ThirdPartitionKeyValues is plural, even if the key is used with single-item
actions.

dynamodb:FourthPartitionKeyValues

Similar to dynamodb:FirstPartitionKeyValues. Represents resources' fourth partition key.
The key name FourthPartitionKeyValues is plural, even if the key is used with single-item
actions.

Ensuring attribute-based restrictions are enforced

When using attribute-based conditions to restrict access to specific attributes, it's important to
understand how these conditions are evaluated:

Using conditions API Version 2012-08-10 2982

Amazon DynamoDB Developer Guide

• Attribute conditions are evaluated only on attributes specified in the request, not on
attributes in the response.

• For read operations without a ProjectionExpression (GetItem, Query, Scan, etc.), all attributes
will be returned regardless of attribute restrictions in your policy. To prevent this potential
exposure of sensitive data, implement both attribute conditions (dynamodb:Attributes) and a
condition requiring specific attributes must be requested (dynamodb:Select).

• For write operations (PutItem, UpdateItem, DeleteItem), the ReturnValues parameter can
return complete items, potentially exposing restricted attributes even when the write operation
itself complies with your policy. To prevent this exposure, implement both attribute conditions
(dynamodb:Attributes) and restrictions on ReturnValues (dynamodb:ReturnValues) in your
policy.

Limiting user access

Many IAM permissions policies allow users to access only those items in a table where the partition
key value matches the user identifier. For example, the game app preceding limits access in
this way so that users can only access game data that is associated with their user ID. The IAM
substitution variables ${www.amazon.com:user_id}, ${graph.facebook.com:id}, and
${accounts.google.com:sub} contain user identifiers for Login with Amazon, Facebook, and
Google. To learn how an application logs in to one of these identity providers and obtains these
identifiers, see Using web identity federation.

Important

Fine-grained access control isn't supported for restricting global tables replication.
Applying policy conditions for fine-grained access control to DynamoDB service principals
or service-linked roles used for global tables replication may interrupt replication within a
global table.

Note

Each of the examples in the following section sets the Effect clause to Allow and
specifies only the actions, resources, and parameters that are allowed. Access is permitted
only to what is explicitly listed in the IAM policy.
In some cases, it is possible to rewrite these policies so that they are deny-based (that is,
setting the Effect clause to Deny and inverting all of the logic in the policy). However,

Using conditions API Version 2012-08-10 2983

Amazon DynamoDB Developer Guide

we recommend that you avoid using deny-based policies with DynamoDB because they're
difficult to write correctly, compared to allow-based policies. In addition, future changes
to the DynamoDB API (or changes to existing API inputs) can render a deny-based policy
ineffective.

Example policies: Using conditions for fine-grained access control

This section shows several policies for implementing fine-grained access control on DynamoDB
tables and indexes.

Note

All examples use the us-west-2 Region and contain fictitious account IDs.

Example 1. Basic partition key-based access control with attribute restrictions

As an example, consider a mobile gaming app that lets players select from and play a variety of
different games. The app uses a DynamoDB table named GameScores to keep track of high scores
and other user data. Each item in the table is uniquely identified by a user ID and the name of the
game that the user played. The GameScores table has a primary key consisting of a partition key
(UserId) and sort key (GameTitle). Users only have access to game data associated with their
user ID. A user who wants to play a game must belong to an IAM role named GameRole, which has
a security policy attached to it.

To manage user permissions in this app, you could write a permissions policy such as the following:

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowAccessToOnlyItemsMatchingUserID",
 "Effect":"Allow",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",

Using conditions API Version 2012-08-10 2984

Amazon DynamoDB Developer Guide

 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:LeadingKeys":[
 "${www.amazon.com:user_id}"
],
 "dynamodb:Attributes":[
 "UserId",
 "GameTitle",
 "Wins",
 "Losses",
 "TopScore",
 "TopScoreDateTime"
]
 },
 "StringEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

In addition to granting permissions for specific DynamoDB actions (Action element) on the
GameScores table (Resource element), the Condition element uses the following condition
keys specific to DynamoDB that limit the permissions as follows:

• dynamodb:LeadingKeys – This condition key allows users to access only the items where
the partition key value matches their user ID. This ID, ${www.amazon.com:user_id}, is a
substitution variable. For more information about substitution variables, see Using web identity
federation.

• dynamodb:Attributes – This condition key limits access to the specified attributes so that
only the actions listed in the permissions policy can return values for these attributes. In

Using conditions API Version 2012-08-10 2985

Amazon DynamoDB Developer Guide

addition, the StringEqualsIfExists clause ensures that the app must always provide a list of
specific attributes to act upon and that the app can't request all attributes.

When an IAM policy is evaluated, the result is always either true (access is allowed) or false (access
is denied). If any part of the Condition element is false, the entire policy evaluates to false and
access is denied.

Important

If you use dynamodb:Attributes, you must specify the names of all of the primary key
and index key attributes for the table and any secondary indexes that are listed in the
policy. Otherwise, DynamoDB can't use these key attributes to perform the requested
action.

IAM policy documents can contain only the following Unicode characters: horizontal tab (U+0009),
linefeed (U+000A), carriage return (U+000D), and characters in the range U+0020 to U+00FF.

Example 2: Grant permissions that limit access to items with a specific partition key value

The following permissions policy grants permissions that allow a set of DynamoDB actions on the
GamesScore table. It uses the dynamodb:LeadingKeys condition key to limit user actions only
on the items whose UserID partition key value matches the Login with Amazon unique user ID for
this app.

Important

The list of actions does not include permissions for Scan because Scan returns all items
regardless of the leading keys.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"FullAccessToUserItems",

Using conditions API Version 2012-08-10 2986

Amazon DynamoDB Developer Guide

 "Effect":"Allow",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:LeadingKeys":[
 "${www.amazon.com:user_id}"
]
 }
 }
 }
]
}

Note

When using policy variables, you must explicitly specify version 2012-10-17 in the policy.
The default version of the access policy language, 2008-10-17, does not support policy
variables.

To implement read-only access, you can remove any actions that can modify the data. In the
following policy, only those actions that provide read-only access are included in the condition.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {

Using conditions API Version 2012-08-10 2987

Amazon DynamoDB Developer Guide

 "Sid":"ReadOnlyAccessToUserItems",
 "Effect":"Allow",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:LeadingKeys":[
 "${www.amazon.com:user_id}"
]
 }
 }
 }
]
}

Important

If you use dynamodb:Attributes, you must specify the names of all of the primary key
and index key attributes, for the table and any secondary indexes that are listed in the
policy. Otherwise, DynamoDB can't use these key attributes to perform the requested
action.

Example 3: Grant permissions that limit access to specific attributes in a table

The following permissions policy allows access to only two specific attributes in a table by adding
the dynamodb:Attributes condition key. These attributes can be read, written, or evaluated in a
conditional write or scan filter.

JSON

{
 "Version":"2012-10-17",
 "Statement":[

Using conditions API Version 2012-08-10 2988

Amazon DynamoDB Developer Guide

 {
 "Sid":"LimitAccessToSpecificAttributes",
 "Effect":"Allow",
 "Action":[
 "dynamodb:UpdateItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:Attributes":[
 "UserId",
 "TopScore"
]
 },
 "StringEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues":[
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

Note

The policy takes an allow list approach, which allows access to a named set of attributes.
You can write an equivalent policy that denies access to other attributes instead. We
don't recommend this deny list approach. Users can determine the names of these denied
attributes by follow the principle of least privilege, as explained in Wikipedia at http://

Using conditions API Version 2012-08-10 2989

Amazon DynamoDB Developer Guide

en.wikipedia.org/wiki/Principle_of_least_privilege, and use an allow list approach to
enumerate all of the allowed values, rather than specifying the denied attributes.

This policy doesn't permit PutItem, DeleteItem, or BatchWriteItem. These actions always
replace the entire previous item, which would allow users to delete the previous values for
attributes that they are not allowed to access.

The StringEqualsIfExists clause in the permissions policy ensures the following:

• If the user specifies the Select parameter, then its value must be SPECIFIC_ATTRIBUTES. This
requirement prevents the API action from returning any attributes that aren't allowed, such as
from an index projection.

• If the user specifies the ReturnValues parameter, then its value must be NONE, UPDATED_OLD,
or UPDATED_NEW. This is required because the UpdateItem action also performs implicit read
operations to check whether an item exists before replacing it, and so that previous attribute
values can be returned if requested. Restricting ReturnValues in this way ensures that users
can only read or write the allowed attributes.

• The StringEqualsIfExists clause assures that only one of these parameters — Select or
ReturnValues — can be used per request, in the context of the allowed actions.

The following are some variations on this policy:

• To allow only read actions, you can remove UpdateItem from the list of allowed actions.
Because none of the remaining actions accept ReturnValues, you can remove ReturnValues
from the condition. You can also change StringEqualsIfExists to StringEquals because
the Select parameter always has a value (ALL_ATTRIBUTES, unless otherwise specified).

• To allow only write actions, you can remove everything except UpdateItem from the list of
allowed actions. Because UpdateItem does not use the Select parameter, you can remove
Select from the condition. You must also change StringEqualsIfExists to StringEquals
because the ReturnValues parameter always has a value (NONE unless otherwise specified).

• To allow all attributes whose name matches a pattern, use StringLike instead of
StringEquals, and use a multi-character pattern match wildcard character (*).

Using conditions API Version 2012-08-10 2990

Amazon DynamoDB Developer Guide

Example 4: Grant permissions to prevent updates on certain attributes

The following permissions policy limits user access to updating only the specific attributes
identified by the dynamodb:Attributes condition key. The StringNotLike condition prevents
an application from updating the attributes specified using the dynamodb:Attributes condition
key.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"PreventUpdatesOnCertainAttributes",
 "Effect":"Allow",
 "Action":[
 "dynamodb:UpdateItem"
],
 "Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "Condition":{
 "ForAllValues:StringNotLike":{
 "dynamodb:Attributes":[
 "FreeGamesAvailable",
 "BossLevelUnlocked"
]
 },
 "StringEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues":[
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

Note the following:

Using conditions API Version 2012-08-10 2991

Amazon DynamoDB Developer Guide

• The UpdateItem action, like other write actions, requires read access to the items so that it can
return values before and after the update. In the policy, you limit the action to accessing only
the attributes that are allowed to be updated by specifying the dynamodb:ReturnValues
condition key. The condition key restricts ReturnValues in the request to specify only NONE,
UPDATED_OLD, or UPDATED_NEW and doesn't include ALL_OLD or ALL_NEW.

• The StringEqualsIfExists operator ensures that if dynamodb:Select or
dynamodb:ReturnValues is present in the request, it must match the specified values. This
prevents operations from returning complete items.

• When restricting attribute updates, you should also control what data can be returned to prevent
information disclosure of protected attributes.

• The PutItem and DeleteItem actions replace an entire item, and thus allows applications to
modify any attributes. So when limiting an application to updating only specific attributes, you
should not grant permission for these APIs.

Example 5: Grant permissions to query only projected attributes in an index

The following permissions policy allows queries on a secondary index (TopScoreDateTimeIndex)
by using the dynamodb:Attributes condition key. The policy also limits queries to requesting
only specific attributes that have been projected into the index.

To require the application to specify a list of attributes in the query, the policy also specifies the
dynamodb:Select condition key to require that the Select parameter of the DynamoDB Query
action is SPECIFIC_ATTRIBUTES. The list of attributes is limited to a specific list that is provided
using the dynamodb:Attributes condition key.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"QueryOnlyProjectedIndexAttributes",
 "Effect":"Allow",
 "Action":[
 "dynamodb:Query"
],
 "Resource":[

Using conditions API Version 2012-08-10 2992

Amazon DynamoDB Developer Guide

 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores/index/
TopScoreDateTimeIndex"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:Attributes":[
 "TopScoreDateTime",
 "GameTitle",
 "Wins",
 "Losses",
 "Attempts"
]
 },
 "StringEquals":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

The following permissions policy is similar, but the query must request all of the attributes that
have been projected into the index.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"QueryAllIndexAttributes",
 "Effect":"Allow",
 "Action":[
 "dynamodb:Query"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores/index/
TopScoreDateTimeIndex"
],
 "Condition":{
 "StringEquals":{

Using conditions API Version 2012-08-10 2993

Amazon DynamoDB Developer Guide

 "dynamodb:Select":"ALL_PROJECTED_ATTRIBUTES"
 }
 }
 }
]
}

Example 6: Grant permissions to limit access to certain attributes and partition key values

The following permissions policy allows specific DynamoDB actions (specified in the Action
element) on a table and a table index (specified in the Resource element). The policy uses the
dynamodb:LeadingKeys condition key to restrict permissions to only the items whose partition
key value matches the user's Facebook ID.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"LimitAccessToCertainAttributesAndKeyValues",
 "Effect":"Allow",
 "Action":[
 "dynamodb:UpdateItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:BatchGetItem"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores",
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores/index/
TopScoreDateTimeIndex"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:LeadingKeys":[
 "${graph.facebook.com:id}"
],
 "dynamodb:Attributes":[
 "attribute-A",
 "attribute-B"

Using conditions API Version 2012-08-10 2994

Amazon DynamoDB Developer Guide

]
 },
 "StringEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES",
 "dynamodb:ReturnValues":[
 "NONE",
 "UPDATED_OLD",
 "UPDATED_NEW"
]
 }
 }
 }
]
}

Note the following:

• Write actions allowed by the policy (UpdateItem) can only modify attribute-A or attribute-B.

• Because the policy allows UpdateItem, an application can insert new items, and the
hidden attributes will be null in the new items. If these attributes are projected into
TopScoreDateTimeIndex, the policy has the added benefit of preventing queries that cause
fetches from the table.

• Applications cannot read any attributes other than those listed in dynamodb:Attributes. With
this policy in place, an application must set the Select parameter to SPECIFIC_ATTRIBUTES
in read requests, and only attributes in the allow list can be requested. For write requests,
the application cannot set ReturnValues to ALL_OLD or ALL_NEW and it cannot perform
conditional write operations based on any other attributes.

Example 7: Deny permissions to limit access to specific attributes in a table

The following policy denies access to sensitive attributes and ensures this restriction cannot be
bypassed by omitting a projection expression. It allows general access to the CustomerData table
while explicitly denying access to SSN and CreditCardNumber attributes.

JSON

{
 "Version":"2012-10-17",

Using conditions API Version 2012-08-10 2995

Amazon DynamoDB Developer Guide

 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/CustomerData"
 },
 {
 "Effect":"Deny",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/CustomerData",
 "Condition":{
 "ForAnyValue:StringEquals":{
 "dynamodb:Attributes":[
 "SSN",
 "CreditCardNumber"
]
 }
 }
 },
 {
 "Effect":"Deny",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan"
],
 "Resource":"arn:aws:dynamodb:us-west-2:123456789012:table/CustomerData",
 "Condition":{
 "StringNotEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES"
 }
 }
 }
]
}

Using conditions API Version 2012-08-10 2996

Amazon DynamoDB Developer Guide

Related topics

• Identity and Access Management for Amazon DynamoDB

• DynamoDB API permissions: Actions, resources, and conditions reference

Using web identity federation

If you are writing an application targeted at large numbers of users, you can optionally use web
identity federation for authentication and authorization. Web identity federation removes the need
for creating individual users. Instead, users can sign in to an identity provider and then obtain
temporary security credentials from Amazon Security Token Service (Amazon STS). The app can
then use these credentials to access Amazon services.

Web identity federation supports the following identity providers:

• Login with Amazon

• Facebook

• Google

Additional resources for web identity federation

The following resources can help you learn more about web identity federation:

• The post Web Identity Federation using the Amazon SDK for .NET on the Amazon Developer blog
walks through how to use web identity federation with Facebook. It includes code snippets in
C# that show how to assume an IAM role with web identity and how to use temporary security
credentials to access an Amazon resource.

• The Amazon Mobile SDK for iOS and the Amazon Mobile SDK for Android contain sample apps.
They include code that shows how to invoke the identity providers, and then how to use the
information from these providers to get and use temporary security credentials.

• The article Web Identity Federation with Mobile Applications discusses web identity federation
and shows an example of how to use web identity federation to access an Amazon resource.

Using conditions API Version 2012-08-10 2997

https://amazonaws-china.com/blogs/developer/web-identity-federation-using-the-aws-sdk-for-net
http://www.amazonaws.cn/sdkforios/
http://www.amazonaws.cn/sdkforandroid/
http://www.amazonaws.cn/articles/4617974389850313

Amazon DynamoDB Developer Guide

Example policy for web identity federation

To show how you can use web identity federation with DynamoDB, revisit the GameScores table
that was introduced in Using IAM policy conditions for fine-grained access control. Here is the
primary key for GameScores.

Table Name Primary Key Type Partition Key Name
and Type

Sort Key Name and
Type

GameScores (UserId,
GameTitle, ...)

Composite Attribute Name:
UserId

Type: String

Attribute Name:
GameTitle

Type: String

Now suppose that a mobile gaming app uses this table, and that app needs to support thousands,
or even millions, of users. At this scale, it becomes very difficult to manage individual app
users, and to guarantee that each user can only access their own data in the GameScores table.
Fortunately, many users already have accounts with a third-party identity provider, such as
Facebook, Google, or Login with Amazon. So it makes sense to use one of these providers for
authentication tasks.

To do this using web identity federation, the app developer must register the app with an identity
provider (such as Login with Amazon) and obtain a unique app ID. Next, the developer needs
to create an IAM role. (For this example, this role is named GameRole.) The role must have an
IAM policy document attached to it, specifying the conditions under which the app can access
GameScores table.

When a user wants to play a game, they sign in to their Login with Amazon account from within
the gaming app. The app then calls Amazon Security Token Service (Amazon STS), providing
the Login with Amazon app ID and requesting membership in GameRole. Amazon STS returns
temporary Amazon credentials to the app and allows it to access the GameScores table, subject to
the GameRole policy document.

The following diagram shows how these pieces fit together.

Using conditions API Version 2012-08-10 2998

Amazon DynamoDB Developer Guide

Web identity federation overview

1. The app calls a third-party identity provider to authenticate the user and the app. The identity
provider returns a web identity token to the app.

2. The app calls Amazon STS and passes the web identity token as input. Amazon STS authorizes
the app and gives it temporary Amazon access credentials. The app is allowed to assume an IAM
role (GameRole) and access Amazon resources in accordance with the role's security policy.

3. The app calls DynamoDB to access the GameScores table. Because it has assumed the GameRole,
the app is subject to the security policy associated with that role. The policy document prevents
the app from accessing data that does not belong to the user.

Using conditions API Version 2012-08-10 2999

Amazon DynamoDB Developer Guide

Once again, here is the security policy for GameRole that was shown in Using IAM policy conditions
for fine-grained access control:

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"AllowAccessToOnlyItemsMatchingUserID",
 "Effect":"Allow",
 "Action":[
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource":[
 "arn:aws:dynamodb:us-west-2:123456789012:table/GameScores"
],
 "Condition":{
 "ForAllValues:StringEquals":{
 "dynamodb:LeadingKeys":[
 "${www.amazon.com:user_id}"
],
 "dynamodb:Attributes":[
 "UserId",
 "GameTitle",
 "Wins",
 "Losses",
 "TopScore",
 "TopScoreDateTime"
]
 },
 "StringEqualsIfExists":{
 "dynamodb:Select":"SPECIFIC_ATTRIBUTES"
 }
 }
 }
]

Using conditions API Version 2012-08-10 3000

Amazon DynamoDB Developer Guide

}

The Condition clause determines which items in GameScores are visible to the app. It does this
by comparing the Login with Amazon ID to the UserId partition key values in GameScores. Only
the items belonging to the current user can be processed using one of DynamoDB actions that are
listed in this policy. Other items in the table cannot be accessed. Furthermore, only the specific
attributes listed in the policy can be accessed.

Preparing to use web identity federation

If you are an application developer and want to use web identity federation for your app, follow
these steps:

1. Sign up as a developer with a third-party identity provider. The following external links
provide information about signing up with supported identity providers:

• Login with Amazon Developer Center

• Registration on the Facebook site

• Using OAuth 2.0 to Access Google APIs on the Google site

2. Register your app with the identity provider. When you do this, the provider gives you an ID
that's unique to your app. If you want your app to work with multiple identity providers, you
need to obtain an app ID from each provider.

3. Create one or more IAM roles. You need one role for each identity provider for each app. For
example, you might create a role that can be assumed by an app where the user signed in using
Login with Amazon, a second role for the same app where the user has signed in using Facebook,
and a third role for the app where users sign in using Google.

As part of the role creation process, you need to attach an IAM policy to the role. Your policy
document should define the DynamoDB resources required by your app, and the permissions for
accessing those resources.

For more information, see About Web Identity Federation in IAM User Guide.

Using conditions API Version 2012-08-10 3001

http://login.amazon.com/
https://business.facebook.com/business/loginpage
https://developers.google.com/accounts/docs/OAuth2
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_oidc.html

Amazon DynamoDB Developer Guide

Note

As an alternative to Amazon Security Token Service, you can use Amazon Cognito. Amazon
Cognito is the preferred service for managing temporary credentials for mobile apps. For
more information, see Getting credentials in the Amazon Cognito Developer Guide.

Generating an IAM policy using the DynamoDB console

The DynamoDB console can help you create an IAM policy for use with web identity federation. To
do this, you choose a DynamoDB table and specify the identity provider, actions, and attributes to
be included in the policy. The DynamoDB console then generates a policy that you can attach to an
IAM role.

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane, choose Tables.

3. In the list of tables, choose the table for which you want to create the IAM policy.

4. Select the Actions button, and choose Create Access Control Policy.

5. Choose the identity provider, actions, and attributes for the policy.

When the settings are as you want them, choose Generate Policy. The generated policy
appears.

6. Choose See Documentation, and follow the steps required to attach the generated policy to
an IAM role.

Writing your app to use web identity federation

To use web identity federation, your app must assume the IAM role that you created. From that
point on, the app honors the access policy that you attached to the role.

At runtime, if your app uses web identity federation, it must follow these steps:

1. Authenticate with a third-party identity provider. Your app must call the identity provider
using an interface that they provide. The exact way in which you authenticate the user depends
on the provider and on what platform your app is running. Typically, if the user is not already
signed in, the identity provider takes care of displaying a sign-in page for that provider.

Using conditions API Version 2012-08-10 3002

https://docs.amazonaws.cn/cognito/latest/developerguide/getting-credentials.html
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

After the identity provider authenticates the user, the provider returns a web identity token to
your app. The format of this token depends on the provider, but is typically a very long string of
characters.

2. Obtain temporary Amazon security credentials. To do this, your app sends a
AssumeRoleWithWebIdentity request to Amazon Security Token Service (Amazon STS). This
request contains the following:

• The web identity token from the previous step

• The app ID from the identity provider

• The Amazon Resource Name (ARN) of the IAM role that you created for this identity provider
for this app

Amazon STS returns a set of Amazon security credentials that expire after a certain amount of
time (3,600 seconds, by default).

The following is a sample request and response from a AssumeRoleWithWebIdentity action
in Amazon STS. The web identity token was obtained from the Login with Amazon identity
provider.

GET / HTTP/1.1
Host: sts.amazonaws.com.cn
Content-Type: application/json; charset=utf-8
URL: https://sts.amazonaws.com.cn/?ProviderId=www.amazon.com
&DurationSeconds=900&Action=AssumeRoleWithWebIdentity
&Version=2011-06-15&RoleSessionName=web-identity-federation
&RoleArn=arn:aws:iam::123456789012:role/GameRole
&WebIdentityToken=Atza|IQEBLjAsAhQluyKqyBiYZ8-kclvGTYM81e...(remaining characters
 omitted)

<AssumeRoleWithWebIdentityResponse
 xmlns="https://sts.amazonaws.com.cn/doc/2011-06-15/">
 <AssumeRoleWithWebIdentityResult>
 <SubjectFromWebIdentityToken>amzn1.account.AGJZDKHJKAUUSW6C44CHPEXAMPLE</
SubjectFromWebIdentityToken>
 <Credentials>
 <SessionToken>AQoDYXdzEMf//////////wEa8AP6nNDwcSLnf+cHupC...(remaining
 characters omitted)</SessionToken>
 <SecretAccessKey>8Jhi60+EWUUbbUShTEsjTxqQtM8UKvsM6XAjdA==</SecretAccessKey>
 <Expiration>2013-10-01T22:14:35Z</Expiration>

Using conditions API Version 2012-08-10 3003

Amazon DynamoDB Developer Guide

 <AccessKeyId>06198791C436IEXAMPLE</AccessKeyId>
 </Credentials>
 <AssumedRoleUser>
 <Arn>arn:aws:sts::123456789012:assumed-role/GameRole/web-identity-federation</
Arn>
 <AssumedRoleId>AROAJU4SA2VW5SZRF2YMG:web-identity-federation</AssumedRoleId>
 </AssumedRoleUser>
 </AssumeRoleWithWebIdentityResult>
 <ResponseMetadata>
 <RequestId>c265ac8e-2ae4-11e3-8775-6969323a932d</RequestId>
 </ResponseMetadata>
</AssumeRoleWithWebIdentityResponse>

3. Access Amazon resources. The response from Amazon STS contains information that your app
requires in order to access DynamoDB resources:

• The AccessKeyID, SecretAccessKey, and SessionToken fields contain security
credentials that are valid for this user and this app only.

• The Expiration field signifies the time limit for these credentials, after which they are no
longer valid.

• The AssumedRoleId field contains the name of a session-specific IAM role that has been
assumed by the app. The app honors the access controls in the IAM policy document for the
duration of this session.

• The SubjectFromWebIdentityToken field contains the unique ID that appears in an IAM
policy variable for this particular identity provider. The following are the IAM policy variables
for supported providers, and some example values for them:

Policy Variable Example Value

${www.amazon.com:user_id} amzn1.account.AGJZDKHJKAUUS
W6C44CHPEXAMPLE

${graph.facebook.com:id} 123456789

${accounts.google.com:sub} 123456789012345678901

For example IAM policies where these policy variables are used, see Example policies: Using
conditions for fine-grained access control.

Using conditions API Version 2012-08-10 3004

Amazon DynamoDB Developer Guide

For more information about how Amazon STS generates temporary access credentials, see
Requesting Temporary Security Credentials in IAM User Guide.

DynamoDB API permissions: Actions, resources, and conditions reference

When you are setting up Identity and Access Management for Amazon DynamoDB and writing a
permissions policy that you can attach to an IAM identity (identity-based policies), you can use the
list of Actions, resources, and condition keys for Amazon DynamoDB in the IAM User Guide as a
reference. The page lists each DynamoDB API operation, the corresponding actions for which you
can grant permissions to perform the action, and the Amazon resource for which you can grant the
permissions. You specify the actions in the policy's Action field, and you specify the resource value
in the policy's Resource field.

You can use Amazon-wide condition keys in your DynamoDB policies to express conditions. For a
complete list of Amazon-wide keys, see the IAM JSON policy elements reference in the IAM User
Guide.

In addition to the Amazon-wide condition keys, DynamoDB has its own specific keys that you can
use in conditions. For more information, see Using IAM policy conditions for fine-grained access
control.

Related topics

• Identity and Access Management for Amazon DynamoDB

• Using IAM policy conditions for fine-grained access control

Compliance validation by industry for DynamoDB

To learn whether an Amazon Web Services service is within the scope of specific compliance
programs, see Amazon Web Services services in Scope by Compliance Program and choose the
compliance program that you are interested in. For general information, see Amazon Web Services
Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services services is determined by
the sensitivity of your data, your company's compliance objectives, and applicable laws and

Compliance validation API Version 2012-08-10 3005

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazondynamodb.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

Amazon DynamoDB Developer Guide

regulations. For more information about your compliance responsibility when using Amazon Web
Services services, see Amazon Security Documentation.

Resilience and disaster recovery in Amazon DynamoDB

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Amazon
Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking. With Availability Zones,
you can design and operate applications and databases that automatically fail over between
Availability Zones without interruption. Availability Zones are more highly available, fault tolerant,
and scalable than traditional single or multiple data center infrastructures.

If you need to replicate your data or applications over greater geographic distances, use Amazon
Local Regions. An Amazon Local Region is a single data center designed to complement an existing
Amazon Region. Like all Amazon Regions, Amazon Local Regions are completely isolated from
other Amazon Regions.

For more information about Amazon Regions and Availability Zones, see Amazon global
infrastructure.

In addition to the Amazon global infrastructure, Amazon DynamoDB offers several features to help
support your data resiliency and backup needs.

On-demand backup and restore

DynamoDB provides on-demand backup capability. It allows you to create full backups of your
tables for long-term retention and archival. For more information, see On-Demand backup and
restore for DynamoDB.

Point-in-time recovery

Point-in-time recovery helps protect your DynamoDB tables from accidental write or delete
operations. With point in time recovery, you don't have to worry about creating, maintaining,
or scheduling on-demand backups. For more information, see Point-in-time recovery for
DynamoDB.

Global tables that sync across Amazon regions

DynamoDB automatically spreads the data and traffic for your tables over a sufficient number
of servers to handle your throughput and storage requirements, while maintaining consistent
and fast performance. All of your data is stored on solid-state disks (SSDs) and is automatically

Resilience API Version 2012-08-10 3006

https://docs.amazonaws.cn/security/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Backup-and-Restore.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Backup-and-Restore.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Point-in-time-recovery.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Point-in-time-recovery.html

Amazon DynamoDB Developer Guide

replicated across multiple Availability Zones in an Amazon Region, providing built-in high
availability and data durability. You can use global tables to keep DynamoDB tables in sync
across Amazon Regions.

Infrastructure security in Amazon DynamoDB

As a managed service, Amazon DynamoDB is protected by the Amazon global network security
procedures that are described in Infrastructure protection located in the Amazon Well-Architected
Framework.

You use Amazon published API calls to access DynamoDB through the network. Clients can use
TLS (Transport Layer Security) version 1.2 or 1.3. Clients must also support cipher suites with
perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Diffie-
Hellman Ephemeral (ECDHE). Most modern systems such as Java 7 and later support these
modes. Additionally, requests must be signed using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

You can also use a virtual private cloud (VPC) endpoint for DynamoDB to enable Amazon EC2
instances in your VPC to use their private IP addresses to access DynamoDB with no exposure to
the public internet. For more information, see Using Amazon VPC endpoints to access DynamoDB.

Using Amazon VPC endpoints to access DynamoDB

For security reasons, many Amazon customers run their applications within an Amazon Virtual
Private Cloud environment (Amazon VPC). With Amazon VPC, you can launch Amazon EC2
instances into a virtual private cloud, which is logically isolated from other networks—including the
public internet. With an Amazon VPC, you have control over its IP address range, subnets, routing
tables, network gateways, and security settings.

Note

If you created your Amazon Web Services account after December 4, 2013, then you
already have a default VPC in each Amazon Web Services Region. A default VPC is ready for
you to use—you can immediately start using it without having to perform any additional
configuration steps.
For more information, see Default VPC and Default Subnets in the Amazon VPC User Guide.

Infrastructure security API Version 2012-08-10 3007

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/vpc/latest/userguide/default-vpc.html

Amazon DynamoDB Developer Guide

To access the public internet, your VPC must have an internet gateway—a virtual router that
connects your VPC to the internet. This allows applications running on Amazon EC2 in your VPC to
access internet resources, such as Amazon DynamoDB.

By default, communications to and from DynamoDB use the HTTPS protocol, which protects
network traffic by using SSL/TLS encryption. The following diagram shows an Amazon EC2
instance in a VPC accessing DynamoDB, by having DynamoDB use an internet gateway rather than
VPC endpoints.

Many customers have legitimate privacy and security concerns about sending and receiving data
across the public internet. You can address these concerns by using a virtual private network
(VPN) to route all DynamoDB network traffic through your own corporate network infrastructure.
However, this approach can introduce bandwidth and availability challenges.

VPC endpoints for DynamoDB can alleviate these challenges. A VPC endpoint for DynamoDB
enables Amazon EC2 instances in your VPC to use their private IP addresses to access DynamoDB
with no exposure to the public internet. Your EC2 instances do not require public IP addresses, and
you don't need an internet gateway, a NAT device, or a virtual private gateway in your VPC. You
use endpoint policies to control access to DynamoDB. Traffic between your VPC and the Amazon
service does not leave the Amazon network.

Using VPC endpoints API Version 2012-08-10 3008

Amazon DynamoDB Developer Guide

Note

Even when you use public IP addresses, all VPC communication between instances and
services hosted in Amazon is kept private within the Amazon network. Packets that
originate from the Amazon network with a destination on the Amazon network stay on the
Amazon global network, except traffic to or from Amazon China Regions.

When you create a VPC endpoint for DynamoDB, any requests to a DynamoDB endpoint within
the Region (for example, dynamodb.us-west-2.amazonaws.com) are routed to a private DynamoDB
endpoint within the Amazon network. You don't need to modify your applications running on EC2
instances in your VPC. The endpoint name remains the same, but the route to DynamoDB stays
entirely within the Amazon network, and does not access the public internet.

The following diagram shows how an EC2 instance in a VPC can use a VPC endpoint to access
DynamoDB.

For more information, see the section called “Tutorial: Using a VPC endpoint for DynamoDB”.

Using VPC endpoints API Version 2012-08-10 3009

Amazon DynamoDB Developer Guide

Sharing Amazon VPC endpoints and DynamoDB

In order to enable access to the DynamoDB service through a VPC subnet's gateway endpoint, you
must have owner account permissions for that VPC subnet.

Once the VPC subnet’s gateway endpoint has been granted access to DynamoDB, any Amazon
account with access to that subnet can use DynamoDB. This means all account users within the VPC
subnet can use any DynamoDB tables which they have access to. This includes DynamoDB tables
associated with a different account than the VPC subnet. The VPC subnet owner can still restrict
any particular user within the subnet from using the DynamoDB service through the gateway
endpoint, at their discretion.

Tutorial: Using a VPC endpoint for DynamoDB

This section walks you through setting up and using a VPC endpoint for DynamoDB.

Topics

• Step 1: Launch an Amazon EC2 instance

• Step 2: Configure your Amazon EC2 instance

• Step 3: Create a VPC endpoint for DynamoDB

• Step 4: (Optional) Clean up

Step 1: Launch an Amazon EC2 instance

In this step, you launch an Amazon EC2 instance in your default Amazon VPC. You can then create
and use a VPC endpoint for DynamoDB.

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. Choose Launch Instance and do the following:

Step 1: Choose an Amazon Machine Image (AMI)

• At the top of the list of AMIs, go to Amazon Linux AMI and choose Select.

Step 2: Choose an Instance Type

• At the top of the list of instance types, choose t2.micro.

• Choose Next: Configure Instance Details.

Using VPC endpoints API Version 2012-08-10 3010

https://console.amazonaws.cn/ec2/

Amazon DynamoDB Developer Guide

Step 3: Configure Instance Details

• Go to Network and choose your default VPC.

Choose Next: Add Storage.

Step 4: Add Storage

• Skip this step by choosing Next: Tag Instance.

Step 5: Tag Instance

• Skip this step by choosing Next: Configure Security Group.

Step 6: Configure Security Group

• Choose Select an existing security group.

• In the list of security groups, choose default. This is the default security group for your VPC.

• Choose Next: Review and Launch.

Step 7: Review Instance Launch

• Choose Launch.

3. In the Select an existing key pair or create a new key pair window, do one of the following:

• If you do not have an Amazon EC2 key pair, choose Create a new key pair and follow the
instructions. You will be asked to download a private key file (.pem file); you will need this
file later when you log in to your Amazon EC2 instance.

• If you already have an existing Amazon EC2 key pair, go to Select a key pair and choose your
key pair from the list. You must already have the private key file (.pem file) available in order
to log in to your Amazon EC2 instance.

4. When you have configured your key pair, choose Launch Instances.

5. Return to the Amazon EC2 console home page and choose the instance that you launched. In
the lower pane, on the Description tab, find the Public DNS for your instance. For example:
ec2-00-00-00-00.us-east-1.compute.amazonaws.com.

Using VPC endpoints API Version 2012-08-10 3011

Amazon DynamoDB Developer Guide

Make a note of this public DNS name, because you will need it in the next step in this tutorial
(Step 2: Configure your Amazon EC2 instance).

Note

It will take a few minutes for your Amazon EC2 instance to become available. Before you
go on to the next step, ensure that the Instance State is running and that all of its Status
Checks have passed.

Step 2: Configure your Amazon EC2 instance

When your Amazon EC2 instance is available, you will be able to log into it and prepare it for first
use.

Note

The following steps assume that you are connecting to your Amazon EC2 instance from a
computer running Linux. For other ways to connect, see Connect to Your Linux Instance in
the Amazon EC2 User Guide.

1. You will need to authorize inbound SSH traffic to your Amazon EC2 instance. To do this, you
will create a new EC2 security group, and then assign the security group to your EC2 instance.

a. In the navigation pane, choose Security Groups.

b. Choose Create Security Group. In the Create Security Group window, do the following:

• Security group name—type a name for your security group. For example: my-ssh-
access

• Description—type a short description for the security group.

• VPC—choose your default VPC.

• In the Security group rules section, choose Add Rule and do the following:

• Type—choose SSH.

• Source—choose My IP.

Using VPC endpoints API Version 2012-08-10 3012

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/AccessingInstances.html

Amazon DynamoDB Developer Guide

When the settings are as you want them, choose Create.

c. In the navigation pane, choose Instances.

d. Choose the Amazon EC2 instance that you launched in Step 1: Launch an Amazon EC2
instance.

e. Choose Actions --> Networking --> Change Security Groups.

f. In the Change Security Groups, select the security group that you created earlier in this
procedure (for example: my-ssh-access). The existing default security group should
also be selected. When the settings are as you want them, choose Assign Security Groups.

2. Use the ssh command to log in to your Amazon EC2 instance, as in the following example.

ssh -i my-keypair.pem ec2-user@public-dns-name

You will need to specify your private key file (.pem file) and the public DNS name of your
instance. (See Step 1: Launch an Amazon EC2 instance).

The login ID is ec2-user. No password is required.

3. Configure your Amazon credentials as shown in the following example. Enter your Amazon
access key ID, secret key, and default Region name when prompted.

aws configure

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-1
Default output format [None]:

You are now ready to create a VPC endpoint for DynamoDB.

Step 3: Create a VPC endpoint for DynamoDB

In this step, you will create a VPC endpoint for DynamoDB and test it to make sure that it works.

1. Before you begin, verify that you can communicate with DynamoDB using its public endpoint.

aws dynamodb list-tables

Using VPC endpoints API Version 2012-08-10 3013

Amazon DynamoDB Developer Guide

The output will show a list of DynamoDB tables that you currently own. (If you don't have any
tables, the list will be empty.).

2. Verify that DynamoDB is an available service for creating VPC endpoints in the current Amazon
Region. (The command is shown in bold text, followed by example output.)

aws ec2 describe-vpc-endpoint-services

{
 "ServiceNames": [
 "com.amazonaws.us-east-1.s3",
 "com.amazonaws.us-east-1.dynamodb"
]
}

In the example output, DynamoDB is one of the services available, so you can proceed with
creating a VPC endpoint for it.

3. Determine your VPC identifier.

aws ec2 describe-vpcs

{
 "Vpcs": [
 {
 "VpcId": "vpc-0bbc736e",
 "InstanceTenancy": "default",
 "State": "available",
 "DhcpOptionsId": "dopt-8454b7e1",
 "CidrBlock": "172.31.0.0/16",
 "IsDefault": true
 }
]
}

In the example output, the VPC ID is vpc-0bbc736e.

4. Create the VPC endpoint. For the --vpc-id parameter, specify the VPC ID from the previous
step. Use the --route-table-ids parameter to associate the endpoint with your route
tables.

Using VPC endpoints API Version 2012-08-10 3014

Amazon DynamoDB Developer Guide

aws ec2 create-vpc-endpoint --vpc-id vpc-0bbc736e --service-name com.amazonaws.us-
east-1.dynamodb --route-table-ids rtb-11aa22bb

{
 "VpcEndpoint": {
 "PolicyDocument": "{\"Version\":\"2008-10-17\",\"Statement\":[{\"Effect\":
\"Allow\",\"Principal\":\"*\",\"Action\":\"*\",\"Resource\":\"*\"}]}",
 "VpcId": "vpc-0bbc736e",
 "State": "available",
 "ServiceName": "com.amazonaws.us-east-1.dynamodb",
 "RouteTableIds": [
 "rtb-11aa22bb"
],
 "VpcEndpointId": "vpce-9b15e2f2",
 "CreationTimestamp": "2017-07-26T22:00:14Z"
 }
}

5. Verify that you can access DynamoDB through the VPC endpoint.

aws dynamodb list-tables

If you want, you can try some other Amazon CLI commands for DynamoDB. For more
information, see the Amazon CLI Command Reference.

Step 4: (Optional) Clean up

If you want to delete the resources you have created in this tutorial, follow these procedures:

To remove your VPC endpoint for DynamoDB

1. Log in to your Amazon EC2 instance.

2. Determine the VPC endpoint ID.

aws ec2 describe-vpc-endpoints

{
 "VpcEndpoint": {

Using VPC endpoints API Version 2012-08-10 3015

https://docs.amazonaws.cn/cli/latest/reference/

Amazon DynamoDB Developer Guide

 "PolicyDocument": "{\"Version\":\"2008-10-17\",\"Statement\":[{\"Effect\":
\"Allow\",\"Principal\":\"*\",\"Action\":\"*\",\"Resource\":\"*\"}]}",
 "VpcId": "vpc-0bbc736e",
 "State": "available",
 "ServiceName": "com.amazonaws.us-east-1.dynamodb",
 "RouteTableIds": [],
 "VpcEndpointId": "vpce-9b15e2f2",
 "CreationTimestamp": "2017-07-26T22:00:14Z"
 }
}

In the example output, the VPC endpoint ID is vpce-9b15e2f2.

3. Delete the VPC endpoint.

aws ec2 delete-vpc-endpoints --vpc-endpoint-ids vpce-9b15e2f2

{
 "Unsuccessful": []
}

The empty array [] indicates success (there were no unsuccessful requests).

To terminate your Amazon EC2 instance

1. Open the Amazon EC2 console at https://console.amazonaws.cn/ec2/.

2. In the navigation pane, choose Instances.

3. Choose your Amazon EC2 instance.

4. Choose Actions, Instance State, Terminate.

5. In the confirmation window, choose Yes, Terminate.

Amazon PrivateLink for DynamoDB

With Amazon PrivateLink for DynamoDB, you can provision interface Amazon VPC endpoints
(interface endpoints) in your virtual private cloud (Amazon VPC). These endpoints are directly
accessible from applications that are on premises over Amazon Direct Connect or in a different
Amazon Web Services Region over Amazon VPC peering. Using Amazon PrivateLink and interface
endpoints, you can simplify private network connectivity from your applications to DynamoDB.

Amazon PrivateLink for DynamoDB API Version 2012-08-10 3016

https://console.amazonaws.cn/ec2/
https://docs.amazonaws.cn/vpc/latest/peering/what-is-vpc-peering.html

Amazon DynamoDB Developer Guide

Applications in your VPC do not need public IP addresses to communicate with DynamoDB
interface VPC endpoints for DynamoDB operations. Interface endpoints are represented by one or
more elastic network interfaces (ENIs) that are assigned private IP addresses from subnets in your
Amazon VPC. Requests to DynamoDB over interface endpoints stay on the Amazon network. You
can also access interface endpoints in your Amazon VPC from on-premises applications through
Amazon Direct Connect. For more information about how to connect your Amazon VPC with your
on-premises network, see the Amazon Direct Connect User Guide.

For general information about interface endpoints, see Interface Amazon VPC endpoints (Amazon
PrivateLink) in the Amazon PrivateLink Guide. Amazon PrivateLink is also supported for Amazon
DynamoDB Streams endpoints. For more information, see the section called “Amazon PrivateLink
for DynamoDB Streams”.

Topics

• Types of Amazon VPC endpoints for Amazon DynamoDB

• Considerations when using Amazon PrivateLink for Amazon DynamoDB

• Creating an Amazon VPC endpoint

• Accessing Amazon DynamoDB interface endpoints

• Accessing DynamoDB tables and control API operations from DynamoDB interface endpoints

• Updating an on-premises DNS configuration

• Creating an Amazon VPC endpoint policy for DynamoDB

• Using DynamoDB endpoints with Amazon Web Services Management Console Private Access

• Amazon PrivateLink for DynamoDB Streams

• Using Amazon PrivateLink for DynamoDB Accelerator (DAX)

Types of Amazon VPC endpoints for Amazon DynamoDB

You can use two types of Amazon VPC endpoints to access Amazon DynamoDB: gateway endpoints
and interface endpoints (by using Amazon PrivateLink). A gateway endpoint is a gateway that you
specify in your route table to access DynamoDB from your Amazon VPC over the Amazon network.
Interface endpoints extend the functionality of gateway endpoints by using private IP addresses
to route requests to DynamoDB from within your Amazon VPC, on premises, or from an Amazon
VPC in another Amazon Web Services Region by using Amazon VPC peering or Amazon Transit
Gateway. For more information, see What is Amazon VPC peering? and Transit Gateway vs Amazon
VPC peering.

Types of Amazon VPC endpoints API Version 2012-08-10 3017

https://docs.amazonaws.cn/directconnect/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html
https://docs.amazonaws.cn/vpc/latest/peering/what-is-vpc-peering.html
https://docs.amazonaws.cn/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/transit-gateway-vs-vpc-peering.html
https://docs.amazonaws.cn/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/transit-gateway-vs-vpc-peering.html

Amazon DynamoDB Developer Guide

Interface endpoints are compatible with gateway endpoints. If you have an existing gateway
endpoint in the Amazon VPC, you can use both types of endpoints in the same Amazon VPC.

Gateway endpoints for DynamoDB Interface endpoints for DynamoDB

In both cases, your network traffic remains on the Amazon network.

Use Amazon DynamoDB public IP addresses Use private IP addresses from your
Amazon VPC to access Amazon DynamoDB

Do not allow access from on premises Allow access from on premises

Do not allow access from another
Amazon Web Services Region

Allow access from an Amazon VPC
endpoint in another Amazon Web

Services Region by using Amazon VPC
peering or Amazon Transit Gateway

Not billed Billed

For more information about gateway endpoints, see Gateway Amazon VPC endpoints in the
Amazon PrivateLink Guide.

Considerations when using Amazon PrivateLink for Amazon DynamoDB

Amazon VPC considerations apply to Amazon PrivateLink for Amazon DynamoDB. For more
information, see Interface endpoint considerations and Amazon PrivateLink quotas in the Amazon
PrivateLink Guide. In addition, the following restrictions apply.

Amazon PrivateLink for Amazon DynamoDB does not support the following:

• Transport Layer Security (TLS) 1.1

• Private and Hybrid Domain Name System (DNS) services

You can submit up to 50,000 requests per second for each Amazon PrivateLink endpoint that you
enable.

Considerations when using Amazon PrivateLink for Amazon DynamoDB API Version 2012-08-10 3018

https://docs.amazonaws.cn//vpc/latest/privatelink/vpce-gateway.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-interface.html#vpce-interface-limitations
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-limits-endpoints.html

Amazon DynamoDB Developer Guide

Note

Network connectivity timeouts to Amazon PrivateLink endpoints are not within the scope
of DynamoDB error responses and need to be appropriately handled by your applications
connecting to the PrivateLink endpoints.

Creating an Amazon VPC endpoint

To create an Amazon VPC interface endpoint, see Create an Amazon VPC endpoint in the Amazon
PrivateLink Guide.

Accessing Amazon DynamoDB interface endpoints

When you create an interface endpoint, DynamoDB generates two types of endpoint-specific,
DynamoDB DNS names: Regional and Zonal.

• A Regional DNS name includes a unique Amazon VPC endpoint ID, a service identifier, the
Amazon Web Services Region, and vpce.amazonaws.com in its name. For example, for
Amazon VPC endpoint ID vpce-1a2b3c4d, the DNS name generated might be similar to
vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com.

• A Zonal DNS name includes the Availability Zone—for example, vpce-1a2b3c4d-5e6f-us-
east-1a.dynamodb.us-east-1.vpce.amazonaws.com. You might use this option if your
architecture isolates Availability Zones. For example, you could use it for fault containment or to
reduce Regional data transfer costs.

Note

To achieve optimal reliability, we recommend deploying your service across a minimum of
three availability zones.

Accessing DynamoDB tables and control API operations from
DynamoDB interface endpoints

You can use the Amazon CLI or Amazon SDKs to access DynamoDB tables and control API
operations through DynamoDB interface endpoints.

Creating an Amazon VPC endpoint API Version 2012-08-10 3019

https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon DynamoDB Developer Guide

Amazon CLI examples

To access DynamoDB tables or DynamoDB control API operations through DynamoDB interface
endpoints in Amazon CLI commands, use the --region and --endpoint-url parameters.

Example: Create a VPC endpoint

aws ec2 create-vpc-endpoint \
--region us-east-1 \
--service-name com.amazonaws.us-east-1.dynamodb \
--vpc-id client-vpc-id \
--subnet-ids client-subnet-id \
--vpc-endpoint-type Interface \
--security-group-ids client-sg-id

Example: Modify a VPC endpoint

aws ec2 modify-vpc-endpoint \
--region us-east-1 \
--vpc-endpoint-id client-vpc-endpoint-id \
--policy-document policy-document \ #example optional parameter
--add-security-group-ids security-group-ids \ #example optional parameter
any additional parameters needed, see Privatelink documentation for more details

Example: List tables using an endpoint URL

In the following example, replace the Region us-east-1 and the DNS name of the VPC endpoint
ID vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com with your own
information.

aws dynamodb --region us-east-1 --endpoint https://vpce-1a2b3c4d-5e6f.dynamodb.us-
east-1.vpce.amazonaws.com list-tables

Amazon SDK examples

To access DynamoDB tables or DynamoDB control API operations through DynamoDB interface
endpoints when using the Amazon SDKs, update your SDKs to the latest version. Then, configure
your clients to use an endpoint URL for accessing a table or DynamoDB control API operation
through DynamoDB interface endpoints.

Accessing DynamoDB tables and control API operations from DynamoDB interface endpoints API Version 2012-08-10 3020

Amazon DynamoDB Developer Guide

SDK for Python (Boto3)

Example: Use an endpoint URL to access a DynamoDB table

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com with your own
information.

ddb_client = session.client(
service_name='dynamodb',
region_name='us-east-1',
endpoint_url='https://vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com'
)

SDK for Java 1.x

Example: Use an endpoint URL to access a DynamoDB table

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com with your own
information.

//client build with endpoint config
final AmazonDynamoDB dynamodb =
 AmazonDynamoDBClientBuilder.standard().withEndpointConfiguration(
 new AwsClientBuilder.EndpointConfiguration(
 "https://vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com",
 Regions.DEFAULT_REGION.getName()
)
).build();

SDK for Java 2.x

Example: Use an endpoint URL to access DynamoDB table

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.dynamodb.us-east-1.vpce.amazonaws.com with your own information.

Region region = Region.US_EAST_1;
dynamoDbClient = DynamoDbClient.builder().region(region)
.endpointOverride(URI.create("https://vpce-1a2b3c4d-5e6f.dynamodb.us-
east-1.vpce.amazonaws.com"))

Accessing DynamoDB tables and control API operations from DynamoDB interface endpoints API Version 2012-08-10 3021

Amazon DynamoDB Developer Guide

.build()

Updating an on-premises DNS configuration

When using endpoint-specific DNS names to access the interface endpoints for DynamoDB, you
don’t have to update your on-premises DNS resolver. You can resolve the endpoint-specific DNS
name with the private IP address of the interface endpoint from the public DynamoDB DNS
domain.

Using interface endpoints to access DynamoDB without a gateway endpoint or an
internet gateway in the Amazon VPC

Interface endpoints in your Amazon VPC can route both in-Amazon VPC applications and on-
premises applications to DynamoDB over the Amazon network, as illustrated in the following
diagram.

The diagram illustrates the following:

• Your on-premises network uses Amazon Direct Connect to connect to Amazon VPC A.

• Your applications on-premises and in Amazon VPC A use endpoint-specific DNS names to access
DynamoDB through the DynamoDB interface endpoint.

Updating an on-premises DNS configuration API Version 2012-08-10 3022

Amazon DynamoDB Developer Guide

• On-premises applications send data to the interface endpoint in the Amazon VPC through
Amazon Direct Connect. Amazon PrivateLink moves the data from the interface endpoint to
DynamoDB over the Amazon network.

• In-Amazon VPC applications also send traffic to the interface endpoint. Amazon PrivateLink
moves the data from the interface endpoint to DynamoDB over the Amazon network.

Using gateway endpoints and interface endpoints together in the same Amazon
VPC to access DynamoDB

You can create interface endpoints and retain the existing gateway endpoint in the same
Amazon VPC, as the following diagram shows. By taking this approach, you allow in-Amazon VPC
applications to continue accessing DynamoDB through the gateway endpoint, which is not billed.
Then, only your on-premises applications would use interface endpoints to access DynamoDB. To
access DynamoDB this way, you must update your on-premises applications to use endpoint-
specific DNS names for DynamoDB.

The diagram illustrates the following:

• On-premises applications use endpoint-specific DNS names to send data to the interface
endpoint within the Amazon VPC through Amazon Direct Connect. Amazon PrivateLink moves
the data from the interface endpoint to DynamoDB over the Amazon network.

• Using default Regional DynamoDB names, in-Amazon VPC applications send data to the gateway
endpoint that connects to DynamoDB over the Amazon network.

Updating an on-premises DNS configuration API Version 2012-08-10 3023

Amazon DynamoDB Developer Guide

For more information about gateway endpoints, see Gateway Amazon VPC endpoints in the
Amazon VPC User Guide.

Creating an Amazon VPC endpoint policy for DynamoDB

You can attach an endpoint policy to your Amazon VPC endpoint that controls access to
DynamoDB. The policy specifies the following information:

• The Amazon Identity and Access Management (IAM) principal that can perform actions
• The actions that can be performed
• The resources on which actions can be performed

Topics

• Example: Restricting access to a specific table from an Amazon VPC endpoint

Example: Restricting access to a specific table from an Amazon VPC endpoint

You can create an endpoint policy that restricts access to only specific DynamoDB tables. This type
of policy is useful if you have other Amazon Web Services services in your Amazon VPC that use
tables. The following table policy restricts access to only the DOC-EXAMPLE-TABLE. To use this
endpoint policy, replace DOC-EXAMPLE-TABLE with the name of your table.

JSON

{
"Version":"2012-10-17",
 "Id": "Policy1216114807515",
 "Statement": [
 { "Sid": "Access-to-specific-table-only",
 "Principal": "*",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem"
],
 "Effect": "Allow",
 "Resource": ["arn:aws-cn:dynamodb:us-east-1:111122223333:table/DOC-EXAMPLE-
TABLE",
 "arn:aws-cn:dynamodb:us-east-1:111122223333:table/DOC-EXAMPLE-
TABLE/*"]

Creating an Amazon VPC endpoint policy API Version 2012-08-10 3024

https://docs.amazonaws.cn/vpc/latest/privatelink/vpce-gateway.html

Amazon DynamoDB Developer Guide

 }
]
}

Using DynamoDB endpoints with Amazon Web Services Management
Console Private Access

You must set up DNS configuration for DynamoDB and DynamoDB Streams when using VPC
endpoints with the DynamoDB console in Amazon Web Services Management Console Private
Access.

To configure DynamoDB to be accessible in Amazon Web Services Management Console Private
Access, you must create the following two VPC endpoints:

• com.amazonaws.<region>.dynamodb

• com.amazonaws.<region>.dynamodb-streams

When you create the VPC endpoints, navitage to the Route53 console and create a private hosted
zone for DynamoDB using the regional endpoint dynamodb.us-east-1.amazonaws.com.

Create the following two alias records in the private hosted zone:

• dynamodb.<region>.amazonaws.com that routes traffic to the VPC endpoint
com.amazonaws.<region>.dynamodb.

• streams.dynamodb.<region>.amazonaws.com that routes traffic to the VPC endpoint
com.amazonaws.<region>.dynamodb-streams.

Amazon PrivateLink for DynamoDB Streams

With Amazon PrivateLink for Amazon DynamoDB Streams, you can provision interface Amazon
VPC endpoints (interface endpoints) in your virtual private cloud (Amazon VPC). These endpoints
are directly accessible from applications that are on premises over VPN and Amazon Direct
Connect, or in a different Amazon Web Services Region over Amazon VPC peering. Using Amazon
PrivateLink and interface endpoints, you can simplify private network connectivity from your
applications to DynamoDB Streams.

Using DynamoDB endpoints with Amazon Web Services Management Console Private Access API Version 2012-08-10 3025

https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/console-private-access.html
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/console-private-access.html

Amazon DynamoDB Developer Guide

Applications in your Amazon VPC do not need public IP addresses to communicate with DynamoDB
Streams using Amazon VPC interface endpoints for DynamoDB Streams operations. Interface
endpoints are represented by one or more elastic network interfaces (ENIs) that are assigned
private IP addresses from subnets in your Amazon VPC. Requests to DynamoDB Streams over
interface endpoints stay on the Amazon network. You can also access interface endpoints in your
Amazon VPC from on-premises applications through Amazon Direct Connect or Amazon Virtual
Private Network (Amazon VPN). For more information about how to connect your Amazon Virtual
Private Network with your on-premises network, see the Amazon Direct Connect User Guide and the
Amazon Site-to-Site VPN User Guide.

For general information about interface endpoints, see Interface Amazon VPC endpoints (Amazon
PrivateLink).

Note

Only interface endpoints are supported for DynamoDB Streams. Gateway endpoints are not
supported.

Topics

• Considerations when using Amazon PrivateLink for Amazon DynamoDB Streams

• Creating an Amazon VPC endpoint

• Accessing Amazon DynamoDB Streams interface endpoints

• Accessing DynamoDB Streams API operations from DynamoDB Streams interface endpoints

• Amazon SDK examples

• Creating an Amazon VPC endpoint policy for DynamoDB Streams

• Using DynamoDB endpoints with Amazon Web Services Management Console Private Access

Considerations when using Amazon PrivateLink for Amazon DynamoDB Streams

Amazon VPC considerations apply to Amazon PrivateLink for Amazon DynamoDB Streams. For
more information, see interface endpoint considerations and Amazon PrivateLink quotas. The
following restrictions apply.

Amazon PrivateLink for Amazon DynamoDB Streams doesn't support the following:

• Transport Layer Security (TLS) 1.1

Amazon PrivateLink for DynamoDB Streams API Version 2012-08-10 3026

https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-limits-endpoints.html

Amazon DynamoDB Developer Guide

• Private and Hybrid Domain Name System (DNS) services

Note

Network connectivity timeouts to Amazon PrivateLink endpoints are not within the scope
of DynamoDB Streams error responses and need to be appropriately handled by your
applications connecting to the Amazon PrivateLink endpoints.

Creating an Amazon VPC endpoint

To create an Amazon VPC interface endpoint, see Create an Amazon VPC endpoint in the Amazon
PrivateLink Guide.

Accessing Amazon DynamoDB Streams interface endpoints

When you create an interface endpoint, DynamoDB generates two types of endpoint-specific,
DynamoDB Streams DNS names: Regional and Zonal.

• A Regional DNS name includes a unique Amazon VPC endpoint ID, a service identifier, the
Amazon Web Services Region, and vpce.amazonaws.com in its name. For example, for
Amazon VPC endpoint ID vpce-1a2b3c4d, the DNS name generated might be similar to
vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com.

• A Zonal DNS name includes the Availability Zone—for example, vpce-1a2b3c4d-5e6f-us-
east-1a.streams.dynamodb.us-east-1.vpce.amazonaws.com. You might use this
option if your architecture isolates Availability Zones. For example, you could use it for fault
containment or to reduce Regional data transfer costs.

Accessing DynamoDB Streams API operations from DynamoDB Streams interface
endpoints

You can use the Amazon CLI or Amazon SDKs to access DynamoDB Streams API operations through
DynamoDB Streams interface endpoints.

Amazon CLI examples

To access DynamoDB Streams or API operations through DynamoDB Streams interface endpoints
in Amazon CLI commands, use the --region and --endpoint-url parameters.

Amazon PrivateLink for DynamoDB Streams API Version 2012-08-10 3027

https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon DynamoDB Developer Guide

Example: Create a VPC endpoint

aws ec2 create-vpc-endpoint \
--region us-east-1 \
--service-name com.amazonaws.us-east-1.dynamodb-streams \
--vpc-id client-vpc-id \
--subnet-ids client-subnet-id \
--vpc-endpoint-type Interface \
--security-group-ids client-sg-id

Example: Modify a VPC endpoint

aws ec2 modify-vpc-endpoint \
--region us-east-1 \
--vpc-endpoint-id client-vpc-endpoint-id \
--policy-document policy-document \ #example optional parameter
--add-security-group-ids security-group-ids \ #example optional parameter
any additional parameters needed, see Privatelink documentation for more details

Example: List streams using an endpoint URL

In the following example, replace the Region us-east-1 and the DNS name of the VPC endpoint
ID vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com with your
own information.

aws dynamodbstreams --region us-east-1 —endpoint https://
vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com list-streams

Amazon SDK examples

To access Amazon DynamoDB Streams API operations through DynamoDB Streams interface
endpoints when using the Amazon SDKs, update your SDKs to the latest version. Then, configure
your clients to use an endpoint URL for DynamoDB Streams API operation through DynamoDB
Streams interface endpoints.

SDK for Python (Boto3)

Example: Use an endpoint URL to access a DynamoDB stream

Amazon PrivateLink for DynamoDB Streams API Version 2012-08-10 3028

Amazon DynamoDB Developer Guide

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com with your
own information.

ddb_streams_client = session.client(
service_name='dynamodbstreams',
region_name='us-east-1',
endpoint_url='https://vpce-1a2b3c4d-5e6f.streams.dynamodb.us-
east-1.vpce.amazonaws.com'
)

SDK for Java 1.x

Example: Use an endpoint URL to access a DynamoDB stream

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com with your
own information.

//client build with endpoint config
final AmazonDynamoDBStreams dynamodbstreams =
 AmazonDynamoDBStreamsClientBuilder.standard().withEndpointConfiguration(
 new AwsClientBuilder.EndpointConfiguration(
 "https://vpce-1a2b3c4d-5e6f.streams.dynamodb.us-
east-1.vpce.amazonaws.com",
 Regions.DEFAULT_REGION.getName()
)
).build();

SDK for Java 2.x

Example: Use an endpoint URL to access DynamoDB stream

In the following example, replace the Region us-east-1 and VPC endpoint ID https://
vpce-1a2b3c4d-5e6f.streams.dynamodb.us-east-1.vpce.amazonaws.com with your
own information.

Region region = Region.US_EAST_1;
dynamoDbStreamsClient = DynamoDbStreamsClient.builder().region(region)
.endpointOverride(URI.create("https://vpce-1a2b3c4d-5e6f.streams.dynamodb.us-
east-1.vpce.amazonaws.com"))

Amazon PrivateLink for DynamoDB Streams API Version 2012-08-10 3029

Amazon DynamoDB Developer Guide

.build()

Creating an Amazon VPC endpoint policy for DynamoDB Streams

You can attach an endpoint policy to your Amazon VPC endpoint that controls access to
DynamoDB Streams. The policy specifies the following information:

• The Amazon Identity and Access Management (IAM) principal that can perform actions
• The actions that can be performed
• The resources on which actions can be performed

Topics

• Example: Restricting access to a specific stream from an Amazon VPC endpoint

Example: Restricting access to a specific stream from an Amazon VPC endpoint

You can create an endpoint policy that restricts access to only specific DynamoDB Streams. This
type of policy is useful if you have other Amazon Web Services services in your Amazon VPC
that use DynamoDB Streams. The following stream policy restricts access to only the stream
2025-02-20T11:22:33.444 attached to DOC-EXAMPLE-TABLE. To use this endpoint policy,
replace DOC-EXAMPLE-TABLE with the name of your table and 2025-02-20T11:22:33.444 with
the stream label.

JSON

{
"Version":"2012-10-17",
 "Id": "Policy1216114807515",
 "Statement": [
 { "Sid": "Access-to-specific-stream-only",
 "Principal": "*",
 "Action": [
 "dynamodb:DescribeStream",
 "dynamodb:GetRecords"
],
 "Effect": "Allow",
 "Resource": ["arn:aws-cn:dynamodb:us-east-1:111122223333:table/table-name/
stream/2025-02-20T11:22:33.444"]

Amazon PrivateLink for DynamoDB Streams API Version 2012-08-10 3030

Amazon DynamoDB Developer Guide

 }
]
}

Note

Gateway endpoints aren't supported in DynamoDB Streams.

Using DynamoDB endpoints with Amazon Web Services Management Console
Private Access

You must set up DNS configuration for DynamoDB and DynamoDB Streams when using VPC
endpoints with the DynamoDB console in Amazon Web Services Management Console Private
Access.

To configure DynamoDB to be accessible in Amazon Web Services Management Console Private
Access, you must create the following two VPC endpoints:

• com.amazonaws.<region>.dynamodb

• com.amazonaws.<region>.dynamodb-streams

When you create the VPC endpoints, navitage to the Route53 console and create a private hosted
zone for DynamoDB using the regional endpoint dynamodb.us-east-1.amazonaws.com.

Create the following two alias records in the private hosted zone:

• dynamodb.<region>.amazonaws.com that routes traffic to the VPC endpoint
com.amazonaws.<region>.dynamodb.

• streams.dynamodb.<region>.amazonaws.com that routes traffic to the VPC endpoint
com.amazonaws.<region>.dynamodb-streams.

Using Amazon PrivateLink for DynamoDB Accelerator (DAX)

Amazon PrivateLink for DynamoDB Accelerator (DAX) enables you to securely access DAX
management APIs such as CreateCluster, DescribeClusters, and DeleteCluster over

Amazon PrivateLink for DAX API Version 2012-08-10 3031

https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/console-private-access.html
https://docs.amazonaws.cn/awsconsolehelpdocs/latest/gsg/console-private-access.html

Amazon DynamoDB Developer Guide

private IP addresses within your virtual private cloud (VPC). This feature enables you to access DAX
services privately from your applications without exposing traffic to the public internet.

DAX PrivateLink supports dual-stack endpoints (dax.{region}.api.aws), enabling both IPv4
and IPv6 connectivity. With Amazon PrivateLink for DAX, customers can access the service using
private DNS names. The dual-stack endpoint support ensures transparent connectivity while
maintaining network privacy. This allows you to access DAX through both public internet and VPC
endpoints without making any changes to your SDK configuration.

Considerations when using Amazon PrivateLink for DynamoDB Accelerator (DAX)

When implementing Amazon PrivateLink for DynamoDB Accelerator (DAX), several important
considerations must be taken into account.

Before you set up an interface endpoint for DAX consider the following:

• DAX interface endpoints only support access to the DAX management APIs within the same
Amazon Web Services Region. You can't use an interface endpoint to access DAX management
APIs in other Regions.

• To access the Amazon Web Services Management Console privately for DAX
management, you may need to create additional VPC endpoints for services like
com.amazonaws.region.console and related services.

• You are charged for creating and using an interface endpoint to DAX. For pricing information, see
Amazon PrivateLink pricing.

How Amazon PrivateLink works with DAX

When you create an interface endpoint for DAX:

1. Amazon creates an endpoint network interface in each subnet you enable for the interface
endpoint.

2. These are requester-managed network interfaces that serve as entry points for traffic destined
for DAX.

3. You can then access DAX through private IP addresses within your VPC.

4. This architecture allows you to use VPC security groups to manage access to the endpoints.

5. Applications can access both DynamoDB and DAX through their respective interface endpoints
within a VPC, while also allowing on-premises applications to connect via Direct Connect or VPN.

Amazon PrivateLink for DAX API Version 2012-08-10 3032

https://www.amazonaws.cn/vpc/pricing/

Amazon DynamoDB Developer Guide

6. This provides a consistent connectivity model across both services, simplifies architecture, and
improves security by keeping traffic within the Amazon network.

Creating Interface Endpoints for DAX

You can create an interface endpoint to connect to DAX using the Amazon Web Services
Management Console, Amazon SDK, Amazon CloudFormation, or the Amazon API.

To create an interface endpoint for DAX using the console

1. Navigate to the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. Choose Create Endpoint.

4. For Service category, choose Amazon Web Services services and for Service Name, search for
and select com.amazonaws.region.dax.

5. For VPC, select the VPC from which you want to access DAX and for Subnets, select the
subnets where Amazon will create the endpoint network interfaces.

6. For Security groups, select or create security groups to associate with the endpoint network
interfaces.

7. For Policy, keep the default Full Access or customize as needed.

8. Select Enable DNS Name to enable private DNS for the endpoint. Keep the private DNS name
enabled to prevent changes in the SDK configuration. When enabled, your applications can
continue using the standard service DNS name (example: dax.region.amazonaws.com).
Amazon creates a private hosted zone in your VPC that resolves this name to your endpoint's
private IP address.

Note

Use Regional DNS names if required. Using zonal DNS names isn't recommended. Also,
select subnets from 3 or more AZs to ensure maximum availability through PrivateLink.

9. Choose Create endpoint.

To create an interface endpoint for DAX using the Amazon CLI

Amazon PrivateLink for DAX API Version 2012-08-10 3033

https://console.aws.amazon.com/vpc/

Amazon DynamoDB Developer Guide

Use the create-vpc-endpoint command with the vpc-endpoint-type parameter set to
Interface and the service-name parameter set to com.amazonaws.region.dax.

aws ec2 create-vpc-endpoint \
 --vpc-id vpc-ec43eb89 \
 --vpc-endpoint-type Interface \
 --service-name com.amazonaws.us-east-1.dax \
 --subnet-ids subnet-abcd1234 subnet-1a2b3c4d \
 --security-group-ids sg-1a2b3c4d \
 --private-dns-enabled

Additional resources

For more information about Amazon PrivateLink and VPC endpoints, see the following resources:

• Amazon PrivateLink for DynamoDB

• Amazon PrivateLink for DynamoDB Streams

• Connect your VPC to services using Amazon PrivateLink

• Simplify private connectivity to DynamoDB with Amazon PrivateLink

• Amazon PrivateLink Whitepaper

Configuration and vulnerability analysis in Amazon DynamoDB

Amazon handles basic security tasks like guest operating system (OS) and database patching,
firewall configuration, and disaster recovery. These procedures have been reviewed and certified by
the appropriate third parties. For more details, see the following resources:

• Compliance validation for Amazon DynamoDB

• Shared responsibility model

• Amazon Web Services: Overview of security processes(whitepaper)

The following security best practices also address configuration and vulnerability analysis in
Amazon DynamoDB:

• Monitor DynamoDB compliance with Amazon Config Rules

• Monitor DynamoDB configuration with Amazon Config

Configuration and vulnerability analysis API Version 2012-08-10 3034

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-interface-endpoints.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-streams.html
https://docs.amazonaws.cn/vpc/latest/userguide/endpoint-services-overview.html
https://amazonaws-china.com/blogs//database/simplify-private-connectivity-to-amazon-dynamodb-with-aws-privatelink
https://docs.amazonaws.cn/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Compliance.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/best-practices-security-detective.html#rules
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/best-practices-security-detective.html#config

Amazon DynamoDB Developer Guide

Security best practices for Amazon DynamoDB

Amazon DynamoDB provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Topics

• DynamoDB preventative security best practices

• DynamoDB detective security best practices

DynamoDB preventative security best practices

The following best practices can help you anticipate and prevent security incidents in Amazon
DynamoDB.

Encryption at rest

DynamoDB encrypts at rest all user data stored in tables, indexes, streams, and backups using
encryption keys stored in Amazon Key Management Service (Amazon KMS). This provides an
additional layer of data protection by securing your data from unauthorized access to the
underlying storage .

You can specify whether DynamoDB should use an Amazon owned key (default encryption
type), an Amazon managed key, or a customer managed key to encrypt user data. For more
information, see Amazon DynamoDB Encryption at Rest.

Use IAM roles to authenticate access to DynamoDB

For users, applications, and other Amazon services to access DynamoDB, they must include valid
Amazon credentials in their Amazon API requests. You should not store Amazon credentials
directly in the application or EC2 instance. These are long-term credentials that are not
automatically rotated, and therefore could have significant business impact if they are
compromised. An IAM role enables you to obtain temporary access keys that can be used to
access Amazon services and resources.

For more information, see Identity and Access Management for Amazon DynamoDB.

Security best practices API Version 2012-08-10 3035

http://www.amazonaws.cn/kms/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/EncryptionAtRest.html

Amazon DynamoDB Developer Guide

Use IAM policies for DynamoDB base authorization

When granting permissions, you decide who is getting them, which DynamoDB APIs they
are getting permissions for, and the specific actions you want to allow on those resources.
Implementing least privilege is key in reducing security risk and the impact that can result from
errors or malicious intent.

Attach permissions policies to IAM identities (that is, users, groups, and roles) and thereby grant
permissions to perform operations on DynamoDB resources.

You can do this by using the following:

• Amazon Managed (predefined) policies

• Customer managed policies

Use IAM policy conditions for fine-grained access control

When you grant permissions in DynamoDB, you can specify conditions that determine how a
permissions policy takes effect. Implementing least privilege is key in reducing security risk and
the impact that can result from errors or malicious intent.

You can specify conditions when granting permissions using an IAM policy. For example, you
can do the following:

• Grant permissions to allow users read-only access to certain items and attributes in a table or
a secondary index.

• Grant permissions to allow users write-only access to certain attributes in a table, based upon
the identity of that user.

For more information, see Using IAM Policy Conditions for Fine-Grained Access Control.

Use a VPC endpoint and policies to access DynamoDB

If you only require access to DynamoDB from within a virtual private cloud (VPC), you should
use a VPC endpoint to limit access from only the required VPC. Doing this prevents that traffic
from traversing the open internet and being subject to that environment.

Using a VPC endpoint for DynamoDB allows you to control and limit access using the following:

• VPC endpoint policies – These policies are applied on the DynamoDB VPC endpoint. They
allow you to control and limit API access to the DynamoDB table.

• IAM policies – By using the aws:sourceVpce condition on policies attached to users, groups,
or roles, you can enforce that all access to the DynamoDB table is via the specified VPC
endpoint.

Preventative security best practices API Version 2012-08-10 3036

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/using-identity-based-policies.html#access-policy-examples-aws-managed
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/using-identity-based-policies.html#access-policy-examples-for-sdk-cli
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/specifying-conditions.html

Amazon DynamoDB Developer Guide

For more information, see Endpoints for Amazon DynamoDB.

Consider client-side encryption

We recommend that you plan your encryption strategy before implementing your table in
DynamoDB. If you store sensitive or confidential data in DynamoDB, consider including client-
side encryption in your plan. This way you can encrypt data as close as possible to its origin, and
ensure its protection throughout its lifecycle. Encrypting your sensitive data in transit and at
rest helps ensure that your plaintext data isn’t available to any third party.

The Amazon Database Encryption SDK for DynamoDB is a software library that helps you
protect your table data before you send it to DynamoDB. It encrypts, signs, verifies, and
decrypts your DynamoDB table items. You control which attributes are encrypted and signed.

Primary Key considerations

Do not use sensitive names or sensitive plaintext data in your Primary Key for your table and
Global Secondary Indexes. Key names will show up in your table definition. For example, the
Primary Key names are accessible to anyone with permissions to call DescribeTable. Key values
can show up in your Amazon CloudTrail and other logs. Additionally, DynamoDB uses the key
values to distribute data and route requests and Amazon administrators may observe the values
to maintain the health of the service.

If you need to use sensitive data in your table or GSI key values, we recommend using end-
to-end client encryption. This allows you to perform key-value references to your data while
ensuring that it never appears unencrypted in your DynamoDB related logs. One way to
accomplish this is to use the Amazon Database Encryption SDK for DynamoDB, but that
is not required. If you use your own solution, we should always use a sufficiently secure
encryption algorithm. You should not use a non-cryptographic option like a hash, as they are
not considered sufficiently secure in most situations.

If your Primary Key key names are sensitive, we recommend using `pk` and `sk` instead. This
is a general best practice which leaves your Partition Key design flexible.

Always consult your security experts or Amazon account team if you are concerned about what
the right choice would be.

DynamoDB detective security best practices

The following best practices for Amazon DynamoDB can help you detect potential security
weaknesses and incidents.

Detective security best practices API Version 2012-08-10 3037

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-endpoints-ddb.html
https://docs.amazonaws.cn/dynamodb-encryption-client/latest/devguide/what-is-ddb-encrypt.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/database-encryption-sdk/latest/devguide/client-server-side.html

Amazon DynamoDB Developer Guide

Use Amazon CloudTrail to monitor Amazon managed KMS key usage

If you are using an Amazon managed key for encryption at rest, usage of this key is logged into
Amazon CloudTrail. CloudTrail provides visibility into user activity by recording actions taken
on your account. CloudTrail records important information about each action, including who
made the request, the services used, the actions performed, parameters for the actions, and the
response elements returned by the Amazon service. This information helps you track changes
made to your Amazon resources and troubleshoot operational issues. CloudTrail makes it easier
to ensure compliance with internal policies and regulatory standards.

You can use CloudTrail to audit key usage. CloudTrail creates log files that contain a history of
Amazon API calls and related events for your account. These log files include all Amazon KMS
API requests made using the Amazon Web Services Management Console, Amazon SDKs, and
command line tools, in addition to those made through integrated Amazon services. You can
use these log files to get information about when the KMS key was used, the operation that
was requested, the identity of the requester, the IP address that the request came from, and so
on. For more information, see Logging Amazon KMS API Calls with Amazon CloudTrail and the
Amazon CloudTrail User Guide.

Monitor DynamoDB operations using CloudTrail

CloudTrail can monitor both control plane events and data plane events. Control plane
operations let you create and manage DynamoDB tables. They also let you work with indexes,
streams, and other objects that are dependent on tables. Data plane operations let you perform
create, read, update, and delete (also called CRUD) actions on data in a table. Some data plane
operations also let you read data from a secondary index. To enable logging of data plane
events in CloudTrail, you'll need to enable logging of data plane API activity in CloudTrail. See
Logging data events for trails for more information.

When activity occurs in DynamoDB, that activity is recorded in a CloudTrail event along
with other Amazon service events in the event history. For more information, see Logging
DynamoDB Operations by Using Amazon CloudTrail. You can view, search, and download recent
events in your Amazon account. For more information, see Viewing Events with CloudTrail Event
History in the Amazon CloudTrail User Guide.

For an ongoing record of events in your Amazon account, including events for DynamoDB,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon Simple Storage Service
(Amazon S3) bucket. By default, when you create a trail on the console, the trail applies to all
Amazon Regions. The trail logs events from all Regions in the Amazon partition and delivers

Detective security best practices API Version 2012-08-10 3038

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

Amazon DynamoDB Developer Guide

the log files to the S3 bucket that you specify. Additionally, you can configure other Amazon
services to further analyze and act upon the event data collected in CloudTrail logs.

Use DynamoDB Streams to monitor data plane operations

DynamoDB is integrated with Amazon Lambda so that you can create triggers—pieces of
code that automatically respond to events in DynamoDB Streams. With triggers, you can build
applications that react to data modifications in DynamoDB tables.

If you enable DynamoDB Streams on a table, you can associate the stream Amazon Resource
Name (ARN) with a Lambda function that you write. Immediately after an item in the table is
modified, a new record appears in the table's stream. Amazon Lambda polls the stream and
invokes your Lambda function synchronously when it detects new stream records. The Lambda
function can perform any actions that you specify, such as sending a notification or initiating a
workflow.

For an example, see Tutorial: Using Amazon Lambda with Amazon DynamoDB Streams. This
example receives a DynamoDB event input, processes the messages that it contains, and writes
some of the incoming event data to Amazon CloudWatch Logs.

Monitor DynamoDB configuration with Amazon Config

Using Amazon Config, you can continuously monitor and record configuration changes of your
Amazon resources. You can also use Amazon Config to inventory your Amazon resources. When
a change from a previous state is detected, an Amazon Simple Notification Service (Amazon
SNS) notification can be delivered for you to review and take action. Follow the guidance in
Setting Up Amazon Config with the Console, ensuring that DynamoDB resource types are
included.

You can configure Amazon Config to stream configuration changes and notifications to an
Amazon SNS topic. For example, when a resource is updated, you can get a notification sent to
your email, so that you can view the changes. You can also be notified when Amazon Config
evaluates your custom or managed rules against your resources.

For an example, see Notifications that Amazon Config Sends to an Amazon SNS topic in the
Amazon Config Developer Guide.

Monitor DynamoDB compliance with Amazon Config rules

Amazon Config continuously tracks the configuration changes that occur among your resources.
It checks whether these changes violate any of the conditions in your rules. If a resource violates
a rule, Amazon Config flags the resource and the rule as noncompliant.

Detective security best practices API Version 2012-08-10 3039

https://docs.amazonaws.cn/lambda/latest/dg/with-ddb-example.html
https://docs.amazonaws.cn/config/latest/developerguide/WhatIsConfig.html
https://docs.amazonaws.cn/config/latest/developerguide/gs-console.html
https://docs.amazonaws.cn/config/latest/developerguide/notifications-for-AWS-Config.html

Amazon DynamoDB Developer Guide

By using Amazon Config to evaluate your resource configurations, you can assess how well your
resource configurations comply with internal practices, industry guidelines, and regulations.
Amazon Config provides Amazon managed rules, which are predefined, customizable rules that
Amazon Config uses to evaluate whether your Amazon resources comply with common best
practices.

Tag your DynamoDB resources for identification and automation

You can assign metadata to your Amazon resources in the form of tags. Each tag is a simple
label consisting of a customer-defined key and an optional value that can make it easier to
manage, search for, and filter resources.

Tagging allows for grouped controls to be implemented. Although there are no inherent types
of tags, they enable you to categorize resources by purpose, owner, environment, or other
criteria. The following are some examples:

• Security – Used to determine requirements such as encryption.

• Confidentiality – An identifier for the specific data-confidentiality level a resource supports.

• Environment – Used to distinguish between development, test, and production infrastructure.

For more information, see Amazon Tagging Strategies and Tagging for DynamoDB.

Monitor your usage of Amazon DynamoDB as it relates to security best practices by using
Amazon Security Hub CSPM.

Security Hub CSPM uses security controls to evaluate resource configurations and security
standards to help you comply with various compliance frameworks.

For more information about using Security Hub CSPM to evaluate DynamoDB resources, see
Amazon DynamoDB controls in the Amazon Security Hub CSPM User Guide.

Detective security best practices API Version 2012-08-10 3040

https://docs.amazonaws.cn/config/latest/developerguide/managed-rules-by-aws-config.html
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Tagging.html
https://docs.amazonaws.cn/securityhub/latest/userguide/dynamodb-controls.html

Amazon DynamoDB Developer Guide

Monitoring and logging in DynamoDB

Monitoring is an important part of maintaining the reliability, availability, and performance of
DynamoDB and your Amazon solutions. You should collect monitoring data from all parts of your
Amazon solutions so you can easily debug a multi-point failure.

Topics

• Monitoring plan

• Performance baseline

• Integrated services

• Automated monitoring tools

• Monitoring metrics in DynamoDB with Amazon CloudWatch

• Logging DynamoDB operations by using Amazon CloudTrail

• Analyzing data access using CloudWatch contributor insights for DynamoDB

Monitoring plan

Before you start monitoring DynamoDB, create a monitoring plan that includes answers to the
following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Performance baseline

Establish a baseline for normal DynamoDB performance in your environment, by measuring
performance at various times and under different load conditions. As you monitor DynamoDB,
you should consider storing historical monitoring data. This stored data will give you a baseline
from which to compare current performance data, identify normal performance patterns and

Monitoring plan API Version 2012-08-10 3041

Amazon DynamoDB Developer Guide

performance anomalies, and devise methods to address issues. To establish a baseline you should,
at a minimum, monitor the following items:

• The number of read or write capacity units consumed over the specified time period, so you can
track how much of your provisioned throughput is used.

• Requests that exceeded a table's provisioned write or read capacity during the specified time
period, so you can determine which requests exceed the provisioned throughput quotas of a
table.

• System errors, so you can determine if any requests resulted in an error.

Integrated services

DynamoDB automatically monitors your tables on your behalf and reports metrics through
Amazon CloudWatch. Additionally, DynamoDB integrates with the following Amazon Web Services
services to help you monitor and troubleshoot your DynamoDB resources.

• Amazon CloudTrail captures API calls and related events made by or on behalf of your Amazon
Web Services account and delivers the log files to an Amazon S3 bucket that you specify. For
more information, see Logging DynamoDB operations by using Amazon CloudTrail.

• Contributor Insights is a diagnostic tool for identifying the most frequently accessed and
throttled keys in your table or index at a glance. For more information, see Analyzing data access
using CloudWatch contributor insights for DynamoDB.

Automated monitoring tools

Amazon provides various tools that you can use to monitor DynamoDB. We recommend that you
automate monitoring tasks as much as possible. You can use the following automated monitoring
tools to watch DynamoDB and report when something is wrong:

• Amazon CloudWatch alarms – Watch a single metric over a time period that you specify, and
perform one or more actions based on the value of the metric relative to a given threshold over a
number of time periods.

The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS) topic
or Amazon EC2 Auto Scaling policy. Amazon CloudWatch alarms do not invoke actions simply
because they are in a particular state; the state must have changed and been maintained for a

Integrated services API Version 2012-08-10 3042

Amazon DynamoDB Developer Guide

specified number of periods. For more information, see Monitoring metrics in DynamoDB with
Amazon CloudWatch.

• Amazon CloudTrail log monitoring – Share log files between accounts, monitor Amazon
CloudTrail log files in real time by sending them to Amazon CloudTrail Logs, write log processing
applications in Java, and validate that your log files haven't changed after delivery by Amazon
CloudTrail. For more information, see What is Amazon CloudWatch Logs in the Amazon
CloudTrail User Guide.

Monitoring metrics in DynamoDB with Amazon CloudWatch

You can monitor DynamoDB using CloudWatch, which collects and processes raw data from
DynamoDB into readable, near real-time metrics. These statistics are retained for a period of time,
so you can access historical information for a better perspective on how your web application or
service is performing. By default, DynamoDB metric data is sent to CloudWatch automatically.
For more information, see What is Amazon CloudWatch? and Metrics retention in the Amazon
CloudWatch User Guide.

Topics

• How do I use DynamoDB metrics?

• Viewing metrics in the CloudWatch console

• Viewing metrics in the Amazon CLI

• DynamoDB Metrics and dimensions

• Creating CloudWatch alarms in DynamoDB

How do I use DynamoDB metrics?

The metrics reported by DynamoDB provide information that you can analyze in different ways.
The following list shows some common uses for the metrics. These are suggestions to get you
started, not a comprehensive list.

How do I use DynamoDB metrics?

How can I? Relevant metrics

How can I monitor the rate of
TTL deletions on my table?

You can monitor TimeToLiveDeletedItemCount over the
specified time period, to track the rate of TTL deletions on your

Monitoring metrics API Version 2012-08-10 3043

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatch.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#metrics-retention

Amazon DynamoDB Developer Guide

How can I? Relevant metrics

table. For an example of a server-less application using the
TimeToLiveDeletedItemCount metric, see Automatic
ally archive items to S3 using DynamoDB time to live (TTL)
with Amazon Lambda and Amazon Data Firehose.

How can I determine how
much of my provisioned
throughput is being used?

You can monitor ConsumedReadCapacityUnits or
ConsumedWriteCapacityUnits over the specified time
period, to track how much of your provisioned throughput is
being used.

How can I determine which
requests exceed the provision
ed throughput quotas of a
table?

ThrottledRequests is incremented by one if any event
within a request exceeds a provisioned throughput quota.
Then, to gain insight into which event is throttling a request,
compare ThrottledRequests with the ReadThrot
tleEvents and WriteThrottleEvents metrics for the
table and its indexes.

How can I determine if any
system errors occurred?

You can monitor SystemErrors to determine if any requests
resulted in an HTTP 500 (server error) code. Typically, this
metric should be equal to zero. If it isn't, then you might want
to investigate.

How can I monitor the latency
value for my table operation
s?

You can monitor SuccessfulRequestLatency by tracking
the average latency and median latency through percentile
metrics (p50). Occasional spikes in latency aren't a cause for
concern. However, if average latency or p50 (median) is high,
there could be an underlying issue that you must resolve. See
Troubleshooting latency issues in Amazon DynamoDB for more
information.

Viewing metrics in the CloudWatch console

Metrics are grouped by the service namespace first and then by the various dimension
combinations within each namespace.

Viewing metrics in the CloudWatch console API Version 2012-08-10 3044

https://aws.amazon.com/blogs/database/automatically-archive-items-to-s3-using-dynamodb-time-to-live-with-aws-lambda-and-amazon-kinesis-firehose/
https://aws.amazon.com/blogs/database/automatically-archive-items-to-s3-using-dynamodb-time-to-live-with-aws-lambda-and-amazon-kinesis-firehose/
https://aws.amazon.com/blogs/database/automatically-archive-items-to-s3-using-dynamodb-time-to-live-with-aws-lambda-and-amazon-kinesis-firehose/

Amazon DynamoDB Developer Guide

To view metrics in the CloudWatch console

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Metrics, All metrics.

3. Select the DynamoDB namespace. You can also select Usage namespace to view DynamoDB
usage metrics. For more information about usage metrics, see Amazon usage metrics.

4. The Browse tab displays all metrics in the namespace.

5. (Optional) To add the metric graph to a CloudWatch dashboard, choose Actions, Add to
dashboard.

Viewing metrics in the Amazon CLI

To obtain metric information using the Amazon CLI, use the CloudWatch command list-
metrics. In the following example, you list all metrics in the AWS/DynamoDB namespace.

 aws cloudwatch list-metrics --namespace "Amazon/DynamoDB"

To obtain metric statistics, use the command get-metric-statistics. The following command
gets ConsumedReadCapacityUnits statistics for the table ProductCatalog over the specific
24-hour period, with a 5-minute granularity.

aws cloudwatch get-metric-statistics —namespace AWS/DynamoDB \
 —metric-name ConsumedReadCapacityUnits \
 —start-time 2023-11-01T00:00:00Z \
 —end-time 2023-11-02T00:00:00Z \
 —period 360 \
 —statistics Average \
 —dimensions Name=TableName,Value=ProductCatalog

Sample output appears as follows:

{
 "Datapoints": [
 {
 "Timestamp": "2023-11-01T 09:18:00+00:00",

Viewing metrics in the Amazon CLI API Version 2012-08-10 3045

https://console.amazonaws.cn/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Service-Quota-Integration.html

Amazon DynamoDB Developer Guide

 "Average": 20,
 "Unit": "Count"
 },
 {
 "Timestamp": "2023-11-01T 04:36:00+00:00",
 "Average": 22.5,
 "Unit": "Count"
 },
 {
 "Timestamp": "2023-11-01T 15:12:00+00:00",
 "Average": 20,
 "Unit": "Count"
 }, ...
 {
 "Timestamp": "2023-11-01T 17:30:00+00:00",
 "Average": 25,
 "Unit": "Count"
 }
],
 "Label": " ConsumedReadCapacityUnits "
}

DynamoDB Metrics and dimensions

When you interact with DynamoDB, it sends metrics and dimensions to CloudWatch.

DynamoDB outputs consumed provisioned throughput for one-minute periods. Auto scaling
triggers when your consumed capacity breaches the configured target utilization for two
consecutive minutes. CloudWatch alarms might have a short delay of up to a few minutes before
triggering auto scaling. This delay ensures accurate CloudWatch metric evaluation. If the consumed
throughput spikes are more than a minute apart, auto scaling might not trigger. Similarly, a scale
down event can occur when 15 consecutive data points are lower than the target utilization.
In either case, after auto scaling triggers, the UpdateTable API is invoked. It then takes several
minutes to update the provisioned capacity for the table or index. During this period, any requests
that exceed the previous provisioned capacity of the tables are throttled.

Viewing metrics and dimensions

The metrics and dimensions that DynamoDB sends to Amazon CloudWatch are listed here.

Metrics and dimensions API Version 2012-08-10 3046

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html

Amazon DynamoDB Developer Guide

DynamoDB metrics

Note

Amazon CloudWatch aggregates these metrics at one-minute intervals:

• ConditionalCheckFailedRequests

• ConsumedReadCapacityUnits

• ConsumedWriteCapacityUnits

• ReadAccountLimitThrottleEvents

• ReadKeyRangeThroughputThrottleEvents

• ReadMaxOnDemandThroughputThrottleEvents

• ReadProvisionedThroughputThrottleEvents

• ReadThrottleEvents

• ReturnedBytes

• ReturnedItemCount

• ReturnedRecordsCount

• SuccessfulRequestLatency

• SystemErrors

• TimeToLiveDeletedItemCount

• ThrottledRequests

• TransactionConflict

• UserErrors

• WriteAccountLimitThrottleEvents

• WriteKeyRangeThroughputThrottleEvents

• WriteMaxOnDemandThroughputThrottleEvents

• WriteProvisionedThroughputThrottleEvents

• WriteThrottleEvents

• FaultInjectionServiceInducedErrors

For all other DynamoDB metrics, the aggregation granularity is five minutes.
Metrics and dimensions API Version 2012-08-10 3047

Amazon DynamoDB Developer Guide

Not all statistics, such as Average or Sum, are applicable for every metric. However, all of these
values are available through the Amazon DynamoDB console, or by using the CloudWatch console,
Amazon CLI, or Amazon SDKs for all metrics.

In the following list, each metric has a set of valid statistics that are applicable to that metric.

List of Available Metrics

• AccountMaxReads

• AccountMaxTableLevelReads

• AccountMaxTableLevelWrites

• AccountMaxWrites

• AccountProvisionedReadCapacityUtilization

• AccountProvisionedWriteCapacityUtilization

• AgeOfOldestUnreplicatedRecord

• ConditionalCheckFailedRequests

• ConsumedChangeDataCaptureUnits

• ConsumedReadCapacityUnits

• ConsumedWriteCapacityUnits

• FailedToReplicateRecordCount

• MaxProvisionedTableReadCapacityUtilization

• MaxProvisionedTableWriteCapacityUtilization

• OnDemandMaxReadRequestUnits

• OnDemandMaxWriteRequestUnits

• OnlineIndexConsumedWriteCapacity

• OnlineIndexPercentageProgress

• OnlineIndexThrottleEvents

• PendingReplicationCount

• ProvisionedReadCapacityUnits

• ProvisionedWriteCapacityUnits

• ReadAccountLimitThrottleEvents

Metrics and dimensions API Version 2012-08-10 3048

Amazon DynamoDB Developer Guide

• ReadKeyRangeThroughputThrottleEvents

• ReadMaxOnDemandThroughputThrottleEvents

• ReadProvisionedThroughputThrottleEvents

• ReadThrottleEvents

• ReplicationLatency

• ReturnedBytes

• ReturnedItemCount

• ReturnedRecordsCount

• SuccessfulRequestLatency

• SystemErrors

• TimeToLiveDeletedItemCount

• ThrottledPutRecordCount

• ThrottledRequests

• TransactionConflict

• UserErrors

• WriteAccountLimitThrottleEvents

• WriteKeyRangeThroughputThrottleEvents

• WriteMaxOnDemandThroughputThrottleEvents

• WriteProvisionedThroughputThrottleEvents

• WriteThrottleEvents

• FaultInjectionServiceInducedErrors

AccountMaxReads

The maximum number of read capacity units that can be used by an account. This limit doesn't
apply to on-demand tables or global secondary indexes.

Units: Count

Valid Statistics:

• Maximum – The maximum number of read capacity units that can be used by an account.

Metrics and dimensions API Version 2012-08-10 3049

Amazon DynamoDB Developer Guide

AccountMaxTableLevelReads

The maximum number of read capacity units that can be used by a table or global secondary index
of an account. For on-demand tables, this limit caps the maximum read request units a table or a
global secondary index can use.

Units: Count

Valid Statistics:

• Maximum – The maximum number of read capacity units that can be used by a table or global
secondary index of the account.

AccountMaxTableLevelWrites

The maximum number of write capacity units that can be used by a table or global secondary index
of an account. For on-demand tables, this limit caps the maximum write request units a table or a
global secondary index can use.

Units: Count

Valid Statistics:

• Maximum – The maximum number of write capacity units that can be used by a table or global
secondary index of the account.

AccountMaxWrites

The maximum number of write capacity units that can be used by an account. This limit doesn't
apply to on-demand tables or global secondary indexes.

Units: Count

Valid Statistics:

• Maximum – The maximum number of write capacity units that can be used by an account.

AccountProvisionedReadCapacityUtilization

The percentage of provisioned read capacity units utilized by an account.

Metrics and dimensions API Version 2012-08-10 3050

Amazon DynamoDB Developer Guide

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned read capacity units utilized by the account.

• Minimum – The minimum percentage of provisioned read capacity units utilized by the account.

• Average – The average percentage of provisioned read capacity units utilized by the account.
The metric is published for five-minute intervals. Therefore, if you rapidly adjust the provisioned
read capacity units, this statistic might not reflect the true average.

AccountProvisionedWriteCapacityUtilization

The percentage of provisioned write capacity units utilized by an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned write capacity units utilized by the account.

• Minimum – The minimum percentage of provisioned write capacity units utilized by the account.

• Average – The average percentage of provisioned write capacity units utilized by the account.
The metric is published for five-minute intervals. Therefore, if you rapidly adjust the provisioned
write capacity units, this statistic might not reflect the true average.

AgeOfOldestUnreplicatedRecord

The elapsed time since a record yet to be replicated to the Kinesis data stream first appeared in the
DynamoDB table.

Units: Milliseconds

Dimensions: TableName, DelegatedOperation

Valid Statistics:

• Maximum.

• Minimum.

• Average.

Metrics and dimensions API Version 2012-08-10 3051

Amazon DynamoDB Developer Guide

ConditionalCheckFailedRequests

The number of failed attempts to perform conditional writes. The PutItem, UpdateItem, and
DeleteItem operations let you provide a logical condition that must evaluate to true before the
operation can proceed. If this condition evaluates to false, ConditionalCheckFailedRequests
is incremented by one. ConditionalCheckFailedRequests is also incremented by one for
PartiQL Update and Delete statements where a logical condition is provided and that condition
evaluates to false.

Note

A failed conditional write will result in an HTTP 400 error (Bad Request). These events are
reflected in the ConditionalCheckFailedRequests metric, but not in the UserErrors
metric.

Units: Count

Dimensions: TableName

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ConsumedChangeDataCaptureUnits

The number of consumed change data capture units.

Units: Count

Dimensions: TableName, DelegatedOperation

Valid Statistics:

Metrics and dimensions API Version 2012-08-10 3052

Amazon DynamoDB Developer Guide

• Minimum

• Maximum

• Average

ConsumedReadCapacityUnits

The number of read capacity units consumed over the specified time period for both provisioned
and on-demand capacity, so you can track how much of your throughput is used. You can retrieve
the total consumed read capacity for a table and all of its global secondary indexes, or for a
particular global secondary index. For more information, see Read/Write Capacity Mode.

The TableName dimension returns the ConsumedReadCapacityUnits for the table, but not for
any global secondary indexes. To view ConsumedReadCapacityUnits for a global secondary
index, you must specify both TableName and GlobalSecondaryIndexName.

Note

This means that short, intense spikes in capacity consumption lasting just a second may not
be accurately reflected in the CloudWatch graph, potentially leading to a lower apparent
consumption rate for that minute.
Use the Sum statistic to calculate the consumed throughput. For example, get the Sum
value over a span of one minute, and divide it by the number of seconds in a minute (60) to
calculate the average ConsumedReadCapacityUnits per second. You can compare the
calculated value to the provisioned throughput value that you provide DynamoDB.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum – The minimum number of read capacity units consumed by any individual request to
the table or index.

• Maximum – The maximum number of read capacity units consumed by any individual request to
the table or index.

• Average – The average per-request read capacity consumed.

Metrics and dimensions API Version 2012-08-10 3053

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

Amazon DynamoDB Developer Guide

Note

The Average value is influenced by periods of inactivity where the sample value will be
zero.

• Sum – The total read capacity units consumed. This is the most useful statistic for the
ConsumedReadCapacityUnits metric.

• SampleCount – represents the frequency at which the metric is emitted. Even tables with zero
traffic will have the SampleCount emitted regularly, but the sample values will always be zero.

Note

The SampleCount value is influenced by periods of inactivity where the sample value
will be zero.

ConsumedWriteCapacityUnits

The number of write capacity units consumed over the specified time period for both provisioned
and on-demand capacity, so you can track how much of your throughput is used. You can retrieve
the total consumed write capacity for a table and all of its global secondary indexes, or for a
particular global secondary index. For more information, see Read/Write Capacity Mode.

The TableName dimension returns the ConsumedWriteCapacityUnits for the table, but not for
any global secondary indexes. To view ConsumedWriteCapacityUnits for a global secondary
index, you must specify both TableName and GlobalSecondaryIndexName. The Source
dimension can return either of two values: Customer and GlobalTable. Replicated writes will
have ConsumedWriteCapacityUnits with the source GlobalTable, but regional table writes
will have ConsumedWriteCapacityUnits with the source Customer.

Note

Use the Sum statistic to calculate the consumed throughput. For example, get the Sum
value over a span of one minute, and divide it by the number of seconds in a minute (60) to
calculate the average ConsumedWriteCapacityUnits per second (recognizing that this
average doesn't highlight any large but brief spikes in write activity that occurred during

Metrics and dimensions API Version 2012-08-10 3054

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ProvisionedThroughputIntro.html

Amazon DynamoDB Developer Guide

that minute). You can compare the calculated value to the provisioned throughput value
that you provide DynamoDB.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName, Source

Valid Statistics:

• Minimum – The minimum number of write capacity units consumed by any individual request to
the table or index.

• Maximum – The maximum number of write capacity units consumed by any individual request to
the table or index.

• Average – The average per-request write capacity consumed.

Note

The Average value is influenced by periods of inactivity where the sample value will be
zero.

• Sum – The total write capacity units consumed. This is the most useful statistic for the
ConsumedWriteCapacityUnits metric.

• SampleCount – represents the frequency at which the metric is emitted. Even tables with zero
traffic will have the SampleCount emitted regularly, but the sample values will always be zero.

Note

The SampleCount value is influenced by periods of inactivity where the sample value
will be zero.

FailedToReplicateRecordCount

The number of records that DynamoDB failed to replicate to your Kinesis data stream.

Units: Count

Dimensions: TableName, DelegatedOperation

Metrics and dimensions API Version 2012-08-10 3055

Amazon DynamoDB Developer Guide

Valid Statistics:

• Sum

MaxProvisionedTableReadCapacityUtilization

The percentage of provisioned read capacity utilized by the highest provisioned read table or
global secondary index of an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned read capacity units utilized by the highest
provisioned read table or global secondary index of an account.

• Minimum – The minimum percentage of provisioned read capacity units utilized by the highest
provisioned read table or global secondary index of an account.

• Average – The average percentage of provisioned read capacity units utilized by the highest
provisioned read table or global secondary index of the account. The metric is published for five-
minute intervals. Therefore, if you rapidly adjust the provisioned read capacity units, this statistic
might not reflect the true average.

MaxProvisionedTableWriteCapacityUtilization

The percentage of provisioned write capacity utilized by the highest provisioned write table or
global secondary index of an account.

Units: Percent

Valid Statistics:

• Maximum – The maximum percentage of provisioned write capacity units utilized by the highest
provisioned write table or global secondary index of an account.

• Minimum – The minimum percentage of provisioned write capacity units utilized by the highest
provisioned write table or global secondary index of an account.

• Average – The average percentage of provisioned write capacity units utilized by the highest
provisioned write table or global secondary index of the account. The metric is published for
five-minute intervals. Therefore, if you rapidly adjust the provisioned write capacity units, this
statistic might not reflect the true average.

Metrics and dimensions API Version 2012-08-10 3056

Amazon DynamoDB Developer Guide

OnDemandMaxReadRequestUnits

The number of specified on-demand read request units for a table or a global secondary index.

To view OnDemandMaxReadRequestUnits for a table, you must specify TableName. To
view OnDemandMaxReadRequestUnits for a global secondary index, you must specify both
TableName and GlobalSecondaryIndexName.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum – The lowest setting for on-demand read request units. If you use UpdateTable
to increase read request units, this metric shows the lowest value of on-demand
ReadRequestUnits during this time period.

• Maximum – The highest setting for on-demand read request units. If you use UpdateTable
to decrease read request units, this metric shows the highest value of on-demand
ReadRequestUnits during this time period.

• Average – The average on-demand read request units. The OnDemandMaxReadRequestUnits
metric is published at five-minute intervals. Therefore, if you rapidly adjust the on-demand read
request units, this statistic might not reflect the true average.

OnDemandMaxWriteRequestUnits

The number of specified on-demand write request units for a table or a global secondary index.

To view OnDemandMaxWriteRequestUnits for a table, you must specify TableName. To
view OnDemandMaxWriteRequestUnits for a global secondary index, you must specify both
TableName and GlobalSecondaryIndexName.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum – The lowest setting for on-demand write request units. If you use UpdateTable
to increase write request units, this metric shows the lowest value of on-demand
WriteRequestUnits during this time period.

Metrics and dimensions API Version 2012-08-10 3057

Amazon DynamoDB Developer Guide

• Maximum – The highest setting for on-demand write request units. If you use UpdateTable
to decrease write request units, this metric shows the highest value of on-demand
WriteRequestUnits during this time period.

• Average – The average on-demand write request units. The
OnDemandMaxWriteRequestUnits metric is published at five-minute intervals. Therefore, if
you rapidly adjust the on-demand write request units, this statistic might not reflect the true
average.

OnlineIndexConsumedWriteCapacity

This metric is expected to show 0 during index builds. This metric previously showed the number of
write capacity units consumed when adding a new global secondary index to a table.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

OnlineIndexPercentageProgress

The percentage of completion when a new global secondary index is being added to a table.
DynamoDB must first allocate resources for the new index, and then backfill attributes from the
table into the index. For large tables, this process might take a long time. You should monitor this
statistic to view the relative progress as DynamoDB builds the index.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

Metrics and dimensions API Version 2012-08-10 3058

Amazon DynamoDB Developer Guide

• Minimum

• Maximum

• Average

• SampleCount

• Sum

OnlineIndexThrottleEvents

This metric is expected to show 0 during index builds. This metric previously showed the number of
write throttle events that occur when adding a new global secondary index to a table.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

PendingReplicationCount

Metric for Global tables version 2017.11.29 (Legacy) (global tables only). The number of item
updates that are written to one replica table, but that have not yet been written to another replica
in the global table.

Units: Count

Dimensions: TableName, ReceivingRegion

Valid Statistics:

• Average

• Sample Count

Metrics and dimensions API Version 2012-08-10 3059

Amazon DynamoDB Developer Guide

• Sum

ProvisionedReadCapacityUnits

The number of provisioned read capacity units for a table or a global secondary index. The
TableName dimension returns the ProvisionedReadCapacityUnits for the table, but not for
any global secondary indexes. To view ProvisionedReadCapacityUnits for a global secondary
index, you must specify both TableName and GlobalSecondaryIndexName.

Units:Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Minimum – The lowest setting for provisioned read capacity. If you use UpdateTable to increase
read capacity, this metric shows the lowest value of provisioned ReadCapacityUnits during
this time period.

• Maximum – The highest setting for provisioned read capacity. If you use UpdateTable to
decrease read capacity, this metric shows the highest value of provisioned ReadCapacityUnits
during this time period.

• Average – The average provisioned read capacity. The ProvisionedReadCapacityUnits
metric is published at five-minute intervals. Therefore, if you rapidly adjust the provisioned read
capacity units, this statistic might not reflect the true average.

ProvisionedWriteCapacityUnits

The number of provisioned write capacity units for a table or a global secondary index.

The TableName dimension returns the ProvisionedWriteCapacityUnits for the table, but
not for any global secondary indexes. To view ProvisionedWriteCapacityUnits for a global
secondary index, you must specify both TableName and GlobalSecondaryIndexName.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

Metrics and dimensions API Version 2012-08-10 3060

Amazon DynamoDB Developer Guide

• Minimum – The lowest setting for provisioned write capacity. If you use UpdateTable
to increase write capacity, this metric shows the lowest value of provisioned
WriteCapacityUnits during this time period.

• Maximum – The highest setting for provisioned write capacity. If you use UpdateTable
to decrease write capacity, this metric shows the highest value of provisioned
WriteCapacityUnits during this time period.

• Average – The average provisioned write capacity. The ProvisionedWriteCapacityUnits
metric is published at five-minute intervals. Therefore, if you rapidly adjust the provisioned write
capacity units, this statistic might not reflect the true average.

ReadAccountLimitThrottleEvents

The number of read requests throttled due to account limits.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

ReadKeyRangeThroughputThrottleEvents

The number of read requests throttled due to partition limits.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

Metrics and dimensions API Version 2012-08-10 3061

Amazon DynamoDB Developer Guide

• Maximum – Maximum number of throttled events in any given sample.

ReadMaxOnDemandThroughputThrottleEvents

The number of read requests throttled due to on-demand maximum throughput.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

ReadProvisionedThroughputThrottleEvents

The number of read requests throttled due to provisioned throughput limits.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

ReadThrottleEvents

Requests to DynamoDB that exceed the provisioned read capacity units for a table or a global
secondary index.

A single request can result in multiple events. For example, a BatchGetItem that reads 10 items
is processed as 10 GetItem events. For each event, ReadThrottleEvents is incremented by one

Metrics and dimensions API Version 2012-08-10 3062

Amazon DynamoDB Developer Guide

if that event is throttled. The ThrottledRequests metric for the entire BatchGetItem is not
incremented unless all 10 of the GetItem events are throttled.

The TableName dimension returns the ReadThrottleEvents for the table, but not for any
global secondary indexes. To view ReadThrottleEvents for a global secondary index, you must
specify both TableName and GlobalSecondaryIndexName.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• SampleCount

• Sum

ReplicationLatency

(This metric is for DynamoDB global tables.) The elapsed time between an updated item appearing
in the DynamoDB stream for one replica table, and that item appearing in another replica in the
global table.

Units: Milliseconds

Dimensions: TableName, ReceivingRegion

Valid Statistics:

• Average

• Minimum

• Maximum

ReturnedBytes

The number of bytes returned by GetRecords operations (Amazon DynamoDB Streams) during
the specified time period.

Units: Bytes

Dimensions: Operation, StreamLabel, TableName

Metrics and dimensions API Version 2012-08-10 3063

Amazon DynamoDB Developer Guide

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ReturnedItemCount

The number of items returned by Query, Scan or ExecuteStatement (select) operations during
the specified time period.

The number of items returned is not necessarily the same as the number of items that were
evaluated. For example, suppose that you requested a Scan on a table or an index that had 100
items, but specified a FilterExpression that narrowed the results so that only 15 items were
returned. In this case, the response from Scan would contain a ScanCount of 100 and a Count of
15 returned items.

Units: Count

Dimensions: TableName, Operation

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

ReturnedRecordsCount

The number of stream records returned by GetRecords operations (Amazon DynamoDB Streams)
during the specified time period.

Units: Count

Metrics and dimensions API Version 2012-08-10 3064

Amazon DynamoDB Developer Guide

Dimensions: Operation, StreamLabel, TableName

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

• Sum

SuccessfulRequestLatency

The latency of successful requests to DynamoDB or Amazon DynamoDB Streams during the
specified time period. SuccessfulRequestLatency can provide two different kinds of
information:

• The elapsed time for successful requests (Minimum, Maximum, Sum, Average, or Percentile).

• The number of successful requests (SampleCount).

SuccessfulRequestLatency reflects activity only within DynamoDB or Amazon DynamoDB
Streams, and doesn't consider network latency or client-side activity.

Note

To analyze custom percentile values (such as p99.9), you can manually enter the desired
percentile (e.g., p99.9) in the CloudWatch metric statistic field. This allows you to evaluate
latency distributions beyond the default percentiles listed in the dropdown.

Units: Milliseconds

Dimensions: TableName, Operation, StreamLabel

Valid Statistics:

• Minimum

• Maximum

Metrics and dimensions API Version 2012-08-10 3065

Amazon DynamoDB Developer Guide

• Sum

• Average

• Percentile

• SampleCount

SystemErrors

The requests to DynamoDB or Amazon DynamoDB Streams that generate an HTTP 500 status code
during the specified time period. An HTTP 500 usually indicates an internal service error.

Note

When DynamoDB returns a system error (HTTP 500), most Amazon SDKs automatically
perform a configurable number of retries. If the issue resolves during a retry, your
application continues without seeing the error, and you may notice increased client-side
perceived latency. If the error persists after all retries, it propagates to your application
code.

Units: Count

Dimensions: TableName, Operation

Valid Statistics:

• Sum

• SampleCount

TimeToLiveDeletedItemCount

The number of items deleted by Time to Live (TTL) during the specified time period. This metric
helps you monitor the rate of TTL deletions on your table.

Units: Count

Dimensions: TableName

Valid Statistics:

Metrics and dimensions API Version 2012-08-10 3066

Amazon DynamoDB Developer Guide

• Sum

ThrottledPutRecordCount

The number of records that were throttled by your Kinesis data stream due to insufficient Kinesis
Data Streams capacity.

Units: Count

Dimensions: TableName, DelegatedOperation

Valid Statistics:

• Minimum

• Maximum

• Average

• SampleCount

ThrottledRequests

Requests to DynamoDB that exceed the provisioned throughput limits on a resource (such as a
table or an index).

ThrottledRequests is incremented by one if any event within a request exceeds a provisioned
throughput limit. For example, if you update an item in a table with global secondary indexes,
there are multiple events—a write to the table, and a write to each index. If one or more of these
events are throttled, then ThrottledRequests is incremented by one.

Note

In a batch request (BatchGetItem or BatchWriteItem), ThrottledRequests is
incremented only if every request in the batch is throttled.
If any individual request within the batch is throttled, one of the following metrics is
incremented:

• ReadThrottleEvents – For a throttled GetItem event within BatchGetItem.

• WriteThrottleEvents – For a throttled PutItem or DeleteItem event within
BatchWriteItem.

Metrics and dimensions API Version 2012-08-10 3067

Amazon DynamoDB Developer Guide

To gain insight into which event is throttling a request, compare ThrottledRequests with the
ReadThrottleEvents and WriteThrottleEvents for the table and its indexes.

Note

A throttled request will result in an HTTP 400 status code. All such events are reflected in
the ThrottledRequests metric, but not in the UserErrors metric.

Units: Count

Dimensions: TableName, Operation

Valid Statistics:

• Sum

• SampleCount

TransactionConflict

Rejected item-level requests due to transactional conflicts between concurrent requests on the
same items. For more information, see Transaction Conflict Handling in DynamoDB.

Units: Count

Dimensions: TableName

Valid Statistics:

• Sum – The number of rejected item-level requests due to transaction conflicts.

Note

If multiple item-level requests within a call to TransactWriteItems or
TransactGetItems were rejected, Sum is incremented by one for each item-level Put,
Update, Delete, or Get request.

• SampleCount – The number of rejected requests due to transaction conflicts.

Metrics and dimensions API Version 2012-08-10 3068

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transaction-apis.html#transaction-conflict-handling

Amazon DynamoDB Developer Guide

Note

If multiple item-level requests within a call to TransactWriteItems or
TransactGetItems are rejected, SampleCount is only incremented by one.

• Min – The minimum number of rejected item-level requests within a call to
TransactWriteItems, TransactGetItems, PutItem, UpdateItem, or DeleteItem.

• Max – The maximum number of rejected item-level requests within a call to
TransactWriteItems, TransactGetItems, PutItem, UpdateItem, or DeleteItem.

• Average – The average number of rejected item-level requests within a call to
TransactWriteItems, TransactGetItems, PutItem, UpdateItem, or DeleteItem.

UserErrors

Requests to DynamoDB or Amazon DynamoDB Streams that generate an HTTP 400 status code
during the specified time period. An HTTP 400 usually indicates a client-side error, such as an
invalid combination of parameters, an attempt to update a nonexistent table, or an incorrect
request signature.

Some examples of exceptions that will log metrics related to UserErrors would be:

• ResourceNotFoundException

• ValidationException

• TransactionConflict

All such events are reflected in the UserErrors metric, except for the following:

• ProvisionedThroughputExceededException – See the ThrottledRequests metric in this section.

• ConditionalCheckFailedException – See the ConditionalCheckFailedRequests metric in this
section.

UserErrors represents the aggregate of HTTP 400 errors for DynamoDB or Amazon DynamoDB
Streams requests for the current Amazon Region and the current Amazon account.

Units: Count

Metrics and dimensions API Version 2012-08-10 3069

Amazon DynamoDB Developer Guide

Valid Statistics:

• Sum

• SampleCount

WriteAccountLimitThrottleEvents

The number of write requests throttled due to account limits.

Units: Count

Dimensions: TableName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

WriteKeyRangeThroughputThrottleEvents

The number of write requests throttled due to partition limits.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

WriteMaxOnDemandThroughputThrottleEvents

The number of write requests throttled due to on-demand maximum throughput.

Metrics and dimensions API Version 2012-08-10 3070

Amazon DynamoDB Developer Guide

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

WriteProvisionedThroughputThrottleEvents

The number of write requests throttled due to provisioned throughput limits.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum – Total number of throttled events.

• SampleCount – Number of throttling occurrences.

• Minimum – Minimum number of throttled events in any given sample.

• Maximum – Maximum number of throttled events in any given sample.

WriteThrottleEvents

Requests to DynamoDB that exceed the provisioned write capacity units for a table or a global
secondary index.

A single request can result in multiple events. For example, a PutItem request on a table
with three global secondary indexes would result in four events—the table write, and each
of the three index writes. For each event, the WriteThrottleEvents metric is incremented
by one if that event is throttled. For single PutItem requests, if any of the events are
throttled, ThrottledRequests is also incremented by one. For BatchWriteItem, the
ThrottledRequests metric for the entire BatchWriteItem is not incremented unless all of the
individual PutItem or DeleteItem events are throttled.

Metrics and dimensions API Version 2012-08-10 3071

Amazon DynamoDB Developer Guide

The TableName dimension returns the WriteThrottleEvents for the table, but not for any
global secondary indexes. To view WriteThrottleEvents for a global secondary index, you must
specify both TableName and GlobalSecondaryIndexName.

Units: Count

Dimensions: TableName, GlobalSecondaryIndexName

Valid Statistics:

• Sum

• SampleCount

FaultInjectionServiceInducedErrors

The requests to DynamoDB that generate a simulated HTTP 500 status code during the specified
time period and during the catchup as a result of Amazon FIS experiment.

Units: Count

Dimensions: TableName, Operation

Valid Statistics:

• Sum

• SampleCount

Understanding metrics and dimensions for DynamoDB

The metrics for DynamoDB are qualified by the values for the account, table name, global
secondary index name, or operation. You can use the CloudWatch console to retrieve DynamoDB
data along any of the dimensions in the table below.

List of Available Dimensions

• DelegatedOperation

• GlobalSecondaryIndexName

• Operation

• OperationType

Metrics and dimensions API Version 2012-08-10 3072

Amazon DynamoDB Developer Guide

• Verb

• ReceivingRegion

• StreamLabel

• TableName

DelegatedOperation

This dimension limits the data to operations DynamoDB performs on your behalf. The following
operations are captured:

• Change data capture for Kinesis Data Streams.

GlobalSecondaryIndexName

This dimension limits the data to a global secondary index on a table. If you specify
GlobalSecondaryIndexName, you must also specify TableName.

Operation

This dimension limits the data to one of the following DynamoDB operations:

• PutItem

• DeleteItem

• UpdateItem

• GetItem

• BatchGetItem

• Scan

• Query

• BatchWriteItem

• TransactWriteItems

• TransactGetItems

• ExecuteTransaction

• BatchExecuteStatement

• ExecuteStatement

Metrics and dimensions API Version 2012-08-10 3073

Amazon DynamoDB Developer Guide

In addition, you can limit the data to the following Amazon DynamoDB Streams operation:

• GetRecords

OperationType

This dimension limits the data to one of the following operation types:

• Read

• Write

This dimension is emitted for ExecuteTransaction and BatchExecuteStatement requests.

Verb

This dimension limits the data to one of the following DynamoDB PartiQL verbs:

• Insert: PartiQLInsert

• Select: PartiQLSelect

• Update: PartiQLUpdate

• Delete: PartiQLDelete

This dimension is emitted for the ExecuteStatement operation.

ReceivingRegion

This dimension limits the data to a particular Amazon region. It is used with metrics originating
from replica tables within a DynamoDB global table.

StreamLabel

This dimension limits the data to a specific stream label. It is used with metrics originating from
Amazon DynamoDB Streams GetRecords operations.

TableName

This dimension limits the data to a specific table. This value can be any table name in the current
region and the current Amazon account.

Metrics and dimensions API Version 2012-08-10 3074

Amazon DynamoDB Developer Guide

Creating CloudWatch alarms in DynamoDB

A CloudWatch alarm watches a single metric over a specified time period, and performs one or
more specified actions, based on the value of the metric relative to a threshold over time. The
action is a notification sent to an Amazon SNS topic or Auto Scaling policy. You can also add alarms
to dashboards so you can monitor and receive alerts about your Amazon resources and applications
across multiple regions. There is no limit to the number of alarms you can create. CloudWatch
alarms do not invoke actions simply because they are in a particular state; the state must have
changed and been maintained for a specified number of periods. For a list of recommended
DynamoDB alarms, see Recommended alarms.

Note

You must specify all the required dimensions when creating your CloudWatch alarm, since
CloudWatch will not aggregate metrics for a missing dimension. Creating a CloudWatch
alarm with a missing dimension will not result in an error, when creating the alarm.

Assume you have a provisioned table with five read capacity units. You want to be notified before
you consume the entire provisioned read capacity, so you decide to create a CloudWatch alarm to
get notified when the consumed capacity reaches 80% of what you have provisioned for the table.
You can create alarms in the CloudWatch console or using the Amazon CLI.

Creating an alarm in the CloudWatch console

To create an alarm in the CloudWatch console

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console
at https://console.aws.amazon.com/cloudwatch/.

2. In the navigation pane, choose Alarms, All alarms.

3. Choose Create alarm.

4. Find the row with the table that you want to monitor and ConsumeReadCapacityUnits in
the Metric Name column. Select the check box next to this row and choose Select metric.

5. Under Specify metric and conditions, for Statistic choose Sum. Choose a Period of 1 minute.

6. Under Conditions, specify the following:

a. For Threshold type, choose Static.

Creating CloudWatch alarms in DynamoDB API Version 2012-08-10 3075

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Best_Practice_Recommended_Alarms_AWS_Services.html#DynamoDB
https://console.aws.amazon.com/cloudwatch/

Amazon DynamoDB Developer Guide

b. For Whenever ConsumedReadCapacityUnits is, choose Greater/Equal and specify the
threshold as 240.

7. Choose Next.

8. Under Notification, choose In alarm and select an SNS topic to notify when the alarm is in
ALARM state.

9. When finished, choose Next.

10. Enter a name and description for the alarm and choose Next.

11. Under Preview and create, confirm that the information and conditions are what you want,
then choose Create alarm.

Creating an alarm in the Amazon CLI

aws cloudwatch put-metric-alarm \
 -\-alarm-name ReadCapacityUnitsLimitAlarm \
 -\-alarm-description "Alarm when read capacity reaches 80% of my provisioned read
 capacity" \
 -\-namespace AWS/DynamoDB \
 -\-metric-name ConsumedReadCapacityUnits \
 -\-dimensions Name=TableName,Value=myTable \
 -\-statistic Sum \
 -\-threshold 240 \
 -\-comparison-operator GreaterThanOrEqualToThreshold \
 -\-period 60 \
 -\-evaluation-periods 1 \
 -\-alarm-actions arn:aws:sns:us-east-1:123456789012:capacity-alarm

Test the alarm.

aws cloudwatch set-alarm-state -\-alarm-name ReadCapacityUnitsLimitAlarm -\-state-
reason "initializing" -\-state-value OK

aws cloudwatch set-alarm-state -\-alarm-name ReadCapacityUnitsLimitAlarm -\-state-
reason "initializing" -\-state-value ALARM

More Amazon CLI examples

The following procedure describes how you're notified if you have requests that exceed the
provisioned througput quotas of a table.

Creating CloudWatch alarms in DynamoDB API Version 2012-08-10 3076

Amazon DynamoDB Developer Guide

1. Create an Amazon SNS topic arn:aws:sns:us-east-1:123456789012:requests-
exceeding-throughput. For more information, see Set up Amazon Simple Notification
Service.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 -\-alarm-name ReadCapacityUnitsLimitAlarm \
 -\-alarm-description "Alarm when read capacity reaches 80% of my
 provisioned read capacity" \
 -\-namespace AWS/DynamoDB \
 -\-metric-name ConsumedReadCapacityUnits \
 -\-dimensions Name=TableName,Value=myTable \
 -\-statistic Sum \
 -\-threshold 240 \
 -\-comparison-operator GreaterThanOrEqualToThreshold \
 -\-period 60 \
 -\-evaluation-periods 1 \
 -\-alarm-actions arn:aws:sns:us-east-1:123456789012:capacity-alarm

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name RequestsExceedingThroughputAlarm --
state-reason "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name RequestsExceedingThroughputAlarm --
state-reason "initializing" --state-value ALARM

The following procedure describes how you're notified if you get system errors.

1. Create an Amazon SNS topic arn:aws:sns:us-east-1:123456789012:notify-on-
system-errors. For more information, see Set up Amazon Simple Notification Service.

2. Create the alarm.

aws cloudwatch put-metric-alarm \
 --alarm-name SystemErrorsAlarm \
 --alarm-description "Alarm when system errors occur" \
 --namespace AWS/DynamoDB \
 --metric-name SystemErrors \

Creating CloudWatch alarms in DynamoDB API Version 2012-08-10 3077

http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html
http://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/US_SetupSNS.html

Amazon DynamoDB Developer Guide

 --dimensions Name=TableName,Value=myTable
 Name=Operation,Value=aDynamoDBOperation \
 --statistic Sum \
 --threshold 0 \
 --comparison-operator GreaterThanThreshold \
 --period 60 \
 --unit Count \
 --evaluation-periods 1 \
 --treat-missing-data breaching \
 --alarm-actions arn:aws:sns:us-east-1:123456789012:notify-on-system-errors

3. Test the alarm.

aws cloudwatch set-alarm-state --alarm-name SystemErrorsAlarm --state-reason
 "initializing" --state-value OK

aws cloudwatch set-alarm-state --alarm-name SystemErrorsAlarm --state-reason
 "initializing" --state-value ALARM

Logging DynamoDB operations by using Amazon CloudTrail

DynamoDB is integrated with Amazon CloudTrail, a service that provides a record of actions taken
by a user, role, or an Amazon service in DynamoDB. CloudTrail captures all API calls for DynamoDB
as events. The calls captured include calls from the DynamoDB console and code calls to the
DynamoDB API operations, using both PartiQL and the classic API. If you create a trail, you can
enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events for
DynamoDB. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the
request that was made to DynamoDB, the IP address from which the request was made, who made
the request, when it was made, and additional details.

For robust monitoring and alerting, you can also integrate CloudTrail events with Amazon
CloudWatch Logs. To enhance your analysis of DynamoDB service activity and identify changes in
activities for an Amazon account, you can query Amazon CloudTrail logs using Amazon Athena. For
example, you can use queries to identify trends and further isolate activity by attributes such as
source IP address or user.

To learn more about CloudTrail, including how to configure and enable it, see the Amazon
CloudTrail User Guide.

Logging operations API Version 2012-08-10 3078

https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.amazonaws.cn/athena/latest/ug/cloudtrail-logs.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/

Amazon DynamoDB Developer Guide

Topics

• DynamoDB information in CloudTrail

• Understanding DynamoDB log file entries

DynamoDB information in CloudTrail

CloudTrail is enabled on your Amazon account when you create the account. When supported
event activity occurs in DynamoDB, that activity is recorded in a CloudTrail event along with other
Amazon service events in Event history. You can view, search, and download recent events in your
Amazon account. For more information, see Working with CloudTrail Event history.

For an ongoing record of events in your Amazon account, including events for DynamoDB, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all Amazon Regions. The trail logs events from
all Regions in the Amazon partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other Amazon services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

Control plane events in CloudTrail

The following API actions are logged by default as events in CloudTrail files:

Amazon DynamoDB

• CreateBackup

• CreateGlobalTable

• CreateTable

• DeleteBackup

• DeleteTable

DynamoDB information in CloudTrail API Version 2012-08-10 3079

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteTable.html

Amazon DynamoDB Developer Guide

• DescribeBackup

• DescribeContinuousBackups

• DescribeGlobalTable

• DescribeLimits

• DescribeTable

• DescribeTimeToLive

• ListBackups

• ListTables

• ListTagsOfResource

• ListGlobalTables

• RestoreTableFromBackup

• RestoreTableToPointInTime

• TagResource

• UntagResource

• UpdateGlobalTable

• UpdateTable

• UpdateTimeToLive

• DescribeReservedCapacity

• DescribeReservedCapacityOfferings

• PurchaseReservedCapacityOfferings

• DescribeScalableTargets

• RegisterScalableTarget

DynamoDB Streams

• DescribeStream

• ListStreams

DynamoDB Accelerator (DAX)

• CreateCluster

DynamoDB information in CloudTrail API Version 2012-08-10 3080

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeContinuousBackups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeLimits.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeTimeToLive.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListBackups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListTagsOfResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ListGlobalTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableFromBackup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_RestoreTableToPointInTime.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTimeToLive.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_DescribeScalableTargets.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_DescribeStream.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_ListStreams.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_CreateCluster.html

Amazon DynamoDB Developer Guide

• CreateParameterGroup

• CreateSubnetGroup

• DecreaseReplicationFactor

• DeleteCluster

• DeleteParameterGroup

• DeleteSubnetGroup

• DescribeClusters

• DescribeDefaultParameters

• DescribeEvents

• DescribeParameterGroups

• DescribeParameters

• DescribeSubnetGroups

• IncreaseReplicationFactor

• ListTags

• RebootNode

• TagResource

• UntagResource

• UpdateCluster

• UpdateParameterGroup

• UpdateSubnetGroup

DynamoDB data plane events in CloudTrail

To enable logging of the following API actions in CloudTrail files, you'll need to enable logging of
data plane API activity in CloudTrail. See Logging data events for trails for more information.

Data plane events can be filtered by resource type, for granular control over which DynamoDB
API calls you want to selectively log and pay for in CloudTrail. For example, by specifying
Amazon::DynamoDB::Stream as a resource type, you can log only calls to the DynamoDB
streams APIs. For tables with streams enabled, the resource field in the data plane event
contains both Amazon::DynamoDB::Stream and Amazon::DynamoDB::Table. If you specify
Amazon::DynamoDB::Table as a resource type, it will log both DynamoDB table and DynamoDB

DynamoDB information in CloudTrail API Version 2012-08-10 3081

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_CreateParameterGroup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_CreateSubnetGroup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DecreaseReplicationFactor.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DeleteCluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DeleteParameterGroup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DeleteSubnetGroup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeClusters.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeDefaultParameters.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeEvents.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeParameterGroups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeParameters.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_DescribeSubnetGroups.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_IncreaseReplicationFactor.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_ListTags.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_RebootNode.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_TagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_UntagResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_UpdateCluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_UpdateParameterGroup.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_UpdateSubnetGroup.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon DynamoDB Developer Guide

streams events by default. You can add an additional filter to exclude the streams events, if you
don't want the streams events to be logged. For more information, see DataResource in the
Amazon CloudTrail API Reference.

Amazon DynamoDB

• BatchExecuteStatement

• BatchGetItem

• BatchWriteItem

• DeleteItem

• ExecuteStatement

• ExecuteTransaction

• GetItem

• PutItem

• Query

• Scan

• TransactGetItems

• TransactWriteItems

• UpdateItem

Note

DynamoDB Time to Live data plane actions are not logged by CloudTrail

DynamoDB Streams

• GetRecords

• GetShardIterator

Understanding DynamoDB log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single

Understanding DynamoDB log file entries API Version 2012-08-10 3082

https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.amazonaws.cn/awscloudtrail/latest/APIReference/API_DataResource.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchExecuteStatement.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchWriteItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteStatement.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ExecuteTransaction.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetRecords.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_streams_GetShardIterator.html

Amazon DynamoDB Developer Guide

request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

Note

Non key attribute values will be redacted in the CloudTrail logs of actions using the PartiQL
API, and will not appear in logs of actions using the classic API.

For more information, see the CloudTrail userIdentity element.

The following examples demonstrate CloudTrail logs of these event types:

Amazon DynamoDB

• UpdateTable

• DeleteTable

• CreateCluster

• PutItem (Successful)

• UpdateItem (Unsuccessful)

• TransactWriteItems (Successful)

• TransactWriteItems (With TransactionCanceledException)

• ExecuteStatement

• BatchExecuteStatement

DynamoDB Streams

• GetRecords

Understanding DynamoDB log file entries API Version 2012-08-10 3083

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon DynamoDB Developer Guide

UpdateTable

{
 "Records": [
 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T02:14:52Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "UpdateTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {
 "provisionedThroughput": {
 "writeCapacityUnits": 25,
 "readCapacityUnits": 25
 }
 },
 "responseElements": {
 "tableDescription": {
 "tableName": "Music",
 "attributeDefinitions": [
 {

Understanding DynamoDB log file entries API Version 2012-08-10 3084

Amazon DynamoDB Developer Guide

 "attributeType": "S",
 "attributeName": "Artist"
 },
 {
 "attributeType": "S",
 "attributeName": "SongTitle"
 }
],
 "itemCount": 0,
 "provisionedThroughput": {
 "writeCapacityUnits": 10,
 "numberOfDecreasesToday": 0,
 "readCapacityUnits": 10,
 "lastIncreaseDateTime": "May 3, 2015 11:34:14 PM"
 },
 "creationDateTime": "May 3, 2015 11:34:14 PM",
 "keySchema": [
 {
 "attributeName": "Artist",
 "keyType": "HASH"
 },
 {
 "attributeName": "SongTitle",
 "keyType": "RANGE"
 }
],
 "tableStatus": "UPDATING",
 "tableSizeBytes": 0
 }
 },
 "requestID": "AALNP0J2L244N5O15PKISJ1KUFVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "eb834e01-f168-435f-92c0-c36278378b6e",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 }
]
}

DeleteTable

{
 "Records": [

Understanding DynamoDB log file entries API Version 2012-08-10 3085

Amazon DynamoDB Developer Guide

 {
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2015-05-04T13:38:20Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "DeleteTable",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "console.aws.amazon.com",
 "requestParameters": {
 "tableName": "Music"
 },
 "responseElements": {
 "tableDescription": {
 "tableName": "Music",
 "itemCount": 0,
 "provisionedThroughput": {
 "writeCapacityUnits": 25,
 "numberOfDecreasesToday": 0,
 "readCapacityUnits": 25
 },
 "tableStatus": "DELETING",
 "tableSizeBytes": 0
 }
 },

Understanding DynamoDB log file entries API Version 2012-08-10 3086

Amazon DynamoDB Developer Guide

 "requestID": "4KBNVRGD25RG1KEO9UT4V3FQDJVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "a954451c-c2fc-4561-8aea-7a30ba1fdf52",
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "recipientAccountId": "111122223333"
 }
]
}

CreateCluster

{
 "Records": [
 {
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "bob"
 },
 "eventTime": "2019-12-17T23:17:34Z",
 "eventSource": "dax.amazonaws.com",
 "eventName": "CreateCluster",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.16.304 Python/3.6.9
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.13.40",
 "requestParameters": {
 "sSESpecification": {
 "enabled": true
 },
 "clusterName": "daxcluster",
 "nodeType": "dax.r4.large",
 "replicationFactor": 3,
 "iamRoleArn": "arn:aws:iam::111122223333:role/
DAXServiceRoleForDynamoDBAccess"
 },
 "responseElements": {
 "cluster": {
 "securityGroups": [

Understanding DynamoDB log file entries API Version 2012-08-10 3087

Amazon DynamoDB Developer Guide

 {
 "securityGroupIdentifier": "sg-1af6e36e",
 "status": "active"
 }
],
 "parameterGroup": {
 "nodeIdsToReboot": [],
 "parameterGroupName": "default.dax1.0",
 "parameterApplyStatus": "in-sync"
 },
 "clusterDiscoveryEndpoint": {
 "port": 8111
 },
 "clusterArn": "arn:aws:dax:us-west-2:111122223333:cache/
daxcluster",
 "status": "creating",
 "subnetGroup": "default",
 "sSEDescription": {
 "status": "ENABLED",
 "kMSMasterKeyArn": "arn:aws:kms:us-
west-2:111122223333:key/764898e4-adb1-46d6-a762-e2f4225b4fc4"
 },
 "iamRoleArn": "arn:aws:iam::111122223333:role/
DAXServiceRoleForDynamoDBAccess",
 "clusterName": "daxcluster",
 "activeNodes": 0,
 "totalNodes": 3,
 "preferredMaintenanceWindow": "thu:13:00-thu:14:00",
 "nodeType": "dax.r4.large"
 }
 },
 "requestID": "585adc5f-ad05-4e27-8804-70ba1315f8fd",
 "eventID": "29158945-28da-4e32-88e1-56d1b90c1a0c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
 }
]
}

PutItem (Successful)

{
 "Records": [

Understanding DynamoDB log file entries API Version 2012-08-10 3088

Amazon DynamoDB Developer Guide

 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-05-28T18:06:01Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 }
 }
 },
 "eventTime": "2019-01-19T15:41:54Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "PutItem",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0
 botocore/1.10.63",
 "requestParameters": {
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Scared of My Shadow"
 },
 "item": [
 "Artist",
 "SongTitle",
 "AlbumTitle"
],
 "returnConsumedCapacity": "TOTAL"
 },
 "responseElements": null,
 "requestID": "4KBNVRGD25RG1KEO9UT4V3FQDJVV4KQNSO5AEMVJF66Q9ASUAAJG",

Understanding DynamoDB log file entries API Version 2012-08-10 3089

Amazon DynamoDB Developer Guide

 "eventID": "a954451c-c2fc-4561-8aea-7a30ba1fdf52",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

UpdateItem (Unsuccessful)

{
 "Records": [
 {
 "eventVersion": "1.07",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }
 }

Understanding DynamoDB log file entries API Version 2012-08-10 3090

Amazon DynamoDB Developer Guide

 },
 "eventTime": "2020-09-03T22:27:15Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "UpdateItem",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0
 botocore/1.10.63",
 "errorCode": "ConditionalCheckFailedException",
 "errorMessage": "The conditional request failed",
 "requestParameters": {
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Today"
 },
 "updateExpression": "SET #Y = :y, #AT = :t",
 "expressionAttributeNames": {
 "#Y": "Year",
 "#AT": "AlbumTitle"
 },
 "conditionExpression": "attribute_not_exists(#Y)",
 "returnConsumedCapacity": "TOTAL"
 },
 "responseElements": null,
 "requestID": "4KBNVRGD25RG1KEO9UT4V3FQDJVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "a954451c-c2fc-4561-8aea-7a30ba1fdf52",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

Understanding DynamoDB log file entries API Version 2012-08-10 3091

Amazon DynamoDB Developer Guide

TransactWriteItems (Successful)

{
 "Records": [
 {
 "eventVersion": "1.07",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2020-09-03T21:48:12Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "TransactWriteItems",
 "awsRegion": "us-west-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.15.64 Python/2.7.16 Darwin/17.7.0
 botocore/1.10.63",
 "requestParameters": {
 "requestItems": [
 {
 "operation": "Put",
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Today"
 },
 "items": [

Understanding DynamoDB log file entries API Version 2012-08-10 3092

Amazon DynamoDB Developer Guide

 "Artist",
 "SongTitle",
 "AlbumTitle"
],
 "conditionExpression": "#AT = :A",
 "expressionAttributeNames": {
 "#AT": "AlbumTitle"
 },
 "returnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {
 "operation": "Update",
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Tomorrow"
 },
 "updateExpression": "SET #AT = :newval",
 "ConditionExpression": "attribute_not_exists(Rating)",
 "ExpressionAttributeNames": {
 "#AT": "AlbumTitle"
 },
 "returnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {
 "operation": "Delete",
 "TableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Yesterday"
 },
 "conditionExpression": "#P between :lo and :hi",
 "expressionAttributeNames": {
 "#P": "Price"
 },
 "ReturnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {
 "operation": "ConditionCheck",
 "TableName": "Music",
 "Key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Now"
 },

Understanding DynamoDB log file entries API Version 2012-08-10 3093

Amazon DynamoDB Developer Guide

 "ConditionExpression": "#P between :lo and :hi",
 "ExpressionAttributeNames": {
 "#P": "Price"
 },
 "ReturnValuesOnConditionCheckFailure": "ALL_OLD"
 }
],
 "returnConsumedCapacity": "TOTAL",
 "returnItemCollectionMetrics": "SIZE"
 },
 "responseElements": null,
 "requestID": "45EN32OM6TQSMV2MI65O4L5TNFVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "4f1cc78b-5c94-4174-a6ad-3ee78605381c",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

TransactWriteItems (With TransactionCanceledException)

{
 "Records": [
 {
 "eventVersion": "1.06",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {

Understanding DynamoDB log file entries API Version 2012-08-10 3094

Amazon DynamoDB Developer Guide

 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2019-02-01T00:42:34Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "TransactWriteItems",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.16.93 Python/3.4.7
 Linux/4.9.119-0.1.ac.277.71.329.metal1.x86_64 botocore/1.12.83",
 "errorCode": "TransactionCanceledException",
 "errorMessage": "Transaction cancelled, please refer cancellation reasons
 for specific reasons [ConditionalCheckFailed, None]",
 "requestParameters": {
 "requestItems": [
 {
 "operation": "Put",
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Today"
 },
 "items": [
 "Artist",
 "SongTitle",
 "AlbumTitle"
],
 "conditionExpression": "#AT = :A",
 "expressionAttributeNames": {
 "#AT": "AlbumTitle"
 },
 "returnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {

Understanding DynamoDB log file entries API Version 2012-08-10 3095

Amazon DynamoDB Developer Guide

 "operation": "Update",
 "tableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Tomorrow"
 },
 "updateExpression": "SET #AT = :newval",
 "ConditionExpression": "attribute_not_exists(Rating)",
 "ExpressionAttributeNames": {
 "#AT": "AlbumTitle"
 },
 "returnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {
 "operation": "Delete",
 "TableName": "Music",
 "key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Yesterday"
 },
 "conditionExpression": "#P between :lo and :hi",
 "expressionAttributeNames": {
 "#P": "Price"
 },
 "ReturnValuesOnConditionCheckFailure": "ALL_OLD"
 },
 {
 "operation": "ConditionCheck",
 "TableName": "Music",
 "Key": {
 "Artist": "No One You Know",
 "SongTitle": "Call Me Now"
 },
 "ConditionExpression": "#P between :lo and :hi",
 "ExpressionAttributeNames": {
 "#P": "Price"
 },
 "ReturnValuesOnConditionCheckFailure": "ALL_OLD"
 }
],
 "returnConsumedCapacity": "TOTAL",
 "returnItemCollectionMetrics": "SIZE"
 },
 "responseElements": null,

Understanding DynamoDB log file entries API Version 2012-08-10 3096

Amazon DynamoDB Developer Guide

 "requestID": "A0GTQEKLBB9VD8E05REA5A3E1VVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "43e437b5-908a-46af-84e6-e27fffb9c5cd",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

ExecuteStatement

{
 "Records": [
 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }

Understanding DynamoDB log file entries API Version 2012-08-10 3097

Amazon DynamoDB Developer Guide

 }
 },
 "eventTime": "2021-03-03T23:06:45Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "ExecuteStatement",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.19.7 Python/3.6.13
 Linux/4.9.230-0.1.ac.223.84.332.metal1.x86_64 botocore/1.20.7",
 "requestParameters": {
 "statement": "SELECT * FROM Music WHERE Artist = 'No One You Know' AND
 SongTitle = 'Call Me Today' AND nonKeyAttr = ***(Redacted)"
 },
 "responseElements": null,
 "requestID": "V7G2KCSFLP83ORB7MMFG6RIAD3VV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "0b5c4779-e169-4227-a1de-6ed01dd18ac7",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

BatchExecuteStatement

{
 "Records": [
 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",

Understanding DynamoDB log file entries API Version 2012-08-10 3098

Amazon DynamoDB Developer Guide

 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2021-03-03T23:24:48Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "BatchExecuteStatement",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "aws-cli/1.19.7 Python/3.6.13
 Linux/4.9.230-0.1.ac.223.84.332.metal1.x86_64 botocore/1.20.7",
 "requestParameters": {
 "requestItems": [
 {
 "statement": "UPDATE Music SET Album = ***(Redacted) WHERE
 Artist = 'No One You Know' AND SongTitle = 'Call Me Today'"
 },
 {
 "statement": "INSERT INTO Music VALUE {'Artist' :
 ***(Redacted), 'SongTitle' : ***(Redacted), 'Album' : ***(Redacted)}"
 }
]
 },
 "responseElements": null,
 "requestID": "23PE7ED291UD65P9SMS6TISNVBVV4KQNSO5AEMVJF66Q9ASUAAJG",
 "eventID": "f863f966-b741-4c36-b15e-f867e829035a",
 "readOnly": false,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"

Understanding DynamoDB log file entries API Version 2012-08-10 3099

Amazon DynamoDB Developer Guide

 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

GetRecords

{
 "Records": [
 {
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AKIAIOSFODNN7EXAMPLE:bob",
 "arn": "arn:aws:sts::111122223333:assumed-role/users/bob",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AKIAI44QH8DHBEXAMPLE",
 "arn": "arn:aws:iam::444455556666:role/admin-role",
 "accountId": "444455556666",
 "userName": "bob"
 },
 "attributes": {
 "creationDate": "2020-09-03T22:14:13Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2021-04-15T04:15:02Z",
 "eventSource": "dynamodb.amazonaws.com",
 "eventName": "GetRecords",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.0",

Understanding DynamoDB log file entries API Version 2012-08-10 3100

Amazon DynamoDB Developer Guide

 "userAgent": "aws-cli/1.19.50 Python/3.6.13
 Linux/4.9.230-0.1.ac.224.84.332.metal1.x86_64 botocore/1.20.50",
 "requestParameters": {
 "shardIterator": "arn:aws:dynamodb:us-west-2:123456789012:table/
Music/stream/2021-04-15T04:02:47.428|1|AAAAAAAAAAH7HF3xwDQHBrvk2UBZ1PKh8bX3F
+JeH0rFwHCE7dz4VGV1ZoJ5bMxQwkmerA3wzCTL+zSseGLdSXNJP14EwrjLNvDNoZeRSJ/
n6xc3I4NYOptR4zR8d7VrjMAD6h5nR12NtxGIgJ/
dVsUpluWsHyCW3PPbKsMlJSruVRWoitRhSd3S6slEWEPB0bDC7+
+ISH5mXrCHOnvyezQKlqNshTSPZ5jWwqRj2VNSXCMTGXv9P01/
U0bpOUI2cuRTchgUpPSe3ur2sQrRj3KlbmIyCz7P
+H3CYlugafi8fQ5kipDSkESkIWS6O5ejzibWKg/3izms1eVIm/
zLFdEeihCYJ7G8fpHUSLX5JAk3ab68aUXGSFEZLONntgNIhQkcMo00/
mJlaIgkEdBUyqvZO1vtKUBH5YonIrZqSUhv8Coc+mh24vOg1YI+SPIXlr
+Lnl54BG6AjrmaScjHACVXoPDxPsXSJXC4c9HjoC3YSskCPV7uWi0f65/
n7JAT3cskcX2ISaLHwYzJPaMBSftxOgeRLm3BnisL32nT8uTj2gF/
PUrEjdyoqTX7EerQpcaekXmOgay5Kh8n4T2uPdM83f356vRpar/
DDp8pLFD0ddb6Yvz7zU2zGdAvTod3IScC1GpTqcjRxaMhlBVZy1TnI9Cs
+7fXMdUF6xYScjR2725icFBNLojSFVDmsfHabXaCEpmeuXZsLbp5CjcPAHa66R8mQ5tSoFjrzOEzeB4uconEXAMPLE=="
 },
 "responseElements": null,
 "requestID": "1M0U1Q80P4LDPT7A7N1A758N2VVV4KQNSO5AEMVJF66Q9EXAMPLE",
 "eventID": "09a634f2-da7d-4c9e-a259-54aceexample",
 "readOnly": true,
 "resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::DynamoDB::Table",
 "ARN": "arn:aws:dynamodb:us-west-2:123456789012:table/Music"
 }
],
 "eventType": "AwsApiCall",
 "apiVersion": "2012-08-10",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
 }
]
}

Understanding DynamoDB log file entries API Version 2012-08-10 3101

Amazon DynamoDB Developer Guide

Analyzing data access using CloudWatch contributor insights
for DynamoDB

Amazon CloudWatch Contributor Insights for Amazon DynamoDB is a diagnostic tool for
identifying the most frequently accessed and throttled keys in your table or index at a glance. This
tool uses CloudWatch contributor insights.

By enabling CloudWatch Contributor Insights for DynamoDB on a table or global secondary index,
you can view the most accessed and throttled items in those resources.

Note

CloudWatch charges apply for Contributor Insights for DynamoDB. For more information
about pricing, see Amazon CloudWatch pricing.

Topics

• CloudWatch contributor insights for DynamoDB: How it works

• Getting started with CloudWatch Contributor Insights for DynamoDB

• Using IAM with CloudWatch contributor insights for DynamoDB

CloudWatch contributor insights for DynamoDB: How it works

Amazon DynamoDB integrates with CloudWatch Contributor Insights to provide information about
the most accessed and throttled items in a table or global secondary index. DynamoDB delivers this
information to you via CloudWatch Contributor Insights rules, reports, and graphs of report data.

CloudWatch Contributor Insights for DynamoDB is designed to have no performance impact on
your DynamoDB table.

For more information about CloudWatch Contributor Insights, see Using Contributor Insights to
analyze high-cardinality data in the Amazon CloudWatch User Guide.

The following sections describe the core concepts and behavior of CloudWatch Contributor Insights
for DynamoDB.

Topics

• CloudWatch contributor insights modes for DynamoDB

Contributor Insights API Version 2012-08-10 3102

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://aws.amazon.com/cloudwatch/pricing/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-RuleSyntax.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-ViewReports.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-GraphReportData.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

Amazon DynamoDB Developer Guide

• CloudWatch contributor insights for DynamoDB rules

• Understanding CloudWatch contributor insights for DynamoDB graphs

• Interactions with other DynamoDB features

• CloudWatch contributor insights for DynamoDB billing

CloudWatch contributor insights modes for DynamoDB

CloudWatch Contributor Insights for DynamoDB offers two distinct modes to meet different
monitoring needs.

Throttled keys mode

This mode focuses exclusively on throttled requests by only processing events when throttling
occurs. It delivers insights about performance issues without the overhead of tracking all access
patterns. In this mode, DynamoDB tracks only the:

• Most throttled items — Items that experience the most throttling events

This mode is ideal when:

• Your primary concern is identifying and resolving throttling problems

• You want to keep Contributor Insights enabled continuously for real-time throttling detection

• You want a cost-optimized approach to monitor throttling issues

Note

Throttled keys mode processes events only when throttling occurs, making it cost-effective
for continuous monitoring. This targeted approach allows you to leave the feature enabled
permanently with minimal cost impact, while still providing immediate visibility into
throttling issues as they happen.

If your table experiences no throttling, you won't see any data in the Contributor Insights graphs,
which indicates healthy performance. When throttling is detected, the generated graphs help
you identify specific access patterns causing performance issues. This information can help you
implement strategies to address non-uniform access patterns.

How it works API Version 2012-08-10 3103

Amazon DynamoDB Developer Guide

For comprehensive monitoring strategies, you can integrate these throttling insights with other
CloudWatch metrics to create unified dashboards that correlate throttling events with overall table
performance.

Accessed and throttled keys mode

This mode provides comprehensive monitoring of both accessed and throttled items. In this mode,
DynamoDB tracks the:

• Most accessed items — Items that consume the most read and write capacity

• Most throttled items — Items that experience the most throttling events

This mode is ideal when you need complete visibility into your table's access patterns and want to
understand both high-traffic items and throttling issues.

Switching between modes

You can switch between modes at any time using the DynamoDB console, Amazon CLI, or APIs.
When you switch modes:

• Existing CloudWatch rules are updated to match the new mode

• Throttled keys CloudWatch rules remain intact, maintaining your continuous historical data for
throttling metrics:

• When you switch from throttled keys mode to accessed and throttled keys mode, the existing
throttled key rules are preserved, and new accessed key rules are created

• When you switch from accessed and throttled keys mode to throttled keys mode, only the
throttled key rules are preserved, and the accessed key rules are removed

• Billing adjusts immediately to reflect the new mode's event processing

CloudWatch contributor insights for DynamoDB rules

When you enable CloudWatch Contributor Insights for DynamoDB on a table or global secondary
index, DynamoDB creates rules on your behalf based on the selected mode.

How it works API Version 2012-08-10 3104

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-RuleSyntax.html

Amazon DynamoDB Developer Guide

Note

When you enable Contributor Insights on your DynamoDB table, you're subject to
Contributor Insights rules limits. For more information, see CloudWatch service quotas.

Rules for accessed and throttled keys mode

In accessed and throttled keys mode, DynamoDB creates the following rules:

• Most accessed items (partition keys) — Identifies the partition keys of the most accessed items
in your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-PKC-[resource_name]-
[creationtimestamp]

• Most throttled keys (partition keys) — Identifies the partition keys of the most throttled items
in your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-PKT-[resource_name]-
[creationtimestamp]

If your table or global secondary index has sort keys, DynamoDB also creates the following rules
specific to sort keys:

• Most accessed keys (partition and sort keys) — Identifies the partition and sort keys of the
most accessed items in your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-SKC-[resource_name]-
[creationtimestamp]

• Most throttled keys (partition and sort keys) — Identifies the partition and sort keys of the
most throttled items in your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-SKT-[resource_name]-
[creationtimestamp]

Rules for throttled keys mode

In throttled keys mode, DynamoDB creates only the throttling-related rules:

How it works API Version 2012-08-10 3105

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html

Amazon DynamoDB Developer Guide

• Most throttled keys (partition key) — Identifies the partition keys of the most throttled items in
your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-PKT-[resource_name]-
[creationtimestamp]

If your table or global secondary index has sort keys, DynamoDB also creates:

• Most throttled keys (partition and sort keys) — Identifies the partition and sort keys of the
most throttled items in your table or global secondary index.

CloudWatch rule name format: DynamoDBContributorInsights-SKT-[resource_name]-
[creationtimestamp]

This focused approach reduces the number of active rules and decreases the volume of events
processed to better diagnose your throttling events.

Note

• When you use the CloudWatch console or APIs to view CloudWatch Contributor Insights
for DynamoDB, you only see rules corresponding to your selected mode.

• You can't use the CloudWatch console or APIs to directly modify or delete the rules
created by CloudWatch Contributor Insights for DynamoDB. Disabling CloudWatch
Contributor Insights for DynamoDB on a table or global secondary index automatically
deletes the rules created for that table or global secondary index.

• When you use the GetInsightRuleReport operation with CloudWatch Contributor Insights
rules that are created by DynamoDB, only MaxContributorValue and Maximum return
useful statistics. The other statistics in this list don't return meaningful values.

• CloudWatch Contributor Insights for DynamoDB has a limit of 25 contributors.
Requesting more than 25 contributors will return an error.

You can create CloudWatch Alarms using the CloudWatch Contributor Insights for DynamoDB
rules. This allows you to be notified when any item exceed or meets a specific threshold for
ConsumedThroughputUnits or ThrottleCount. For more information, see Setting an alarm on
Contributor Insights metric data.

How it works API Version 2012-08-10 3106

https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_GetInsightRuleReport.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-RuleSyntax.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-GraphReportData.html#ContributorInsights-GraphReportData-Alarm
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/ContributorInsights-GraphReportData.html#ContributorInsights-GraphReportData-Alarm

Amazon DynamoDB Developer Guide

Understanding CloudWatch contributor insights for DynamoDB graphs

CloudWatch Contributor Insights for DynamoDB displays different types of graphs on both the
DynamoDB and CloudWatch consoles depending on the selected mode.

Graph availability by mode

The graphs displayed depend on your selected Contributor Insights mode.

• Accessed and throttled keys mode displays both Most Accessed Items and Most Throttled Items
graphs

• Throttled keys mode displays only Most Throttled Items graphs

Most accessed items

This graph is available only in accessed and throttled keys mode. Use this graph to identify
the most accessed items in the table or global secondary index. The graph displays
ConsumedThroughputUnits on the y-axis and time on the x-axis. Each of the top N keys is
displayed in its own color, with a legend displayed below the x-axis.

DynamoDB measures key access frequency by using ConsumedThroughputUnits, which
measures combined read and write traffic. ConsumedThroughputUnits is defined as the
following:

• Provisioned — (3 x consumed write capacity units) + consumed read capacity units

• On-demand — (3 x write request units) + read request units

On the DynamoDB console, each data point in the graph represents the maximum of
ConsumedThroughputUnits over a 1-minute period. For example, a graph value of 180,000
ConsumedThroughputUnits indicates that the item was accessed continuously at the per-
item maximum throughput of 1,000 write request units or 3,000 read request units for a 60-
second span within that 1-minute period (3,000 x 60 seconds). In other words, the graphed
values represent the highest-traffic minute within each 1-minute period. You can change the time
granularity of the ConsumedThroughputUnits metric (for example, to view 5-minute metrics
instead of 1-minute) on the CloudWatch console.

If you see several closely clustered lines without any obvious outliers, it indicates that your
workload is relatively balanced across items over the given time window. If you see isolated points

How it works API Version 2012-08-10 3107

Amazon DynamoDB Developer Guide

in the graph instead of connected lines, it indicates an item that was frequently accessed only for a
brief period.

If your table or global secondary index has sort keys, DynamoDB creates two graphs: one for the
most accessed partition keys and one for the most accessed partition + sort keys pairs. You can
see traffic at the partition keys level in the partition key–only graph. You can see traffic at the item
level in the partition + sort keys graphs.

Most throttled items

This graph is available in both modes. Use this graph to identify the most throttled items in the
table or global secondary index. The graph displays ThrottleCount on the y-axis and time on the
x-axis. Each of the top N keys is displayed in its own color, with a legend displayed below the x-axis.

DynamoDB measures throttle frequency using ThrottleCount, which is the count
of ProvisionedThroughputExceededException, ThrottlingException, and
RequestLimitExceeded errors.

Write throttling caused by insufficient write capacity for a global secondary index is not measured.
You can use the Most Accessed Items graph of the global secondary index to identify imbalanced
access patterns that may cause write throttling. For more information, see Provisioned throughput
Considerations for Global Secondary Indexes.

On the DynamoDB console, each data point in the graph represents the count of throttle events
over a 1-minute period.

If you see no data in this graph, it indicates that your requests are not being throttled. If you see
isolated points in the graph instead of connected lines, it indicates that an item was frequently
throttled for a brief period.

If your table or global secondary index has sort keys, DynamoDB creates two graphs: one for most
throttled partition keys and one for most throttled partition + sort keys pairs. You can see throttle
count at the partition keys level in the partition keys-only graph, and throttle count at the item-
level in the partition + sort keys graphs.

Note

In throttled keys mode, this is the only type of graph you'll see. The absence of data in
these graphs indicates healthy table performance with no throttling occurring.

How it works API Version 2012-08-10 3108

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html#GSI.ThroughputConsiderations
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html#GSI.ThroughputConsiderations

Amazon DynamoDB Developer Guide

Report examples

The following example shows the reports generated for a table with both a partition keys and
sort keys in accessed and throttled keys modes. In throttled keys mode, you see only the throttling-
related portion of this report.

Interactions with other DynamoDB features

The following sections describe how CloudWatch Contributor Insights for DynamoDB behaves and
interacts with several other features in DynamoDB. These behaviors apply to both modes unless
otherwise specified.

Global tables

CloudWatch Contributor Insights for DynamoDB monitors global table replicas as distinct tables.
The Contributor Insights graphs for a replica in one Amazon Region might not show the same
patterns as another Region. This is because write data is replicated across all replicas in a global
table, but each replica can serve Region-bound read traffic.

How it works API Version 2012-08-10 3109

Amazon DynamoDB Developer Guide

Each replica can be configured with a different Contributor Insights mode independently.
For example, you might use accessed and throttled keys mode in your primary region for
comprehensive monitoring, while using throttled keys mode in secondary regions to maintain
visibility into performance issues.

DynamoDB Accelerator (DAX)

CloudWatch Contributor Insights for DynamoDB doesn't show DAX cache responses. It only shows
responses to accessing a table or a global secondary index.

Note

DynamoDB CloudWatch Contributor Insights does not support PartiQL requests.

Encryption at rest

CloudWatch Contributor Insights for DynamoDB doesn't affect how encryption works in
DynamoDB. The primary key data that is published in CloudWatch is encrypted with the Amazon
owned key. However, DynamoDB also supports the Amazon managed key and a customer managed
key.

CloudWatch Contributor Insights for DynamoDB displays partition keys and sort keys (if applicable)
of frequently accessed and throttled items. While CloudWatch Contributor Insights works with
encrypted DynamoDB tables, it's important to note that it uses its own Amazon-owned encryption
context, which is separate from the table's configured encryption.

If your DynamoDB table's primary key contains sensitive information and your organization's
security policies require full control over encryption processes, enabling CloudWatch Contributor
Insights may not be suitable.

Fine-grained access control

CloudWatch Contributor Insights for DynamoDB doesn't function differently for tables with fine-
grained access control (FGAC). In other words, any user who has the appropriate CloudWatch
permissions can view FGAC-protected primary keys in CloudWatch Contributor Insights graphs.

If the table's primary key contains FGAC-protected data that you don't want published to
CloudWatch, you should not enable CloudWatch Contributor Insights for DynamoDB for that table.

How it works API Version 2012-08-10 3110

Amazon DynamoDB Developer Guide

Access control

You control access to CloudWatch Contributor Insights for DynamoDB using Amazon Identity and
Access Management (IAM) by limiting DynamoDB control plane permissions and CloudWatch data
plane permissions. For more information see, Using IAM with CloudWatch Contributor Insights for
DynamoDB.

CloudWatch contributor insights for DynamoDB billing

Charges for CloudWatch Contributor Insights for DynamoDB appear in the CloudWatch section of
your monthly bill. These charges are calculated based on the number of DynamoDB events that are
processed, and the selected mode.

Billing by mode

The two Contributor Insights modes have different billing characteristics.

• Accessed and throttled keys mode billing - In this mode, each item that is written or read via
a data plane operation represents one event, regardless of whether the request succeeds or is
throttled. If a table or global secondary index includes sort keys, each item that is read or written
represents two events. This is because DynamoDB is identifying top contributors from separate
time series: one for partitions keys only, and one for partition and sort keys pairs.

• Throttled keys mode billing - In this mode, only throttled requests
generate billable events. Events are only generated when requests result in
ProvisionedThroughputExceededException, ThrottlingException, or
RequestLimitExceeded errors. If a table or global secondary index includes sort keys, each
throttled item represents two events (partition keys tracking and partition + sort keys tracking).

Billing examples

For example, assume that your application performs the following DynamoDB operations: a
GetItem, a PutItem, and a BatchWriteItem that puts five items. Also assume that the PutItem
operation gets throttled, but all other operations succeed.

• Accessed and throttled keys mode

• If your table or global secondary index has only a partition keys, it results in 7 events (1 for the
GetItem, 1 for the PutItem, and 5 for the BatchWriteItem).

• If your table or global secondary index has a partition keys and sort keys, it results in 14 events
(2 for the GetItem, 2 for the PutItem, and 10 for the BatchWriteItem).

How it works API Version 2012-08-10 3111

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Contributor_Insights_IAM.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Contributor_Insights_IAM.html
https://aws.amazon.com/cloudwatch/pricing/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.API.html#HowItWorks.API.DataPlane

Amazon DynamoDB Developer Guide

• Throttled keys mode

• If your table or global secondary index has only a partition keys, it results in 1 event (only for
the throttled PutItem).

• If your table or global secondary index has a partition keys and sort keys, it results in 2 events
(2 for the throttled PutItem).

The successful GetItem and BatchWriteItem operations generate no events in throttled keys
mode.

Common billing factors

AQuery operation always results in 1 event, regardless of the mode or number of items returned.

Unlike other DynamoDB features, CloudWatch Contributor Insights for DynamoDB billing does not
vary based on the following:

• The capacity mode (provisioned vs. on-demand)

• Whether you perform read or write requests

• The size (KB) of the items read or written

Getting started with CloudWatch Contributor Insights for DynamoDB

This section describes how to enable and use Amazon CloudWatch Contributor Insights in different
modes to meet your monitoring needs using the Amazon DynamoDB console or the Amazon
Command Line Interface (Amazon CLI).

In the following examples, you use the DynamoDB table that is defined in the Getting started with
DynamoDB tutorial.

Topics

• Choosing a Contributor Insights mode

• Using Contributor Insights (console)

• Using Contributor Insights (Amazon CLI)

Getting started API Version 2012-08-10 3112

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html

Amazon DynamoDB Developer Guide

Choosing a Contributor Insights mode

Before enabling Contributor Insights, you should understand the two available modes. Review the
mode comparison to select the option that best aligns with your specific requirements.

Aspect Accessed and throttled keys mode Throttled keys mode

Monitors All requests (successful and
throttled)

Only throttled requests

Graphs Most Accessed Items + Most
Throttled Items

Most Throttled Items only

Best for Targeted analysis and optimization Throttling monitoring

Use when You need complete visibility into
access patterns. You're doing short-
term analysis or debugging.

Your primary concern is identifying
and resolving throttling issues. You
want to keep Contributor Insights
enabled continuously for real-time
 throttling alerts.

Using Contributor Insights (console)

The console provides an intuitive way to enable Contributor Insights and select the appropriate
mode for your monitoring needs.

To use Contributor Insights in the console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose the Music table.

4. Choose the Monitor tab.

5. Choose Turn on CloudWatch Contributor Insights.

Getting started API Version 2012-08-10 3113

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

6. In the Manage CloudWatch Contributor Insights settings dialog box, toggle Turn on for both
the Music base table and the AlbumTitle-index global secondary index.

7. Leave the Only throttled keys mode toggle in the off position for both and then choose Save
changes.

Getting started API Version 2012-08-10 3114

Amazon DynamoDB Developer Guide

This enables the default accessed and throttled keys mode for both the table and GSI, which
provides monitoring of both accessed and throttled items. Switching the Only throttled keys
mode toggle to the on position would enable the throttled keys mode.

If the operation fails, see DescribeContributorInsights FailureException in the Amazon
DynamoDB API Reference for possible reasons.

8. The CloudWatch Contributor Insights graphs are now visible on the Monitor tab for the
Music table. Since you enabled accessed and throttled keys mode, you see both accessed and
throttled item graphs.

Getting started API Version 2012-08-10 3115

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeContributorInsights.html#DDB-DescribeContributorInsights-response-FailureException

Amazon DynamoDB Developer Guide

Switching between modes

You can switch between modes at any time without disabling Contributor Insights.

To switch Contributor Insights modes

1. On the Monitor tab of your table, choose Manage CloudWatch Contributor Insights.

2. In the Manage Contributor Insights settings dialog box, for each base table or GSIs:

• Toggle Only throttled keys mode on or off to enable the throttled keys mode or go back to
the default accessed and throttled keys mode.

• Toggle Turn on off to disable CloudWatch Contributor Insight for a table or GSI.

3. Choose Save changes.

Once complete, the graphs will reflect the new mode.

Creating CloudWatch alarms

Follow these steps to create a CloudWatch alarm and be notified when any partition key consumes
more than 50,000 ConsumedThroughputUnits or experiences throttling.

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console
at https://console.aws.amazon.com/cloudwatch/

Getting started API Version 2012-08-10 3116

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/contributorinsights_HowItWorks.html#contributorinsights_HowItWorks.Graphs.most-accessed
https://console.aws.amazon.com/cloudwatch/

Amazon DynamoDB Developer Guide

2. In the navigation pane on the left side of the console, choose Contributor Insights.

3. Choose the appropriate rule based on your mode and what you want to monitor:

• For accessed items monitoring (accessed and throttled keys mode only): Choose
DynamoDBContributorInsights-PKC-Music

• For throttled items monitoring (both modes): Choose DynamoDBContributorInsights-PKT-
Music

4. Choose the Actions drop down.

5. Choose View in metrics.

6. Choose Max Contributor Value.

Note

Only Max Contributor Value and Maximum return useful statistics. The other
statistics in this list don't return meaningful values.

7. On the Actions column, Choose Create Alarm.

Getting started API Version 2012-08-10 3117

Amazon DynamoDB Developer Guide

8. Enter an appropriate threshold value and choose Next:

• For accessed items (PKC rules): Enter 50000 for ConsumedThroughputUnits

• For throttled items (PKT rules): Enter 1 for ThrottleCount to be alerted on any throttling

9. See Using Amazon CloudWatch alarms for details on how to configure the notification for the
alarm.

Getting started API Version 2012-08-10 3118

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html

Amazon DynamoDB Developer Guide

Using Contributor Insights (Amazon CLI)

The Amazon CLI provides programmatic access to Contributor Insights with full support for both
modes. You can specify the mode when enabling Contributor Insights or switch modes later.

Basic operations with default mode

To use Contributor Insights with default settings

1. Enable CloudWatch Contributor Insights for DynamoDB on the Music base table
with the accessed and throttled keys mode. Since ACCESSED_AND_THROTTLED_KEYS
is the default mode, you can omit the --contributor-insights-
mode=ACCESSED_AND_THROTTLED_KEYS parameter.

aws dynamodb update-contributor-insights \
 --table-name Music \
 --contributor-insights-action=ENABLE

2. Enable Contributor Insights for DynamoDB on the AlbumTitle-index global secondary
index.

aws dynamodb update-contributor-insights \
 --table-name Music \
 --index-name AlbumTitle-index \
 --contributor-insights-action=ENABLE

3. Get the status and rules for the Music table and all its indexes.

aws dynamodb describe-contributor-insights
 --table-name Music

The response will include the ContributorInsightsMode field showing
ACCESSED_AND_THROTTLED_KEYS.

4. List the status of the Music table and all its indexes.

aws dynamodb list-contributor-insights --table-name Music

Getting started API Version 2012-08-10 3119

Amazon DynamoDB Developer Guide

Enabling throttled keys mode

To enable Contributor Insights in throttled keys mode

1. Enable CloudWatch Contributor Insights for DynamoDB on the Music base table with throttled
keys mode.

aws dynamodb update-contributor-insights \
 --table-name Music \
 --contributor-insights-action=ENABLE \
 --contributor-insights-mode=THROTTLED_KEYS

2. Enable Contributor Insights in throttled keys mode for the AlbumTitle-index global
secondary index.

aws dynamodb update-contributor-insights \
 --table-name Music \
 --index-name AlbumTitle-index \
 --contributor-insights-action=ENABLE \
 --contributor-insights-mode=THROTTLED_KEYS

3. Verify the mode by describing the Contributor Insights configuration.

aws dynamodb describe-contributor-insights --table-name Music

The response will show ContributorInsightsMode as THROTTLED_KEYS and fewer rules
compared to the default mode.

Switching between modes

To switch Contributor Insights modes

1. Switch from throttled keys mode to accessed and throttled keys mode.

aws dynamodb update-contributor-insights \
 --table-name Music \
 --contributor-insights-action=ENABLE \
 --contributor-insights-mode=ACCESSED_AND_THROTTLED_KEYS

2. Switch from accessed and throttled keys mode to throttled keys mode.

Getting started API Version 2012-08-10 3120

Amazon DynamoDB Developer Guide

aws dynamodb update-contributor-insights \
 --table-name Music \
 --contributor-insights-action=ENABLE \
 --contributor-insights-mode=THROTTLED_KEYS

3. Check the status during the transition.

aws dynamodb describe-contributor-insights --table-name Music

During the mode switch, the ContributorInsightsStatus will show as ENABLING. Once
complete, it will show as ENABLED with the new mode.

Managing Contributor Insights

To manage Contributor Insights settings

1. Disable CloudWatch Contributor Insights for DynamoDB on the AlbumTitle-index global
secondary index.

aws dynamodb update-contributor-insights \
 --table-name Music --index-name AlbumTitle-index \
 --contributor-insights-action=DISABLE

2. List all Contributor Insights configurations in your account.

aws dynamodb list-contributor-insights

This shows all tables and indexes with Contributor Insights enabled, along with their modes.

3. Get detailed information about a specific configuration.

aws dynamodb describe-contributor-insights \
 --table-name Music \
 --index-name AlbumTitle-index

Example responses

Here are example responses showing the differences between modes:

Getting started API Version 2012-08-10 3121

Amazon DynamoDB Developer Guide

Accessed and throttled keys mode response

{
 "TableName": "Music",
 "ContributorInsightsRuleList": [
 "DynamoDBContributorInsights-PKC-Music-1234567890123",
 "DynamoDBContributorInsights-PKT-Music-1234567890123",
 "DynamoDBContributorInsights-SKC-Music-1234567890123",
 "DynamoDBContributorInsights-SKT-Music-1234567890123"
],
 "ContributorInsightsStatus": "ENABLED",
 "ContributorInsightsMode": "ACCESSED_AND_THROTTLED_KEYS",
 "LastUpdateDateTime": "2024-01-15T10:30:00.000Z"
}

Throttled keys mode response

{
 "TableName": "Music",
 "ContributorInsightsRuleList": [
 "DynamoDBContributorInsights-PKT-Music-1234567890123",
 "DynamoDBContributorInsights-SKT-Music-1234567890123"
],
 "ContributorInsightsStatus": "ENABLED",
 "ContributorInsightsMode": "THROTTLED_KEYS",
 "LastUpdateDateTime": "2024-01-15T10:35:00.000Z"
}

Notice that throttled keys mode has fewer rules (only PKT and SKT), which corresponds to a more
focused monitoring.

Using IAM with CloudWatch contributor insights for DynamoDB

The first time that you enable Amazon CloudWatch Contributor Insights for Amazon DynamoDB,
DynamoDB automatically creates an Amazon Identity and Access Management (IAM) service-linked
role for you. This role, AWSServiceRoleForDynamoDBCloudWatchContributorInsights,
allows DynamoDB to manage CloudWatch Contributor Insights rules on your behalf. Don't delete
this service-linked role. If you delete it, all your managed rules will no longer be cleaned up when
you delete your table or global secondary index.

Using IAM API Version 2012-08-10 3122

Amazon DynamoDB Developer Guide

For more information about service-linked roles, see Using service-linked roles in the IAM User
Guide.

The following permissions are required:

• To enable or disable CloudWatch Contributor Insights for DynamoDB, you must have
dynamodb:UpdateContributorInsights permission on the table or index.

• To view CloudWatch Contributor Insights for DynamoDB graphs, you must have
cloudwatch:GetInsightRuleReport permission.

• To describe CloudWatch Contributor Insights for DynamoDB for a given DynamoDB table or
index, you must have dynamodb:DescribeContributorInsights permission.

• To list CloudWatch Contributor Insights for DynamoDB statuses for each table and global
secondary index, you must have dynamodb:ListContributorInsights permission.

Example: Enable or disable CloudWatch contributor insights for DynamoDB

The following IAM policy grants permissions to enable or disable CloudWatch Contributor Insights
for DynamoDB.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-
service-role/contributorinsights.dynamodb.amazonaws.com/
AWSServiceRoleForDynamoDBCloudWatchContributorInsights",
 "Condition": {"StringLike": {"iam:AWSServiceName":
 "contributorinsights.dynamodb.amazonaws.com"}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateContributorInsights"
],
 "Resource": "arn:aws:dynamodb:*:*:table/*"

Using IAM API Version 2012-08-10 3123

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

 }
]
}

For tables encryped by KMS key, the user needs to have kms:Decrypt permissions in order to
update Contributor Insights.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-
service-role/contributorinsights.dynamodb.amazonaws.com/
AWSServiceRoleForDynamoDBCloudWatchContributorInsights",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":
 "contributorinsights.dynamodb.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateContributorInsights"
],
 "Resource": "arn:aws:dynamodb:*:*:table/*"
 },
 {
 "Effect": "Allow",
 "Resource": "arn:aws:kms:*:*:key/*",
 "Action": [
 "kms:Decrypt"
]
 }
]
}

Using IAM API Version 2012-08-10 3124

Amazon DynamoDB Developer Guide

Example: Retrieve CloudWatch contributor insights rule report

The following IAM policy grants permissions to retrieve CloudWatch Contributor Insights rule
report.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetInsightRuleReport"
],
 "Resource": "arn:aws:cloudwatch:*:*:insight-rule/
DynamoDBContributorInsights*"
 }
]
}

Example: Selectively apply CloudWatch contributor insights for DynamoDB
permissions based on resource

The following IAM policy grants permissions to allow the ListContributorInsights and
DescribeContributorInsights actions and denies the UpdateContributorInsights action
for a specific global secondary index.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListContributorInsights",
 "dynamodb:DescribeContributorInsights"
],

Using IAM API Version 2012-08-10 3125

Amazon DynamoDB Developer Guide

 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "dynamodb:UpdateContributorInsights"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/Books/
index/Author-index"
 }
]
}

Using service-linked roles for CloudWatch Contributor Insights for DynamoDB

CloudWatch Contributor Insights for DynamoDB uses Amazon Identity and Access Management
(IAM) service-linked roles. A service-linked role is a unique type of IAM role that is linked directly
to CloudWatch Contributor Insights for DynamoDB. Service-linked roles are predefined by
CloudWatch Contributor Insights for DynamoDB and include all the permissions that the service
requires to call other Amazon services on your behalf.

A service-linked role makes setting up CloudWatch Contributor Insights for DynamoDB easier
because you don’t have to manually add the necessary permissions. CloudWatch Contributor
Insights for DynamoDB defines the permissions of its service-linked roles, and unless defined
otherwise, only CloudWatch Contributor Insights for DynamoDB can assume its roles. The defined
permissions include the trust policy and the permissions policy, and that permissions policy cannot
be attached to any other IAM entity.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for CloudWatch Contributor Insights for DynamoDB

CloudWatch Contributor Insights for DynamoDB uses the service-linked role named
AWSServiceRoleForDynamoDBCloudWatchContributorInsights. The purpose of the service-linked
role is to allow Amazon DynamoDB to manage Amazon CloudWatch Contributor Insights rules
created for DynamoDB tables and global secondary indexes, on your behalf.

Using IAM API Version 2012-08-10 3126

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon DynamoDB Developer Guide

The AWSServiceRoleForDynamoDBCloudWatchContributorInsights service-linked role
trusts the following services to assume the role:

• contributorinsights.dynamodb.amazonaws.com

The role permissions policy allows CloudWatch Contributor Insights for DynamoDB to complete the
following actions on the specified resources:

• Action: Create and manage Insight Rules on DynamoDBContributorInsights

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-Linked Role Permissions in
the IAM User Guide.

Creating a service-linked role for CloudWatch Contributor Insights for DynamoDB

You don't need to manually create a service-linked role. When you enable Contributor Insights in
the Amazon Web Services Management Console, the Amazon CLI, or the Amazon API, CloudWatch
Contributor Insights for DynamoDB creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same
process to recreate the role in your account. When you enable Contributor Insights, CloudWatch
Contributor Insights for DynamoDB creates the service-linked role for you again.

Editing a service-linked role for CloudWatch Contributor Insights for DynamoDB

CloudWatch Contributor Insights for DynamoDB does not allow you to edit the
AWSServiceRoleForDynamoDBCloudWatchContributorInsights service-linked role. After
you create a service-linked role, you cannot change the name of the role because various entities
might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for CloudWatch Contributor Insights for DynamoDB

You don't need to manually delete the
AWSServiceRoleForDynamoDBCloudWatchContributorInsights role. When you disable
Contributor Insights in the Amazon Web Services Management Console, the Amazon CLI, or the
Amazon API, CloudWatch Contributor Insights for DynamoDB cleans up the resources.

Using IAM API Version 2012-08-10 3127

https://docs.amazonaws.cn/IAM/latest/UserGuide/contributorinsights-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon DynamoDB Developer Guide

You can also use the IAM console, the Amazon CLI or the Amazon API to manually delete the
service-linked role. To do this, you must first manually clean up the resources for your service-
linked role and then you can manually delete it.

Note

If the CloudWatch Contributor Insights for DynamoDB service is using the role when you try
to delete the resources, then the deletion might fail. If that happens, wait for a few minutes
and try the operation again.

To manually delete the service-linked role using IAM

Use the IAM console, the Amazon CLI, or the Amazon API to delete the
AWSServiceRoleForDynamoDBCloudWatchContributorInsights service-linked role. For
more information, see Deleting a service-linked role in the IAM User Guide.

Using IAM API Version 2012-08-10 3128

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role

Amazon DynamoDB Developer Guide

Best practices for designing and architecting with
DynamoDB

Use this section to quickly find recommendations for maximizing performance and minimizing
throughput costs when working with DynamoDB.

Topics

• NoSQL design for DynamoDB

• Using the DynamoDB Well-Architected Lens to optimize your DynamoDB workload

• Best practices for designing and using partition keys effectively in DynamoDB

• Best practices for using sort keys to organize data in DynamoDB

• Best practices for using secondary indexes in DynamoDB

• Best practices for storing large items and attributes in DynamoDB

• Best practices for handling time series data in DynamoDB

• Best practices for managing many-to-many relationships in DynamoDB tables

• Best practices for querying and scanning data in DynamoDB

• Best practices for DynamoDB table design

• Using DynamoDB global tables

• Best practices for managing the control plane in DynamoDB

• Best practices for using bulk data operations in DynamoDB

• Best practices for implementing version control in DynamoDB

• Best practices for understanding your Amazon billing and usage reports in DynamoDB

• Migrating a DynamoDB table from one account to another

• Prescriptive guidance to integrate DAX with DynamoDB applications

• Considerations when using Amazon PrivateLink for Amazon DynamoDB

NoSQL design for DynamoDB

NoSQL database systems like Amazon DynamoDB use alternative models for data management,
such as key-value pairs or document storage. When you switch from a relational database

NoSQL design API Version 2012-08-10 3129

Amazon DynamoDB Developer Guide

management system to a NoSQL database system like DynamoDB, it's important to understand the
key differences and specific design approaches.

Topics

• Differences between relational data design and NoSQL

• Two key concepts for NoSQL design

• Approaching NoSQL design

• NoSQL Workbench for DynamoDB

Differences between relational data design and NoSQL

Relational database systems (RDBMS) and NoSQL databases have different strengths and
weaknesses:

• In RDBMS, data can be queried flexibly, but queries are relatively expensive and don't scale well
in high-traffic situations (see First steps for modeling relational data in DynamoDB).

• In a NoSQL database such as DynamoDB, data can be queried efficiently in a limited number of
ways, outside of which queries can be expensive and slow.

These differences make database design different between the two systems:

• In RDBMS, you design for flexibility without worrying about implementation details or
performance. Query optimization generally doesn't affect schema design, but normalization is
important.

• In DynamoDB, you design your schema specifically to make the most common and important
queries as fast and as inexpensive as possible. Your data structures are tailored to the specific
requirements of your business use cases.

Two key concepts for NoSQL design

NoSQL design requires a different mindset than RDBMS design. For an RDBMS, you can go ahead
and create a normalized data model without thinking about access patterns. You can then extend it
later when new questions and query requirements arise. You can organize each type of data into its
own table.

NoSQL vs. RDBMS API Version 2012-08-10 3130

Amazon DynamoDB Developer Guide

How NoSQL design is different

• By contrast, you shouldn't start designing your schema for DynamoDB until you know the
questions it will need to answer. Understanding the business problems and the application use
cases up front is essential.

• You should maintain as few tables as possible in a DynamoDB application. Having fewer tables
keeps things more scalable, requires less permissions management, and reduces overhead for
your DynamoDB application. It can also help keep backup costs lower overall.

Approaching NoSQL design

The first step in designing your DynamoDB application is to identify the specific query patterns that
the system must satisfy.

In particular, it is important to understand three fundamental properties of your application's
access patterns before you begin:

• Data size: Knowing how much data will be stored and requested at one time will help determine
the most effective way to partition the data.

• Data shape: Instead of reshaping data when a query is processed (as an RDBMS system does), a
NoSQL database organizes data so that its shape in the database corresponds with what will be
queried. This is a key factor in increasing speed and scalability.

• Data velocity: DynamoDB scales by increasing the number of physical partitions that are
available to process queries, and by efficiently distributing data across those partitions. Knowing
in advance what the peak query loads will be might help determine how to partition data to best
use I/O capacity.

After you identify specific query requirements, you can organize data according to general
principles that govern performance:

• Keep related data together. Research has shown that the principle of 'locality of reference',
keeping related data together in one place, is a key factor in improving performance and
response times in NoSQL systems, just as it was found to be important for optimizing routing
tables many years ago.

As a general rule, you should maintain as few tables as possible in a DynamoDB application.

General approach API Version 2012-08-10 3131

Amazon DynamoDB Developer Guide

Exceptions are cases where high-volume time series data are involved, or datasets that have very
different access patterns. A single table with inverted indexes can usually enable simple queries
to create and retrieve the complex hierarchical data structures required by your application.

• Use sort order. Related items can be grouped together and queried efficiently if their key
design causes them to sort together. This is an important NoSQL design strategy.

• Distribute queries. It's also important that a high volume of queries not be focused on one part
of the database, where they can exceed I/O capacity. Instead, you should design data keys to
distribute traffic evenly across partitions as much as possible, avoiding hot spots.

• Use global secondary indexes. By creating specific global secondary indexes, you can
enable different queries than your main table can support, and that are still fast and relatively
inexpensive.

These general principles translate into some common design patterns that you can use to model
data efficiently in DynamoDB.

NoSQL Workbench for DynamoDB

NoSQL Workbench for DynamoDB is a cross-platform, client-side GUI application that you can use
for modern database development and operations. It's available for Windows, macOS, and Linux.
NoSQL Workbench is a visual development tool that provides data modeling, data visualization,
sample data generation, and query development features to help you design, create, query, and
manage DynamoDB tables. With NoSQL Workbench for DynamoDB, you can build new data models
from, or design models based on, existing data models that satisfy your application's data access
patterns. You can also import and export the designed data model at the end of the process. For
more information, see Building data models with NoSQL Workbench.

Using the DynamoDB Well-Architected Lens to optimize your
DynamoDB workload

This section describes the Amazon DynamoDB Well-Architected Lens, a collection of design
principles and guidance for designing well-architected DynamoDB workloads.

Optimizing costs on DynamoDB tables

This section covers best practices on how to optimize costs for your existing DynamoDB tables.
You should look at the following strategies to see which cost optimization strategy best suits your

NoSQL Workbench API Version 2012-08-10 3132

Amazon DynamoDB Developer Guide

needs and approach them iteratively. Each strategy will provide an overview of what might be
impacting your costs, what signs to look for, and prescriptive guidance on how to reduce them.

Topics

• Evaluate your costs at the table level

• Evaluate your DynamoDB table's capacity mode

• Evaluate your DynamoDB table's auto scaling settings

• Evaluate your DynamoDB table class selection

• Identify your unused resources in DynamoDB

• Evaluate your DynamoDB table usage patterns

• Evaluate your DynamoDB streams usage

• Evaluate your provisioned capacity for right-sized provisioning in your DynamoDB table

Evaluate your costs at the table level

The Cost Explorer tool found within the Amazon Web Services Management Console allows you to
see costs broken down by type, such as read, write, storage and backup charges. You can also see
these costs summarized by period such as month or day.

One challenge administrators can face is when the costs of only one particular table need
to be reviewed. Some of this data is available via the DynamoDB console or via calls to the
DescribeTable API, however Cost Explorer does not, by default, allow you to filter or group by
costs associated with a specific table. This section will show you how to use tagging to perform
individual table cost analysis in Cost Explorer.

Topics

• How to view the costs of a single DynamoDB table

• Cost Explorer's default view

• How to use and apply table tags in Cost Explorer

How to view the costs of a single DynamoDB table

Both the Amazon DynamoDB Amazon Web Services Management Console and the
DescribeTable API will show you information about a single table, including the primary key

Cost optimization API Version 2012-08-10 3133

Amazon DynamoDB Developer Guide

schema, any indexes on the table, and the size and item count of the table and any indexes. The
size of the table, plus the size of the indexes, can be used to calculate the monthly storage cost for
your table. For example, $0.25 per GB in the us-east-1 region.

If the table is in provisioned capacity mode, the current RCU and WCU settings are returned as well.
These could be used to calculate the current read and write costs for the table, but these costs
could change, especially if the table has been configured with Auto Scaling.

Note

If the table is in on-demand capacity mode, then DescribeTable will not help estimate
throughput costs, as these are billed based on actual, not provisioned usage in any one
period.

Cost Explorer's default view

Cost Explorer's default view provides charts showing the cost of consumed resources such as
throughput and storage. You can choose to group costs by period, such as totals by month or by
day. The costs of storage, reads, writes, and other features can be broken out and compared as
well.

How to use and apply table tags in Cost Explorer

By default, Cost Explorer does not provide a summary of the costs for any one specific table, as
it will combine the costs of multiple tables into a total. However, you can use Amazon resource
tagging to identify each table by a metadata tag. Tags are key-value pairs you can use for a
variety of purposes, such as to identify all resources belonging to a project or department. For this
example, we'll assume you have a table named MyTable.

Cost optimization API Version 2012-08-10 3134

https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html
https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html

Amazon DynamoDB Developer Guide

1. Set a tag with the key of table_name and the value of MyTable.

2. Activate the tag within Cost Explorer and then filter on the tag value to gain more visibility
into each table's costs.

Note

It may take one or two days for the tag to start appearing in Cost Explorer

You can set metadata tags yourself in the console, or via automation such as the Amazon CLI or
Amazon SDK. Consider requiring a table_name tag to be set as part of your organization’s new
table creation process. For existing tables, there is a Python utility available that will find and apply
these tags to all existing tables in a certain region in your account. See Eponymous Table Tagger on
GitHub for more details.

Evaluate your DynamoDB table's capacity mode

This section provides an overview of how to select the appropriate capacity mode for your
DynamoDB table. Each mode is tuned to meet the needs of a different workload in terms of
responsiveness to change in throughput, as well as how that usage is billed. You must balance
these factors when making your decision.

Topics

• What table capacity modes are available

• When to select on-demand capacity mode

• When to select provisioned capacity mode

• Additional factors to consider when choosing a table capacity mode

What table capacity modes are available

When you create a DynamoDB table, you must select either on-demand or provisioned capacity
mode.

You can switch tables from provisioned capacity mode to on-demand mode up to four times in
a 24-hour rolling window. You can switch tables from on-demand mode to provisioned capacity
mode at any time.

Cost optimization API Version 2012-08-10 3135

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/activating-tags.html
https://github.com/awslabs/amazon-dynamodb-tools#eponymous-table-tagger-tool
https://github.com/awslabs/amazon-dynamodb-tools#eponymous-table-tagger-tool

Amazon DynamoDB Developer Guide

On-demand capacity mode

The on-demand capacity mode is designed to eliminate the need to plan or provision the capacity
of your DynamoDB table. In this mode, your table will instantly accommodate requests to
your table without the need to scale any resources up or down (up to twice the previous peak
throughput of the table).

DynamoDB on-demand offers pay-per-request pricing for read and write requests so that you only
pay for what you use.

Provisioned capacity mode

The provisioned capacity mode is a more traditional model where you must define how much
capacity the table has available for requests either directly or with the assistance of auto scaling.
Because a specific capacity is provisioned for the table at any given time, billing is based off of the
total capacity provisioned rather than the number of requests consumed. Going over the allocated
capacity can also cause the table to reject requests and reduce the experience of your applications
users.

Provisioned capacity mode requires constant monitoring to find a balance between not over-
provisioning or under-provisioning the table to keep both throttling low and costs tuned.

When to select on-demand capacity mode

When optimizing for cost, on-demand mode is your best choice when you have a workload similar
to the following graphs.

The following factors contribute to this type of workload:

• Traffic pattern that evolves over time

• Variable volume of requests (resulting from batch workloads)

• Unpredictable request timing (resulting in traffic spikes)

• Drops to zero or below 30% of the peak for a given hour

Cost optimization API Version 2012-08-10 3136

Amazon DynamoDB Developer Guide

For workloads with the above factors, using auto scaling to maintain enough capacity on the table
to respond to spikes in traffic will likely lead to the table being overprovisioned and costing more
than necessary or the table being under provisioned and requests being unnecessarily throttled.
On-demand capacity mode is the better choice because it can handle fluctuating traffic without
requiring you to predict or adjust capacity.

With on-demand mode’s pay-per-request pricing model, you don’t have to worry about idle
capacity because you only pay for the throughput you actually use. You are billed per read or write
request consumed, so your costs directly reflect your actual usage, making it easy to balance costs
and performance. Optionally, you can also configure maximum read or write (or both) throughput
per second for individual on-demand tables and global secondary indexes to help keep costs and
usage bounded. For more information, see maximum throughput for on-demand tables .

When to select provisioned capacity mode

An ideal workload for provisioned capacity mode is one with a more steady and predictable usage
pattern like the graph below.

Note

We recommend reviewing metrics at a fine-grained period, such as 14 days, before taking
action on your provisioned capacity.

The following factors contribute to this type of workload:

• Steady, predictable and cyclical traffic for a given hour or day

• Limited short-term bursts of traffic

Cost optimization API Version 2012-08-10 3137

Amazon DynamoDB Developer Guide

Since the traffic volumes within a given hour or day are more stable, you can set the provisioned
capacity of the table relatively close to the actual consumed capacity of the table. Cost optimizing
a provisioned capacity table is ultimately an exercise in getting the provisioned capacity
(blue line) as close to the consumed capacity (orange line) as possible without increasing
ThrottledRequests on the table. The space between the two lines is both wasted capacity
as well as insurance against a bad user experience due to throttling. If you can predict your
application’s throughput requirements and you prefer the cost predictability of controlling read
and write capacity, then you may want to continue using provisioned tables.

DynamoDB provides auto scaling for provisioned capacity tables which will automatically balance
this on your behalf. This lets you track your consumed capacity throughout the day and set the
capacity of the table based on a handful of variables. When using auto scaling, your table will be
over-provisioned and you need to fine tune the ratio between number of throttles versus over-
provisioned capacity units to match your workload needs.

Cost optimization API Version 2012-08-10 3138

Amazon DynamoDB Developer Guide

Minimum capacity units

You can set the minimum capacity of a table to limit throttling, but it will not reduce the cost of
the table. If your table has periods of low usage follow by a sudden burst of high usage, setting the
minimum can prevent auto scaling from setting the table capacity too low.

Maximum capacity units

You can set the maximum capacity of a table to limit a table scaling higher than intended. Consider
applying a maximum for Dev or Test tables where large-scale load testing is not desired. You
can set a maximum for any table, but be sure to regularly evaluate this setting against the table
baseline when using it in Production to prevent accidental throttling.

Target utilization

Setting the target utilization of the table is the primary means of cost optimization for a
provisioned capacity table. Setting a lower percent value here will increase how much the table is
overprovisioned, increasing cost, but reducing the risk of throttling. Setting a higher percent value
will decrease how much the table is overprovisioned, but increase the risk of throttling.

Cost optimization API Version 2012-08-10 3139

Amazon DynamoDB Developer Guide

Additional factors to consider when choosing a table capacity mode

When deciding between the two modes, there are some additional factors worth considering.

Provisioned capacity utilization

To determine when on-demand mode would cost less than provisioned capacity, it's helpful to
look at your provisioned capacity utilization, which refers to how efficiently the allocated (or
“provisioned) resources are being used. On-demand mode costs less for workloads with average
provisioned capacity utilization below 35%. In many cases, even for workloads with provisioned
capacity utilization higher than 35%, it can be more cost-effective to use on-demand mode
especially if the workload has periods of low activity mixed with occasional peaks.

Reserved capacity

For provisioned capacity tables, DynamoDB offers the ability to purchase reserved capacity for your
read and write capacity (replicated write capacity units (rWCU) and Standard-IA tables are currently
not eligible). Reserved capacity offers significant discounts over standard provisioned capacity
pricing.

When deciding between the two table modes, consider how much this additional discount will
affect the cost of the table. In some cases, it may cost less to run a relatively unpredictable
workload can be cheaper to run on an overprovisioned provisioned capacity table with reserved
capacity.

Improving predictability of your workload

In some situations, a workload may seemingly have both a predictable and unpredictable pattern.
While this can be easily supported with an on-demand table, costs will likely be better if the
unpredictable patterns in the workload can be improved.

One of the most common causes of these patterns is batch imports. This type of traffic can often
exceed the baseline capacity of the table to such a degree that throttling would occur if it were to
run. To keep a workload like this running on a provisioned capacity table, consider the following
options:

• If the batch occurs at scheduled times, you can schedule an increase to your auto- scaling
capacity before it runs

• If the batch occurs randomly, consider trying to extend the time it runs rather than executing as
fast as possible

Cost optimization API Version 2012-08-10 3140

Amazon DynamoDB Developer Guide

• Add a ramp up period to the import where the velocity of the import starts small but is slowly
increased over a few minutes until auto scaling has had the opportunity to start adjusting table
capacity

Evaluate your DynamoDB table's auto scaling settings

This section provides an overview of how to evaluate the auto scaling settings on your DynamoDB
tables. Amazon DynamoDB auto scaling is a feature that manages table and global secondary
index (GSI) throughput based on your application traffic and your target utilization metric. This
ensures your tables or GSIs will have the required capacity required for your application patterns.

The Amazon auto scaling service will monitor your current table utilization and compare it to the
target utilization value: TargetValue. It will notify you if it is time to increase or decrease the
capacity allocated.

Topics

• Understanding your auto scaling settings

• How to identify tables with low target utilization (<=50%)

• How to address workloads with seasonal variance

• How to address spiky workloads with unknown patterns

• How to address workloads with linked applications

Understanding your auto scaling settings

Defining the correct value for the target utilization, initial step, and final values is an activity that
requires involvement from your operations team. This allows you to properly define the values
based on historical application usage, which will be used to trigger the Amazon auto scaling
policies. The utilization target is the percentage of your total capacity that needs to be hit during a
period of time before the auto scaling rules apply.

When you set a high utilization target (a target around 90%) it means your traffic needs to be
higher than 90% for a period of time before the auto scaling kicks in. You should not use a high
utilization target unless your application is very constant and doesn’t receive spikes in traffic.

When you set a very low utilization (a target less than 50%) it means your application would
need to reach 50% of the provisioned capacity before it triggers an auto scaling policy. Unless your

Cost optimization API Version 2012-08-10 3141

Amazon DynamoDB Developer Guide

application traffic grows at a very aggressive rate, this usually translates into unused capacity and
wasted resources.

How to identify tables with low target utilization (<=50%)

You can use either the Amazon CLI or Amazon Web Services Management Console to monitor and
identify the TargetValues for your auto scaling policies in your DynamoDB resources:

Amazon CLI

1. Return the entire list of resources by running the following command:

aws application-autoscaling describe-scaling-policies --service-namespace
 dynamodb

This command will return the entire list of auto scaling policies that are issued to any
DynamoDB resource. If you only want to retrieve the resources from a particular table, you
can add the –resource-id parameter. For example:

aws application-autoscaling describe-scaling-policies --service-namespace
 dynamodb --resource-id "table/<table-name>”

2. Return only the auto scaling policies for a particular GSI by running the following command

aws application-autoscaling describe-scaling-policies --service-namespace
 dynamodb --resource-id "table/<table-name>/index/<gsi-name>”

The values we're interested in for the auto scaling policies are highlighted below. We want
to ensure that the target value is greater than 50% to avoid over-provisioning. You should
obtain a result similar to the following:

{
 "ScalingPolicies": [
 {
 "PolicyARN": "arn:aws:autoscaling:<region>:<account-
id>:scalingPolicy:<uuid>:resource/dynamodb/table/<table-name>/index/<index-
name>:policyName/$<full-gsi-name>-scaling-policy",
 "PolicyName": $<full-gsi-name>”,
 "ServiceNamespace": "dynamodb",
 "ResourceId": "table/<table-name>/index/<index-name>",
 "ScalableDimension": "dynamodb:index:WriteCapacityUnits",

Cost optimization API Version 2012-08-10 3142

Amazon DynamoDB Developer Guide

 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 70.0,
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "DynamoDBWriteCapacityUtilization"
 }
 },
 "Alarms": [
 ...
],
 "CreationTime": "2022-03-04T16:23:48.641000+10:00"
 },
 {
 "PolicyARN": "arn:aws:autoscaling:<region>:<account-
id>:scalingPolicy:<uuid>:resource/dynamodb/table/<table-name>/index/<index-
name>:policyName/$<full-gsi-name>-scaling-policy",
 "PolicyName":$<full-gsi-name>”,
 "ServiceNamespace": "dynamodb",
 "ResourceId": "table/<table-name>/index/<index-name>",
 "ScalableDimension": "dynamodb:index:ReadCapacityUnits",
 "PolicyType": "TargetTrackingScaling",
 "TargetTrackingScalingPolicyConfiguration": {
 "TargetValue": 70.0,
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "DynamoDBReadCapacityUtilization"
 }
 },
 "Alarms": [
 ...
],
 "CreationTime": "2022-03-04T16:23:47.820000+10:00"
 }
]
}

Amazon Web Services Management Console

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB
console at https://console.amazonaws.cn/dynamodb/.

Select an appropriate Amazon Web Services Region if necessary.

Cost optimization API Version 2012-08-10 3143

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

2. On the left navigation bar, select Tables. On the Tables page, select the table's Name.

3. On the Table details page, choose Additional settings, and then review your table's auto
scaling settings.

For indexes, expand the Index capacity section to review the index's auto scaling settings.

Cost optimization API Version 2012-08-10 3144

Amazon DynamoDB Developer Guide

If your target utilization values are less than or equal to 50%, you should explore your table
utilization metrics to see if they are under-provisioned or over-provisioned.

How to address workloads with seasonal variance

Consider the following scenario: your application is operating under a minimum average value
most of the time, but the utilization target is low so your application can react quickly to events
that happen at certain hours in the day and you have enough capacity and avoid getting throttled.
This scenario is common when you have an application that is very busy during normal office hours
(9 AM to 5 PM) but then it works at a base level during after hours. Since some users will start
to connect before 9 am, the application uses this low threshold to ramp up quickly to get to the
required capacity during peak hours.

This scenario could look like this:

• Between 5 PM and 9 AM the ConsumedWriteCapacity units stay between 90 and 100

• Users start to connect to the application before 9 AM and the capacity units increases
considerably (the maximum value you’ve seen is 1500 WCU)

• On average, your application usage varies between 800 to 1200 during working hours

Cost optimization API Version 2012-08-10 3145

Amazon DynamoDB Developer Guide

If the previous scenario applies to you, consider using scheduled auto scaling, where your table
could still have an application auto scaling rule configured, but with a less aggressive target
utilization that only provisions the extra capacity at the specific intervals you require.

You can use Amazon CLI to execute the following steps to create a scheduled auto scaling rule that
will execute based on the time of day and the day of the week.

1. Register your DynamoDB table or GSI as scalable target with Application Auto Scaling. A
scalable target is a resource that Application Auto Scaling can scale out or in.

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:WriteCapacityUnits \
 --resource-id table/<table-name> \
 --min-capacity 90 \
 --max-capacity 1500

2. Set up scheduled actions according to your requirements.

We'll need two rules to cover the scenario: one to scale up and another to scale down. The first
rule to scale up the scheduled action:

aws application-autoscaling put-scheduled-action \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:WriteCapacityUnits \
 --resource-id table/<table-name> \
 --scheduled-action-name my-8-5-scheduled-action \
 --scalable-target-action MinCapacity=800,MaxCapacity=1500 \
 --schedule "cron(45 8 ? * MON-FRI *)" \
 --timezone "Australia/Brisbane"

The second rule to scale down the scheduled action:

aws application-autoscaling put-scheduled-action \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:WriteCapacityUnits \
 --resource-id table/<table-name> \
 --scheduled-action-name my-5-8-scheduled-down-action \
 --scalable-target-action MinCapacity=90,MaxCapacity=1500 \
 --schedule "cron(15 17 ? * MON-FRI *)" \
 --timezone "Australia/Brisbane"

Cost optimization API Version 2012-08-10 3146

https://docs.amazonaws.cn/autoscaling/application/userguide/examples-scheduled-actions.html

Amazon DynamoDB Developer Guide

3. Run the following command to validate both rules have been activated:

aws application-autoscaling describe-scheduled-actions --service-namespace dynamodb

You should get a result like this:

{
 "ScheduledActions": [
 {
 "ScheduledActionName": "my-5-8-scheduled-down-action",
 "ScheduledActionARN":
 "arn:aws:autoscaling:<region>:<account>:scheduledAction:<uuid>:resource/dynamodb/
table/<table-name>:scheduledActionName/my-5-8-scheduled-down-action",
 "ServiceNamespace": "dynamodb",
 "Schedule": "cron(15 17 ? * MON-FRI *)",
 "Timezone": "Australia/Brisbane",
 "ResourceId": "table/<table-name>",
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "ScalableTargetAction": {
 "MinCapacity": 90,
 "MaxCapacity": 1500
 },
 "CreationTime": "2022-03-15T17:30:25.100000+10:00"
 },
 {
 "ScheduledActionName": "my-8-5-scheduled-action",
 "ScheduledActionARN":
 "arn:aws:autoscaling:<region>:<account>:scheduledAction:<uuid>:resource/dynamodb/
table/<table-name>:scheduledActionName/my-8-5-scheduled-action",
 "ServiceNamespace": "dynamodb",
 "Schedule": "cron(45 8 ? * MON-FRI *)",
 "Timezone": "Australia/Brisbane",
 "ResourceId": "table/<table-name>",
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "ScalableTargetAction": {
 "MinCapacity": 800,
 "MaxCapacity": 1500
 },
 "CreationTime": "2022-03-15T17:28:57.816000+10:00"
 }
]
}

Cost optimization API Version 2012-08-10 3147

Amazon DynamoDB Developer Guide

The following picture shows a sample workload that always keeps the 70% target utilization.
Notice how the auto scaling rules are still applying and the throughput will not be reduced.

Zooming in, we can see there was a spike in the application that triggered the 70% auto scaling
threshold, forcing the auto scaling to kick in and provide the extra capacity required for the
table. The scheduled auto scaling action will affect maximum and minimum values, and it is your
responsibility to set them up.

Cost optimization API Version 2012-08-10 3148

Amazon DynamoDB Developer Guide

How to address spiky workloads with unknown patterns

In this scenario, the application uses a very low utilization target because you don’t know the
application patterns yet, and you want to ensure your workload is not throttled.

Consider using on-demand capacity mode instead. On-demand tables are perfect for spiky
workloads where you don’t know the traffic patterns. With on-demand capacity mode, you pay
per request for the data reads and writes your application performs on your tables. You do not
need to specify how much read and write throughput you expect your application to perform, as
DynamoDB instantly accommodates your workloads as they ramp up or down.

How to address workloads with linked applications

In this scenario, the application depends on other systems, like batch processing scenarios where
you can have big spikes in traffic according to events in the application logic.

Consider developing custom auto scaling logic that reacts to those events where you can increase
table capacity and TargetValues depending on your specific needs. You could benefit from
Amazon EventBridge and use a combination of Amazon services like Lambda and Step Functions to
react to your specific application needs.

Evaluate your DynamoDB table class selection

This section provides an overview of how to select the appropriate table class for your DynamoDB
table. With the launch of the Standard Infrequent-Access (Standard-IA) table class, you now have
the ability to optimize a table for either lower storage cost or lower throughput cost.

Topics

• What table classes are available

• When to select the DynamoDB Standard table class

• When to select DynamoDB Standard-IA table class

• Additional factors to consider when choosing a table class

What table classes are available

When you create a DynamoDB Table, you must select either DynamoDB Standard or DynamoDB
Standard-IA for the table class. The table class can be changed twice in a 30-day period, so you
can always change it in the future. Selecting either table class has no effect on table performance,
availability, reliability, or durability.

Cost optimization API Version 2012-08-10 3149

Amazon DynamoDB Developer Guide

Standard table class

The Standard table class is the default option for new tables. This option maintains the original
billing balance of DynamoDB which offers a balance of throughput and storage costs for tables
with frequently accessed data.

Standard-IA table class

The Standard-IA table class offers a lower storage cost (~60% lower) for workloads that require
long-term storage of data with infrequent updates or reads. Since the class is optimized for
infrequent access, reads and writes will be billed at a slightly higher cost (~25% higher) than the
Standard table class.

When to select the DynamoDB Standard table class

DynamoDB Standard table class is best suited for tables whose storage cost is approximately 50%
or less of the overall monthly cost of the table. This cost balance is indicative of a workload that
regularly accesses or updates items already stored within DynamoDB.

Cost optimization API Version 2012-08-10 3150

Amazon DynamoDB Developer Guide

When to select DynamoDB Standard-IA table class

DynamoDB Standard-IA table class is best suited for tables whose storage cost is approximately
50% or more of the overall monthly cost of the table. This cost balance is indicative of a workload
that creates or reads fewer items per month than it keeps in storage.

A common use for the Standard-IA table class is moving less frequently accessed data to individual
Standard-IA tables. For further information, see Optimizing the storage costs of your workloads
with Amazon DynamoDB Standard-IA table class.

Additional factors to consider when choosing a table class

When deciding between the two table classes, there are some additional factors worth considering
as part of your decision.

Reserved capacity

Purchasing reserved capacity for tables using the Standard-IA table class is currently not
supported. When transitioning from a Standard table with reserved capacity to a Standard-IA table
without reserved capacity, you may not see a cost benefit.

Identify your unused resources in DynamoDB

This section provides an overview of how to evaluate your unused resources regularly. As your
application requirements evolve you should ensure no resources are unused and contributing
to unnecessary Amazon DynamoDB costs. The procedures described below will use Amazon
CloudWatch metrics to identify unused resources and will help you identify and take action on
those resources to reduce costs.

You can monitor DynamoDB using CloudWatch, which collects and processes raw data from
DynamoDB into readable, near real-time metrics. These statistics are retained for a period of time,
so that you can access historical information to better understand your utilization. By default,
DynamoDB metric data is sent to CloudWatch automatically. For more information, see What is
Amazon CloudWatch? and Metrics retention in the Amazon CloudWatch User Guide.

Topics

• How to identify unused resources

• Identifying unused table resources

• Cleaning up unused table resources

Cost optimization API Version 2012-08-10 3151

https://aws.amazon.com/blogs/database/optimize-the-storage-costs-of-your-workloads-with-amazon-dynamodb-standard-ia-table-class/
https://aws.amazon.com/blogs/database/optimize-the-storage-costs-of-your-workloads-with-amazon-dynamodb-standard-ia-table-class/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#metrics-retention

Amazon DynamoDB Developer Guide

• Identifying unused GSI resources

• Cleaning up unused GSI resources

• Cleaning up unused global tables

• Cleaning up unused backups or point-in-time recovery (PITR)

How to identify unused resources

To identify unused tables or indexes, we'll look at the following CloudWatch metrics over a period
of 30 days to understand if there are any active reads or writes on the table or any reads on the
global secondary indexes (GSIs):

ConsumedReadCapacityUnits

The number of read capacity units consumed over the specified time period, so you can track how
much consumed capacity you have used. You can retrieve the total consumed read capacity for a
table and all of its global secondary indexes, or for a particular global secondary index.

ConsumedWriteCapacityUnits

The number of write capacity units consumed over the specified time period, so you can track how
much consumed capacity you have used. You can retrieve the total consumed write capacity for a
table and all of its global secondary indexes, or for a particular global secondary index.

Identifying unused table resources

Amazon CloudWatch is a monitoring and observability service which provides the DynamoDB
table metrics you’ll use to identify unused resources. CloudWatch metrics can be viewed through
the Amazon Web Services Management Console as well as through the Amazon Command Line
Interface.

Amazon Command Line Interface

To view your tables metrics through the Amazon Command Line Interface, you can use the
following commands.

1. First, evaluate your table's reads:

aws cloudwatch get-metric-statistics --metric-name
ConsumedReadCapacityUnits --start-time <start-time> --end-time <end-
time> --period <period> --namespace AWS/DynamoDB --statistics Sum --

Cost optimization API Version 2012-08-10 3152

Amazon DynamoDB Developer Guide

dimensions Name=TableName,Value=<table-name>

To avoid falsely identifying a table as unused, evaluate metrics over a longer period.
Choose an appropriate start-time and end-time range, such as 30 days, and an appropriate
period, such as 86400.

In the returned data, any Sum above 0 indicates that the table you are evaluating received
read traffic during that period.

The following result shows a table receiving read traffic in the evaluated period:

 {
 "Timestamp": "2022-08-25T19:40:00Z",
 "Sum": 36023355.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-12T19:40:00Z",
 "Sum": 38025777.5,
 "Unit": "Count"
 },

The following result shows a table not receiving read traffic in the evaluated period:

 {
 "Timestamp": "2022-08-01T19:50:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-20T19:50:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },

2. Next, evaluate your table’s writes:

aws cloudwatch get-metric-statistics --metric-name
ConsumedWriteCapacityUnits --start-time <start-time> --end-time <end-
time> --period <period> --namespace AWS/DynamoDB --statistics Sum --
dimensions Name=TableName,Value=<table-name>

Cost optimization API Version 2012-08-10 3153

Amazon DynamoDB Developer Guide

To avoid falsely identifying a table as unused, you will want to evaluate metrics over a
longer period. Choose an appropriate start-time and end-time range, such as 30 days, and
an appropriate period, such as 86400.

In the returned data, any Sum above 0 indicates that the table you are evaluating received
read traffic during that period.

The following result shows a table receiving write traffic in the evaluated period:

 {
 "Timestamp": "2022-08-19T20:15:00Z",
 "Sum": 41014457.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-18T20:15:00Z",
 "Sum": 40048531.0,
 "Unit": "Count"
 },

The following result shows a table not receiving write traffic in the evaluated period:

 {
 "Timestamp": "2022-07-31T20:15:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-19T20:15:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },

Amazon Web Services Management Console

The following steps will allow you to evaluate your resources utilization through the Amazon
Web Services Management Console.

Cost optimization API Version 2012-08-10 3154

Amazon DynamoDB Developer Guide

1. Log into the Amazon console and navigate to the CloudWatch service page at https://
console.amazonaws.cn/cloudwatch/. Select the appropriate Amazon region in the top right
of the console, if necessary.

2. On the left navigation bar, locate the Metrics section and select All metrics.

3. The action above will open a dashboard with two panels. In the top panel you will see
currently graphed metrics. In the bottom you will select the metrics available to graph.
Select DynamoDB in the bottom panel.

4. In the DynamoDB metrics selection panel select the Table Metrics category to show the
metrics for your tables in the current region.

5. Identify your table name by scrolling down the menu, then select the metrics
ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits for your table.

6. Select the Graphed metrics (2) tab and adjust the Statistic column to Sum.

7. To avoid falsely identifying a table as unused, you'll want to evaluate metrics over a longer
period. At the top of the graph panel choose an appropriate time frame, such as 1 month,
to evaluate your table. Select Custom, select 1 Months in the dropdowns, and choose
Apply.

Cost optimization API Version 2012-08-10 3155

https://console.amazonaws.cn/cloudwatch/
https://console.amazonaws.cn/cloudwatch/

Amazon DynamoDB Developer Guide

8. Evaluate the graphed metrics for your table to determine if it is being used. Metrics that
have gone above 0 indicate that a table has been used during the evaluated time period. A
flat graph at 0 for both read and write indicates a table that is unused.

The following image shows a table with read traffic:

The following image shows a table without read traffic:

Cost optimization API Version 2012-08-10 3156

Amazon DynamoDB Developer Guide

Cleaning up unused table resources

If you have identified unused table resources, you can reduce their ongoing costs in the following
ways.

Note

If you have identified an unused table but would still like to keep it available in case it
needs to be accessed in the future, consider switching it to on-demand mode. Otherwise,
you can consider backing up and deleting the table entirely.

Capacity modes

DynamoDB charges for reading, writing, and storing data in your DynamoDB tables.

DynamoDB has two capacity modes, which come with specific billing options for processing reads
and writes on your tables: on-demand and provisioned. The read/write capacity mode controls how
you are charged for read and write throughput and how you manage capacity.

For on-demand mode tables, you don't need to specify how much read and write throughput you
expect your application to perform. DynamoDB charges you for the reads and writes that your
application performs on your tables in terms of read request units and write request units. If there
is no activity on your table/index you do not pay for throughput but you’ll still incur a storage
charge.

Table class

Cost optimization API Version 2012-08-10 3157

Amazon DynamoDB Developer Guide

DynamoDB also offers two table classes designed to help you optimize for cost. The DynamoDB
Standard table class is the default and is recommended for most workloads. The DynamoDB
Standard-Infrequent Access (DynamoDB Standard-IA) table class is optimized for tables where
storage is the dominant cost.

If there is no activity on your table or index, storage is likely to be the dominant cost and changing
table class will offer a significant savings.

Deleting tables

If you’ve discovered an unused table and would like to delete it, you may wish to make a backup or
export of the data first.

Backups taken through Amazon Backup can leverage cold storage tiering, further reducing costs.
Refer to the Using Amazon Backup with DynamoDB documentation for information on how
enable backups through Amazon Backup as well as the Managing backup plans documentation for
information on how to use lifecycle to move your backup to cold storage.

Alternatively, you may choose to export your table’s data to S3. To do so, refer to the Export to
Amazon S3 documentation. Once your data is exported, if you wish to leverage S3 Glacier Instant
Retrieval, S3 Glacier Flexile Retrieval, or S3 Glacier Deep Archive to further reduce costs, see
Managing your storage lifecycle.

After your table has been backed up, you may choose to delete it either through the Amazon Web
Services Management Console or through the Amazon Command Line Interface.

Identifying unused GSI resources

The steps for identifying an unused global secondary are similar to those for identifying an
unused table. Since DynamoDB replicates items written to your base table into your GSI if
they contain the attribute used as the GSI’s partition key, an unused GSI is still likely to have
ConsumedWriteCapacityUnits above 0 if its base table is in use. As a result, you’ll be
evaluating only the ConsumedReadCapacityUnits metric to determine if your GSI is unused.

To view your GSI metrics through the Amazon Amazon CLI, you can use the following commands to
evaluate your tables reads:

aws cloudwatch get-metric-statistics --metric-name
ConsumedReadCapacityUnits --start-time <start-time> --end-time <end-
time> --period <period> --namespace AWS/DynamoDB --statistics Sum --
dimensions Name=TableName,Value=<table-name>

Cost optimization API Version 2012-08-10 3158

https://docs.amazonaws.cn/aws-backup/latest/devguide/about-backup-plans
https://docs.amazonaws.cn/AmazonS3/latest/userguide/object-lifecycle-mgmt

Amazon DynamoDB Developer Guide

Name=GlobalSecondaryIndexName,Value=<index-name>

To avoid falsely identifying a table as unused, you will want to evaluate metrics over a longer
period. Choose an appropriate start-time and end-time range, such as 30 days, and an appropriate
period, such as 86400.

In the returned data, any Sum above 0 indicates that the table you are evaluating received read
traffic during that period.

The following result shows a GSI receiving read traffic in the evaluated period:

 {
 "Timestamp": "2022-08-17T21:20:00Z",
 "Sum": 36319167.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-11T21:20:00Z",
 "Sum": 1869136.0,
 "Unit": "Count"
 },

The following result shows a GSI receiving minimal read traffic in the evaluated period:

 {
 "Timestamp": "2022-08-28T21:20:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },
 {
 "Timestamp": "2022-08-15T21:20:00Z",
 "Sum": 2.0,
 "Unit": "Count"
 },

The following result shows a GSI receiving no read traffic in the evaluated period:

 {
 "Timestamp": "2022-08-17T21:20:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },

Cost optimization API Version 2012-08-10 3159

Amazon DynamoDB Developer Guide

 {
 "Timestamp": "2022-08-11T21:20:00Z",
 "Sum": 0.0,
 "Unit": "Count"
 },

Cleaning up unused GSI resources

If you've identified an unused GSI, you can choose to delete it. Since all data present in a GSI is also
present in the base table, additional backup is not necessary before deleting a GSI. If in the future
the GSI is once again needed, it may be added back to the table.

If you have identified an infrequently used GSI, you should consider design changes in your
application that would allow you to delete it or reduce its cost. For example, while DynamoDB
scans should be used sparingly because they can consume large amounts of system resources, they
may be more cost effective than a GSI if the access pattern it supports is used very infrequently.

Additionally, if a GSI is required to support an infrequent access pattern consider projecting a
more limited set of attributes. While this may require subsequent queries against the base table to
support your infrequent access patterns, it can potentially offer a significant reduction in storage
and write costs.

Cleaning up unused global tables

Amazon DynamoDB global tables provide a fully managed solution for deploying a multi-Region,
multi-active database, without having to build and maintain your own replication solution.

Global tables are ideal for providing low-latency access to data close to users and as well as a
secondary region for disaster recovery.

If the global tables option is enabled for a resource in an effort to provide low-latency access
to data but is not part of your disaster recovery strategy, validate that both replicas are actively
serving read traffic by evaluating their CloudWatch metrics. If one replica does not serve read
traffic, it may be an unused resource.

If global tables are part of your disaster recovery strategy, one replica not receiving read traffic may
be expected under an active/standby pattern.

Cleaning up unused backups or point-in-time recovery (PITR)

DynamoDB offers two styles of backup. Point-in-time recovery provides continuous backups for up
to 35 days to help you protect against accidental writes or deletes while on-demand backup allows

Cost optimization API Version 2012-08-10 3160

Amazon DynamoDB Developer Guide

for snapshot creation which can be saved long term. You can set the recovery period to any value
between 1 and 35 days. Both types of backups have costs associated with them.

Refer to the documentation for Backup and restore for DynamoDB and Point-in-time backups for
DynamoDB to determine if your tables have backups enabled that may no longer be needed.

Evaluate your DynamoDB table usage patterns

This section provides an overview of how to evaluate if you are efficiently using your DynamoDB
tables. There are certain usage patterns which are not optimal for DynamoDB, and they allow room
for optimization from both a performance and cost perspective.

Topics

• Perform fewer strongly-consistent read operations

• Perform fewer transactions for read operations

• Perform fewer scans

• Shorten attribute names

• Enable Time to Live (TTL)

• Replace global tables with cross-Region backups

Perform fewer strongly-consistent read operations

DynamoDB allows you to configure read consistency on a per-request basis. Read requests are
eventually consistent by default. Eventually consistent reads are charged at 0.5 RCU for upto 4 KB
of data.

Most parts of distributed workloads are flexible and can tolerate eventual consistency. However,
there can be access patterns requiring strongly consistent reads. Strongly consistent reads are
charged at 1 RCU for upto 4 KB of data, essentially doubling your read costs. DynamoDB provides
you with the flexibility to use both consistency models on the same table.

You can evaluate your workload and application code to confirm if strongly consistent reads are
used only where required.

Perform fewer transactions for read operations

DynamoDB allows you to group certain actions in an all-or-nothing manner, which means you have
the ability to execute ACID transactions with DynamoDB. However, as is the case with relational
databases, it is not necessary to follow this approach for every action.

Cost optimization API Version 2012-08-10 3161

Amazon DynamoDB Developer Guide

A transactional read operation of up to 4 KB consumes 2 RCUs as opposed to the default 0.5 RCUs
for reading the same amount of data in an eventually consistent manner. The costs are doubled in
write operations which means, a transactional write of up to 1 KB equates to 2 WCUs.

To determine if all operations on your tables are transactions, CloudWatch metrics for the table
can be filtered down to the transaction APIs. If transaction APIs are the only graphs available
under the SuccessfulRequestLatency metrics for the table, this would confirm that every
operation is a transaction for this table. Alternatively, if the overall capacity utilization trend
matches the transaction API trend, consider revisiting the application design as it seems dominated
by transactional APIs.

Perform fewer scans

The extensive use of Scan operations generally stems from the need to run analytical queries
on the DynamoDB data. Running frequent Scan operations on large table can be inefficient and
expensive.

A better alternative is to use the Export to S3 feature and choosing a point in time to export the
table state to S3. Amazon offers services like Athena which can then be used to run analytical
queries on the data without consuming any capacity from the table.

The frequency for Scan operations can be determined using the SampleCount statistic under the
SuccessfulRequestLatency metric for Scan. If Scan operations are indeed very frequent, the
access patterns and data model should be re-evaluated.

Shorten attribute names

The total size of an item in DynamoDB is the sum of its attribute name lengths and values. Having
long attribute names not only contributes towards storage costs, but it might also lead to higher
RCU/WCU consumption. We recommend that you choose shorter attribute names rather than
long ones. Having shorter attribute names can help limit the item size within the next 4KB/1KB
boundary after which you would consume additional RCU/WCU to access data.

Enable Time to Live (TTL)

Time to Live (TTL) can identify items older than the expiry time that you have set on an item and
remove them from the table. If your data grows over time and older data becomes irrelevant,
enabling TTL on the table can help trim your data down and save on storage costs.

Another useful aspect of TTL is that the expired items occur on your DynamoDB streams, so rather
than just removing the data from your data, it is possible to consume those items from the stream

Cost optimization API Version 2012-08-10 3162

Amazon DynamoDB Developer Guide

and archive them to a lower cost storage tier. Additionally, deleting items via TTL comes at no
additional cost — it does not consume capacity, and there’s no overhead of designing a clean up
application.

Replace global tables with cross-Region backups

Global tables allow you to maintain multiple active replica tables in different Regions — they can
all accept write operations and replicate data across each other. It is easy to set up replicas and the
synchronization is managed for you. The replicas converge to a consistent state using a last writer
wins strategy.

If you are using Global tables purely as a part of failover or disaster recovery (DR) strategy, you
can replace them with a cross-Region backup copy for relatively lenient recovery point objectives
and recovery time objective requirements. If you do not require fast local access and the high
availability of five nines, maintaining a global table replica might not be the best approach for
failover.

As an alternative, consider using Amazon Backup to manage DynamoDB backups. You can schedule
regular backups and copy them across Regions to meet DR requirements in a more cost-effective
approach compared to using Global tables.

Evaluate your DynamoDB streams usage

This section provides an overview of how to evaluate your DynamoDB Streams usage. There are
certain usage patterns which are not optimal for DynamoDB, and they allow room for optimization
from both a performance and cost perspective.

You have two native streaming integrations for streaming and event-driven use cases:

• Amazon DynamoDB Streams

• Amazon Kinesis Data Streams

This page will just focus on cost optimization strategies for these options. If you'd like to instead
find out how to choose between the two options, see Streaming options for change data capture.

Topics

• Optimizing costs for DynamoDB Streams

• Optimizing costs for Kinesis Data Streams

• Cost optimization strategies for both types of Streams usage

Cost optimization API Version 2012-08-10 3163

Amazon DynamoDB Developer Guide

Optimizing costs for DynamoDB Streams

As mentioned in the pricing page for DynamoDB Streams, regardless of the table’s throughput
capacity mode, DynamoDB charges on the number of read requests made towards the table’s
DynamoDB Stream. Read requests made towards a DynamoDB Stream are different from the read
requests made towards a DynamoDB table.

Each read request in terms of the stream is in the form of a GetRecords API call that can return
up to 1000 records or 1 MB worth of records in the response, whichever is reached first. None
of the other DynamoDB Stream APIs are charged and DynamoDB Streams are not charged for
being idle. In other words, if no read requests are made to a DynamoDB Stream, no charges will be
incurred for having a DynamoDB Stream enabled on a table.

Here are a few consumer applications for DynamoDB Streams:

• Amazon Lambda function(s)

• Amazon Kinesis Data Streams-based applications

• Customer consumer applications built using an Amazon SDK

Read requests made by Amazon Lambda-based consumers of DynamoDB Streams are free,
whereas calls made by consumers of any other kind are charged. Every month, the first 2,500,000
read requests made by non-Lambda consumers are also free of cost. This applies to all read
requests made to any DynamoDB Streams in an Amazon Account for each Amazon Region.

Monitoring your DynamoDB Streams usage

DynamoDB Streams charges on the billing console are grouped together for all DynamoDB
Streams across the Amazon Region in an Amazon Account. Currently, tagging DynamoDB Streams
is not supported, so cost allocation tags cannot be used to identify granular costs for DynamoDB
Streams. The volume of GetRecords calls can be obtained at the DynamoDB Stream level
to compute the charges per stream. The volume is represented by the DynamoDB Stream’s
CloudWatch metric SuccessfulRequestLatency and its SampleCount statistic. This metric
will also include GetRecords calls made by global tables to perform on-going replication as well
as calls made by Amazon Lambda consumers, both of which are not charged. For information
on other CloudWatch metrics published by DynamoDB Streams, see DynamoDB Metrics and
dimensions.

Using Amazon Lambda as the consumer

Cost optimization API Version 2012-08-10 3164

https://www.amazonaws.cn/dynamodb/pricing/on-demand/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Streams.html

Amazon DynamoDB Developer Guide

Evaluate if using Amazon Lambda functions as the consumers for DynamoDB Streams is feasible
because that can eliminate costs associated with reading from the DynamoDB Stream. On the
other hand, DynamoDB Streams Kinesis Adapter or SDK based consumer applications will be
charged on the number of GetRecords calls they make towards the DynamoDB Stream.

Lambda function invocations will be charged based on standard Lambda pricing, however no
charges will be incurred by DynamoDB Streams. Lambda will poll shards in your DynamoDB Stream
for records at a base rate of 4 times per second. When records are available, Lambda invokes your
function and waits for the result. If processing succeeds, Lambda resumes polling until it receives
more records.

Tuning DynamoDB Streams Kinesis Adapter-based consumer applications

Since read requests made by non-Lambda based consumers are charged for DynamoDB Streams,
it is important to find a balance between the near real-time requirement and the number of times
the consumer application must poll the DynamoDB Stream.

The frequency of polling DynamoDB Streams using a DynamoDB Streams Kinesis Adapter based
application is determined by the configured idleTimeBetweenReadsInMillis value. This
parameter determines the amount of time in milliseconds that the consumer should wait before
processing a shard in case the previous GetRecords call made to the same shard did not return
any records. By default, this value for this parameter is 1000 ms. If near real-time processing is
not required, this parameter could be increased to have the consumer application make fewer
GetRecords calls and optimize on DynamoDB Streams calls.

Optimizing costs for Kinesis Data Streams

When a Kinesis Data Stream is set as the destination to deliver change data capture events for
a DynamoDB table, the Kinesis Data Stream may need separate sizing management which will
affect the overall costs. DynamoDB charges in terms of Change Data capture Units (CDUs) where
each unit is a made of up a 1 KB DynamoDB item size attempted by the DynamoDB service to the
destination Kinesis Data Stream.

In addition to charges by the DynamoDB service, standard Kinesis Data Stream charges will be
incurred. As mentioned in the pricing page, the service pricing differs based on the capacity mode
- provisioned and on-demand, which are distinct from DynamoDB table capacity modes and are
user-defined. At a high level, Kinesis Data Streams charges an hourly rate based on the capacity
mode, as well as on data ingested into the stream by DynamoDB service. There may be additional
charges like data retrieval (for on-demand mode), extended data retention (beyond default 24

Cost optimization API Version 2012-08-10 3165

https://www.amazonaws.cn/kinesis/data-streams/pricing/

Amazon DynamoDB Developer Guide

hours), and enhanced fan-out consumer retrievals depending on the user configuration for the
Kinesis Data Stream.

Monitoring your Kinesis Data Streams usage

Kinesis Data Streams for DynamoDB publishes metrics from DynamoDB in addition to standard
Kinesis Data Stream CloudWatch Metrics. It may be possible that a Put attempt by the DynamoDB
service is throttled by the Kinesis service because of insufficient Kinesis Data Streams capacity,
or by dependent components like a Amazon KMS service that may be configured to encrypt the
Kinesis Data Stream data at rest.

To learn more about CloudWatch metrics published by DynamoDB service for the Kinesis Data
Stream, see Monitoring change data capture with Kinesis Data Streams. In order to avoid additional
costs of service retries due to throttles, it is important to right size the Kinesis Data Stream in case
of Provisioned Mode.

Choosing the right capacity mode for Kinesis Data Streams

Kinesis Data Streams are supported in two capacity modes – provisioned mode and on-demand
mode.

• If the workload involving Kinesis Data Stream has predictable application traffic, traffic that
is consistent or ramps gradually, or traffic that can be forecasted accurately, then Kinesis Data
Streams’ provisioned mode is suitable and will be more cost efficient

• If the workload is new, has unpredictable application traffic, or you prefer not to manage
capacity, then Kinesis Data Streams’ on-demand mode is suitable and will be more cost efficient

A best practice to optimize costs would be to evaluate if the DynamoDB table associated with the
Kinesis Data Stream has a predictable traffic pattern that can leverage provisioned mode of Kinesis
Data Streams. If the workload is new, you could use on-demand mode for the Kinesis Data Streams
for a few initial weeks, review the CloudWatch metrics to understand traffic patterns, and then
switch the same Stream to provisioned mode based on the nature of the workload. In the case of
provisioned mode, estimation on number shards can be made by following shard management
considerations for Kinesis Data Streams.

Evaluate your consumer applications using Kinesis Data Streams for DynamoDB

Since Kinesis Data Streams don’t charge on the number of GetRecords calls like DynamoDB
Streams, consumer applications could make as many number of calls as possible, provided the

Cost optimization API Version 2012-08-10 3166

Amazon DynamoDB Developer Guide

frequency is under the throttling limits for GetRecords. In terms of on-demand mode for Kinesis
Data Streams, data reads are charged on a per GB basis. For provisioned mode Kinesis Data
Streams, reads are not charged if the data is less than 7 days old. In the case of Lambda functions
as Kinesis Data Streams consumers, Lambda polls each shard in your Kinesis Stream for records at a
base rate of once per second.

Cost optimization strategies for both types of Streams usage

Event filtering for Amazon Lambda consumers

Lambda event filtering allows you to discard events based on a filter criteria from being available
in the Lambda function invocation batch. This optimizes Lambda costs for processing or discarding
unwanted stream records within the consumer function logic. To learn more about configuring
event filtering and writing your filtering criteria, see Lambda event filtering.

Tuning Amazon Lambda consumers

Costs could be further be optimized by tuning Lambda configuration parameters like increasing the
BatchSize to process more per invocation, enabling BisectBatchOnFunctionError to prevent
processing duplicates (which incurs additional costs), and setting MaximumRetryAttempts
to not run into too many retries. By default, failed consumer Lambda invocations are retried
infinitely until the record expires from the stream, which is around 24 hours for DynamoDB
Streams and configurable from 24 hours to up to 1 year for Kinesis Data Streams. Additional
Lambda configuration options available including the ones mentioned above for DynamoDB
Stream consumers are in the Amazon Lambda developer guide.

Evaluate your provisioned capacity for right-sized provisioning in your
DynamoDB table

This section provides an overview of how to evaluate if you have right-sized provisioning on your
DynamoDB tables. As your workload evolves, you should modify your operational procedures
appropriately, especially when your DynamoDB table is configured in provisioned mode and you
have the risk to over-provision or under-provision your tables.

The procedures described below require statistical information that should be captured from
the DynamoDB tables that are supporting your production application. To understand your
application behavior, you should define a period of time that is significant enough to capture the
data seasonality from your application. For example, if your application shows weekly patterns,
using a three week period should give you enough room for analysing application throughput
needs.

Cost optimization API Version 2012-08-10 3167

https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html
https://docs.amazonaws.cn/lambda/latest/dg/with-ddb.html#services-ddb-params

Amazon DynamoDB Developer Guide

If you don’t know where to start, use at least one month’s worth of data usage for the calculations
below.

While evaluating capacity, DynamoDB tables can configure Read Capacity Units (RCUs) and
Write Capacity Units (WCU) independently. If your tables have any Global Secondary Indexes
(GSI) configured, you will need to specify the throughput that it will consume, which will be also
independent from the RCUs and WCUs from the base table.

Note

Local Secondary Indexes (LSI) consume capacity from the base table.

Topics

• How to retrieve consumption metrics on your DynamoDB tables

• How to identify under-provisioned DynamoDB tables

• How to identify over-provisioned DynamoDB tables

How to retrieve consumption metrics on your DynamoDB tables

To evaluate the table and GSI capacity, monitor the following CloudWatch metrics and select the
appropriate dimension to retrieve either table or GSI information:

Read Capacity Units Write Capacity Units

ConsumedReadCapacityUnits ConsumedWriteCapacityUnits

ProvisionedReadCapacityUnits ProvisionedWriteCapacityUnits

ReadThrottleEvents WriteThrottleEvents

You can do this either through the Amazon CLI or the Amazon Web Services Management Console.

Amazon CLI

Before we retrieve the table consumption metrics, we'll need to start by capturing some
historical data points using the CloudWatch API.

Cost optimization API Version 2012-08-10 3168

Amazon DynamoDB Developer Guide

Start by creating two files: write-calc.json and read-calc.json. These files will
represent the calculations for a table or GSI. You'll need to update some of the fields, as
indicated in the table below, to match your environment.

Field Name Definition Example

<table-name> The name of the table that
you will be analysing

SampleTable

<period> The period of time that you
will be using to evaluate the
utilization target, based in
seconds

For a 1-hour period you
should specify: 3600

<start-time> The beginning of your
evaluation interval, specified
in ISO8601 format

2022-02-21T23:00:00

<end-time> The end of your evaluatio
n interval, specified in
ISO8601 format

2022-02-22T06:00:00

The write calculations file will retrieve the number of WCU provisioned and consumed in the
time period for the date range specified. It will also generate a utilization percentage that will
be used for analysis. The full content of the write-calc.json file should look like this:

{
 "MetricDataQueries": [
 {
 "Id": "provisionedWCU",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/DynamoDB",
 "MetricName": "ProvisionedWriteCapacityUnits",
 "Dimensions": [
 {
 "Name": "TableName",
 "Value": "<table-name>"
 }

Cost optimization API Version 2012-08-10 3169

Amazon DynamoDB Developer Guide

]
 },
 "Period": <period>,
 "Stat": "Average"
 },
 "Label": "Provisioned",
 "ReturnData": false
 },
 {
 "Id": "consumedWCU",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/DynamoDB",
 "MetricName": "ConsumedWriteCapacityUnits",
 "Dimensions": [
 {
 "Name": "TableName",
 "Value": "<table-name>""
 }
]
 },
 "Period": <period>,
 "Stat": "Sum"
 },
 "Label": "",
 "ReturnData": false
 },
 {
 "Id": "m1",
 "Expression": "consumedWCU/PERIOD(consumedWCU)",
 "Label": "Consumed WCUs",
 "ReturnData": false
 },
 {
 "Id": "utilizationPercentage",
 "Expression": "100*(m1/provisionedWCU)",
 "Label": "Utilization Percentage",
 "ReturnData": true
 }
],
 "StartTime": "<start-time>",
 "EndTime": "<ent-time>",
 "ScanBy": "TimestampDescending",
 "MaxDatapoints": 24

Cost optimization API Version 2012-08-10 3170

Amazon DynamoDB Developer Guide

}

The read calculations file uses a similar file. This file will retrieve how many RCUs were
provisioned and consumed during the time period for the date range specified. The contents of
the read-calc.json file should look like this:

{
 "MetricDataQueries": [
 {
 "Id": "provisionedRCU",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/DynamoDB",
 "MetricName": "ProvisionedReadCapacityUnits",
 "Dimensions": [
 {
 "Name": "TableName",
 "Value": "<table-name>"
 }
]
 },
 "Period": <period>,
 "Stat": "Average"
 },
 "Label": "Provisioned",
 "ReturnData": false
 },
 {
 "Id": "consumedRCU",
 "MetricStat": {
 "Metric": {
 "Namespace": "AWS/DynamoDB",
 "MetricName": "ConsumedReadCapacityUnits",
 "Dimensions": [
 {
 "Name": "TableName",
 "Value": "<table-name>"
 }
]
 },
 "Period": <period>,
 "Stat": "Sum"
 },

Cost optimization API Version 2012-08-10 3171

Amazon DynamoDB Developer Guide

 "Label": "",
 "ReturnData": false
 },
 {
 "Id": "m1",
 "Expression": "consumedRCU/PERIOD(consumedRCU)",
 "Label": "Consumed RCUs",
 "ReturnData": false
 },
 {
 "Id": "utilizationPercentage",
 "Expression": "100*(m1/provisionedRCU)",
 "Label": "Utilization Percentage",
 "ReturnData": true
 }
],
 "StartTime": "<start-time>",
 "EndTime": "<end-time>",
 "ScanBy": "TimestampDescending",
 "MaxDatapoints": 24
}

One you've created the files, you can start retrieving utilization data.

1. To retreive the write utilization data, issue the following command:

aws cloudwatch get-metric-data --cli-input-json file://write-calc.json

2. To retreive the read utilization data, issue the following command:

aws cloudwatch get-metric-data --cli-input-json file://read-calc.json

The result for both queries will be a series of data points in JSON format that will be used for
analysis. Your result will depend on the number of data points you specified, the period, and
your own specific workload data. It could look something like this:

{
 "MetricDataResults": [
 {
 "Id": "utilizationPercentage",
 "Label": "Utilization Percentage",

Cost optimization API Version 2012-08-10 3172

Amazon DynamoDB Developer Guide

 "Timestamps": [
 "2022-02-22T05:00:00+00:00",
 "2022-02-22T04:00:00+00:00",
 "2022-02-22T03:00:00+00:00",
 "2022-02-22T02:00:00+00:00",
 "2022-02-22T01:00:00+00:00",
 "2022-02-22T00:00:00+00:00",
 "2022-02-21T23:00:00+00:00"
],
 "Values": [
 91.55364583333333,
 55.066631944444445,
 2.6114930555555556,
 24.9496875,
 40.94725694444445,
 25.61819444444444,
 0.0
],
 "StatusCode": "Complete"
 }
],
 "Messages": []
}

Note

If you specify a short period and a long time range, you might need to modify the
MaxDatapoints which is by default set to 24 in the script. This represents one data
point per hour and 24 per day.

Amazon Web Services Management Console

1. Log into the Amazon Web Services Management Console and navigate to the CloudWatch
service page. Select an appropriate Amazon Web Services Region if necessary.

2. Locate the Metrics section on the left navigation bar and select All metrics.

3. This will open a dashboard with two panels. The top panel will show you the graphic, and
the bottom panel will show the metrics you want to graph. Choose DynamoDB.

4. Choose Table Metrics. This will show you the tables in your current Region.

Cost optimization API Version 2012-08-10 3173

Amazon DynamoDB Developer Guide

5. Use the Search box to search for your table name and choose the write operation metrics:
ConsumedWriteCapacityUnits and ProvisionedWriteCapacityUnits

Note

This example talks about write operation metrics, but you can also use these steps
to graph the read operation metrics.

6. Choose the Graphed metrics (2) tab to modify the formulas. By default, CloudWatch
selects the statistical function Average for the graphs.

7. While having both graphed metrics selected (the checkbox on the left) select the menu
Add math, followed by Common, and then select the Percentage function. Repeat the
procedure twice.

First time selecting the Percentage function:

Second time selecting the Percentage function:

Cost optimization API Version 2012-08-10 3174

Amazon DynamoDB Developer Guide

8. At this point you should have four metrics in the bottom menu. Let’s work on the
ConsumedWriteCapacityUnits calculation. To be consistent, we need to match the
names for the ones we used in the Amazon CLI section. Click on the m1 ID and change this
value to consumedWCU.

Rename the ConsumedWriteCapacityUnit label as consumedWCU.

Cost optimization API Version 2012-08-10 3175

Amazon DynamoDB Developer Guide

9. Change the statistic from Average to Sum. This action will automatically create another
metric called ANOMALY_DETECTION_BAND. For the scope of this procedure, let's ignore it
by removing the checkbox on the newly generated ad1 metric.

10. Repeat step 8 to rename the m2 ID to provisionedWCU. Leave the statistic set to Average.

Cost optimization API Version 2012-08-10 3176

Amazon DynamoDB Developer Guide

11. Select the Expression1 label and update the value to m1 and the label to Consumed
WCUs.

Note

Make sure you have only selected m1 (checkbox on the left) and provisionedWCU
to properly visualize the data. Update the formula by clicking in Details and
changing the formula to consumedWCU/PERIOD(consumedWCU). This step might
also generate another ANOMALY_DETECTION_BAND metric, but for the scope of
this procedure we can ignore it.

12. You should have now have two graphics: one that indicates your provisioned WCUs on the
table and another that indicates the consumed WCUs. The shape of the graphic might be
different from the one below, but you can use it as reference:

Cost optimization API Version 2012-08-10 3177

Amazon DynamoDB Developer Guide

13. Update the percentage formula by selecting the Expression2 graphic (e2). Rename
the labels and IDs to utilizationPercentage. Rename the formula to match 100*(m1/
provisionedWCU).

Cost optimization API Version 2012-08-10 3178

Amazon DynamoDB Developer Guide

14. Remove the checkbox from all the metrics but utilizationPercentage to visualize your
utilization patterns. The default interval is set to 1 minute, but feel free to modify it as you
need.

Here is view of a longer period of time as well as a bigger period of 1 hour. You can see there
are some intervals where the utilization was higher than 100%, but this particular workload has
longer intervals with zero utilization.

At this point, you might have different results from the pictures in this example. It all depends
on the data from your workload. Intervals with more than 100% utilization are prone to
throttling events. DynamoDB offers burst capacity, but as soon as the burst capacity is done
anything above 100% will be throttled.

Cost optimization API Version 2012-08-10 3179

Amazon DynamoDB Developer Guide

How to identify under-provisioned DynamoDB tables

For most workloads, a table is considered under-provisioned when it constantly consumes more
than 80% of their provisioned capacity.

Burst capacity is a DynamoDB feature that allow customers to temporarily consume more RCUs/
WCUs than originally provisioned (more than the per-second provisioned throughput that was
defined in the table). The burst capacity was created to absorb sudden increases in traffic due
to special events or usage spikes. This burst capacity doesn’t last forever. As soon as the unused
RCUs and WCUs are depleted, you will get throttled if you try to consume more capacity than
provisioned. When your application traffic is getting close to the 80% utilization rate, your risk of
throttling is significantly higher.

The 80% utilization rate rule varies from the seasonality of your data and your traffic growth.
Consider the following scenarios:

• If your traffic has been stable at ~90% utilization rate for the last 12 months, your table has just
the right capacity

• If your application traffic is growing at a rate of 8% monthly in less than 3 months, you will
arrive at 100%

• If your application traffic is growing at a rate of 5% in a little more than 4 months, you will still
arrive at 100%

The results from the queries above provide a picture of your utilization rate. Use them as a guide to
further evaluate other metrics that can help you choose to increase your table capacity as required
(for example: a monthly or weekly growth rate). Work with your operations team to define what is
a good percentage for your workload and your tables.

There are special scenarios where the data is skewed when we analyse it on a daily or weekly basis.
For example, with seasonal applications that have spikes in usage during working hours (but then
drops to almost zero outside of working hours), you could benefit by scheduling auto scaling where
you specify the hours of the day (and the days of the week) to increase the provisioned capacity
and when to reduce it. Instead of aiming for higher capacity so you can cover the busy hours,
you can also benefit from DynamoDB table auto scaling configurations if your seasonality is less
pronounced.

Cost optimization API Version 2012-08-10 3180

https://docs.amazonaws.cn/autoscaling/application/userguide/examples-scheduled-actions.html

Amazon DynamoDB Developer Guide

Note

When you create a DynamoDB auto scaling configuration for your base table, remember to
include another configuration for any GSI that is associated with the table.

How to identify over-provisioned DynamoDB tables

The query results obtained from the scripts above provide the data points required to perform
some initial analysis. If your data set presents values lower than 20% utilization for several
intervals, your table might be over-provisioned. To further define if you need to reduce the number
of WCUs and RCUS, you should revisit the other readings in the intervals.

When your tables contain several low usage intervals, you can really benefit from using auto
scaling policies, either by scheduling auto scaling or just configuring the default auto scaling
policies for the table that are based on utilization.

If you have a workload with low utilization to high throttle ratio (Max(ThrottleEvents)/
Min(ThrottleEvents) in the interval), this could happen when you have a very spiky workload
where traffic increases a lot during some days (or hours), but in general the traffic is consistently
low. In these scenarios it might be beneficial to use scheduled auto scaling.

The Amazon Well-Architected Framework helps cloud architects build secure, high-performing,
resilient, and efficient infrastructure for a variety of applications and workloads. Built around six
pillars—operational excellence, security, reliability, performance efficiency, cost optimization,
and sustainability—Amazon Well-Architected provides a consistent approach for customers and
partners to evaluate architectures and implement scalable designs.

The Amazon Well-Architected Lenses extend the guidance offered by Amazon Well-Architected to
specific industry and technology domains. The Amazon DynamoDB Well-Architected Lens focuses
on DynamoDB workloads. It provides best practices, design principles and questions to assess and
review a DynamoDB workload. Completing an Amazon DynamoDB Well-Architected Lens review
will provide you with education and guidance around recommended design principles as it relates
to each of the Amazon Well-Architected pillars. This guidance is based on our experience working
with customers across various industries, segments, sizes and geographies.

As a direct outcome of the Well-Architected Lens review, you will receive a summary of actionable
recommendations to optimize and improve your DynamoDB workload.

Cost optimization API Version 2012-08-10 3181

https://docs.amazonaws.cn/autoscaling/application/userguide/examples-scheduled-actions.html
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/userguide/lenses.html

Amazon DynamoDB Developer Guide

Conducting the Amazon DynamoDB Well-Architected Lens review

The DynamoDB Well-Architected Lens review is usually performed by an Amazon Solutions
Architect together with the customer, but can also be performed by the customer as a self-service.
While we recommend reviewing all six of the Well-Architected Pillars as part of the Amazon
DynamoDB Well-Architected Lens, you can also decide to prioritize your focus on one or more
pillars first.

Additional information and instructions for conducting an Amazon DynamoDB Well-Architected
Lens review are available in this video and the DynamoDB Well-Architected Lens GitHub page .

The pillars of the Amazon DynamoDB Well-Architected Lens

The Amazon DynamoDB Well-Architected Lens is built around six pillars:

Performance efficiency pillar

The performance efficiency pillar includes the ability to use computing resources efficiently to
meet system requirements, and to maintain that efficiency as demand changes and technologies
evolve.

The primary DynamoDB design principles for this pillar revolve around modeling the data ,
choosing partition keys and sort keys , and defining secondary indexes based on the application
access patterns. Additional considerations include choosing the optimal throughput mode for the
workload, Amazon SDK tuning and, when appropriate, using an optimal caching strategy. To learn
more about these design principles, watch this deep dive video about the performance efficiency
pillar of the DynamoDB Well-Architected Lens.

Cost optimization pillar

The cost optimization pillar focuses on avoiding unnecessary costs.

Key topics include understanding and controlling where money is being spent, selecting the most
appropriate and right number of resource types, analyzing spend over time, designing your data
models to optimize the cost for application-specific access patterns, and scaling to meet business
needs without overspending.

The key cost optimization design principles for DynamoDB revolve around choosing the most
appropriate capacity mode and table class for your tables and avoiding over-provisioning capacity

Conducting the Amazon DynamoDB Well-Architected Lens review API Version 2012-08-10 3182

https://youtu.be/mLAUvJYvBjA
https://github.com/aws-samples/custom-lens-wa-hub/tree/main/DynamoDB
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-relational-modeling.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html#HowItWorks.Partitions.SimpleKey
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/HowItWorks.Partitions.html#HowItWorks.Partitions.CompositeKey
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-indexes.html
https://youtu.be/PuCIy5Weyi8

Amazon DynamoDB Developer Guide

by either using the on-demand capacity mode, or provisioned capacity mode with autoscaling.
Additional considerations include efficient data modeling and querying to reduce the amount of
consumed capacity, reserving portions of the consumed capacity at discounted price, minimizing
item size, identifying and removing unused resources and using TTL to automatically delete aged-
out data at no cost. To learn more about these design principles, watch this deep dive video about
the cost optimization pillar of the DynamoDB Well-Architected Lens.

See Cost optimization for additional information on cost optimization best practices for
DynamoDB.

Operational excellence pillar

The operational excellence pillar focuses on running and monitoring systems to deliver business
value, and continually improving processes and procedures. Key topics include automating
changes, responding to events, and defining standards to manage daily operations.

The main operational excellence design principles for DynamoDB include monitoring DynamoDB
metrics through Amazon CloudWatch and Amazon Config and automatically alert and remediate
when predefined thresholds are breached, or non compliant rules are detected. Additional
considerations are defining DynamoDB resources via infrastructure as a code and leveraging tags
for better organization, identification and cost accounting of your DynamoDB resources. To learn
more about these design principles, watch this deep dive video about the operational excellence
pillar of the DynamoDB Well-Architected Lens.

Reliability pillar

The reliability pillar focuses on ensuring a workload performs its intended function correctly and
consistently when it’s expected to. A resilient workload quickly recovers from failures to meet
business and customer demand. Key topics include distributed system design, recovery planning,
and how to handle change.

The essential reliability design principles for DynamoDB revolve around choosing the backup
strategy and retention based on your RPO and RTO requirements, using DynamoDB global
tables for multi-regional workloads, or cross-region disaster recovery scenarios with low RTO,
implementing retry logic with exponential backoff in the application by configuring and using
these capabilities in the Amazon SDK, and monitoring DynamoDB metrics through Amazon
CloudWatch and automatically alerting and remediating when predefined thresholds are breached.
To learn more about these design principles, watch this deep dive video about the reliability pillar
of the DynamoDB Well-Architected Lens.

The pillars of the Amazon DynamoDB Well-Architected Lens API Version 2012-08-10 3183

https://youtu.be/iuI0HUuw6Jg
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-cost-optimization.html
https://youtu.be/41HUSL9tJa8
https://youtu.be/8AoPBxVQYM8

Amazon DynamoDB Developer Guide

Security pillar

The security pillar focuses on protecting information and systems. Key topics include
confidentiality and integrity of data, identifying and managing who can do what with privilege
management, protecting systems, and establishing controls to detect security events.

The main security design principles for DynamoDB are encrypting data in transit with HTTPS,
choosing the type of keys for data at rest encryption and defining the IAM roles and policies
to authenticate, authorize and provide fine grain access to DynamoDB resources. Additional
considerations include auditing DynamoDB control plane and data plane operations through
Amazon CloudTrail. To learn more about these design principles, watch this deep dive video about
the security pillar of the DynamoDB Well-Architected Lens.

See Security for additional information on security for DynamoDB.

Sustainability pillar

The sustainability pillar focuses on minimizing the environmental impacts of running cloud
workloads. Key topics include a shared responsibility model for sustainability, understanding
impact, and maximizing utilization to minimize required resources and reduce downstream
impacts.

The main sustainability design principles for DynamoDB include identifying and removing unused
DynamoDB resources, avoiding over-provisioning though the usage of on-demand capacity mode
or provisioned capacity-mode with autoscaling, efficient querying to reduce the amount of capacity
being consumed and reduction of the storage footprint by compressing data and by deleting aged-
out data through the use of TTL. To learn more about these design principles, watch this deep dive
video about the sustainability pillar of the DynamoDB Well-Architected Lens.

Best practices for designing and using partition keys effectively
in DynamoDB

The primary key that uniquely identifies each item in an Amazon DynamoDB table can be simple (a
partition key only) or composite (a partition key combined with a sort key).

You should design your application for uniform activity across all partition keys in the table and its
secondary indexes. You can determine the access patterns that your application requires, and read
and write units that each table and secondary index requires.

Partition key design API Version 2012-08-10 3184

https://youtu.be/95prjv2EEXA?si=xvNci2MM856siejv
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/security.html
https://youtu.be/fAfYms7u3EE
https://youtu.be/fAfYms7u3EE

Amazon DynamoDB Developer Guide

Note

Adaptive capacity applies to on-demand mode and provisioned capacity.

Every partition in a DynamoDB table is designed to deliver a maximum capacity of 3,000 read units
per second and 1,000 write units per second. One read unit represents one strongly consistent read
operation per second, or two eventually consistent read operations per second, for an item up to 4
KB in size. One write unit represents one write operation per second for an item up to 1 KB in size.

You must factor in the item size when evaluating the partition throughput limits for your table. For
example, if the table has an item size of 20 KB, a single consistent read operation will consume 5
read units. This means you can concurrently drive 600 consistent read operations per second on
that single item before reaching the partition limits. The total throughput across all partitions in
the table can be constrained by the provisioned throughput in provisioned mode, or by the table
level throughput limit in on-demand mode. See Service Quotas for more information.

Topics

• Designing partition keys to distribute your workload in DynamoDB

• Using write sharding to distribute workloads evenly in your DynamoDB table

• Distributing write activity efficiently during data upload in DynamoDB

Designing partition keys to distribute your workload in DynamoDB

The partition key portion of a table's primary key determines the logical partitions in which a
table's data is stored. This in turn affects the underlying physical partitions. A partition key design
that doesn't distribute I/O requests effectively can create "hot" partitions that result in throttling
and use your provisioned I/O capacity inefficiently.

The optimal usage of a table's provisioned throughput depends not only on the workload patterns
of individual items, but also on the partition key design. This doesn't mean that you must access
all partition key values to achieve an efficient throughput level, or even that the percentage of
accessed partition key values must be high. It does mean that the more distinct partition key values
that your workload accesses, the more those requests will be spread across the partitioned space.
In general, you'll use your provisioned throughput more efficiently as the ratio of partition key
values accessed to the total number of partition key values increases.

Distributing workloads API Version 2012-08-10 3185

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html

Amazon DynamoDB Developer Guide

The following is a comparison of the provisioned throughput efficiency of some common partition
key schemas.

Partition key value Uniformity

User ID, where the application has many users. Good

Status code, where there are only a few
possible status codes.

Bad

Item creation date, rounded to the nearest
time period (for example, day, hour, or
minute).

Bad

Device ID, where each device accesses data at
relatively similar intervals.

Good

Device ID, where even if there are many
devices being tracked, one is by far more
popular than all the others.

Bad

If a single table has only a small number of partition key values, consider distributing your write
operations across more distinct partition key values. In other words, structure the primary key
elements to avoid one "hot" (heavily requested) partition key value that slows overall performance.

For example, consider a table with a composite primary key. The partition key represents the item's
creation date, rounded to the nearest day. The sort key is an item identifier. On a given day, say
2014-07-09, all of the new items are written to that single partition key value (and corresponding
physical partition).

If the table fits entirely into a single partition (considering growth of your data over time), and
if your application's read and write throughput requirements don't exceed the read and write
capabilities of a single partition, your application won't encounter any unexpected throttling as a
result of partitioning.

To use NoSQL Workbench for DynamoDB to help visualize your partition key design, see Building
data models with NoSQL Workbench.

Distributing workloads API Version 2012-08-10 3186

Amazon DynamoDB Developer Guide

Using write sharding to distribute workloads evenly in your DynamoDB
table

One way to better distribute writes across a partition key space in Amazon DynamoDB is to expand
the space. You can do this in several different ways. You can add a random number to the partition
key values to distribute the items among partitions. Or you can use a number that is calculated
based on something that you're querying on.

Sharding using random suffixes

One strategy for distributing loads more evenly across a partition key space is to add a random
number to the end of the partition key values. Then you randomize the writes across the larger
space.

For example, for a partition key that represents today's date, you might choose a random number
between 1 and 200 and concatenate it as a suffix to the date. This yields partition key values
like 2014-07-09.1, 2014-07-09.2, and so on, through 2014-07-09.200. Because you are
randomizing the partition key, the writes to the table on each day are spread evenly across multiple
partitions. This results in better parallelism and higher overall throughput.

However, to read all the items for a given day, you would have to query the items for all the
suffixes and then merge the results. For example, you would first issue a Query request for the
partition key value 2014-07-09.1. Then issue another Query for 2014-07-09.2, and so on,
through 2014-07-09.200. Finally, your application would have to merge the results from all
those Query requests.

Sharding using calculated suffixes

A randomizing strategy can greatly improve write throughput. But it's difficult to read a specific
item because you don't know which suffix value was used when writing the item. To make it easier
to read individual items, you can use a different strategy. Instead of using a random number to
distribute the items among partitions, use a number that you can calculate based upon something
that you want to query on.

Consider the previous example, in which a table uses today's date in the partition key. Now suppose
that each item has an accessible OrderId attribute, and that you most often need to find items by
order ID in addition to date. Before your application writes the item to the table, it could calculate
a hash suffix based on the order ID and append it to the partition key date. The calculation might

Write sharding API Version 2012-08-10 3187

Amazon DynamoDB Developer Guide

generate a number between 1 and 200 that is fairly evenly distributed, similar to what the random
strategy produces.

A simple calculation would likely suffice, such as the product of the UTF-8 code point values for
the characters in the order ID, modulo 200, + 1. The partition key value would then be the date
concatenated with the calculation result.

With this strategy, the writes are spread evenly across the partition key values, and thus across
the physical partitions. You can easily perform a GetItem operation for a particular item and date
because you can calculate the partition key value for a specific OrderId value.

To read all the items for a given day, you still must Query each of the 2014-07-09.N keys (where
N is 1–200), and your application then has to merge all the results. The benefit is that you avoid
having a single "hot" partition key value taking all of the workload.

Note

For a more efficient strategy specifically designed to handle high-volume time series data,
see Time series data.

Distributing write activity efficiently during data upload in DynamoDB

Typically, when you load data from other data sources, Amazon DynamoDB partitions your table
data on multiple servers. You get better performance if you upload data to all the allocated servers
simultaneously.

For example, suppose that you want to upload user messages to a DynamoDB table that uses a
composite primary key with UserID as the partition key and MessageID as the sort key.

When you upload the data, one approach you can take is to upload all message items for each user,
one user after another:

UserID MessageID

U1 1

U1 2

Uploading data efficiently API Version 2012-08-10 3188

Amazon DynamoDB Developer Guide

UserID MessageID

U1 ...

U1 ... up to 100

U2 1

U2 2

U2 ...

U2 ... up to 200

The problem in this case is that you are not distributing your write requests to DynamoDB across
your partition key values. You are taking one partition key value at a time and uploading all of its
items before going to the next partition key value and doing the same.

Behind the scenes, DynamoDB is partitioning the data in your table across multiple servers. To fully
use all the throughput capacity that is provisioned for the table, you must distribute your workload
across your partition key values. By directing an uneven amount of upload work toward items that
all have the same partition key value, you are not fully using all the resources that DynamoDB has
provisioned for your table.

You can distribute your upload work by using the sort key to load one item from each partition key
value, then another item from each partition key value, and so on:

UserID MessageID

U1 1

U2 1

U3 1

... ...

U1 2

U2 2

Uploading data efficiently API Version 2012-08-10 3189

Amazon DynamoDB Developer Guide

UserID MessageID

U3 2

... ...

Every upload in this sequence uses a different partition key value, keeping more DynamoDB servers
busy simultaneously and improving your throughput performance.

Best practices for using sort keys to organize data in
DynamoDB

In an Amazon DynamoDB table, the primary key that uniquely identifies each item in the table can
be composed of a partition key and a sort key.

Well-designed sort keys have two key benefits:

• They gather related information together in one place where it can be queried efficiently. Careful
design of the sort key lets you retrieve commonly needed groups of related items using range
queries with operators such as begins_with, between, >, <, and so on.

• Composite sort keys let you define hierarchical (one-to-many) relationships in your data that you
can query at any level of the hierarchy.

For example, in a table listing geographical locations, you might structure the sort key as follows.

[country]#[region]#[state]#[county]#[city]#[neighborhood]

This would let you make efficient range queries for a list of locations at any one of these levels of
aggregation, from country, to a neighborhood, and everything in between.

Using sort keys for version control

Many applications need to maintain a history of item-level revisions for audit or compliance
purposes and to be able to retrieve the most recent version easily. There is an effective design
pattern that accomplishes this using sort key prefixes:

Sort key design API Version 2012-08-10 3190

Amazon DynamoDB Developer Guide

• For each new item, create two copies of the item: One copy should have a version-number prefix
of zero (such as v0_) at the beginning of the sort key, and one should have a version-number
prefix of one (such as v1_).

• Every time the item is updated, use the next higher version-prefix in the sort key of the updated
version, and copy the updated contents into the item with version-prefix zero. This means that
the latest version of any item can be located easily using the zero prefix.

For example, a parts manufacturer might use a schema like the one illustrated below.

The Equipment_1 item goes through a sequence of audits by various auditors. The results of each
new audit are captured in a new item in the table, starting with version number one, and then
incrementing the number for each successive revision.

When each new revision is added, the application layer replaces the contents of the zero-version
item (having sort key equal to v0_Audit) with the contents of the new revision.

Whenever the application needs to retrieve for the most recent audit status, it can query for the
sort key prefix of v0_.

If the application needs to retrieve the entire revision history, it can query all the items under the
item's partition key and filter out the v0_ item.

This design also works for audits across multiple parts of a piece of equipment, if you include the
individual part-IDs in the sort key after the sort key prefix.

Version control API Version 2012-08-10 3191

Amazon DynamoDB Developer Guide

Best practices for using secondary indexes in DynamoDB

Secondary indexes are often essential to support the query patterns that your application requires.
At the same time, overusing secondary indexes or using them inefficiently can add cost and reduce
performance unnecessarily.

Contents

• General guidelines for secondary indexes in DynamoDB

• Use indexes efficiently

• Choose projections carefully

• Optimize frequent queries to avoid fetches

• Be aware of item-collection size limits when creating local secondary indexes

• Take advantage of sparse indexes

• Examples of sparse indexes in DynamoDB

• Using Global Secondary Indexes for materialized aggregation queries in DynamoDB

• Overloading Global Secondary Indexes in DynamoDB

• Using Global Secondary Index write sharding for selective table queries in DynamoDB

• Pattern design

• Sharding strategy

• Querying the sharded GSI

• Parallel query execution considerations

• Code example

• Using Global Secondary Indexes to create an eventually consistent replica in DynamoDB

General guidelines for secondary indexes in DynamoDB

Amazon DynamoDB supports two types of secondary indexes:

• Global secondary index (GSI)— An index with a partition key and a sort key that can be
different from those on the base table. A global secondary index is considered "global" because
queries on the index can span all of the data in the base table, across all partitions. A global
secondary index has no size limitations and has its own provisioned throughput settings for read
and write activity that are separate from those of the table.

Secondary indexes API Version 2012-08-10 3192

Amazon DynamoDB Developer Guide

• Local secondary index (LSI)—An index that has the same partition key as the base table, but a
different sort key. A local secondary index is "local" in the sense that every partition of a local
secondary index is scoped to a base table partition that has the same partition key value. As a
result, the total size of indexed items for any one partition key value can't exceed 10 GB. Also, a
local secondary index shares provisioned throughput settings for read and write activity with the
table it is indexing.

Each table in DynamoDB can have up to 20 global secondary indexes (default quota) and 5 local
secondary indexes.

Global secondary indexes are often more useful than local secondary indexes. Determining which
type of index to use will also depend on your application's requirements. For a comparison of
global secondary indexes and local secondary indexes, and more information on how to choose
between them, see the section called “Working with indexes”.

The following are some general principles and design patterns to keep in mind when creating
indexes in DynamoDB:

Topics

• Use indexes efficiently

• Choose projections carefully

• Optimize frequent queries to avoid fetches

• Be aware of item-collection size limits when creating local secondary indexes

Use indexes efficiently

Keep the number of indexes to a minimum. Don't create secondary indexes on attributes that
you don't query often. Indexes that are seldom used contribute to increased storage and I/O costs
without improving application performance.

Choose projections carefully

Because secondary indexes consume storage and provisioned throughput, you should keep the
size of the index as small as possible. Also, the smaller the index, the greater the performance
advantage compared to querying the full table. If your queries usually return only a small subset of
attributes, and the total size of those attributes is much smaller than the whole item, project only
the attributes that you regularly request.

General guidelines API Version 2012-08-10 3193

Amazon DynamoDB Developer Guide

If you expect a lot of write activity on a table compared to reads, follow these best practices:

• Consider projecting fewer attributes to minimize the size of items written to the index. However,
this only applies if the size of projected attributes would otherwise be larger than a single write
capacity unit (1 KB). For example, if the size of an index entry is only 200 bytes, DynamoDB
rounds this up to 1 KB. In other words, as long as the index items are small, you can project more
attributes at no extra cost.

• Avoid projecting attributes that you know will rarely be needed in queries. Every time you
update an attribute that is projected in an index, you incur the extra cost of updating the
index as well. You can still retrieve non-projected attributes in a Query at a higher provisioned
throughput cost, but the query cost may be significantly lower than the cost of updating the
index frequently.

• Specify ALL only if you want your queries to return the entire table item sorted by a different
sort key. Projecting all attributes eliminates the need for table fetches, but in most cases, it
doubles your costs for storage and write activity.

Balance the need to keep your indexes as small as possible against the need to keep fetches to a
minimum, as explained in the next section.

Optimize frequent queries to avoid fetches

To get the fastest queries with the lowest possible latency, project all the attributes that you expect
those queries to return. In particular, if you query a local secondary index for attributes that are not
projected, DynamoDB automatically fetches those attributes from the table, which requires reading
the entire item from the table. This introduces latency and additional I/O operations that you can
avoid.

Keep in mind that "occasional" queries can often turn into "essential" queries. If there are attributes
that you don't intend to project because you anticipate querying them only occasionally, consider
whether circumstances might change and you might regret not projecting those attributes after all.

For more information about table fetches, see Provisioned throughput considerations for Local
Secondary Indexes.

Be aware of item-collection size limits when creating local secondary indexes

An item collection is all the items in a table and its local secondary indexes that have the same
partition key. No item collection can exceed 10 GB, so it's possible to run out of space for a
particular partition key value.

General guidelines API Version 2012-08-10 3194

Amazon DynamoDB Developer Guide

When you add or update a table item, DynamoDB updates all local secondary indexes that are
affected. If the indexed attributes are defined in the table, the local secondary indexes grow too.

When you create a local secondary index, think about how much data will be written to it, and
how many of those data items will have the same partition key value. If you expect that the sum
of table and index items for a particular partition key value might exceed 10 GB, consider whether
you should avoid creating the index.

If you can't avoid creating the local secondary index, you must anticipate the item collection
size limit and take action before you exceed it. As a best practice, you should utilize the
ReturnItemCollectionMetrics parameter when writing items to monitor and alert on item
collection sizes that approach the 10GB size limit. Exceeding the maximum item collection size will
result in failed write attempts. You can mitigate the item collection size issues by monitoring and
alerting on item collection sizes before they impact your application.

Note

Once created, you cannot delete a local secondary index.

For strategies on working within the limit and taking corrective action, see Item collection size
limit.

Take advantage of sparse indexes

For any item in a table, DynamoDB writes a corresponding index entry only if the index sort key
value is present in the item. If the sort key doesn't appear in every table item, or if the index
partition key is not present in the item, the index is said to be sparse.

Sparse indexes are useful for queries over a small subsection of a table. For example, suppose that
you have a table where you store all your customer orders, with the following key attributes:

• Partition key: CustomerId

• Sort key: OrderId

To track open orders, you can insert an attribute named isOpen in order items that have not
already shipped. Then when the order ships, you can delete the attribute. If you then create an
index on CustomerId (partition key) and isOpen (sort key), only those orders with isOpen

Sparse indexes API Version 2012-08-10 3195

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ReturnItemCollectionMetrics.html

Amazon DynamoDB Developer Guide

defined appear in it. When you have thousands of orders of which only a small number are open,
it's faster and less expensive to query that index for open orders than to scan the entire table.

Instead of using a type of attribute like isOpen, you could use an attribute with a value that results
in a useful sort order in the index. For example, you could use an OrderOpenDate attribute set to
the date on which each order was placed, and then delete it after the order is fulfilled. That way,
when you query the sparse index, the items are returned sorted by the date on which each order
was placed.

Examples of sparse indexes in DynamoDB

Global secondary indexes are sparse by default. When you create a global secondary index, you
specify a partition key and optionally a sort key. Only items in the base table that contain those
attributes appear in the index.

By designing a global secondary index to be sparse, you can provision it with lower write
throughput than that of the base table, while still achieving excellent performance.

For example, a gaming application might track all scores of every user, but generally only needs to
query a few high scores. The following design handles this scenario efficiently:

Sparse indexes API Version 2012-08-10 3196

Amazon DynamoDB Developer Guide

Here, Rick has played three games and achieved Champ status in one of them. Padma has played
four games and achieved Champ status in two of them. Notice that the Award attribute is present
only in items where the user achieved an award. The associated global secondary index looks like
the following:

The global secondary index contains only the high scores that are frequently queried, which are a
small subset of the items in the base table.

Using Global Secondary Indexes for materialized aggregation queries in
DynamoDB

Maintaining near real-time aggregations and key metrics on top of rapidly changing data is
becoming increasingly valuable to businesses for making rapid decisions. For example, a music
library might want to showcase its most downloaded songs in near-real time.

Consider the following music library table layout:

Aggregation API Version 2012-08-10 3197

Amazon DynamoDB Developer Guide

The table in this example stores songs with the songID as the partition key. You can enable
Amazon DynamoDB Streams on this table and attach a Lambda function to the streams so that
as each song is downloaded, an entry is added to the table with Partition-Key=SongID
and Sort-Key=DownloadID. As these updates are made, they trigger a Lambda function in
DynamoDB Streams. The Lambda function can aggregate and group the downloads by songID
and update the top-level item, Partition-Key=songID, and Sort-Key=Month. Keep in mind
that if a lambda execution fails just after writing the new aggregated value, it may be retried and
aggregate the value more than once, leaving you with an approximate value.

To read the updates in near-real time, with single-digit millisecond latency, use the global
secondary index with query conditions Month=2018-01, ScanIndexForward=False, Limit=1.

Another key optimization used here is that the global secondary index is a sparse index and is
available only on the items that need to be queried to retrieve the data in real time. The global
secondary index can serve additional workflows that need information on the top 10 songs that
were popular, or any song downloaded in that month.

Overloading Global Secondary Indexes in DynamoDB

Although Amazon DynamoDB has a default quota of 20 global secondary indexes per table, in
practice, you can index across far more than 20 data fields. As opposed to a table in a relational
database management system (RDBMS), in which the schema is uniform, a table in DynamoDB can
hold many different kinds of data items at one time. In addition, the same attribute in different
items can contain entirely different kinds of information.

Consider the following example of a DynamoDB table layout that saves a variety of different kinds
of data.

GSI overloading API Version 2012-08-10 3198

Amazon DynamoDB Developer Guide

The Data attribute, which is common to all the items, has different content depending on its
parent item. If you create a global secondary index for the table that uses the table's sort key as
its partition key and the Data attribute as its sort key, you can make a variety of different queries
using that single global secondary index. These queries might include the following:

• Look up an employee by name in the global secondary index, using Employee_Name as the
partition key value and the employee's name (for example Murphy, John) as the sort key value.

• Use the global secondary index to find all employees working in a particular warehouse by
searching on a warehouse ID (such as Warehouse_01).

• Get a list of recent hires, querying the global secondary index on HR_confidential as a
partition key value and using a range of dates in the sort key value.

GSI overloading API Version 2012-08-10 3199

Amazon DynamoDB Developer Guide

Using Global Secondary Index write sharding for selective table queries
in DynamoDB

When you need to query recent data within a specific time window, DynamoDB's requirement
of providing a partition key for most read operations can present a challenge. To address this
scenario, you can implement an effective query pattern using a combination of write sharding and
a Global Secondary Index (GSI).

This approach allows you to efficiently retrieve and analyze time-sensitive data without performing
full table scans, which can be resource-intensive and costly. By strategically designing your table
structure and indexing, you can create a flexible solution that supports time-based data retrieval
while maintaining optimal performance.

Topics

• Pattern design

• Sharding strategy

• Querying the sharded GSI

• Parallel query execution considerations

• Code example

Pattern design

When working with DynamoDB, you can overcome time-based data retrieval challenges by
implementing a sophisticated pattern that combines write sharding and Global Secondary Indexes
to enable flexible, efficient querying across recent data windows.

Structure of the table

• Partition Key (PK): "Username"

Structure of the GSI

• GSI Partition Key (PK_GSI): "ShardNumber#"

• GSI Sort Key (SK_GSI): ISO 8601 timestamp (e.g., "2030-04-01T12:00:00Z")

GSI sharding API Version 2012-08-10 3200

Amazon DynamoDB Developer Guide

Sharding strategy

Assuming you decide to use 10 shards, your shard numbers could range from 0 to 9. When logging
an activity, you would calculate the shard number (for example, by using a hash function on
the user ID and then taking the modulus of the number of shards) and prepend it to the GSI
partition key. This method distributes the entries across different shards, mitigating the risk of hot
partitions.

Querying the sharded GSI

Querying across all shards for items within a particular time range in a DynamoDB table, where
data is sharded across multiple partition keys, requires a different approach than querying a single
partition. Since DynamoDB queries are limited to a single partition key at a time, you can't directly
query across multiple shards with a single query operation. However, you can achieve the desired
result through application-level logic by performing multiple queries, each targeting a specific
shard, and then aggregating the results. The procedure below explains how to do this.

To query and aggregate shards

1. Identify the range of shard numbers used in your sharding strategy. For instance, if you have
10 shards, your shard numbers would range from 0-9.

GSI sharding API Version 2012-08-10 3201

Amazon DynamoDB Developer Guide

2. For each shard, construct and execute a query to fetch items within the desired time range.
These queries can be executed in parallel to improve efficiency. Use the partition key with
the shard number and the sort key with your time range for these queries. Here's an example
query for a single shard:

aws dynamodb query \
 --table-name "YourTableName" \
 --index-name "YourIndexName" \
 --key-condition-expression "PK_GSI = :pk_val AND SK_GSI BETWEEN :start_date
 AND :end_date" \
 --expression-attribute-values '{
 ":pk_val": {"S": "ShardNumber#0"},
 ":start_date": {"S": "2024-04-01"},
 ":end_date": {"S": "2024-04-30"}
 }'

GSI sharding API Version 2012-08-10 3202

Amazon DynamoDB Developer Guide

You would replicate this query for each shard, adjusting the partition key accordingly (e.g.,
"ShardNumber#1", "ShardNumber#2", ..., "ShardNumber#9").

3. Aggregate the results from each query after all queries are complete. Perform this aggregation
in your application code, combining the results into a single dataset that represents the items
from all shards within your specified time range.

Parallel query execution considerations

Each query consumes read capacity from your table or index. If you're using provisioned
throughput, ensure that your table is provisioned with enough capacity to handle the burst of
parallel queries. If you're using on-demand capacity, be mindful of the potential cost implications.

Code example

To execute parallel queries across shards in DynamoDB using Python, you can use the boto3 library,
which is the Amazon Web Services SDK for Python. This example assumes you have boto3 installed
and configured with appropriate Amazon credentials.

The following Python code demonstrates how to perform parallel queries across multiple shards
for a given time range. It uses concurrent futures to execute queries in parallel, reducing the overall
execution time compared to sequential execution.

import boto3
from concurrent.futures import ThreadPoolExecutor, as_completed

Initialize a DynamoDB client
dynamodb = boto3.client('dynamodb')

Define your table name and the total number of shards
table_name = 'YourTableName'
total_shards = 10 # Example: 10 shards numbered 0 to 9
time_start = "2030-03-15T09:00:00Z"
time_end = "2030-03-15T10:00:00Z"

def query_shard(shard_number):
 """
 Query items in a specific shard for the given time range.
 """
 response = dynamodb.query(

GSI sharding API Version 2012-08-10 3203

Amazon DynamoDB Developer Guide

 TableName=table_name,
 IndexName='YourGSIName', # Replace with your GSI name
 KeyConditionExpression="PK_GSI = :pk_val AND SK_GSI BETWEEN :date_start
 AND :date_end",
 ExpressionAttributeValues={
 ":pk_val": {"S": f"ShardNumber#{shard_number}"},
 ":date_start": {"S": time_start},
 ":date_end": {"S": time_end},
 }
)
 return response['Items']

Use ThreadPoolExecutor to query across shards in parallel
with ThreadPoolExecutor(max_workers=total_shards) as executor:
 # Submit a future for each shard query
 futures = {executor.submit(query_shard, shard_number): shard_number for
 shard_number in range(total_shards)}

 # Collect and aggregate results from all shards
 all_items = []
 for future in as_completed(futures):
 shard_number = futures[future]
 try:
 shard_items = future.result()
 all_items.extend(shard_items)
 print(f"Shard {shard_number} returned {len(shard_items)} items")
 except Exception as exc:
 print(f"Shard {shard_number} generated an exception: {exc}")

Process the aggregated results (e.g., sorting, filtering) as needed
For example, simply printing the count of all retrieved items
print(f"Total items retrieved from all shards: {len(all_items)}")

Before running this code, make sure to replace YourTableName and YourGSIName with the actual
table and GSI names from your DynamoDB setup. Also, adjust total_shards, time_start, and
time_end variables according to your specific requirements.

This script queries each shard for items within the specified time range and aggregates the results.

GSI sharding API Version 2012-08-10 3204

Amazon DynamoDB Developer Guide

Using Global Secondary Indexes to create an eventually consistent
replica in DynamoDB

You can use a global secondary index to create an eventually consistent replica of a table. Creating
a replica can allow you to do the following:

• Set different provisioned read capacity for different readers. For example, suppose that you
have two applications: One application handles high-priority queries and needs the highest
levels of read performance, whereas the other handles low-priority queries that can tolerate
throttling of read activity.

If both of these applications read from the same table, a heavy read load from the low-priority
application could consume all the available read capacity for the table. This would throttle the
high-priority application's read activity.

Instead, you can create a replica through a global secondary index whose read capacity you can
set separate from that of the table itself. You can then have your low-priority app query the
replica instead of the table.

• Eliminate reads from a table entirely. For example, you might have an application that captures
a high volume of clickstream activity from a website, and you don't want to risk having reads
interfere with that. You can isolate this table and prevent reads by other applications (see Using
IAM policy conditions for fine-grained access control), while letting other applications read a
replica created using a global secondary index.

To create a replica, set up a global secondary index that has the same key schema as the parent
table, with some or all of the non-key attributes projected into it. In applications, you can direct
some or all read activity to this global secondary index rather than to the parent table. You can
then adjust the provisioned read capacity of the global secondary index to handle those reads
without changing the parent table's provisioned read capacity.

There is always a short propagation delay between a write to the parent table and the time when
the written data appears in the index. In other words, your applications should take into account
that the global secondary index replica is only eventually consistent with the parent table.

You can create multiple global secondary index replicas to support different read patterns. When
you create the replicas, project only the attributes that each read pattern actually requires. An
application can then consume less provisioned read capacity to obtain only the data it needs rather

Creating a replica API Version 2012-08-10 3205

Amazon DynamoDB Developer Guide

than having to read the item from the parent table. This optimization can result in significant cost
savings over time.

Best practices for storing large items and attributes in
DynamoDB

Amazon DynamoDB limits the size of each item that you store in a table to 400 KB (see Item size).
If your application needs to store more data in an item than the DynamoDB size limit permits,
you can try compressing one or more large attributes or breaking the item into multiple items
(efficiently indexed by sort keys). You can also store the item as an object in Amazon Simple
Storage Service (Amazon S3) and store the Amazon S3 object identifier in your DynamoDB item.

As a best practice, you should utilize the ReturnConsumedCapacity parameter when writing
items to monitor and alert on items sizes that approach the 400 KB maximum item size.
Exceeding the maximum item size will result in failed write attempts. DynamoDB will return a
ValidationException error. Monitoring and alerting on item sizes will enable you to mitigate the
items size issues before they impact your application.

Compressing large attribute values

Compressing large attribute values can let them fit within item limits in DynamoDB and reduce
your storage costs. Compression algorithms such as GZIP or LZO produce binary output that you
can then store in a Binary attribute type within the item.

As an example, consider a table that stores messages written by forum users. Such messages often
contain long strings of text, which are candidates for compression. While compression can reduce
item sizes, the downside is that the compressed attribute values are not useful for filtering.

For sample code that demonstrates how to compress such messages in DynamoDB, see the
following:

• Example: Handling binary type attributes using the Amazon SDK for Java document API

• Example: Handling binary type attributes using the Amazon SDK for .NET low-level API

Vertical partitioning

An alternative solution to dealing with large items is to break them down into smaller chunks of
data and associating all relevant items by the partition key value. You can then use a sort key string

Large items API Version 2012-08-10 3206

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/model/ReturnConsumedCapacity.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.Errors.html

Amazon DynamoDB Developer Guide

to identify the associated information stored alongside it. By doing this, and having multiple items
grouped by the same partition key value, you are creating an item collection.

For more information on this approach, see:

• Use vertical partitioning to scale data efficiently in Amazon DynamoDB

• Implement vertical partitioning in Amazon DynamoDB using Amazon Glue

Storing large attribute values in Amazon S3

As mentioned previously, you can also use Amazon S3 to store large attribute values that cannot
fit in a DynamoDB item. You can store them as an object in Amazon S3 and then store the object
identifier in your DynamoDB item.

You can also use the object metadata support in Amazon S3 to provide a link back to the parent
item in DynamoDB. Store the primary key value of the item as Amazon S3 metadata of the object
in Amazon S3. Doing this often helps with maintenance of the Amazon S3 objects.

For example, consider the ProductCatalog table. Items in this table store information about
item price, description, book authors, and dimensions for other products. If you wanted to store an
image of each product that was too large to fit in an item, you could store the images in Amazon
S3 instead of in DynamoDB.

When implementing this strategy, keep the following in mind:

• DynamoDB doesn't support transactions that cross Amazon S3 and DynamoDB. Therefore, your
application must deal with any failures, which could include cleaning up orphaned Amazon S3
objects.

• Amazon S3 limits the length of object identifiers. So you must organize your data in a way that
doesn't generate excessively long object identifiers or violate other Amazon S3 constraints.

For more information about how to use Amazon S3, see the Amazon Simple Storage Service User
Guide.

Using Amazon S3 API Version 2012-08-10 3207

https://aws.amazon.com/blogs/database/use-vertical-partitioning-to-scale-data-efficiently-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/implement-vertical-partitioning-in-amazon-dynamodb-using-aws-glue/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/
https://docs.amazonaws.cn/AmazonS3/latest/userguide/

Amazon DynamoDB Developer Guide

Best practices for handling time series data in DynamoDB

General design principles in Amazon DynamoDB recommend that you keep the number of tables
you use to a minimum. For most applications, a single table is all you need. However, for time
series data, you can often best handle it by using one table per application per period.

Design pattern for time series data

Consider a typical time series scenario, where you want to track a high volume of events. Your write
access pattern is that all the events being recorded have today's date. Your read access pattern
might be to read today's events most frequently, yesterday's events much less frequently, and then
older events very little at all. One way to handle this is by building the current date and time into
the primary key.

The following design pattern often handles this kind of scenario effectively:

• Create one table per period, provisioned with the required read and write capacity and the
required indexes.

• Before the end of each period, prebuild the table for the next period. Just as the current period
ends, direct event traffic to the new table. You can assign names to these tables that specify the
periods they have recorded.

• As soon as a table is no longer being written to, reduce its provisioned write capacity to a lower
value (for example, 1 WCU), and provision whatever read capacity is appropriate. Reduce the
provisioned read capacity of earlier tables as they age. You might choose to archive or delete the
tables whose contents are rarely or never needed.

The idea is to allocate the required resources for the current period that will experience the highest
volume of traffic and scale down provisioning for older tables that are not used actively, therefore
saving costs. Depending on your business needs, you might consider write sharding to distribute
traffic evenly to the logical partition key. For more information, see Using write sharding to
distribute workloads evenly in your DynamoDB table.

Time series table examples

The following is a time series data example in which the current table is provisioned at a higher
read/write capacity and the older tables are scaled down because they are accessed infrequently.

Time series data API Version 2012-08-10 3208

Amazon DynamoDB Developer Guide

Best practices for managing many-to-many relationships in
DynamoDB tables

Adjacency lists are a design pattern that is useful for modeling many-to-many relationships in
Amazon DynamoDB. More generally, they provide a way to represent graph data (nodes and edges)
in DynamoDB.

Many-to-many relationships API Version 2012-08-10 3209

Amazon DynamoDB Developer Guide

Adjacency list design pattern

When different entities of an application have a many-to-many relationship between them, the
relationship can be modeled as an adjacency list. In this pattern, all top-level entities (synonymous
to nodes in the graph model) are represented using the partition key. Any relationships with other
entities (edges in a graph) are represented as an item within the partition by setting the value of
the sort key to the target entity ID (target node).

The advantages of this pattern include minimal data duplication and simplified query patterns to
find all entities (nodes) related to a target entity (having an edge to a target node).

A real-world example where this pattern has been useful is an invoicing system where invoices
contain multiple bills. One bill can belong in multiple invoices. The partition key in this example
is either an InvoiceID or a BillID. BillID partitions have all attributes specific to bills.
InvoiceID partitions have an item storing invoice-specific attributes, and an item for each
BillID that rolls up to the invoice.

The schema looks like the following.

Using the preceding schema, you can see that all bills for an invoice can be queried using the
primary key on the table. To look up all invoices that contain a part of a bill, create a global
secondary index on the table's sort key.

Adjacency lists API Version 2012-08-10 3210

Amazon DynamoDB Developer Guide

The projections for the global secondary index look like the following.

Materialized graph pattern

Many applications are built around understanding rankings across peers, common relationships
between entities, neighbor entity state, and other types of graph style workflows. For these types
of applications, consider the following schema design pattern.

Materialized graphs API Version 2012-08-10 3211

Amazon DynamoDB Developer Guide

Materialized graphs API Version 2012-08-10 3212

Amazon DynamoDB Developer Guide

Materialized graphs API Version 2012-08-10 3213

Amazon DynamoDB Developer Guide

The preceding schema shows a graph data structure that is defined by a set of data partitions
containing the items that define the edges and nodes of the graph. Edge items contain a Target
and a Type attribute. These attributes are used as part of a composite key name "TypeTarget" to
identify the item in a partition in the primary table or in a second global secondary index.

The first global secondary index is built on the Data attribute. This attribute uses global secondary
index-overloading as described earlier to index several different attribute types, namely Dates,
Names, Places, and Skills. Here, one global secondary index is effectively indexing four
different attributes.

As you insert items into the table, you can use an intelligent sharding strategy to distribute item
sets with large aggregations (birthdate, skill) across as many logical partitions on the global
secondary indexes as are needed to avoid hot read/write problems.

The result of this combination of design patterns is a solid datastore for highly efficient real-time
graph workflows. These workflows can provide high-performance neighbor entity state and edge
aggregation queries for recommendation engines, social-networking applications, node rankings,
subtree aggregations, and other common graph use cases.

Materialized graphs API Version 2012-08-10 3214

Amazon DynamoDB Developer Guide

If your use case isn't sensitive to real-time data consistency, you can use a scheduled Amazon EMR
process to populate edges with relevant graph summary aggregations for your workflows. If your
application doesn't need to know immediately when an edge is added to the graph, you can use a
scheduled process to aggregate results.

To maintain some level of consistency, the design could include Amazon DynamoDB Streams and
Amazon Lambda to process edge updates. It could also use an Amazon EMR job to validate results
on a regular interval. This approach is illustrated by the following diagram. It is commonly used
in social networking applications, where the cost of a real-time query is high and the need to
immediately know individual user updates is low.

IT service-management (ITSM) and security applications generally need to respond in real time to
entity state changes composed of complex edge aggregations. Such applications need a system
that can support real-time multiple node aggregations of second- and third-level relationships, or
complex edge traversals. If your use case requires these types of real-time graph query workflows,
we recommend that you consider using Amazon Neptune to manage these workflows.

Materialized graphs API Version 2012-08-10 3215

https://docs.amazonaws.cn/neptune/latest/userguide/

Amazon DynamoDB Developer Guide

Note

If you need to query highly connected datasets or execute queries that need to traverse
multiple nodes (also known as multi-hop queries) with millisecond latency, you should
consider using Amazon Neptune. Amazon Neptune is a purpose-built, high-performance
graph database engine optimized for storing billions of relationships and querying the
graph with millisecond latency.

Best practices for querying and scanning data in DynamoDB

This section covers some best practices for using Query and Scan operations in Amazon
DynamoDB.

Performance considerations for scans

In general, Scan operations are less efficient than other operations in DynamoDB. A Scan
operation always scans the entire table or secondary index. It then filters out values to provide the
result you want, essentially adding the extra step of removing data from the result set.

If possible, you should avoid using a Scan operation on a large table or index with a filter
that removes many results. Also, as a table or index grows, the Scan operation slows. The
Scan operation examines every item for the requested values and can use up the provisioned
throughput for a large table or index in a single operation. For faster response times, design your
tables and indexes so that your applications can use Query instead of Scan. (For tables, you can
also consider using the GetItem and BatchGetItem APIs.)

Alternatively, you can design your application to use Scan operations in a way that minimizes the
impact on your request rate. This can include modeling when it might be more efficient to use a
global secondary index instead of a Scan operation. Further information on this process is in the
following video.

Modeling low velocity access patterns

Avoiding sudden spikes in read activity

When you create a table, you set its read and write capacity unit requirements. For reads, the
capacity units are expressed as the number of strongly consistent 4 KB data read requests per

Querying and scanning API Version 2012-08-10 3216

https://docs.amazonaws.cn/neptune/latest/userguide/
https://www.youtube.com/embed/LM84N-E_b_M

Amazon DynamoDB Developer Guide

second. For eventually consistent reads, a read capacity unit is two 4 KB read requests per second.
A Scan operation performs eventually consistent reads by default, and it can return up to 1 MB
(one page) of data. Therefore, a single Scan request can consume (1 MB page size / 4 KB item
size) / 2 (eventually consistent reads) = 128 read operations. If you request strongly consistent
reads instead, the Scan operation would consume twice as much provisioned throughput—256
read operations.

This represents a sudden spike in usage, compared to the configured read capacity for the
table. This usage of capacity units by a scan prevents other potentially more important
requests for the same table from using the available capacity units. As a result, you likely get a
ProvisionedThroughputExceeded exception for those requests.

The problem is not just the sudden increase in capacity units that the Scan uses. The scan is also
likely to consume all of its capacity units from the same partition because the scan requests read
items that are next to each other on the partition. This means that the request is hitting the same
partition, causing all of its capacity units to be consumed, and throttling other requests to that
partition. If the request to read data is spread across multiple partitions, the operation would not
throttle a specific partition.

The following diagram illustrates the impact of a sudden spike of capacity unit usage by Query
and Scan operations, and its impact on your other requests against the same table.

Avoid spikes API Version 2012-08-10 3217

Amazon DynamoDB Developer Guide

As illustrated here, the usage spike can impact the table's provisioned throughput in several ways:

1. Good: Even distribution of requests and size

Avoid spikes API Version 2012-08-10 3218

Amazon DynamoDB Developer Guide

2. Not as good: Frequent requests in bursts

3. Bad: A few random large requests

4. Bad: Large scan operations

Instead of using a large Scan operation, you can use the following techniques to minimize the
impact of a scan on a table's provisioned throughput.

• Reduce page size

Because a Scan operation reads an entire page (by default, 1 MB), you can reduce the impact of
the scan operation by setting a smaller page size. The Scan operation provides a Limit parameter
that you can use to set the page size for your request. Each Query or Scan request that has a
smaller page size uses fewer read operations and creates a "pause" between each request. For
example, suppose that each item is 4 KB and you set the page size to 40 items. A Query request
would then consume only 20 eventually consistent read operations or 40 strongly consistent
read operations. A larger number of smaller Query or Scan operations would allow your other
critical requests to succeed without throttling.

• Isolate scan operations

DynamoDB is designed for easy scalability. As a result, an application can create tables for
distinct purposes, possibly even duplicating content across several tables. You want to perform
scans on a table that is not taking "mission-critical" traffic. Some applications handle this load
by rotating traffic hourly between two tables—one for critical traffic, and one for bookkeeping.
Other applications can do this by performing every write on two tables: a "mission-critical" table,
and a "shadow" table.

Configure your application to retry any request that receives a response code that indicates you
have exceeded your provisioned throughput. Or, increase the provisioned throughput for your
table using the UpdateTable operation. If you have temporary spikes in your workload that cause
your throughput to exceed, occasionally, beyond the provisioned level, retry the request with
exponential backoff. For more information about implementing exponential backoff, see Error
retries and exponential backoff.

Taking advantage of parallel scans

Many applications can benefit from using parallel Scan operations rather than sequential scans.
For example, an application that processes a large table of historical data can perform a parallel

Parallel scans API Version 2012-08-10 3219

Amazon DynamoDB Developer Guide

scan much faster than a sequential one. Multiple worker threads in a background "sweeper" process
could scan a table at a low priority without affecting production traffic. In each of these examples,
a parallel Scan is used in such a way that it does not starve other applications of provisioned
throughput resources.

Although parallel scans can be beneficial, they can place a heavy demand on provisioned
throughput. With a parallel scan, your application has multiple workers that are all running Scan
operations concurrently. This can quickly consume all of your table's provisioned read capacity. In
that case, other applications that need to access the table might be throttled.

A parallel scan can be the right choice if the following conditions are met:

• The table size is 20 GB or larger.

• The table's provisioned read throughput is not being fully used.

• Sequential Scan operations are too slow.

Choosing TotalSegments

The best setting for TotalSegments depends on your specific data, the table's provisioned
throughput settings, and your performance requirements. You might need to experiment to get it
right. We recommend that you begin with a simple ratio, such as one segment per 2 GB of data. For
example, for a 30 GB table, you could set TotalSegments to 15 (30 GB / 2 GB). Your application
would then use 15 workers, with each worker scanning a different segment.

You can also choose a value for TotalSegments that is based on client resources. You can set
TotalSegments to any number from 1 to 1000000, and DynamoDB lets you scan that number
of segments. For example, if your client limits the number of threads that can run concurrently,
you can gradually increase TotalSegments until you get the best Scan performance with your
application.

Monitor your parallel scans to optimize your provisioned throughput use, while also making sure
that your other applications aren't starved of resources. Increase the value for TotalSegments if
you don't consume all of your provisioned throughput but still experience throttling in your Scan
requests. Reduce the value for TotalSegments if the Scan requests consume more provisioned
throughput than you want to use.

Parallel scans API Version 2012-08-10 3220

Amazon DynamoDB Developer Guide

Best practices for DynamoDB table design

General design principles in Amazon DynamoDB recommend that you keep the number of tables
you use to a minimum. In the majority of cases, we recommend that you consider using a single
table. However if a single or small number of tables are not viable, these guidelines may be of use.

• The per account limit cannot be increased above 10,000 tables per account. If your application
requires more tables, plan for distributing the tables across multiple accounts. For more
information see service, account, and table quotas in Amazon DynamoDB.

• Consider control plane limits for concurrent control plane operations that might impact your
table management.

• Work with Amazon solution architects to validate your design patterns for multi-tenant designs.

Using DynamoDB global tables

Global tables build on Amazon DynamoDB’s global footprint to provide you with a fully
managed, multi-Region, and multi-active database that can deliver fast and local, read and write
performance for massively scaled, global applications. Global tables replicate your DynamoDB
tables automatically across your choice of Amazon Web Services Regions. No application changes
are required because global tables use existing DynamoDB APIs. There are no upfront costs or
commitments for using global tables, and you pay only for the resources you use.

This guide explains how to use DynamoDB global tables effectively. It provides key facts about
global tables, explains the feature’s primary use cases, describes the two consistency modes,
introduces a taxonomy of three different write models you should consider, walks through the four
main request routing choices you might implement, discusses ways to evacuate a Region that’s live
or a Region that’s offline, explains how to think about throughput capacity planning, and provides
a checklist of things to consider when you deploy global tables.

This guide fits into a larger context of Amazon multi-Region deployments, as covered in the
Amazon Multi-Region Fundamentals whitepaper and the Data resiliency design patterns with
Amazon video.

Topics

• Key facts about DynamoDB global table design

• Key facts about MREC

• Key facts about MRSC

Table design API Version 2012-08-10 3221

ServiceQuotas.html#limits-tables
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-multi-region-fundamentals/introduction.html
https://www.youtube.com/watch?v=7IA48SOX20c
https://www.youtube.com/watch?v=7IA48SOX20c

Amazon DynamoDB Developer Guide

• MREC DynamoDB global table use cases

• Write modes with DynamoDB global tables

• Routing strategies in DynamoDB

• Evacuation processes

• Throughput capacity planning for DynamoDB global tables

• Preparation checklist for DynamoDB global tables

• Conclusion and resources

Key facts about DynamoDB global table design

• There are two versions of global tables: the current version Global Tables version 2019.11.21
(Current) (sometimes called "V2"), and Global tables version 2017.11.29 (Legacy) (sometimes
called "V1"). This guide focuses exclusively on the current version.

• DynamoDB (without global tables) is a Regional service, which means that it is highly available
and intrinsically resilient to failures of infrastructure, including the failure of an entire
Availability Zone. A single-Region DynamoDB table is designed for 99.99% availability. For more
information, see the DynamoDB service-level agreement (SLA).

• A DynamoDB global table replicates its data between two or more Regions. A multi-Region
DynamoDB table is designed for 99.999% availability. With proper planning, global tables can
help create an architecture that is resilient to Regional failures.

• DynamoDB doesn’t have a global endpoint. All requests are made to a Regional endpoint that
accesses the global table instance that’s local to that Region.

• Calls to DynamoDB should not go across Regions. The best practice is for an application that
is homed to one Region to directly access only the local DynamoDB endpoint for its Region. If
problems are detected within a Region (in the DynamoDB layer or in the surrounding stack),
end user traffic should be routed to a different application endpoint that’s hosted in a different
Region. Global tables ensure that the application homed in every Region has access to the same
data.

Consistency modes

When you create a global table, you configure its consistency mode. Global tables support two
consistency modes: multi-Region eventual consistency (MREC) and multi-Region strong consistency
(MRSC) which was introduced in June 2025.

Key facts API Version 2012-08-10 3222

https://aws.amazon.com/dynamodb/sla/

Amazon DynamoDB Developer Guide

If you don't specify a consistency mode when you create a global table, the global table defaults to
MREC. A global table can't contain replicas that are configured with different consistency modes.
You can't change a global table's consistency mode after its creation.

Key facts about MREC

• Global tables that use MRSC also employ an active-active replication model. From the
perspective of DynamoDB, the table in each Region has equal standing to accept read and write
requests. After receiving a write request, the local replica table replicates the write operation to
other participating remote Regions in the background.

• Items are replicated individually. Items that are updated within a single transaction might not be
replicated together.

• Each table partition in the source Region replicates its write operations in parallel with every
other partition. The sequence of write operations within a remote Region might not match the
sequence of write operations that happened within the source Region. For more information
about table partitions, see the blog post Scaling DynamoDB: How partitions, hot keys, and split
for heat impact performance.

• A newly written item is usually propagated to all replica tables within a second. Nearby Regions
tend to propagate faster.

• Amazon CloudWatch provides a ReplicationLatency metric for each Region pair. It is
calculated by looking at arriving items, comparing their arrival time with their initial write time,
and computing an average. Timings are stored within CloudWatch in the source Region. Viewing
the average and maximum timings can be useful for determining the average and worst-case
replication lag. There is no SLA on this latency.

• If an individual item is updated at about the same time (within this ReplicationLatency
window) in two different Regions, and the second write operation happens before the first write
operation was replicated, there’s a potential for write conflicts. Global tables that use MREC
resolve such conflicts by using a last writer wins mechanism, based on the timestamp of the
write operations. The first operation “loses” to the second operation. These conflicts aren’t
recorded in CloudWatch or Amazon CloudTrail.

• Each item has a last write timestamp held as a private system property. The last writer wins
approach is implemented by using a conditional write operation that requires the incoming
item’s timestamp to be greater than the existing item’s timestamp.

• A global table replicates all items to all participating Regions. If you want to have different
replication scopes, you can create multiple global tables and assign each table different
participating Regions.

Key facts about MREC API Version 2012-08-10 3223

https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/

Amazon DynamoDB Developer Guide

• The local Region accepts write operations even if the replica Region is offline or
ReplicationLatency grows. The local table continues to attempt replicating items to the
remote table until each item succeeds.

• In the unlikely event that a Region goes fully offline, when it comes back online later, all pending
outbound and inbound replications will be retried. No special action is required to bring the
tables back in sync. The last writer wins mechanism ensures that the data eventually becomes
consistent.

• You can add a new Region to a DynamoDB MREC table at any time. DynamoDB handles the initial
sync and ongoing replication. You can also remove a Region (even the original Region), and this
will delete the local table in that Region.

Key facts about MRSC

• Global tables that use MRSC also employ an active-active replication model. From the
perspective of DynamoDB, the table in each Region has equal standing to accept read and write
requests. Item changes in an MRSC global table replica are synchronously replicated to at least
one other Region before the write operation returns a successful response.

• Strongly consistent read operations on any MRSC replica always return the latest version of an
item. Conditional write operations always evaluate the condition expression against the latest
version of an item. Updates always operate against the latest version of an item.

• Eventually consistent read operations on an MRSC replica might not include changes that
recently occurred in another Region, and might not even include changes that very recently
occurred in the same Region.

• A write operation fails with a ReplicatedWriteConflictException exception when it
attempts to modify an item that is already being modified in another Region. Write operations
that fail with the ReplicatedWriteConflictException exception can be retried and will
succeed if the item is no longer being modified in another Region.

• With MRSC, latencies are higher for write operations and for strongly consistent read operations.
These operations require cross-Region communication. This communication can add latency
that increases based on the round-trip latency between the Region being accessed and the
nearest Region participating in the global table. For more information, see the Amazon re:Invent
2024 presentation, Multi-Region strong consistency with DynamoDB global tables. Eventually
consistent read operations experience no extra latency. There is an open source tester tool that
lets you experimentally calculate these latencies with your Regions.

• Items are replicated individually. Global tables using MRSC do not support the transaction APIs.

Key facts about MRSC API Version 2012-08-10 3224

https://www.youtube.com/watch?v=R-nTs8ZD8mA
https://github.com/awslabs/amazon-dynamodb-tools/tree/main/tester

Amazon DynamoDB Developer Guide

• A MRSC global table must be deployed in exactly three Regions. You can configure a MRSC global
table with three replicas, or with two replicas and one witness. A witness is a component of an
MRSC global table that contains recent data written to global table replicas. A witness provides
an optional alternative to a full replica while supporting MRSC's availability architecture. You
can't perform read or write operations on a witness. A witness doesn't incur storage or write
costs. A witness is located within a different Region from the two replicas.

• To create an MRSC global table, you add one replica and a witness, or add two replicas to an
existing DynamoDB table that contains no data. You cannot add additional replicas to an existing
MRSC global table. You can't delete a single replica or a witness from an MRSC global table. You
can delete two replicas, or delete one replica and a witness, from an MRSC global table. The
second scenario converts the remaining replica to a single-Region DynamoDB table.

• You can determine whether an MRSC global table has a witness configured, and which Region
in which it's configured, from the output of the DescribeTable API. The witness is owned and
managed by DynamoDB and doesn't appear in your Amazon Web Services account in the Region
where it's configured.

• MRSC global tables are available in the following Region sets:

• US Region set: US East (N. Virginia), US East (Ohio), US West (Oregon)

• EU Region set: Europe (Ireland), Europe (London), Europe (Paris), Europe (Frankfurt)

• AP Region set: Asia Pacific (Tokyo), Asia Pacific (Seoul), and Asia Pacific (Osaka)

• MRSC global tables can't span Region sets. For example, an MRSC global table can't contain
replicas from both US and EU Region sets.

• Time to Live (TTL) isn't supported for MRSC global tables.

• Local secondary indexes (LSIs) aren't supported for MRSC global tables.

• CloudWatch Contributor Insights information is only reported for the Region in which an
operation occurred.

• The local Region accepts all read and write operations as long as there is a second Region that
hosts a replica or witness to establish quorum. If a second Region isn't available, the local Region
can only service eventually consistent reads.

• In the unlikely event that a Region goes fully offline, when it comes back online later, it will
automatically catch up. Until it's caught up, write operations and strongly consistent read
operations only to the catching up Region will return errors while requests to other Regions will
continue to perform normally. Eventually consistent read operations to the catching up Region
will return the data that has so far been propagated into the Region, with usual local consistency

Key facts about MRSC API Version 2012-08-10 3225

Amazon DynamoDB Developer Guide

behavior between the leader node and local replicas. No special action is required to bring the
tables back in sync.

MREC DynamoDB global table use cases

MREC global tables provides these benefits:

• Lower-latency read operations. Place a copy of the data closer to the end user to reduce
network latency during read operations. The data is kept as fresh as the ReplicationLatency
value.

• Lower-latency write operations. You can write to a nearby region to reduce network latency
and the time taken to achieve the write. The write traffic must be carefully routed to ensure no
conflicts. Techniques for routing are discussed in more detail in Routing strategies in DynamoDB.

• Seamless Region migration. You can add a new Region and delete the old Region to migrate a
deployment from one Region to another without downtime at the data layer.

MREC and MRSC global tables both provide this benefit:

• Increased resiliency and disaster recovery. If a Region has degraded performance or a full
outage, you can evacuate it. To evacuate means moving away some or all requests going to that
Region. Using global tables increases the DynamoDB SLA for monthly uptime percentage from
99.99% to 99.999%. Using MREC supports a recovery point objective (RPO) and recovery time
objective (RTO) measured in seconds. Using MRSC supports an RPO of zero.

For example, Fidelity Investments presented at re:Invent 2022 on how they use DynamoDB
global tables for their order management system. Their goal was to achieve reliably low latency
processing at a scale they couldn't achieve with on-premises processing while also maintaining
resilience to Availability Zone and Regional failures.

If your goal is resiliency and disaster recovery, MRSC tables have higher write latencies and higher
strongly consistent read latencies, but support an RPO of zero. MREC global tables support an RPO
equal to the replication delay between replicas, usually a few seconds depending on the replica
Regions.

Use cases API Version 2012-08-10 3226

https://aws.amazon.com/dynamodb/sla/

Amazon DynamoDB Developer Guide

Write modes with DynamoDB global tables

Global tables are always active-active at the table level. However, especially for MREC tables,
you might want to treat them as active-passive by controlling how you route write requests. For
example, you might decide to route write requests to a single Region to avoid potential write
conflicts that can happen with MREC tables.

There are three main managed write patterns, as explained in the next three sections. You should
consider which write pattern fits your use case. This choice affects how you route requests,
evacuate a Region, and handle disaster recovery. The guidance in later sections depends on your
application’s write mode.

Write to any Region mode (no primary)

The write to any Region mode, illustrated in the following diagram, is fully active-active and
doesn’t impose restrictions on where a write may occur. Any Region may accept a write at any time.
This is the simplest mode, but it can only be used with some types of applications. This mode is
suitable for all MRSC tables. It’s also suitable for MREC tables when all writers are idempotent, and
therefore safely repeatable so that concurrent or repeated write operations across Regions are not
in conflict. For example, when a user updates their contact data. This mode also works well for a
special case of being idempotent, an append-only dataset where all writes are unique inserts under
a deterministic primary key. Lastly, this mode is suitable for MREC where the risk of conflicting
writes would be acceptable.

Write modes API Version 2012-08-10 3227

Amazon DynamoDB Developer Guide

The write to any Region mode is the most straightforward architecture to implement. Routing is
easier because any Region can be the write target at any time. Failover is easier, because with MRSC
tables, the items are always synchronized, and with MRSC tables, any recent writes can be replayed
any number of times to any secondary Region. Where possible, you should design for this write
mode.

For example, several video streaming services use global tables for tracking bookmarks, reviews,
watch status flags, and so on. These deployments use MREC tables because they need replicas
scattered around the world, with each replica providing low-latency read and write operations.
These deployments can use the write to any Region mode as long as they ensure that every write
operation is idempotent. This will be the case if every update―for example, setting a new latest
time code, assigning a new review, or setting a new watch status―assigns the user’s new state
directly, and the next correct value for an item doesn’t depend on its current value. If, by chance,
the user’s write requests are routed to different Regions, the last write operation will persist and
the global state will settle according to the last assignment. Read operations in this mode will
eventually become consistent, delayed by the latest ReplicationLatency value.

Write modes API Version 2012-08-10 3228

Amazon DynamoDB Developer Guide

In another example, a financial services firm uses global tables as part of a system to maintain
a running tally of debit card purchases for each customer, to calculate that customer’s cash-
back rewards. They want to keep a RunningBalance item per customer. This write mode is not
naturally idempotent because as transactions stream in, they modify the balance by using an ADD
expression where the new correct value depends on the current value. By using MRSC tables they
can still write to any Region, because every ADD call always operates against the very latest value of
the item.

A third example involves a company that provides online ad placement services. This company
decided that a low risk of data loss would be acceptable to achieve the design simplifications of
the write to any Region mode. When they serve ads, they have just a few milliseconds to retrieve
enough metadata to determine which ad to show, and then to record the ad impression so they
don’t repeat the same ad soon. They use global tables to get both low-latency read operations
for end users across the world and low-latency write operations. They record all ad impressions
for a user within a single item, which is represented as a growing list. They use one item instead
of appending to an item collection, so they can remove older ad impressions as part of each write
operation without paying for a delete operation. This write operation is not idempotent; if the
same end user sees ads served out of multiple Regions at approximately the same time, there’s a
chance that one write operation for an ad impression could overwrite another. The risk is that a
user might see an ad repeated once in a while. They decided that this is acceptable.

Write to one Region (single primary)

The write to one Region mode, illustrated in the following diagram, is active-passive and routes all
table writes to a single active region. Note that DynamoDB doesn’t have a notion of a single active
region; the application routing outside DynamoDB manages this. The write to one Region mode
works well for MREC tables that need to avoid write conflicts by ensuring that write operations
flow only to one Region at a time. This write mode helps when you want to use conditional
expressions and can't use MRSC for some reason, or when you need to perform transactions. These
expressions aren’t possible unless you know that you’re acting against the latest data, so they
require sending all write requests to a single Region that has the latest data.

When you use an MRSC table, you might choose to generally write to one Region for convenience.
For example, this can help minimize your infrastructure build-out beyond DynamoDB. The write
mode would still be write to any Region because with MRSC you could safely write to any Region at
any time without concern of conflict resolution that would cause MREC tables to choose to write to
one Region.

Write modes API Version 2012-08-10 3229

Amazon DynamoDB Developer Guide

Eventually consistent reads can go to any replica Regions to achieve lower latencies. Strongly
consistent reads must go to the single primary Region.

It’s sometimes necessary to change the active Region in response to a Regional failure. Some users
change the currently active Region on a regular schedule, such as implementing a follow-the-sun
deployment. This places the active Region near the geography that has the most activity (usually
where it’s daytime, thus the name), which results in the lowest latency read and write operations.
It also has the side benefit of calling the Region-changing code daily and making sure that it’s well
tested before any disaster recovery.

The passive Region(s) may keep a downscaled set of infrastructure surrounding DynamoDB that
gets built up only if it becomes the active Region. This guide doesn’t cover pilot light and warm
standby designs. For a more information, see Disaster Recovery (DR) Architecture on Amazon, Part
III: Pilot Light and Warm Standby.

Using the write to one Region mode works well when you use global tables for low-latency globally
distributed read operations. An example is a large social media company that needs to have the

Write modes API Version 2012-08-10 3230

https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-iii-pilot-light-and-warm-standby/
https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-iii-pilot-light-and-warm-standby/

Amazon DynamoDB Developer Guide

same reference data available in every Region around the world. They don’t update the data
often, but when they do, they write to only one Region to avoid any potential write conflicts. Read
operations are always allowed from any Region.

As another example, consider the financial services company discussed earlier that implemented
the daily cash-back calculation. They used write to any Region mode to calculate the balance
but write to one Region mode to track payments. This work requires transactions, which aren't
supported in MRSC tables, so it works better with a separate MREC table and write to one Region
mode.

Write to your Region (mixed primary)

The write to your Region write mode, illustrated in the following diagram, works with MREC tables.
It assigns different data subsets to different home Regions and allows write operations to an item
only through its home Region. This mode is active-passive but assigns the active Region based on
the item. Every Region is primary for its own non-overlapping dataset, and write operations must
be guarded to ensure proper locality.

This mode is similar to write to one Region except that it enables lower-latency write operations,
because the data associated with each user can be placed in closer network proximity to that user.
It also spreads the surrounding infrastructure more evenly between Regions and requires less work
to build out infrastructure during a failover scenario, because all Regions have a portion of their
infrastructure already active.

Write modes API Version 2012-08-10 3231

Amazon DynamoDB Developer Guide

You can determine the home Region for items in several ways:

• Intrinsic: Some aspect of the data, such as a special attribute or a value embedded within its
partition key, makes its home Region clear. This technique is described in the blog post Use
Region pinning to set a home Region for items in an Amazon DynamoDB global table.

• Negotiated: The home Region of each dataset is negotiated in some external manner, such as
with a separate global service that maintains assignments. The assignment may have a finite
duration after which it’s subject to renegotiation.

• Table-oriented: Instead of creating a single replicating global table, you create the same number
of global tables as replicating Regions. Each table’s name indicates its home Region. In standard
operations, all data is written to the home Region while other Regions keep a read-only copy.
During a failover, another Region temporarily adopts write duties for that table.

Write modes API Version 2012-08-10 3232

https://aws.amazon.com/blogs/database/use-region-pinning-to-set-a-home-region-for-items-in-an-amazon-dynamodb-global-table/
https://aws.amazon.com/blogs/database/use-region-pinning-to-set-a-home-region-for-items-in-an-amazon-dynamodb-global-table/

Amazon DynamoDB Developer Guide

For example, imagine that you’re working for a gaming company. You need low-latency read and
write operations for all gamers around the world. You assign each gamer to the Region that’s
closest to them. That Region takes all their read and write operations, ensuring strong read-after-
write consistency. However, when a gamer travels or if their home Region suffers an outage, a
complete copy of their data is available in alternative Regions, and the gamer can be assigned to a
different home Region.

As another example, imagine that you’re working at a video conferencing company. Each
conference call’s metadata is assigned to a particular Region. Callers can use the Region that’s
closest to them for lowest latency. If there’s a Region outage, using global tables allows quick
recovery because the system can move the processing of the call to a different Region where a
replicated copy of the data already exists.

To summarize

• Write to any Region mode is suitable for MRSC tables and idempotent calls to MREC tables.

• Write to one Region mode is suitable for non-idempotent calls to MREC tables.

• Write to your Region mode is suitable for non-idempotent calls to MREC tables, where it's
important to have clients write to a Region that’s close to them.

Routing strategies in DynamoDB

Perhaps the most complex piece of a global table deployment is managing request routing.
Requests must first go from an end user to a Region that’s chosen and routed in some manner. The
request encounters some stack of services in that Region, including a compute layer that perhaps
consists of a load balancer backed by an Amazon Lambdafunction, container, or Amazon Elastic
Compute Cloud (Amazon EC2) node, and possibly other services including another database. That
compute layer communicates with DynamoDB It should do that by using the local endpoint for
that Region. The data in the global table replicates to all other participating Regions, and each
Region has a similar stack of services around its DynamoDB table.

The global table provides each stack in the various Regions with a local copy of the same data. You
might consider designing for a single stack in a single Region and anticipate making remote calls
to a secondary Region’s DynamoDB endpoint if there’s an issue with the local DynamoDB table.
This is not best practice. If there’s an issue in one Region that’s caused by DynamoDB (or, more
likely, caused by something else in the stack or by another service that depends on DynamoDB), it’s
best to route the end user to another Region for processing and use that other Region’s compute

Routing strategies in DynamoDB API Version 2012-08-10 3233

Amazon DynamoDB Developer Guide

layer, which will talk to its local DynamoDB endpoint. This approach routes around the problematic
Region entirely. To ensure resiliency, you need replication across multiple Regions: replication of
the compute layer as well as the data layer.

There are numerous alternative techniques to route an end user request to a Region for processing.
The optimum choice depends on your write mode and your failover considerations. This section
discusses four options: client-driven, compute-layer, Route 53, and Global Accelerator.

Client-driven request routing

With client-driven request routing, illustrated in the following diagram, the end user client (an
application, a web page with JavaScript, or another client) keeps track of the valid application
endpoints (for example, an Amazon API Gateway endpoint rather than a literal DynamoDB
endpoint) and uses its own embedded logic to choose the Region to communicate with. It might
choose based on random selection, lowest observed latencies, highest observed bandwidth
measurements, or locally performed health checks.

As an advantage, client-driven request routing can adapt to things such as real-world public
internet traffic conditions to switch Regions if it notices any degraded performance. The client
must be aware of all potential endpoints, but launching a new Regional endpoint is not a frequent
occurrence.

With write to any Region mode, a client can unilaterally select its preferred endpoint. If its access to
one Region becomes impaired, the client can route to another endpoint.

With the write to one Region mode, the client will need a mechanism to route its writes to the
currently active region. This could be as basic as empirically testing which region is presently

Routing strategies in DynamoDB API Version 2012-08-10 3234

Amazon DynamoDB Developer Guide

accepting writes (noting any write rejections and falling back to an alternate) or as complex as
calling a global coordinator to query for the current application state (perhaps built on the Amazon
Application Recovery Controller (ARC) (ARC) routing control which provides a 5-region quorum-
driven system to maintain global state for needs such as this). The client can decide if reads
can go to any Region for eventual consistency or must be routed to the active region for strong
consistency. For further information see How Route 53 works.

With the write to your Region mode, the client needs to determine the home region for the data set
it’s working against. For example, if the client corresponds to a user account and each user account
is homed to a Region, the client can request the appropriate endpoint from a global login system.

For example, a financial services company that helps users manage their business finances via the
web could use global tables with a write to your Region mode. Each user must login to a central
service. That service returns credentials and the endpoint for the Region where those credentials
will work. The credentials are valid for a short time. After that the webpage auto-negotiates a new
login, which provides an opportunity to potentially redirect the user’s activity to a new Region.

Compute-layer request routing

With compute-layer request routing, illustrated in the following diagram, the code that runs in
the compute layer determines whether to process the request locally or pass it to a copy of itself
that’s running in another Region. When you use the write to one Region mode, the compute layer
might detect that it’s not the active Region and allow local read operations while forwarding all
write operations to another Region. This compute layer code must be aware of data topology and
routing rules, and enforce them reliably, based on the latest settings that specify which Regions are
active for which data. The outer software stack within the Region doesn’t have to be aware of how
read and write requests are routed by the micro service. In a robust design, the receiving Region
validates whether it is the current primary for the write operation. If it isn’t, it generates an error
that indicates that the global state needs to be corrected. The receiving Region might also buffer
the write operation for a while if the primary Region is in the process of changing. In all cases, the
compute stack in a Region writes only to its local DynamoDB endpoint, but the compute stacks
might communicate with one another.

Routing strategies in DynamoDB API Version 2012-08-10 3235

https://docs.aws.amazon.com/r53recovery/latest/dg/introduction-how-it-works.html

Amazon DynamoDB Developer Guide

The Vanguard Group uses a system called Global Orchestration and Status Tool (GOaST) and
a library called Global Multi-Region library (GMRlib) for this routing process, as presented at
re:Invent 2022. They use a follow-the-sun single primary model. GOaST maintains the global state,
similar to the ARC routing control discussed in the previous section. It uses a global table to track
which Region is the primary Region and when the next primary switch is scheduled. All read and
write operations go through GMRlib, which coordinates with GOaST. GMRlib allows read operations
to be performed locally, at low latency. For write operations, GMRlib checks if the local Region is
the current primary Region. If so, the write operation completes directly. If not, GMRlib forwards
the write task to the GMRlib in the primary Region. That receiving library confirms that it also
considers itself the primary Region and raises an error if it isn’t, which indicates a propagation
delay with the global state. This approach provides a validation benefit by not writing directly to a
remote DynamoDB endpoint.

Route 53 request routing

Amazon Application Recovery Controller (ARC) is a Domain Name Service (DNS) technology.
With Route 53, the client requests its endpoint by looking up a well-known DNS domain name,

Routing strategies in DynamoDB API Version 2012-08-10 3236

https://www.youtube.com/watch?v=ilgpzlE7Hds&t=1882s

Amazon DynamoDB Developer Guide

and Route 53 returns the IP address corresponding to the regional endpoint(s) it thinks most
appropriate. This is illustrated in the following diagram. Route 53 has a long list of routing policies
it uses to determine the appropriate Region. It also can do failover routing to route traffic away
from Regions that fail health checks.

With write to any Region mode, or if combined with the compute-layer request routing on the
backend, Route 53 can be given full access to return the Region based on any complex internal
rules such as the Region in closest network proximity, or closest geographic proximity, or any other
choice.

With write to one Region mode, you can configure Route 53 to return the currently active Region
(using Route 53 ARC). If the client wants to connect to a passive Region (for example, for read
operations), it could look up a different DNS name.

Note

Clients cache the IP addresses in the response from Route 53 for a time indicated by the
time to live (TTL) setting on the domain name. A longer TTL extends the recovery time
objective (RTO) for all clients to recognize the new endpoint. A value of 60 seconds is
typical for failover use. Not all software perfectly adheres to DNS TTL expiration, and there
might be multiple levels of DNS caching, such as at the operating system, virtual machine,
and application.

Routing strategies in DynamoDB API Version 2012-08-10 3237

Amazon DynamoDB Developer Guide

With write to your Region mode, it’s best to avoid Route 53 unless you're also using compute-layer
request routing.

Global Accelerator request routing

With Amazon Global Accelerator, illustrated in the following diagram, a client looks up the well-
known domain name in Route 53. However, instead of getting back an IP address that corresponds
to a Regional endpoint, the client receives an anycast static IP address which routes to the nearest
Amazon edge location. Starting from that edge location, all traffic gets routed on the private
Amazon network and to some endpoint (such as a load balancer or API Gateway) in a Region
chosen by routing rules that are maintained within Global Accelerator. Compared with routing
based on Route 53 rules, Global Accelerator request routing has lower latencies because it reduces
the amount of traffic on the public internet. In addition, because Global Accelerator doesn’t
depend on DNS TTL expiration to change routing rules, it can adjust routing more quickly.

With write to any Region mode, or if combined with the compute-layer request routing on the back-
end, Global Accelerator works seamlessly. The client connects to the nearest edge location and
need not be concerned with which Region receives the request.

With write to one Region Global Accelerator routing rules must send requests to the currently
active Region. You can use health checks that artificially report a failure on any Region that’s not
considered by your global system to be the active Region. As with DNS, it’s possible to use an
alternative DNS domain name for routing read requests if the requests can be from any Region.

With write to your Region mode, it’s best to avoid Global Accelerator unless you're also using
compute-layer request routing.

Routing strategies in DynamoDB API Version 2012-08-10 3238

https://aws.amazon.com/global-accelerator/

Amazon DynamoDB Developer Guide

Evacuation processes

Evacuating a Region is the process of migrating activity, usually read and write activity or read
activity, away from that Region.

Evacuating a live Region

You might decide to evacuate a live Region for a number of reasons: as part of usual business
activity (for example, if you’re using a follow-the-sun, write to one Region mode), due to a business
decision to change the currently active Region, in response to failures in the software stack outside
DynamoDB, or because you’re encountering general issues such as higher than usual latencies
within the Region.

With write to any Region mode, evacuating a live Region is straightforward. You can route traffic
to alternative Regions by using any routing system and let the write operations in the evacuated
Region replicate over as usual.

The write to one Region and write to your Region modes are usually used with MREC tables.
Therefore, you must make sure that all write operations to the active Region have been fully
recorded, stream processed, and globally propagated before starting write operations in the new
active Region, to ensure that future write operations are processed against the latest version of the
data.

Let’s say that Region A is active and Region B is passive (either for the full table or for items
that are homed in Region A). The typical mechanism to perform an evacuation is to pause write
operations to A, wait long enough for those operations to have fully propagated to B, update
the architecture stack to recognize B as active, and then resume write operations to B. There is
no metric to indicate with absolute certainty that Region A has fully replicated its data to Region
B. If Region A is healthy, pausing write operations to Region A and waiting 10 times the recent
maximum value of the ReplicationLatency metric would typically be sufficient to determine
that replication is complete. If Region A is unhealthy and shows other areas of increased latencies,
you would choose a larger multiple for the wait time.

Evacuating an offline Region

There’s a special case to consider: What if Region A goes fully offline without notice? This is
extremely unlikely but should be considered nevertheless.

Evacuation processes API Version 2012-08-10 3239

Amazon DynamoDB Developer Guide

Evacuating an offline MRSC table

If this happens with an MRSC table, there is nothing special you need to do. MRSC tables
support a recovery point objective (RPO) of zero. All successful write operations made to the
MRSC table in the offline Region will be available in all other Region tables, so there's no
potential gap in data even if the Region goes fully offline without notice. Business can continue
using replicas located in the other Regions.

Evacuating an offline MREC table

If this happens with an MREC table, any write operations in Region A that were not yet
propagated are held and propagated after Region A comes back online. The write operations
aren’t lost, but their propagation is indefinitely delayed.

How to proceed in this event is the application’s decision. For business continuity, write
operations might need to proceed to the new primary Region B. However, if an item in Region B
receives an update while there is a pending propagation of a write operation for that item from
Region A, the propagation is suppressed under the last writer wins model. Any update in Region
B might suppress an incoming write request.

With the write to any Region mode, read and write operations can continue in Region B, trusting
that the items in Region A will propagate to Region B eventually and recognizing the potential
for missing items until Region A comes back online. When possible, such as with idempotent
write operations, you should consider replaying recent write traffic (for example, by using an
upstream event source) to fill in the gap of any potentially missing write operations and let the
last writer wins conflict resolution suppress the eventual propagation of the incoming write
operation.

With the other write modes, you have to consider the degree to which work can continue with
a slightly out-of-date view of the world. Some small duration of write operations, as tracked
by ReplicationLatency, will be missing until Region A comes back online. Can business
move forward? In some use cases it can, but in others it might not without additional mitigation
mechanisms.

For example, imagine that you have to maintain an available credit balance without interruption
even after a full outage of a Region. You could split the balance into two different items, one
homed in Region A and one in Region B, and start each with half the available balance. This
would use the write to your Region mode. Transactional updates processed in each Region
would write against the local copy of the balance. If Region A goes fully offline, work could still
proceed with transaction processing in Region B, and write operations would be limited to the

Evacuation processes API Version 2012-08-10 3240

Amazon DynamoDB Developer Guide

balance portion held in Region B. Splitting the balance like this introduces complexities when
the balance gets low or the credit has to be rebalanced, but it does provide one example of safe
business recovery even with uncertain pending write operations.

As another example, imagine that you’re capturing web form data. You can use Optimistic
Concurrency Control (OCC) (OCC) to assign versions to data items and embed the latest version
into the web form as a hidden field. On each submit, the write operation succeeds only if the
version in the database still matches the version that the form was built against. If the versions
don’t match, the web form can be refreshed (or carefully merged) based on the current version
in the database, and the user can proceed again. The OCC model usually protects against
another client overwriting and producing a new version of the data, but it can also help during
failover where a client might encounter older versions of data. Let’s imagine that you’re using
the timestamp as the version. The form was first built against Region A at 12:00 but (after
failover) tries to write to Region B and notices that the latest version in the database is 11:59.
In this scenario, the client can either wait for the 12:00 version to propagate to Region B and
then write on top of that version, or build on 11:59 and create a new 12:01 version (which, after
writing, would suppress the incoming version after Region A recovers).

As a third example, a financial services company holds data about customer accounts and their
financial transactions in a DynamoDB database. In the event of a complete Region A outage,
they want to make sure that any write activity related to their accounts is either fully available
in Region B, or they want to quarantine their accounts as known partial until Region A comes
back online. Instead of pausing all business, they decided to pause business only to the tiny
fraction of accounts that they determined had unpropagated transactions. To achieve this, they
used a third Region, which we will call Region C. Before they processed any write operations
in Region A, they placed a succinct summary of those pending operations (for example, a new
transaction count for an account) in Region C. This summary was sufficient for Region B to
determine if its view was fully up to date. This action effectively locked the account from the
time of writing in Region C until Region A accepted the write operations and Region B received
them. The data in Region C wasn’t used except as part of a failover process, after which Region
B could cross-check its data with Region C to check if any of its accounts were out of date.
Those accounts would be marked as quarantined until the Region A recovery propagated the
partial data to Region B. If Region C were to fail, a new Region D could be spun up for use
instead. The data in Region C was very transient, and after a few minutes Region D would have
a sufficiently up-to-date record of the in-flight write operations to be fully useful. If Region
B were to fail, Region A could continue accepting write requests in cooperation with Region
C. This company was willing to accept higher latency writes (to two Regions: C and then A)

Evacuation processes API Version 2012-08-10 3241

Amazon DynamoDB Developer Guide

and was fortunate to have a data model where the state of an account could be succinctly
summarized.

Throughput capacity planning for DynamoDB global tables

Migrating traffic from one Region to another requires careful consideration of DynamoDB table
settings regarding capacity.

Here are some considerations for managing write capacity:

• A global table must be in on-demand mode or provisioned with auto scaling enabled.

• If provisioned with auto scaling, the write settings (minimum, maximum, and target utilization)
are replicated across Regions. Although the auto scaling settings are synchronized, the actual
provisioned write capacity can float independently between Regions.

• One reason you could see different provisioned write capacity is due to the TTL feature. When
you enable TTL in DynamoDB, you can specify an attribute name whose value indicates the time
of expiration for the item, in Unix epoch time format in seconds. After that time, DynamoDB can
delete the item without incurring write costs. With global tables, you can configure TTL in any
Region, and the setting is automatically replicated to other Regions that are associated with the
global table. When an item is eligible for deletion through a TTL rule, that work can be done
in any Region. The delete operation is performed without consuming write units on the source
table, but the replica tables will get a replicated write of that delete operation and will incur
replicated write unit costs. TTL isn't supported in MRSC tables.

• If you’re using auto scaling, make sure that the maximum provisioned write capacity setting is
sufficiently high to handle all write operations as well as all potential TTL delete operations.
Auto scaling adjusts each Region according to its write consumption. On-demand tables have no
maximum provisioned write capacity setting, but the table-level maximum write throughput limit
specifies the maximum sustained write capacity the on-demand table will allow. The default limit
to 40,000, but it is adjustable. We recommend that you set it high enough to handle all write
operations (including TTL write operations) that the on-demand table might need. This value
must be the same across all participating Regions when you set up global tables.

Here are some considerations for managing read capacity:

• Read capacity management settings are allowed to differ between Regions because it’s assumed
that different Regions might have independent read patterns. When you first add a global replica

Throughput capacity planning API Version 2012-08-10 3242

Amazon DynamoDB Developer Guide

to a table, the capacity of the source Region is propagated. After creation you can adjust the read
capacity settings, which aren’t transferred to the other side.

• When you use DynamoDB auto scaling, make sure that the maximum provisioned read capacity
settings are sufficiently high to handle all read operations across all Regions. During standard
operations the read capacity will perhaps be spread across Regions, but during failover the table
should be able to automatically adapt to the increased read workload. On-demand tables have
no maximum provisioned read capacity setting, but the table-level maximum read throughput
limit specifies the maximum sustained read capacity the on-demand table will allow. The default
limit is 40,000, but it is adjustable. We recommend that you set it high enough to handle all read
operations that the table might need if all read operations were to route to this single Region.

• If a table in one Region doesn’t usually receive read traffic but might have to absorb a large
amount of read traffic after a failover, you can pre-warm the capacity of the to accept a higher
level of read traffic.

ARC has readiness checks that can be useful for confirming that DynamoDB Regions have similar
table settings and account quotas, whether or not you use Route 53 to route requests. These
readiness checks can also help in adjusting account-level quotas to make sure they match.

Preparation checklist for DynamoDB global tables

Use the following checklist for decisions and tasks when you deploy global tables.

• Determine if your use case benefits more from an MRSC or MREC consistency mode. Do you need
strong consistency, even with the higher latency and other tradeoffs?

• Determine how many and which Regions should participate in the global table. If you plan to use
MRSC, decide if you want the third Region to be a replica or a witness.

• Determine your application’s write mode. This is not the same as the consistency mode. For more
information, see Write modes with DynamoDB global tables.

• Plan your Routing strategies in DynamoDB strategy, based on your write mode.

• Define your

Evacuating a Region is the process of migrating activity, usually read and write activity or read
activity, away from that Region.

Preparation checklist API Version 2012-08-10 3243

https://docs.aws.amazon.com/r53recovery/latest/dg/recovery-readiness.rules-resources.html

Amazon DynamoDB Developer Guide

Evacuating a live Region

You might decide to evacuate a live Region for a number of reasons: as part of usual business
activity (for example, if you’re using a follow-the-sun, write to one Region mode), due to a
business decision to change the currently active Region, in response to failures in the software
stack outside DynamoDB, or because you’re encountering general issues such as higher than
usual latencies within the Region.

With write to any Region mode, evacuating a live Region is straightforward. You can route
traffic to alternative Regions by using any routing system and let the write operations in the
evacuated Region replicate over as usual.

The write to one Region and write to your Region modes are usually used with MREC tables.
Therefore, you must make sure that all write operations to the active Region have been fully
recorded, stream processed, and globally propagated before starting write operations in the
new active Region, to ensure that future write operations are processed against the latest
version of the data.

Let’s say that Region A is active and Region B is passive (either for the full table or for items
that are homed in Region A). The typical mechanism to perform an evacuation is to pause
write operations to A, wait long enough for those operations to have fully propagated to B,
update the architecture stack to recognize B as active, and then resume write operations to B.
There is no metric to indicate with absolute certainty that Region A has fully replicated its data
to Region B. If Region A is healthy, pausing write operations to Region A and waiting 10 times
the recent maximum value of the ReplicationLatency metric would typically be sufficient
to determine that replication is complete. If Region A is unhealthy and shows other areas of
increased latencies, you would choose a larger multiple for the wait time.

Evacuating an offline Region

There’s a special case to consider: What if Region A goes fully offline without notice? This is
extremely unlikely but should be considered nevertheless.

Evacuating an offline MRSC table

If this happens with an MRSC table, there is nothing special you need to do. MRSC tables
support a recovery point objective (RPO) of zero. All successful write operations made to
the MRSC table in the offline Region will be available in all other Region tables, so there's

Preparation checklist API Version 2012-08-10 3244

Amazon DynamoDB Developer Guide

no potential gap in data even if the Region goes fully offline without notice. Business can
continue using replicas located in the other Regions.

Evacuating an offline MREC table

If this happens with an MREC table, any write operations in Region A that were not
yet propagated are held and propagated after Region A comes back online. The write
operations aren’t lost, but their propagation is indefinitely delayed.

How to proceed in this event is the application’s decision. For business continuity, write
operations might need to proceed to the new primary Region B. However, if an item in
Region B receives an update while there is a pending propagation of a write operation for
that item from Region A, the propagation is suppressed under the last writer wins model.
Any update in Region B might suppress an incoming write request.

With the write to any Region mode, read and write operations can continue in Region B,
trusting that the items in Region A will propagate to Region B eventually and recognizing
the potential for missing items until Region A comes back online. When possible, such as
with idempotent write operations, you should consider replaying recent write traffic (for
example, by using an upstream event source) to fill in the gap of any potentially missing
write operations and let the last writer wins conflict resolution suppress the eventual
propagation of the incoming write operation.

With the other write modes, you have to consider the degree to which work can continue
with a slightly out-of-date view of the world. Some small duration of write operations,
as tracked by ReplicationLatency, will be missing until Region A comes back online.
Can business move forward? In some use cases it can, but in others it might not without
additional mitigation mechanisms.

For example, imagine that you have to maintain an available credit balance without
interruption even after a full outage of a Region. You could split the balance into two
different items, one homed in Region A and one in Region B, and start each with half the
available balance. This would use the write to your Region mode. Transactional updates
processed in each Region would write against the local copy of the balance. If Region A
goes fully offline, work could still proceed with transaction processing in Region B, and
write operations would be limited to the balance portion held in Region B. Splitting the
balance like this introduces complexities when the balance gets low or the credit has to be
rebalanced, but it does provide one example of safe business recovery even with uncertain
pending write operations.

Preparation checklist API Version 2012-08-10 3245

Amazon DynamoDB Developer Guide

As another example, imagine that you’re capturing web form data. You can use Optimistic
Concurrency Control (OCC) (OCC) to assign versions to data items and embed the latest
version into the web form as a hidden field. On each submit, the write operation succeeds
only if the version in the database still matches the version that the form was built against.
If the versions don’t match, the web form can be refreshed (or carefully merged) based on
the current version in the database, and the user can proceed again. The OCC model usually
protects against another client overwriting and producing a new version of the data, but
it can also help during failover where a client might encounter older versions of data. Let’s
imagine that you’re using the timestamp as the version. The form was first built against
Region A at 12:00 but (after failover) tries to write to Region B and notices that the latest
version in the database is 11:59. In this scenario, the client can either wait for the 12:00
version to propagate to Region B and then write on top of that version, or build on 11:59
and create a new 12:01 version (which, after writing, would suppress the incoming version
after Region A recovers).

As a third example, a financial services company holds data about customer accounts and
their financial transactions in a DynamoDB database. In the event of a complete Region A
outage, they want to make sure that any write activity related to their accounts is either
fully available in Region B, or they want to quarantine their accounts as known partial
until Region A comes back online. Instead of pausing all business, they decided to pause
business only to the tiny fraction of accounts that they determined had unpropagated
transactions. To achieve this, they used a third Region, which we will call Region C. Before
they processed any write operations in Region A, they placed a succinct summary of those
pending operations (for example, a new transaction count for an account) in Region C.
This summary was sufficient for Region B to determine if its view was fully up to date. This
action effectively locked the account from the time of writing in Region C until Region A
accepted the write operations and Region B received them. The data in Region C wasn’t
used except as part of a failover process, after which Region B could cross-check its data
with Region C to check if any of its accounts were out of date. Those accounts would be
marked as quarantined until the Region A recovery propagated the partial data to Region
B. If Region C were to fail, a new Region D could be spun up for use instead. The data in
Region C was very transient, and after a few minutes Region D would have a sufficiently
up-to-date record of the in-flight write operations to be fully useful. If Region B were to
fail, Region A could continue accepting write requests in cooperation with Region C. This
company was willing to accept higher latency writes (to two Regions: C and then A) and

Preparation checklist API Version 2012-08-10 3246

Amazon DynamoDB Developer Guide

was fortunate to have a data model where the state of an account could be succinctly

summarized.
the section called “Evacuation processes”, based on your consistency mode, write mode, and
routing strategy.

• Capture metrics on the health, latency, and errors across each Region. For a list of DynamoDB
metrics, see the Amazon blog post Monitoring Amazon DynamoDB for Operational Awareness
for a list of metrics to observe. You should also use synthetic canaries (artificial requests
designed to detect failures, named after the canary in the coal mine), as well as live observation
of customer traffic. Not all issues will appear in the DynamoDB metrics.

• If you're using MREC, set alarms for any sustained increase in ReplicationLatency. An
increase might indicate an accidental misconfiguration in which the global table has different
write settings in different Regions, which leads to failed replicated requests and increased
latencies. It could also indicate that there is a Regional disruption. A good example is to
generate an alert if the recent average exceeds 180,000 milliseconds. You might also watch for
ReplicationLatency dropping to 0, which indicates stalled replication.

• Assign sufficient maximum read and write settings for each global table.

• Identify the reasons for evacuating a Region in advance. If the decision involves human
judgment, document all considerations. This work should be done carefully in advance, not
under stress.

• Maintain a runbook for every action that must take place when you evacuate a Region. Usually
very little work is involved for the global tables, but moving the rest of the stack might be
complex.

Note

With failover procedures, it's best practice to rely only on data plane operations and not
on control plane operations, because some control plane operations could be degraded
during Region failures.

For more information, see the Amazon blog post Build resilient applications with Amazon
DynamoDB global tables: Part 4.

• Test all aspects of the runbook periodically, including Region evacuations. An untested runbook
is an unreliable runbook.

Preparation checklist API Version 2012-08-10 3247

https://aws.amazon.com/blogs/database/monitoring-amazon-dynamodb-for-operational-awareness/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://aws.amazon.com/blogs/database/monitoring-amazon-dynamodb-for-operational-awareness/
https://aws.amazon.com/blogs/database/part-4-build-resilient-applications-with-amazon-dynamodb-global-tables/
https://aws.amazon.com/blogs/database/part-4-build-resilient-applications-with-amazon-dynamodb-global-tables/

Amazon DynamoDB Developer Guide

• Consider using Amazon Resilience Hub to evaluate the resilience of your entire application
(including global tables). It provides a comprehensive view of your overall application portfolio
resilience status through its dashboard.

• Consider using ARC readiness checks to evaluate the current configuration of your application
and track any deviances from best practices.

• When you write health checks for use with Route 53 or Global Accelerator, make a set of calls
that cover the full database flow. If you limit your check to confirm only that the DynamoDB
endpoint is up, you won’t be able to cover many failure modes such as Amazon Identity and
Access Management (IAM) configuration errors, code deployment problems, failure in the stack
outside DynamoDB, higher than average read or write latencies, and so on.

Frequently Asked Questions (FAQ) for deploying global tables

What is the pricing for global tables?

• A write operation in a traditional DynamoDB table is priced in write capacity units (WCUs, for
provisioned tables) or write request units (WRUs) for on-demand tables. If you write a 5 KB item,
it incurs a charge of 5 units. A write to a global table is priced in replicated write capacity units
(rWCUs, for provisioned tables) or replicated write request units (rWRUs, for on-demand tables).
rWCUs and rWRUs are priced the same as WGUs and WRUs.

• rWCU and rWRU changes are incurred in every Region where the item is written directly or
written through replication. Cross-Region data transfer fees apply.

• Writing to a global secondary index (GSI) is considered a local write operation and uses regular
write units.

• There is no reserved capacity available for rWCUs or rWRUs at this time. Purchasing reserved
capacity for WCUs can be beneficial for tables where GSIs consume write units.

• When you add a new Region to a global table, DynamoDB bootstraps the new Region
automatically and charges you as if it were a table restore, based on the GB size of the table. It
also charges cross-Region data transfer fees.

Which Regions does global tables support?

Global Tables version 2019.11.21 (Current) supports all Amazon Web Services Regions for MREC
tables and the following Region sets for MRSC tables:

• US Region set: US East (N.Virginia), US East (Ohio), US West (Oregon)

Preparation checklist API Version 2012-08-10 3248

https://docs.aws.amazon.com/resilience-hub/latest/userguide/what-is.html

Amazon DynamoDB Developer Guide

• EU Region set: Europe (Ireland), Europe (London), Europe (Paris), Europe (Frankfort)

• AP Region set: Asia Pacific (Tokyo), Asia Pacific (Seoul), and Asia Pacific (Osaka)

How are GSIs handled with global tables?

In Global Tables version 2019.11.21 (Current), when you create a GSI in one Region it’s
automatically created in other participating Regions and automatically backfilled.

How do I stop replication of a global table?

• You can delete a replica table the same way you would delete any other table. Deleting the
global table stops replication to that Region and deletes the table copy kept in that Region.
However, you can't stop replication while keeping copies of the table as independent entities, nor
can you pause replication.

• An MRSC table must be deployed in exactly three Regions. To delete the replicas you must delete
all the replicas and the witness so that the MRSC table becomes a local table.

How do DynamoDB Streams interact with global tables?

• Each global table produces an independent stream based on all its write operations, wherever
they started from. You can choose to consume the DynamoDB stream in one Region or in all
Regions (independently). If you want to process local but not replicated write operations, you
can add your own Region attribute to each item to identify the writing Region. You can then use
a Lambda event filter to call the Lambda function only for write operations in the local Region.
This helps with insert and update operations, but not delete operations.

• Global tables that are configured for multi-Region eventual consistency (MREC tables) replicate
changes by reading those changes from a DynamoDB stream on a replica table and applying that
change to all other replica tables. Therefore, DynamoDB is enabled by default on all replicas in
an MREC global table and cannot be disabled on those replicas. The MREC replication process
can combine multiple changes in a short period of time into a single replicated write operation.
As a result, each replica's stream might contain slightly different records. DynamoDB Streams
records on MREC replicas are always ordered on a per-item basis, but ordering between items
might differ between replicas.

• Global tables that are configured for multi-Region strong consistency (MRSC tables) don’t use
DynamoDB Streams for replication, so this feature isn’t enabled by default on MRSC replicas.
You can enable DynamoDB Streams on an MRSC replica. DynamoDB Streams records on MRSC

Preparation checklist API Version 2012-08-10 3249

Amazon DynamoDB Developer Guide

replicas are identical for every replica and are always ordered on a per-item basis, but ordering
between items might differ between replicas.

How do global tables handle transactions?

• Transactional operations on MRSC tables will generate errors.

• Transactional operations on MREC tables provide atomicity, consistency, isolation, and durability
(ACID) guarantees only within the Region where the write operation originally occurred.
Transactions are not supported across Regions in global tables. For example, if you have an MREC
global table with replicas in the US East (Ohio) and US West (Oregon) Regions and perform a
TransactWriteItems operation in the US East (Ohio) Region, you might observe partially
completed transactions in the US West (Oregon) Region as changes are replicated. Changes are
replicated to other Regions only after they have been committed in the source Region.

How do global tables interact with the DynamoDB Accelerator cache (DAX)?

Global tables bypass DAX by updating DynamoDB directly, so DAX isn’t aware that it’s holding stale
data. The DAX cache is refreshed only when the cache’s TTL expires.

Do tags on tables propagate?

No, tags do not automatically propagate.

Should I backup tables in all Regions or just one?

The answer depends on the purpose of the backup.

• If you want to ensure data durability, DynamoDB already provides that safeguard. The service
ensures durability.

• If you want to keep a snapshot for historical records (for example, to meet regulatory
requirements), backing up in one Region should suffice. You can copy the backup to additional
Regions by using Amazon Backup.

• If you want to recover erroneously deleted or modified data, use DynamoDB point-in-time
recovery (PITR) in one Region.

How do I deploy global tables using Amazon CloudFormation?

Preparation checklist API Version 2012-08-10 3250

Amazon DynamoDB Developer Guide

• CloudFormation represents a DynamoDB table and a global table as two separate resources:
AWS::DynamoDB::Table and AWS::DynamoDB::GlobalTable. One approach is to create all
tables that can potentially be global by using the GlobalTable construct of keeping them as
standalone tables initially, and add Regions later if necessary.

• In CloudFormation, each global table is controlled by a single stack, in a single Region, regardless
of the number of replicas. When you deploy your template, CloudFormation creates and
updates all replicas as part of a single stack operation. You should not deploy the same
AWS::DynamoDB::GlobalTable resource in multiple Regions. This will result in errors and is
unsupported. If you deploy your application template in multiple Regions, you can use conditions
to create the AWS::DynamoDB::GlobalTable resource in a single Region. Alternatively, you
can choose to define your AWS::DynamoDB::GlobalTable resources in a stack that’s separate
from your application stack, and make sure that it’s deployed to a single Region.

• If you have a regular table and you want to convert it to a global table while keeping it managed
by CloudFormation then set the deletion policy to Retain, remove the table from the stack,
convert the table to a global table in the console, and then import the global table as a new
resource to the stack. For more information, see the Amazon GitHub repository.

• Cross-account replication is not supported at this time.

Conclusion and resources

DynamoDB global tables have very few controls but still require careful consideration. You must
determine your write mode, routing model, and evacuation processes. You must instrument your
application across every Region and be ready to adjust your routing or perform an evacuation to
maintain global health. The reward is having a globally distributed dataset with low-latency read
and write operations that is designed for 99.999% availability.

For more information about DynamoDB global tables, see the following resources:

• DynamoDB documentation

• Amazon Application Recovery Controller

• Readiness check in ARC (Amazon documentation)

• Route 53 routing policies

• Amazon Global Accelerator

• DynamoDB service-level agreement

• Amazon Multi-Region Fundamentals (Amazon whitepaper)

Conclusion and resources API Version 2012-08-10 3251

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html
https://github.com/aws-samples/amazon-dynamodb-table-to-global-table-cdk
https://docs.aws.amazon.com/dynamodb/
https://aws.amazon.com/application-recovery-controller/
https://docs.aws.amazon.com/r53recovery/latest/dg/recovery-readiness.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
https://aws.amazon.com/global-accelerator/
https://aws.amazon.com/dynamodb/sla/
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-multi-region-fundamentals/introduction.html

Amazon DynamoDB Developer Guide

• Data resiliency design patterns with Amazon (Amazon re:Invent 2022 presentation)

• How Fidelity Investments and Reltio modernized with Amazon DynamoDB (Amazon re:Invent
2022 presentation)

• Multi-Region design patterns and best practices (Amazon re:Invent 2022 presentation)

• Disaster Recovery (DR) Architecture on Amazon, Part III: Pilot Light and Warm Standby (Amazon
blog post)

• Use Region pinning to set a home Region for items in an Amazon DynamoDB global table
(Amazon blog post)

• Monitoring Amazon DynamoDB for operational awareness (Amazon blog post)

• Scaling DynamoDB: How partitions, hot keys, and split for heat impact performance (Amazon
blog post)

• Multi-Region strong consistency with DynamoDB global tables (Amazon re:Invent 2024
presentation)

Best practices for managing the control plane in DynamoDB

Note

DynamoDB is introducing a control plane throttle limit of 2,500 requests per second with
the option for a retry. See below for additional details.

DynamoDB control plane operations let you manage DynamoDB tables as well as objects that are
dependent on tables such as indexes. For more information about these operations, see Control
plane.

In some circumstances, you may need to take actions and use data returned by control
plane calls as part of your business logic. For example, you might need to know the value of
ProvisionedThroughput returned by DescribeTable. In these circumstances, follow these
best practices:

• Do not excessively query the DynamoDB control plane.

• Do not mix control plane calls and data plane calls within the same code.

• Handle throttles on control plane requests and retry with a backoff.

• Invoke and track changes to a particular resource from a single client.

Control plane API Version 2012-08-10 3252

https://www.youtube.com/watch?v=7IA48SOX20c
https://www.youtube.com/watch?v=QUpV5MDu4Ys&t=706s
https://www.youtube.com/watch?v=ilgpzlE7Hds&t=1882s
https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-iii-pilot-light-and-warm-standby/
https://aws.amazon.com/blogs/database/use-region-pinning-to-set-a-home-region-for-items-in-an-amazon-dynamodb-global-table/
https://aws.amazon.com/blogs/database/monitoring-amazon-dynamodb-for-operational-awareness/
https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://www.youtube.com/watch?v=R-nTs8ZD8mA

Amazon DynamoDB Developer Guide

• Instead of retrieving data for the same table multiple times at short intervals, cache the data for
processing.

Best practices for using bulk data operations in DynamoDB

DynamoDB supports batch operations such as BatchWriteItem using which you can perform up
to 25 PutItem and DeleteItem requests together. However, BatchWriteItem doesn't support
UpdateItem operations. When it comes to bulk updates, the distinction lies in the requirements
and the nature of the update. You can use other DynamoDB APIs such as TransactWriteItems
for batch size up to 100. When more items are involved, you can use services such as Amazon Glue,
Amazon EMR, Amazon Step Functions or use custom scripts and tools like DynamoDB-shell for bulk
updates.

Topics

• Conditional batch update

• Efficient bulk operations

Conditional batch update

DynamoDB supports batch operations such as BatchWriteItem using which you can perform up
to 25 PutItem and DeleteItem requests in a single batch. However, BatchWriteItem doesn't
support UpdateItem operations and doesn't support condition expressions. As a workaround, you
can use other DynamoDB APIs such as TransactWriteItems for batch size up to 100.

When more items are involved, and a major chunk of data needs to be changed, you can use
services such as Amazon Glue, Amazon EMR, Amazon Step Functions or use custom scripts and
tools like DynamoDB-shell for efficient bulk updates.

When to use this pattern

• DynamoDB-shell is not a supported for production use case.

• TransactWriteItems – up to 100 individual updates with or without conditions, executing
as an all or nothing ACID bundle. TransactWriteItems calls can also be supplied with a
ClientRequestToken if your application requires idempotency, meaning multiple identical
calls have the same effect as one single call. This ensures you don't execute the same transaction
multiple times and end up with an incorrect state of data.

Bulk data operations API Version 2012-08-10 3253

Amazon DynamoDB Developer Guide

Trade-off – Additional throughput is consumed. 2 WCUs per 1KB write instead of the standard 1
WGU per 1 KB write.

• PartiQL BatchExecuteStatement – up to 25 updates with or without conditions.
BatchExecuteStatement always returns a success response to the overall request, and also
returns a list of individual operation responses that preserves order.

Trade-off – For larger batches, additional client-side logic is required to distribute requests in
batches of 25. Individual error responses need to be considered to determine retry strategy.

Code examples

These code examples use the boto3 library, which is the Amazon SDK for Python. The examples
assume you have boto3 installed and configured with appropriate Amazon credentials.

Assume an inventory database for an electrical appliance vendor who has multiple warehouses
across European cities. Because it is end of summer, the vendor would like to clear out desk fans to
make room for other stock. The vendor wants to provide a price discount for all desk fans supplied
out of warehouses in Italy but only if they have a reserve stock of 20 desk fans. The DynamoDB
table is called inventory, it has a key schema of Partition key sku which is a unique identifier for
each product and a Sort key warehouse which is an identifier for a warehouse.

The following Python code demonstrates how to perform this conditional batch update using
BatchExecuteStatement API call.

import boto3

client=boto3.client("dynamodb")

before_image=client.query(TableName='inventory', KeyConditionExpression='sku=:pk_val
 AND begins_with(warehouse, :sk_val)', ExpressionAttributeValues={':pk_val':
{'S':'F123'},':sk_val':{'S':'WIT'}},
 ProjectionExpression='sku,warehouse,quantity,price')
print("Before update: ", before_image['Items'])

response=client.batch_execute_statement(
 Statements=[
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITTUR1'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},

Conditional batch update API Version 2012-08-10 3254

Amazon DynamoDB Developer Guide

 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITROM1'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITROM2'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITROM5'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITVEN1'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITVEN2'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
 {'Statement': 'UPDATE inventory SET price=price-5 WHERE sku=? AND
 warehouse=? AND quantity > 20', 'Parameters': [{'S':'F123'}, {'S':'WITVEN3'}],
 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'},
],
 ReturnConsumedCapacity='TOTAL'
)

after_image=client.query(TableName='inventory', KeyConditionExpression='sku=:pk_val
 AND begins_with(warehouse, :sk_val)', ExpressionAttributeValues={':pk_val':
{'S':'F123'},':sk_val':{'S':'WIT'}},
 ProjectionExpression='sku,warehouse,quantity,price')
print("After update: ", after_image['Items'])

Execution produces the below output on sample data:

Before update: [{'quantity': {'N': '20'}, 'warehouse': {'S': 'WITROM1'}, 'price':
 {'N': '40'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '25'}, 'warehouse': {'S':
 'WITROM2'}, 'price': {'N': '40'}, 'sku': {'S': 'F123'}}, {'quantity': {'N':
 '28'}, 'warehouse': {'S': 'WITROM5'}, 'price': {'N': '38'}, 'sku': {'S': 'F123'}},
 {'quantity': {'N': '26'}, 'warehouse': {'S': 'WITTUR1'}, 'price': {'N': '40'}, 'sku':
 {'S': 'F123'}}, {'quantity': {'N': '10'}, 'warehouse': {'S': 'WITVEN1'}, 'price':
 {'N': '38'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '20'}, 'warehouse': {'S':
 'WITVEN2'}, 'price': {'N': '38'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '50'},
 'warehouse': {'S': 'WITVEN3'}, 'price': {'N': '35'}, 'sku': {'S': 'F123'}}]
After update: [{'quantity': {'N': '20'}, 'warehouse': {'S': 'WITROM1'}, 'price': {'N':
 '40'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '25'}, 'warehouse': {'S': 'WITROM2'},
 'price': {'N': '35'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '28'}, 'warehouse':

Conditional batch update API Version 2012-08-10 3255

Amazon DynamoDB Developer Guide

 {'S': 'WITROM5'}, 'price': {'N': '33'}, 'sku': {'S': 'F123'}}, {'quantity': {'N':
 '26'}, 'warehouse': {'S': 'WITTUR1'}, 'price': {'N': '35'}, 'sku': {'S': 'F123'}},
 {'quantity': {'N': '10'}, 'warehouse': {'S': 'WITVEN1'}, 'price': {'N': '38'}, 'sku':
 {'S': 'F123'}}, {'quantity': {'N': '20'}, 'warehouse': {'S': 'WITVEN2'}, 'price':
 {'N': '38'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '50'}, 'warehouse': {'S':
 'WITVEN3'}, 'price': {'N': '30'}, 'sku': {'S': 'F123'}}]

Since this is a bounded operation for an internal system, idempotency requirements haven't been
considered. It's possible to place additional guardrails like price update should go through only if
price is greater than 35 and less than 40 to make the updates more robust.

Alternatively, we can perform the same batch update operation using TransactWriteItems in
case of stricter idempotency and ACID requirements. However, it is important to remember that
either all the operations in the transaction bundle go through or the entire bundle fails.

Let’s assume a case where there is a heatwave in Italy and the demand for desk fans has increased
sharply. The vendor wants to increase their desk fan cost going out of every warehouse in Italy by
20 Euros but the regulatory body only allows this cost increase if the current cost is less than 70
Euros across their entire inventory. It's essential that the price is updated throughout the inventory
at once and only once and only if the cost is less than 70 Euros in each of their warehouse.

The following Python code demonstrates how to perform this batch update using
TransactWriteItems API call.

import boto3

client=boto3.client("dynamodb")

before_image=client.query(TableName='inventory', KeyConditionExpression='sku=:pk_val
 AND begins_with(warehouse, :sk_val)', ExpressionAttributeValues={':pk_val':
{'S':'F123'},':sk_val':{'S':'WIT'}},
 ProjectionExpression='sku,warehouse,quantity,price')
print("Before update: ", before_image['Items'])

response=client.transact_write_items(
 ClientRequestToken='UUIDAWS124',
 TransactItems=[
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITTUR1'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',

Conditional batch update API Version 2012-08-10 3256

Amazon DynamoDB Developer Guide

 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITROM1'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITROM2'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITROM5'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITVEN1'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITVEN2'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
 {'Update': { 'Key': {'sku': {'S':'F123'}, 'warehouse': {'S':'WITVEN3'}},
 'UpdateExpression': 'SET price = price + :inc', 'ConditionExpression': 'price < :cap',
 'ExpressionAttributeValues': { ':inc': {'N': '20'}, ':cap': {'N': '70'}}, 'TableName':
 'inventory', 'ReturnValuesOnConditionCheckFailure': 'ALL_OLD'}},
],
 ReturnConsumedCapacity='TOTAL'
)

after_image=client.query(TableName='inventory', KeyConditionExpression='sku=:pk_val
 AND begins_with(warehouse, :sk_val)', ExpressionAttributeValues={':pk_val':
{'S':'F123'},':sk_val':{'S':'WIT'}},
 ProjectionExpression='sku,warehouse,quantity,price')
print("After update: ", after_image['Items'])

Execution produces the below output on sample data:

Before update: [{'quantity': {'N': '20'}, 'warehouse': {'S': 'WITROM1'}, 'price':
 {'N': '60'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '25'}, 'warehouse': {'S':
 'WITROM2'}, 'price': {'N': '55'}, 'sku': {'S': 'F123'}}, {'quantity': {'N':
 '28'}, 'warehouse': {'S': 'WITROM5'}, 'price': {'N': '53'}, 'sku': {'S': 'F123'}},

Conditional batch update API Version 2012-08-10 3257

Amazon DynamoDB Developer Guide

 {'quantity': {'N': '26'}, 'warehouse': {'S': 'WITTUR1'}, 'price': {'N': '55'}, 'sku':
 {'S': 'F123'}}, {'quantity': {'N': '10'}, 'warehouse': {'S': 'WITVEN1'}, 'price':
 {'N': '58'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '20'}, 'warehouse': {'S':
 'WITVEN2'}, 'price': {'N': '58'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '50'},
 'warehouse': {'S': 'WITVEN3'}, 'price': {'N': '50'}, 'sku': {'S': 'F123'}}]
After update: [{'quantity': {'N': '20'}, 'warehouse': {'S': 'WITROM1'}, 'price': {'N':
 '80'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '25'}, 'warehouse': {'S': 'WITROM2'},
 'price': {'N': '75'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '28'}, 'warehouse':
 {'S': 'WITROM5'}, 'price': {'N': '73'}, 'sku': {'S': 'F123'}}, {'quantity': {'N':
 '26'}, 'warehouse': {'S': 'WITTUR1'}, 'price': {'N': '75'}, 'sku': {'S': 'F123'}},
 {'quantity': {'N': '10'}, 'warehouse': {'S': 'WITVEN1'}, 'price': {'N': '78'}, 'sku':
 {'S': 'F123'}}, {'quantity': {'N': '20'}, 'warehouse': {'S': 'WITVEN2'}, 'price':
 {'N': '78'}, 'sku': {'S': 'F123'}}, {'quantity': {'N': '50'}, 'warehouse': {'S':
 'WITVEN3'}, 'price': {'N': '70'}, 'sku': {'S': 'F123'}}]

There are multiple approaches to perform batch updates in DynamoDB. The suitable approach
depends on factors such as ACID and/or idempotency requirements, number of items to be
updated, and familiarity with APIs.

Efficient bulk operations

When to use this pattern

These patterns are useful to efficiently perform bulk updates on DynamoDB items.

• DynamoDB-shell is not a supported for production use case.

• TransactWriteItems – up to 100 individual updates with or without conditions, executing as
an all or nothing ACID bundle

Trade-off – Additional throughput is consumed, 2 WCUs per 1 KB write.

• PartiQL BatchExecuteStatement – up to 25 updates with or without conditions

Trade-off – Additional logic is required to distribute requests in batches of 25.

• Amazon Step Functions – rate-limited bulk operations for developers familiar with Amazon
Lambda.

Trade-off – Execution time is inversely proportional to rate-limit. Limited by the maximum
Lambda function timeout. The functionality entails that data changes that occur between the
read and the write may be overwritten. For more info, see Backfilling an Amazon DynamoDB
Time to Live attribute using Amazon EMR: Part 2.

Efficient bulk operations API Version 2012-08-10 3258

https://aws.amazon.com/blogs/database/part-2-backfilling-an-amazon-dynamodb-time-to-live-attribute-using-amazon-emr/
https://aws.amazon.com/blogs/database/part-2-backfilling-an-amazon-dynamodb-time-to-live-attribute-using-amazon-emr/

Amazon DynamoDB Developer Guide

• Amazon Glue and Amazon EMR – rate-limited bulk operation with managed parallelism. For
applications or updates that are not time-sensitive, these options can run in the background only
consuming a small percentage of throughput. Both services uses the emr-dynamodb-connector
to perform DynamoDB operations. These services perform a big read followed by a big write of
updated items with an option to rate-limit.

Trade-off – Execution time is inversely proportional to rate-limit. The functionality includes that
data changes occurring between the read and the write can be overwritten. You can't read from
Global Secondary Indexes (GSIs). See, Backfilling an Amazon DynamoDB Time to Live attribute
using Amazon EMR: Part 2.

• DynamoDB Shell – rate-limited bulk operations using SQL-like queries. You can read from GSIs
for better efficiency.

Trade-off – Execution time is inversely proportional to rate-limit. See Rate limited bulk
operations in DynamoDB Shell.

Using the pattern

Bulk updates can have significant cost implications especially if you use the on-demand throughput
mode. There’s a trade-off between speed and cost if you use the provisioned throughput mode.
Setting the rate-limit parameter very strictly can lead to a very large processing time. You can
roughly determine speed of the update using the average item size and the rate limit.

Alternatively, you can determine amount of throughput needed for the process based on the
expected duration of the update process and the average item size. The blog references shared
with each pattern provide details on the strategy, implementation and limitations of using the
pattern. For more information, see Cost-effective bulk processing with Amazon DynamoDB.

There are multiple approaches to perform bulk-updates against a live DynamoDB table. The
suitable approach depends on factors such as ACID and/or idempotency requirements, number
of items to be updated and familiarity with APIs. It is important to consider the cost versus time
trade-off, most approaches discussed above provide an option to rate-limit the throughput used by
the bulk update job.

Efficient bulk operations API Version 2012-08-10 3259

https://aws.amazon.com/blogs/database/part-2-backfilling-an-amazon-dynamodb-time-to-live-attribute-using-amazon-emr/
https://aws.amazon.com/blogs/database/part-2-backfilling-an-amazon-dynamodb-time-to-live-attribute-using-amazon-emr/
https://aws.amazon.com/blogs/database/rate-limited-bulk-operations-in-dynamodb-shell/
https://aws.amazon.com/blogs/database/rate-limited-bulk-operations-in-dynamodb-shell/
https://aws.amazon.com/blogs/database/cost-effective-bulk-processing-with-amazon-dynamodb/

Amazon DynamoDB Developer Guide

Best practices for implementing version control in DynamoDB

In distributed systems like DynamoDB, item version control using optimistic locking prevents
conflicting updates. By tracking item versions and using conditional writes, applications can
manage concurrent modifications, ensuring data integrity across high-concurrency environments.

Optimistic locking is a strategy used to ensure that data modifications are applied correctly without
conflicts. Instead of locking data when it's read (as in pessimistic locking), optimistic locking
checks if data has changed before writing it back. In DynamoDB, this is achieved through a form of
version control, where each item includes an identifier that increments with every update. When
updating an item, the operation will only succeed if that identifier matches the one expected by
your application.

When to use this pattern

This pattern is useful in the following scenarios:

• Multiple users or processes may attempt to update the same item concurrently.

• Ensuring data integrity and consistency is paramount.

• There is a need to avoid the overhead and complexity of managing distributed locks.

Examples include:

• E-commerce applications where inventory levels are frequently updated.

• Collaborative platforms where multiple users edit the same data.

• Financial systems where transaction records must remain consistent.

Tradeoffs

While optimistic locking and conditional checks provide robust data integrity, they come with the
following tradeoffs:

Concurrency conflicts

In high-concurrency environments, the likelihood of conflicts increases, potentially causing
higher retries and write costs.

Implementing version control API Version 2012-08-10 3260

Amazon DynamoDB Developer Guide

Implementation complexity

Adding version control to items and handling conditional checks can add complexity to the
application logic.

Additional storage overhead

Storing version numbers for each item slightly increases the storage requirements.

Pattern design

To implement this pattern, the DynamoDB schema should include a version attribute for each item.
Here is a simple schema design:

• Partition key – A unique identifier for each item (ex. ItemId).

• Attributes:

• ItemId – The unique identifier for the item.

• Version – An integer that represents the version number of the item.

• QuantityLeft – The remaining inventory of the item.

When an item is first created, the Version attribute is set to 1. With each update, the version
number increments by 1.

Using the pattern

To implement this pattern, follow these steps in your application flow:

Pattern design API Version 2012-08-10 3261

Amazon DynamoDB Developer Guide

1. Read the current version of the item.

Retrieve the current item from DynamoDB and read its version number.

def get_document(item_id):
 response = table.get_item(Key={'ItemID': item_id})
 return response['Item']

document = get_document('Bananas')
current_version = document['Version']

2. Increment the version number in your application logic. This will be the expected version for
the update.

new_version = current_version + 1

3. Attempt to update the item using a conditional expression to ensure the version number
matches.

def update_document(item_id, qty_bought, current_version):
 try:
 response = table.update_item(
 Key={'ItemID': item_id},
 UpdateExpression="set #qty = :qty, Version = :v",
 ConditionExpression="Version = :expected_v",
 ExpressionAttributeNames={
 '#qty': 'QuantityLeft'
 },
 ExpressionAttributeValues={
 ':qty': qty_bought,
 ':v': current_version + 1,
 ':expected_v': current_version
 },
 ReturnValues="UPDATED_NEW"
)
 return response
 except ClientError as e:
 if e.response['Error']['Code'] == 'ConditionalCheckFailedException':
 print("Update failed due to version conflict.")
 else:
 print("Unexpected error: %s" % e)
 return None

Using the pattern API Version 2012-08-10 3262

Amazon DynamoDB Developer Guide

update_document('Bananas', 2, new_version)

If the update is successful, the QuantityLeft for the item will be reduced by 2.

4. Handle conflicts if they occur.

If a conflict occurs (e.g., another process has updated the item since you last read it), handle
the conflict appropriately, such as by retrying the operation or alerting the user.

This will require an additional read of the item for each retry, so limit the total number of
retries you allow before completely failing the request loop.

def update_document_with_retry(item_id, new_data, retries=3):
 for attempt in range(retries):
 document = get_document(item_id)
 current_version = document['Version']

 result = update_document(item_id, qty_bought, current_version)

 if result is not None:
 print("Update succeeded.")
 return result
 else:
 print(f"Retrying update... ({attempt + 1}/{retries})")

 print("Update failed after maximum retries.")
 return None

update_document_with_retry('Bananas', 2)

Using the pattern API Version 2012-08-10 3263

Amazon DynamoDB Developer Guide

Implementing item version control using DynamoDB with optimistic locking and conditional
checks is a powerful pattern for ensuring data integrity in distributed applications. While it
introduces some complexity and potential performance tradeoffs, it is invaluable in scenarios
requiring robust concurrency control. By carefully designing the schema and implementing the
necessary checks in your application logic, you can effectively manage concurrent updates and
maintain data consistency.

Additional guidance and strategies for ways to implement version control of your DynamoDB
data can be found on the Amazon Database Blog.

Best practices for understanding your Amazon billing and
usage reports in DynamoDB

This document explains the UsageType billing codes for charges related to DynamoDB.

Amazon provides cost and usage reports (CUR) that contain data for the services used. You can use
Amazon Cost and Usage Report to publish billing reports to Amazon S3 in a CSV format. When
setting up the CUR you can choose to break time periods down by hour, day, or month, and you can
choose if you want to break out usage by resource ID or not. For more details on generating CUR,
please see Creating Cost and Usage Reports

Within the CSV export, you will find relevant attributes listed for each line. The following are
examples of attributes that may be included:

• lineitem/UsageStartDate: The start date and time for the line item in UTC, inclusive.

• lineitem/UsageEndDate: The end date and time for the corresponding line item in UTC,
exclusive.

• lineitem/ProductCode: For DynamoDB this will be “AmazonDynamoDB”

• lineitem/UsageType: A specific description code for the type of usage, as enumerated in this
document

• lineitem/Operation: A name that provides context to the charge such as the operation name
that incurred the charge (optional).

• lineitem/ResourceId: The identifier for the resource that incurred the usage. Available if the CUR
includes a breakdown by resource ID.

• lineitem/UsageAmount: The amount of usage incurred during the specified time period.

Billing and Usage Reports API Version 2012-08-10 3264

https://aws.amazon.com/blogs/database/implementing-version-control-using-amazon-dynamodb/
https://docs.aws.amazon.com/cur/latest/userguide/creating-cur.html

Amazon DynamoDB Developer Guide

• lineitem/UnblendedCost: The cost of this usage.

• lineitem/LineItemDescription: Textual description of the line item.

For more information about the CUR data dictionary, see Cost and Usage Report (CUR) 2.0. Note
that the exact names vary depending on context.

A UsageType is a string with a value such as ReadCapacityUnit-Hrs, USW2-
ReadRequestUnits, EU-WriteCapacityUnit-Hrs, or USE1-TimedPITRStorage-ByteHrs.
Each usage type begins with an optional Region prefix. If absent, that indicates the us-east-1
Region. If present, the below table maps the short billing Region code to the conventional Region
code and name.

For example, the usage named USW2-ReadRequestUnits indicates read request units consumed
in us-west-2.

Billing Region Code Region Code Region Name

AFS1 af-south-1 Africa (Cape Town)

APE1 ap-east-1 Asia Pacific (Hong Kong)

APN1 ap-northeast-1 Asia Pacific (Tokyo)

APN2 ap-northeast-2 Asia Pacific (Seoul)

APN3 ap-northeast-3 Asia Pacific (Osaka)

APS1 ap-southeast-1 Asia Pacific (Singapore)

APS2 ap-southeast-2 Asia Pacific (Sydney)

APS3 ap-south-1 Asia Pacific (Mumbai)

APS4 ap-southeast-3 Asia Pacific (Jakarta)

APS5 ap-south-2 Asia Pacific (Hyderabad)

APS6 ap-southeast-4 Asia Pacific (Melbourne)

CAN1 ca-central-1 Canada (Central)

Billing and Usage Reports API Version 2012-08-10 3265

https://docs.aws.amazon.com/cur/latest/userguide/table-dictionary-cur2.html

Amazon DynamoDB Developer Guide

Billing Region Code Region Code Region Name

EU eu-west-1 Europe (Ireland)

EUC1 eu-central-1 Europe (Frankfurt)

EUC2 eu-central-2 Europe (Zurich)

EUN1 eu-north-1 Europe (Stockholm)

EUS1 eu-south-1 Europe (Milan)

EUS2 eu-south-2 Europe (Spain)

EUW1 eu-west-1 Europe (Ireland)

EUW2 eu-west-2 Europe (London)

EUW3 eu-west-3 Europe (Paris)

ILC1 Il-central-1 Israel (Tel Aviv)

MEC1 me-central-1 Middle East (UAE)

MES1 me-south-1 Middle East (Bahrain)

SAE1 sa-east-1 South America (São Paulo)

USE1 (default) us-east-1 US East (N. Virginia)

USE2 us-east-2 US East (Ohio)

UGE1 us-gov-east-1 US Government East

UGW1 us-gov-west-1 US Government West

USW1 us-west-1 US West (N. California)

USW2 us-west-2 US West (Oregon)

Billing and Usage Reports API Version 2012-08-10 3266

Amazon DynamoDB Developer Guide

In the following sections, we use REG-UsageType pattern when going through the charges for
DynamoDB, where REG specifies the region where usage occurred and usageType is the code for
the type of charge. For example if you see a line item for USW1- ReadCapacityUnit-Hrs in your
CSV file, that means the usage was incurred in US-West-1 for provisioned read capacity. In that
case the listing would say REG-ReadCapacityUnit-Hrs.

Topics

• Throughput Capacity

• Streams

• Storage

• Backup and Restore

• Data Transfer

• CloudWatch Contributor Insights

• DynamoDB Accelerator (DAX)

Throughput Capacity

Provisioned Capacity Reads and Writes

When you create a DynamoDB table in provisioned capacity mode, you specify the read and write
capacity that you expect your application to require. The usage type depends on your table class
(Standard or Standard-Infrequent Access). You provision read and writes based on consumption
rate per second, but the charges are priced per hour based on provisioned capacity.

UsageType Units Granularity Description

REG-ReadCapacityUn
it-Hrs

RCU-hours Hour Charges for reads in
provisioned capacity
mode using the
Standard table class.

REG-IA-ReadCapacit
yUnit-Hrs

RCU-hours Hour Charges for reads in
provisioned capacity
mode using the
Standard-IA table
class.

Throughput Capacity API Version 2012-08-10 3267

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

REG-WriteCapacityU
nit-Hrs

WCU-hours Hour Charges for writes in
provisioned capacity
mode using the
Standard table class.

REG-IA-WriteCapaci
tyUnit-Hrs

WCU-hours Hour Charges for writes in
provisioned capacity
mode using the
Standard-IA table
class.

Reserved Capacity Reads and Writes

With reserved capacity, you pay a one-time upfront fee and commit to a minimum provisioned
usage level over a period of time. Reserved capacity is billed at a discounted hourly rate. Any
capacity that you provision in excess of your reserved capacity is billed at standard provisioned
capacity rates. Reserved capacity is available for single-region, provisioned read and write capacity
units (RCU and WCU) on DynamoDB tables that use the standard table class. Both 1-year and 3-
year reserved capacity are billed using the same SKUs.

UsageType Units Granularity Description

REG-HeavyUsage:dyn
amodb.read

RCU-hours Up-front then
monthly

Charges for reserved
capacity reads: a
one-time up-front
charge and a monthly
charge at the start of
each month covering
all the discounte
d committed RCU-
hours during the
month. Will have
matching zero-cost

Throughput Capacity API Version 2012-08-10 3268

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

 REG-ReadCapacityUn
it-Hrs line items.

REG-HeavyUsage:dyn
amodb.write

WCU-hours Up-front then
monthly

Charges for reserved
capacity writes: a
one-time up-front
charge and a monthly
charge at the start of
each month covering
all the discounted
committed WCU-
hours during the
month. Will have
matching zero-cost
 REG-WriteCapacityU
nit-Hrs line items.

On-Demand Capacity Reads and Writes

When you create a DynamoDB table in on-demand capacity mode, you pay only for the reads and
writes your application performs. The prices for read and write requests depend on your table class.

UsageType Units Granularity Description

REG-ReadRequestUni
ts

RRUs Unit Charges for reads in
on-demand capacity
mode with Standard
table class.

REG-IA-ReadRequest
Units

RRUs Unit Charges for reads in
on-demand capacity
mode with Standard-
IA table class.

REG-WriteRequestUn
its

WRUs Unit Charges for writes in
on-demand capacity

Throughput Capacity API Version 2012-08-10 3269

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

mode with Standard
table class.

REG-IA-WriteReques
tUnits

WRUs Unit Charges for writes in
on-demand capacity
mode with Standard-
IA table class.

Global Tables Reads and Writes

DynamoDB charges for global tables usage based on the resources used on each replica table. For
provisioned global tables, write requests for global tables are measured in replicated WCUs (rWCU)
instead of standard WCUs and writes to global secondary indexes in global tables are measured
in WCUs. For on-demand global tables, write requests are measured in replicated WRUs (rWRU)
instead of standard WRUs. The number of rWCUs or rWRUs consumed for replication depends on
the version of global tables you are using. The pricing depends on your table class.

Writes to global secondary indexes (GSIs) are billed using standard write units (WCUs and WRUs).
Read requests and data storage are billed identically to single-region tables.

If you add a table replica to create or extend a global table in new Regions, DynamoDB charges
for a table restore in the added Regions per gigabyte of data restored. Restored Data is charged as
REG-RestoreDataSize-Bytes. Please refer to Backup and restore for DynamoDB for details. Cross-
Region replication and adding replicas to tables that contain data also incur charges for data
transfer out.

When you select on-demand capacity mode for your DynamoDB global tables, you pay only for the
resources your application uses on each replica table.

UsageType Units Granularity Description

REG-ReplWriteCapac
ityUnit-Hrs

rWCU-hours Hour Global table,
provisioned, Standard
table class.

REG-IA-ReplWriteCa
pacityUnit-Hrs

rWCU-hours Hour Global table,
provisioned,

Throughput Capacity API Version 2012-08-10 3270

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

Standard-IA table
class.

REG-ReplWriteReque
stUnits

rWRU Unit Global table, on-
demand, Standard
table class.

REG-IA-ReplWriteRe
questUnits

rWRU Unit Global table, on-
demand, Standard- IA
table class

Streams

DynamoDB has two streaming technologies, DynamoDB Streams and Kinesis. Each have separate
pricing.

DynamoDB Streams charges for reading data in read request units. Each GetRecords API call is
billed as a streams read request. You are not charged for GetRecords API calls invoked by Amazon
Lambda as part of DynamoDB triggers or by DynamoDB global tables as part of replication.

UsageType Units Granularity Description

REG-Streams-Reques
tsCount

Count Unit Read request units
for DynamoDB
Streams.

Amazon Kinesis Data Streams charges in change data capture units. DynamoDB charges one
change data capture unit for each write (up to 1 KB). For items larger than 1 KB, additional change
data capture units are required. You pay only for the writes your application performs without
having to manage throughput capacity on the table.

Streams API Version 2012-08-10 3271

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

REG-ChangeDataCapt
ureUnits-Kinesis

CDC Units Unit Change data capture
units for Kinesis Data
Streams.

Storage

DynamoDB measures the size of your billable data by adding the raw byte size of your data plus a
per-item storage overhead that depends on the features you have enabled.

Note

Storage usage values in the CUR will be higher compared with the storage values when
using DescribeTable, because DescribeTable does not include the per-item storage
overhead.

Storage is calculated hourly but priced monthly as calculated from an average of the hourly
charges.

Although the storage UsageType uses ByteHrs as a suffix, storage usage in the CUR is measured
in GB and priced by GB-month.

UsageType Units Granularity Description

REG-TimedStorage-B
yteHrs

GB Month Amount of storage
used by your
DynamoDB tables
and indexes, for
tables with the
Standard table class.

REG-IA-TimedStorag
e- ByteHrs

GB Month Amount of storage
used by your
DynamoDB tables

Storage API Version 2012-08-10 3272

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

and indexes, for
tables with the
Standard-IA table
class.

Backup and Restore

DynamoDB offers two types of backups: Point In Time Recovery (PITR) backups and on- demand
backups. Users can also restore from those backups into DynamoDB tables. The charges below
refers to both backups and restores.

Backup storage charges are incurred on the first of the month with adjustments made throughout
the month as backups are added or removed. See the Understanding Amazon DynamoDB On-
demand Backups and Billing blog for more information

UsageType Units Granularity Description

REG-TimedBackupSto
rage-ByteHrs

GB Month The storage
consumed by on-
demand backups
of your DynamoDB
tables and Local
Secondary Indexes.

TimedPITRStorage-B
yteHrs

GB Month The storage used
by point-in-time
recovery (PITR)
backups. DynamoDB
monitors the size
of your PITR-enab
led tables continuou
sly throughout the
month to determine
your backup charges
and bills for storage

Backup and Restore API Version 2012-08-10 3273

https://repost.aws/articles/AR74LYumctRa-t7Z87uwKrlw
https://repost.aws/articles/AR74LYumctRa-t7Z87uwKrlw

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

as long as PITR is
enabled.

REG-RestoreDataSiz
e-Bytes

GB Size The total size of data
restored (includin
g table data, local
secondary indexes
and global secondary
indexes) measured in
GB from DynamoDB
backups.

Amazon Backup

Amazon Backup is a fully managed backup service that makes it easy to centralize and automate
the backup of data across Amazon services in the cloud as well as on premises. Amazon Backup is
charged for storage (warm or cold storage), restoration activities, and cross-Region data transfer.
The following UsageType charges appear under the “AmazonBackup” ProductCode rather than
“AmazonDynamoDB”.

UsageType Units Granularity Description

REG-WarmStorage-
ByteHrs-DynamoDB

GB Month The storage used by
DynamoDB backups
managed by Amazon
Backup throughout
the month, measured
in GB-Month.

REG-CrossRegion-Wa
rmBytes-DynamoDB

GB Size The data transferred
to a different Amazon
Region either within
the same account or
to a different Amazon
account. Cross-Reg

Backup and Restore API Version 2012-08-10 3274

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

ion transfers charges
occur when copying
backups from one
Region to another
Region. The charge is
always billed to the
account where the
data is transferred
from.

REG-Restore-WarmBy
tes-DynamoDB

GB Size The total size of
the data restored
from warm storage,
measured in GB.

REG-ColdStorage-By
teHrs-DynamoDB

GB Month The cold storage
used by DynamoDB
backups managed
by Amazon Backup
throughout the
month, measured in
GB-Month.

REG-Restore-ColdBy
tes-DynamoDB

GB Month The total size of
the data restored
from cold storage,
measured in GB.

Export and Import

You can export data from DynamoDB to Amazon S3 or import data from Amazon S3 to a new
DynamoDB table.

Although the UsageType uses Bytes as a suffix, export and import usage in the CUR is measured
and priced in GB.

Backup and Restore API Version 2012-08-10 3275

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

REG-ExportDataSize-
Bytes

GB Size The charge for
exporting data to S3.
DynamoDB charges
for data you export
based on the size
of the DynamoDB
base table (table data
and local secondary
indexes) at the
specified point in
time when the export
was created.

REG-ImportDataSize-
Bytes

GB Size The charge for
importing data
from S3. The size is
calculated based on
the uncompressed
object size of the
data within Amazon
S3. There are no extra
charges for importing
to tables with GSIs.

REG-IncrementalExp
ortDataSize-Bytes

GB Size The charge for size of
the data processed
from the continuou
s backup to produce
incremental exports.

Data Transfer

Data transfer activity may appear associated with the DynamoDB service. DynamoDB does not
charge for inbound data transfer, and it does not charge for data transferred between DynamoDB

Data Transfer API Version 2012-08-10 3276

Amazon DynamoDB Developer Guide

and other Amazon services within the same Amazon Region (in other words, $0.00 per GB). Data
transferred across Amazon Regions (such as between DynamoDB in the US East [N. Virginia] Region
and Amazon EC2 in the EU [Ireland] Region) is charged on both sides of the transfer.

UsageType Units Granularity Description

REG-DataTransfer-In-
Bytes

GB Units Data transferred in to
DynamoDB from the
internet.

REG-DataTransfer-O
ut-Bytes

GB Units Data transferred out
from DynamoDB to
the internet.

CloudWatch Contributor Insights

CloudWatch Contributor Insights for DynamoDB is a diagnostic tool for identifying the most
frequently accessed and throttled keys in your DynamoDB table. The following UsageType charges
appear under the “AmazonCloudWatch” ProductCode rather than “AmazonDynamoDB”.

UsageType Units Granularity Description

REG-CW:Contributor
EventsManaged

Events processed Units The amount of
DynamoDB events
processed. For
example for a table
with CloudWatch
Contributor Insights
enabled, anytime
an item is read or
written, it’s counted
as one event. If the
table has a sort key, it
results in charges for
two events.

CloudWatch API Version 2012-08-10 3277

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

REG-CW:Contributor
RulesManaged

Rule count Month DynamoDB creates
rules to identify
most accessed
items and most
throttled keys when
you enable Cloud
Watch Contributor
Insights. This charge
is incurred for the
rules added for each
entity (tables and
GSIs) configured for
logging CloudWatch
contributor insights.

DynamoDB Accelerator (DAX)

DynamoDB Accelerator (DAX) is billed by the hour based on the instance type selected for
the service. The charges below refers to the DynamoDB Accelerator instances provisioned.
The following UsageType charges appear under the “AmazonDAX” ProductCode rather than
“AmazonDynamoDB”.

UsageType Units Granularity Description

REG-NodeUsage:dax-
<INSTANCETYPE>

Node-hour Hour The hourly usage of
a particular instance
type. Pricing is per
node-hour consumed,
from the time a node
is launched until it
is terminated. Each
partial node-hour
consumed will be
billed as a full hour.

DAX API Version 2012-08-10 3278

Amazon DynamoDB Developer Guide

UsageType Units Granularity Description

DAX charges for
each node in a DAX
cluster. If you have a
cluster with multiple
nodes, you would see
multiple line items in
your billing report.

The instance type will be one of the values from the following list. For details about node types,
see Nodes.

• r3.2xlarge, r4.8xlarge, or r5.8xlarge

• r3.4xlarge, r4.large, or r5.large

• r3.8xlarge, r4.xlarge, or r5.xlarge

• r3.2xlarge, r5.12xlarge, or t2.medium

• r3.4xlarge, r4.large, or r5.large

• r3.xlarge, r5.16xlarge, or t2.small

• r4.16xlarge, r5.24xlarge, or t3.medium

• r4.2xlarge, r5.2xlarge, or t3.small

• r4.4xlarge or r5.4xlarge

Migrating a DynamoDB table from one account to another

You can migrate an Amazon DynamoDB table from one account to another to implement a multi-
account strategy or a backup strategy. You can also do it for testing, debugging, or compliance
reasons. A common use case is copying DynamoDB tables across production, staging, test, and
development environments where each environment utilizes a different Amazon account.

DynamoDB offers two options for migrating tables from one Amazon account to another:

• Amazon Backup for Cross-Account Backup and Restore: Amazon Backup is a fully managed
backup service that enables you to centrally manage backups across multiple Amazon services.

Migrating a DynamoDB table from one account to another API Version 2012-08-10 3279

Amazon DynamoDB Developer Guide

With its cross-account backup and restore functionality, you can back up a DynamoDB table in
one account and restore the backup to another account in the same Amazon Organization.

• DynamoDB Export and Import to Amazon S3: Using the DynamoDB Export and Import to
Amazon S3 features allows you to do a full export to an Amazon S3 bucket and then import that
data into a new table in another Amazon account. This approach is suitable when you need to
migrate between accounts that are not part of the same Amazon Organization or if you do not
want to use Amazon Backup.

Note

Import from Amazon S3 does not support tables with Local Secondary Indexes (LSIs), but it
does support Global Secondary Indexes (GSIs). For more information on LSIs and GSIs, see
Improving data access with secondary indexes in DynamoDB.

Topics

• Migrate a table using Amazon Backup for cross-account backup and restore

• Migrate a table using export to S3 and import from S3

Migrate a table using Amazon Backup for cross-account backup and
restore

Prerequisites

• Source and target Amazon accounts must belong to the same organization in the Amazon
Organizations service

• Valid Amazon Identity and Access Management (IAM) permissions to create and use Amazon
Backup vaults

For more information about setting up cross-account backups, see Creating backup copies across
Amazon accounts.

Pricing information

Amazon charges for the backup (based on the table size), any data copying between Amazon
Regions (based on the amount of data), for the restore (based on the amount of data), and for any

Migrate a table using Amazon Backup for cross-account backup and restore API Version 2012-08-10 3280

https://docs.amazonaws.cn/aws-backup/latest/devguide/create-cross-account-backup.html
https://docs.amazonaws.cn/aws-backup/latest/devguide/create-cross-account-backup.html

Amazon DynamoDB Developer Guide

ongoing storage charges. To avoid ongoing charges, you can delete the backup if you don't need it
after the restore.

For more information about pricing, see Amazon Backup pricing .

Step 1: Enable advanced features for DynamoDB and cross-account backup

1. In both the source and target Amazon account, access the Amazon Management Console and
open the Amazon Backup console.

2. Choose the Settings option.

3. Under Advanced features for Amazon DynamoDB backups, confirm that Advanced features
is enabled. If it isn't, choose Enable.

4. Under Cross-account management, for Cross-account backup, choose Turn On.

Step 2: Create a backup vault in the source account and target account

1. In the source Amazon accounts, open the Amazon Backup console.

2. Choose Backup vaults.

3. Choose Create Backup vault.

4. Copy and save the Amazon Resource Name (ARN) of the created backup vaults and the target
Amazon account.

5. You'll need the ARNs of both the source and target backup vaults when copying the
DynamoDB table backup between accounts.

Step 3: Create a DynamoDB table backup in the source account

1. On the Amazon Backup Dashboard page, choose Create on-demand backup.

2. In the Settings section, select DynamoDB as the Resource type, and then select the table
name.

3. In the Backup vault dropdown list, select the backup vault you created in the source account.

4. Select the desired Retention period.

5. Choose Create on-demand backup.

6. Monitor the status of the backup job on the Backup Jobs tab of the Amazon Backup Jobs
page.

Migrate a table using Amazon Backup for cross-account backup and restore API Version 2012-08-10 3281

https://www.amazonaws.cn/backup/pricing/

Amazon DynamoDB Developer Guide

Step 4: Copy the DynamoDB table backup from the source account to the target
account

1. After the backup job completes, open the Amazon Backup console in the source account and
choose Backup vaults.

2. Under Backups, choose the DynamoDB table backup. Choose Actions and then Copy.

3. Enter the Amazon Region of the target account.

4. For External vault ARN, enter the ARN of the backup vault you created in the target account.

5. In the target account backup vault, enable access from a source account to allow copying
backups.

Step 5: Restore the DynamoDB table backup in the target account

1. In the target Amazon account, open the Amazon Backup console and choose Backup vaults

2. Under Backups, select the backup you copied from the source account. Choose Actions, then
Restore.

3. Enter the name for the new DynamoDB table, the encryption that this new table will have, the
key you want the restore to be encrypted with, and any other options.

4. When the restore is completed, the table status will show as Active.

Migrate a table using export to S3 and import from S3

Prerequisites

• You must enable Point-in-Time Recovery (PITR) for your table in order to perform the export to
S3. For more information, see Enable point-in-time recovery in DynamoDB.

• Valid IAM permissions to perform the export. For more information, see Requesting a table
export in DynamoDB.

• Valid IAM permissions sufficient to perform the import. For more information, see Requesting a
table import in DynamoDB.

Pricing information

Amazon charges for PITR (based on the size of the table and how long PITR is enabled for). If you
don't need PITR except for the export, you can turn it off after the export concludes. Amazon also

Migrate a table using export to S3 and import from S3 API Version 2012-08-10 3282

Amazon DynamoDB Developer Guide

charges for requests made against S3, for storing the exported data in S3 and for importing (based
on the uncompressed size of the imported data).

For more information about DynamoDB pricing, see DynamoDB pricing.

Note

There are limits on the size and number of objects when importing from S3 to DynamoDB.
For more information, see Import quotas.

Requesting a table export to Amazon S3

1. Sign in to the Amazon Management Console and open the DynamoDB console.

2. In the navigation pane on the left side of the console, choose Exports to S3.

3. Choose a source table and destination S3 bucket. Enter the URL of the destination account
bucket using the s3://bucketname/prefix format. /prefix is an optional folder to help
keep your destination bucket organized.

4. Choose Full export. A full export outputs the full table snapshot of your table, at the point in
time you specify.

a. Select Current time to export the latest full table snapshot.

b. For Exported file format, choose between DynamoDB JSON and Amazon Ion. The default
option is DynamoDB JSON.

5. Click the Export button to begin the export.

6. Small table exports should complete in a few minutes, but tables in the terabyte range can
take more than an hour.

Requesting a table import from Amazon S3

1. Sign in to the Amazon Management Console and open the DynamoDB console.

2. In the navigation pane on the left side of the console, choose Import from S3.

3. On the page that appears, select Import from S3.

4. Enter the Amazon S3 source URL. You can also find it by using the Browse S3 button. The
expected path is of the format s3://bucket/prefix/AWSDynamoDB/<XXXXXXXX-
XXXXXX>/data/.

Migrate a table using export to S3 and import from S3 API Version 2012-08-10 3283

https://www.amazonaws.cn/dynamodb/pricing/

Amazon DynamoDB Developer Guide

5. Specify if you are the S3 bucket owner.

6. Under Import file compression, select GZIP to match the export.

7. Under Import file format, select DynamoDB JSON to match the export.

8. Select Next. For Specify table details, choose the options for the new table that will be
created to store your data.

9. Select Next. For Configure table settings, customize any additional table settings if
applicable.

10. Select Next again to review your import options, then click Import to begin the import task.
You'll see your new table listed under Imports from S3 with the status Importing. You cannot
access your table during this time. Small imports should complete in a few minutes, but tables
in the terabyte range can take more than an hour.

11. After the import completes, the status shows as Active, and you can start using the table.

Keeping tables in sync during migration

If you can pause write operations on the source table for the duration of the migration, then the
source and output should match up exactly after the migration. If you can't pause write operations,
the target table would normally be a bit behind the source after the migration. To catch up the
source table, you can use streaming (DynamoDB Streams or Kinesis Data Streams for DynamoDB)
to replay the writes that happened in the source table since the backup or export.

You should start reading the stream records prior to the timestamp when you exported the source
table to S3. For example, if the export to S3 occurred at 2:00 PM and the import to the target
table was concluded at 11:00 PM, you should initiate the DynamoDB stream reading at 1:58 PM.
The streaming options for change data capture table summarizes the features of each streaming
model.

Using DynamoDB Streams with Lambda offers a streamlined approach for synchronizing data
between the source and target DynamoDB tables. You can use a Lambda function to replay each
write in the target table.

Note

Items are kept in the DynamoDB Streams for 24 hours, so you should plan to complete your
backup and restore or export and import within that window.

Migrate a table using export to S3 and import from S3 API Version 2012-08-10 3284

Amazon DynamoDB Developer Guide

Prescriptive guidance to integrate DAX with DynamoDB
applications

DynamoDB Accelerator (DAX), is a DynamoDB-compatible caching service that provides fast in-
memory performance for demanding applications, such as read-heavy applications. Using DAX,
you can achieve response times in microseconds for accessing frequently requested data. This
DynamoDB Accelerator prescriptive guide provides comprehensive insights and best practices for
integrating DAX with your DynamoDB applications.

This guide provides foundational knowledge for those who are new to DAX or want to optimize
their existing configurations. This guide covers various topics, for example, when to use DAX
and creating a DAX cluster. It also includes practical examples and detailed explanations to help
you effectively implement DAX in your projects. Finally, this guide offers advanced strategies
that you need to implement to maximize DAX caching capabilities for ensuring fast and scalable
applications.

Topics

• Evaluating the suitability of DAX for your use cases

• Configuring your DAX client

• Configuring your DAX cluster

• Sizing your DAX cluster

• Deploying a cluster

• Managing cluster operations

• Monitoring DAX

Evaluating the suitability of DAX for your use cases

This section explains when and why to use DAX. Using this guidance helps you to determine
if integrating DAX with DynamoDB is advantageous for your application's workload patterns,
performance requirements, and data consistency needs. It also covers scenarios where DAX might
not be suitable, for example, write-heavy workloads and infrequently accessed data.

In this section

• When and why to choose DAX

DAX prescriptive guidance API Version 2012-08-10 3285

Amazon DynamoDB Developer Guide

• When not to use DAX

When and why to choose DAX

You can consider adding DAX to your application stack in several scenarios. For example, use DAX
to reduce the overall latency of read requests against DynamoDB or to minimize repeated reads of
the same data from a table. The following list presents examples of scenarios in which you can take
advantage of integrating DAX with DynamoDB:

• High-performance requirement

• Low latency reads – You should consider using DAX if your application requires response times
in microseconds for eventually-consistent reads. DAX can also drastically reduce the response
time for accessing frequently read data.

• Read-intensive workloads

• Read-heavy applications – For applications with a high read-to-write ratio, for example, 10:1
or more, DAX results in more cache hits and less stale data. This reduces reads against a table.
To avoid reading stale data from the cache if your application is write-heavy, make sure to set
a lower Using time to live (TTL) in DynamoDB for the cache.

• Caching common queries – If your application frequently reads the same data, for example,
popular products on an e-commerce platform, DAX can serve these requests directly from its
cache.

• Bursty traffic patterns

• Smoother table scaling – DAX helps smooth out impacts of sudden traffic spikes. DAX
provides a buffer to scale up DynamoDB table capacity gracefully, which reduces the risk of
read throttling.

• Higher read throughput for each item – DynamoDB allocates individual partitions for each
item. However, a partition starts throttling reads of an item when it reaches 3,000 read
capacity units (RCU). DAX lets you scale reads of a single item beyond 3,000 RCU.

• Cost optimization

• Reducing DynamoDB costs – Reading from DAX can reduce reads sent to a DynamoDB table,
which can then directly impact cost. With a high cache hit rate, the reduced table read cost can
exceed a DAX cluster cost, which results in a net cost reduction.

• Data consistency requirements

• Eventual consistency – DAX supports eventually consistent reads. This makes DAX suitable for
use cases where immediate consistency isn't critical.

Evaluating the suitability of DAX API Version 2012-08-10 3286

Amazon DynamoDB Developer Guide

• Write-through caching – Writes that you make against DAX are write-through. Once DAX
confirms that it's written an item to DynamoDB, it persists that item version in the item cache.
This write-through mechanism helps maintain tighter data consistency between cache and
database, but uses additional DAX cluster resources.

When not to use DAX

While DAX is powerful, it's not suitable for all scenarios. The following list presents examples of
scenarios in which integrating DAX with DynamoDB is unsuitable:

• Write-heavy workloads – The primary advantage of DAX is speeding up reads, but writes use
more DAX resources than reads. If your application is predominantly write-heavy, DAX benefits
might be limited.

• Infrequently read data – If your application accesses data infrequently or a wide range of rarely
reused data (cold data), you'll likely experience a low cache hit ratio. In this case, the overhead of
maintaining the cache might not justify the performance gains.

• Bulk reads or writes – If your application performs more bulk writes than individual writes, you
should write around DAX. In addition, for bulk reads, you should run full table scans directly
against a DynamoDB table.

• Strong consistency or transaction requirements – DAX passes strongly consistent reads and
TransactGetItems calls to a DynamoDB table. You should make these reads around the DAX
cluster to avoid using cluster resources. Items read this way won't be cached; therefore, routing
such items through DAX serves no purpose.

• Simple applications with modest performance requirements – For applications with modest
performance requirements and tolerance for direct DynamoDB latency, the complexity and cost
of adding DAX might not be necessary. On its own, DynamoDB handles high throughput and
provides single-digit millisecond performance.

• Complex querying needs beyond key-value access – DAX is optimized for key-value access
patterns. If your application requires complex querying capabilities with complex filtering, such
as Query and Scan operations, DAX caching benefits might be limited.

In these situations, use Amazon ElastiCache (Redis OSS) as an alternative. ElastiCache (Redis OSS)
supports advanced data structures, such as, lists, sets, and hashes. It also offers features, such as
pub/sub, geospatial indexes, and scripting.

• Compliance requirements – DAX doesn't currently offer the same compliance accreditations as
as DynamoDB. For example, DAX hasn't obtained the SOC accreditation yet.

Evaluating the suitability of DAX API Version 2012-08-10 3287

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_TransactGetItems.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/red-ug/WhatIs.html

Amazon DynamoDB Developer Guide

Configuring your DAX client

The DAX cluster is an instance-based cluster that can be accessed using various DAX SDKs. Each
SDK provides developers with configurable options, such as requestTimeout and connections, to
meet specific application requirements.

When configuring your DAX client, a crucial consideration is your client application's scale—
specifically, the ratio of client instances to DAX server instances (which has a maximum of
11). Large client instance fleets can generate numerous connections to DAX server instances,
potentially overwhelming them. This guide outlines best practices for DAX client configuration.

Best practices

1. Client instances – Implement singleton client instances to ensure instance reuse across requests.
For implementation details, see the section called “Step 4: Run a sample application”.

2. Request timeouts – While applications often require low request timeouts to ensure minimal
latency for upstream systems, setting timeouts too low can cause problems. Low timeouts
may trigger frequent reconnection to server instances when DAX servers experience temporary
latency spikes. When a timeout occurs, the DAX client terminates the existing server node
connection and establishes a new one. Since connection establishment is resource-intensive,
numerous consecutive connections can overload DAX servers. We recommend the following:

• Maintaining default request timeout settings.

• If lower timeouts are necessary, implement separate application threads with lower timeout
values and include retry mechanisms with exponential back-off.

3. Connection timeout – For most applications, we recommend maintaining the default
connection timeout settings.

4. Concurrent connections – Certain SDKs, such as JavaV2, allow adjustment of concurrent
connections to the DAX server. Key considerations:

• DAX server instances can handle up to 40,000 concurrent connections.

• Default settings are suitable for most use cases.

• Large client instances combined with high concurrent connections may overload servers.

• Lower concurrent connection values reduce server overload risk.

• Performance calculation example:

• Assuming 1ms request latency, each connection can theoretically handle 1,000 requests/
second.

Configuring your DAX client API Version 2012-08-10 3288

Amazon DynamoDB Developer Guide

• For a 3-node cluster, a single client instance connecting to all nodes can process 3,000
requests/second.

• With 10 connections, the client can handle approximately 30,000 requests/second.

Recommendation – Begin with lower concurrent connection settings and validate through
performance testing with expected production workload patterns.

Configuring your DAX cluster

The DAX cluster is a managed cluster, but you can adjust its configurations to fit your application
requirements. Because of its close integration with DynamoDB API operations, you should consider
the following aspects when integrating your application with DAX.

In this section

• DAX pricing

• Item cache and query cache

• Selecting TTL setting for the caches

• Caching multiple tables with a DAX cluster

• Data replication in DAX and DynamoDB global tables

• DAX Region availability

• DAX caching behavior

DAX pricing

The cost of a cluster depends on the number and size of nodes it has provisioned. Every node is
billed for each hour it runs in the cluster. For more information, see Amazon DynamoDB pricing.

Cache hits don't incur DynamoDB cost, but impact DAX cluster resources. Cache misses incur
DynamoDB read costs and require DAX resources. Writes incur DynamoDB write costs and impact
DAX cluster resources to proxy the write.

Item cache and query cache

DAX maintains an item cache and a query cache. Understanding the differences between these
caches can help you determine the performance and consistency characteristics they offer to your
application.

Configuring your DAX cluster API Version 2012-08-10 3289

https://www.amazonaws.cn/dynamodb/pricing/

Amazon DynamoDB Developer Guide

Cache characteristic Item cache Query cache

Purpose Stores the results of GetItem
and BatchGetItem API
operations.

Stores the results of Query
and Scan API operations.
These operations can return
multiple items based on
query conditions instead of
specific item keys.

Access Type Uses key-based access.

When an application requests
data using GetItem or
BatchGetItem , DAX
first checks the item cache
using the primary key of
the requested items. If the
item is cached and unexpired
, DAX returns it immediate
ly without accessing the
DynamoDB table.

Uses parameter-based access.

DAX caches the result set
of Query and Scan API
operations. DAX serves
subsequent requests with
the same parameters that
include the same query
conditions, table, index, from
the cache. This significantly
reduces response times and
DynamoDB read throughput
consumption.

Cache Invalidation DAX automatically replicates
updated items into the item
cache of the nodes in the
DAX cluster in the following
scenarios:

• You write an item update
through the cache.

• Read an updated item
version from the table.

The query cache is more
challenging to invalidate than
the item cache. Item updates
might not directly map to
cached queries or scans. You
must carefully tune the query
cache TTL to maintain data
consistency. Writes through
DAX or base table aren't
reflected in query cache until
the TTL expires the previousl
y cached response and DAX
performs a new query against
DynamoDB.

Configuring your DAX cluster API Version 2012-08-10 3290

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_BatchGetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Query.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html

Amazon DynamoDB Developer Guide

Cache characteristic Item cache Query cache

Global secondary index Because the GetItem API
operation isn't supported on
local secondary indexes or
global secondary indexes, the
item cache only caches reads
from the base table.

Query cache caches queries
against both tables and
indexes.

Selecting TTL setting for the caches

TTL determines the period for which data is stored in the cache before it becomes stale. After this
period, the data is automatically refreshed on the next request. Choosing the right TTL setting
for your DAX caches involves balancing between the optimization of application performance
and consistency of data. Because there doesn't exist a universal TTL setting that works for all
applications, the optimal TTL setting varies based on your application's specific characteristics and
requirements. We recommend that you start with a conservative TTL setting using this prescriptive
guidance. Then, iteratively adjust your TTL setting based on your application's performance data
and insights.

DAX maintains a least recently used (LRU) list for the item cache. The LRU list tracks when items
are first written to or last read from the cache. When the DAX node memory is full, DAX evicts
older items even if they haven't expired yet to make room for new items. The LRU algorithm is
always enabled and not user-configurable.

To set a TTL duration that works for your applications, consider the following points:

Understand your data access patterns

• Read-heavy workloads – For applications with read-heavy workloads and infrequent data
updates, set a longer TTL duration to reduce the number of cache misses. A longer TTL duration
also reduces the need to access the underlying DynamoDB table.

• Write-heavy workloads – For applications with frequent updates that aren't written through
DAX, set a shorter TTL duration to ensure the cache stays consistent with the database. A shorter
TTL duration also reduces the risk of serving stale data.

Configuring your DAX cluster API Version 2012-08-10 3291

Amazon DynamoDB Developer Guide

Evaluate your application's performance requirements

• Latency sensitivity – If your application requires low latency over data freshness, use a longer
TTL duration. A longer TTL duration maximizes cache hits, which reduces average read latency.

• Throughput and scalability – A longer TTL duration reduces load on DynamoDB tables and
improves throughput and scalability. However, you should balance this with the need for up-to-
date data.

Analyze cache eviction and memory usage

• Cache memory limits – Monitor your DAX cluster's memory usage. A longer TTL duration can
store more data in the cache, which might reach memory limits and lead to LRU-based evictions.

Use metrics and monitoring to adjust TTL

Regularly review metrics, for example, cache hits and misses, and CPU and memory utilization.
Adjust your TTL setting based on these metrics to find an optimal balance between performance
and data freshness. If cache misses are high and memory utilization is low, increase the TTL
duration to increase the cache hit rate.

Consider business requirements and compliance

Data retention policies might dictate the maximum TTL duration you can set for sensitive or
personal information.

Cache behavior if you set TTL to zero

If you set TTL to 0, the item cache and query cache present the following behaviors:

• Item cache – Items in the cache are refeshed only when an LRU eviction or a write-through
operation occurs.

• Query cache – Query responses aren't cached.

Caching multiple tables with a DAX cluster

For workloads with multiple small DynamoDB tables that don't need individual caches, a single
DAX cluster caches requests for these tables. This provides more flexible and efficient use of DAX,
particularly for applications that access multiple tables and require high-performance reads.

Configuring your DAX cluster API Version 2012-08-10 3292

Amazon DynamoDB Developer Guide

Similar to the DynamoDB data plane APIs, DAX requests require a table name. If you use multiple
tables in the same DAX cluster, you don't need any specific configuration. However, you must
ensure that the cluster's security permissions allow access to all cached tables.

Considerations for using DAX with multiple tables

When you use DAX with multiple DynamoDB tables, you should consider the following points:

• Memory management – When you use DAX with multiple tables, you should consider the total
size of your working data set. All the tables in your data set will share the same memory space of
the node type you selected.

• Resource allocation – The DAX cluster's resources are shared among all the cached tables.
However, a high-traffic table can cause eviction of data from the neighboring smaller tables.

• Economies of scale – Group smaller resources into a larger DAX cluster for averaging out traffic
to a steadier pattern. For the total number of read resources that the DAX cluster requires, it's
also economical to have three or more nodes. This also increases the availability of all the cached
tables in the cluster.

Data replication in DAX and DynamoDB global tables

DAX is a Region-based service, so a cluster is only aware of the traffic within its Amazon Web
Services Region. Global tables write around the cache when they replicate data from another
Region.

A longer TTL duration can cause stale data to remain in your secondary Region for longer than in
the primary Region. This can result in cache misses in the local cache of the secondary Region.

The following diagram shows data replication occurring at the global table level in the source
Region A. The DAX cluster in Region B isn't immediately aware of the newly replicated data from
the source Region A.

Configuring your DAX cluster API Version 2012-08-10 3293

Amazon DynamoDB Developer Guide

DAX Region availability

Not all Regions that support DynamoDB tables support deploying DAX clusters. If your application
requires low read latency through DAX, first review the list of Regions that support DAX. Then,
select a Region for your DynamoDB table.

DAX caching behavior

DAX performs metadata and negative caching. Understanding these caching behaviors will help
you effectively manage attribute metadata of cached items and negative cache entries.

• Metadata caching – DAX clusters indefinitely maintain metadata about the attribute names of
cached items. This metadata persists even after the item expires or is evicted from the cache.

Over time, applications that use unbounded number of attribute names can cause memory
exhaustion in the DAX cluster. This limitation applies only to top-level attribute names, but not
to the nested attribute names. Examples of unbounded attribute names include timestamps,
UUIDs, and session IDs. Although you can use timestamps and session IDs as attribute values, we
recommend to use shorter and more predictable attribute names.

• Negative caching – If a cache miss occurs and the read from a DynamoDB table yields no
matching items, DAX adds a negative cache entry in the respective item or query cache. This

Configuring your DAX cluster API Version 2012-08-10 3294

https://docs.amazonaws.cn/general/latest/gr/ddb.html#ddb_region

Amazon DynamoDB Developer Guide

entry remains until the cache TTL duration expires or a write-through occurs. DAX continues to
return this negative cache entry for future requests.

If the negative caching behavior doesn't fit your application pattern, read the DynamoDB table
directly when DAX returns an empty result. We also recommend that you set a lower TTL cache
duration to avoid long-lasting empty results in the cache and improve consistency with the table.

Sizing your DAX cluster

A DAX cluster's total capacity and availability depends on node type and count. More nodes in the
cluster increase its read capacity, but not the write capacity. Larger node types (up to r5.8xlarge)
can handle more writes, but too few nodes can impact availability when a node failure occurs. For
more information about sizing your DAX cluster, see the DAX cluster sizing guide.

The following sections discuss the different sizing aspects that you should consider to balance
node type and count for creating a scalable and cost-efficient cluster.

In this section

• Planning availability

• Planning write throughput

• Planning read throughput

• Planning dataset size

• Calculating approximate cluster capacity requirements

• Approximating cluster throughput capacity by node type

• Scaling write capacity in DAX clusters

Planning availability

When sizing a DAX cluster, you should first focus on its targeted availability. Availability of a
clustered service, such as DAX, is a dimension of the total number of nodes in the cluster. Because
a single node cluster has no tolerance for failure, its availability is equal to one node. In a 10-
node cluster, the loss of a single node has a minimal impact to the cluster's overall capacity. This
loss doesn't have a direct impact on availability because the remaining nodes can still fulfill read
requests. To resume writes, DAX quickly nominates a new primary node.

Sizing your DAX cluster API Version 2012-08-10 3295

Amazon DynamoDB Developer Guide

DAX is VPC-based. It uses a subnet group to determine which Availability Zones it can run nodes in
and which IP addresses to use from the subnets. For production workloads, we highly recommend
that you use DAX with at least three nodes in different Availability Zones. This ensures that the
cluster has more than one node left to handle requests even if a single node or Availability Zone
fails. A cluster can have up to 11 nodes, where one is a primary node and 10 are read replicas.

Planning write throughput

All DAX clusters have a primary node for write-through requests. The size of the node type for the
cluster determines its write capacity. Adding additional read replicas doesn't increase the cluster's
write capacity. Therefore, you should consider the write capacity during cluster creation because
you can't change the node type later.

If your application needs to write-through DAX to update the item cache, consider increased use
of cluster resources to facilitate the write. Writes against DAX consume about 25 times more
resources than cache-hit reads. This might require a larger node type than for read-only clusters.

For additional guidance about determining whether write-through or write-around will work best
for your application, see Strategies for writes.

Planning read throughput

A DAX cluster's read capacity depends on the cache hit ratio of your workload. Because DAX reads
data from DynamoDB when a cache miss occurs, it consumes approximately 10 times more cluster
resources than a cache-hit. To increase cache hits, increase the TTL setting of the cache to define
the period for which an item is stored in the cache. A higher TTL duration, however, increases the
chance of reading older item versions unless updates are written through DAX.

To make sure that the cluster has sufficient read capacity, scale the cluster horizontally as
mentioned in Scaling a cluster horizontally. Adding more nodes adds read replicas to the pool of
resources, while removing nodes reduces read capacity. When you select the number of nodes
and their sizes for a cluster, consider both the minimum and maximum amount of read capacity
needed. If you can't horizontally scale a cluster with smaller node types to meet your read
requirements, use a larger node type.

Planning dataset size

Each available node type has a set memory size for DAX to cache data. If a node type is too small,
the working set of data that an application requests won't fit in memory and results in cache

Sizing your DAX cluster API Version 2012-08-10 3296

https://www.amazonaws.cn/about-aws/global-infrastructure/regions_az/

Amazon DynamoDB Developer Guide

misses. Because larger nodes support larger caches, use a node type larger than the estimated data
set that you need to cache. A larger cache also improves the cache hit ratio.

You might get diminishing returns for caching items with few repeated reads. Calculate the
memory size for frequently accessed items and make sure the cache is large enough to store that
data set.

Calculating approximate cluster capacity requirements

You can estimate your workload's total capacity needs to help you select the appropriate size
and quantity of cluster nodes. To do this estimation, calculate the variable normalized request
per second (Normalized RPS). This variable represents the total units of work your application
requires the DAX cluster to support, including cache hits, cache misses, and writes. To calculate the
Normalized RPS, use the following inputs:

• ReadRPS_CacheHit – Specifies the number of reads per second that result in a cache hit.

• ReadRPS_CacheMiss – Specifies the number of reads per second that result in a cache miss.

• WriteRPS – Specifies the number of writes per second that will go through DAX.

• DaxNodeCount – Specifies the number of nodes in the DAX cluster.

• Size – Specifies the size of the item being written or read in KB rounded up to the nearest KB.

• 10x_ReadMissFactor – Represents a value of 10. When a cache miss occurs, DAX uses
approximately 10 times more resources than cache hits.

• 25x_WriteFactor – Represents a value of 25 because a DAX write-through uses approximately
25 times more resources than cache hits.

Using the following formula, you can calculate the Normalized RPS.

Normalized RPS = (ReadRPS_CacheHit * Size) + (ReadRPS_CacheMiss * Size *
 10x_ReadMissFactor) + (WriteRequestRate * 25x_WriteFactor * Size * DaxNodeCount)

For example, consider the following input values:

• ReadRPS_CacheHit = 50,000

• ReadRPS_CacheMiss = 1,000

• ReadMissFactor = 1

• Size = 2 KB

Sizing your DAX cluster API Version 2012-08-10 3297

Amazon DynamoDB Developer Guide

• WriteRPS = 100

• WriteFactor = 1

• DaxNodeCount = 3

By substituting these values in the formula, you can calculate the Normalized RPS as follows.

Normalized RPS = (50,000 Cache Hits/Sec * 2KB) + (1,000 Cache Misses/Sec * 2KB * 10) +
 (100 Writes/Sec * 25 * 2KB * 3)

In this example, the calculated value of Normalized RPS is 135,000. However, this Normalized RPS
value doesn't account for keeping cluster utilization below 100% or node loss. We recommend
that you factor in additional capacity. To do this, determine the greater of two multiplying factors:
target utilization or node loss tolerance. Then, multiply the Normalized RPS by the greater factor
to obtain a target request per second (Target RPS).

• Target utilization

Because performance impacts increase cache misses, we don't recommend running the DAX
cluster at 100% utilization. Ideally, you should keep cluster utilization at or below 70%. To
achieve this, multiply the Normalized RPS by 1.43.

• Node loss tolerance

If a node fails, your application must be able to distribute its requests among the remaining
nodes. To make sure nodes stay below 100% utilization, choose a node type large enough to
absorb extra traffic until the failed node comes back online. For a cluster with fewer nodes, each
node must tolerate larger traffic increases when one node fails.

If a primary node fails, DAX automatically fails over to a read replica and designates it as the new
primary. If a replica node fails, other nodes in the DAX cluster can still serve requests until the
failed node is recovered.

For example, a 3-node DAX cluster with a node failure requires an additional 50% capacity
on the remaining two nodes. This requires a multiplying factor of 1.5. Conversely, an 11-node
cluster with a failed node requires an additional 10% capacity on the remaining nodes or a
multiplying factor of 1.1.

Using the following formula, you can calculate the Target RPS.

Sizing your DAX cluster API Version 2012-08-10 3298

Amazon DynamoDB Developer Guide

Target RPS = Normalized RPS * CEILING(TargetUtilization, NodeLossTolerance)

For example, to calculate Target RPS, consider the following values:

• Normalized RPS = 135,000

• TargetUtilization = 1.43

Because we're aiming for a maximum cluster utilization of 70%, we're setting
TargetUtilization to 1.43.

• NodeLossTolerance = 1.5

Say that we're using a 3-node cluster, therefore, we're setting NodeLossTolerance to 50%
capacity.

By substituting these values in the formula, you can calculate the Target RPS as follows.

Target RPS = 135,000 * CEILING(1.43, 1.5)

In this example, because the value of NodeLossTolerance is greater than TargetUtilization,
we calculate the value of Target RPS with NodeLossTolerance. This gives us a Target RPS of
202,500, which is the total amount of capacity the DAX cluster must support. To determine the
number of nodes you'll need in a cluster, map the Target RPS to an appropriate column in the
following table. For this example of a Target RPS of 202,500, you need the dax.r5.large node type
with three nodes.

Approximating cluster throughput capacity by node type

Using the Target RPS formula, you can estimate cluster capacity for different node types. The
following table shows approximate capacities for clusters with 1, 3, 5, and 11 node types. These
capacities don't replace the need to perform load testing of DAX with your own data and request
patterns. Additionally, these capacities don't include t-type instances because of their lack of fixed
CPU capacity. The unit for all values in the following table is Normalized RPS.

Sizing your DAX cluster API Version 2012-08-10 3299

Amazon DynamoDB Developer Guide

Node type
(memory)

1 node 3 nodes 5 nodes 11 nodes

dax.r5.24xlarge
(768GB)

1M 3M 5M 11M

dax.r5.16xlarge
(512GB)

1M 3M 5M 11M

dax.r5.12xlarge
(384GB)

1M 3M 5M 11M

dax.r5.8xlarge
(256GB)

1M 3M 5M 11M

dax.r5.4xlarge
(128GB)

600k 1.8M 3M 6.6M

dax.r5.2xlarge
(64GB)

300k 900k 1.5M 3.3M

dax.r5.xlarge
(32GB)

150k 450k 750k 1.65M

dax.r5.large
(16GB)

75k 225k 375k 825k

Because of the maximum limit of 1 million NPS (network operations per second) for each node,
nodes of types dax.r5.8xlarge or larger don't contribute additional cluster capacity. Node types
larger than 8xlarge might not contribute to total throughput capacity of the cluster. However, such
node types can be helpful for storing a larger working data set in memory.

Scaling write capacity in DAX clusters

Each write to DAX consumes 25 normalized requests on every node. Because there's a 1 million RPS
limit for each node, a DAX cluster is limited to 40,000 writes per second, not accounting for read
usage.

Sizing your DAX cluster API Version 2012-08-10 3300

Amazon DynamoDB Developer Guide

If your use case requires more than 40,000 writes per second in the cache, you must use separate
DAX clusters and shard the writes among them. Similar to DynamoDB, you can hash the partition
key for the data you're writing to the cache. Then, use modulus to determine which shard to write
the data to.

The following example calculates the hash of an input string. It then calculates the modulus of the
hash value with 10.

def hash_modulo(input_string):
 # Compute the hash of the input string
 hash_value = hash(input_string)

 # Compute the modulus of the hash value with 10
 bucket_number = hash_value % 10

 return bucket_number

#Example usage
if _name_ == "_main_":
 input_string = input("Enter a string: ")
 result = hash_modulo(input_string)
 print(f"The hash modulo 10 of '{input_string}' is: {result}.")

Deploying a cluster

Creating a new DAX cluster requires configurations beyond those needed for DynamoDB. These
configurations are particularly for networking because DAX is based on Amazon VPC. This gives
you complete control over your virtual networking environment, including resource placement,
connectivity, and security. This section presents the best practices for the settings needed during
cluster creation.

For information about choosing cluster nodes, see Sizing your DAX cluster.

In this section

• Configure networks

• Configure security

• Parameter group

• Maintenance window

Deploying a cluster API Version 2012-08-10 3301

https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html

Amazon DynamoDB Developer Guide

Configure networks

DAX uses a subnet group to determine which Availability Zones it can run nodes in and which IP
addresses to use from the subnets. To minimize latency between your application and DAX, the
subnets and Availability Zones for your application servers and the DAX cluster should be the same.

We recommend that you spread the DAX nodes across multiple Availability Zones. The default
option of Automatic allocation does this for you.

For best practices about setting up your VPC, see Get started with Amazon VPC in the Amazon VPC
User Guide.

Configure security

This section discusses the security measures that you should implement for your applications that
use DAX. This section also briefly discusses the support that DAX includes for data encryption.

IAM

DAX and DynamoDB have separate access control mechanisms. DAX requires an IAM role to access
your DynamoDB tables. This role should follow the principle of least privilege and grant access only
to specific tables and DynamoDB operations, such as GetItem and PutItem. For more information
about the access control mechanisms provided by DAX, see DAX access control.

Encryption

You configure encryption at rest and encryption in transit while creating a DAX cluster. These are
enabled by default. We recommend that you keep the default encryption settings unless business
requirements prevent it. For more information, see DAX encryption at rest and DAX encryption in
transit.

Parameter group

DAX applies a set of configurations on every node in a cluster called a parameter group. You can
change this configuration after creating the cluster.

The DAX parameter group holds TTL settings for item cache and query cache. By default, the TTL
duration is 5 minutes. You can override the TTL duration to any integer value greater than or equal
to 1 millisecond.

Deploying a cluster API Version 2012-08-10 3302

https://docs.amazonaws.cn/vpc/latest/userguide/vpc-getting-started.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_dax_ParameterGroup.html

Amazon DynamoDB Developer Guide

You can't modify parameter groups when a running DAX instance is using them. You can change
the parameter group values during the downtime of a DAX cluster.

Maintenance window

To allow for occasional software upgrades and patches to your nodes, a weekly maintenance
window is configured for the DAX cluster. During this window, DAX performs rolling updates to the
nodes. Clusters with more than one node don't lose availability of the cluster during these updates,
but have reduced cluster capacity until the node returns. If your organization has a predictable time
of low usage, consider setting the maintenance window manually to this time.

Managing cluster operations

DAX handles the cluster’s maintenance and health for you. However, you need to provide
operational input to scale the cluster horizontally or vertically to match your usage patterns. This
section describes the recommended process to scale your DAX clusters.

In this section

• Scaling a cluster horizontally

• Scaling a cluster vertically

Scaling a cluster horizontally

Scaling a DAX cluster involves adjusting its capacity to meet throughput demands. This adjustment
is done by increasing or decreasing the number of nodes (replicas) in the cluster while it's running.
This process, known as horizontal scaling, helps distribute the workload across more nodes or
consolidate to fewer nodes when demand is low.

You can horizontally scale your DAX cluster in and out using the decrease-replication-
factor or increase-replication-factor commands in the Amazon CLI.

Increase replication factor (scale out)

Increasing the replication factor of a DAX cluster adds more nodes to the cluster. The following
example shows the usage of the increase-replication-factor command.

aws dax increase-replication-factor \
 --cluster-name yourClusterName \

Cluster operations API Version 2012-08-10 3303

Amazon DynamoDB Developer Guide

 --new-replication-factor desiredReplicationFactor

• In this command, the cluster-name argument specifies the name of your cluster. For example,
yourClusterName.

• The new-replication-factor argument specifies the total number of nodes to add in
the cluster after scaling. This includes the primary node and replica nodes. For example, if
your cluster currently has 3 nodes and you want to add 2 more nodes, set the value of new-
replication-factor to 5.

Decrease replication factor (scale in)

Decreasing the replication factor of a DAX cluster removes nodes from the cluster. Removing nodes
can help reduce cost during periods of low demand. The following example shows the usage of the
decrease-replication-factor command.

aws dax decrease-replication-factor \
 --cluster-name yourClusterName \
 --new-replication-factor desiredReplicationFactor

• In this command, the cluster-name argument specifies the name of your cluster. For example,
yourClusterName.

• The new-replication-factor argument specifies the reduced number of nodes in your
cluster after scaling. This number must be lower than the current replication factor and must
include the primary node. For instance, if your cluster has 5 nodes and you want to remove 2
nodes, set the value of new-replication-factor to 3.

Horizontal scaling considerations

Consider the following when you plan horizontal scaling:

• Primary node – The DAX cluster includes a primary node. The replication factor includes this
primary node. For example, a replication factor of 3 means one primary node and two replica
nodes.

• Availability – Adding or removing DAX nodes changes the cluster's availability and fault
tolerance. More nodes can improve availability, but they also increase costs.

• Data migration – When you increase the replication factor, DAX automatically handles data
distribution across the new set of nodes. When a new node begins serving traffic, its cache

Cluster operations API Version 2012-08-10 3304

Amazon DynamoDB Developer Guide

is already warmed. However, during this process, there might be a temporary impact on
performance during data migration.

Make sure you monitor your DAX clusters closely during and after the scaling process to ensure
they're performing as expected and make further adjustments as necessary.

Scaling a cluster vertically

To vertically scale the node size of an existing cluster, you need to create a new cluster and migrate
the application traffic to the new cluster. Migrating to a new cluster with different nodes involves
several steps to ensure a smooth transition with minimal impact on your application's performance
and availability.

To create a new cluster for scaling your node size vertically, consider the following points:

• Access your current setup – Review the metrics of your current DAX cluster to determine the
new node size and quantity you need. Use this information as input to define your cluster size.
For information, see Sizing your DAX cluster.

• Set up a new DAX cluster – Create a new DAX cluster with the node type and quantity you
determined. You can use the existing configuration settings from your parameter group, unless
you need to make adjustments.

• Synchronize data – Because DAX is a caching layer for DynamoDB, you don't need to migrate
data directly. However, the new DAX cluster won't have any of your working dataset in memory
until you send traffic to it.

• Update application configuration – Update your application's configuration to point to the
new DAX cluster's endpoint. You might need to change code or update environment variables,
depending on your application's configuration.

To reduce impact when you switch to a new cluster, send canary traffic to the new cluster from a
small portion of your application fleet. You can do this by slowly rolling out application updates
or by using a weight-based routing DNS entry in front of your DAX endpoint.

• Monitor and optimize – After you switch to the new DAX cluster, closely monitor its
performance metrics and logs for any issues. Be ready to adjust the number of nodes based on
updated workload patterns.

Until the new cluster caches your working dataset properly, you'll see higher cache miss rates
and latencies.

Cluster operations API Version 2012-08-10 3305

Amazon DynamoDB Developer Guide

• Decommission old cluster – When you're sure that the new cluster is performing as expected,
safely decommission the old DAX cluster to avoid unnecessary costs.

Monitoring DAX

You can monitor key metrics, for example cache hit ratio, to ensure optimal DAX cluster
performance, diagnose issues, and determine when you need to scale the cluster. Regularly
checking key metrics helps you maintain performance, stability, and cost-efficiency by scaling the
cluster to match your workload requirements. For more information about monitoring DAX, see
Production monitoring.

The following list presents some of the key metrics you should monitor:

• Cache hit ratio – Shows how effectively DAX serves cached data, reducing the need to access
the underlying DynamoDB tables. Few cache misses for the cluster indicate good caching
efficiency. But few cache hits suggest that you might need to revisit the caching TTL setting or
the workload isn't a good fit for caching.

Use Amazon CloudWatch to calculate your DAX cluster's cache hit ratio. Compare the
ItemCacheHits, ItemCacheMisses, QueryCacheHits, and QueryCacheMisses metrics to
get this ratio. The following formula shows how the cache hit ratio is calculated. To calculate the
ratio using this formula, divide your cache hits by the sum of your cache hits and misses.

Cache hit ratio = Cache hits / (Cache hits + Cache misses)

The cache hit ratio is a number between 0 and 1, which is represented as a percentage. A higher
percentage indicates better overall cache utilization.

• ErrorRequestCount – Count of requests that resulted in user errors reported by the node or
cluster. ErrorRequestCount includes requests that were throttled by the node or cluster.
Monitoring user errors can help you identify scaling misconfigurations or hot item/partition
patterns in your application.

• Operation latencies – Monitoring the latency of read and write operations to and from the DAX
cluster can help you in identifying performance bottlenecks. Increasing latencies might indicate
issues with your DAX cluster configuration, network, or the need to scale.

• Network consumption – Keep an eye on the NetworkBytesIn and NetworkBytesOut metrics
to monitor your DAX cluster's network traffic. An unexpected increase in network throughput

Monitoring DAX API Version 2012-08-10 3306

Amazon DynamoDB Developer Guide

could mean more client requests or inefficient query patterns that are causing more data to be
transferred.

Monitoring network consumption helps you manage costs for your DAX cluster. It also ensures
the network doesn't become a bottleneck for cluster performance.

• Eviction rate – Shows how often items are removed from your cache to make room for new
items. If the eviction rate increases over time, your cache might be too small or your caching
strategy isn't effective.

Monitor the EvictedSize metric in CloudWatch to determine if your cache size is adequate
for your workload. If the total evicted size keeps growing, you might need to scale up your DAX
cluster to accommodate a larger cache.

• CPU utilization – Refers to the percentage of CPU utilization of the node or cluster. This is a
critical metric to monitor for any database or caching system. High CPU utilization could mean
your DAX cluster might be overloaded and needs scaling to handle the increased demand.

Monitor the CPUUtilization metric for your DAX cluster. If your CPU utilization consistently
approaches or exceeds 70-80%, consider scaling up your DAX cluster as described in the
following section.

If the number of requests sent to DAX exceeds a node's capacity, DAX limits the rate at which it
accepts additional requests. It does this by returning a ThrottlingException. DAX continuously
evaluates your cluster's CPU utilization to determine the request volume it can process while
maintaining a healthy cluster state.

You can monitor the ThrottledRequestCount metric that DAX publishes to CloudWatch. If
you see these exceptions regularly, you should consider scaling up your cluster.

Scaling your DAX cluster using monitoring data

You can determine if you need to scale up or down your DAX cluster by monitoring its performance
metrics.

• Scale up or out – If your DAX cluster has high CPU utilization, low cache hits (after optimizing
the caching strategy), or high operation latencies, you should scale up your cluster. Adding more
nodes, also called scaling out, can help distribute the load more evenly. For workloads with
increasing writes per second, you might need to choose more powerful nodes (scaling up).

Monitoring DAX API Version 2012-08-10 3307

Amazon DynamoDB Developer Guide

• Scale down – If you consistently see low CPU utilization and operation latencies below your
thresholds, you might have over-provisioned resources. In such cases, scale down nodes to
reduce costs. You can reduce the number of nodes down to 1 during low utilization periods, but
you can't shut the cluster down entirely.

Monitoring DAX API Version 2012-08-10 3308

Amazon DynamoDB Developer Guide

Using DynamoDB with other Amazon services

Amazon DynamoDB is integrated with other Amazon services, letting you automate repeating tasks
or build applications that span multiple services.

Topics

• Configuring Amazon credentials using Amazon Cognito for DynamoDB

• Integrating with Amazon Redshift

• Processing DynamoDB data with Apache Hive on Amazon EMR

• Integrating DynamoDB with Amazon S3

• DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse

• DynamoDB zero-ETL integration with Amazon OpenSearch Service

• Integrating DynamoDB with Amazon EventBridge

• Integrating DynamoDB with Amazon Managed Streaming for Apache Kafka

• Best practices for integrating with DynamoDB

Configuring Amazon credentials using Amazon Cognito for
DynamoDB

The recommended way to obtain Amazon credentials for your web and mobile applications is to
use Amazon Cognito. Amazon Cognito helps you avoid hardcoding your Amazon credentials on
your files. It uses Amazon Identity and Access Management (IAM) roles to generate temporary
credentials for your application's authenticated and unauthenticated users.

For example, to configure your JavaScript files to use an Amazon Cognito unauthenticated role to
access the Amazon DynamoDB web service, do the following.

To configure credentials to integrate with Amazon Cognito

1. Create an Amazon Cognito identity pool that allows unauthenticated identities.

aws cognito-identity create-identity-pool \
 --identity-pool-name DynamoPool \
 --allow-unauthenticated-identities \
 --output json

Integrating with Amazon Cognito API Version 2012-08-10 3309

Amazon DynamoDB Developer Guide

{
 "IdentityPoolId": "us-west-2:12345678-1ab2-123a-1234-a12345ab12",
 "AllowUnauthenticatedIdentities": true,
 "IdentityPoolName": "DynamoPool"
}

2. Copy the following policy into a file named myCognitoPolicy.json. Replace the
identity pool ID (us-west-2:12345678-1ab2-123a-1234-a12345ab12) with your own
IdentityPoolId obtained in the previous step.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.amazonaws.com"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com:aud": "us-
west-2:12345678-1ab2-123a-1234-a12345ab12"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "unauthenticated"
 }
 }
 }
]
}

3. Create an IAM role that assumes the previous policy. In this way, Amazon Cognito becomes a
trusted entity that can assume the Cognito_DynamoPoolUnauth role.

aws iam create-role --role-name Cognito_DynamoPoolUnauth \
--assume-role-policy-document file://PathToFile/myCognitoPolicy.json --output json

4. Grant the Cognito_DynamoPoolUnauth role full access to DynamoDB by attaching a
managed policy (AmazonDynamoDBFullAccess).

Integrating with Amazon Cognito API Version 2012-08-10 3310

Amazon DynamoDB Developer Guide

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
AmazonDynamoDBFullAccess \
--role-name Cognito_DynamoPoolUnauth

Note

Alternatively, you can grant fine-grained access to DynamoDB. For more information,
see Using IAM policy conditions for fine-grained access control.

5. Obtain and copy the IAM role Amazon Resource Name (ARN).

aws iam get-role --role-name Cognito_DynamoPoolUnauth --output json

6. Add the Cognito_DynamoPoolUnauth role to the DynamoPool identity pool. The format to
specify is KeyName=string, where KeyName is unauthenticated and the string is the role
ARN obtained in the previous step.

aws cognito-identity set-identity-pool-roles \
--identity-pool-id "us-west-2:12345678-1ab2-123a-1234-a12345ab12" \
--roles unauthenticated=arn:aws:iam::123456789012:role/Cognito_DynamoPoolUnauth --
output json

7. Specify the Amazon Cognito credentials in your files. Modify the IdentityPoolId and
RoleArn accordingly.

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
IdentityPoolId: "us-west-2:12345678-1ab2-123a-1234-a12345ab12",
RoleArn: "arn:aws:iam::123456789012:role/Cognito_DynamoPoolUnauth"
});

You can now run your JavaScript programs against the DynamoDB web service using Amazon
Cognito credentials. For more information, see Setting credentials in a web browser in the Amazon
SDK for JavaScript Getting Started Guide.

Integrating with Amazon Cognito API Version 2012-08-10 3311

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/specifying-conditions.html
https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/setting-credentials-browser.html

Amazon DynamoDB Developer Guide

Integrating with Amazon Redshift

Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes
it simple and cost-effective to efficiently analyze all your data using your existing business
intelligence tools.

DynamoDB and Amazon Redshift can be used together to address different data storage and
processing needs within an application or data ecosystem.

See the topics below for more detailed topics on how to integrate DynamoDB with Amazon
Redshift.

Topics

• Cross-account integration considerations with CMK

• DynamoDB zero-ETL integration with Amazon Redshift

• Loading data from DynamoDB into Amazon Redshift with the COPY command

Cross-account integration considerations with CMK

When you attempt to integrate from DynamoDB to Amazon Redshift, the initial action is launched
from Amazon Redshift. Without the proper permissions, this action could result in a silent failure.
The following sections detail the permissions required for this cross-account integration.

Required Amazon KMS policies and permissions

Replace the following placeholders in the examples:

• 111122223333: The Amazon Web Services account ID where Amazon Redshift is hosted

• 444455556666: The Amazon Web Services account ID where DynamoDB is hosted

• REDSHIFT_ROLE_NAME: The IAM role name used by Amazon Redshift

• REGION: The Amazon Web Services Region where your resources are located

• TABLE_NAME: The name of your DynamoDB table

• KMS_KEY_ID: The ID of your KMS key

Integrating with Amazon Redshift API Version 2012-08-10 3312

Amazon DynamoDB Developer Guide

KMS key policy in the DynamoDB account

The following Amazon KMS key policy enables cross-account access between your DynamoDB and
Amazon Redshift services. In this example, account 444455556666 contains the DynamoDB table
and Amazon KMS key, while account 111122223333 contains the Amazon Redshift cluster that
needs access to decrypt the data.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow Redshift to use the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/REDSHIFT_ROLE_NAME"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "*"
 }
]
}

Cross-account integration considerations with CMK API Version 2012-08-10 3313

Amazon DynamoDB Developer Guide

IAM Policy for the Amazon Redshift role (in Amazon Redshift account)

The following IAM policy allows a Amazon Redshift service to access DynamoDB tables and their
associated Amazon KMS encryption keys in a cross-account scenario. In this example, account
444455556666 contains the DynamoDB resources and Amazon KMS keys that the Amazon
Redshift service needs to access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDynamoDBAccess",
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:BatchGetItem",
 "dynamodb:GetItem",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream",
 "dynamodb:ListStreams"
],
 "Resource": [
 "arn:aws:dynamodb:*:444455556666:table/TABLE_NAME",
 "arn:aws:dynamodb:*:444455556666:table/TABLE_NAME/stream/*"
]
 },
 {
 "Sid": "AllowKMSAccess",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "arn:aws:kms:us-east-1:444455556666:key/KMS_KEY_ID"

Cross-account integration considerations with CMK API Version 2012-08-10 3314

Amazon DynamoDB Developer Guide

 }
]
}

Trust relationship for the Amazon Redshift role

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

DynamoDB Table policy (if using resource-based policies)

The following resource-based policy allows a Amazon Redshift service in account 111122223333
to access DynamoDB tables and Streams in account 444455556666. Attach this policy to your
DynamoDB table to enable cross-account access.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowRedshiftAccess",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/REDSHIFT_ROLE_NAME"
 },
 "Action": [

Cross-account integration considerations with CMK API Version 2012-08-10 3315

Amazon DynamoDB Developer Guide

 "dynamodb:DescribeTable",
 "dynamodb:BatchGetItem",
 "dynamodb:Scan",
 "dynamodb:Query",
 "dynamodb:BatchGetItem",
 "dynamodb:GetItem",
 "dynamodb:GetRecords",
 "dynamodb:GetShardIterator",
 "dynamodb:DescribeStream",
 "dynamodb:ListStreams"
],
 "Resource": [
 "arn:aws:dynamodb:*:444455556666:table/TABLE_NAME",
 "arn:aws:dynamodb:*:444455556666:table/TABLE_NAME/stream/*"
]
 }
]
}

Important considerations

1. Ensure the KMS key is in the same region as your DynamoDB table.

2. The KMS key must be a customer managed key (CMK), not an Amazon managed key.

3. If you're using DynamoDB global tables, configure permissions for all relevant regions.

4. Consider adding condition statements to restrict access based on VPC endpoints or IP ranges.

5. For enhanced security, consider using aws:PrincipalOrgID condition to restrict access to your
organization.

6. Monitor KMS key usage through CloudTrail and CloudWatch metrics.

DynamoDB zero-ETL integration with Amazon Redshift

Amazon DynamoDB zero-ETL integration with Amazon Redshift enables seamless analytics
on DynamoDB data without any coding. This fully-managed feature automatically replicates
DynamoDB tables into an Amazon Redshift database so users can run SQL queries and analytics on
their DynamoDB data without having to set up complex ETL processes. The integration works by
replicating data from the DynamoDB table to the Amazon Redshift database.

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3316

Amazon DynamoDB Developer Guide

To set up the integration, simply specify a DynamoDB table as the source and an Amazon Redshift
database as the target. On activation, the integration exports the full DynamoDB table to populate
the Amazon Redshift database. The time it takes for this initial process to complete depends on
the DynamoDB table size. The zero-ETL integration then incrementally replicates updates from
DynamoDB to Amazon Redshift every 15-30 minutes using DynamoDB incremental exports. This
means the replicated DynamoDB data in Amazon Redshift is kept up-to-date automatically.

Once configured, users can analyze the DynamoDB data in Amazon Redshift using standard SQL
clients and tools, without impacting DynamoDB table performance. By eliminating cumbersome
ETL, this zero-ETL integration provides a fast, easy way to unlock insights from DynamoDB through
Amazon Redshift analytics and machine learning capabilities.

Topics

• Prerequisites before creating a DynamoDB zero-ETL integration with Amazon Redshift

• Limitations when using DynamoDB zero-ETL integrations with Amazon Redshift

• Creating a DynamoDB zero-ETL integration with Amazon Redshift

• Viewing DynamoDB zero-ETL integrations with Amazon Redshift

• Deleting DynamoDB zero-ETL integrations with Amazon Redshift

Prerequisites before creating a DynamoDB zero-ETL integration with Amazon
Redshift

1. You must have your source DynamoDB table and target Amazon Redshift cluster created before
creating an integration. This information is covered in Step 1: Configuring a source DynamoDB
table and Step 2: Creating an Amazon Redshift data warehouse.

2. A zero-ETL integration between Amazon DynamoDB and Amazon Redshift requires your source
DynamoDB table to have Point-in-time recovery (PITR) enabled.

3. For resource-based policies, if you create the integration where your DynamoDB table and
Amazon Redshift data warehouse are in the same account, you can use the Fix it for me option
during the create integration step to automatically apply the required resource policies to both
DynamoDB and Amazon Redshift.

If you create an integration where your DynamoDB table and Amazon Redshift data warehouse
are in different Amazon accounts, you will need to apply the following resource policy on your
DynamoDB table.

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3317

Amazon DynamoDB Developer Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid":
 "StatementthatallowsAmazonRedshiftservicetoDescribeTableandExportTable",
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": [
 "dynamodb:ExportTableToPointInTime",
 "dynamodb:DescribeTable"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:redshift:us-
east-1:111122223333:integration:*"
 }
 }
 },
 {
 "Sid":
 "StatementthatallowsAmazonRedshiftservicetoDescribeTableandExportTable",
 "Effect": "Allow",
 "Principal": {
 "Service": "redshift.amazonaws.com"
 },
 "Action": "dynamodb:DescribeExport",
 "Resource": "arn:aws:dynamodb:us-east-1:111122223333:table/table-
name/export/*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111122223333"
 },
 "ArnEquals": {

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3318

Amazon DynamoDB Developer Guide

 "aws:SourceArn": "arn:aws:redshift:us-
east-1:111122223333:integration:*"
 }
 }
 }
]
}

You may also need to configure the resource policy on your Amazon Redshift data warehouse.
For more information, see Configure authorization using the Amazon Redshift API.

4. For Identity-based policies:

a. The user creating the integration requires an identity-based policy that authorizes
the following actions: GetResourcePolicy, PutResourcePolicy, and
UpdateContinuousBackups.

Note

The following policy examples will show the resource as arn:aws-cn:redshift{-
serverless}. This is an example to show that the arn can be either arn:aws-
cn:redshift or arn:aws-cn:redshift-serverless depending on if your
namespace is an Amazon Redshift cluster or Amazon Redshift Serverless namespace.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:ListTables"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3319

https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.redshift-iam.html#zero-etl-using.resource-policies

Amazon DynamoDB Developer Guide

 "dynamodb:GetResourcePolicy",
 "dynamodb:PutResourcePolicy",
 "dynamodb:UpdateContinuousBackups"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:111122223333:table/table-name"
]
 },
 {
 "Sid": "AllowRedshiftDescribeIntegration",
 "Effect": "Allow",
 "Action": [
 "redshift:DescribeIntegrations"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowRedshiftCreateIntegration",
 "Effect": "Allow",
 "Action": "redshift:CreateIntegration",
 "Resource": "arn:aws:redshift:us-
east-1:111122223333:integration:*"
 },
 {
 "Sid": "AllowRedshiftModifyDeleteIntegration",
 "Effect": "Allow",
 "Action": [
 "redshift:ModifyIntegration",
 "redshift:DeleteIntegration"
],
 "Resource": "arn:aws:redshift:us-
east-1:111122223333:integration:uuid"
 },
 {
 "Sid": "AllowRedshiftCreateInboundIntegration",
 "Effect": "Allow",
 "Action": "redshift:CreateInboundIntegration",
 "Resource": "arn:aws:redshift:us-
east-1:111122223333:namespace:uuid"
 }
]
}

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3320

Amazon DynamoDB Developer Guide

b. The user responsible for configuring the destination Amazon Redshift namespace requires
an identity-based policy that authorizes the following actions: PutResourcePolicy,
DeleteResourcePolicy, and GetResourcePolicy.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "redshift:PutResourcePolicy",
 "redshift:DeleteResourcePolicy",
 "redshift:GetResourcePolicy"
],
 "Resource": [
 "arn:aws:redshift:us-east-1:111122223333:cluster:cluster-
name"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "redshift:DescribeInboundIntegrations"
],
 "Resource": [
 "arn:aws:redshift:us-east-1:111122223333:cluster:cluster-
name"
]
 }
]
}

5. Encryption key permissions

If the source DynamoDB table is encrypted using customer managed Amazon KMS key, you will
need to add the following policy on your KMS key. This policy allows Amazon Redshift to be able
to export data from your encrypted table using your KMS key.

{

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3321

Amazon DynamoDB Developer Guide

 "Sid": "Statement to allow Amazon Redshift service to perform Decrypt operation
 on the source DynamoDB Table",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "redshift.amazonaws.com"
]
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<account>"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:redshift:<region>:<account>:integration:*"
 }
 }
}

You can also follow the steps on Getting started with zero-ETL integrations in the Amazon
Redshift management guide to configure the permissions of the Amazon Redshift namespace.

Limitations when using DynamoDB zero-ETL integrations with Amazon Redshift

The following general limitations apply to the current release of this integration. These limitations
can change in subsequent releases.

Note

In addition to the limitations below, also review the general considerations when using
zero-ETL integrations see Considerations when using zero-ETL integrations with Amazon
Redshift in the Amazon Redshift Management Guide.

• The DynamoDB table and Amazon Redshift cluster need to be in the same Region.

• The source DynamoDB table must be encrypted with either an Amazon-owned or Customer-
managed Amazon KMS key. Amazon managed encryption is not supported for the source
DynamoDB table.

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3322

https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.setting-up.html#zero-etl-using.redshift-iam
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl.reqs-lims.html
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl.reqs-lims.html

Amazon DynamoDB Developer Guide

Creating a DynamoDB zero-ETL integration with Amazon Redshift

Before creating a zero-ETL integration, you must first set up your source DynamoDB table and then
the target Amazon Redshift data warehouse.

Step 1: Configuring a source DynamoDB table

To create a zero-ETL integration with Amazon Redshift, you need to enable point-in-time recovery
(PITR) on your table. If you do not have PITR turned on, the console can fix this for you during the
integration setup process. For details on how to enable PITR, see Point-in-time recovery.

Step 2: Creating an Amazon Redshift data warehouse

If you don't already have an Amazon Redshift data warehouse, you can create one. To create an
Amazon Redshift Serverless workgroup, see Creating a workgroup with a namespace. To create an
Amazon Redshift cluster, see Creating a cluster.

The target Amazon Redshift workgroup or cluster must have the enable_case_sensitive_identifier
parameter turned on for the integration to be successful. For more information on enabling
case sensitivity, see Turn on case sensitivity for your data warehouse in the Amazon Redshift
management guide.

After the Amazon Redshift workgroup or cluster setup is complete, you need to configure your
data warehouse. See Zero-ETL integrations in the Amazon Redshift Management Guide for more
information.

Step 3: Creating a DynamoDB zero-ETL integration

Before you create a zero-ETL integration, make sure to complete the tasks in the section titled
Prerequisites before creating a DynamoDB zero-ETL integration with Amazon Redshift. Creating
an integration between DynamoDB and Amazon Redshift is a two-step process. First create an
integration from the DynamoDB, and then attach a Amazon Redshift database to this newly
created integration.

Create a zero-ETL integration

1. Sign in to the Amazon Management Console and open the Amazon DynamoDB console at
https://console.aws.amazon.com/dynamodbv2.

2. In the navigation pane, choose Integrations.

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3323

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/PointInTimeRecovery_Howitworks.html
https://docs.amazonaws.cn/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.amazonaws.cn/redshift/latest/mgmt/create-cluster.html
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-setting-up.case-sensitivity.html
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.html
https://console.aws.amazon.com/dynamodbv2

Amazon DynamoDB Developer Guide

3. Select Create zero-ETL integration and choose Amazon Redshift.

4. This will take you to the Amazon Redshift console. To continue with the procedure, see the
DynamoDB section in Create a zero-ETL integration for DynamoDB.

Viewing DynamoDB zero-ETL integrations with Amazon Redshift

You can view the details of a zero-ETL integration to see its configuration information and current
status.

To view the details of a zero-ETL integration in the Amazon DynamoDB console:

1. Sign in to the Amazon Management Console and open the Amazon DynamoDB console at
https://console.aws.amazon.com/dynamodbv2.

2. In the DynamoDB console, choose Integrations.

3. In the Zero-ETL integration pane, select the zero-ETL integration you want to view.

To view the details of a zero-ETL integration in the Amazon Redshift console:

1. Sign in to the Amazon Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2.

2. Follow the steps at Viewing zero-ETL integrations.

Note

The possible statuses of a zero-ETL integration with Amazon Redshift are listed in Viewing
zero-ETL integrations in the Amazon Redshift Management Guide.

Deleting DynamoDB zero-ETL integrations with Amazon Redshift

When you delete a zero-ETL integration, your data isn't deleted from DynamoDB or Amazon
Redshift, but DynamoDB stops sending data from your source table to the Amazon Redshift target.

To delete a zero-ETL integration

1. Sign in to the Amazon Management Console and open the Amazon DynamoDB console at
https://console.aws.amazon.com/dynamodbv2.

Zero-ETL integration with Amazon Redshift API Version 2012-08-10 3324

https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-setting-up.create-integration-ddb.html
https://console.aws.amazon.com/dynamodbv2
https://console.aws.amazon.com/redshiftv2
https://console.aws.amazon.com/redshiftv2
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.describing.html
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.describing.html
https://docs.amazonaws.cn/redshift/latest/mgmt/zero-etl-using.describing.html
https://console.aws.amazon.com/dynamodbv2

Amazon DynamoDB Developer Guide

2. In the DynamoDB console, choose Integrations.

3. In the Zero-ETL integration pane, select the zero-ETL integration you want to delete.

4. Choose Manage. This will take you to the integration details page.

5. To confirm the deletion, choose Delete.

Loading data from DynamoDB into Amazon Redshift with the COPY
command

Amazon Redshift works with Amazon DynamoDB with advanced business intelligence capabilities
and a powerful SQL-based interface. When you copy data from a DynamoDB table into Amazon
Redshift, you can perform complex data analysis queries on that data, including joins with other
tables in your Amazon Redshift cluster.

In terms of provisioned throughput, a copy operation from a DynamoDB table counts against that
table's read capacity. After the data is copied, your SQL queries in Amazon Redshift do not affect
DynamoDB in any way. This is because your queries act upon a copy of the data from DynamoDB,
rather than upon DynamoDB itself.

Before you can load data from a DynamoDB table, you must first create an Amazon Redshift table
to serve as the destination for the data. Keep in mind that you are copying data from a NoSQL
environment into a SQL environment, and that there are certain rules in one environment that do
not apply in the other. Here are some of the differences to consider:

• DynamoDB table names can contain up to 255 characters, including '.' (dot) and '-' (dash)
characters, and are case-sensitive. Amazon Redshift table names are limited to 127 characters,
cannot contain dots or dashes and are not case-sensitive. In addition, table names cannot
conflict with any Amazon Redshift reserved words.

• DynamoDB does not support the SQL concept of NULL. You need to specify how Amazon
Redshift interprets empty or blank attribute values in DynamoDB, treating them either as NULLs
or as empty fields.

• DynamoDB data types do not correspond directly with those of Amazon Redshift. You need to
ensure that each column in the Amazon Redshift table is of the correct data type and size to
accommodate the data from DynamoDB.

Here is an example COPY command from Amazon Redshift SQL:

Loading data from DynamoDB into Amazon Redshift with COPY API Version 2012-08-10 3325

Amazon DynamoDB Developer Guide

copy favoritemovies from 'dynamodb://my-favorite-movies-table'
credentials 'aws_access_key_id=<Your-Access-Key-ID>;aws_secret_access_key=<Your-Secret-
Access-Key>'
readratio 50;

In this example, the source table in DynamoDB is my-favorite-movies-table. The target table
in Amazon Redshift is favoritemovies. The readratio 50 clause regulates the percentage of
provisioned throughput that is consumed; in this case, the COPY command will use no more than
50 percent of the read capacity units provisioned for my-favorite-movies-table. We highly
recommend setting this ratio to a value less than the average unused provisioned throughput.

For detailed instructions on loading data from DynamoDB into Amazon Redshift, refer to the
following sections in the Amazon Redshift Database Developer Guide:

• Loading data from a DynamoDB table

• The COPY command

• COPY examples

Processing DynamoDB data with Apache Hive on Amazon EMR

Amazon DynamoDB is integrated with Apache Hive, a data warehousing application that runs on
Amazon EMR. Hive can read and write data in DynamoDB tables, allowing you to:

• Query live DynamoDB data using a SQL-like language (HiveQL).

• Copy data from a DynamoDB table to an Amazon S3 bucket, and vice-versa.

• Copy data from a DynamoDB table into Hadoop Distributed File System (HDFS), and vice-versa.

• Perform join operations on DynamoDB tables.

Topics

• Overview

• Tutorial: Working with Amazon DynamoDB and Apache Hive

• Creating an external table in Hive

• Processing HiveQL statements

• Querying data in DynamoDB

Integrating with Amazon EMR API Version 2012-08-10 3326

https://docs.amazonaws.cn/redshift/latest/dg/
https://docs.amazonaws.cn/redshift/latest/dg/t_Loading-data-from-dynamodb.html
https://docs.amazonaws.cn/redshift/latest/dg/r_COPY.html
https://docs.amazonaws.cn/redshift/latest/dg/r_COPY_command_examples.html

Amazon DynamoDB Developer Guide

• Copying data to and from Amazon DynamoDB

• Performance tuning

Overview

Amazon EMR is a service that makes it easy to quickly and cost-effectively process vast amounts
of data. To use Amazon EMR, you launch a managed cluster of Amazon EC2 instances running
the Hadoop open source framework. Hadoop is a distributed application that implements the
MapReduce algorithm, where a task is mapped to multiple nodes in the cluster. Each node
processes its designated work, in parallel with the other nodes. Finally, the outputs are reduced on
a single node, yielding the final result.

You can choose to launch your Amazon EMR cluster so that it is persistent or transient:

• A persistent cluster runs until you shut it down. Persistent clusters are ideal for data analysis,
data warehousing, or any other interactive use.

• A transient cluster runs long enough to process a job flow, and then shuts down automatically.
Transient clusters are ideal for periodic processing tasks, such as running scripts.

For information about Amazon EMR architecture and administration, see the Amazon EMR
Management Guide.

When you launch an Amazon EMR cluster, you specify the initial number and type of Amazon EC2
instances. You also specify other distributed applications (in addition to Hadoop itself) that you
want to run on the cluster. These applications include Hue, Mahout, Pig, Spark, and more.

For information about applications for Amazon EMR, see the Amazon EMR Release Guide.

Depending on the cluster configuration, you might have one or more of the following node types:

• Leader node — Manages the cluster, coordinating the distribution of the MapReduce executable
and subsets of the raw data, to the core and task instance groups. It also tracks the status of each
task performed and monitors the health of the instance groups. There is only one leader node in
a cluster.

• Core nodes — Runs MapReduce tasks and stores data using the Hadoop Distributed File System
(HDFS).

• Task nodes (optional) — Runs MapReduce tasks.

Overview API Version 2012-08-10 3327

https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide
https://docs.amazonaws.cn/ElasticMapReduce/latest/ReleaseGuide

Amazon DynamoDB Developer Guide

Tutorial: Working with Amazon DynamoDB and Apache Hive

In this tutorial, you will launch an Amazon EMR cluster, and then use Apache Hive to process data
stored in a DynamoDB table.

Hive is a data warehouse application for Hadoop that allows you to process and analyze data from
multiple sources. Hive provides a SQL-like language, HiveQL, that lets you work with data stored
locally in the Amazon EMR cluster or in an external data source (such as Amazon DynamoDB).

For more information, see to the Hive Tutorial.

Topics

• Before you begin

• Step 1: Create an Amazon EC2 key pair

• Step 2: Launch an Amazon EMR cluster

• Step 3: Connect to the Leader node

• Step 4: Load data into HDFS

• Step 5: Copy data to DynamoDB

• Step 6: Query the data in the DynamoDB table

• Step 7: (Optional) clean up

Before you begin

For this tutorial, you will need the following:

• An Amazon account. If you do not have one, see Signing up for Amazon.

• An SSH client (Secure Shell). You use the SSH client to connect to the leader node of the Amazon
EMR cluster and run interactive commands. SSH clients are available by default on most Linux,
Unix, and Mac OS X installations. Windows users can download and install the PuTTY client,
which has SSH support.

Next step

Step 1: Create an Amazon EC2 key pair

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3328

https://cwiki.apache.org/confluence/display/Hive/Tutorial
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Amazon DynamoDB Developer Guide

Step 1: Create an Amazon EC2 key pair

In this step, you will create the Amazon EC2 key pair you need to connect to an Amazon EMR
leader node and run Hive commands.

1. Sign in to the Amazon Web Services Management Console and open the Amazon EC2 console
at https://console.amazonaws.cn/ec2/.

2. Choose a region (for example, US West (Oregon)). This should be the same region in which
your DynamoDB table is located.

3. In the navigation pane, choose Key Pairs.

4. Choose Create Key Pair.

5. In Key pair name, type a name for your key pair (for example, mykeypair), and then choose
Create.

6. Download the private key file. The file name will end with .pem (such as mykeypair.pem).
Keep this private key file in a safe place. You will need it to access any Amazon EMR cluster
that you launch with this key pair.

Important

If you lose the key pair, you cannot connect to the leader node of your Amazon EMR
cluster.

For more information about key pairs, see Amazon EC2 Key Pairs in the Amazon EC2 User
Guide.

Next step

Step 2: Launch an Amazon EMR cluster

Step 2: Launch an Amazon EMR cluster

In this step, you will configure and launch an Amazon EMR cluster. Hive and a storage handler for
DynamoDB will already be installed on the cluster.

1. Open the Amazon EMR console at https://console.amazonaws.cn/emr.

2. Choose Create Cluster.

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3329

https://console.amazonaws.cn/ec2/
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.amazonaws.cn/emr/

Amazon DynamoDB Developer Guide

3. On the Create Cluster - Quick Options page, do the following:

a. In Cluster name, type a name for your cluster (for example: My EMR cluster).

b. In EC2 key pair, choose the key pair you created earlier.

Leave the other settings at their defaults.

4. Choose Create cluster.

It will take several minutes to launch your cluster. You can use the Cluster Details page in the
Amazon EMR console to monitor its progress.

When the status changes to Waiting, the cluster is ready for use.

Cluster log files and Amazon S3

An Amazon EMR cluster generates log files that contain information about the cluster status and
debugging information. The default settings for Create Cluster - Quick Options include setting up
Amazon EMR logging.

If one does not already exist, the Amazon Web Services Management Console creates an Amazon
S3 bucket. The bucket name is aws-logs-account-id-region, where account-id is your
Amazon account number and region is the region in which you launched the cluster (for example,
aws-logs-123456789012-us-west-2).

Note

You can use the Amazon S3 console to view the log files. For more information, see View
Log Files in the Amazon EMR Management Guide.

You can use this bucket for purposes in addition to logging. For example, you can use the bucket
as a location for storing a Hive script or as a destination when exporting data from Amazon
DynamoDB to Amazon S3.

Next step

Step 3: Connect to the Leader node

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3330

https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-manage-view-web-log-files.html
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-manage-view-web-log-files.html

Amazon DynamoDB Developer Guide

Step 3: Connect to the Leader node

When the status of your Amazon EMR cluster changes to Waiting, you will be able to connect to
the leader node using SSH and perform command line operations.

1. In the Amazon EMR console, choose your cluster's name to view its status.

2. On the Cluster Details page, find the Leader public DNS field. This is the public DNS name for
the leader node of your Amazon EMR cluster.

3. To the right of the DNS name, choose the SSH link.

4. Follow the instructions in Connect to the Leader Node Using SSH .

Depending on your operating system, choose the Windows tab or the Mac/Linux tab, and
follow the instructions for connecting to the leader node.

After you connect to the leader node using either SSH or PuTTY, you should see a command
prompt similar to the following:

[hadoop@ip-192-0-2-0 ~]$

Next step

Step 4: Load data into HDFS

Step 4: Load data into HDFS

In this step, you will copy a data file into Hadoop Distributed File System (HDFS), and then create
an external Hive table that maps to the data file.

Download the sample data

1. Download the sample data archive (features.zip):

wget https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/samples/
features.zip

2. Extract the features.txt file from the archive:

unzip features.zip

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3331

Amazon DynamoDB Developer Guide

3. View the first few lines of the features.txt file:

head features.txt

The result should look similar to this:

1535908|Big Run|Stream|WV|38.6370428|-80.8595469|794
875609|Constable Hook|Cape|NJ|40.657881|-74.0990309|7
1217998|Gooseberry Island|Island|RI|41.4534361|-71.3253284|10
26603|Boone Moore Spring|Spring|AZ|34.0895692|-111.410065|3681
1506738|Missouri Flat|Flat|WA|46.7634987|-117.0346113|2605
1181348|Minnow Run|Stream|PA|40.0820178|-79.3800349|1558
1288759|Hunting Creek|Stream|TN|36.343969|-83.8029682|1024
533060|Big Charles Bayou|Bay|LA|29.6046517|-91.9828654|0
829689|Greenwood Creek|Stream|NE|41.596086|-103.0499296|3671
541692|Button Willow Island|Island|LA|31.9579389|-93.0648847|98

The features.txt file contains a subset of data from the United States Board on Geographic
Names (http://geonames.usgs.gov/domestic/download_data.htm). The fields in each line
represent the following:

• Feature ID (unique identifier)

• Name

• Class (lake; forest; stream; and so on)

• State

• Latitude (degrees)

• Longitude (degrees)

• Height (in feet)

4. At the command prompt, enter the following command:

hive

The command prompt changes to this: hive>

5. Enter the following HiveQL statement to create a native Hive table:

CREATE TABLE hive_features
 (feature_id BIGINT,

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3332

http://geonames.usgs.gov/domestic/download_data.htm

Amazon DynamoDB Developer Guide

 feature_name STRING ,
 feature_class STRING ,
 state_alpha STRING,
 prim_lat_dec DOUBLE ,
 prim_long_dec DOUBLE ,
 elev_in_ft BIGINT)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 LINES TERMINATED BY '\n';

6. Enter the following HiveQL statement to load the table with data:

LOAD DATA
LOCAL
INPATH './features.txt'
OVERWRITE
INTO TABLE hive_features;

7. You now have a native Hive table populated with data from the features.txt file. To verify,
enter the following HiveQL statement:

SELECT state_alpha, COUNT(*)
FROM hive_features
GROUP BY state_alpha;

The output should show a list of states and the number of geographic features in each.

Next step

Step 5: Copy data to DynamoDB

Step 5: Copy data to DynamoDB

In this step, you will copy data from the Hive table (hive_features) to a new table in DynamoDB.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

2. Choose Create Table.

3. On the Create DynamoDB table page, do the following:

a. In Table, type Features.

b. For Primary key, in the Partition key field, type Id. Set the data type to Number.

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3333

https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Clear Use Default Settings. For Provisioned Capacity, type the following:

• Read Capacity Units—10

• Write Capacity Units—10

Choose Create.

4. At the Hive prompt, enter the following HiveQL statement:

CREATE EXTERNAL TABLE ddb_features
 (feature_id BIGINT,
 feature_name STRING,
 feature_class STRING,
 state_alpha STRING,
 prim_lat_dec DOUBLE,
 prim_long_dec DOUBLE,
 elev_in_ft BIGINT)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES(
 "dynamodb.table.name" = "Features",

 "dynamodb.column.mapping"="feature_id:Id,feature_name:Name,feature_class:Class,state_alpha:State,prim_lat_dec:Latitude,prim_long_dec:Longitude,elev_in_ft:Elevation"
);

You have now established a mapping between Hive and the Features table in DynamoDB.

5. Enter the following HiveQL statement to import data to DynamoDB:

INSERT OVERWRITE TABLE ddb_features
SELECT
 feature_id,
 feature_name,
 feature_class,
 state_alpha,
 prim_lat_dec,
 prim_long_dec,
 elev_in_ft
FROM hive_features;

Hive will submit a MapReduce job, which will be processed by your Amazon EMR cluster. It will
take several minutes to complete the job.

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3334

Amazon DynamoDB Developer Guide

6. Verify that the data has been loaded into DynamoDB:

a. In the DynamoDB console navigation pane, choose Tables.

b. Choose the Features table, and then choose the Items tab to view the data.

Next step

Step 6: Query the data in the DynamoDB table

Step 6: Query the data in the DynamoDB table

In this step, you will use HiveQL to query the Features table in DynamoDB. Try the following Hive
queries:

1. All of the feature types (feature_class) in alphabetical order:

SELECT DISTINCT feature_class
FROM ddb_features
ORDER BY feature_class;

2. All of the lakes that begin with the letter "M":

SELECT feature_name, state_alpha
FROM ddb_features
WHERE feature_class = 'Lake'
AND feature_name LIKE 'M%'
ORDER BY feature_name;

3. States with at least three features higher than a mile (5,280 feet):

SELECT state_alpha, feature_class, COUNT(*)
FROM ddb_features
WHERE elev_in_ft > 5280
GROUP by state_alpha, feature_class
HAVING COUNT(*) >= 3
ORDER BY state_alpha, feature_class;

Next step

Step 7: (Optional) clean up

Tutorial: Working with Amazon DynamoDB and Apache Hive API Version 2012-08-10 3335

Amazon DynamoDB Developer Guide

Step 7: (Optional) clean up

Now that you have completed the tutorial, you can continue reading this section to learn more
about working with DynamoDB data in Amazon EMR. You might decide to keep your Amazon EMR
cluster up and running while you do this.

If you don't need the cluster anymore, you should terminate it and remove any associated
resources. This will help you avoid being charged for resources you don't need.

1. Terminate the Amazon EMR cluster:

a. Open the Amazon EMR console at https://console.amazonaws.cn/emr.

b. Choose the Amazon EMR cluster, choose Terminate, and then confirm.

2. Delete the Features table in DynamoDB:

a. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/.

b. In the navigation pane, choose Tables.

c. Choose the Features table. From the Actions menu, choose Delete Table.

3. Delete the Amazon S3 bucket containing the Amazon EMR log files:

a. Open the Amazon S3 console at https://console.amazonaws.cn/s3/.

b. From the list of buckets, choose aws-logs- accountID-region, where accountID is
your Amazon account number and region is the region in which you launched the cluster.

c. From the Action menu, choose Delete.

Creating an external table in Hive

In Tutorial: Working with Amazon DynamoDB and Apache Hive, you created an external Hive table
that mapped to a DynamoDB table. When you issued HiveQL statements against the external table,
the read and write operations were passed through to the DynamoDB table.

You can think of an external table as a pointer to a data source that is managed and stored
elsewhere. In this case, the underlying data source is a DynamoDB table. (The table must already
exist. You cannot create, update, or delete a DynamoDB table from within Hive.) You use the
CREATE EXTERNAL TABLE statement to create the external table. After that, you can use HiveQL
to work with data in DynamoDB, as if that data were stored locally within Hive.

Creating an external table in Hive API Version 2012-08-10 3336

https://console.amazonaws.cn/emr/
https://console.amazonaws.cn/dynamodb/
https://console.amazonaws.cn/s3/

Amazon DynamoDB Developer Guide

Note

You can use INSERT statements to insert data into an external table and SELECT
statements to select data from it. However, you cannot use UPDATE or DELETE statements
to manipulate data in the table.

If you no longer need the external table, you can remove it using the DROP TABLE statement. In
this case, DROP TABLE only removes the external table in Hive. It does not affect the underlying
DynamoDB table or any of its data.

Topics

• CREATE EXTERNAL TABLE syntax

• Data type mappings

CREATE EXTERNAL TABLE syntax

The following shows the HiveQL syntax for creating an external Hive table that maps to a
DynamoDB table:

CREATE EXTERNAL TABLE hive_table

 (hive_column1_name hive_column1_datatype, hive_column2_name hive_column2_datatype...)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES (
 "dynamodb.table.name" = "dynamodb_table",
 "dynamodb.column.mapping" =
 "hive_column1_name:dynamodb_attribute1_name,hive_column2_name:dynamodb_attribute2_name..."
);

Line 1 is the start of the CREATE EXTERNAL TABLE statement, where you provide the name of
the Hive table (hive_table) you want to create.

Line 2 specifies the columns and data types for hive_table. You need to define columns and data
types that correspond to the attributes in the DynamoDB table.

Line 3 is the STORED BY clause, where you specify a class that handles data management
between the Hive and the DynamoDB table. For DynamoDB, STORED BY should be set to
'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'.

Creating an external table in Hive API Version 2012-08-10 3337

Amazon DynamoDB Developer Guide

Line 4 is the start of the TBLPROPERTIES clause, where you define the following parameters for
DynamoDBStorageHandler:

• dynamodb.table.name—the name of the DynamoDB table.

• dynamodb.column.mapping—pairs of column names in the Hive table and
their corresponding attributes in the DynamoDB table. Each pair is of the form
hive_column_name:dynamodb_attribute_name, and the pairs are separated by commas.

Note the following:

• The name of the Hive table name does not have to be the same as the DynamoDB table name.

• The Hive table column names do not have to be the same as those in the DynamoDB table.

• The table specified by dynamodb.table.name must exist in DynamoDB.

• For dynamodb.column.mapping:

• You must map the key schema attributes for the DynamoDB table. This includes the partition
key and the sort key (if present).

• You do not have to map the non-key attributes of the DynamoDB table. However, you will not
see any data from those attributes when you query the Hive table.

• If the data types of a Hive table column and a DynamoDB attribute are incompatible, you will
see NULL in these columns when you query the Hive table.

Note

The CREATE EXTERNAL TABLE statement does not perform any validation on the
TBLPROPERTIES clause. The values you provide for dynamodb.table.name and
dynamodb.column.mapping are only evaluated by the DynamoDBStorageHandler class
when you attempt to access the table.

Data type mappings

The following table shows DynamoDB data types and compatible Hive data types:

Creating an external table in Hive API Version 2012-08-10 3338

Amazon DynamoDB Developer Guide

DynamoDB Data Type Hive Data Type

String STRING

Number BIGINT or DOUBLE

Binary BINARY

String Set ARRAY<STRING>

Number Set ARRAY<BIGINT> or ARRAY<DOUBLE>

Binary Set ARRAY<BINARY>

Note

The following DynamoDB data types are not supported by the
DynamoDBStorageHandler class, so they cannot be used with
dynamodb.column.mapping:

• Map

• List

• Boolean

• Null

However, if you need to work with these data types, you can create a single entity called
item that represents the entire DynamoDB item as a map of strings for both keys and
values in the map. For more information, see Copying data without a column mapping

If you want to map a DynamoDB attribute of type Number, you must choose an appropriate Hive
type:

• The Hive BIGINT type is for 8-byte signed integers. It is the same as the long data type in Java.

• The Hive DOUBLE type is for 8-bit double precision floating point numbers. It is the same as the
double type in Java.

Creating an external table in Hive API Version 2012-08-10 3339

Amazon DynamoDB Developer Guide

If you have numeric data stored in DynamoDB that has a higher precision than the Hive data type
you choose, then accessing the DynamoDB data could cause a loss of precision.

If you export data of type Binary from DynamoDB to (Amazon S3) or HDFS, the data is stored as
a Base64-encoded string. If you import data from Amazon S3 or HDFS into the DynamoDB Binary
type, you must ensure the data is encoded as a Base64 string.

Processing HiveQL statements

Hive is an application that runs on Hadoop, which is a batch-oriented framework for running
MapReduce jobs. When you issue a HiveQL statement, Hive determines whether it can return the
results immediately or whether it must submit a MapReduce job.

For example, consider the ddb_features table (from Tutorial: Working with Amazon DynamoDB and
Apache Hive). The following Hive query prints state abbreviations and the number of summits in
each:

SELECT state_alpha, count(*)
FROM ddb_features
WHERE feature_class = 'Summit'
GROUP BY state_alpha;

Hive does not return the results immediately. Instead, it submits a MapReduce job, which is
processed by the Hadoop framework. Hive will wait until the job is complete before it shows the
results from the query:

AK 2
AL 2
AR 2
AZ 3
CA 7
CO 2
CT 2
ID 1
KS 1
ME 2
MI 1
MT 3
NC 1
NE 1
NM 1

Processing HiveQL statements API Version 2012-08-10 3340

Amazon DynamoDB Developer Guide

NY 2
OR 5
PA 1
TN 1
TX 1
UT 4
VA 1
VT 2
WA 2
WY 3
Time taken: 8.753 seconds, Fetched: 25 row(s)

Monitoring and canceling jobs

When Hive launches a Hadoop job, it prints output from that job. The job completion status is
updated as the job progresses. In some cases, the status might not be updated for a long time.
(This can happen when you are querying a large DynamoDB table that has a low provisioned read
capacity setting.)

If you need to cancel the job before it is complete, you can type Ctrl+C at any time.

Querying data in DynamoDB

The following examples show some ways that you can use HiveQL to query data stored in
DynamoDB.

These examples refer to the ddb_features table in the tutorial (Step 5: Copy data to DynamoDB).

Topics

• Using aggregate functions

• Using the GROUP BY and HAVING clauses

• Joining two DynamoDB tables

• Joining tables from different sources

Using aggregate functions

HiveQL provides built-in functions for summarizing data values. For example, you can use the
MAX function to find the largest value for a selected column. The following example returns the
elevation of the highest feature in the state of Colorado.

Querying data in DynamoDB API Version 2012-08-10 3341

Amazon DynamoDB Developer Guide

SELECT MAX(elev_in_ft)
FROM ddb_features
WHERE state_alpha = 'CO';

Using the GROUP BY and HAVING clauses

You can use the GROUP BY clause to collect data across multiple records. This is often used with an
aggregate function such as SUM, COUNT, MIN, or MAX. You can also use the HAVING clause to discard
any results that do not meet certain criteria.

The following example returns a list of the highest elevations from states that have more than five
features in the ddb_features table.

SELECT state_alpha, max(elev_in_ft)
FROM ddb_features
GROUP BY state_alpha
HAVING count(*) >= 5;

Joining two DynamoDB tables

The following example maps another Hive table (east_coast_states) to a table in DynamoDB.
The SELECT statement is a join across these two tables. The join is computed on the cluster and
returned. The join does not take place in DynamoDB.

Consider a DynamoDB table named EastCoastStates that contains the following data:

StateName StateAbbrev

Maine ME
New Hampshire NH
Massachusetts MA
Rhode Island RI
Connecticut CT
New York NY
New Jersey NJ
Delaware DE
Maryland MD
Virginia VA
North Carolina NC
South Carolina SC
Georgia GA

Querying data in DynamoDB API Version 2012-08-10 3342

Amazon DynamoDB Developer Guide

Florida FL

Let's assume the table is available as a Hive external table named east_coast_states:

CREATE EXTERNAL TABLE ddb_east_coast_states (state_name STRING, state_alpha STRING)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "EastCoastStates",
"dynamodb.column.mapping" = "state_name:StateName,state_alpha:StateAbbrev");

The following join returns the states on the East Coast of the United States that have at least three
features:

SELECT ecs.state_name, f.feature_class, COUNT(*)
FROM ddb_east_coast_states ecs
JOIN ddb_features f on ecs.state_alpha = f.state_alpha
GROUP BY ecs.state_name, f.feature_class
HAVING COUNT(*) >= 3;

Joining tables from different sources

In the following example, s3_east_coast_states is a Hive table associated with a CSV file stored in
Amazon S3. The ddb_features table is associated with data in DynamoDB. The following example
joins these two tables, returning the geographic features from states whose names begin with
"New."

create external table s3_east_coast_states (state_name STRING, state_alpha STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3://bucketname/path/subpath/';

SELECT ecs.state_name, f.feature_name, f.feature_class
FROM s3_east_coast_states ecs
JOIN ddb_features f
ON ecs.state_alpha = f.state_alpha
WHERE ecs.state_name LIKE 'New%';

Copying data to and from Amazon DynamoDB

In the Tutorial: Working with Amazon DynamoDB and Apache Hive, you copied data from a native
Hive table into an external DynamoDB table, and then queried the external DynamoDB table. The

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3343

Amazon DynamoDB Developer Guide

table is external because it exists outside of Hive. Even if you drop the Hive table that maps to it,
the table in DynamoDB is not affected.

Hive is an excellent solution for copying data among DynamoDB tables, Amazon S3 buckets, native
Hive tables, and Hadoop Distributed File System (HDFS). This section provides examples of these
operations.

Topics

• Copying data between DynamoDB and a native Hive table

• Copying data between DynamoDB and Amazon S3

• Copying data between DynamoDB and HDFS

• Using data compression

• Reading non-printable UTF-8 character data

Copying data between DynamoDB and a native Hive table

If you have data in a DynamoDB table, you can copy the data to a native Hive table. This will give
you a snapshot of the data, as of the time you copied it.

You might decide to do this if you need to perform many HiveQL queries, but do not want to
consume provisioned throughput capacity from DynamoDB. Because the data in the native Hive
table is a copy of the data from DynamoDB, and not "live" data, your queries should not expect
that the data is up-to-date.

Note

The examples in this section are written with the assumption you followed the steps in
Tutorial: Working with Amazon DynamoDB and Apache Hive and have an external table in
DynamoDB named ddb_features.

Example From DynamoDB to native Hive table

You can create a native Hive table and populate it with data from ddb_features, like this:

CREATE TABLE features_snapshot AS
SELECT * FROM ddb_features;

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3344

Amazon DynamoDB Developer Guide

You can then refresh the data at any time:

INSERT OVERWRITE TABLE features_snapshot
SELECT * FROM ddb_features;

In these examples, the subquery SELECT * FROM ddb_features will retrieve all of the data
from ddb_features. If you only want to copy a subset of the data, you can use a WHERE clause in the
subquery.

The following example creates a native Hive table, containing only some of the attributes for lakes
and summits:

CREATE TABLE lakes_and_summits AS
SELECT feature_name, feature_class, state_alpha
FROM ddb_features
WHERE feature_class IN ('Lake','Summit');

Example From native Hive table to DynamoDB

Use the following HiveQL statement to copy the data from the native Hive table to ddb_features:

INSERT OVERWRITE TABLE ddb_features
SELECT * FROM features_snapshot;

Copying data between DynamoDB and Amazon S3

If you have data in a DynamoDB table, you can use Hive to copy the data to an Amazon S3 bucket.

You might do this if you want to create an archive of data in your DynamoDB table. For example,
suppose you have a test environment where you need to work with a baseline set of test data
in DynamoDB. You can copy the baseline data to an Amazon S3 bucket, and then run your tests.
Afterward, you can reset the test environment by restoring the baseline data from the Amazon S3
bucket to DynamoDB.

If you worked through Tutorial: Working with Amazon DynamoDB and Apache Hive, then you
already have an Amazon S3 bucket that contains your Amazon EMR logs. You can use this bucket
for the examples in this section, if you know the root path for the bucket:

1. Open the Amazon EMR console at https://console.amazonaws.cn/emr.

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3345

https://console.amazonaws.cn/emr/

Amazon DynamoDB Developer Guide

2. For Name, choose your cluster.

3. The URI is listed in Log URI under Configuration Details.

4. Make a note of the root path of the bucket. The naming convention is:

s3://aws-logs-accountID-region

where accountID is your Amazon account ID and region is the Amazon region for the bucket.

Note

For these examples, we will use a subpath within the bucket, as in this example:
s3://aws-logs-123456789012-us-west-2/hive-test

The following procedures are written with the assumption you followed the steps in the tutorial
and have an external table in DynamoDB named ddb_features.

Topics

• Copying data using the Hive default format

• Copying data with a user-specified format

• Copying data without a column mapping

• Viewing the data in Amazon S3

Copying data using the Hive default format

Example From DynamoDB to Amazon S3

Use an INSERT OVERWRITE statement to write directly to Amazon S3.

INSERT OVERWRITE DIRECTORY 's3://aws-logs-123456789012-us-west-2/hive-test'
SELECT * FROM ddb_features;

The data file in Amazon S3 looks like this:

920709^ASoldiers Farewell Hill^ASummit^ANM^A32.3564729^A-108.33004616135
1178153^AJones Run^AStream^APA^A41.2120086^A-79.25920781260
253838^ASentinel Dome^ASummit^ACA^A37.7229821^A-119.584338133

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3346

Amazon DynamoDB Developer Guide

264054^ANeversweet Gulch^AValley^ACA^A41.6565269^A-122.83614322900
115905^AChacaloochee Bay^ABay^AAL^A30.6979676^A-87.97388530

Each field is separated by an SOH character (start of heading, 0x01). In the file, SOH appears as ^A.

Example From Amazon S3 to DynamoDB

1. Create an external table pointing to the unformatted data in Amazon S3.

CREATE EXTERNAL TABLE s3_features_unformatted
 (feature_id BIGINT,
 feature_name STRING ,
 feature_class STRING ,
 state_alpha STRING,
 prim_lat_dec DOUBLE ,
 prim_long_dec DOUBLE ,
 elev_in_ft BIGINT)
LOCATION 's3://aws-logs-123456789012-us-west-2/hive-test';

2. Copy the data to DynamoDB.

INSERT OVERWRITE TABLE ddb_features
SELECT * FROM s3_features_unformatted;

Copying data with a user-specified format

If you want to specify your own field separator character, you can create an external table that
maps to the Amazon S3 bucket. You might use this technique for creating data files with comma-
separated values (CSV).

Example From DynamoDB to Amazon S3

1. Create a Hive external table that maps to Amazon S3. When you do this, ensure that the data
types are consistent with those of the DynamoDB external table.

CREATE EXTERNAL TABLE s3_features_csv
 (feature_id BIGINT,
 feature_name STRING,
 feature_class STRING,
 state_alpha STRING,
 prim_lat_dec DOUBLE,

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3347

Amazon DynamoDB Developer Guide

 prim_long_dec DOUBLE,
 elev_in_ft BIGINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION 's3://aws-logs-123456789012-us-west-2/hive-test';

2. Copy the data from DynamoDB.

INSERT OVERWRITE TABLE s3_features_csv
SELECT * FROM ddb_features;

The data file in Amazon S3 looks like this:

920709,Soldiers Farewell Hill,Summit,NM,32.3564729,-108.3300461,6135
1178153,Jones Run,Stream,PA,41.2120086,-79.2592078,1260
253838,Sentinel Dome,Summit,CA,37.7229821,-119.58433,8133
264054,Neversweet Gulch,Valley,CA,41.6565269,-122.8361432,2900
115905,Chacaloochee Bay,Bay,AL,30.6979676,-87.9738853,0

Example From Amazon S3 to DynamoDB

With a single HiveQL statement, you can populate the DynamoDB table using the data from
Amazon S3:

INSERT OVERWRITE TABLE ddb_features
SELECT * FROM s3_features_csv;

Copying data without a column mapping

You can copy data from DynamoDB in a raw format and write it to Amazon S3 without specifying
any data types or column mapping. You can use this method to create an archive of DynamoDB
data and store it in Amazon S3.

Example From DynamoDB to Amazon S3

1. Create an external table associated with your DynamoDB table. (There is no
dynamodb.column.mapping in this HiveQL statement.)

CREATE EXTERNAL TABLE ddb_features_no_mapping

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3348

Amazon DynamoDB Developer Guide

 (item MAP<STRING, STRING>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Features");

2. Create another external table associated with your Amazon S3 bucket.

CREATE EXTERNAL TABLE s3_features_no_mapping
 (item MAP<STRING, STRING>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
LOCATION 's3://aws-logs-123456789012-us-west-2/hive-test';

3. Copy the data from DynamoDB to Amazon S3.

INSERT OVERWRITE TABLE s3_features_no_mapping
SELECT * FROM ddb_features_no_mapping;

The data file in Amazon S3 looks like this:

Name^C{"s":"Soldiers Farewell
 Hill"}^BState^C{"s":"NM"}^BClass^C{"s":"Summit"}^BElevation^C{"n":"6135"}^BLatitude^C{"n":"32.3564729"}^BId^C{"n":"920709"}^BLongitude^C{"n":"-108.3300461"}
Name^C{"s":"Jones
 Run"}^BState^C{"s":"PA"}^BClass^C{"s":"Stream"}^BElevation^C{"n":"1260"}^BLatitude^C{"n":"41.2120086"}^BId^C{"n":"1178153"}^BLongitude^C{"n":"-79.2592078"}
Name^C{"s":"Sentinel
 Dome"}^BState^C{"s":"CA"}^BClass^C{"s":"Summit"}^BElevation^C{"n":"8133"}^BLatitude^C{"n":"37.7229821"}^BId^C{"n":"253838"}^BLongitude^C{"n":"-119.58433"}
Name^C{"s":"Neversweet
 Gulch"}^BState^C{"s":"CA"}^BClass^C{"s":"Valley"}^BElevation^C{"n":"2900"}^BLatitude^C{"n":"41.6565269"}^BId^C{"n":"264054"}^BLongitude^C{"n":"-122.8361432"}
Name^C{"s":"Chacaloochee
 Bay"}^BState^C{"s":"AL"}^BClass^C{"s":"Bay"}^BElevation^C{"n":"0"}^BLatitude^C{"n":"30.6979676"}^BId^C{"n":"115905"}^BLongitude^C{"n":"-87.9738853"}

Each field begins with an STX character (start of text, 0x02) and ends with an ETX character (end of
text, 0x03). In the file, STX appears as ^B and ETX appears as ^C.

Example From Amazon S3 to DynamoDB

With a single HiveQL statement, you can populate the DynamoDB table using the data from
Amazon S3:

INSERT OVERWRITE TABLE ddb_features_no_mapping

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3349

Amazon DynamoDB Developer Guide

SELECT * FROM s3_features_no_mapping;

Viewing the data in Amazon S3

If you use SSH to connect to the leader node, you can use the Amazon Command Line Interface
(Amazon CLI) to access the data that Hive wrote to Amazon S3.

The following steps are written with the assumption you have copied data from DynamoDB to
Amazon S3 using one of the procedures in this section.

1. If you are currently at the Hive command prompt, exit to the Linux command prompt.

hive> exit;

2. List the contents of the hive-test directory in your Amazon S3 bucket. (This is where Hive
copied the data from DynamoDB.)

aws s3 ls s3://aws-logs-123456789012-us-west-2/hive-test/

The response should look similar to this:

2016-11-01 23:19:54 81983 000000_0

The file name (000000_0) is system-generated.

3. (Optional) You can copy the data file from Amazon S3 to the local file system on the leader
node. After you do this, you can use standard Linux command line utilities to work with the
data in the file.

aws s3 cp s3://aws-logs-123456789012-us-west-2/hive-test/000000_0 .

The response should look similar to this:

download: s3://aws-logs-123456789012-us-west-2/hive-test/000000_0
to ./000000_0

Note

The local file system on the leader node has limited capacity. Do not use this command
with files that are larger than the available space in the local file system.

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3350

Amazon DynamoDB Developer Guide

Copying data between DynamoDB and HDFS

If you have data in a DynamoDB table, you can use Hive to copy the data to the Hadoop Distributed
File System (HDFS).

You might do this if you are running a MapReduce job that requires data from DynamoDB. If you
copy the data from DynamoDB into HDFS, Hadoop can process it, using all of the available nodes in
the Amazon EMR cluster in parallel. When the MapReduce job is complete, you can then write the
results from HDFS to DDB.

In the following examples, Hive will read from and write to the following HDFS directory: /user/
hadoop/hive-test

Note

The examples in this section are written with the assumption you followed the steps in
Tutorial: Working with Amazon DynamoDB and Apache Hive and you have an external table
in DynamoDB named ddb_features.

Topics

• Copying data using the Hive default format

• Copying data with a user-specified format

• Copying data without a column mapping

• Accessing the data in HDFS

Copying data using the Hive default format

Example From DynamoDB to HDFS

Use an INSERT OVERWRITE statement to write directly to HDFS.

INSERT OVERWRITE DIRECTORY 'hdfs:///user/hadoop/hive-test'
SELECT * FROM ddb_features;

The data file in HDFS looks like this:

920709^ASoldiers Farewell Hill^ASummit^ANM^A32.3564729^A-108.33004616135

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3351

Amazon DynamoDB Developer Guide

1178153^AJones Run^AStream^APA^A41.2120086^A-79.25920781260
253838^ASentinel Dome^ASummit^ACA^A37.7229821^A-119.584338133
264054^ANeversweet Gulch^AValley^ACA^A41.6565269^A-122.83614322900
115905^AChacaloochee Bay^ABay^AAL^A30.6979676^A-87.97388530

Each field is separated by an SOH character (start of heading, 0x01). In the file, SOH appears as ^A.

Example From HDFS to DynamoDB

1. Create an external table that maps to the unformatted data in HDFS.

CREATE EXTERNAL TABLE hdfs_features_unformatted
 (feature_id BIGINT,
 feature_name STRING ,
 feature_class STRING ,
 state_alpha STRING,
 prim_lat_dec DOUBLE ,
 prim_long_dec DOUBLE ,
 elev_in_ft BIGINT)
LOCATION 'hdfs:///user/hadoop/hive-test';

2. Copy the data to DynamoDB.

INSERT OVERWRITE TABLE ddb_features
SELECT * FROM hdfs_features_unformatted;

Copying data with a user-specified format

If you want to use a different field separator character, you can create an external table that maps
to the HDFS directory. You might use this technique for creating data files with comma-separated
values (CSV).

Example From DynamoDB to HDFS

1. Create a Hive external table that maps to HDFS. When you do this, ensure that the data types
are consistent with those of the DynamoDB external table.

CREATE EXTERNAL TABLE hdfs_features_csv
 (feature_id BIGINT,
 feature_name STRING ,
 feature_class STRING ,

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3352

Amazon DynamoDB Developer Guide

 state_alpha STRING,
 prim_lat_dec DOUBLE ,
 prim_long_dec DOUBLE ,
 elev_in_ft BIGINT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
LOCATION 'hdfs:///user/hadoop/hive-test';

2. Copy the data from DynamoDB.

INSERT OVERWRITE TABLE hdfs_features_csv
SELECT * FROM ddb_features;

The data file in HDFS looks like this:

920709,Soldiers Farewell Hill,Summit,NM,32.3564729,-108.3300461,6135
1178153,Jones Run,Stream,PA,41.2120086,-79.2592078,1260
253838,Sentinel Dome,Summit,CA,37.7229821,-119.58433,8133
264054,Neversweet Gulch,Valley,CA,41.6565269,-122.8361432,2900
115905,Chacaloochee Bay,Bay,AL,30.6979676,-87.9738853,0

Example From HDFS to DynamoDB

With a single HiveQL statement, you can populate the DynamoDB table using the data from HDFS:

INSERT OVERWRITE TABLE ddb_features
SELECT * FROM hdfs_features_csv;

Copying data without a column mapping

You can copy data from DynamoDB in a raw format and write it to HDFS without specifying any
data types or column mapping. You can use this method to create an archive of DynamoDB data
and store it in HDFS.

Note

If your DynamoDB table contains attributes of type Map, List, Boolean or Null, then this is
the only way you can use Hive to copy data from DynamoDB to HDFS.

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3353

Amazon DynamoDB Developer Guide

Example From DynamoDB to HDFS

1. Create an external table associated with your DynamoDB table. (There is no
dynamodb.column.mapping in this HiveQL statement.)

CREATE EXTERNAL TABLE ddb_features_no_mapping
 (item MAP<STRING, STRING>)
STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler'
TBLPROPERTIES ("dynamodb.table.name" = "Features");

2. Create another external table associated with your HDFS directory.

CREATE EXTERNAL TABLE hdfs_features_no_mapping
 (item MAP<STRING, STRING>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LINES TERMINATED BY '\n'
LOCATION 'hdfs:///user/hadoop/hive-test';

3. Copy the data from DynamoDB to HDFS.

INSERT OVERWRITE TABLE hdfs_features_no_mapping
SELECT * FROM ddb_features_no_mapping;

The data file in HDFS looks like this:

Name^C{"s":"Soldiers Farewell
 Hill"}^BState^C{"s":"NM"}^BClass^C{"s":"Summit"}^BElevation^C{"n":"6135"}^BLatitude^C{"n":"32.3564729"}^BId^C{"n":"920709"}^BLongitude^C{"n":"-108.3300461"}
Name^C{"s":"Jones
 Run"}^BState^C{"s":"PA"}^BClass^C{"s":"Stream"}^BElevation^C{"n":"1260"}^BLatitude^C{"n":"41.2120086"}^BId^C{"n":"1178153"}^BLongitude^C{"n":"-79.2592078"}
Name^C{"s":"Sentinel
 Dome"}^BState^C{"s":"CA"}^BClass^C{"s":"Summit"}^BElevation^C{"n":"8133"}^BLatitude^C{"n":"37.7229821"}^BId^C{"n":"253838"}^BLongitude^C{"n":"-119.58433"}
Name^C{"s":"Neversweet
 Gulch"}^BState^C{"s":"CA"}^BClass^C{"s":"Valley"}^BElevation^C{"n":"2900"}^BLatitude^C{"n":"41.6565269"}^BId^C{"n":"264054"}^BLongitude^C{"n":"-122.8361432"}
Name^C{"s":"Chacaloochee
 Bay"}^BState^C{"s":"AL"}^BClass^C{"s":"Bay"}^BElevation^C{"n":"0"}^BLatitude^C{"n":"30.6979676"}^BId^C{"n":"115905"}^BLongitude^C{"n":"-87.9738853"}

Each field begins with an STX character (start of text, 0x02) and ends with an ETX character (end of
text, 0x03). In the file, STX appears as ^B and ETX appears as ^C.

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3354

Amazon DynamoDB Developer Guide

Example From HDFS to DynamoDB

With a single HiveQL statement, you can populate the DynamoDB table using the data from HDFS:

INSERT OVERWRITE TABLE ddb_features_no_mapping
SELECT * FROM hdfs_features_no_mapping;

Accessing the data in HDFS

HDFS is a distributed file system, accessible to all of the nodes in the Amazon EMR cluster. If you
use SSH to connect to the leader node, you can use command line tools to access the data that
Hive wrote to HDFS.

HDFS is not the same thing as the local file system on the leader node. You cannot work with files
and directories in HDFS using standard Linux commands (such as cat, cp, mv, or rm). Instead, you
perform these tasks using the hadoop fs command.

The following steps are written with the assumption you have copied data from DynamoDB to
HDFS using one of the procedures in this section.

1. If you are currently at the Hive command prompt, exit to the Linux command prompt.

hive> exit;

2. List the contents of the /user/hadoop/hive-test directory in HDFS. (This is where Hive copied
the data from DynamoDB.)

hadoop fs -ls /user/hadoop/hive-test

The response should look similar to this:

Found 1 items
-rw-r--r-- 1 hadoop hadoop 29504 2016-06-08 23:40 /user/hadoop/hive-test/000000_0

The file name (000000_0) is system-generated.

3. View the contents of the file:

hadoop fs -cat /user/hadoop/hive-test/000000_0

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3355

Amazon DynamoDB Developer Guide

Note

In this example, the file is relatively small (approximately 29 KB). Be careful when you
use this command with files that are very large or contain non-printable characters.

4. (Optional) You can copy the data file from HDFS to the local file system on the leader node.
After you do this, you can use standard Linux command line utilities to work with the data in
the file.

hadoop fs -get /user/hadoop/hive-test/000000_0

This command will not overwrite the file.

Note

The local file system on the leader node has limited capacity. Do not use this command
with files that are larger than the available space in the local file system.

Using data compression

When you use Hive to copy data among different data sources, you can request on-the-fly data
compression. Hive provides several compression codecs. You can choose one during your Hive
session. When you do this, the data is compressed in the specified format.

The following example compresses data using the Lempel-Ziv-Oberhumer (LZO) algorithm.

SET hive.exec.compress.output=true;
SET io.seqfile.compression.type=BLOCK;
SET mapred.output.compression.codec = com.hadoop.compression.lzo.LzopCodec;

CREATE EXTERNAL TABLE lzo_compression_table (line STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n'
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE lzo_compression_table SELECT *
FROM hiveTableName;

Copying data to and from Amazon DynamoDB API Version 2012-08-10 3356

Amazon DynamoDB Developer Guide

The resulting file in Amazon S3 will have a system-generated name with .lzo at the end (for
example, 8d436957-57ba-4af7-840c-96c2fc7bb6f5-000000.lzo).

The available compression codecs are:

• org.apache.hadoop.io.compress.GzipCodec

• org.apache.hadoop.io.compress.DefaultCodec

• com.hadoop.compression.lzo.LzoCodec

• com.hadoop.compression.lzo.LzopCodec

• org.apache.hadoop.io.compress.BZip2Codec

• org.apache.hadoop.io.compress.SnappyCodec

Reading non-printable UTF-8 character data

To read and write non-printable UTF-8 character data, you can use the STORED AS
SEQUENCEFILE clause when you create a Hive table. A SequenceFile is a Hadoop binary file
format. You need to use Hadoop to read this file. The following example shows how to export data
from DynamoDB into Amazon S3. You can use this functionality to handle non-printable UTF-8
encoded characters.

CREATE EXTERNAL TABLE s3_export(a_col string, b_col bigint, c_col array<string>)
STORED AS SEQUENCEFILE
LOCATION 's3://bucketname/path/subpath/';

INSERT OVERWRITE TABLE s3_export SELECT *
FROM hiveTableName;

Performance tuning

When you create a Hive external table that maps to a DynamoDB table, you do not consume
any read or write capacity from DynamoDB. However, read and write activity on the Hive table
(such as INSERT or SELECT) translates directly into read and write operations on the underlying
DynamoDB table.

Apache Hive on Amazon EMR implements its own logic for balancing the I/O load on the
DynamoDB table and seeks to minimize the possibility of exceeding the table's provisioned
throughput. At the end of each Hive query, Amazon EMR returns runtime metrics, including

Performance tuning API Version 2012-08-10 3357

Amazon DynamoDB Developer Guide

the number of times your provisioned throughput was exceeded. You can use this information,
together with CloudWatch metrics on your DynamoDB table, to improve performance in
subsequent requests.

The Amazon EMR console provides basic monitoring tools for your cluster. For more information,
see View and Monitor a Cluster in the Amazon EMR Management Guide.

You can also monitor your cluster and Hadoop jobs using web-based tools, such as Hue, Ganglia,
and the Hadoop web interface. For more information, see View Web Interfaces Hosted on Amazon
EMR Clusters in the Amazon EMR Management Guide.

This section describes steps you can take to performance-tune Hive operations on external
DynamoDB tables.

Topics

• DynamoDB provisioned throughput

• Adjusting the mappers

• Additional topics

DynamoDB provisioned throughput

When you issue HiveQL statements against the external DynamoDB table, the
DynamoDBStorageHandler class makes the appropriate low-level DynamoDB API requests, which
consume provisioned throughput. If there is not enough read or write capacity on the DynamoDB
table, the request will be throttled, resulting in slow HiveQL performance. For this reason, you
should ensure that the table has enough throughput capacity.

For example, suppose that you have provisioned 100 read capacity units for your DynamoDB table.
This will let you read 409,600 bytes per second (100 × 4 KB read capacity unit size). Now suppose
that the table contains 20 GB of data (21,474,836,480 bytes) and you want to use the SELECT
statement to select all of the data using HiveQL. You can estimate how long the query will take to
run like this:

21,474,836,480 / 409,600 = 52,429 seconds = 14.56 hours

In this scenario, the DynamoDB table is a bottleneck. It won't help to add more Amazon EMR
nodes, because the Hive throughput is constrained to only 409,600 bytes per second. The only
way to decrease the time required for the SELECT statement is to increase the provisioned read
capacity of the DynamoDB table.

Performance tuning API Version 2012-08-10 3358

https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-manage-view.html
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-web-interfaces.html
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-web-interfaces.html

Amazon DynamoDB Developer Guide

You can perform a similar calculation to estimate how long it would take to bulk-load data into a
Hive external table mapped to a DynamoDB table. Determine the total number of write capacity
units needed per item (less than 1KB = 1, 1-2KB = 2, etc), and multiply that by the number of items
to load. This will give you the number of write capacity units required. Divide that number by the
number of write capacity units that are allocated per second. This will yield the number of seconds
it will take to load the table.

You should regularly monitor the CloudWatch metrics for your table. For a quick overview in the
DynamoDB console, choose your table and then choose the Metrics tab. From here, you can view
read and write capacity units consumed and read and write requests that have been throttled.

Read capacity

Amazon EMR manages the request load against your DynamoDB table, according to
the table's provisioned throughput settings. However, if you notice a large number of
ProvisionedThroughputExceeded messages in the job output, you can adjust the default
read rate. To do this, you can modify the dynamodb.throughput.read.percent configuration
variable. You can use the SET command to set this variable at the Hive command prompt:

SET dynamodb.throughput.read.percent=1.0;

This variable persists for the current Hive session only. If you exit Hive and return to it later,
dynamodb.throughput.read.percent will return to its default value.

The value of dynamodb.throughput.read.percent can be between 0.1 and 1.5, inclusively.
0.5 represents the default read rate, meaning that Hive will attempt to consume half of the read
capacity of the table. If you increase the value above 0.5, Hive will increase the request rate;
decreasing the value below 0.5 decreases the read request rate. (The actual read rate will vary,
depending on factors such as whether there is a uniform key distribution in the DynamoDB table.)

If you notice that Hive is frequently depleting the provisioned read capacity of
the table, or if your read requests are being throttled too much, try reducing
dynamodb.throughput.read.percent below 0.5. If you have sufficient read capacity in the
table and want more responsive HiveQL operations, you can set the value above 0.5.

Write capacity

Amazon EMR manages the request load against your DynamoDB table, according to
the table's provisioned throughput settings. However, if you notice a large number of

Performance tuning API Version 2012-08-10 3359

Amazon DynamoDB Developer Guide

ProvisionedThroughputExceeded messages in the job output, you can adjust the default write
rate. To do this, you can modify the dynamodb.throughput.write.percent configuration
variable. You can use the SET command to set this variable at the Hive command prompt:

SET dynamodb.throughput.write.percent=1.0;

This variable persists for the current Hive session only. If you exit Hive and return to it later,
dynamodb.throughput.write.percent will return to its default value.

The value of dynamodb.throughput.write.percent can be between 0.1 and 1.5, inclusively.
0.5 represents the default write rate, meaning that Hive will attempt to consume half of the
write capacity of the table. If you increase the value above 0.5, Hive will increase the request rate;
decreasing the value below 0.5 decreases the write request rate. (The actual write rate will vary,
depending on factors such as whether there is a uniform key distribution in the DynamoDB table.)

If you notice that Hive is frequently depleting the provisioned write capacity of
the table, or if your write requests are being throttled too much, try reducing
dynamodb.throughput.write.percent below 0.5. If you have sufficient capacity in the table
and want more responsive HiveQL operations, you can set the value above 0.5.

When you write data to DynamoDB using Hive, ensure that the number of write capacity units
is greater than the number of mappers in the cluster. For example, consider an Amazon EMR
cluster consisting of 10 m1.xlarge nodes. The m1.xlarge node type provides 8 mapper tasks, so
the cluster would have a total of 80 mappers (10 × 8). If your DynamoDB table has fewer than 80
write capacity units, then a Hive write operation could consume all of the write throughput for that
table.

To determine the number of mappers for Amazon EMR node types, see Task Configuration in the
Amazon EMR Developer Guide.

For more information on mappers, see Adjusting the mappers.

Adjusting the mappers

When Hive launches a Hadoop job, the job is processed by one or more mapper tasks. Assuming
that your DynamoDB table has sufficient throughput capacity, you can modify the number of
mappers in the cluster, potentially improving performance.

Performance tuning API Version 2012-08-10 3360

https://docs.amazonaws.cn/emr/latest/ReleaseGuide/emr-hadoop-task-config.html

Amazon DynamoDB Developer Guide

Note

The number of mapper tasks used in a Hadoop job are influenced by input splits, where
Hadoop subdivides the data into logical blocks. If Hadoop does not perform enough input
splits, then your write operations might not be able to consume all the write throughput
available in the DynamoDB table.

Increasing the number of mappers

Each mapper in an Amazon EMR has a maximum read rate of 1 MiB per second. The number of
mappers in a cluster depends on the size of the nodes in your cluster. (For information about node
sizes and the number of mappers per node, see Task Configuration in the Amazon EMR Developer
Guide.)

If your DynamoDB table has ample throughput capacity for reads, you can try increasing the
number of mappers by doing one of the following:

• Increase the size of the nodes in your cluster. For example, if your cluster is using m1.large nodes
(three mappers per node), you can try upgrading to m1.xlarge nodes (eight mappers per node).

• Increase the number of nodes in your cluster. For example, if you have three-node cluster of
m1.xlarge nodes, you have a total of 24 mappers available. If you were to double the size of the
cluster, with the same type of node, you would have 48 mappers.

You can use the Amazon Web Services Management Console to manage the size or the number of
nodes in your cluster. (You might need to restart the cluster for these changes to take effect.)

Another way to increase the number of mappers is to modify the
mapred.tasktracker.map.tasks.maximum Hadoop configuration parameter. (This is a
Hadoop parameter, not a Hive parameter. You cannot modify it interactively from the command
prompt.). If you increase the value of mapred.tasktracker.map.tasks.maximum, you can
increase the number of mappers without increasing the size or number of nodes. However, it is
possible for the cluster nodes to run out of memory if you set the value too high.

You set the value for mapred.tasktracker.map.tasks.maximum as a bootstrap action when
you first launch your Amazon EMR cluster. For more information, see (Optional) Create Bootstrap
Actions to Install Additional Software in the Amazon EMR Management Guide.

Performance tuning API Version 2012-08-10 3361

https://docs.amazonaws.cn/emr/latest/ReleaseGuide/emr-hadoop-task-config.html
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.amazonaws.cn/ElasticMapReduce/latest/ManagementGuide/emr-plan-bootstrap.html

Amazon DynamoDB Developer Guide

Decreasing the number of mappers

If you use the SELECT statement to select data from an external Hive table that maps to
DynamoDB, the Hadoop job can use as many tasks as necessary, up to the maximum number of
mappers in the cluster. In this scenario, it is possible that a long-running Hive query can consume
all of the provisioned read capacity of the DynamoDB table, negatively impacting other users.

You can use the dynamodb.max.map.tasks parameter to set an upper limit for map tasks:

SET dynamodb.max.map.tasks=1

This value must be equal to or greater than 1. When Hive processes your query, the resulting
Hadoop job will use no more than dynamodb.max.map.tasks when reading from the DynamoDB
table.

Additional topics

The following are some more ways to tune applications that use Hive to access DynamoDB.

Retry duration

By default, Hive will rerun a Hadoop job if it has not returned any results from DynamoDB
within two minutes. You can adjust this interval by modifying the dynamodb.retry.duration
parameter:

SET dynamodb.retry.duration=2;

The value must be a nonzero integer, representing the number of minutes in the retry interval. The
default for dynamodb.retry.duration is 2 (minutes).

Parallel data requests

Multiple data requests, either from more than one user or more than one application to a single
table can drain read provisioned throughput and slow performance.

Process duration

Data consistency in DynamoDB depends on the order of read and write operations on each node.
While a Hive query is in progress, another application might load new data into the DynamoDB

Performance tuning API Version 2012-08-10 3362

Amazon DynamoDB Developer Guide

table or modify or delete existing data. In this case, the results of the Hive query might not reflect
changes made to the data while the query was running.

Request time

Scheduling Hive queries that access a DynamoDB table when there is lower demand on the
DynamoDB table improves performance. For example, if most of your application's users live in San
Francisco, you might choose to export daily data at 4:00 A.M. PST when the majority of users are
asleep and not updating records in your DynamoDB database.

Integrating DynamoDB with Amazon S3

Amazon DynamoDB import and export capabilities provide a simple and efficient way to move data
between Amazon S3 and DynamoDB tables without writing any code.

DynamoDB import and export features help you move, transform, and copy DynamoDB table
accounts. You can import from your S3 sources, and you can export your DynamoDB table data
to Amazon S3 and use Amazon services such as Athena, Amazon SageMaker AI, and Amazon Lake
Formation to analyze your data and extract actionable insights. You can also import data directly
into new DynamoDB tables to build new applications with single-digit millisecond performance at
scale, facilitate data sharing between tables and accounts, and simplify your disaster recovery and
business continuity plans.

Topics

• DynamoDB data import from Amazon S3: how it works

• DynamoDB data export to Amazon S3: how it works

DynamoDB data import from Amazon S3: how it works

To import data into DynamoDB, your data must be in an Amazon S3 bucket in CSV, DynamoDB
JSON, or Amazon Ion format. Data can be compressed in ZSTD or GZIP format, or can be directly
imported in uncompressed form. Source data can either be a single Amazon S3 object or multiple
Amazon S3 objects that use the same prefix.

Your data will be imported into a new DynamoDB table, which will be created when you initiate
the import request. You can create this table with secondary indexes, then query and update your

Integrating with S3 API Version 2012-08-10 3363

Amazon DynamoDB Developer Guide

data across all primary and secondary indexes as soon as the import is complete. You can also add
a global table replica after the import is complete.

Note

During the Amazon S3 import process, DynamoDB creates a new target table that will be
imported into. Import into existing tables is not currently supported by this feature.

Import from Amazon S3 does not consume write capacity on the new table, so you do not need to
provision any extra capacity for importing data into DynamoDB. Data import pricing is based on
the uncompressed size of the source data in Amazon S3, that is processed as a result of the import.
Items that are processed but fail to load into the table due to formatting or other inconsistencies
in the source data are also billed as part of the import process. See Amazon DynamoDB pricing for
details.

You can import data from an Amazon S3 bucket owned by a different account if you have the
correct permissions to read from that specific bucket. The new table may also be in a different
Region from the source Amazon S3 bucket. For more information, see Amazon Simple Storage
Service setup and permissions .

Import times are directly related to your data’s characteristics in Amazon S3. This includes data
size, data format, compression scheme, uniformity of data distribution, number of Amazon S3
objects, and other related variables. In particular, data sets with uniformly distributed keys will
be faster to import than skewed data sets. For example, if your secondary index's key is using
the month of the year for partitioning, and all your data is from the month of December, then
importing this data may take significantly longer.

The attributes associated with keys are expected to be unique on the base table. If any keys are not
unique, the import will overwrite the associated items until only the last overwrite remains. For
example, if the primary key is the month and multiple items are set to the month of September,
each new item will overwrite the previously written items and only one item with the primary
key of "month" set to September will remain. In such cases, the number of items processed in the
import table description will not match the number of items in the target table.

Amazon CloudTrail logs all console and API actions for table import. For more information, see
Logging DynamoDB operations by using Amazon CloudTrail.

The following video is an introduction to importing directly from Amazon S3 into DynamoDB.

Import from Amazon S3 API Version 2012-08-10 3364

http://www.amazonaws.cn/dynamodb/pricing
https://docs.amazonaws.cn/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/example-walkthroughs-managing-access.html

Amazon DynamoDB Developer Guide

Import from Amazon S3

Topics

• Requesting a table import in DynamoDB

• Amazon S3 import formats for DynamoDB

• Import format quotas and validation

• Best practices for importing from Amazon S3 into DynamoDB

Requesting a table import in DynamoDB

DynamoDB import allows you to import data from an Amazon S3 bucket to a new DynamoDB
table. You can request a table import using the DynamoDB console, the CLI, CloudFormation or the
DynamoDB API.

If you want to use the Amazon CLI, you must configure it first. For more information, see Accessing
DynamoDB.

Note

• The Import Table feature interacts with multiple different Amazon Services such as
Amazon S3 and CloudWatch. Before you begin an import, make sure that the user or role
that invokes the import APIs has permissions to all services and resources the feature
depends on.

• Do not modify the Amazon S3 objects while the import is in progress, as this can cause
the operation to fail or be cancelled.

For more information on errors and troubleshooting, see Import format quotas and
validation

Topics

• Setting up IAM permissions

• Requesting an import using the Amazon Web Services Management Console

• Getting details about past imports in the Amazon Web Services Management Console

Import from Amazon S3 API Version 2012-08-10 3365

https://www.youtube.com/embed/fqq0CMOnOaI
https://console.amazonaws.cn/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

• Requesting an import using the Amazon CLI

• Getting details about past imports in the Amazon CLI

Setting up IAM permissions

You can import data from any Amazon S3 bucket you have permission to read from. The source
bucket does not need to be in the same Region or have the same owner as the source table. Your
Amazon Identity and Access Management (IAM) must include the relevant actions on the source
Amazon S3 bucket, and required CloudWatch permissions for providing debugging information. An
example policy is shown below.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDynamoDBImportAction",
 "Effect": "Allow",
 "Action": [
 "dynamodb:ImportTable",
 "dynamodb:DescribeImport"
],
 "Resource": "arn:aws-cn:dynamodb:us-east-1:111122223333:table/my-table*"
 },
 {
 "Sid": "AllowS3Access",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws-cn:s3:::your-bucket/*",
 "arn:aws-cn:s3:::your-bucket"
]
 },
 {
 "Sid": "AllowCloudwatchAccess",
 "Effect": "Allow",
 "Action": [

Import from Amazon S3 API Version 2012-08-10 3366

Amazon DynamoDB Developer Guide

 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws-cn:logs:us-east-1:111122223333:log-group/aws-dynamodb/
*"
 },
 {
 "Sid": "AllowDynamoDBListImports",
 "Effect": "Allow",
 "Action": "dynamodb:ListImports",
 "Resource": "*"
 }
]
}

Amazon S3 permissions

When starting an import on an Amazon S3 bucket source that is owned by another account, ensure
that the role or user has access to the Amazon S3 objects. You can check that by executing an
Amazon S3 GetObject command and using the credentials. When using the API, the Amazon
S3 bucket owner parameter defaults to the current user’s account ID. For cross account imports,
ensure that this parameter is correctly populated with the bucket owner’s account ID. The following
code is an example Amazon S3 bucket policy in the source account.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {"Sid": "ExampleStatement",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::123456789012:user/Dave"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],

Import from Amazon S3 API Version 2012-08-10 3367

Amazon DynamoDB Developer Guide

 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Amazon Key Management Service

When creating the new table for import, if you select an encryption at rest key that is not owned
by DynamoDB then you must provide the Amazon KMS permissions required to operate a
DynamoDB table encrypted with customer managed keys. For more information see Authorizing
use of your Amazon KMS key. If the Amazon S3 objects are encrypted with server side encryption
KMS (SSE-KMS), ensure that the role or user initiating the import has access to decrypt using
the Amazon KMS key. This feature does not support customer-provided encryption keys (SSE-C)
encrypted Amazon S3 objects.

CloudWatch permissions

The role or user that is initiating the import will need create and manage permissions for the log
group and log streams associated with the import.

Requesting an import using the Amazon Web Services Management Console

The following example demonstrates how to use the DynamoDB console to import existing data to
a new table named MusicCollection.

To request a table import

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Import from S3.

3. On the page that appears, select Import from S3.

4. Choose Import from S3.

5. In Source S3 URL, enter the Amazon S3 source URL.

If you own the source bucket, choose Browse S3 to search for it. Alternatively, enter the
bucket's URL in the following format – s3://bucket/prefix. The prefix is an Amazon S3
key prefix. It's either the Amazon S3 object name that you want to import or the key prefix
shared by all the Amazon S3 objects that you want to import.

Import from Amazon S3 API Version 2012-08-10 3368

encryption.usagenotes.html#dynamodb-kms-authz
encryption.usagenotes.html#dynamodb-kms-authz
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

Note

You can't use the same prefix as your DynamoDB export request. The export feature
creates a folder structure and manifest files for all the exports. If you use the same
Amazon S3 path, it will result in an error.
Instead, point the import at the folder, which contains data from that specific
export. The format of the correct path in this case will be s3://bucket/prefix/
AWSDynamoDB/<XXXXXXXX-XXXXXX>/data/, where XXXXXXXX-XXXXXX is the
export ID. You can find export ID in the export ARN, which has the following format
– arn:aws-cn:dynamodb:<Region>:<AccountID>:table/<TableName>/
export/<XXXXXXXX-XXXXXX>. For example, arn:aws-cn:dynamodb:us-
east-1:123456789012:table/ProductCatalog/export/01234567890123-
a1b2c3d4.

6. Specify if you are the S3 bucket owner. If the source bucket is owned by a different account,
select A different Amazon account. Then enter the account ID of the bucket owner.

7. Under Import file compression, select either No compression, GZIP or ZSTD as appropriate.

8. Select the appropriate Import file format. The options are DynamoDB JSON, Amazon Ion or
CSV. If you select CSV, you will have two additional options: CSV header and CSV delimiter
character.

For CSV header, choose if the header will either be taken from the first line of the file or be
customized. If you select Customize your headers, you can specify the header values you want
to import with. CSV Headers specified by this method are case-sensitive and are expected to
contain the keys of the target table.

For CSV delimiter character, you set the character which will separate items. Comma is
selected by default. If you select Custom delimiter character, the delimiter must match the
regex pattern: [,;:|\t].

9. Select the Next button and select the options for the new table that will be created to store
your data.

Note

Primary Key and Sort Key must match the attributes in the file, or the import will fail.
The attributes are case sensitive.

Import from Amazon S3 API Version 2012-08-10 3369

Amazon DynamoDB Developer Guide

10. Select Next again to review your import options, then click Import to begin the import task.
You will first see your new table listed in the “Tables” with the status “Creating”. At this time
the table is not accessible.

11. Once the import completes, the status will show as "Active" and you can start using the table.

Getting details about past imports in the Amazon Web Services Management Console

You can find information about import tasks you've run in the past by clicking Import from S3
in the navigation sidebar, then selecting the Imports tab. The import panel contains a list of all
imports you've created in the past 90 days. Selecting the ARN of a task listed in the Imports tab
will retrieve information about that import, including any advanced configuration settings you
chose.

Requesting an import using the Amazon CLI

The following example imports CSV formatted data from an S3 bucket called bucket with a prefix
of prefix to a new table called target-table.

aws dynamodb import-table --s3-bucket-source S3Bucket=bucket,S3KeyPrefix=prefix \
 --input-format CSV --table-creation-parameters '{"TableName":"target-
table","KeySchema": \
 [{"AttributeName":"hk","KeyType":"HASH"}],"AttributeDefinitions":
[{"AttributeName":"hk","AttributeType":"S"}],"BillingMode":"PAY_PER_REQUEST"}' \
 --input-format-options '{"Csv": {"HeaderList": ["hk", "title", "artist",
 "year_of_release"], "Delimiter": ";"}}'

Note

If you choose to encrypt your import using a key protected by Amazon Key Management
Service (Amazon KMS), the key must be in the same Region as the destination Amazon S3
bucket.

Getting details about past imports in the Amazon CLI

You can find information about import tasks you've run in the past by using the list-imports
command. This command returns a list of all imports you've created in the past 90 days. Note that
although import task metadata expires after 90 days and jobs older than that are no longer found

Import from Amazon S3 API Version 2012-08-10 3370

Amazon DynamoDB Developer Guide

on this list, DynamoDB does not delete any of the objects in your Amazon S3 bucket or the table
created during import.

aws dynamodb list-imports

To retrieve detailed information about a specific import task, including any advanced configuration
settings, use the describe-import command.

aws dynamodb describe-import \
 --import-arn arn:aws:dynamodb:us-east-1:123456789012:table/ProductCatalog/exp

Amazon S3 import formats for DynamoDB

DynamoDB can import data in three formats: CSV, DynamoDB JSON, and Amazon Ion.

Topics

• CSV

• DynamoDB Json

• Amazon Ion

CSV

A file in CSV format consists of multiple items delimited by newlines. By default, DynamoDB
interprets the first line of an import file as the header and expects columns to be delimited by
commas. You can also define headers that will be applied, as long as they match the number of
columns in the file. If you define headers explicitly, the first line of the file will be imported as
values.

Note

When importing from CSV files, all columns other than the hash range and keys of your
base table and secondary indexes are imported as DynamoDB strings.

Escaping double quotes

Any double quotes characters that exist in the CSV file must be escaped. If they are not escaped,
such as in this following example, the import will fail:

Import from Amazon S3 API Version 2012-08-10 3371

Amazon DynamoDB Developer Guide

id,value
"123",Women's Full "Length" Dress

This same import will succeed if the quotes are escaped with two sets of double quotes:

id,value
"""123""","Women's Full ""Length"" Dress"

Once the text has been properly escaped and imported, it will appear as it did in the original CSV
file:

id,value
"123",Women's Full "Length" Dress

DynamoDB Json

A file in DynamoDB JSON format can consist of multiple Item objects. Each individual object is in
DynamoDB’s standard marshalled JSON format, and newlines are used as item delimiters. As an
added feature, exports from point in time are supported as an import source by default.

Note

New lines are used as item delimiters for a file in DynamoDB JSON format and shouldn't be
used within an item object.

{"Item": {"Authors": {"SS": ["Author1", "Author2"]}, "Dimensions": {"S": "8.5 x 11.0 x
 1.5"}, "ISBN": {"S": "333-3333333333"}, "Id": {"N": "103"}, "InPublication": {"BOOL":
 false}, "PageCount": {"N": "600"}, "Price": {"N": "2000"}, "ProductCategory": {"S":
 "Book"}, "Title": {"S": "Book 103 Title"}}}
{"Item": {"Authors": {"SS": ["Author1", "Author2"]}, "Dimensions": {"S": "8.5 x 11.0 x
 1.5"}, "ISBN": {"S": "444-444444444"}, "Id": {"N": "104"}, "InPublication": {"BOOL":
 false}, "PageCount": {"N": "600"}, "Price": {"N": "2000"}, "ProductCategory": {"S":
 "Book"}, "Title": {"S": "Book 104 Title"}}}
{"Item": {"Authors": {"SS": ["Author1", "Author2"]}, "Dimensions": {"S": "8.5 x 11.0 x
 1.5"}, "ISBN": {"S": "555-5555555555"}, "Id": {"N": "105"}, "InPublication": {"BOOL":
 false}, "PageCount": {"N": "600"}, "Price": {"N": "2000"}, "ProductCategory": {"S":
 "Book"}, "Title": {"S": "Book 105 Title"}}}

Import from Amazon S3 API Version 2012-08-10 3372

Amazon DynamoDB Developer Guide

Amazon Ion

Amazon Ion is a richly-typed, self-describing, hierarchical data serialization format built to address
rapid development, decoupling, and efficiency challenges faced every day while engineering large-
scale, service-oriented architectures.

When you import data in Ion format, the Ion datatypes are mapped to DynamoDB datatypes in the
new DynamoDB table.

S. No. Ion to DynamoDB datatype
conversion

B

1 Ion Data Type DynamoDB Represent
ation

2 string String (s)

3 bool Boolean (BOOL)

4 decimal Number (N)

5 blob Binary (B)

6 list (with type
annotation $dynamodb
_SS, $dynamodb_NS,
or $dynamodb_BS)

Set (SS, NS, BS)

7 list List

8 struct Map

Items in an Ion file are delimited by newlines. Each line begins with an Ion version marker, followed
by an item in Ion format.

Note

In the following example, we've formatted items from an Ion-formatted file on multiple
lines to improve readability.

Import from Amazon S3 API Version 2012-08-10 3373

https://amzn.github.io/ion-docs/

Amazon DynamoDB Developer Guide

$ion_1_0
[
 {
 Item:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 Dimensions:"8.5 x 11.0 x 1.5",
 ISBN:"333-3333333333",
 Id:103.,
 InPublication:false,
 PageCount:6d2,
 Price:2d3,
 ProductCategory:"Book",
 Title:"Book 103 Title"
 }
 },
 {
 Item:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 Dimensions:"8.5 x 11.0 x 1.5",
 ISBN:"444-4444444444",
 Id:104.,
 InPublication:false,
 PageCount:6d2,
 Price:2d3,
 ProductCategory:"Book",
 Title:"Book 104 Title"
 }
 },
 {
 Item:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 Dimensions:"8.5 x 11.0 x 1.5",
 ISBN:"555-5555555555",
 Id:105.,
 InPublication:false,
 PageCount:6d2,
 Price:2d3,
 ProductCategory:"Book",
 Title:"Book 105 Title"
 }
 }
]

Import from Amazon S3 API Version 2012-08-10 3374

Amazon DynamoDB Developer Guide

Import format quotas and validation

Import quotas

DynamoDB Import from Amazon S3 can support up to 50 concurrent import jobs with a total
import source object size of 15TB at a time in us-east-1, us-west-2, and eu-west-1 regions. In all
other regions, up to 50 concurrent import tasks with a total size of 1TB is supported. Each import
job can take up to 50,000 Amazon S3 objects in all regions. These default quotas are applied to
every account. If you feel you need to revise these quotas, please contact your account team, and
this will be considered on a case-by-case basis. For more details on DynamoDB limits, see Service
Quotas.

Validation errors

During the import process, DynamoDB may encounter errors while parsing your data. For each
error, DynamoDB emits a CloudWatch log and keeps a count of the total number of errors
encountered. If the Amazon S3 object itself is malformed or if its contents cannot form a
DynamoDB item, then we may skip processing the remaining portion of the object.

Note

If the Amazon S3 data source has multiple items that share the same key, the items will
overwrite until one remains. This can appear as if 1 item was imported and the others were
ignored. The duplicate items will be overwritten in random order, are not counted as errors,
and are not emitted to CloudWatch logs.
Once the import is complete you can see the total count of items imported, total count of
errors, and total count of items processed. For further troubleshooting you can also check
the total size of items imported and total size of data processed.

There are three categories of import errors: API validation errors, data validation errors, and
configuration errors.

API validation errors

API validation errors are item-level errors from the sync API. Common causes are permissions
issues, missing required parameters and parameter validation failures. Details on why the API call
failed are contained in the exceptions thrown by the ImportTable request.

Import from Amazon S3 API Version 2012-08-10 3375

ServiceQuotas.html
ServiceQuotas.html

Amazon DynamoDB Developer Guide

Data validation errors

Data validation errors can occur at either the item level or file level. During import, items are
validated based on DynamoDB rules before importing into the target table. When an item fails
validation and is not imported, the import job skips over that item and continues on with the next
item. At the end of job, the import status is set to FAILED with a FailureCode, ItemValidationError
and the FailureMessage "Some of the items failed validation checks and were not imported. Please
check CloudWatch error logs for more details."

Common causes for data validation errors include objects being unparsable, objects being in the
incorrect format (input specifies DYNAMODB_JSON but the object is not in DYNAMODB_JSON),
and schema mismatch with specified source table keys.

Configuration errors

Configuration errors are typically workflow errors due to permission validation. The Import
workflow checks some permissions after accepting the request. If there are issues calling any of
the required dependencies like Amazon S3 or CloudWatch the process marks the import status
as FAILED. The failureCode and failureMessage point to the reason for failure. Where
applicable, the failure message also contains the request id that you can use to investigate the
reason for failure in CloudTrail.

Common configuration errors include having the wrong URL for the Amazon S3 bucket, and not
having permission to access the Amazon S3 bucket, CloudWatch Logs, and Amazon KMS keys used
to decrypt the Amazon S3 object. For more information see Using and data keys.

Validating source Amazon S3 objects

In order to validate source S3 objects, take the following steps.

1. Validate the data format and compression type

• Make sure that all matching Amazon S3 objects under the specified prefix have the same
format (DYNAMODB_JSON, DYNAMODB_ION, CSV)

• Make sure that all matching Amazon S3 objects under the specified prefix are compressed
the same way (GZIP, ZSTD, NONE)

Import from Amazon S3 API Version 2012-08-10 3376

encryption.usagenotes.html#dynamodb-kms

Amazon DynamoDB Developer Guide

Note

The Amazon S3 objects do not need to have the corresponding extension
(.csv / .json / .ion / .gz / .zstd etc) as the input format specified in ImportTable call
takes precedence.

2. Validate that the import data conforms to the desired table schema

• Make sure that each item in the source data has the primary key. A sort key is optional for
imports.

• Make sure that the attribute type associated with the primary key and any sort key matches
the attribute type in the Table and the GSI schema, as specified in table creation parameters

Troubleshooting

CloudWatch logs

For Import jobs that fail, detailed error messages are posted to CloudWatch logs. To access these
logs, first retrieve the ImportArn from the output and describe-import using this command:

aws dynamodb describe-import --import-arn arn:aws:dynamodb:us-east-1:ACCOUNT:table/
target-table/import/01658528578619-c4d4e311
}

Example output:

aws dynamodb describe-import --import-arn "arn:aws:dynamodb:us-
east-1:531234567890:table/target-table/import/01658528578619-c4d4e311"
{
 "ImportTableDescription": {
 "ImportArn": "arn:aws:dynamodb:us-east-1:ACCOUNT:table/target-table/
import/01658528578619-c4d4e311",
 "ImportStatus": "FAILED",
 "TableArn": "arn:aws:dynamodb:us-east-1:ACCOUNT:table/target-table",
 "TableId": "7b7ecc22-302f-4039-8ea9-8e7c3eb2bcb8",
 "ClientToken": "30f8891c-e478-47f4-af4a-67a5c3b595e3",
 "S3BucketSource": {
 "S3BucketOwner": "ACCOUNT",
 "S3Bucket": "my-import-source",

Import from Amazon S3 API Version 2012-08-10 3377

Amazon DynamoDB Developer Guide

 "S3KeyPrefix": "import-test"
 },
 "ErrorCount": 1,
 "CloudWatchLogGroupArn": "arn:aws:logs:us-east-1:ACCOUNT:log-group:/aws-
dynamodb/imports:*",
 "InputFormat": "CSV",
 "InputCompressionType": "NONE",
 "TableCreationParameters": {
 "TableName": "target-table",
 "AttributeDefinitions": [
 {
 "AttributeName": "pk",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "pk",
 "KeyType": "HASH"
 }
],
 "BillingMode": "PAY_PER_REQUEST"
 },
 "StartTime": 1658528578.619,
 "EndTime": 1658528750.628,
 "ProcessedSizeBytes": 70,
 "ProcessedItemCount": 1,
 "ImportedItemCount": 0,
 "FailureCode": "ItemValidationError",
 "FailureMessage": "Some of the items failed validation checks and were not
 imported. Please check CloudWatch error logs for more details."
 }
}

Retrieve the log group and the import id from the above response and use it to retrieve the error
logs. The import ID is the last path element of the ImportArn field. The log group name is /aws-
dynamodb/imports. The error log stream name is import-id/error. For this example, it would
be 01658528578619-c4d4e311/error.

Missing the key pk in the item

If the source S3 object does not contain the primary key that was provided as a parameter, the
import will fail. For example, when you define the primary key for the import as column name “pk”.

Import from Amazon S3 API Version 2012-08-10 3378

Amazon DynamoDB Developer Guide

aws dynamodb import-table —s3-bucket-source S3Bucket=my-import-
source,S3KeyPrefix=import-test.csv \
 —input-format CSV --table-creation-parameters '{"TableName":"target-
table","KeySchema": \
 [{"AttributeName":"pk","KeyType":"HASH"}],"AttributeDefinitions":
[{"AttributeName":"pk","AttributeType":"S"}],"BillingMode":"PAY_PER_REQUEST"}'

The column “pk” is missing from the the source object import-test.csv which has the following
contents:

title,artist,year_of_release
The Dark Side of the Moon,Pink Floyd,1973

This import will fail due to item validation error because of the missing primary key in the data
source.

Example CloudWatch error log:

aws logs get-log-events —log-group-name /aws-dynamodb/imports —log-stream-name
 01658528578619-c4d4e311/error
{
"events": [
{
"timestamp": 1658528745319,
"message": "{\"itemS3Pointer\":{\"bucket\":\"my-import-source\",\"key\":
\"import-test.csv\",\"itemIndex\":0},\"importArn\":\"arn:aws:dynamodb:us-
east-1:531234567890:table/target-table/import/01658528578619-c4d4e311\",\"errorMessages
\":[\"One or more parameter values were invalid: Missing the key pk in the item\"]}",
"ingestionTime": 1658528745414
}
],
"nextForwardToken": "f/36986426953797707963335499204463414460239026137054642176/s",
"nextBackwardToken": "b/36986426953797707963335499204463414460239026137054642176/s"
}

This error log indicates that “One or more parameter values were invalid: Missing the key pk in the
item”. Since this import job failed, the table “target-table” now exists and is empty because no
items were imported. The first item was processed and the object failed Item Validation.

To fix the issue, first delete “target-table” if it is no longer needed. Then either use a primary key
column name that exists in the source object, or update the source data to:

Import from Amazon S3 API Version 2012-08-10 3379

Amazon DynamoDB Developer Guide

pk,title,artist,year_of_release
Albums::Rock::Classic::1973::AlbumId::ALB25,The Dark Side of the Moon,Pink Floyd,1973

Target table exists

When you start an import job and receive a response as follows:

An error occurred (ResourceInUseException) when calling the ImportTable operation:
 Table already exists: target-table

To fix this error, you will need to choose a table name that doesn’t already exist and retry the
import.

The specified bucket does not exist

If the source bucket does not exist, the import will fail and log the error message details in
CloudWatch.

Example describe import:

aws dynamodb —endpoint-url $ENDPOINT describe-import —import-arn "arn:aws:dynamodb:us-
east-1:531234567890:table/target-table/import/01658530687105-e6035287"
{
"ImportTableDescription": {
"ImportArn": "arn:aws:dynamodb:us-east-1:ACCOUNT:table/target-table/
import/01658530687105-e6035287",
"ImportStatus": "FAILED",
"TableArn": "arn:aws:dynamodb:us-east-1:ACCOUNT:table/target-table",
"TableId": "e1215a82-b8d1-45a8-b2e2-14b9dd8eb99c",
"ClientToken": "3048e16a-069b-47a6-9dfb-9c259fd2fb6f",
"S3BucketSource": {
"S3BucketOwner": "531234567890",
"S3Bucket": "BUCKET_DOES_NOT_EXIST",
"S3KeyPrefix": "import-test"
},
"ErrorCount": 0,
"CloudWatchLogGroupArn": "arn:aws:logs:us-east-1:ACCOUNT:log-group:/aws-dynamodb/
imports:*",
"InputFormat": "CSV",
"InputCompressionType": "NONE",
"TableCreationParameters": {
"TableName": "target-table",

Import from Amazon S3 API Version 2012-08-10 3380

Amazon DynamoDB Developer Guide

"AttributeDefinitions": [
{
"AttributeName": "pk",
"AttributeType": "S"
}
],
"KeySchema": [
{
"AttributeName": "pk",
"KeyType": "HASH"
}
],
"BillingMode": "PAY_PER_REQUEST"
},
"StartTime": 1658530687.105,
"EndTime": 1658530701.873,
"ProcessedSizeBytes": 0,
"ProcessedItemCount": 0,
"ImportedItemCount": 0,
"FailureCode": "S3NoSuchBucket",
"FailureMessage": "The specified bucket does not exist (Service: Amazon S3; Status
 Code: 404; Error Code: NoSuchBucket; Request ID: Q4W6QYYFDWY6WAKH; S3 Extended Request
 ID: ObqSlLeIMJpQqHLRX2C5Sy7n+8g6iGPwy7ixg7eEeTuEkg/+chU/JF+RbliWytMlkUlUcuCLTrI=;
 Proxy: null)"
}
}

The FailureCode is S3NoSuchBucket, with FailureMessag containing details such as request
id and the service that threw the error. Since the error was caught before the data was imported
into the table, a new DynamoDB table is not created. In some cases, when these errors are
encountered after the data import has started, the table with partially imported data is retained.

To fix this error, make sure that the source Amazon S3 bucket exists and then restart the import
process.

Best practices for importing from Amazon S3 into DynamoDB

The following are the best practices for importing data from Amazon S3 into DynamoDB.

Stay under the limit of 50,000 S3 objects

Each import job supports a maximum of 50,000 S3 objects. If your dataset contains more than
50,000 objects, consider consolidating them into larger objects.

Import from Amazon S3 API Version 2012-08-10 3381

Amazon DynamoDB Developer Guide

Avoid excessively large S3 objects

S3 objects are imported in parallel. Having numerous mid-sized S3 objects allows for parallel
execution without excessive overhead. For items under 1 KB, consider placing 4,000,000 items into
each S3 object. If you have a larger average item size, place proportionally fewer items into each S3
object.

Randomize sorted data

If an S3 object holds data in sorted order, it can create a rolling hot partition. This is a situation
where one partition receives all the activity, and then the next partition after that, and so on. Data
in sorted order is defined as items in sequence in the S3 object that will be written to the same
target partition during the import. One common situation where data is in sorted order is a CSV file
where items are sorted by partition key so that repeated items share the same partition key.

To avoid a rolling hot partition, we recommend that you randomize the order in these cases.
This can improve performance by spreading the write operations. For more information, see
Distributing write activity efficiently during data upload in DynamoDB.

Compress data to keep the total S3 object size below the Regional limit

In the import from S3 process, there is a limit on the sum total size of the S3 object data to be
imported. The limit is 15 TB in the us-east-1, us-west-2, and eu-west-1 Regions, and 1 TB in all
other Regions. The limit is based on the raw S3 object sizes.

Compression allows more raw data to fit within the limit. If compression alone isn’t sufficient to fit
the import within the limit, you can also contact Amazon Premium Support for a quota increase.

Be aware of how item size impacts performance

If your average item size is very small (below 200 bytes), the import process might take a little
longer than for larger item sizes.

Do not modify S3 objects during active imports

Ensure that your source S3 objects remain unchanged while an import operation is in
progress. If an S3 object is modified during an import, the operation will fail with error code
ObjectModifiedInS3DuringImport and the message "The S3 object could not be imported
because it was overwritten."

If you encounter this error, restart the import operation with a stable version of your S3 object. To
avoid this issue, wait for the current import to complete before making changes to the source files.

Import from Amazon S3 API Version 2012-08-10 3382

https://www.amazonaws.cn/premiumsupport/

Amazon DynamoDB Developer Guide

Consider importing without any Global Secondary Indexes

The duration of an import task may depend on the presence of one or multiple global secondary
indexes (GSIs). If you plan to establish indexes with partition keys that have low cardinality, you
may see a faster import if you defer index creation until after the import task is finished (rather
than including them in the import job).

Note

Creating a GSI during the import does not incur write charges (creating a GSI after the
import would).

DynamoDB data export to Amazon S3: how it works

DynamoDB export to S3 is a fully managed solution for exporting your DynamoDB data to an
Amazon S3 bucket at scale. Using DynamoDB export to S3, you can export data from an Amazon
DynamoDB table from any time within your point-in-time recovery (PITR) window to an Amazon S3
bucket. You need to enable PITR on your table to use the export functionality. This feature enables
you to perform analytics and complex queries on your data using other Amazon services such as
Athena, Amazon Glue, Amazon SageMaker AI, Amazon EMR, and Amazon Lake Formation.

DynamoDB export to S3 allows you to export both full and incremental data from your DynamoDB
table. Exports are asynchronous, they don't consume read capacity units (RCUs) and have no
impact on table performance and availability. The export file formats supported are DynamoDB
JSON and Amazon Ion formats. You can also export data to an S3 bucket owned by another
Amazon account and to a different Amazon region. Your data is always encrypted end-to-end.

DynamoDB full exports are charged based on the size of the DynamoDB table (table data and
local secondary indexes) at the point in time for which the export is done. DynamoDB incremental
exports are charged based on the size of data processed from your continuous backups for the time
period being exported. Incremental export has a minimum charge of 10MB. Additional charges
apply for storing exported data in Amazon S3 and for PUT requests made against your Amazon S3
bucket. For more information about these charges, see Amazon DynamoDB pricing and Amazon S3
pricing.

For specifics on service quotas, see Table export to Amazon S3.

Topics

Export to Amazon S3 API Version 2012-08-10 3383

https://www.amazonaws.cn/dynamodb/pricing/
https://www.amazonaws.cn/s3/pricing/
https://www.amazonaws.cn/s3/pricing/

Amazon DynamoDB Developer Guide

• Requesting a table export in DynamoDB

• DynamoDB table export output format

Requesting a table export in DynamoDB

DynamoDB table exports allow you to export table data to an Amazon S3 bucket, enabling you to
perform analytics and complex queries on your data using other Amazon services such as Athena,
Amazon Glue, Amazon SageMaker AI, Amazon EMR, and Amazon Lake Formation. You can request
a table export using the Amazon Web Services Management Console, the Amazon CLI, or the
DynamoDB API.

Note

Requester pays Amazon S3 buckets aren't supported.

DynamoDB supports both full export and incremental export:

• With full exports, you can export a full snapshot of your table from any point in time within the
point-in-time recovery (PITR) window to your Amazon S3 bucket.

• With incremental exports, you can export data from your DynamoDB table that was changed,
updated, or deleted between a specified time period, within your PITR window, to your Amazon
S3 bucket.

Topics

• Prerequisites

• Requesting an export using the Amazon Web Services Management Console

• Getting details about past exports in the Amazon Web Services Management Console

• Requesting an export using the Amazon CLI

• Getting details about past exports in the Amazon CLI

• Requesting an export using the Amazon SDK

• Getting details about past exports using the Amazon SDK

Export to Amazon S3 API Version 2012-08-10 3384

Amazon DynamoDB Developer Guide

Prerequisites

Enable PITR

To use the export to S3 feature, you must enable PITR on your table. For details about how
to enable PITR, see Point-in-time recovery. If you request an export for a table that doesn't
have PITR enabled, your request will fail with an exception message: “An error occurred
(PointInTimeRecoveryUnavailableException) when calling the ExportTableToPointInTime
operation: Point in time recovery is not enabled for table 'my-dynamodb-table”. You
can only request and export from a point in time that is within your configured PITR
RecoveryPeriodInDays.

Set up S3 permissions

You can export your table data to any Amazon S3 bucket you have permission to write to.
The destination bucket doesn't need to be in the same Amazon Region or have the same
owner as the source table owner. Your Amazon Identity and Access Management (IAM)
policy needs to allow you to be able to perform S3 actions (s3:AbortMultipartUpload,
s3:PutObject, and s3:PutObjectAcl) and the DynamoDB export action
(dynamodb:ExportTableToPointInTime). Here's an example of a sample policy that will grant
your user permissions to perform exports to an S3 bucket.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDynamoDBExportAction",
 "Effect": "Allow",
 "Action": "dynamodb:ExportTableToPointInTime",
 "Resource": "arn:aws-cn:dynamodb:us-east-1:111122223333:table/my-
table"
 },
 {
 "Sid": "AllowS3BucketWrites",
 "Effect": "Allow",
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",

Export to Amazon S3 API Version 2012-08-10 3385

Amazon DynamoDB Developer Guide

 "s3:PutObjectAcl"
],
 "Resource": "arn:aws-cn:s3:::amzn-s3-demo-bucket/*"
 }
]
}

If you need to write to an Amazon S3 bucket that is in another account or you don't have
permissions to write to, the Amazon S3 bucket owner must add a bucket policy to allow you to
export from DynamoDB to that bucket. Here's an example policy on the target Amazon S3 bucket.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "ExampleStatement",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/Dave"
 },
 "Action": [
 "s3:AbortMultipartUpload",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Revoking these permissions while an export is in progress will result in partial files.

Note

If the table or bucket you're exporting to is encrypted with customer managed keys,
that KMS key's policies must give DynamoDB permission to use it. This permission is
given through the IAM User/Role that triggers the export job. For more information on

Export to Amazon S3 API Version 2012-08-10 3386

Amazon DynamoDB Developer Guide

encryption including best practices, see How DynamoDB uses Amazon KMS and Using a
custom KMS key.

Requesting an export using the Amazon Web Services Management Console

The following example demonstrates how to use the DynamoDB console to export an existing
table named MusicCollection.

Note

This procedure assumes that you have enabled point-in-time recovery. To enable it for the
MusicCollection table, on the table's Overview tab, in the Table details section, choose
Enable for Point-in-time recovery.

To request a table export

1. Sign in to the Amazon Web Services Management Console and open the DynamoDB console at
https://console.amazonaws.cn/dynamodb/.

2. In the navigation pane on the left side of the console, choose Exports to S3.

3. Select the Export to S3 button.

4. Choose a source table and destination S3 bucket. If the destination bucket is owned by your
account, you can use the Browse S3 button to find it. Otherwise, enter the URL of the bucket
using the s3://bucketname/prefix format. the prefix is an optional folder to help
keep your destination bucket organized.

5. Choose Full export or Incremental export. A full export outputs the full table snapshot
of your table as it was at the point in time you specify. An incremental export outputs the
changes made to your table during the specified export period. Your output is compacted so it
only contains the final state of the item from the export period. The item will only appear once
in the export even if it has multiple updates within the same export period.

Full export

1. Select the point in time you want to export the full table snapshot from. This can be
any point in time within the PITR window. Alternatively, you can select Current time to
export the latest snapshot.

Export to Amazon S3 API Version 2012-08-10 3387

https://docs.amazonaws.cn/kms/latest/developerguide/services-dynamodb.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html#managed-key-customer-managed
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html#managed-key-customer-managed
https://console.amazonaws.cn/dynamodb/

Amazon DynamoDB Developer Guide

2. For Exported file format, choose between DynamoDB JSON and Amazon Ion. By
default, your table will be exported in DynamoDB JSON format from the latest
restorable time in the point in time recovery window and encrypted using an Amazon
S3 key (SSE-S3). You can change these export settings if necessary.

Note

If you choose to encrypt your export using a key protected by Amazon Key
Management Service (Amazon KMS), the key must be in the same Region as the
destination S3 bucket.

Incremental export

1. Select the Export period you want to export the incremental data for. Pick a start time
within the PITR window. The export period duration must be at least 15 minutes and
be no longer than 24 hours. The export period's start time is inclusive and the end time
is exclusive.

2. Choose between Absolute mode or Relative mode.

a. Absolute mode will export incremental data for the time period you specify.

b. Relative mode will export incremental data for an export period that is relative to
your export job submission time.

3. For Exported file format, choose between DynamoDB JSON and Amazon Ion. By
default, your table will be exported in DynamoDB JSON format from the latest
restorable time in the point in time recovery window and encrypted using an Amazon
S3 key (SSE-S3). You can change these export settings if necessary.

Note

If you choose to encrypt your export using a key protected by Amazon Key
Management Service (Amazon KMS), the key must be in the same Region as the
destination S3 bucket.

4. For Export view type, select either New and old images or New images only. New
image provides the latest state of the item. Old image provides the state of the item
right before the specified “start date and time”. The default setting is New and old

Export to Amazon S3 API Version 2012-08-10 3388

Amazon DynamoDB Developer Guide

images. For more information on new images and old images, see Incremental export
output.

6. Choose Export to begin.

Exported data isn't transactionally consistent. Your transaction operations can be torn between
two export outputs. A subset of items can be modified by a transaction operation reflected in
the export, while another subset of modifications in the same transaction isn't reflected in the
same export request. However, exports are eventually consistent. If a transaction is torn during an
export, you'll have the remaining transaction in your next contiguous export, without duplicates.
The time periods used for exports are based on an internal system clock and can vary by one
minute of your application’s local clock.

Getting details about past exports in the Amazon Web Services Management Console

You can find information about export tasks you've run in the past by choosing the Exports to S3
section in the navigation sidebar. This section contains a list of all exports you've created in the
past 90 days. Select the ARN of a task listed in the Exports tab to retrieve information about that
export, including any advanced configuration settings you chose. Note that although export task
metadata expires after 90 days and jobs older than that are no longer found in this list, the objects
in your S3 bucket remain as long as their bucket policies allow. DynamoDB never deletes any of the
objects it creates in your S3 bucket during an export.

Requesting an export using the Amazon CLI

The following example shows how to use the Amazon CLI to export an existing table named
MusicCollection to an S3 bucket called ddb-export-musiccollection.

Note

This procedure assumes that you have enabled point-in-time recovery. To enable it for the
MusicCollection table, run the following command.

aws dynamodb update-continuous-backups \
 --table-name MusicCollection \
 --point-in-time-recovery-specification PointInTimeRecoveryEnabled=True

Export to Amazon S3 API Version 2012-08-10 3389

Amazon DynamoDB Developer Guide

Full export

The following command exports the MusicCollection to an S3 bucket called ddb-export-
musiccollection-9012345678 with a prefix of 2020-Nov. Table data will be exported in
DynamoDB JSON format from a specific time within the point in time recovery window and
encrypted using an Amazon S3 key (SSE-S3).

Note

If requesting a cross-account table export, make sure to include the --s3-bucket-
owner option.

aws dynamodb export-table-to-point-in-time \
 --table-arn arn:aws:dynamodb:us-west-2:123456789012:table/MusicCollection \
 --s3-bucket ddb-export-musiccollection-9012345678 \
 --s3-prefix 2020-Nov \
 --export-format DYNAMODB_JSON \
 --export-time 1604632434 \
 --s3-bucket-owner 9012345678 \
 --s3-sse-algorithm AES256

Incremental export

The following command performs an incremental export by providing a new --export-type
and --incremental-export-specification. Substitute your own values for anything in
italics. Times are specified as seconds since epoch.

aws dynamodb export-table-to-point-in-time \
 --table-arn arn:aws:dynamodb:REGION:ACCOUNT:table/TABLENAME \
 --s3-bucket BUCKET --s3-prefix PREFIX \
 --incremental-export-specification
 ExportFromTime=1693569600,ExportToTime=1693656000,ExportViewType=NEW_AND_OLD_IMAGES
 \
 --export-type INCREMENTAL_EXPORT

Export to Amazon S3 API Version 2012-08-10 3390

Amazon DynamoDB Developer Guide

Note

If you choose to encrypt your export using a key protected by Amazon Key Management
Service (Amazon KMS), the key must be in the same Region as the destination S3 bucket.

Getting details about past exports in the Amazon CLI

You can find information about export requests you've run in the past by using the list-exports
command. This command returns a list of all exports you've created in the past 90 days. Note
that although export task metadata expires after 90 days and jobs older than that are no longer
returned by the list-exports command, the objects in your S3 bucket remain as long as their
bucket policies allow. DynamoDB never deletes any of the objects it creates in your S3 bucket
during an export.

Exports have a status of PENDING until they either succeed or fail. If they succeed, the status
changes to COMPLETED. If they fail, the status changes to FAILED with a failure_message and
failure_reason.

In the following example, we use the optional table-arn parameter to list only exports of a
specific table.

aws dynamodb list-exports \
 --table-arn arn:aws:dynamodb:us-east-1:123456789012:table/ProductCatalog

To retrieve detailed information about a specific export task, including any advanced configuration
settings, use the describe-export command.

aws dynamodb describe-export \
 --export-arn arn:aws:dynamodb:us-east-1:123456789012:table/ProductCatalog/
export/01234567890123-a1b2c3d4

Requesting an export using the Amazon SDK

Use these code snippets to request a table export using the Amazon SDK of your choice.

Python

Full export

Export to Amazon S3 API Version 2012-08-10 3391

Amazon DynamoDB Developer Guide

import boto3
from datetime import datetime

remove endpoint_url for real use
client = boto3.client('dynamodb')

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
dynamodb/client/export_table_to_point_in_time.html
client.export_table_to_point_in_time(
 TableArn='arn:aws:dynamodb:us-east-1:0123456789:table/TABLE',
 ExportTime=datetime(2023, 9, 20, 12, 0, 0),
 S3Bucket='bucket',
 S3Prefix='prefix',
 S3SseAlgorithm='AES256',
 ExportFormat='DYNAMODB_JSON'
)

Incremental export

import boto3
from datetime import datetime

client = boto3.client('dynamodb')

client.export_table_to_point_in_time(
 TableArn='arn:aws:dynamodb:us-east-1:0123456789:table/TABLE',
 IncrementalExportSpecification={
 'ExportFromTime': datetime(2023, 9, 20, 12, 0, 0),
 'ExportToTime': datetime(2023, 9, 20, 13, 0, 0),
 'ExportViewType': 'NEW_AND_OLD_IMAGES'
 },
 ExportType='INCREMENTAL_EXPORT',
 S3Bucket='bucket',
 S3Prefix='prefix',
 S3SseAlgorithm='AES256',
 ExportFormat='DYNAMODB_JSON'
)

Export to Amazon S3 API Version 2012-08-10 3392

Amazon DynamoDB Developer Guide

Getting details about past exports using the Amazon SDK

Use these code snippets to get details about past table exports using the Amazon SDK of your
choice.

Python

List

import boto3

client = boto3.client('dynamodb')

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
dynamodb/client/list_exports.html

print(
 client.list_exports(
 TableArn='arn:aws:dynamodb:us-east-1:0123456789:table/TABLE',
)
)

Describe

import boto3

client = boto3.client('dynamodb')

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
dynamodb/client/describe_export.html

print(
 client.describe_export(
 ExportArn='arn:aws:dynamodb:us-east-1:0123456789:table/TABLE/
export/01695353076000-06e2188f',
)['ExportDescription']
)

Export to Amazon S3 API Version 2012-08-10 3393

Amazon DynamoDB Developer Guide

DynamoDB table export output format

A DynamoDB table export includes manifest files in addition to the files containing your table
data. These files are all saved in the Amazon S3 bucket that you specify in your export request. The
following sections describe the format and contents of each output object.

Full export output

Manifest files

DynamoDB creates manifest files, along with their checksum files, in the specified S3 bucket for
each export request.

export-prefix/AWSDynamoDB/ExportId/manifest-summary.json
export-prefix/AWSDynamoDB/ExportId/manifest-summary.checksum
export-prefix/AWSDynamoDB/ExportId/manifest-files.json
export-prefix/AWSDynamoDB/ExportId/manifest-files.checksum

You choose an export-prefix when you request a table export. This helps you keep files in the
destination S3 bucket organized. The ExportId is a unique token generated by the service to
ensure that multiple exports to the same S3 bucket and export-prefix don't overwrite each
other.

The export creates at least 1 file per partition. For partitions that are empty, your export request
will create an empty file. All of the items in each file are from that particular partition's hashed
keyspace.

Note

DynamoDB also creates an empty file named _started in the same directory as the
manifest files. This file verifies that the destination bucket is writable and that the export
has begun. It can safely be deleted.

The summary manifest

The manifest-summary.json file contains summary information about the export job. This
allows you to know which data files in the shared data folder are associated with this export. Its
format is as follows:

Export to Amazon S3 API Version 2012-08-10 3394

Amazon DynamoDB Developer Guide

{
 "version": "2020-06-30",
 "exportArn": "arn:aws:dynamodb:us-east-1:123456789012:table/ProductCatalog/
export/01234567890123-a1b2c3d4",
 "startTime": "2020-11-04T07:28:34.028Z",
 "endTime": "2020-11-04T07:33:43.897Z",
 "tableArn": "arn:aws:dynamodb:us-east-1:123456789012:table/ProductCatalog",
 "tableId": "12345a12-abcd-123a-ab12-1234abc12345",
 "exportTime": "2020-11-04T07:28:34.028Z",
 "s3Bucket": "ddb-productcatalog-export",
 "s3Prefix": "2020-Nov",
 "s3SseAlgorithm": "AES256",
 "s3SseKmsKeyId": null,
 "manifestFilesS3Key": "AWSDynamoDB/01693685827463-2d8752fd/manifest-files.json",
 "billedSizeBytes": 0,
 "itemCount": 8,
 "outputFormat": "DYNAMODB_JSON",
 "exportType": "FULL_EXPORT"
}

The files manifest

The manifest-files.json file contains information about the files that contain your exported
table data. The file is in JSON lines format, so newlines are used as item delimiters. In the following
example, the details of one data file from a files manifest are formatted on multiple lines for the
sake of readability.

{
"itemCount": 8,
 "md5Checksum": "sQMSpEILNgoQmarvDFonGQ==",
 "etag": "af83d6f217c19b8b0fff8023d8ca4716-1",
 "dataFileS3Key": "AWSDynamoDB/01693685827463-2d8752fd/data/asdl123dasas.json.gz"
}

Data files

DynamoDB can export your table data in two formats: DynamoDB JSON and Amazon Ion.
Regardless of the format you choose, your data will be written to multiple compressed files named
by the keys. These files are also listed in the manifest-files.json file.

The directory structure of your Amazon S3 bucket after a full export will contain all of your
manifest files and data files under the export Id folder.

Export to Amazon S3 API Version 2012-08-10 3395

https://jsonlines.org/

Amazon DynamoDB Developer Guide

amzn-s3-demo-bucket/DestinationPrefix
.
AWSDynamoDB
 ### 01693685827463-2d8752fd // the single full export
 # ### manifest-files.json // manifest points to files under 'data' subfolder
 # ### manifest-files.checksum
 # ### manifest-summary.json // stores metadata about request
 # ### manifest-summary.md5
 # ### data // The data exported by full export
 # # ### asdl123dasas.json.gz
 # # ...
 # ### _started // empty file for permission check

DynamoDB JSON

A table export in DynamoDB JSON format consists of multiple Item objects. Each individual object
is in DynamoDB's standard marshalled JSON format.

When creating custom parsers for DynamoDB JSON export data, the format is JSON lines. This
means that newlines are used as item delimiters. Many Amazon services, such as Athena and
Amazon Glue, will parse this format automatically.

In the following example, a single item from a DynamoDB JSON export has been formatted on
multiple lines for the sake of readability.

{
 "Item":{
 "Authors":{
 "SS":[
 "Author1",
 "Author2"
]
 },
 "Dimensions":{
 "S":"8.5 x 11.0 x 1.5"
 },
 "ISBN":{
 "S":"333-3333333333"
 },
 "Id":{
 "N":"103"
 },
 "InPublication":{

Export to Amazon S3 API Version 2012-08-10 3396

https://jsonlines.org/

Amazon DynamoDB Developer Guide

 "BOOL":false
 },
 "PageCount":{
 "N":"600"
 },
 "Price":{
 "N":"2000"
 },
 "ProductCategory":{
 "S":"Book"
 },
 "Title":{
 "S":"Book 103 Title"
 }
 }
}

Amazon Ion

Amazon Ion is a richly-typed, self-describing, hierarchical data serialization format built to address
rapid development, decoupling, and efficiency challenges faced every day while engineering large-
scale, service-oriented architectures. DynamoDB supports exporting table data in Ion's text format,
which is a superset of JSON.

When you export a table to Ion format, the DynamoDB datatypes used in the table are mapped to
Ion datatypes. DynamoDB sets use Ion type annotations to disambiguate the datatype used in the
source table.

The following table lists the mapping of DynamoDB data types to ion data types:

DynamoDB data type Ion representation

String (S) string

Boolean (BOOL) bool

Number (N) decimal

Binary (B) blob

Set (SS, NS, BS) list (with type annotation $dynamodb_SS,
$dynamodb_NS, or $dynamodb_BS)

Export to Amazon S3 API Version 2012-08-10 3397

http://amzn.github.io/ion-docs/
http://amzn.github.io/ion-docs/docs/spec.html
http://amzn.github.io/ion-docs/docs/spec.html
http://amzn.github.io/ion-docs/docs/spec.html#annot

Amazon DynamoDB Developer Guide

DynamoDB data type Ion representation

List list

Map struct

Items in an Ion export are delimited by newlines. Each line begins with an Ion version marker,
followed by an item in Ion format. In the following example, an item from an Ion export has been
formatted on multiple lines for the sake of readability.

$ion_1_0 {
 Item:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 Dimensions:"8.5 x 11.0 x 1.5",
 ISBN:"333-3333333333",
 Id:103.,
 InPublication:false,
 PageCount:6d2,
 Price:2d3,
 ProductCategory:"Book",
 Title:"Book 103 Title"
 }
}

Incremental export output

Manifest files

DynamoDB creates manifest files, along with their checksum files, in the specified S3 bucket for
each export request.

export-prefix/AWSDynamoDB/ExportId/manifest-summary.json
export-prefix/AWSDynamoDB/ExportId/manifest-summary.checksum
export-prefix/AWSDynamoDB/ExportId/manifest-files.json
export-prefix/AWSDynamoDB/ExportId/manifest-files.checksum

You choose an export-prefix when you request a table export. This helps you keep files in the
destination S3 bucket organized. The ExportId is a unique token generated by the service to
ensure that multiple exports to the same S3 bucket and export-prefix don't overwrite each
other.

Export to Amazon S3 API Version 2012-08-10 3398

Amazon DynamoDB Developer Guide

The export creates at least 1 file per partition. For partitions that are empty, your export request
will create an empty file. All of the items in each file are from that particular partition's hashed
keyspace.

Note

DynamoDB also creates an empty file named _started in the same directory as the
manifest files. This file verifies that the destination bucket is writable and that the export
has begun. It can safely be deleted.

The summary manifest

The manifest-summary.json file contains summary information about the export job. This
allows you to know which data files in the shared data folder are associated with this export. Its
format is as follows:

{
 "version": "2023-08-01",
 "exportArn": "arn:aws:dynamodb:us-east-1:599882009758:table/export-test/
export/01695097218000-d6299cbd",
 "startTime": "2023-09-19T04:20:18.000Z",
 "endTime": "2023-09-19T04:40:24.780Z",
 "tableArn": "arn:aws:dynamodb:us-east-1:599882009758:table/export-test",
 "tableId": "b116b490-6460-4d4a-9a6b-5d360abf4fb3",
 "exportFromTime": "2023-09-18T17:00:00.000Z",
 "exportToTime": "2023-09-19T04:00:00.000Z",
 "s3Bucket": "jason-exports",
 "s3Prefix": "20230919-prefix",
 "s3SseAlgorithm": "AES256",
 "s3SseKmsKeyId": null,
 "manifestFilesS3Key": "20230919-prefix/AWSDynamoDB/01693685934212-ac809da5/manifest-
files.json",
 "billedSizeBytes": 20901239349,
 "itemCount": 169928274,
 "outputFormat": "DYNAMODB_JSON",
 "outputView": "NEW_AND_OLD_IMAGES",
 "exportType": "INCREMENTAL_EXPORT"
}

Export to Amazon S3 API Version 2012-08-10 3399

Amazon DynamoDB Developer Guide

The files manifest

The manifest-files.json file contains information about the files that contain your exported
table data. The file is in JSON lines format, so newlines are used as item delimiters. In the following
example, the details of one data file from a files manifest are formatted on multiple lines for the
sake of readability.

{
"itemCount": 8,
 "md5Checksum": "sQMSpEILNgoQmarvDFonGQ==",
 "etag": "af83d6f217c19b8b0fff8023d8ca4716-1",
 "dataFileS3Key": "AWSDynamoDB/data/sgad6417s6vss4p7owp0471bcq.json.gz"
}

Data files

DynamoDB can export your table data in two formats: DynamoDB JSON and Amazon Ion.
Regardless of the format you choose, your data will be written to multiple compressed files named
by the keys. These files are also listed in the manifest-files.json file.

The data files for incremental exports are all contained in a common data folder in your S3 bucket.
Your manifest files are under your export ID folder.

amzn-s3-demo-bucket/DestinationPrefix
.
AWSDynamoDB
 ### 01693685934212-ac809da5 // an incremental export ID
 # ### manifest-files.json // manifest points to files under 'data' folder
 # ### manifest-files.checksum
 # ### manifest-summary.json // stores metadata about request
 # ### manifest-summary.md5
 # ### _started // empty file for permission check
 ### 01693686034521-ac809da5
 # ### manifest-files.json
 # ### manifest-files.checksum
 # ### manifest-summary.json
 # ### manifest-summary.md5
 # ### _started
 ### data // stores all the data files for incremental
 exports
 # ### sgad6417s6vss4p7owp0471bcq.json.gz
 # ...

Export to Amazon S3 API Version 2012-08-10 3400

https://jsonlines.org/

Amazon DynamoDB Developer Guide

In you export files, each item’s output includes a timestamp that represents when that item was
updated in your table and a data structure that indicates if it was an insert, update, or delete
operation. The timestamp is based on an internal system clock and can vary from your application
clock. For incremental exports, you can choose between two export view types for your output
structure: new and old images or new images only.

• New image provides the latest state of the item

• Old image provides the state of the item right before the specified start date and time

View types can be helpful if you want to see how the item was changed within the export
period. It can also be useful for efficiently updating your downstream systems, especially if those
downstream systems have a partition key that is not the same as your DynamoDB partition key.

You can infer whether an item in your incremental export output was an insert, update, or
delete by looking at the structure of the output. The incremental export structure and its
corresponding operations are summarized in the table below for both export view types.

Operation New images only New and old images

Insert Keys + new image Keys + new image

Update Keys + new image Keys + new image + old
image

Delete Keys Keys + old image

Insert + delete No output No output

DynamoDB JSON

A table export in DynamoDB JSON format consists of a metadata timestamp that indicates the
write time of the item, followed by the keys of the item and the values. The following shows an
example DynamoDB JSON output using export view type as New and Old images.

// Ex 1: Insert
// An insert means the item did not exist before the incremental export window
// and was added during the incremental export window

Export to Amazon S3 API Version 2012-08-10 3401

Amazon DynamoDB Developer Guide

{
 "Metadata": {
 "WriteTimestampMicros": "1680109764000000"
 },
 "Keys": {
 "PK": {
 "S": "CUST#100"
 }
 },
 "NewImage": {
 "PK": {
 "S": "CUST#100"
 },
 "FirstName": {
 "S": "John"
 },
 "LastName": {
 "S": "Don"
 }
 }
}

// Ex 2: Update
// An update means the item existed before the incremental export window
// and was updated during the incremental export window.
// The OldImage would not be present if choosing "New images only".

{
 "Metadata": {
 "WriteTimestampMicros": "1680109764000000"
 },
 "Keys": {
 "PK": {
 "S": "CUST#200"
 }
 },
 "OldImage": {
 "PK": {
 "S": "CUST#200"
 },
 "FirstName": {
 "S": "Mary"
 },
 "LastName": {

Export to Amazon S3 API Version 2012-08-10 3402

Amazon DynamoDB Developer Guide

 "S": "Grace"
 }
 },
 "NewImage": {
 "PK": {
 "S": "CUST#200"
 },
 "FirstName": {
 "S": "Mary"
 },
 "LastName": {
 "S": "Smith"
 }
 }
}

// Ex 3: Delete
// A delete means the item existed before the incremental export window
// and was deleted during the incremental export window
// The OldImage would not be present if choosing "New images only".

{
 "Metadata": {
 "WriteTimestampMicros": "1680109764000000"
 },
 "Keys": {
 "PK": {
 "S": "CUST#300"
 }
 },
 "OldImage": {
 "PK": {
 "S": "CUST#300"
 },
 "FirstName": {
 "S": "Jose"
 },
 "LastName": {
 "S": "Hernandez"
 }
 }
}

// Ex 4: Insert + Delete

Export to Amazon S3 API Version 2012-08-10 3403

Amazon DynamoDB Developer Guide

// Nothing is exported if an item is inserted and deleted within the
// incremental export window.

Amazon Ion

Amazon Ion is a richly-typed, self-describing, hierarchical data serialization format built to address
rapid development, decoupling, and efficiency challenges faced every day while engineering large-
scale, service-oriented architectures. DynamoDB supports exporting table data in Ion's text format,
which is a superset of JSON.

When you export a table to Ion format, the DynamoDB datatypes used in the table are mapped to
Ion datatypes. DynamoDB sets use Ion type annotations to disambiguate the datatype used in the
source table.

The following table lists the mapping of DynamoDB data types to ion data types:

DynamoDB data type Ion representation

String (S) string

Boolean (BOOL) bool

Number (N) decimal

Binary (B) blob

Set (SS, NS, BS) list (with type annotation $dynamodb_SS,
$dynamodb_NS, or $dynamodb_BS)

List list

Map struct

Items in an Ion export are delimited by newlines. Each line begins with an Ion version marker,
followed by an item in Ion format. In the following example, an item from an Ion export has been
formatted on multiple lines for the sake of readability.

$ion_1_0 {
 Record:{

Export to Amazon S3 API Version 2012-08-10 3404

http://amzn.github.io/ion-docs/
http://amzn.github.io/ion-docs/docs/spec.html
http://amzn.github.io/ion-docs/docs/spec.html
http://amzn.github.io/ion-docs/docs/spec.html#annot

Amazon DynamoDB Developer Guide

 Keys:{
 ISBN:"333-3333333333"
 },
 Metadata:{
 WriteTimestampMicros:1684374845117899.
 },
 OldImage:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 ISBN:"333-3333333333",
 Id:103.,
 InPublication:false,
 ProductCategory:"Book",
 Title:"Book 103 Title"
 },
 NewImage:{
 Authors:$dynamodb_SS::["Author1","Author2"],
 Dimensions:"8.5 x 11.0 x 1.5",
 ISBN:"333-3333333333",
 Id:103.,
 InPublication:true,
 PageCount:6d2,
 Price:2d3,
 ProductCategory:"Book",
 Title:"Book 103 Title"
 }
 }
}

DynamoDB zero-ETL integration with Amazon SageMaker
Lakehouse

DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse eliminates the need to
build custom data movement pipelines by automatically replicating DynamoDB data to Amazon
SageMaker Lakehouse. This no-code integration helps customers run analytics workloads on their
DynamoDB data using Amazon SageMaker Lakehouse without consuming any DynamoDB table
capacity. The integration automatically exports data from your table and keeps the target fresh,
typically within 15 to 30 minutes.

Topics

• DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse

Integrating with Amazon SageMaker Lakehouse API Version 2012-08-10 3405

Amazon DynamoDB Developer Guide

DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse

Setting up an integration between the DynamoDB table and Amazon SageMaker Lakehouse require
prerequisites such as configuring IAM roles which Amazon Glue uses to access data from the source
and write to the target, and the use of KMS keys to encrypt the data in intermediate or the target
location.

Topics

• Prerequisites before creating a DynamoDB zero-ETL integration with Amazon SageMaker
Lakehouse

• Creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse

• Viewing CloudWatch metrics for integration

Prerequisites before creating a DynamoDB zero-ETL integration with Amazon
SageMaker Lakehouse

To configure a zero-ETL integration with an DynamoDB source, you need to set up a
Resource-Based Access (RBAC) policy that allows Amazon Glue to access and export
data from the DynamoDB table. The policy should include specific permissions like
ExportTableToPointInTime, DescribeTable, and DescribeExport with conditions
restricting access to a specific Amazon Web Services account and region. See, Configuring an
Amazon DynamoDB source for more information.

Point-in-time recovery (PITR) must be enabled for the table, and you can apply the policy using
Amazon CLI commands. The policy can be further refined by specifying the full integration ARN for
more restrictive access control. For more information, see Prerequisites for setting up a zero-ETL
integration.

Creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse

After completing integration prerequisites, you can create, modify, or delete the zero-ETL
integration following the guidance below:

Zero-ETL integration with Amazon SageMaker Lakehouse API Version 2012-08-10 3406

https://docs.aws.amazon.com/glue/latest/dg/zero-etl-sources.html#zero-etl-config-source-dynamodb
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-sources.html#zero-etl-config-source-dynamodb
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-prerequisites.html
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-prerequisites.html

Amazon DynamoDB Developer Guide

Creating an integration

To create an integration

1. Sign in to the Amazon Management Console and open the Amazon DynamoDB console at
https://console.aws.amazon.com/dynamodbv2.

2. In the navigation pane, choose Integrations.

3. Select Create zero-ETL integration with Amazon SageMaker Lakehouse, and then choose
Next.

4. To create an integration, see Creating an integration.

5. To modify an integration, see Modifying an integration.

6. To delete an integration, see Deleting an integration.

7. To set up a cross-account integration, see Setting up cross-account integration.

Enabling compaction on target Amazon S3 tables

You can enable compaction to improve query performance in Amazon Athena.

First, complete the prerequisite setup for compaction resources, including configuring the
necessary IAM role. Refer to the Lake Formation documentation for detailed IAM role configuration
steps. See, Optimizing tables for compaction.

To enable compaction on the Amazon Glue table created during integration, follow the Lake
Formation compaction enabling process. This will help optimize your table's performance and
query efficiency.

Viewing CloudWatch metrics for integration

Once an integration completes, you can see these CloudWatch metrics and EventBridge
notifications generated in your account for each Amazon Glue job. For more information, see
Monitoring an integration.

Zero-ETL integration with Amazon SageMaker Lakehouse API Version 2012-08-10 3407

https://console.aws.amazon.com/dynamodbv2
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-common-integration-tasks.html#zero-etl-creating
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-common-integration-tasks.html#zero-etl-modifying
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-common-integration-tasks.html#zero-etl-deleting
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-prerequisites.html#zero-etl-setup-cross-account-integration
https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html
https://docs.aws.amazon.com/glue/latest/dg/zero-etl-monitoring.html

Amazon DynamoDB Developer Guide

DynamoDB zero-ETL integration with Amazon OpenSearch
Service

Amazon DynamoDB offers a zero-ETL integration with Amazon OpenSearch Service through
the DynamoDB plugin for OpenSearch Ingestion. Amazon OpenSearch Ingestion offers a fully
managed, no-code experience for ingesting data into Amazon OpenSearch Service.

With the DynamoDB plugin for OpenSearch Ingestion, you can use one or more DynamoDB
tables as a source for ingestion to one or more OpenSearch Service indexes. You can browse
and configure your OpenSearch Ingestion pipelines with DynamoDB as a source from either
OpenSearch Ingestion or DynamoDB Integrations in the Amazon Web Services Management
Console.

• Get started with OpenSearch Ingestion by following along in the OpenSearch Ingestion getting
started guide.

• Learn about the prerequisites and all the configuration options for the DynamoDB plugin at
DynamoDB plugin for OpenSearch Ingestion documentation.

How it works

The plugin uses DynamoDB export to Amazon S3 to create an initial snapshot to load into
OpenSearch. After the snapshot has been loaded, the plugin uses DynamoDB Streams to replicate
any further changes in near real time. Every item is processed as an event in OpenSearch Ingestion
and can be modified with processor plugins. You can drop attributes or create composite attributes
and send them to different indexes through routes.

You must have point-in-time recovery (PITR) enabled to use export to Amazon S3. You must also
have DynamoDB Streams enabled (with the new & old images option selected) to be able to use it.
It's possible to create a pipeline without taking a snapshot by excluding export settings.

You can also create a pipeline with only a snapshot and no updates by excluding streams settings.
The plugin does not use read or write throughput on your table, so it is safe to use without
impacting your production traffic. There are limits to the number of parallel consumers on a stream
that you should consider before creating this or other integrations. For other considerations, see
the section called “Integration best practices”.

Integrating with Amazon OpenSearch Service API Version 2012-08-10 3408

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-getting-started-tutorials.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-getting-started-tutorials.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/configure-client-ddb.html

Amazon DynamoDB Developer Guide

For simple pipelines, a single OpenSearch Compute Unit (OCU) can process about 1 MB per second
of writes. This is the equivalent of about 1000 write request units (WCU). Depending on your
pipeline's complexity and other factors, you might achieve more or less than this.

OpenSearch Ingestion supports a dead-letter queue (DLQ) for events that cause unrecoverable
errors. Additionally, the pipeline can resume from where it left off without user intervention even
if there's an interruption of service with either DynamoDB, the pipeline, or Amazon OpenSearch
Service.

If interruption goes on for longer than 24 hours, this can cause a loss of updates. However, the
pipeline would continue to process the updates that were still available when availability is
restored. You would need to do a fresh index build to fix any irregularities due to the dropped
events unless they were in the dead-letter queue.

For all the settings and details for the plugin, see OpenSearch Ingestion DynamoDB plugin
documentation.

Integrated create experience through the console

DynamoDB and OpenSearch Service have an integrated experience in the Amazon Web Services
Management Console, which streamlines the getting started process. When you go through these
steps, the service will automatically select the DynamoDB blueprint and add the appropriate
DynamoDB information for you.

To create an integration, follow along in the OpenSearch Ingestion getting started guide. When
you get to Step 3: Create a pipeline, replace Steps 1 and 2 with the following steps:

1. Navigate to the DynamoDB console.

2. In the left-hand navigation pane, choose Integration.

3. Select the DynamoDB table that you'd like to replicate to OpenSearch.

4. Choose Create.

From here, you can continue on with the rest of the tutorial.

Next steps

For a better understanding of how DynamoDB integrates with OpenSearch Service, see the
following:

Creating an integration API Version 2012-08-10 3409

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/configure-client-ddb.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/configure-client-ddb.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-get-started.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-get-started.html#osis-get-started-pipeline

Amazon DynamoDB Developer Guide

• Getting started with Amazon OpenSearch Ingestion

• DynamoDB plugin configuration and requirements

Handling breaking changes to your index

OpenSearch can dynamically add new attributes to your index. However, after your mapping
template has been set for a given key, you’ll need to take additional action to change it.
Additionally, if your change requires you to reprocess all the data in your DynamoDB table, you’ll
need to take steps to initiate a fresh export.

Note

In all these options, you might still run into issues if your DynamoDB table has type
conflicts with the mapping template you’ve specified. Ensure that you have a dead-letter
queue (DLQ) enabled (even in development). This makes it easier to understand what might
be wrong with the record that causes a conflict when it's being indexed into your index on
OpenSearch.

Topics

• How it works

• Delete your index and reset the pipeline (pipeline-centric option)

• Recreate your index and reset the pipeline (index-centric option)

• Create a new index and sink (online option)

• Best practices for avoiding and debugging type conflicts

How it works

Here's a quick overview of the actions taken when handling breaking changes to your index. See
the step-by-step procedures in the sections that follow.

• Stop and start the pipeline: This option resets the pipeline’s state, and the pipeline will restart
with a new full export. It is non-destructive, so it does not delete your index or any data in
DynamoDB. If you don’t create a fresh index before you do this, you might see a high number of
errors from version conflicts because the export tries to insert older documents than the current

Handling breaking changes API Version 2012-08-10 3410

https://docs.amazonaws.cn/opensearch-service/latest/developerguide/osis-getting-started-tutorials.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/configure-client-ddb.html

Amazon DynamoDB Developer Guide

_version in the index. You can safely ignore these errors. You will not be billed for the pipeline
while it is stopped.

• Update the pipeline: This option updates the configuration in the pipeline with a blue/green
approach, without losing any state. If you make significant changes to your pipeline (such as
adding new routes, indexes, or keys to existing indexes), you might need to do a full reset of the
pipeline and recreate your index. This option does not perform a full export.

• Delete and recreate the index: This option removes your data and mapping settings on your
index. You should do this before making any breaking changes to your mappings. It will break
any applications that rely on the index until the index is recreated and synchronized. Deleting the
index does not initiate a fresh export. You should delete your index only after you’ve updated
your pipeline. Otherwise, your index might be recreated before you update your settings.

Delete your index and reset the pipeline (pipeline-centric option)

This method is often the fastest option if you’re still in development. You’ll delete your index in
OpenSearch Service, and then stop and start your pipeline to initiate a fresh export of all your
data. This ensures that there are no mapping template conflicts with existing indexes, and no loss
of data from an incomplete processed table.

1. Stop the pipeline either through the Amazon Web Services Management Console, or by using
the StopPipeline API operation with the Amazon CLI or an SDK.

2. Update your pipeline configuration with your new changes.

3. Delete your index in OpenSearch Service, either through a REST API call or your OpenSearch
Dashboard.

4. Start the pipeline either through the console, or by using the StartPipeline API operation
with the Amazon CLI or an SDK.

Note

This initiates a fresh full export, which will incur additional costs.

5. Monitor for any unexpected issues because a fresh export is generated to create the new index.

6. Confirm that the index matches your expectations in OpenSearch Service.

After the export has completed and it resumes reading from the stream, your DynamoDB table
data will now be available in the index.

Handling breaking changes API Version 2012-08-10 3411

https://docs.amazonaws.cn/whitepapers/latest/overview-deployment-options/bluegreen-deployments.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/pipeline--stop-start.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/update-pipeline.html

Amazon DynamoDB Developer Guide

Recreate your index and reset the pipeline (index-centric option)

This method works well if you need to do a lot of iterations on the index design in OpenSearch
Service before resuming the pipeline from DynamoDB. This can be useful for development when
you want to iterate very quickly on your search patterns, and want to avoid waiting on fresh
exports to complete between each iteration.

1. Stop the pipeline either through the Amazon Web Services Management Console, or by calling
the StopPipeline API operation with the Amazon CLI or an SDK.

2. Delete and recreate your index in OpenSearch with the mapping template you want to use.
You can manually insert some sample data to confirm that your searches are working as
intended. If your sample data might conflict with any data from DynamoDB, be sure to delete
it before moving onto the next step.

3. If you have an indexing template in your pipeline, remove it or replace it with the one you’ve
created already in OpenSearch Service. Ensure that the name of your index matches the name
in the pipeline.

4. Start the pipeline either through console, or by calling the StartPipeline API operation
with the Amazon CLI or an SDK.

Note

This will initiate a fresh full export, which will incur additional costs.

5. Monitor for any unexpected issues because a fresh export is generated to create the new index.

After the export has completed and it resumes reading from the stream, you should be your
DynamoDB table data will now be available in the index.

Create a new index and sink (online option)

This method works well if you need to update your mapping template but are currently using your
index in production. This creates a brand new index, which you’ll need to move your application
over to after it’s synchronized and validated.

Handling breaking changes API Version 2012-08-10 3412

Amazon DynamoDB Developer Guide

Note

This will create another consumer on the stream. This can be an issue if you also have other
consumers like Amazon Lambda or global tables. You might need to pause updates to your
existing pipeline to create capacity to load the new index.

1. Create a new pipeline with new settings and a different index name.

2. Monitor the new index for any unexpected issues.

3. Swap the application over to the new index.

4. Stop and delete the old pipeline after validating that everything is working correctly.

Best practices for avoiding and debugging type conflicts

• Always use a dead-letter queue (DLQ) to make it easier to debug when there are type conflicts.

• Always use an index template with mappings and set include_keys. While OpenSearch Service
dynamically maps new keys, this can cause issues with unexpected behaviors (such as expecting
something to be a GeoPoint, but it’s created as a string or object) or errors (such as having a
number that is a mix of long and float values).

• If you need to keep your existing index working in production, you can also replace any of the
previous delete index steps with just renaming your index in your pipeline config file. This creates
a brand new index. Your application will then need to be updated to point to the new index after
it's complete.

• If you have a type conversion issue that you fix with a processor, you can test this with
UpdatePipeline. To do this, you’ll need to do a stop and start or process your dead-letter
queues to fix any previously skipped documents that had errors.

Best practices for working with DynamoDB zero-ETL integration and
OpenSearch Service

DynamoDB has a DynamoDB zero-ETL integration with Amazon OpenSearch Service. For more
information, see the DynamoDB plugin for OpenSearch Ingestion and specific best practices for
Amazon OpenSearch Service.

Zero-ETL integration with OpenSearch Service API Version 2012-08-10 3413

https://opensearch.org/docs/latest/data-prepper/pipelines/dlq/
https://opensearch.org/docs/latest/data-prepper/pipelines/dlq/
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/configure-client-ddb.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/bp.html
https://docs.amazonaws.cn/opensearch-service/latest/developerguide/bp.html

Amazon DynamoDB Developer Guide

Configuration

• Only index data that you need to perform searches on. Always use a mapping template
(template_type: index_template and template_content) and include_keys to
implement this.

• Monitor your logs for errors that are related to type conflicts. OpenSearch Service expects all
values for a given key to have the same type. It generates exceptions if there's a mismatch. If you
encounter one of these errors, you can add a processor to catch that a given key is always be the
same value.

• Generally use the primary_key metadata value for the document_id value. In OpenSearch
Service, the document ID is the equivalent of the primary key in DynamoDB. Using the primary
key will make it easy to find your document and ensure that updates are consistently replicated
to it without conflicts.

You can use the helper function getMetadata to get your primary key (for example,
document_id: "${getMetadata('primary_key')}"). If you're using a composite primary
key, the helper function will concatenate them together for you.

• In general, use the opensearch_action metadata value for the action setting. This will
ensure that updates are replicated in such a way that the data in OpenSearch Service matches
the latest state in DynamoDB.

You can use the helper function getMetadata to get your primary key (for example, action:
"${getMetadata('opensearch_action')}"). You can also get the stream event type
through dynamodb_event_name for use cases like filtering. However, you should typically not
use it for the action setting.

Observability

• Always use a dead-letter queue (DLQ) on your OpenSearch sinks to handle dropped events.
DynamoDB is generally less structured than OpenSearch Service, and it's always possible for
something unexpected to happen. With a dead-letter queue, you can recover individual events,
and even automate the recovery process. This will help you to avoid needing to rebuild your
entire index.

• Always set alerts that your replication delay doesn't go over an expected amount. It is typically
safe to assume one minute without the alert being too noisy. This can vary depending on how
spiky your write traffic is and your OpenSearch Compute Unit (OCU) settings on the pipeline.

Zero-ETL integration with OpenSearch Service API Version 2012-08-10 3414

Amazon DynamoDB Developer Guide

If your replication delay goes over 24 hours, your stream will start to drop events, and you'll have
accuracy issues unless you do a full rebuild of your index from scratch.

Scaling

• Use auto scaling for pipelines to help scale up or down the OCUs to best fit the workload.

• For provisioned throughput tables without auto scaling, we recommend setting OCUs based on
your write capacity units (WCUs) divided by 1000. Set the minimum to 1 OCU below that amount
(but at least 1), and set the maximum to at least 1 OCU above that amount.

• Formula:

OCU_minimum = GREATEST((table_WCU / 1000) - 1, 1)
OCU_maximum = (table_WCU / 1000) + 1

• Example: Your table has 25000 WCUs provisioned. Your pipeline's OCUs should be set with a
minimum of 24 (25000/1000 - 1) and maximum of at least 26 (25000/1000 + 1).

• For provisioned throughput tables with auto scaling, we recommend setting OCUs based on your
minimum and maximum WCUs, divided by 1000. Set the minimum to 1 OCU below the minimum
from DynamoDB, and set the maximum to at least 1 OCU above the maximum from DynamoDB.

• Formula:

OCU_minimum = GREATEST((table_minimum_WCU / 1000) - 1, 1)
OCU_maximum = (table_maximum_WCU / 1000) + 1

• Example: Your table has an auto scaling policy with a minimum of 8000 and maximum
of 14000. Your pipeline's OCUs should be set with a minimum of 7 (8000/1000 - 1) and a
maximum of 15 (14000/1000 + 1).

• For on-demand throughput tables, we recommend setting OCUs based on your typical peak and
valley for write request units per second. You might need to average over a longer time period,
depending on the aggregation that's available to you. Set the minimum to 1 OCU below the
minimum from DynamoDB, and set the maximum to at least 1 OCU above the maximum from
DynamoDB.

• Formula:

Assuming we have writes aggregated at the minute level
OCU_minimum = GREATEST((min(table_writes_1min) / (60 * 1000)) - 1, 1)

Zero-ETL integration with OpenSearch Service API Version 2012-08-10 3415

Amazon DynamoDB Developer Guide

OCU_maximum = (max(table_writes_1min) / (60 * 1000)) + 1

• Example: Your table has an average valley of 300 write request units per second and an
average peak of 4300. Your pipeline's OCUs should be set with a minimum of 1 (300/1000 - 1,
but at least 1) and a maximum of 5 (4300/1000 + 1).

• Follow best practices on scaling your destination OpenSearch Service indexes. If your indexes are
under-scaled, it will slow down ingestion from DynamoDB, and might cause delays.

Note

GREATEST is a SQL function that, given a set of arguments, returns the argument with the
greatest value.

Integrating DynamoDB with Amazon EventBridge

Amazon DynamoDB offers DynamoDB Streams for change data capture, enabling the capture of
item-level changes in DynamoDB tables. DynamoDB Streams can invoke Lambda functions to
process those changes, allowing event driven integration with other services and applications.
DynamoDB Streams also supports filtering, which allows for efficient and targeted event
processing.

DynamoDB Streams supports up to two simultaneous consumers per shard and supports filtering
through Lambda event filtering so that only items which match specific criteria are processed.
Some customers may have requirements to support more than two consumers. Others may need to
enrich change events before they are processed, or use more advanced filtering and routing.

Integrating DynamoDB with EventBridge can support those requirements.

Amazon EventBridge is a serverless service that uses events to connect application components
together, making it easier for you to build scalable event-driven applications. EventBridge offers
native integration with Amazon DynamoDB through EventBridge Pipes, enabling seamless data
flow from DynamoDB to an EventBridge bus. That bus can then fan-out to multiple applications
and services through a set of rules and targets.

Topics

• How it works

• Creating an integration through the console

Integrating with Amazon EventBridge API Version 2012-08-10 3416

https://docs.amazonaws.cn/redshift/latest/dg/r_GREATEST_LEAST.html
https://docs.amazonaws.cn/lambda/latest/dg/invocation-eventfiltering.html

Amazon DynamoDB Developer Guide

• Next steps

How it works

The integration between DynamoDB and EventBridge pipes uses DynamoDB Streams to capture a
time-ordered sequence of item-level changes in a DynamoDB table. Each record captured this way
contains the data modified in the table.

An EventBridge pipe consumes events from DynamoDB Streams and routes them to a target
such as an EventBridge bus (an event bus is a router that receives events and delivers them to
destinations, also called targets). Delivery is based on which rules match the contents of the event.
Optionally, the pipe also includes the ability to filter for specific events and perform enrichments
on the event data before sending it to the target.

While EventBridge supports multiple target types, a common choice when implementing a fan-
out design is to use a Lambda function as the target. The following example demonstrates an
integration with a Lambda function target.

Creating an integration through the console

Follow the steps below to create an integration through the Amazon Web Services Management
Console.

1. Enable DynamoDB Streams on the source table by following the steps in the Enabling a stream
section of the DynamoDB developer guide. If DynamoDB Streams is already enabled on the
source table, verify that there are currently fewer than two consumers. Consumers could be

How it works API Version 2012-08-10 3417

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-targets.html

Amazon DynamoDB Developer Guide

Lambda functions, DynamoDB Global Tables, Amazon DynamoDB zero-ETL integrations with
Amazon OpenSearch Service, or applications that read directly from streams such as through the
DynamoDB Streams Kinesis adapter.

2. Create an EventBridge event bus by following the steps in the Creating an Amazon EventBridge
event bus section of the EventBridge user guide.

a. When creating the event bus, enable Schema discovery.

3. Create an EventBridge pipe by following the steps in the Creating an Amazon EventBridge pipe
section of the EventBridge user guide.

a. When configuring the source, in the Source field select DynamoDB and in the DynamoDB
Streams field select the name of the source table stream.

b. When configuring the target, in the Target service field select EventBridge event bus and in
the Event bus as target field select the event bus created in step 2.

4. Write an example item to the source DynamoDB table to trigger an event. This will allow
EventBridge to infer schema from the example item. This schema can be used to create rules for
routing events. For example, if you are implementing a design pattern that involves overloading
attributes, you may want to trigger different rules depending on the value of your sort key.
Details on how to write an item to DynamoDB can be found in the Working with items and
attributes section of the DynamoDB developer guide.

5. Create an example Python Lambda function to be used as a target by following the steps in the
Building Lambda functions with Python section of the Lambda developer guide. When creating
your function, you can use the below example code to demonstrate the integration. When
invoked, it will print the NewImage and OldImage received with the event which can be viewed
in CloudWatch Logs.

import json

def lambda_handler(event, context):
 dynamodb = event.get('detail', {}).get('dynamodb', {})
 new_image = dynamodb.get('NewImage')
 old_image = dynamodb.get('OldImage')

 if new_image:
 print("NewImage:", json.dumps(new_image, indent=2))
 if old_image:
 print("OldImage:", json.dumps(old_image, indent=2))

 return {'statusCode': 200, 'body': json.dumps(event)}

Creating an integration through the console API Version 2012-08-10 3418

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-create-event-bus.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-create-event-bus.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-pipes-create.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-python.html

Amazon DynamoDB Developer Guide

6. Create an EventBridge rule that will route events to your new Lambda function by following the
steps in the Create a rule section that reacts to events EventBridge user guide.

a. When defining the rule detail, select the name of the event bus you created in step 2 as the
Event bus.

b. When building the event pattern, follow the guide for Existing schema. Here, you can select
the discovered-schemas registry and the discovered schema for your event. This allows you
to configure an event pattern specific to your use case that only routes messages that match
specific attributes. For example, if you wanted to match only on DynamoDB items where the
SK begins with “user#”, you’d use a configuration like this.

c. Click Generate event pattern in JSON after you’ve finished designing a pattern against your
schema. If you instead want to match all events that appear on DynamoDB Streams, use the
following JSON for the event pattern.

{
 "source": ["aws.dynamodb"]
}

d. When selecting targets, follow the guide for Amazon service. In the Select a target field,
choose “Lambda function”. In the Function field, select the Lambda function you created in
step 5.

Creating an integration through the console API Version 2012-08-10 3419

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-create-rule.html

Amazon DynamoDB Developer Guide

7. You can now stop schema discovery on your event bus by following the steps in the Starting or
stopping schema discovery on event buses section of the EventBridge user guide.

8. Write a second example item to the source DynamoDB table to trigger an event. Validate that
the event was successfully processed at each step.

a. View the CloudWatch metric PutEventsApproximateSuccessCount for your event bus by
following the Monitoring Amazon EventBridge section of the EventBridge user guide.

b. View function logs for your Lambda function by following the Monitoring and
troubleshooting Lambda functions section of the Lambda developer guide. If your Lambda
function uses the example code provided, you should see the NewImage and OldImage from
DynamoDB Streams printed in the CloudWatch Logs log group.

c. View the Error count and success rate (%) metric for your Lambda function by following the
Monitoring and troubleshooting Lambda functions section of the Lambda developer guide.

Next steps

This example provides a basic integration with a single Lambda function as a target. For a better
understanding of more complex configurations, such as creating multiple rules, creating multiple
targets, integrating with other services, and enriching events see the complete EventBridge user
guide: Getting started with EventBridge.

Note

Be aware of any EventBridge quotas that might be relevant to your application. While
DynamoDB Streams capacity scales with your table, EventBridge quotas are separate.
Common quotas to be aware of in a large application would be Invocations throttle limit
in transactions per second and PutEvents throttle limit in transactions per second. These
quotas specify the number of invocations that can be sent to targets and the number of
events that can be put into the bus per second.

Integrating DynamoDB with Amazon Managed Streaming for
Apache Kafka

Amazon Managed Streaming for Apache Kafka (Amazon MSK) makes it easy to ingest and process
streaming data in real time with a fully managed, highly available Apache Kafka service.

Next steps API Version 2012-08-10 3420

https://docs.amazonaws.cn/eventbridge/latest/userguide/event-bus-update.html#event-bus-update-schema
https://docs.amazonaws.cn/eventbridge/latest/userguide/event-bus-update.html#event-bus-update-schema
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-monitoring.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-monitoring.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-monitoring.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-monitoring.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-get-started.html
https://docs.amazonaws.cn/msk/latest/developerguide/what-is-msk.html

Amazon DynamoDB Developer Guide

Apache Kafka is a distributed data store optimized for ingesting and processing streaming data in
real-time. Kafka can process streams of records, effectively store streams of records in the order in
which records were generated, and publish and subscribe to streams of records.

Because of these features, Apache Kafka is often used to build real-time streaming data pipelines.
A data pipeline reliably processes and moves data from one system to another and can be an
important part of adopting a purpose-built database strategy by facilitating the use of multiple
databases which each support different use cases.

Amazon DynamoDB is common target in these data pipelines to support applications that use
key-value or document data models and desire limitless scalability with consistent single-digit
millisecond performance.

Topics

• How it works

• Set up an integration between Amazon MSK and DynamoDB

• Next steps

How it works

An Integration between Amazon MSK and DynamoDB uses a Lambda function to consume records
from Amazon MSK and write them to DynamoDB.

Lambda internally polls for new messages from Amazon MSK and then synchronously invokes the
target Lambda function. The Lambda function’s event payload contains batches of messages from
Amazon MSK. For the integration between Amazon MSK and DynamoDB, the Lambda function
writes these messages to DynamoDB.

How it works API Version 2012-08-10 3421

https://kafka.apache.org/
https://docs.amazonaws.cn/lambda/latest/dg/welcome.html

Amazon DynamoDB Developer Guide

Set up an integration between Amazon MSK and DynamoDB

Note

You can download the resources used in this example at the following GitHub repository.

The steps below show how to set up a sample integration between Amazon MSK and Amazon
DynamoDB. The example represents data generated by Internet of Things (IoT) devices and
ingested into Amazon MSK. As data is ingested into Amazon MSK, it can be integrated with
analytics services or third-party tools compatible with Apache Kafka, enabling various analytics use
cases. Integrating DynamoDB as well provides key value lookup of individual device records.

This example will demonstrate how a Python script writes IoT sensor data to Amazon MSK. Then, a
Lambda function writes items with the partition key "deviceid" to DynamoDB.

The provided CloudFormation template will create the following resources: An Amazon S3 bucket,
an Amazon VPC, a Amazon MSK cluster, and an Amazon CloudShell for testing data operations.

To generate test data, create an Amazon MSK topic and then create a DynamoDB table. You can
use Session Manager from the management console to log into the CloudShell's operating system
and run Python scripts.

After running the CloudFormation template, you can finish building this architecture by performing
the following operations.

1. Run the CloudFormation template S3bucket.yaml to create an S3 bucket. For any
subsequent scripts or operations, please run them in the same Region. Enter ForMSKTestS3
as the CloudFormation stack name.

Example integration API Version 2012-08-10 3422

https://github.com/aws-samples/serverless-streaming-datastore-sample

Amazon DynamoDB Developer Guide

After this is completed, note down the S3 bucket name output under Outputs. You will need
the name in Step 3.

2. Upload the downloaded ZIP file fromMSK.zip to the S3 bucket you just created.

Example integration API Version 2012-08-10 3423

Amazon DynamoDB Developer Guide

3. Run the CloudFormation template VPC.yaml to create a VPC, Amazon MSK cluster,
and Lambda function. On the parameter input screen, enter the S3 bucket name you
created in Step 1 where it asks for the S3 bucket. Set the CloudFormation stack name to
ForMSKTestVPC.

4. Prepare the environment for running Python scripts in CloudShell. You can use CloudShell on
the Amazon Web Services Management Console. For more information on using CloudShell,
see Getting started with Amazon CloudShell. After starting CloudShell, create a CloudShell

Example integration API Version 2012-08-10 3424

https://docs.amazonaws.cn/cloudshell/latest/userguide/getting-started.html

Amazon DynamoDB Developer Guide

that belongs to the VPC you have just created in order to connect to the Amazon MSK Cluster.
Create the CloudShell in a private subnet. Fill in the following fields:

1. Name - can be set to any name. An example is MSK-VPC

2. VPC - select MSKTest

3. Subnet - select MSKTest Private Subnet (AZ1)

4. SecurityGroup - select ForMSKSecurityGroup

Example integration API Version 2012-08-10 3425

Amazon DynamoDB Developer Guide

Once the CloudShell belonging to the Private Subnet has started, run the following command:

pip install boto3 kafka-python aws-msk-iam-sasl-signer-python

5. Download Python scripts from the S3 bucket.

aws s3 cp s3://[YOUR-BUCKET-NAME]/pythonScripts.zip ./
unzip pythonScripts.zip

6. Check the management console and set the environment variables for the broker URL and
Region value in the Python scripts. Check the Amazon MSK cluster broker endpoint in the
management console.

Example integration API Version 2012-08-10 3426

Amazon DynamoDB Developer Guide

7. Set the environment variables on the CloudShell. If you are using the US West (Oregon):

export AWS_REGION="us-west-2"
export MSK_BROKER="boot-YOURMSKCLUSTER.c3.kafka-serverless.ap-
southeast-1.amazonaws.com:9098"

8. Run the following Python scripts.

Create an Amazon MSK topic:

python ./createTopic.py

Create a DynamoDB table:

python ./createTable.py

Write test data to the Amazon MSK topic:

python ./kafkaDataGen.py

9. Check the CloudWatch metrics for the created Amazon MSK, Lambda, and DynamoDB
resources, and verify the data stored in the device_status table using the DynamoDB Data
Explorer to ensure all processes ran correctly. If each process is run without error, you can
check that the test data written from CloudShell to Amazon MSK is also written to DynamoDB.

Example integration API Version 2012-08-10 3427

Amazon DynamoDB Developer Guide

10. When you're done with this example, delete the resources created in this tutorial. Delete
the two CloudFormation stacks: ForMSKTestS3 and ForMSKTestVPC. If the stack deletion
completes successfully, all resources will be deleted.

Next steps

Note

If you created resources while following along with this example, please remember to
delete them to avoid any unexpected charges.

The Integration identified an architecture that links Amazon MSK and DynamoDB to enable stream
data to support OLTP workloads. From here, more complex searches can be realized by linking
DynamoDB with OpenSearch Service. Consider integrating with EventBridge for more complex
event-driven needs, and extensions such as Amazon Managed Service for Apache Flink for higher
throughput and lower latency requirements.

Next steps API Version 2012-08-10 3428

https://docs.amazonaws.cn/managed-flink/latest/java/what-is.html

Amazon DynamoDB Developer Guide

Best practices for integrating with DynamoDB

When integrating DynamoDB with other services, you should always follow the best practices for
using each individual service. However, there are some best practices specific to integration that
you should consider.

Topics

• Creating a snapshot in DynamoDB

• Capturing data change in DynamoDB

Creating a snapshot in DynamoDB

• Generally, we recommend using export to Amazon S3 to create snapshots for initial replication.
It is both cost effective, and won't compete with your application's traffic for throughput. You
can also consider a backup and restore to a new table followed by a scan operation. This will
avoid competing for throughput with your application, but will generally be substantially less
cost effective than an export.

• Always set a StartTime when doing an export. This makes it easy to determine where you'll
start your change data capture (CDC) from.

• When using export to S3, set a lifecycle action on the S3 bucket. Typically, an expiration action
set at 7 days is safe, but you should follow any guidelines that your company might have. Even
if you explicitly delete your items after ingestion, this action can help catch issues, which helps
reduce unnecessary costs and prevents policy violations.

Capturing data change in DynamoDB

• If you need near real-time CDC, use DynamoDB Streams or Amazon Kinesis Data Streams (KDS).
When you're deciding which one to use, generally consider which is easiest to use with the
downstream service. If you need to provide in-order event processing at a partition-key level, or
if you have items that are exceptionally large, use DynamoDB Streams.

• If you don't need near real-time CDC, you can use export to Amazon S3 with incremental exports
to export only the changes that have happened between two points in time.

Integration best practices API Version 2012-08-10 3429

Amazon DynamoDB Developer Guide

If you used export to S3 for generating a snapshot, this can be especially helpful because you can
use similar code to process incremental exports. Typically, export to S3 is slightly cheaper than
the previous streaming options, but cost is typically not the main factor for which option to use.

• You can generally only have two simultaneous consumers of a DynamoDB stream. Consider this
when planning your integration strategy.

• Don't use scans to detect changes. This might work on a small scale, but becomes impractical
fairly quickly.

Change data capture API Version 2012-08-10 3430

Amazon DynamoDB Developer Guide

Using generative AI with DynamoDB

Amazon DynamoDB is a serverless, fully managed, distributed NoSQL database with single-digit
millisecond performance at any scale. DynamoDB is optimized for high-throughput workloads
and you can extend its capabilities by integrating with generative AI models. Using generative AI
models, you can work with data stored in DynamoDB tables in real-time and build applications that
are contextually aware and highly personalized. You can also enhance the end user experience by
fully leveraging your business, user, and application data to customize your generative AI solutions.

For more information about gen AI and the solutions Amazon provides to build gen AI applications,
see Transform your business with generative AI.

Topics

• Generative AI use cases for DynamoDB

• Generative AI blogs for DynamoDB

• Leveraging DynamoDB Zero-ETL integration with OpenSearch Service

Generative AI use cases for DynamoDB

DynamoDB is widely used in AI powered conversational applications, such as chatbots and call
centers built with a Foundation Model (FM). You can access FMs through Amazon Bedrock, Amazon
SageMaker AI, or other model providers. Such applications commonly use DynamoDB to improve
personalization and enhance the user experience across three data patterns: application data,
business data, and user data. Some examples of these data patterns are as follows:

• Storage of application data, such as chat message history, through integrations with LangChain,
LlamaIndex, or a custom code. This context enhances the user experience by allowing the model
to converse back and forth with the user.

• Creation of a customized user experience by leveraging business data, such as inventory, pricing,
and documentation.

• Application of user data, such as web history, past orders, and user preferences, to provide
personalized answers.

For instance, an insurance company can build a chatbot using DynamoDB to provide their Retrieval-
Augmented Generation (RAG) based gen AI model access to near real-time data. Examples of

Generative AI use cases for DynamoDB API Version 2012-08-10 3431

https://www.amazonaws.cn/ai/generative-ai/
https://www.amazonaws.cn/what-is/foundation-models/
https://js.langchain.com/v0.1/docs/integrations/chat_memory/dynamodb/
https://docs.llamaindex.ai/en/stable/examples/docstore/DynamoDBDocstoreDemo/
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html
https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-customize-rag.html

Amazon DynamoDB Developer Guide

such data are real-time mortgage rates, product pricing, compliant/standard contract copy, user
web history, and user preferences. Combining DynamoDB with RAG adds in-depth and updated
information about insurance products and the user data. This enriches the prompts and answers to
provide end users with an accurate, personalized, and near real-time experience.

Similarly, financial services industry customers use DynamoDB, Amazon Bedrock knowledge bases,
and Amazon Bedrock agents to build RAG-based gen AI applications. These applications can use
open-source earnings reports and call transcripts. They can also use user-specific portfolio and
transaction history to generate an on-demand summary of portfolio including an outlook for the
future.

Generative AI blogs for DynamoDB

The following articles offer detailed use cases, best practices, and step-by-step guides to help you
leverage DynamoDB's capabilities in building advanced AI-powered applications.

• Amazon DynamoDB data models for generative AI chatbots

• Build a scalable, context-aware chatbot with Amazon DynamoDB, Amazon Bedrock, and
LangChain

Leveraging DynamoDB Zero-ETL integration with OpenSearch
Service

You can use Amazon Bedrock with DynamoDB to provide serverless access to foundational
models (FMs), such as Amazon Titan and other third-party models. You can leverage the Zero-ETL
integration with Amazon OpenSearch Service to enable vector search capabilities when building
generative AI applications. The Generative AI with DynamoDB zero-ETL to OpenSearch integration
and Amazon Bedrock workshop provides you hands-on experience in setting up DynamoDB Zero-
ETL integration with OpenSearch. This workshop does the following tasks:

• Creates a pipeline from your DynamoDB table to OpenSearch.

• Creates an Amazon Bedrock Connector in OpenSearch.

• Queries Amazon Bedrock leveraging OpenSearch as a vector store.

• Uses the Claude FM in Amazon Bedrock to create a written response in plain English explaining
the search results returned by OpenSearch.

Generative AI blogs for DynamoDB API Version 2012-08-10 3432

https://docs.amazonaws.cn/bedrock/latest/userguide/knowledge-base.html
https://www.amazonaws.cn/bedrock/agents/
https://amazonaws-china.com/blogs/database/amazon-dynamodb-data-models-for-generative-ai-chatbots/
https://amazonaws-china.com/blogs/database/build-a-scalable-context-aware-chatbot-with-amazon-dynamodb-amazon-bedrock-and-langchain/
https://amazonaws-china.com/blogs/database/build-a-scalable-context-aware-chatbot-with-amazon-dynamodb-amazon-bedrock-and-langchain/
https://www.amazonaws.cn/what-is/foundation-models/
https://www.amazonaws.cn/what-is/foundation-models/
https://catalog.workshops.aws/dynamodb-labs/en-US/dynamodb-opensearch-zetl
https://catalog.workshops.aws/dynamodb-labs/en-US/dynamodb-opensearch-zetl

Amazon DynamoDB Developer Guide

This workshop enables you to integrate DynamoDB with OpenSearch to build generative AI
applications. It also demonstrates the flexible querying capability across database engines to
help you integrate DynamoDB and OpenSearch for traditional use cases. This workshop is one of
the seven modules in the Amazon DynamoDB Immersion Day. You can run this workshop in any
Amazon Web Services account.

You can also refer to the following blog post about how to set up a Zero-ETL integration between
DynamoDB and OpenSearch Service. This blog post also describes how to set up model connectors
in OpenSearch Service to automatically generate embeddings using Amazon Bedrock for incoming
data. Vector search for Amazon DynamoDB with zero ETL for Amazon OpenSearch Service.

Leveraging DynamoDB Zero-ETL integration with OpenSearch Service API Version 2012-08-10 3433

https://catalog.workshops.aws/dynamodb-labs/en-US
https://amazonaws-china.com/blogs/database/vector-search-for-amazon-dynamodb-with-zero-etl-for-amazon-opensearch-service/

Amazon DynamoDB Developer Guide

Quotas and constraints for Amazon DynamoDB

This topic describes current quotas, formerly referred to as limits, within Amazon DynamoDB. This
topic also describes how you can perform the quota management tasks, for example, viewing your
current quotas and requesting a quota increase.

Topics

• Performing quota management tasks in DynamoDB

• Requesting a quota increase in DynamoDB

• Quotas in Amazon DynamoDB

• Constraints in Amazon DynamoDB

Performing quota management tasks in DynamoDB

Amazon DynamoDB has several service components, such as tables, streams, indexes, and more.
When you create your Amazon Web Services account, there are default quotas (formerly referred to
as limits) set on these components. Unless otherwise noted, each quota is Region-specific. You can
request increases for some of the quotas. After a quota for a resource has been reached, additional
requests to create that resource fail with an exception.

Accessing DynamoDB quotas

You can work with DynamoDB Service Quotas in the following ways:

• Amazon Web Services Management Console

The Service Quotas console is a browser-based interface that you can use to view and
manage your Service Quotas. You can access Service Quotas from any Amazon Web Services
Management Console page by choosing it on the top navigation bar, or by searching for Service
Quotas in the Amazon Web Services Management Console.

• Amazon Command Line Interface tools

When using Amazon Command Line Interface tools, you can issue commands at your system's
command line to perform Service Quotas tasks. The command line tools are useful if you want to
build scripts that perform Amazon tasks.

• Amazon SDKs

Performing quota management tasks API Version 2012-08-10 3434

http://console.aws.amazon.com/servicequotas/home/services/dynamodb/quotas

Amazon DynamoDB Developer Guide

You can use the Amazon SDKs for various programming languages and platforms (for example,
Java, Python, Ruby, .NET, iOS and Android, and others) to perform Service Quotas tasks.

If an adjustable quota isn't available in the Service Quotas console, use the Amazon Support Center
Console to create a Service Quotas increase case.

Viewing current quotas in the console

To view your current DynamoDB quotas using the Service Quotas console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/home/
services/dynamodb/quotas/

2. From the navigation bar, at the top of the screen, select a Region.

3. The console displays details about the DynamoDB Quota name, Applied account-level quota
value, Amazon default quota value, Utilization, and the Adjustability of the quota at the
account-level or resource-level.

If the applied quota value or utilization is not available, the console displays Not available.
You can request your applied quota value through the Support Center Console.

4. Choose a specific Quota name to view the Details page, which displays that quota's
Description, Quota code, Quota ARN, Utilization, Applied account-level quota value,
Adjustability, and Amazon default quota value.

If applicable, the Details page also displays any Monitoring options, Alarms,request history,
and any of the quota's Tags.

Viewing current quotas using the Amazon CLI

To view the default values for DynamoDB quotas:

• Call the ListDefaultServiceQuotas operation with the DynamoDB service code
(dynamodb) to retrieve default values for Amazon DynamoDB Service quotas.

$ aws service-quotas list-aws-default-service-quotas \
 --service-code dynamodb

 {

Viewing current quotas in the console API Version 2012-08-10 3435

https://support.console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase
https://console.aws.amazon.com/servicequotas/home/services/dynamodb/quotas/
https://console.aws.amazon.com/servicequotas/home/services/dynamodb/quotas/

Amazon DynamoDB Developer Guide

 "Quotas": [
 {
 "ServiceCode": "dynamodb",
 "ServiceName": "Amazon DynamoDB",
 "QuotaArn": "arn:aws:servicequotas:us-east-1::dynamodb/L-F7858A77",
 "QuotaCode": "L-F7858A77",
 "QuotaName": "Global Secondary Indexes per table",
 "Value": 20.0,
 "Unit": "None",
 "Adjustable": true,
 "GlobalQuota": false
 },
 {
 "ServiceCode": "dynamodb",
 "ServiceName": "Amazon DynamoDB",
 "QuotaArn": "arn:aws:servicequotas:us-east-1::dynamodb/L-AB614373",
 "QuotaCode": "L-AB614373",
 "QuotaName": "Table-level write throughput limit",
 "Value": 40000.0,
 "Unit": "None",
 "Adjustable": true,
 "GlobalQuota": false
 }......
]
}

To view the applied quota values:

• Call the ListServiceQuotas operation with the DynamoDB service code (dynamodb)
to retrieve all applied quota values either at the account-level, resource-level, or all levels
by passing ACCOUNT, RESOURCE, or ALL respectively as the value for the parameter
QuotaAppliedAtLevel. The following CLI example retrieves quota values applied at the
account-level.

$ aws service-quotas list-service-quotas \
 --service-code dynamodb \
 --quota-applied-at-level ACCOUNT

{
 "Quotas": [

Viewing current quotas using the Amazon CLI API Version 2012-08-10 3436

https://docs.aws.amazon.com/servicequotas/2019-06-24/apireference/API_ListServiceQuotas.html

Amazon DynamoDB Developer Guide

 {
 "ServiceCode": "dynamodb",
 "ServiceName": "Amazon DynamoDB",
 "QuotaArn": "arn:aws:servicequotas:us-east-1:303935678045:dynamodb/L-
F7858A77",
 "QuotaCode": "L-F7858A77",
 "QuotaName": "Global Secondary Indexes per table",
 "Value": 20.0,
{
 "Quotas": [
 {
 "ServiceCode": "dynamodb",
 "ServiceName": "Amazon DynamoDB",
 "QuotaArn": "arn:aws:servicequotas:us-east-1:303935678045:dynamodb/L
-F7858A77",
 "QuotaCode": "L-F7858A77",
 "QuotaName": "Global Secondary Indexes per table",
 "Value": 20.0,
 "Unit": "None",
 "Adjustable": true,
 "GlobalQuota": false,
 "QuotaAppliedAtLevel": "ACCOUNT"
 }.....

 }
]
}

Requesting a quota increase in DynamoDB

You can request a quota increase for each Region using the Service Quotas console, Amazon CLI or
a support case. If an adjustable quota isn't available in the Service Quotas console, use the Amazon
Support Center Console to create a service quota increase case.

Amazon Web Services Support could approve, deny, or partially approve your quota increase
requests. Increases aren't granted immediately, and can take a few days to take effect.

To request an increase using the Service Quotas console

1. Open the Service Quotas console at https://console.aws.amazon.com/servicequotas/home/
services/dynamodb/quotas/

Requesting a quota increase API Version 2012-08-10 3437

https://support.console.aws.amazon.com/support/home#/case/create%3FissueType=service-limit-increase

Amazon DynamoDB Developer Guide

2. From the navigation bar, at the top of the screen, select a Region.

3. Filter the list by resource name. For example, enter On-Demand to locate the quotas for On-
Demand Instances.

4. If the quota is adjustable, choose the quota and then choose Request quota increase.

5. For Change quota value, enter the new quota value.

6. Choose Request.

7. To view any pending or recently resolved requests in the console, choose Dashboard from
the navigation pane. For pending requests, choose the status of the request to open the
request receipt. The initial status of a request is Pending. After the status changes to Quota
requested, you'll see the case number with Amazon Web Services Support. Choose the case
number to open the ticket for your request.

For more information, including how to use the Amazon CLI or SDKs to request a quota increase,
see Requesting a quota increase in the Service Quotas User Guide.

Quotas in Amazon DynamoDB

This section describes current quotas, formerly referred to as limits, within Amazon DynamoDB.
Each quota applies on a per-Region basis unless otherwise specified.

Note

All size measurements in DynamoDB use binary-based units. DynamoDB denotes 1 KB =
1024 bytes, 1 MB = 1024 KB, 1 GB = 1024 MB, 1 TB = 1024 GB.

Topics

• Read/write throughput

• Reserved Capacity

• Tables

• Global tables

• Secondary indexes

• Projected secondary index attributes

• DynamoDB Streams

Quotas API Version 2012-08-10 3438

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

Amazon DynamoDB Developer Guide

• Import from Amazon S3

• Table export to Amazon S3

• Backup and restore

• Contributor Insights

Read/write throughput

Throughput default quotas

Amazon places some default quotas on the throughput your account can provision and consume
in a Region. These are the quotas unless you request a higher amount. To request a service quota
increase, see http://www.amazonaws.cn/support.

 On-Demand Provisioned

Per table 40,000 read request
units and 40,000 write
request units

40,000 read capacity
units and 40,000 write
capacity units

Per account per Region Not applicable 80,000 read capacity
units and 80,000 write
capacity units

Minimum throughpu
t for any table or
global secondary
index

Not applicable 1 read capacity unit
and 1 write capacity
unit

Note

All the account's available throughput can be applied to a single table or across multiple
tables.

The provisioned throughput quota includes the sum of the capacity of the table together with the
capacity of all of its global secondary indexes.

Read/write throughput API Version 2012-08-10 3439

http://www.amazonaws.cn/support

Amazon DynamoDB Developer Guide

On the Amazon Web Services Management Console, you can use Amazon CloudWatch to monitor
what your current read and write throughput is in a given Amazon Region by looking at the read
capacity and write capacity graphs on the Metrics tab. Make sure that you are not too
close to the quotas.

If you increased your provisioned throughput default quotas, you can use the DescribeLimits
operation to see the current quota values.

Note

You can request any number of read capacity units (RCU) or write capacity units (WCU) for
your DynamoDB tables through a service quota increase. The values listed in the following
table represent the initial default quotas. These are not maximum limits for your tables.

Increasing or decreasing throughput (for provisioned tables)

Increasing provisioned throughput

You can increase ReadCapacityUnits or WriteCapacityUnits as often as necessary, using
the Amazon Web Services Management Console or the UpdateTable operation. In a single call,
you can increase the provisioned throughput for a table, for any global secondary indexes on that
table, or for any combination of these. The new settings do not take effect until the UpdateTable
operation is complete.

You can't exceed your per-account quotas when you add provisioned capacity, and DynamoDB
doesn't allow you to increase provisioned capacity very rapidly. Aside from these restrictions, you
can increase the provisioned capacity for your tables as high as you need. For more information
about per-account quotas, see the preceding section, Throughput default quotas.

Decreasing provisioned throughput

For every table and global secondary index in an UpdateTable operation, you can decrease
ReadCapacityUnits or WriteCapacityUnits (or both). The new settings don't take effect
until the UpdateTable operation is complete. A decrease is allowed up to four times, anytime per
day. A day is defined according to Universal Coordinated Time (UTC). Additionally, if there was no
decrease in the past hour, an additional decrease is allowed. This effectively brings the maximum
number of decreases in a day to 27 times (4 decreases in the first hour, and 1 decrease for each of
the subsequent 1-hour windows in a day).

Read/write throughput API Version 2012-08-10 3440

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeLimits.html

Amazon DynamoDB Developer Guide

Important

Table and global secondary index decrease limits are decoupled, so any global secondary
indexes for a particular table have their own decrease limits. However, if a single request
decreases the throughput for a table and a global secondary index, it is rejected if either
exceeds the current limits. Requests are not partially processed.

Example

In the first 4 hours of a day, a table with a global secondary index can be modified as follows:

• Decrease the table's WriteCapacityUnits or ReadCapacityUnits (or both) four times.

• Decrease the WriteCapacityUnits or ReadCapacityUnits (or both) of the global secondary
index four times.

At the end of that same day, the table and the global secondary index throughput can potentially
be decreased a total of 27 times each.

Reserved Capacity

Amazon places a default quota on the amount of active reserved capacity that your account can
purchase. The quota limit is a combination of reserved capacity for write capacity units (WCUs) and
read capacity units (RCUs).

Reserved capacity quota Active reserved capacity Adjustable

Per account 1,000,000 provisioned
capacity units (WCUs _ RCUs)

Yes

If you attempt to purchase more than 1,000,000 provisioned capacity units in a single purchase,
you will receive an error for this service quota limit. If you have active reserved capacity and
attempt to purchase additional reserved capacity that would result in more than 1,000,000 active
provisioned capacity units, you will receive an error for this service quota limit.

Reserved Capacity API Version 2012-08-10 3441

Amazon DynamoDB Developer Guide

Tables

Table size

There is no practical limit on a table's size. Tables are unconstrained in terms of the number of
items or the number of bytes.

Maximum number of tables per account per region

For any Amazon account, there is an initial quota of 2,500 tables per Amazon Region.

If you need more than 2,500 tables for a single account, please reach out to your Amazon account
team to explore an increase up to a maximum of 10,000 tables. For more than 10,000, the
recommended best practice is to setup multiple accounts, each of which can serve up to 10,000
tables.

Global tables

The following default quotas apply when using global tables.

Default global table quotas On-Demand Provisioned

Number of MRSC global
tables (See the section called
“Consistency modes”)

400 total MRSC global tables
in any capacity mode

400 total MRSC global tables
in any capacity mode

Throughput per table
configured for multi-Region
eventual consistency (MREC)

40,000 read request units and
40,000 write request units

40,000 read capacity units
and 40,000 write capacity
units

Throughput per table
configured for multi-Region
strong consistency (MRSC)

40,000 read request units and
40,000 write request units

40,000 read capacity units
and 40,000 write capacity
units

Backfilled data for new
replicas per account, per
Region, per day

10 TB 10 TB

Tables API Version 2012-08-10 3442

Amazon DynamoDB Developer Guide

Note

There may be instances where you will need to request a quota limit increase through
Amazon Web Services Support. If any of the following apply to you, please see http://
www.amazonaws.cn/support:

• Global table throughput quotas must be equal to or greater than per table throughput
quotas for replica creation to succeed. There are separate global table throughput quotas
for MREC and MRSC global tables.

• If you are adding a replica or replicas to one destination Region within a 24-hour period
with a combined total greater than 10TB, you must request a service quota increase for
your add replica data backfill quota.

• If you encounter an error similar to the following:

• Cannot create a replica of table 'example_table' in region 'example_region_A' because
its exceeds your current account limit in region 'example_region_B'.

Secondary indexes

You can define up to 5 local secondary indexes per table.

There is a default quota of 20 global secondary indexes per table.

Projected secondary index attributes

You can project up to 100 attributes combined for all of a table's local and global secondary
indexes. This quota only applies to user-specified projected attributes.

For the CreateTable operation, if you specify a ProjectionType of INCLUDE, the total count
of attributes specified in NonKeyAttributes summed across all secondary indexes must not
exceed 100. Projecting the same attribute name into two different indexes counts as two distinct
attributes toward the quota.

This quota doesn't apply to secondary indexes with a ProjectionType of KEYS_ONLY or ALL.

Secondary indexes API Version 2012-08-10 3443

http://www.amazonaws.cn/support
http://www.amazonaws.cn/support

Amazon DynamoDB Developer Guide

DynamoDB Streams

Simultaneous readers of a shard in DynamoDB Streams

For single-Region tables that are not global tables, you can design for up to two simultaneous
processes to read from the same DynamoDB Streams shard at the same time. Exceeding this
limit can result in request throttling. For global tables, we recommend you limit the number of
simultaneous readers to one to avoid request throttling.

Maximum write capacity for a table with DynamoDB Streams enabled

Amazon places some default quotas on the write capacity for DynamoDB tables with DynamoDB
Streams enabled. These default quotas are applicable only for tables in provisioned read/write
capacity mode.

• Per table – 40,000 write capacity units

Import from Amazon S3

DynamoDB Import from Amazon S3 can support up to 50 concurrent import jobs with a total
import source object size of 15TB at a time in us-east-1, us-west-2, and eu-west-1 regions. In all
other regions, up to 50 concurrent import tasks with a total size of 1TB is supported. Each import
job can take up to 50,000 Amazon S3 objects in all regions. For more information on import and
validation, see import format quotas and validation.

Table export to Amazon S3

Full export: up to 300 concurrent export tasks, or up to a total of 100TB from all in-flight table
exports, can be exported. Both of these limits are checked before an export is queued.

Incremental export: DynamoDB Incremental Export to Amazon S3 can support up to 300
concurrent export jobs or up to a total of 100TB from all in-flight table exports. The export period
window limits are 15 minutes minimum and 24 hours maximum.

Backup and restore

DynamoDB supports up to 50 concurrent restores totaling 50 TB via DynamoDB on-demand or
continuous backups. Amazon Backup supports up to 50 concurrent restores totaling 25 TB.

DynamoDB Streams API Version 2012-08-10 3444

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataImport.Validation.html#S3DataImport.Validation.limits

Amazon DynamoDB Developer Guide

Contributor Insights

When you enable Customer Insights on your DynamoDB table, you're still subject to Contributor
Insights rules limits. For more information, see CloudWatch service quotas.

Constraints in Amazon DynamoDB

This section describes current constraints, formerly referred to as limits, within Amazon
DynamoDB.

Note

All size measurements in DynamoDB use binary-based units. DynamoDB denotes 1 KB =
1024 bytes, 1 MB = 1024 KB, 1 GB = 1024 MB, 1 TB = 1024 GB.

Topics

• Read/write capacity mode

• Secondary indexes

• Partition keys and sort keys

• Naming rules

• Data types

• Items

• Attributes

• Expression parameters

• DynamoDB transactions

• DynamoDB Streams

• DynamoDB Accelerator (DAX)

• API-specific constraints

• DynamoDB encryption at rest

Contributor Insights API Version 2012-08-10 3445

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html

Amazon DynamoDB Developer Guide

Read/write capacity mode

You can switch tables from provisioned capacity mode to on-demand mode up to four times in
a 24-hour rolling window. You can switch tables from on-demand mode to provisioned capacity
mode at any time.

For more information about switching between read and write capacity modes, see Considerations
when switching capacity modes in DynamoDB.

Capacity unit sizes (for provisioned tables)

One read capacity unit = one strongly consistent read per second, or two eventually consistent
reads per second, for items up to 4 KB in size.

One write capacity unit = one write per second, for items up to 1 KB in size.

Transactional read requests require two read capacity units to perform one read per second for
items up to 4 KB.

Transactional write requests require two write capacity units to perform one write per second for
items up to 1 KB.

Request unit sizes (for on-demand tables)

One read request unit = one strongly consistent read per second, or two eventually consistent
reads per second, for items up to 4 KB in size.

One write request unit = one write per second, for items up to 1 KB in size.

Transactional read requests require two read request units to perform one read per second for
items up to 4 KB.

Transactional write requests require two write request units to perform one write per second for
items up to 1 KB.

Secondary indexes

Projected Secondary Index attributes per table

You can project a total of up to 100 attributes into all of a table's local and global secondary
indexes. This only applies to user-specified projected attributes.

Read/write capacity mode API Version 2012-08-10 3446

Amazon DynamoDB Developer Guide

In a CreateTable operation, if you specify a ProjectionType of INCLUDE, the total count of
attributes specified in NonKeyAttributes, summed across all of the secondary indexes, must not
exceed 100. If you project the same attribute name into two different indexes, this counts as two
distinct attributes when determining the total.

This limit does not apply for secondary indexes with a ProjectionType of KEYS_ONLY or ALL.

Partition keys and sort keys

Partition key length

The minimum length of a partition key value is 1 byte. The maximum length is 2048 bytes.

Partition key values

There is no practical limit on the number of distinct partition key values, for tables or for secondary
indexes.

Sort key length

The minimum length of a sort key value is 1 byte. The maximum length is 1024 bytes.

Sort key values

In general, there is no practical limit on the number of distinct sort key values per partition key
value.

The exception is for tables with secondary indexes. An item collection is the set of items which
have the same value of partition key attribute. In a global secondary index the item collection
is independent of the base table (and can have a different partition key attribute), but in a local
secondary index the indexed view is colocated in the same partition as the item in the table and
shares the same partition key attribute. As a result of this locality, when a table has one or more
LSIs, the item collection cannot be distributed to multiple partitions.

For a table with one or more LSIs, item collections cannot exceed 10GB in size. This includes
all base table items and all projected LSI views which have the same value of the partition key
attribute. 10GB is the maximum size of a partition. For more detailed information, see Item
collection size limit.

Partition keys and sort keys API Version 2012-08-10 3447

Amazon DynamoDB Developer Guide

Naming rules

Table names and Secondary Index names

Names for tables and secondary indexes must be at least 3 characters long, but no greater than
255 characters long. The following are the allowed characters:

• A-Z

• a-z

• 0-9

• _ (underscore)

• - (hyphen)

• . (dot)

Attribute names

In general, an attribute name must be at least one character long, but no greater than 64 KB long.

The following are the exceptions. These attribute names must be no greater than 255 characters
long:

• Secondary index partition key names.

• Secondary index sort key names.

• The names of any user-specified projected attributes (applicable only to local secondary indexes).
In a CreateTable operation, if you specify a ProjectionType of INCLUDE, the names of the
attributes in the NonKeyAttributes parameter are length-restricted. The KEYS_ONLY and ALL
projection types are not affected.

These attribute names must be encoded using UTF-8, and the total size of each name (after
encoding) cannot exceed 255 bytes.

Data types

String

The length of a String is constrained by the maximum item size of 400 KB.

Naming rules API Version 2012-08-10 3448

Amazon DynamoDB Developer Guide

Strings are Unicode with UTF-8 binary encoding. Because UTF-8 is a variable width encoding,
DynamoDB determines the length of a String using its UTF-8 bytes.

Number

A Number can have up to 38 digits of precision, and can be positive, negative, or zero.

• Positive range: 1E-130 to 9.9999999999999999999999999999999999999E+125

• Negative range: -9.9999999999999999999999999999999999999E+125 to -1E-130

DynamoDB uses JSON strings to represent Number data in requests and replies. For more
information, see DynamoDB low-level API.

If number precision is important, you should pass numbers to DynamoDB using strings that you
convert from a number type.

Binary

The length of a Binary is constrained by the maximum item size of 400 KB.

Applications that work with Binary attributes must encode the data in base64 format before
sending it to DynamoDB. Upon receipt of the data, DynamoDB decodes it into an unsigned byte
array and uses that as the length of the attribute.

Items

Item size

The maximum item size in DynamoDB is 400 KB, which includes both attribute name binary length
(UTF-8 length) and attribute value lengths (again binary length). The attribute name counts
towards the size limit.

For example, consider an item with two attributes: one attribute named "shirt-color" with value "R"
and another attribute named "shirt-size" with value "M". The total size of that item is 23 bytes.

Item size for tables with Local Secondary Indexes

For each local secondary index on a table, there is a 400 KB limit on the total of the following:

• The size of an item's data in the table.

Items API Version 2012-08-10 3449

Amazon DynamoDB Developer Guide

• The size of corresponding entries (including key values and projected attributes) in all local
secondary indexes.

Attributes

Attribute name-value pairs per item

The cumulative size of attributes per item must fit within the maximum DynamoDB item size (400
KB).

Number of values in list, map, or set

There is no limit on the number of values in a List, a Map, or a Set, as long as the item containing
the values fits within the 400 KB item size limit.

Attribute values

Empty String and Binary attribute values are allowed, if the attribute is not used as a key attribute
for a table or index. Empty String and Binary values are allowed inside Set, List, and Map types. An
attribute value cannot be an an empty Set (String Set, Number Set, or Binary Set). However, empty
Lists and Maps are allowed.

Nested attribute depth

DynamoDB supports nested attributes up to 32 levels deep.

Expression parameters

Expression parameters include ProjectionExpression, ConditionExpression,
UpdateExpression, and FilterExpression.

Lengths

The maximum length of any expression string is 4 KB. For example, the size of the
ConditionExpression a=b is 3 bytes.

The maximum length of any single expression attribute name or expression attribute value is 255
bytes. For example, #name is 5 bytes; :val is 4 bytes.

Attributes API Version 2012-08-10 3450

Amazon DynamoDB Developer Guide

The maximum length of all substitution variables in an expression is 2 MB. This is the sum of the
lengths of all ExpressionAttributeNames and ExpressionAttributeValues.

Operators and operands

The maximum number of operators or functions allowed in an UpdateExpression is 300. For
example, the UpdateExpression SET a = :val1 + :val2 + :val3 contains two "+" operators.

The maximum number of operands for the IN comparator is 100.

Reserved words

DynamoDB does not prevent you from using names that conflict with reserved words. (For a
complete list, see Reserved words in DynamoDB.)

However, if you use a reserved word in an expression parameter, you must also specify
ExpressionAttributeNames. For more information, see Expression attribute names (aliases) in
DynamoDB.

DynamoDB transactions

DynamoDB transactional API operations have the following constraints:

• A transaction cannot contain more than 100 unique items.

• A transaction cannot contain more than 4 MB of data.

• No two actions in a transaction can work against the same item in the same table. For example,
you cannot both ConditionCheck and Update the same item in one transaction.

• A transaction cannot operate on tables in more than one Amazon account or Region.

• Transactional operations provide atomicity, consistency, isolation, and durability (ACID)
guarantees only within the Amazon Region where the write is made originally. Transactions are
not supported across Regions in global tables. For example, suppose that you have a global
table with replicas in the US East (Ohio) and US West (Oregon) Regions and you perform a
TransactWriteItems operation in the US East (N. Virginia) Region. In this case, you might
observe partially completed transactions in the US West (Oregon) Region as changes are
replicated. Changes are replicated to other Regions only after they have been committed in the
source Region.

DynamoDB transactions API Version 2012-08-10 3451

Amazon DynamoDB Developer Guide

DynamoDB Streams

Simultaneous readers of a shard in DynamoDB Streams

Do not allow more than two processes to read from the same DynamoDB Streams shard at the
same time. Exceeding this limit can result in request throttling.

DynamoDB Accelerator (DAX)

Amazon Region availability

For a list of Amazon Regions in which DAX is available, see DynamoDB Accelerator (DAX) in the
Amazon Web Services General Reference.

Nodes

A DAX cluster consists of exactly one primary node, and between zero and ten read replica nodes.

The total number of nodes (per Amazon account) cannot exceed 50 in a single Amazon Region.

Parameter groups

You can create up to 20 DAX parameter groups per Region.

Subnet groups

You can create up to 50 DAX subnet groups per Region.

Within a subnet group, you can define up to 20 subnets.

Important

A DAX cluster supports a maximum of 500 DynamoDB tables. Once you go beyond
500 DynamoDB tables, your cluster may experience degradation in availability and
performance.

DynamoDB Streams API Version 2012-08-10 3452

https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_dax_region

Amazon DynamoDB Developer Guide

API-specific constraints

CreateTable/UpdateTable/DeleteTable/PutResourcePolicy/DeleteResourcePolicy

In general, you can have up to 500 CreateTable, UpdateTable, DeleteTable, PutResourcePolicy,
and DeleteResourcePolicy requests running simultaneously in any combination. In other words,
the total number of tables in the CREATING, UPDATING, or DELETING state cannot exceed 500.

The only exception is when you are creating a table with one or more secondary indexes. You
can have up to 250 such requests running at a time. However, if the table or index specifications
are complex, DynamoDB might temporarily reduce the number of concurrent operations.

CreateTable and PutResourcePolicy requests which include a resource-based policy will
count as two additional requests for each KB of the policy. For example, a CreateTable or
PutResourcePolicy request with a policy of size 5 KB will count as 11 requests. 1 for the
CreateTable request and 10 for the resource-based policy (2 x 5 KB). Similarly, a policy of size
20 KB will count as 41 requests. 1 for the CreateTable request and and 40 for the resource-
based policy (2 x 20 KB).

PutResourcePolicy

You can submit up to 25 PutResourcePolicy API requests per second across a group
of tables. After a successful request for an individual table, no new PutResourcePolicy
requests are supported for the following 15 seconds.

The maximum size supported for a resource-based policy document is 20 KB. DynamoDB
counts whitespaces when calculating the size of a policy against this limit.

DeleteResourcePolicy

You can submit up to 50 DeleteResourcePolicy API requests per second across a group
of tables. After a successful PutResourcePolicy request for an individual table, no
DeleteResourcePolicy requests are supported for the following 15 seconds.

BatchGetItem

A single BatchGetItem operation can retrieve a maximum of 100 items. The total size of all
the items retrieved cannot exceed 16 MB.

API-specific constraints API Version 2012-08-10 3453

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteTable.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutResourcePolicy.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DeleteResourcePolicy.html

Amazon DynamoDB Developer Guide

BatchWriteItem

A single BatchWriteItem operation can contain up to 25 PutItem or DeleteItem requests.
The total size of all the items written cannot exceed 16 MB.

DescribeStream

You can call DescribeStream at a maximum rate of 10 times per second.

DescribeTableReplicaAutoScaling

DescribeTableReplicaAutoScaling method supports only 10 requests per second.

DescribeLimits

DescribeLimits should be called only periodically. You can expect throttling errors if you call
it more than once in a minute.

DescribeContributorInsights/ListContributorInsights/UpdateContributorInsights

DescribeContributorInsights, ListContributorInsights and
UpdateContributorInsights should be called only periodically. DynamoDB supports up to
five requests per second for each of these APIs.

DescribeTable/ListTables/GetResourcePolicy

You can submit up to 2,500 requests per second of a combination of read-only
(DescribeTable, ListTables, and GetResourcePolicy) control plane API requests. The
GetResourcePolicy API has a lower individual limit of 100 requests per second.

DescribeTimeToLive

The DescribeTimeToLive operation is throttled at 10 read request units per second. If you
exceed this limit, DynamoDB returns a ThrottlingException error.

API-specific constraints API Version 2012-08-10 3454

Amazon DynamoDB Developer Guide

Query

The result set from a Query is limited to 1 MB per call. You can use the LastEvaluatedKey
from the query response to retrieve more results.

Scan

The result set from a Scan is limited to 1 MB per call. You can use the LastEvaluatedKey
from the scan response to retrieve more results.

UpdateKinesisStreamingDestination

When performing UpdateKinesisStreamingDestination operations, you can set
ApproximateCreationDateTimePrecision to a new value a maximum of 3 times in a 24
hour period.

UpdateTableReplicaAutoScaling

UpdateTableReplicaAutoScaling method supports only ten requests per second.

UpdateTableTimeToLive

The UpdateTableTimeToLive method supports only one request to enable or disable Time
to Live (TTL) per specified table per hour. This change can take up to one hour to fully
process. Any additional UpdateTimeToLive calls for the same table during this one hour
duration result in a ValidationException.

DynamoDB encryption at rest

You can switch between an Amazon owned key, an Amazon managed key, and a customer
managed key up to four times, anytime per 24-hour window, on a per table basis, starting from
when the table was created. If there was no change in the past six hours, an additional change is
allowed. This effectively brings the maximum number of changes in a day to eight (four changes in
the first six hours, and one change for each of the subsequent six hour windows in a day).

You can switch encryption keys to use an Amazon owned key as often as necessary, even if the
above quota has been exhausted.

DynamoDB encryption at rest API Version 2012-08-10 3455

Amazon DynamoDB Developer Guide

These are the quotas unless you request a higher amount. To request a service quota increase, see
http://www.amazonaws.cn/support.

DynamoDB encryption at rest API Version 2012-08-10 3456

http://www.amazonaws.cn/support

Amazon DynamoDB Developer Guide

DynamoDB API reference

The Amazon DynamoDB API reference contains a complete list of operations supported by:

• DynamoDB

• DynamoDB Streams

• DynamoDB Accelerator (DAX)

API Version 2012-08-10 3457

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Streams.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Operations_Amazon_DynamoDB_Accelerator_(DAX).html

Amazon DynamoDB Developer Guide

Troubleshooting Amazon DynamoDB

The following topics provide troubleshooting advice for errors and issues that you could encounter
when using Amazon DynamoDB. If you find an issue that isn't listed here, you can use the feedback
button on this page to report it.

For more troubleshooting advice and answers to common support questions, visit the Amazon
Knowledge Center.

Topics

• Troubleshooting internal server errors in Amazon DynamoDB

• Troubleshooting latency issues in Amazon DynamoDB

• Troubleshooting throttling in Amazon DynamoDB

Troubleshooting internal server errors in Amazon DynamoDB

In DynamoDB, internal server errors (500 errors) indicate that the service is unable to serve the
request. These errors can occur for various reasons, such as transient network issues in the fleet,
infrastructure issues, storage node related issues, and more.

You may encounter some internal server errors during the lifecycle of your DynamoDB table. This is
expected due to the distributed nature of the service and usually shouldn't be a cause for concern.
DynamoDB automatically repairs and heals any transient issues with the service in real time,
without requiring any intervention from you. However, if you observe a consistently high number
of internal server errors on requests to your table (as seen in the the section called “SystemErrors”
metric), you should investigate further.

Topics

• Investigating internal server errors

• Minimizing the impact from internal server errors

• Improving operational awareness

Investigating internal server errors

If you encounter internal server errors in your DynamoDB table, consider these options:

Internal server errors API Version 2012-08-10 3458

https://www.amazonaws.cn//premiumsupport/knowledge-center/#AWS_DynamoDB
https://www.amazonaws.cn//premiumsupport/knowledge-center/#AWS_DynamoDB

Amazon DynamoDB Developer Guide

1. Check the Amazon Health Dashboard.

To identify the issue, the first step is to check the Amazon Service Health Dashboard and your
Amazon Account Health Dashboard. These dashboards provide valuable information about any
service-wide issues, impacted tables, ongoing problems, and the root cause once the issue has
been resolved.

Reviewing the details in these dashboards will give you a better understanding of the current
status of the Amazon Web Services services you're using and any potential problems affecting
your account. This information can help you determine the next steps to address the issue and
minimize any disruptions to your operations.

2. Reach out to Amazon Web Services Support.

If you observe prolonged, sustained errors in your requests, it may indicate an issue with
the service. As a general rule, if you see an overall failure rate of 1% or more over the last
15 minutes, it's an appropriate time to escalate the issue to the Amazon Support team. See,
DynamoDB Service Level Agreement to learn more.

When opening a case with the Amazon Support team, provide the following details to help
expedite the troubleshooting process:

• Impacted DDB; tables or secondary indexes

• Time window when the errors were observed

• DynamoDB request IDs, such as
4KBNVRGD25RG1KEO9UT4V3FQDJVV4KQNSO5AEMVJF66Q9ASUAAJG, which you can find in
your application logs.

Including these details in the support case will help the Amazon team understand the problem
and provide a faster resolution. If you don't have the request IDs, you should still log the case
with the other available details.

Minimizing the impact from internal server errors

If internal server errors happen when using DynamoDB, minimize the impact of these on your
application, consider the following best practices:

• Use backoffs and retries – DynamoDB's default SDK behaviors are designed to find the right
balance for most applications in terms of back-off and retry strategy. However, you can

Minimizing the impact from internal server errors API Version 2012-08-10 3459

https://health.aws.amazon.com/health/status
https://aws.amazon.com/dynamodb/sla/

Amazon DynamoDB Developer Guide

adjust these settings based on your application's tolerance for downtime and performance
requirements. Learn more about back-offs and retries to understand how you can fine-tune these
retry settings.

• Use eventually consistent reads – If your application doesn't require strongly consistent
reads, consider using eventually consistent reads. These reads are lower cost and less likely to
experience transient issues due to internal server errors as it would be served from any of the
available Storage Nodes. For more information, see DynamoDB read consistency.

Improving operational awareness

Maintaining high availability and reliability of your applications is crucial in today's digital
landscape. One key aspect of this is proactively monitoring for internal server errors (ISEs) in
your DynamoDB tables and global secondary indexes (GSIs). By creating CloudWatch alarms to
monitor these errors, you can gain better operational awareness and be alerted to potential issues
before they impact your end-users. This approach aligns with the Operational Excellence pillar
of the Amazon Well-Architected Framework, ensuring your DynamoDB workload is optimized for
performance, security, and reliability.

Creating CloudWatch alarms

You should have CloudWatch alarms set on your DynamoDB tables to receive notifications for
consistently high numbers of internal server errors instead of observing the metrics manually. This
ties with the operational excellence pillar of the Well-Architected framework for any workload on
Amazon. See Using the DynamoDB Well-Architected Lens to optimize your DynamoDB workload to
learn more about Well-Architecting your DynamoDB tables.

These alarms use custom metric math to calculate the failed request percentage for a 5-minute
window. The recommended best practice is to configure the alarm to enter the ALARM state when
3 consecutive data points breach the 1% threshold, which means that overall 1% of requests fail
within a 15-minute period.

The sample below is a Amazon CloudFormation template that can help you create CloudWatch
alarms on your table and GSI on the table.

AWSTemplateFormatVersion: "2010-09-09"
Description: Sample template for monitoring DynamoDB
Parameters:
 DynamoDBProvisionedTableName:
 Description: Name of DynamoDB Provisioned Table to create

Improving operational awareness API Version 2012-08-10 3460

Amazon DynamoDB Developer Guide

 Type: String
 MinLength: 3
 MaxLength: 255
 ConstraintDescription : https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/Limits.html#limits-naming-rules
 DynamoDBSNSEmail:
 Description : Email Address subscribed to newly created SNS Topic
 Type: String
 AllowedPattern: "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$"
 MinLength: 1
 MaxLength: 255

Resources:
 DynamoDBMonitoringSNSTopic:
 Type: AWS::SNS::Topic
 Properties:
 DisplayName: DynamoDB Monitoring SNS Topic
 Subscription:
 - Endpoint: !Ref DynamoDBSNSEmail
 Protocol: email
 TopicName: dynamodb-monitoring

 DynamoDBTableSystemErrorAlarm:
 Type: 'AWS::CloudWatch::Alarm'
 Properties:
 AlarmName: 'DynamoDBTableSystemErrorAlarm'
 AlarmDescription: 'Alarm when system errors exceed 1% of total number of requests
 for 15 minutes'
 AlarmActions:
 - !Ref DynamoDBMonitoringSNSTopic
 Metrics:
 - Id: 'e1'
 Expression: 'm1/(m1+m2+m3)'
 Label: SystemErrorsOverTotalRequests
 - Id: 'm1'
 MetricStat:
 Metric:
 Namespace: 'AWS/DynamoDB'
 MetricName: 'SystemErrors'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 Period: 300
 Stat: 'SampleCount'

Improving operational awareness API Version 2012-08-10 3461

Amazon DynamoDB Developer Guide

 Unit: 'Count'
 ReturnData: False
 - Id: 'm2'
 MetricStat:
 Metric:
 Namespace: 'AWS/DynamoDB'
 MetricName: 'ConsumedReadCapacityUnits'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 Period: 300
 Stat: 'SampleCount'
 Unit: 'Count'
 ReturnData: False
 - Id: 'm3'
 MetricStat:
 Metric:
 Namespace: 'AWS/DynamoDB'
 MetricName: 'ConsumedWriteCapacityUnits'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 Period: 300
 Stat: 'SampleCount'
 Unit: 'Count'
 ReturnData: False
 EvaluationPeriods: 3
 Threshold: 1.0
 ComparisonOperator: 'GreaterThanThreshold'
 DynamoDBGSISystemErrorAlarm:
 Type: 'AWS::CloudWatch::Alarm'
 Properties:
 AlarmName: 'DynamoDBGSISystemErrorAlarm'
 AlarmDescription: 'Alarm when GSI system errors exceed 2% of total number of
 requests for 15 minutes'
 AlarmActions:
 - !Ref DynamoDBMonitoringSNSTopic
 Metrics:
 - Id: 'e1'
 Expression: 'm1/(m1+m2+m3)'
 Label: GSISystemErrorsOverTotalRequests
 - Id: 'm1'
 MetricStat:
 Metric:

Improving operational awareness API Version 2012-08-10 3462

Amazon DynamoDB Developer Guide

 Namespace: 'AWS/DynamoDB'
 MetricName: 'SystemErrors'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 - Name: 'GlobalSecondaryIndexName'
 Value: !Join ['-', [!Ref DynamoDBProvisionedTableName, 'gsi1']]
 Period: 300
 Stat: 'SampleCount'
 Unit: 'Count'
 ReturnData: False
 - Id: 'm2'
 MetricStat:
 Metric:
 Namespace: 'AWS/DynamoDB'
 MetricName: 'ConsumedReadCapacityUnits'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 - Name: 'GlobalSecondaryIndexName'
 Value: !Join ['-', [!Ref DynamoDBProvisionedTableName, 'gsi1']]
 Period: 300
 Stat: 'SampleCount'
 Unit: 'Count'
 ReturnData: False
 - Id: 'm3'
 MetricStat:
 Metric:
 Namespace: 'AWS/DynamoDB'
 MetricName: 'ConsumedWriteCapacityUnits'
 Dimensions:
 - Name: 'TableName'
 Value: !Ref DynamoDBProvisionedTableName
 - Name: 'GlobalSecondaryIndexName'
 Value: !Join ['-', [!Ref DynamoDBProvisionedTableName, 'gsi1']]
 Period: 300
 Stat: 'SampleCount'
 Unit: 'Count'
 ReturnData: False
 EvaluationPeriods: 3
 Threshold: 1.0
 ComparisonOperator: 'GreaterThanThreshold'

Improving operational awareness API Version 2012-08-10 3463

Amazon DynamoDB Developer Guide

Troubleshooting latency issues in Amazon DynamoDB

If your workload appears to experience high latency, you can analyze the CloudWatch
SuccessfulRequestLatency metric, and check the average latency and median latency through
percentile metrics (p50) to see if it’s related to DynamoDB. Some variability in the reported
SuccessfulRequestLatency is normal, and occasional spikes (particularly in the Maximum
statistic and high percentiles) should not be cause for concern. However, if the Average statistic
or p50 (median) shows a sharp increase and persists, you should check the Amazon Service Health
Dashboard and your Personal Health Dashboard for more information. Some possible causes
include the size of the item in your table (a 1 KB item and a 400 KB item will vary in latency) or the
size of the query (10 items versus 100 items).

The percentile metrics (p99, p90, etc.) can help you better understand your latency distribution. For
example:

• p50 (median) shows the typical latency for your workload.

• p90 shows that 90 percent of requests are faster than this value.

• p99 helps identify the worst-case latency affecting 1 percent of requests.

High p99 values with normal p50 values might indicate sporadic issues affecting a small portion of
requests, while consistently elevated p50 values might suggest some performance degradation.

Note

To analyze custom percentile values (such as p99.9), you can manually enter the desired
percentile (e.g., p99.9) in the CloudWatch metric statistic field. This allows you to evaluate
latency distributions beyond the default percentiles listed in the dropdown.

Some variation in latency metrics, particularly in higher percentiles, is expected and can be seen
as a result of DynamoDB-driven background operations that help maintain high availability and
durability for your data stored in DynamoDB tables or transient infrastructure issues.

If necessary, consider opening a support case with Amazon Web Services Support, and continue to
assess any available fall-back options for your application (such as evacuation of a Region if you
have a multi-Region architecture) according to your runbooks. You should log request IDs for slow
requests for providing these IDs to Amazon Web Services Support when you open a support case.

Latency API Version 2012-08-10 3464

Amazon DynamoDB Developer Guide

The SuccessfulRequestLatency metric only measures latency which is internal to the
DynamoDB service — client side activity and network trip times are not included. To learn more
about overall latency for calls from your client to the DynamoDB service, you can enable latency
metric logging in your Amazon SDK.

Note

For most singleton operations (operations which apply to a single item by fully
specifying the primary key's value), DynamoDB delivers single-digit millisecond Average
SuccessfulRequestLatency. This value does not include the transport overhead for
the caller code accessing the DynamoDB endpoint. For multi-item data operations, the
latency will vary based on factors such as size of the result set, the complexity of the data
structures returned, and any condition expressions and filter expressions applied. For
repeated multi-item operations to the same data set with the same parameters, DynamoDB
will provide highly consistent Average SuccessfulRequestLatency.

Consider one or more of the following strategies to reduce latency:

• Reuse connections: DynamoDB requests are made via an authenticated session over HTTPS by
default. Initiating the connection requires multiple round-trips and takes time so the latency
of the first request is higher than following requests that reuse the connection. Requests over
an already initialized connection deliver DynamoDB's consistent low latency. To avoid the
latency overhead of establishing new connections, you may want to implement a "keep-alive"
mechanism by sending a GetItem request every 30 seconds if no other requests are made.

• Use eventually consistent reads: If your application doesn't require strongly consistent reads,
consider using the default eventually consistent reads. Eventually consistent reads have lower
cost and can come from multiple availability zones, allowing selection of an availability zone co-
located to the requester which decreases latency. For more information, see DynamoDB read
consistency.

• Implement request hedging: For very low p99 latency requirements, consider implementing
request hedging. With request hedging, if the initial request doesn't receive a response quickly
enough, send a second equivalent request and let them race, first response wins. This improves
tail latency at the cost of some extra requests. You can decide how long to wait before sending
the second request. Hedging is easier for reads. For writes, use timestamp-based ordering to
ensure hedged requests are treated as occurring at the time of the first attempt, preventing out-

Latency API Version 2012-08-10 3465

Amazon DynamoDB Developer Guide

of-order updates. This approach has been discussed in Timestamp writes for write hedging in
Amazon DynamoDB.

• Adjust request timeout and retry behavior: The path from your client to DynamoDB traverses
many components, each designed with redundancy in mind. Consider the following aspects:

• Network resiliency

• TCP packet timeouts

• DynamoDB's distributed architecture

Default SDK behaviors are optimized for most applications. However, you can implement a fail-
fast strategy and adjust timeout settings. Requests taking significantly longer than normal are
less likely to ultimately succeed. By failing fast and retrying, you may quickly succeed through a
different path. This is similar to request hedging but ends the first request instead of allowing it
to proceed.

Avoid setting timeout values too low. Overly low timeouts can lead to client-induced availability
issues. For example, a 50-millisecond socket timeout could cause connection errors during
network latency spikes, such as when approaching Amazon EC2 instance bandwidth limits for
single-flow traffic. Carefully weigh the benefits of lower timeouts against potential risks to
application availability, and prefer hedging to short timeouts.

For a helpful discussion on this topic, see Tuning Amazon Java SDK HTTP request settings for
latency-aware Amazon DynamoDB applications.

• Reduce the distance between the client and DynamoDB endpoint: If you have globally
dispersed users, consider using Global tables - multi-active, multi-Region replication. With global
tables, you can replicate your table to specified Amazon Regions where you want the table to
be available. You can place a copy of the data closer to the end user to reduce network latency
during read and write operations. For more information about using DynamoDB global tables
effectively, see Using Amazon DynamoDB global tables in Amazon Prescriptive Guidance.

• Use caching: If your traffic is read heavy, consider using one of these caching services:

• DynamoDB Accelerator (DAX): A fully managed, highly available, in-memory cache for
DynamoDB that delivers up to a 10x performance improvement, from milliseconds to
microseconds, even at millions of requests per second. For more information about DAX, see
In-memory acceleration with DynamoDB Accelerator (DAX):

• Amazon ElastiCache: A fully managed, in-memory caching service that can be integrated with
DynamoDB to improve read performance using the cache-aside pattern. For more information,

Latency API Version 2012-08-10 3466

https://amazonaws-china.com/blogs/database/timestamp-writes-for-write-hedging-in-amazon-dynamodb
https://amazonaws-china.com/blogs/database/timestamp-writes-for-write-hedging-in-amazon-dynamodb
https://amazonaws-china.com/blogs/database/tuning-aws-java-sdk-http-request-settings-for-latency-aware-amazon-dynamodb-applications/
https://amazonaws-china.com/blogs/database/tuning-aws-java-sdk-http-request-settings-for-latency-aware-amazon-dynamodb-applications/
https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-global-tables/introduction.html

Amazon DynamoDB Developer Guide

see Integrating Amazon DynamoDB and Amazon ElastiCache by using read-through caching in
Amazon Prescriptive Guidance.

Troubleshooting throttling in Amazon DynamoDB

DynamoDB implements throttling for two primary purposes: maintaining overall service
performance and cost control. Throttling either serves as an intentional safeguard that prevents
performance degradation when consumption rates exceed capacity or as a cost control mechanism
when you reach maximum throughput or service quota limits. When throttling occurs, DynamoDB
returns specific exceptions with detailed information about why the request was throttled and
which resource was impacted. Each reason for throttling corresponds to specific CloudWatch
metrics that provide additional insights into the frequency and patterns of throttling events.

The following diagram illustrates the four primary scenarios where DynamoDB implements
protective throttling:

1. Key range throughput exceeded (in both modes):

Consumption directed at specific partitions exceeds the internal partition-level throughput
limits.

2. Provisioned throughput exceeded (in provisioned mode):

Consumption exceeds the provisioned capacity units (read or write) configured for a table or a
global secondary index (GSI).

3. Account-level service quotas exceeded (in on-demand mode):

Consumption causes a table or GSI to exceed the per-table account-level service quotas
for read/write throughput in the current Amazon Region. These quotas serve as backstop
safeguards and can be increased.

4. On-demand maximum throughput exceeded (in on-demand mode):

Consumption exceeds the configured maximum throughput limits set for a table or GSI. These
are limits you configure specifically for cost control purposes.

Throttling API Version 2012-08-10 3467

https://docs.amazonaws.cn/prescriptive-guidance/latest/dynamodb-elasticache-integration/introduction.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#default-limits-throughput

Amazon DynamoDB Developer Guide

This guide is organized to help you understand and work with throttling in DynamoDB. First, we
help you identify the specific type of throttling affecting your workload through a diagnostic
framework.

Then, the resolution guide section offers specific guidance for each throttling scenario, including
CloudWatch metrics to monitor for detection and analysis, and recommended steps for
optimization. By following this structured approach, you can better diagnose the root cause of
throttling and implement the appropriate solution to ensure your DynamoDB tables operate
efficiently.

To get started, follow the section called “Diagnosing throttling” to learn how to identify which type
of throttling is affecting your workload and implement the recommended resolution strategy.

Topics

• Diagnosing throttling

• DynamoDB throttling resolution guide

• Understanding Global Secondary Index (GSI) write throttling and back pressure in DynamoDB

• CloudWatch throttling metrics

Throttling API Version 2012-08-10 3468

Amazon DynamoDB Developer Guide

Diagnosing throttling

When your application experiences throttling, DynamoDB provides detailed exception information
and targeted CloudWatch metrics to help you diagnose these events.

This section presents a systematic approach to understanding throttling events in your DynamoDB
applications. It shows how to interpret throttling exceptions, correlate them with CloudWatch
metrics for deeper insights, and understand what changes would reduce throttling in your
DynamoDB applications.

Understanding throttling exceptions

When DynamoDB throttles a request, it returns specific exceptions with detailed diagnostic
information. For example, in Java, these include ProvisionedThroughputExceededException,
RequestLimitExceeded, or ThrottlingException.

Each exception includes ThrottlingReasons, a collection of individual ThrottlingReason
containing two key fields to help you identify and understand the throttling:

• A reason - A concatenated field following the format
<ResourceType><OperationType><LimitType>

• A resource ARN - The Amazon Resource Name (ARN) of the affected table or index

The reason field follows a consistent patern that helps you understand exactly what's happening:

• ResourceType (What is being throttled): Table or Index

• OperationType (What kind of operation): Read or Write

• LimitType (Why the throttling occurred):

• KeyRangeThroughputExceeded: This occurs when a specific partition backing your table
or index has consumed read or write capacity exceeding the internal per-partition throughput
limits.

• ProvisionedThroughputExceeded: This happens on a provisioned table or global
secondary index when the read or write consumption rate has exceeded the provisioned
amount.

• AccountLimitExceeded: This happens on an on-demand table or index when the read
or write consumption rate has exceeded the maximum consumption rate for a table and its
indexes as set at the account level. You can request a raise in this quota.

Diagnosing throttling API Version 2012-08-10 3469

Amazon DynamoDB Developer Guide

• MaxOnDemandThroughputExceeded: This happens on an on-demand table or index when
the read or write consumption rate has exceeded the user-provided maximum consumption
rate configured for the table or index. You can raise this value yourself to any value up to the
account limit or set to -1 to indicate no user-provided limit.

The resource ARN identifies exactly which table or index is being throttled:

• For tables: arn:aws:dynamodb:[region]:[account-id]:table/[table-name]

• For indexes: arn:aws:dynamodb:[region]:[account-id]:table/[table-name]/
index/[index-name]

Examples of complete throttling reasons:

• TableReadProvisionedThroughputExceeded

• IndexWriteAccountLimitExceeded

This helps identify exactly what resource is being throttled, what type of operation caused it, and
why the throttling occurred.

Example exceptions

Example 1: Provisioned capacity exceeded on a GSI

{
 "ThrottlingReasons": [
 {
 "reason": "IndexWriteProvisionedThroughputExceeded",
 "resource": "arn:aws:dynamodb:us-west-2:123456789012:table/CustomerOrders/
index/OrderDateIndex"
 }
],
 "awsErrorDetails": {
 "errorCode": "ProvisionedThroughputExceeded",
 "errorMessage": "The level of configured provisioned throughput for the index
 was exceeded",
 "serviceName": "DynamoDB",
 "sdkHttpResponse": {
 "statusText": "Bad Request",
 "statusCode": 400

Diagnosing throttling API Version 2012-08-10 3470

Amazon DynamoDB Developer Guide

 }
 }
}

In this example, the application receives a ProvisionedThroughputExceededException with
the reason IndexWriteProvisionedThroughputExceeded. Writes to the OrderDateIndex
are being throttled because the write consumption has exceeded the GSI's configured provisioned
write capacity.

Example 2: On-demand maximum throughput exceeded

{
 "ThrottlingReasons": [
 {
 "reason": "TableReadMaxOnDemandThroughputExceeded",
 "resource": "arn:aws:dynamodb:us-east-1:123456789012:table/UserSessions"
 }
],
 "awsErrorDetails": {
 "errorMessage": "Throughput exceeds the maximum OnDemandThroughput configured
 on table or index",
 "errorCode": "ThrottlingException",
 "serviceName": "DynamoDB",
 "sdkHttpResponse": {
 "statusText": "Bad Request",
 "statusCode": 400
 }
 }
}

In this example, reads from the UserSessions table are being throttled because they exceed the
configured maximum on-demand throughput limit on the table.

DynamoDB throttling diagnosis framework

When your application encounters throttling, follow these steps to diagnose and resolve the issue.

Step 1 - Analyze the ThrottlingReason details

1. Check the reason field to identify the specific reason for throttling. The reason details the type
of resource throttled (table or index), the type of operation causing the throttling event (read or
write), and the limit type that was exceeded (partition, provisioned throughput, account limit).

Diagnosing throttling API Version 2012-08-10 3471

Amazon DynamoDB Developer Guide

2. Check the resourceArn field to identify which resource (table or GSI) is being throttled.

3. Use this combined information to understand the full context of the throttling issue.

For example, consider this scenario where you receive the following exception
ProvisionedThroughputExceededException with a throttling reason
TableWriteKeyRangeThroughputExceeded. The impacted resourceARN is
arn:aws:dynamodb:us-west-2:123456789012:table/CustomerOrders.

This combination informs you that write operations to your CustomerOrders table are being
throttled. The throttling is occurring at the partition level (not the table level, which would show
as TableWriteProvisionedThroughputExceeded). The root cause is that you've exceeded
the maximum throughput capacity for a specific partition key value or range, indicating a hot
partition issue.

Understanding this relationship between the exception elements helps you implement the
appropriate mitigation strategy - in this case, addressing the hot partition rather than increasing
the table's overall provisioned capacity.

Step 2 - Identify and analyze the related CloudWatch metrics

1. Identify your metrics: Each throttling reason in DynamoDB directly corresponds to specific
CloudWatch metrics that you can monitor to track and analyze throttling events. You can
systematically derive the appropriate CloudWatch metric names from the throttling reason.

2. Match your throttling reason to the corresponding CloudWatch metrics using this reference
table:

Complete throttling reasons and CloudWatch metrics reference

Category Throttling reason Primary CloudWatch metrics

TableReadProvision
edThroughputExceed
ed

ReadProvisionedThroughputThrottleEventsProvisioned capacity
exceeded

TableWriteProvisio
nedThroughputExcee
ded

WriteProvisionedThroughputThrottleEvents

Diagnosing throttling API Version 2012-08-10 3472

Amazon DynamoDB Developer Guide

Category Throttling reason Primary CloudWatch metrics

IndexReadProvision
edThroughputExceed
ed

ReadProvisionedThroughputThrottleEvents
(GSI)

IndexWriteProvisio
nedThroughputExcee
ded

WriteProvisionedThroughputThrottleEvents
(GSI)

TableRead
KeyRangeT
hroughputExceeded

ReadKeyRangeThroughputThrottleEvents

TableWriteKeyRange
ThroughputExceeded

WriteKeyRangeThroughputThrottleEvents

IndexRead
KeyRangeT
hroughputExceeded

ReadKeyRangeThroughputThrottleEvents
(GSI)

Partition limits
exceeded

IndexWriteKeyRange
ThroughputExceeded

WriteKeyRangeThroughputThrottleEvents
(GSI)

TableRead
MaxOnDema
ndThrough
putExceeded

ReadMaxOnDemandThroughputThrottleEve
nts

TableWrit
eMaxOnDem
andThroughputExcee
ded

WriteMaxOnDemandThroughputThrottleEv
ents

On-demand
maximum exceeded

IndexRead
MaxOnDema
ndThrough
putExceeded

ReadMaxOnDemandThroughputThrottleEve
nts (GSI)

Diagnosing throttling API Version 2012-08-10 3473

Amazon DynamoDB Developer Guide

Category Throttling reason Primary CloudWatch metrics

IndexWrit
eMaxOnDem
andThroughputExcee
ded

WriteMaxOnDemandThroughputThrottleEv
ents (GSI)

TableReadAccountLi
mitExceeded

ReadAccountLimitThrottleEvents

TableWriteAccountL
imitExceeded

WriteAccountLimitThrottleEvents

IndexReadAccountLi
mitExceeded

ReadAccountLimitThrottleEvents (GSIs)

Account limits
exceeded

IndexWriteAccountL
imitExceeded

WriteAccountLimitThrottleEvents (GSIs)

For example, if you received IndexWriteProvisionedThroughputExceeded, at a minimum,
you should monitor the WriteProvisionedThroughputThrottleEvents CloudWatch
metric for the specific index identified in the ResourceArn.

3. Monitor these metrics in CloudWatch to understand the frequency and timing of the throttling
events, differentiate between read and write throttling, identify time patterns when throttling
increases, and track your capacity utilization trends.

DynamoDB publishes detailed metrics for each table and global secondary index. The metrics
(ReadThrottleEvents, WriteThrottleEvents, and ThrottledRequests) aggregate all
throttling events across your table and its indexes.

Step 3 - Identify your throttled keys and high access rates using CloudWatch Contributor
Insights (for partition-related throttling)

If you identified partition-related issues in Step 1 (such as KeyRangeThroughputExceeded
errors), CloudWatch Contributor Insights for DynamoDB can help you diagnose which specific keys
are driving your traffic and experiencing throttling events in your table or index.

Diagnosing throttling API Version 2012-08-10 3474

Amazon DynamoDB Developer Guide

1. Enable CloudWatch Contributor Insights for your throttled table or index based on your
ResourceARN.

You can choose the Throttled keys mode to focus exclusively on the most throttled keys. This
mode is ideal for continuous monitoring as it only processes events when throttling occurs.
Alternatively, the Accessed and throttled keys mode helps you look for patterns in your most
accessed keys.

2. Analyze the reports to identify problematic patterns. Look for keys with disproportionately high
access or throttling rates, correlate throttling and traffic patterns. You can create integrated
dashboards combining Contributor Insights graphs and DynamoDB CloudWatch metrics.

For detailed information about enabling and using CloudWatch Contributor Insights, see Using
CloudWatch Contributor Insights for DynamoDB.

Step 4 - Determine the appropriate solution

After diagnosing the specific cause of throttling, implement recommended solution based on
your specific context. The appropriate solution depends on multiple factors, including your
throttling scenario, table's capacity mode, table and key design decisions, access patterns and
query efficiency, global and secondary index configuration, and overall system architecture and
integration points.

For detailed solutions to address your specific throttling scenarios, see the the section called
“Resolution guide” section. This resource provides targeted remediation strategies customized to
your particular throttling reason and capacity mode configuration.

Step 5 - Monitor your progress

1. Track your CloudWatch metrics that correspond to your throttling scenario.

2. Validate that your mitigation strategies are effective by observing a decrease in throttling
events.

DynamoDB throttling resolution guide

This section provides targeted resolution guidance for each specific throttling reason that
DynamoDB may return. Each entry includes suggested resolution approaches based on best
practices and corresponding CloudWatch metrics to monitor.

Resolution guide API Version 2012-08-10 3475

Amazon DynamoDB Developer Guide

DynamoDB implements 16 distinct throttling reasons across four main categories. Use the
throttling reasons from your application's exception to navigate directly to the relevant guidance.

Key range throughput exceeded (hot partitions)

These throttling reasons occur when individual partitions exceed their throughput limits, affecting
both provisioned and on-demand modes:

• TableReadKeyRangeThroughputExceeded

• TableWriteKeyRangeThroughputExceeded

• IndexReadKeyRangeThroughputExceeded

• IndexWriteKeyRangeThroughputExceeded

Provisioned throughput exceeded

These throttling reasons occur when consumption rates exceed provisioned capacity limits in
provisioned mode:

• TableReadProvisionedThroughputExceeded

• TableWriteProvisionedThroughputExceeded

• IndexReadProvisionedThroughputExceeded

• IndexWriteProvisionedThroughputExceeded

Account limits exceeded

These throttling reasons occur when consumption rates exceed account-level throughput quotas in
your Amazon Region:

• TableReadAccountLimitExceeded

• TableWriteAccountLimitExceeded

• IndexReadAccountLimitExceeded

• IndexWriteAccountLimitExceeded

Resolution guide API Version 2012-08-10 3476

Amazon DynamoDB Developer Guide

On-demand maximum throughput exceeded

These throttling reasons occur when consumption rates exceed configured maximum throughput
limits in on-demand mode:

• TableReadMaxOnDemandThroughputExceeded

• TableWriteMaxOnDemandThroughputExceeded

• IndexReadMaxOnDemandThroughputExceeded

• IndexWriteMaxOnDemandThroughputExceeded

1- Key range throughput exceeded (hot partitions)

Amazon DynamoDB enforces specific throughput limits at the partition level for both table and
global secondary index (GSI). Each partition has a maximum number of read capacity units (RCUs)
and write capacity units (WCUs) per second. When partitions receive concentrated traffic that
exceeds these limits, they experience throttling while other operations may remain underutilized,
creating "hot partitions." DynamoDB's partition-level throttling operates independently for reads
and writes - a partition may throttle reads while writes continue normally, or vice versa. This
throttling can occur even when your table or GSI has sufficient overall capacity. To learn more
about:

• DynamoDB partition limits and effective partition key design addressing hot partition
prevention, see Best practices for designing and using partition keys effectively in DynamoDB.

• General partition concepts and data distribution, see Partitions in DynamoDB.

• Additional guidance and real-world scenarios for managing partition keys and throughput, see
the section called “Additional resources”.

When individual partitions exceed their throughput limits, DynamoDB returns a
KeyRangeThroughputExceeded throttling reason type in the throttling exception. The
information identifies that a partition is experiencing high traffic and which operation type (read or
write) is causing the issue.

Key range throughput exceeded mitigation measures

This section provides resolution guidance for partition-level throttling scenarios. Before using
this guide, ensure you have identified the specific throttling reasons from your application's
exception handling, and determined the Amazon Resource Name (ARN) of the affected resource.

Resolution guide API Version 2012-08-10 3477

Amazon DynamoDB Developer Guide

For information on retrieving throttling reasons and identifying throttled resources, see the section
called “Diagnosis framework”.

Before diving into specific throttling scenarios, first, check if the problem resolves automatically:

• DynamoDB often adapts to hot partitions through its automatic split-for-heat mechanism. If
you see throttling events that stop after a short period, your table may have already adapted by
splitting the hot partition. When partitions split, each new partition handles a smaller section of
the keyspace, which can help distribute the load more evenly. In many cases, no further action is
needed as DynamoDB has automatically resolved the issue.

For more information about the split-for-heat mechanism, see the section called “Additional
resources”.

If the throttling persists, refer to the specific throttling scenarios below for targeted remediation
options:

• the section called “TableReadKeyRangeThroughputExceeded”

• the section called “TableWriteKeyRangeThroughputExceeded”

• the section called “IndexReadKeyRangeThroughputExceeded”

• the section called “IndexWriteKeyRangeThroughputExceeded”

TableReadKeyRangeThroughputExceeded

When this occurs

The consumption rate of one or more partitions in your DynamoDB table exceeds the partition's
read throughput limit. This throttling occurs regardless of your table's total provisioned capacity
and affects both provisioned and on-demand tables. You can monitor the CloudWatch metrics in
the section called “Common diagnosis and monitoring” to analyze your throttling event.

Remediation options

Consider these steps to address your throttling events:

For both provisioned and on-demand modes:

• Pre-warm capacity: If throttling persists, check if your table is limited by its the section called
“Warm throughput” capacity. Use warm throughput or increase read provisioned capacity in

Resolution guide API Version 2012-08-10 3478

Amazon DynamoDB Developer Guide

advance for expected traffic increases. Increasing warm throughput improves your table's ability
to handle sudden traffic spikes before throttling occurs. Over time, if your actual throughput
consistently approaches the warm throughput levels, DynamoDB may split busy partitions based
on observed usage patterns.

• Identify your hot keys: If the table didn't resolve it automatically and your warm throughput
is high or raising it didn't help, you'll need to identify specific hot keys. Use the section called
“Identifying hot keys using CloudWatch Contributor Insights” to determine if any particular
partition key values are hot. This is a first step to target your mitigation efforts effectively. Note
that identification may not always be straightforward, particularly with rolling hot partitions
(where different partitions become hot over time) or when throttling is triggered by operations
like scans. For these complex scenarios, you may need to analyze your application's access
patterns and correlate them with the timing of throttling events.

• Depending on your use case, consider using eventually consistent reads: Switch from strongly
consistent to eventually consistent reads, which consume half the RCUs and can immediately
double your effective read capacity. For best practices on implementing eventually consistent
reads to reduce read capacity consumption, see the section called “DynamoDB read consistency”.

• Improve partition key design: As a long-term solution, consider the section called “Improving
partition key design” to distribute access more evenly across partitions. This approach often
provides the most comprehensive resolution to hot partition issues by addressing the root cause.
However, it requires careful planning as it involves significant migration challenges.

TableWriteKeyRangeThroughputExceeded

When this occurs

The consumption rate of one or more partitions in your DynamoDB table exceeds the partition's
write throughput limit. This throttling occurs regardless of your table's total provisioned capacity
and affects both provisioned and on-demand tables. You can monitor the CloudWatch metrics in
the section called “Common diagnosis and monitoring” to analyze your throttling event.

Remediation options

Consider these steps to address your throttling events:

For both provisioned and on-demand modes:

• Pre-warm capacity: If throttling persists, check if your table is limited by its Understanding
DynamoDB warm throughput capacity. Use warm throughput or increase write provisioned

Resolution guide API Version 2012-08-10 3479

Amazon DynamoDB Developer Guide

capacity in advance for expected traffic increases. Increasing warm throughput improves your
table's ability to handle sudden traffic spikes before throttling occurs. Over time, if your actual
throughput consistently approaches the warm throughput levels, DynamoDB may split busy
partitions based on observed usage patterns.

• Identify your hot keys: If the table didn't resolve it automatically and your warm throughput
is high or raising it didn't help, you'll need to identify specific hot keys. Use the section called
“Identifying hot keys using CloudWatch Contributor Insights” to determine if any particular
partition key values are hot. This is a first step to target your mitigation efforts effectively.
Consider these common patterns:

• If you see the same partition key appearing frequently in your throttling data, this indicates a
concentrated hot key.

• If you do not see repeated keys but are writing data in an ordered way (such as sequential
timestamps or scan-based operations that follow keyspace order), you likely have rolling
hot partitions where different keys become hot over time as your writes move through the
keyspace.

Note that write throttling can also occur with operations like BatchWriteItem or transactions
that affect multiple items simultaneously. When individual items within a BatchWriteItem
request are throttled, DynamoDB does not propagate these throttling errors to the application
code. Instead, DynamoDB returns information about the unprocessed items in the response,
which your application must handle by retrying those specific items. For transactions, the entire
operation fails with a TransactionCanceledException if any item experiences throttling.
For these complex scenarios, you may need to analyze your application's write patterns and
data ingestion workflows, correlate them with the timing of throttling events, and implement
appropriate retry handling strategies.

• Improve partition key design: As a long-term solution, consider the section called “Improving
partition key design” to distribute access more evenly across partitions. This approach often
provides the most comprehensive resolution to hot partition issues by addressing the root cause.
However, it requires careful planning as it involves significant migration challenges.

IndexReadKeyRangeThroughputExceeded

When this occurs

The consumption rate of one or more partitions in your DynamoDB GSI exceeds the partition's
read throughput limit. This throttling occurs regardless of your GSI's total provisioned capacity and

Resolution guide API Version 2012-08-10 3480

Amazon DynamoDB Developer Guide

affects both provisioned and on-demand tables. You can monitor the CloudWatch metrics in the
section called “Common diagnosis and monitoring” to analyze your throttling event.

Remediation options

Consider these steps to address your throttling events:

• Pre-warm capacity: If throttling persists, check if your GSI is limited by its Understanding
DynamoDB warm throughput capacity. Use warm throughput or increase read provisioned
capacity in advance for expected traffic increases. Increasing warm throughput improves your
GSI's ability to handle sudden traffic spikes before throttling occurs. Over time, if your actual
throughput consistently approaches the warm throughput levels, DynamoDB may split busy
partitions based on observed usage patterns.

• Identify your hot keys: If the GSI didn't resolve it automatically and your warm throughput
is high or raising it didn't help, you'll need to identify specific hot keys. Use the section called
“Identifying hot keys using CloudWatch Contributor Insights” to determine if any particular
partition key values are hot. This is a first step to target your mitigation efforts effectively. Note
that for GSIs, the partition key distribution may differ significantly from your base table, creating
different hot key patterns.

• Redesign GSI partition keys: Consider whether your GSI key design might be creating artificial
hot spots (such as status flags, date-only keys, or boolean attributes) that concentrate reads on
a small number of partitions. Consider using composite keys that combine the low-cardinality
attribute with a high-cardinality attribute (e.g., "ACTIVE#customer123" instead of just "ACTIVE")
or apply the section called “Write sharding” techniques to the base table items that affect
GSI distribution to distribute writes across multiple partitions. While querying sharded data
requires additional application logic to aggregate results, this approach prevents throttling by
distributing access patterns more evenly.

IndexWriteKeyRangeThroughputExceeded

When this occurs

The consumption rate of one or more partitions in your DynamoDB GSI exceeds the partition's
write throughput limit. This throttling occurs regardless of your GSI's total provisioned capacity and
affects both provisioned and on-demand tables. You can monitor the CloudWatch metrics in the
section called “Common diagnosis and monitoring” to analyze your throttling event.

Remediation options

Resolution guide API Version 2012-08-10 3481

Amazon DynamoDB Developer Guide

Consider these steps to address your throttling events:

• Redesign GSI partition key: Review your GSI partition key design to verify it has sufficient
cardinality (uniqueness) to distribute writes evenly. A common cause of GSI write throttling
is using low-cardinality attributes as GSI partition keys (such as status flags with only a few
possible values). Even when your base table has well-distributed partition keys, your GSI can still
experience hot partitions if its partition key concentrates writes to a small number of values.
For example, if 80% of your items have status="ACTIVE", this creates a severe hot partition in a
status-based GSI. Consider using composite keys that combine the low-cardinality attribute with
a high-cardinality attribute (e.g., "ACTIVE#customer123" instead of just "ACTIVE") or apply the
section called “Write sharding” techniques to the base table items that affect GSI distribution
to distribute writes across multiple partitions. While querying sharded data requires additional
application logic to aggregate results, this approach prevents throttling by distributing access
patterns more evenly.

• Pre-warm capacity:Check if your GSI is limited by its Understanding DynamoDB warm
throughput capacity. Use warm throughput or increase read provisioned capacity in advance
for expected traffic increases. Increasing warm throughput improves your GSI's ability to handle
sudden traffic spikes before throttling occurs. Over time, if your actual throughput consistently
approaches the warm throughput levels, DynamoDB may split busy partitions based on observed
usage patterns.

• Optimize GSI projections: Apply the section called “Optimizing GSI projections” techniques
to reduce write volume to GSIs. Projecting fewer attributes can significantly reduce the write
capacity consumed by each GSI update.

Common diagnosis and monitoring

When troubleshooting partition-level throttling, several CloudWatch metrics can help identify hot
partitions and confirm the root cause.

Essential CloudWatch metrics

Monitor these key metrics to diagnose partition-level throttling:

• Partition-level throttling events: ReadKeyRangeThroughputThrottleEvents and
WriteKeyRangeThroughputThrottleEvents track when individual partitions exceed their
throughput limits. ReadThrottleEvents and WriteThrottleEvents track when any read or
write requests exceed the provisioned capacity.

Resolution guide API Version 2012-08-10 3482

https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadKeyRangeThroughputThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteKeyRangeThroughputThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteThrottleEvents

Amazon DynamoDB Developer Guide

• Capacity consumption: ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits
show overall usage patterns.

Resolution procedures

Identifying hot keys using CloudWatch Contributor Insights

Use this procedure to identify which partition keys are causing throttling.

1. Enable CloudWatch Contributor Insights on your table or GSI to track the most throttled
keys. Consider keeping CloudWatch Contributor Insights enabled continuously for real-time
throttling alerts by using the Throttled keys mode. This mode focuses exclusively on throttled
requests by only processing events when throttling occurs. This targeted monitoring is a cost
effective way to maintain continuous visibility into throttling issues.

2. Identify which keys are causing the hot partition issues.

3. (If the full Accessed and throttled keys mode is enabled) Analyze the access patterns over time
to determine if hot keys are consistent or occur during specific periods.

Improving partition key design

Use this approach when you can modify your table schema to better distribute traffic across
partitions. When possible, this is the most effective long-term solution for hot partition issues.
Ideally, partition key design should be carefully considered during the initial table design phase.

Partition key redesign represents a fundamental change to your data model that impacts your
entire application ecosystem. Before proceeding with this approach, carefully consider these
significant limitations:

• Data migration complexity: Redesigning partition keys requires migrating all existing data,
which can be resource-intensive and time-consuming for large tables.

• Application code changes: All application code that reads or writes to the table must be
updated to use the new key structure.

• Production impact: Migrating to a new key design often requires downtime or complex dual-
write strategies during transition.

For comprehensive guidance and principles on partition key design, see the section called
“Partition key design” and the section called “Distributing workloads”.

Resolution guide API Version 2012-08-10 3483

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedWriteCapacityUnits

Amazon DynamoDB Developer Guide

Optimizing GSI projections

Review your application's query patterns to determine exactly which attributes need to be available
when querying the GSI, and limit your projections to just those attributes. When you update
attributes that aren't projected into a GSI, no write operation occurs on that GSI, reducing write
throughput consumption during updates. This targeted projection strategy optimizes both
performance and cost while still supporting your application's query requirements. Note that
projecting fewer attributes reduces write capacity consumption but may require additional base
table reads.

For more information about efficient projection strategies, see Best Practices for Using Secondary
Indexes in DynamoDB.

Additional resources

The following blog posts provide hands-on examples and practical details for the concepts covered
in this guide:

• For hands-on guidance about scaling DynamoDB and managing hot partitions, see Part 1:
Scaling DynamoDB - How partitions, hot keys, and split for heat impact performance.

• For detailed information about how DynamoDB's split-for-heat mechanism works, its benefits,
and implementation details, see Part 3: Summary and best practices.

• For detailed write sharding strategies, see the section called “Write sharding”.

2- Provisioned throughput exceeded

Provisioned capacity throttling occurs when your application's consumption rate exceeds the
read or write capacity units (RCUs/WCUs) configured for your tables or global secondary indexes.
While DynamoDB provides burst capacity to handle occasional traffic spikes, sustained requests
beyond your provisioned limits result in throttling. When this happens, DynamoDB returns a
ProvisionedThroughputExceeded throttling reason type in the throttling exception. The
reason identifies whether the issue is with read or write operations and whether it affects the base
table or a global secondary index.

Throttling can occur regardless of whether Auto Scaling is enabled. Auto Scaling adapts to
increases in consumption, but it does not respond instantly and it is constrained by the maximum
capacity limits you configure. This means throttling can still occur during sudden traffic spikes or
when consumption exceeds your maximum Auto Scaling limits.

Resolution guide API Version 2012-08-10 3484

https://amazonaws-china.com/blogs/database/part-1-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://amazonaws-china.com/blogs/database/part-1-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://amazonaws-china.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/

Amazon DynamoDB Developer Guide

Provisioned throughput exceeded mitigation measures

This section provides resolution guidance for provisioned capacity throttling scenarios. Before
using this guide, ensure you have identified the specific throttling reason from your application's
exception handling, and determined the Amazon Resource Name (ARN) of the affected resource.
For information on retrieving throttling reasons and identifying throttled resources, see the section
called “Diagnosis framework”.

Before diving into specific throttling scenarios, first consider if the throttling is actually a problem
that needs resolution:

• Occasional throttling is normal and expected in well-optimized DynamoDB applications.
Throttling simply means you're consuming 100% of what you've provisioned. If your application
handles throttling gracefully with retries and your overall performance meets requirements, the
throttling may not require immediate action.

• However, if throttling is causing unacceptable client-side latency, degrading user experience,
or preventing critical operations from completing in a timely manner, then proceed with the
mitigation options below.

When you need to address throttling issues, first determine if your throttling is caused by:

• Temporary traffic spikes: Short-duration increases in traffic that exceed your provisioned
capacity but aren't sustained. These require different strategies than continuous high traffic.

• Continuous high traffic: Sustained workloads that consistently exceed your provisioned capacity.

For traffic spikes, consider the strategies from the Handle traffic spikes with Amazon DynamoDB
provisioned capacity blog in the section called “Additional resources”.

For continuous high traffic, consider the capacity adjustment options below:

• the section called “TableReadProvisionedThroughputExceeded”

• the section called “TableWriteProvisionedThroughputExceeded”

• the section called “IndexReadProvisionedThroughputExceeded”

• the section called “IndexWriteProvisionedThroughputExceeded”

Resolution guide API Version 2012-08-10 3485

Amazon DynamoDB Developer Guide

TableReadProvisionedThroughputExceeded

When this occurs

Your application's read consumption rate exceeds the provisioned read capacity units (RCUs)
configured for your table. You can monitor the CloudWatch metrics in the section called “Common
diagnosis and monitoring” to analyze your throttling event.

Resolution approach

Consider these strategies to resolve read capacity throttling:

• Switch to on-demand capacity mode: Consider switching your table to on-demand if you
experience frequent throttling from traffic spikes. On-demand eliminates provisioning concerns
and automatically scales with your workload.

• If staying with provisioned mode and Auto Scaling is not enabled:

• Consider increasing the table read capacity.

• Enable Auto Scaling for read capacity on your table.

• If Auto Scaling is enabled (default for tables created in the console):

• Optimize your table's read Auto Scaling parameters.

TableWriteProvisionedThroughputExceeded

When this occurs

Your application's write consumption rate exceeds the provisioned write capacity units (WCUs)
configured for your table. You can monitor the CloudWatch metrics in the section called “Common
diagnosis and monitoring” to analyze your throttling event.

Resolution approach

Consider these strategies to resolve write capacity throttling:

• Switch to on-demand capacity mode: Consider switching your table to on-demand if you
experience frequent throttling from traffic spikes. On-demand eliminates provisioning concerns
and automatically scales with your workload.

• If staying with provisioned mode and Auto Scaling is not enabled:

• Consider increasing the table write capacity.

Resolution guide API Version 2012-08-10 3486

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-ReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-WriteCapacityUnits

Amazon DynamoDB Developer Guide

• Enable Auto Scaling for write capacity on your table.

• If Auto Scaling is enabled (default for tables created in the console):

• Optimize your table's write Auto Scaling parameters.

IndexReadProvisionedThroughputExceeded

When this occurs

Read consumption on a Global Secondary Index (GSI) exceeds the GSI's provisioned read capacity
units (RCUs). You can monitor the CloudWatch metrics in the section called “Common diagnosis
and monitoring” to analyze your throttling event.

Resolution approach

Consider these strategies to resolve GSI read capacity throttling:

• Switch to on-demand capacity mode: Consider switching the base table to on-demand if you
experience frequent throttling from traffic spikes. On-demand eliminates provisioning concerns
and automatically scales with your workload.

• If staying with provisioned mode and Auto Scaling is not enabled:

• Consider increasing the GSI read capacity.

• Enable Auto Scaling for read capacity on your GSI.

• If Auto Scaling is enabled (default for tables created in the console):

• Optimize your GSI's read Auto Scaling parameters.

IndexWriteProvisionedThroughputExceeded

When this occurs

Updates to items in the base table trigger writes to a GSI that exceed the GSI's provisioned
write capacity. This causes back-pressure throttling on base table writes. You can monitor the
CloudWatch metrics in the section called “Common diagnosis and monitoring” to analyze your
throttling event.

Resolution approach

Consider these strategies to resolve GSI write capacity throttling:

Resolution guide API Version 2012-08-10 3487

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-ReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-ReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-WriteCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html#DDB-Type-ProvisionedThroughput-WriteCapacityUnits

Amazon DynamoDB Developer Guide

• Switch to on-demand capacity mode: Consider switching the base table to on-demand if you
experience frequent throttling from traffic spikes. On-demand eliminates provisioning concerns
and automatically scales with your workload.

• If staying with provisioned mode and Auto Scaling is not enabled:

• Consider increasing the GSI write capacity.

• Enable Auto Scaling for write capacity on your GSI.

• If Auto Scaling is enabled (default for tables created in the console):

• Optimize your GSI's write Auto Scaling parameters.

Common diagnosis and monitoring

When troubleshooting throughput errors, several CloudWatch metrics can help identify the root
cause.

Essential CloudWatch metrics

Monitor these key metrics to diagnose provisioned capacity throttling:

• Throttling events: ReadProvisionedThroughputThrottleEvents and
WriteProvisionedThroughputThrottleEvents track when requests are throttled for
this reason.ReadThrottleEvents and WriteThrottleEvents track when any read or write
requests exceed the provisioned capacity.

• Capacity consumption: ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits
show actual usage.

• Provisioned capacity: ProvisionedReadCapacityUnits and
ProvisionedWriteCapacityUnits show configured limits.

Resolution procedures

Increasing table throughput capacity

Use this procedure when Auto Scaling is not enabled and you need immediate capacity increase.

1. Update your table's provisioned capacity using the DynamoDB console, Amazon CLI, or SDK:

• For read capacity: Increase the ReadCapacityUnits parameter, which specifies the
maximum number of strongly consistent reads consumed per second before DynamoDB
throttles requests.

Resolution guide API Version 2012-08-10 3488

https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadProvisionedThroughputThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteProvisionedThroughputThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteThrottleEvents
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedWriteCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ProvisionedReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ProvisionedWriteCapacityUnits
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html

Amazon DynamoDB Developer Guide

• For write capacity: Increase the WriteCapacityUnits parameter, which specifies the
maximum number of writes consumed per second before DynamoDB throttles requests.

2. Verify that your new capacity settings don't exceed the per-table throughput quotas and that
your total account consumption remains below the per-account throughput quotas for your
Region. If you're approaching these limits, consider switching to on-demand capacity mode
instead.

Configuring table Auto Scaling to adjust the read or write capacity of your table or GSI

Configure DynamoDB Auto Scaling to automatically adjust read or write capacity based on traffic
patterns. You can configure Auto Scaling independently for both tables and GSIs, with separate
controls for read and write capacity units.

1. Enable Auto Scaling for read capacity, write capacity, or both on your table or GSI.

2. Set a target utilization percentage with headroom for traffic spikes.

Note

Lower target utilization increases costs and scaling frequency. Targets below 40% may
cause over-provisioning. Monitor usage patterns and costs to balance performance and
efficiency.

3. Set capacity boundaries:

• Minimum RCUs/WCUs: Maintains sufficient capacity during low-traffic periods.

• Maximum RCUs/WCUs: Accommodates peak traffic demands and protects against runaway
scaling events.

For guidance on configuring and managing DynamoDB Auto Scaling, see Managing throughput
capacity automatically with DynamoDB Auto Scaling.

Note

Auto Scaling typically takes several minutes to respond to traffic changes. For sudden
traffic spikes, your table's burst capacity provides immediate protection while Auto Scaling

Resolution guide API Version 2012-08-10 3489

https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_ProvisionedThroughput.html

Amazon DynamoDB Developer Guide

adjusts. Configure target utilization with adequate headroom to allow time for scaling
operations and to preserve burst capacity for unexpected demand.

Optimizing your table's or index's read or write Auto Scaling settings

Use this procedure when Auto Scaling is enabled but throttling still occurs. You can tune Auto
Scaling independently for both tables and global secondary indexes (GSIs), with separate controls
for read and write capacity units.

• Adjust target utilization: Consider lowering the target utilization for your table or GSIs to
trigger scaling earlier before throttling occurs. Ensure that you monitor your traffic after making
these adjustments. See the section called “Configuring table Auto Scaling to adjust the read or
write capacity of your table or GSI” for more information about capacity consumption and cost
implications.

• Review capacity boundaries: Ensure your minimum and maximum capacity settings align with
your actual workload patterns.

Switching to on-demand capacity mode

For general information about switching capacity modes, see the section called “Switching capacity
modes”. Refer to the Service Quotas to learn about specific constraints when switching mode.

Increasing GSI throughput capacity

Use this procedure when Auto Scaling is not enabled on your GSI or you need immediate capacity
increase.

1. Update the GSI's provisioned capacity using the DynamoDB console, Amazon CLI, or SDK:

• For read capacity: Increase the ReadCapacityUnits parameter for the specific GSI, which
specifies the maximum number of reads the GSI can consume per second before DynamoDB
throttles requests. Note that GSIs only support eventually consistent reads.

• For write capacity: Increase the WriteCapacityUnits parameter for the specific GSI,
which specifies the maximum number of writes the GSI can consume per second before
DynamoDB throttles requests.

2. Ensure that the GSI's provisioned throughput capacity remains within the per-account and per-
table throughput quotas.

Resolution guide API Version 2012-08-10 3490

https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_GlobalSecondaryIndexUpdate.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_GlobalSecondaryIndexUpdate.html

Amazon DynamoDB Developer Guide

Additional resources

• For detailed information about handling traffic spikes in DynamoDB provisioned capacity tables,
including various strategies from utilizing Auto Scaling and burst capacity to strategic throttle
management, see Handle traffic spikes with Amazon DynamoDB provisioned capacity.

• For information about how to use a cron expression to schedule a scaling policy, see Optimize
costs by scheduling provisioned capacity for DynamoDB.

• For hands-on information about monitoring and analyzing throughput utilization patterns for
your DynamoDB tables in provisioned capacity mode, see How to evaluate throughput utilization
for Amazon DynamoDB tables in provisioned mode.

3- Account limits exceeded

On-demand tables do not have provisioned capacity levels to manage, but DynamoDB enforces
account-level throughput limits to prevent runaway execution and ensure fair resource usage
across all customers. These per-table account limits serve as adjustable safeguards, set for each
account and Region combination. When your read or write consumption rate exceeds these limits,
DynamoDB returns an AccountLimitExceeded throttling reason type in the throttling exception.
The default per-table account limits automatically apply when tables do not have custom
maximum throughput settings configured. You can optionally configure maximum throughput
settings for finer cost control and predictability, or request quota increases through the the section
called “Quotas” console if your application requirements exceed the default limits.

Account limit exceeded mitigation measures

This section provides resolution guidance for account limit throttling scenarios. Before using
this guide, ensure you have identified the specific throttling reasons from your application's
exception handling, and determined the Amazon Resource Name (ARN) of the affected resource.
For information on retrieving throttling reasons and identifying throttled resources, see the section
called “Diagnosis framework”.

Before diving into specific throttling scenarios, first determine if action is actually needed:

• Evaluate performance impact: Check if your application is still meeting its performance
requirements despite the throttling. Many applications operate successfully at or near account
limits, particularly during bulk operations or data migrations.

• Review throttling patterns: If throttling is intermittent and your application handles retries
effectively, the current limits may be sufficient for your workload.

Resolution guide API Version 2012-08-10 3491

https://amazonaws-china.com/blogs//database/handle-traffic-spikes-with-amazon-dynamodb-provisioned-capacity/
https://amazonaws-china.com/blogs/database/optimize-costs-by-scheduling-provisioned-capacity-for-amazon-dynamodb/
https://amazonaws-china.com/blogs/database/optimize-costs-by-scheduling-provisioned-capacity-for-amazon-dynamodb/
https://amazonaws-china.com/blogs/database/how-to-evaluate-throughput-utilization-for-amazon-dynamodb-tables-in-provisioned-mode/
https://amazonaws-china.com/blogs/database/how-to-evaluate-throughput-utilization-for-amazon-dynamodb-tables-in-provisioned-mode/

Amazon DynamoDB Developer Guide

If your application performs acceptably even when occasionally hitting account limits, you might
choose to simply monitor the situation rather than implementing immediate changes.

If you determine that throttling is causing unacceptable performance issues or reliability concerns,
select a specific throttling reason below to find recommended mitigation options:

• the section called “TableReadAccountLimitExceeded”

• the section called “TableWriteAccountLimitExceeded”

• the section called “IndexReadAccountLimitExceeded”

• the section called “IndexWriteAccountLimitExceeded”

TableReadAccountLimitExceeded

When this occurs

Your table's read consumption has exceeded the account-level per-table read throughput quota
for your Region. You can monitor the CloudWatch metrics in the section called “Common diagnosis
and monitoring” to analyze your throttling event.

Resolution approach

Use the following steps to resolve this throttling:

• Request quota increases:

Request an increase to the per-table read throughput limit (Quota code L-CF0CBE56). For
detailed steps on how to submit the request, see Requesting per-table quota increases.

TableWriteAccountLimitExceeded

When this occurs

Your table's write consumption has exceeded the account-level per-table write throughput quota
for your Region. You can monitor the CloudWatch metrics in the section called “Common diagnosis
and monitoring” to analyze your throttling event.

Resolution approach

Use the following steps to resolve this throttling:

Resolution guide API Version 2012-08-10 3492

Amazon DynamoDB Developer Guide

• Request quota increases: Request an increase to the per-table write throughput limit (Quota
code L-AB614373). For detailed steps on how to submit the request, see Requesting per-table
quota increases.

IndexReadAccountLimitExceeded

When this occurs

The read operations directed at a Global Secondary Index (GSI) consume more throughput than
your account's per-table read quota allows in your current Amazon Region. The account-level per-
table read throughput quota applies collectively to a table and all its GSIs combined. You can
monitor the CloudWatch metrics in the section called “Common diagnosis and monitoring” to
analyze your throttling event.

Resolution approach

Choose the appropriate resolution based on your account's capacity distribution:

• Request quota increases: Request an increase to the per-table read throughput limit (Quota
code L-CF0CBE56). For detailed steps on how to submit the request, see Requesting per-table
quota increases.

• Optimize GSI usage: Review GSI design and query patterns to reduce unnecessary read capacity
consumption.

IndexWriteAccountLimitExceeded

When this occurs

Write operations to your base table generate corresponding updates to a GSI that collectively
exceed the account-level per-table write throughput quota for your Amazon Region. Every write to
a base table item that contains attributes indexed by a GSI trigger a corresponding write operation
to that GSI. These combined write operations count toward your per-table write throughput quota.
You can monitor the CloudWatch metrics in the section called “Common diagnosis and monitoring”
to analyze the patterns and timing of these throttling events and identify which operations are
causing the excessive GSI write activity.

Resolution approach

Choose the appropriate resolution based on your account's capacity distribution:

Resolution guide API Version 2012-08-10 3493

Amazon DynamoDB Developer Guide

• Request quota increases: Request an increase to the per-table write throughput limit (Quota
code L-AB614373) to accommodate higher GSI write traffic from base table operations. The per-
table write throughput quota applies to the entire table, including all of its GSIs. For detailed
steps on how to submit the request, see Requesting per-table quota increases.

• Optimize GSI projections: Review GSI projections and design to reduce write volume to GSIs.

Common diagnosis and monitoring

When troubleshooting account limit exceeded throttling events, several CloudWatch metrics can
help identify whether you're hitting per-table or account-wide limits and understand your capacity
distribution patterns.

Essential CloudWatch metrics

Monitor these key metrics to diagnose account limit throttling:

• Account limit throttling events: ReadAccountLimitThrottleEvents and
WriteAccountLimitThrottleEvents track when requests are throttled due to account-
level limits. ReadThrottleEvents and WriteThrottleEvents track when any read or write
requests exceed the provisioned capacity.

• Capacity consumption by resource: ConsumedReadCapacityUnits and
ConsumedWriteCapacityUnits for each table and GSI show individual resource usage.

• Account-wide consumption: Use CloudWatch metric math expressions to sum consumed
capacity across all tables and GSIs to monitor total account usage.

Resolution procedures

Requesting per-table quota increases

If your applications need to operate beyond the current per-table throughput limits, you should
submit a quota increase request using the procedure below. Each DynamoDB table in your Amazon
account (together with all its associated GSIs) is subject to these throughput quotas within a
specific Region. These quotas represent the maximum read or write capacity that any individual
table and its GSIs can collectively consume, and they apply independently to each table rather than
as an aggregate across all tables in your account.

Optionally, you can also set lower limits on a per-table or per-GSI basis by configuring their
maximum on-demand throughput settings.

Resolution guide API Version 2012-08-10 3494

https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadAccountLimitThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteAccountLimitThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteThrottleEvents
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedWriteCapacityUnits

Amazon DynamoDB Developer Guide

1. Identify the specific quota that needs to be increased:

• Per-table read throughput limit (Quota code L-CF0CBE56): Default 40,000 RCUs per table

• Per-table write throughput limit (Quota code L-AB614373): Default 40,000 WCUs per table

2. Use the Amazon Service Quotas console to request an increase:

• Navigate to the DynamoDB service in Service Quotas

• Find the appropriate quota using the quota code

• Request an increase based on your projected peak usage

3. Provide justification for the increase, including:

• Current usage patterns and peak traffic requirements

• Business justification for the increased capacity

• Timeline for when the increased capacity is needed

Note

Quota increases typically take 24-48 hours to process. Plan your requests accordingly and
consider temporary mitigation strategies while waiting for approval.

Optimizing GSI projections and design

Optimize your Global Secondary Index (GSI) projections and design to reduce capacity consumption
and improve performance.

Selective projection strategies

If your queries only need to access a few attributes, projecting only those attributes reduces the
amount of data written to the GSI when base table items change. For details on projection types,
see Projections for Global Secondary Indexes.

1. Analyze query patterns: Review your application's query patterns to identify which attributes
are actually accessed through the GSI.

2. Use selective projections: Only project attributes that are actually needed in queries to reduce
write volume.

Resolution guide API Version 2012-08-10 3495

https://docs.amazonaws.cn/servicequotas/latest/userguide/intro.html
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/GSI.html#GSI.Projections

Amazon DynamoDB Developer Guide

3. Consider KEYS_ONLY: If your queries only need the key attributes, use KEYS_ONLY projection
to minimize write volume.

4. Balance read vs. write trade-offs: Projecting fewer attributes reduces write capacity
consumption but may require additional base table reads.

Sparse GSI implementation

Sparse GSIs contain only items that have the indexed attribute, rather than all items from your
base table. This reduces partition density and improves performance when you frequently query
specific subsets of data.

1. Design GSIs that only include items with specific attribute values.

2. Implement conditional indexing by only setting the GSI partition key attribute on items that
should be indexed.

3. Use composite keys in sparse GSIs (e.g., status#timestamp) to further distribute traffic within
the subset of indexed items.

For more information about implementing these strategies, see Best Practices for Using Secondary
Indexes in DynamoDB.

4- On-demand maximum throughput exceeded

When you configure an on-demand table or GSI, you can optionally set a maximum throughput
limit (MaxReadRequestUnits and MaxWriteRequestUnits) at the table or index level to
prevent runaway costs or protect downstream systems from being overwhelmed. For more
information about maximum throughput, see the section called “DynamoDB maximum throughput
for on-demand tables”.

When your read or write consumption exceeds these self-imposed limits, additional requests
that would exceed the limit receive quick throttle responses. DynamoDB returns exceptions with
a MaxOnDemandThroughputExceeded throttling reason type, indicating which resource has
reached its throughput boundary.

On-demand maximum throughput exceeded throttling

This section provides resolution guidance for on-demand maximum throughput exceeded
throttling scenarios. Before using this guide, ensure you have identified the specific throttling

Resolution guide API Version 2012-08-10 3496

https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/bp-indexes.html
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/bp-indexes.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxReadRequestUnits
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxWriteRequestUnits

Amazon DynamoDB Developer Guide

reasons from your application's exception handling, and determined the Amazon Resource Name
(ARN) of the affected resource. For information on retrieving throttling reasons and identifying
throttled resources, see the section called “Diagnosis framework”.

Before diving into specific throttling scenarios, first consider whether action is actually needed:

• Evaluate your maximum throughput settings: These limits were intentionally
configured to control costs or protect downstream systems. If you're receiving
MaxOnDemandThroughputExceeded throttling events, your limits are working as designed.
Consider whether increasing these limits aligns with your original cost control or system
protection goals.

• Assess application impact: Determine if the throttling is actually causing problems for your
applications or users. If your applications handle retries effectively and meets their performance
requirements despite occasional throttling, maintaining your current limits might be the
appropriate choice.

• Review traffic patterns: Analyze whether the throttling represents an expected traffic pattern
or an unusual spike. For predictable, recurring traffic patterns that consistently exceed your
limits, adjusting the maximum throughput settings might be warranted. For temporary spikes,
implementing better request distribution strategies might be more appropriate than raising
limits.

If after consideration you determine that your maximum throughput settings need adjustment,
refer to the specific throttling scenarios below for targeted remediation options:

• the section called “TableReadMaxOnDemandThroughputExceeded”

• the section called “TableWriteMaxOnDemandThroughputExceeded”

• the section called “IndexReadMaxOnDemandThroughputExceeded”

• the section called “IndexWriteMaxOnDemandThroughputExceeded”

TableReadMaxOnDemandThroughputExceeded

When this occurs

Your on-demand table has exceeded its configured maximum read throughput capacity. You can
monitor the CloudWatch metrics in the section called “Common diagnosis and monitoring” to
analyze your throttling event.

Resolution guide API Version 2012-08-10 3497

Amazon DynamoDB Developer Guide

Remediation options

Consider these steps to address your throttling events:

• Increase maximum throughput limit: Use the DynamoDB console, Amazon CLI, or the
DynamoDB UpdateTable API to increase the MaxReadRequestUnits value for the affected
table, then monitor and adjust. This allows your table to handle higher read throughput before
throttling occurs.

• Remove the maximum limit: Set MaxReadRequestUnits to -1 to remove the ceiling, allowing
scaling based on demand up to your account-level throughput quotas. This removes your custom
limit but still maintains Amazon's account-level safeguards. However, it's important to monitor
spending closely after removing this limit, as your table can now consume significantly more
capacity before hitting the account-level quotas.

TableWriteMaxOnDemandThroughputExceeded

When this occurs

Your on-demand table has exceeded its configured maximum write throughput capacity. You can
monitor the CloudWatch metrics in the section called “Common diagnosis and monitoring” to
analyze your throttling event.

Remediation options

Consider these steps to address your throttling events:

• Increase maximum throughput limit: Use the DynamoDB console, Amazon CLI, or the
DynamoDB UpdateTable API to increase the MaxWriteRequestUnits value for the affected
table, then monitor and adjust.

• Remove the maximum limit: Set MaxWriteRequestUnits to -1 to remove the ceiling,
allowing scaling based on demand up to your account-level throughput quotas. This removes
your custom limit but still maintains Amazon's account-level safeguards. However, it's
important to monitor spending closely after removing this limit, as your table can now consume
significantly more capacity before hitting the account-level quotas.

IndexReadMaxOnDemandThroughputExceeded

When this occurs

Resolution guide API Version 2012-08-10 3498

https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxReadRequestUnits
https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxWriteRequestUnits

Amazon DynamoDB Developer Guide

Read requests to a GSI in on-demand mode have exceeded the GSI's configured maximum read
throughput capacity. You can monitor the CloudWatch metrics in the section called “Common
diagnosis and monitoring” to analyze your throttling event.

Remediation options

Consider these steps to address your throttling events:

• Increase GSI maximum throughput limit: Use the DynamoDB console, Amazon CLI, or the
DynamoDB UpdateTable API to increase the MaxReadRequestUnits value for the affected
GSI, then monitor and adjust.

• Remove the GSI maximum limit: Set MaxReadRequestUnits to -1 for the GSI to remove the
ceiling, allowing scaling based on demand up to your account-level throughput quotas. This
removes your custom limit but still maintains Amazon's account-level safeguards. However, it's
important to monitor spending closely after removing this limit.

IndexWriteMaxOnDemandThroughputExceeded

When this occurs

Updates to items in the base table trigger writes to a GSI in on-demand mode that exceed the GSI's
configured maximum write throughput capacity, causing back-pressure throttling. You can monitor
the CloudWatch metrics in the section called “Common diagnosis and monitoring” to analyze your
throttling event.

Remediation options

Consider these steps to address your throttling events:

• Increase GSI maximum throughput limit: Use the DynamoDB console, Amazon CLI, or the
DynamoDB UpdateTable API to increase the MaxWriteRequestUnits value for the affected
GSI, then monitor and adjust.

• Remove the GSI maximum limit: Set MaxWriteRequestUnits to -1 for the GSI to remove
the ceiling, allowing scaling based on demand up to your account-level throughput quotas. This
removes your custom limit but still maintains Amazon's account-level safeguards. However, it's
important to monitor spending closely after removing this limit.

Resolution guide API Version 2012-08-10 3499

https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxReadRequestUnits
https://console.amazonaws.cn/dynamodb
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.amazonaws.cn//amazondynamodb/latest/APIReference/API_OnDemandThroughput.html#DDB-Type-OnDemandThroughput-MaxWriteRequestUnits

Amazon DynamoDB Developer Guide

Common diagnosis and monitoring

When troubleshooting on-demand maximum throughput exceeded throttling events, several
CloudWatch metrics can help identify the root cause and scaling patterns.

Essential CloudWatch metrics

Monitor these key metrics to diagnose on-demand maximum throughput exceeded throttling:

• Maximum throughput throttling events: ReadMaxOnDemandThroughputThrottleEvents
and WriteMaxOnDemandThroughputThrottleEvents track when requests are throttled due
to exceeding maximum limits. ReadThrottleEvents and WriteThrottleEvents track when
any read or write requests exceed the provisioned capacity.

• Current maximum throughput configured for a table or global secondary index:
OnDemandMaxReadRequestUnits and OnDemandMaxWriteRequestUnits show the current
maximum capacity limits.

• Actual capacity consumption: ConsumedReadCapacityUnits and
ConsumedWriteCapacityUnits show actual usage patterns.

Analysis approach

Follow these steps to confirm on-demand maximum throughput exceeded diagnosis:

1. Compare consumed capacity to maximum capacity limits - check if consumption consistently
approaches or exceeds maximum limits.

2. Review throttling event frequency and timing to identify patterns. Look for sudden increases in
consumed capacity that coincides with your throttling event.

3. Use CloudWatch Contributor Insights to identify which items or partition keys consume the most
capacity.

Understanding Global Secondary Index (GSI) write throttling and back
pressure in DynamoDB

GSI back-pressure throttling represents one of the most complex throttling scenarios in DynamoDB
because it creates an indirect relationship between write operations and throttling—your
application writes to a base table but experiences throttling due to capacity constraints on one or
several indexes.

GSI write throttling and back-pressure API Version 2012-08-10 3500

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadMaxOnDemandThroughputThrottleEvents
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteMaxOnDemandThroughputThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#ReadThrottleEvents
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/metrics-dimensions.html#WriteThrottleEvents
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#OnDemandMaxReadRequestUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#OnDemandMaxWriteRequestUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedReadCapacityUnits
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html#ConsumedWriteCapacityUnits

Amazon DynamoDB Developer Guide

Understanding GSI back-pressure throttling

When you write to a DynamoDB table, any global secondary indexes (GSIs) on that table are
updated asynchronously using an eventually consistent model. If a GSI doesn't have sufficient
capacity to handle these updates, DynamoDB throttles writes to the base table to maintain data
consistency. This is called GSI back-pressure. For more information about how GSIs work, see Global
Secondary Indexes in DynamoDB.

Unlike direct table throttling where the resource being accessed is also the resource causing
throttling, GSI back-pressure creates a dependency between the base table and its indexes. Even if
your base table has ample capacity, writes will be throttled if any associated GSI cannot handle the
update volume. This relationship is particularly important to understand because partition-level
constraints apply independently to both the base table and each GSI—each has its own partition
structure and corresponding throughput limits.

GSI partitioning is based on the GSI's partition key, which is often different from the base table's
partition key. Even if your base table access is perfectly distributed across partitions, your GSI
updates might still concentrate on specific partitions, creating hot spots in the GSI. For general
best practices on partition key design for both tables and GSIs, see DynamoDB partition key design.

For example, if your base table uses customerId as a partition key (evenly distributed) but your
GSI uses status as a partition key (with limited possible values like "active", "pending", "closed"),
updates to items with popular status values can create GSI hot partitions even when base table
access is balanced. This creates a particularly challenging scenario where your application might
experience throttling due to GSI hot partitions even though both the base table and GSI have
sufficient overall capacity and the base table's access pattern appears well-distributed.

Even though the throttling exception points to the GSI (via ResourceArn), the actual operation
being throttled is the write to the base table. This can be confusing because your application is
writing to the base table but receiving an exception about the GSI.

Types of GSI throttling

GSI back-pressure throttling manifests through different exception types depending on the specific
capacity constraint:

• GSI provisioned capacity exceeded: Occurs when the GSI lacks sufficient
write capacity units to handle updates from base table operations. This
produces a ProvisionedThroughputExceededException with the reason

GSI write throttling and back-pressure API Version 2012-08-10 3501

Amazon DynamoDB Developer Guide

IndexWriteProvisionedThroughputExceeded, and the ResourceArn points directly to the
specific GSI experiencing capacity constraints.

• GSI on-demand maximum throughput exceeded: Occurs when GSI write operations surpass
configured maximum limits on on-demand tables. This produces a ThrottlingException with
the reason IndexWriteMaxOnDemandThroughputExceeded, identifying the specific GSI with
configured throughput restrictions.

• GSI partition limits exceeded: Happens when individual GSI partitions exceed their throughput
limits (hot partitions), even if overall GSI capacity appears sufficient. This generates a
ThrottlingException with the reason IndexWriteKeyRangeThroughputExceeded,
indicating hot partition issues on the specific GSI identified in the ResourceArn. This is
particularly important because GSI partition distribution may differ significantly from the base
table's partition distribution, creating hot spots in the GSI even when base table access is evenly
distributed.

• GSI account limits exceeded: Triggers when write operations to a specific GSI exceed
the per-table (or any individual GSI within that table) regional throughput boundaries
set at the account level. DynamoDB returns a ThrottlingException with the reason
IndexWriteAccountLimitExceeded, pointing to the GSI that pushed its usage beyond
account limits. This throttling occurs independently for each GSI that surpasses the limit.
For information about per-table, per-account,regional, service quotas, see the section called
“Quotas”.

CloudWatch throttling metrics

This page provides a comprehensive guide to CloudWatch metrics specifically designed to help you
identify, diagnose, and resolve throttling issues in your DynamoDB tables and indexes.

General throttling metrics

• ThrottledRequests

• Incremented by one when any event within a request is throttled, regardless of how many
individual events within that request are throttled. For example, when updating an item
in a table with Global Secondary Indexes (GSIs), multiple events occur: a write operation
to the base table and a write operation to each index. If any of these individual events are
throttled, the ThrottledRequests metric is only incremented once.

This behavior is important to understand when monitoring and troubleshooting DynamoDB
performance, as it may mask the true extent of throttling. For more comprehensive

CloudWatch throttling metrics API Version 2012-08-10 3502

Amazon DynamoDB Developer Guide

insights, compare the ThrottledRequests metric with the specific event-level metrics
like ReadThrottleEvents, WriteThrottleEvents, and targeted metrics such as
ReadKeyRangeThroughputThrottleEvents for example. The complete list of these
cause-specific metrics is available in this page. Each metric corresponds to particular
throttling reasons that are captured within the throttling exception. For guidance on
retrieving and interpreting these reasons during throttling events, see the the section
called “Diagnosing throttling” section which provides instructions for identifying and
resolving the root causes of throttling issues.

• ReadThrottleEvents

• Watch for requests that exceed the provisioned RCU for a table or GSI.

• WriteThrottleEvents

• Watch for requests that exceed the provisioned WCU for a table or GSI.

Detailed throttling metrics by cause

On-Demand throughput throttling

• ReadMaxOnDemandThroughputThrottleEvents

• Number of read requests throttled due to on-demand maximum throughput.

• WriteMaxOnDemandThroughputThrottleEvents

• Number of write requests throttled due to on-demand maximum throughput.

Account-Level throttling

• ReadAccountLimitThrottleEvents

• Number of read requests throttled due to account limits.

• WriteAccountLimitThrottleEvents

• Number of write requests throttled due to account limits.

Partition-Level throttling

• ReadKeyRangeThroughputThrottleEvents

• Number of read requests throttled due to partition limits.

• WriteKeyRangeThroughputThrottleEvents

• Number of write requests throttled due to partition limits.

CloudWatch throttling metrics API Version 2012-08-10 3503

Amazon DynamoDB Developer Guide

Capacity analysis metrics

• OnlineIndexConsumedWriteCapacity

• When you add a new GSI to an existing table, DynamoDB performs a backfill operation
that copies data from the base table to the new index. This process consumes write
capacity units. The OnlineIndexConsumedWriteCapacity metric tracks this specific
consumption.

This consumption is separate from and additional to the regular write operations tracked
by ConsumedWriteCapacityUnits. The regular ConsumedWriteCapacityUnits
metric for a GSI does not include the write capacity consumed during the initial index
creation process.

• ProvisionedReadCapacityUnits and ProvisionedWriteCapacityUnits

• View how many provisioned read or write capacity units were consumed over the specified
time period, for a table or a specified global secondary index.

• Note that the TableName dimension returns ProvisionedReadCapacityUnits
for the table only by default. To view the number of provisioned read or write
capacity units for a global secondary index, you must specify both TableName and
GlobalSecondaryIndexName.

• ConsumedReadCapacityUnits and ConsumedWriteCapacityUnits

• View how many read or write capacity units were consumed over the specified time period.
ConsumedWriteCapacityUnits does not include the write capacity consumed during
the initial index creation process.

For more information on DynamoDB CloudWatch metrics, see DynamoDB Metrics and dimensions.

CloudWatch throttling metrics API Version 2012-08-10 3504

Amazon DynamoDB Developer Guide

DynamoDB Appendix

Topics

• Troubleshooting SSL/TLS connection establishment issues with DynamoDB

• Example tables and data for use in DynamoDB

• Creating example tables and uploading data in DynamoDB

• DynamoDB example application using the Amazon SDK for Python (Boto): Tic-tac-toe

• Reserved words in DynamoDB

• Amazon SDK for Java 1.x examples

• Amazon SDK for Go 1.x examples

• Amazon SDK for Node.js 2.x examples

Troubleshooting SSL/TLS connection establishment issues with
DynamoDB

Amazon DynamoDB is in the process of moving our endpoints to secure certificates signed by the
Amazon Trust Services (ATS) Certificate Authority instead of third-party Certificate Authority. In
December 2017, we launched the EU-WEST-3 (Paris) Region with the secure certificates issued by
the Amazon Trust Services. All new regions launched after December 2017 have endpoints with
the certificates issued by the Amazon Trust Services. This guide shows you how to validate and
troubleshoot SSL/TLS connection issues.

Testing your application or service

Most Amazon SDKs and Command Line Interfaces (CLIs) support the Amazon Trust Services
Certificate Authority. If you are using a version of the Amazon SDK for Python or CLI released
before October 29, 2013, you must upgrade. The .NET, Java, PHP, Go, JavaScript, and C++ SDKs
and CLIs do not bundle any certificates, their certificates come from the underlying operating
system. The Ruby SDK has included at least one of the required CAs since June 10, 2015. Before
that date, the Ruby V2 SDK did not bundle certificates. If you use an unsupported, custom, or
modified version of the Amazon SDK, or if you use custom trust store, you might not have the
support needed for Amazon Trust Services Certificate Authority.

Troubleshooting SSL/TLS connection establishment issues with DynamoDB API Version 2012-08-10 3505

Amazon DynamoDB Developer Guide

To validate access to DynamoDB endpoints, you will need to develop a test that accesses
DynamoDB API or DynamoDB Streams API in the EU-WEST-3 region and validate that the TLS
handshake succeeds. The specific endpoints you will need to access in such test are:

• DynamoDB: https://dynamodb.eu-west-3.amazonaws.com

• DynamoDB Streams: https://streams.dynamodb.eu-west-3.amazonaws.com

If your application does not support Amazon Trust Services Certificate Authority you will see one of
the following failures:

• SSL/TLS Negotiation errors

• A long delay before your software receives an error indicating SSL/TLS negotiation failure. The
delay time depends on the retry strategy and timeout configuration of your client.

Testing your client browser

To verify that your browser can connect to Amazon DynamoDB, open the following URL: https://
dynamodb.eu-west-3.amazonaws.com. If the test is successful, you will see a message like this:

healthy: dynamodb.eu-west-3.amazonaws.com

If the test is unsuccessful, it will display an error similar to this: https://untrusted-root.badssl.com/.

Updating your software application client

Applications accessing DynamoDB or DynamoDB Streams API endpoints (whether through
browsers or programmatically) will need to update the trusted CA list on the client machines if they
do not already support any of the following CAs:

• Amazon Root CA 1

• Starfield Services Root Certificate Authority - G2

• Starfield Class 2 Certification Authority

If the clients already trust ANY of the above three CAs then these will trust certificates used by
DynamoDB and no action is required. However, if your clients do not already trust any of the above
CAs, the HTTPS connections to the DynamoDB or DynamoDB Streams APIs will fail. For more

Testing your client browser API Version 2012-08-10 3506

https://dynamodb.eu-west-3.amazonaws.com
https://streams.dynamodb.eu-west-3.amazonaws.com
https://dynamodb.eu-west-3.amazonaws.com
https://dynamodb.eu-west-3.amazonaws.com
https://untrusted-root.badssl.com/

Amazon DynamoDB Developer Guide

information, please visit this blog post: https://aws.amazon.com/blogs/security/how-to-prepare-
for-aws-move-to-its-own-certificate-authority/.

Updating your client browser

You can update the certificate bundle in your browser simply by updating your browser.
Instructions for the most common browsers can be found on the browsers’ websites:

• Chrome: https://support.google.com/chrome/answer/95414?hl=en

• Firefox: https://support.mozilla.org/en-US/kb/update-firefox-latest-version

• Safari: https://support.apple.com/en-us/HT204416

• Internet Explorer: https://support.microsoft.com/en-us/help/17295/windows-internet-explorer-
which-version#ie=other

Manually updating your certificate bundle

If you can't access the DynamoDB API or DynamoDB Streams API then you need to update your
certificate bundle. To do this, you need to import at least one of the required CAs. You can find
these at https://www.amazontrust.com/repository/.

The following operating systems and programming languages support Amazon Trust Services
certificates:

• Microsoft Windows versions that have January 2005 or later updates installed, Windows Vista,
Windows 7, Windows Server 2008, and newer versions.

• MacOS X 10.4 with Java for MacOS X 10.4 Release 5, MacOS X 10.5 and newer versions.

• Red Hat Enterprise Linux 5 (March 2007), Linux 6, and Linux 7 and CentOS 5, CentOS 6, and
CentOS 7

• Ubuntu 8.10

• Debian 5.0

• Amazon Linux (all versions)

• Java 1.4.2_12, Java 5 update 2, and all newer versions, including Java 6, Java 7, and Java 8

If you're still unable to connect, consult your software documentation, OS Vendor, or contact with
Amazon Support https://aws.amazon.com/support for further assistance.

Updating your client browser API Version 2012-08-10 3507

https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://aws.amazon.com/blogs/security/how-to-prepare-for-aws-move-to-its-own-certificate-authority/
https://support.google.com/chrome/answer/95414?hl=en
https://support.mozilla.org/en-US/kb/update-firefox-latest-version
https://support.apple.com/en-us/HT204416
https://support.microsoft.com/en-us/help/17295/windows-internet-explorer-which-version#ie=other
https://support.microsoft.com/en-us/help/17295/windows-internet-explorer-which-version#ie=other
https://www.amazontrust.com/repository/
https://aws.amazon.com/support

Amazon DynamoDB Developer Guide

Example tables and data for use in DynamoDB

The Amazon DynamoDB Developer Guide uses sample tables to illustrate various aspects of
DynamoDB.

Table name Primary key

ProductCatalog Simple primary key:

• Id (Number)

Forum Simple primary key:

• Name (String)

Thread Composite primary key:

• ForumName (String)

• Subject (String)

Reply Composite primary key:

• Id (String)

• ReplyDateTime (String)

The Reply table has a global secondary index named PostedBy-Message-Index. This index will
facilitate queries on two non-key attributes of the Reply table.

Index name Primary key

PostedBy-Message-Index Composite primary key:

• PostedBy (String)

• Message (String)

For more information about these tables, see Step 1: Create a table in DynamoDB and Step 2: Write
data to a DynamoDB table.

Example tables and data for use in DynamoDB API Version 2012-08-10 3508

Amazon DynamoDB Developer Guide

Sample data files

Topics

• ProductCatalog sample data

• Forum sample data

• Thread sample data

• Reply sample data

The following sections show the sample data files that are used for loading the ProductCatalog,
Forum, Thread and Reply tables.

Each data file contains multiple PutRequest elements, each of which contain a single item. These
PutRequest elements are used as input to the BatchWriteItem operation, using the Amazon
Command Line Interface (Amazon CLI).

ProductCatalog sample data

{
 "ProductCatalog": [
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "101"
 },
 "Title": {
 "S": "Book 101 Title"
 },
 "ISBN": {
 "S": "111-1111111111"
 },
 "Authors": {
 "L": [
 {
 "S": "Author1"
 }
]
 },
 "Price": {
 "N": "2"

Sample data files API Version 2012-08-10 3509

Amazon DynamoDB Developer Guide

 },
 "Dimensions": {
 "S": "8.5 x 11.0 x 0.5"
 },
 "PageCount": {
 "N": "500"
 },
 "InPublication": {
 "BOOL": true
 },
 "ProductCategory": {
 "S": "Book"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "102"
 },
 "Title": {
 "S": "Book 102 Title"
 },
 "ISBN": {
 "S": "222-2222222222"
 },
 "Authors": {
 "L": [
 {
 "S": "Author1"
 },
 {
 "S": "Author2"
 }
]
 },
 "Price": {
 "N": "20"
 },
 "Dimensions": {
 "S": "8.5 x 11.0 x 0.8"
 },

Sample data files API Version 2012-08-10 3510

Amazon DynamoDB Developer Guide

 "PageCount": {
 "N": "600"
 },
 "InPublication": {
 "BOOL": true
 },
 "ProductCategory": {
 "S": "Book"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "103"
 },
 "Title": {
 "S": "Book 103 Title"
 },
 "ISBN": {
 "S": "333-3333333333"
 },
 "Authors": {
 "L": [
 {
 "S": "Author1"
 },
 {
 "S": "Author2"
 }
]
 },
 "Price": {
 "N": "2000"
 },
 "Dimensions": {
 "S": "8.5 x 11.0 x 1.5"
 },
 "PageCount": {
 "N": "600"
 },
 "InPublication": {

Sample data files API Version 2012-08-10 3511

Amazon DynamoDB Developer Guide

 "BOOL": false
 },
 "ProductCategory": {
 "S": "Book"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "201"
 },
 "Title": {
 "S": "18-Bike-201"
 },
 "Description": {
 "S": "201 Description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Mountain A"
 },
 "Price": {
 "N": "100"
 },
 "Color": {
 "L": [
 {
 "S": "Red"
 },
 {
 "S": "Black"
 }
]
 },
 "ProductCategory": {
 "S": "Bicycle"
 }
 }
 }

Sample data files API Version 2012-08-10 3512

Amazon DynamoDB Developer Guide

 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "202"
 },
 "Title": {
 "S": "21-Bike-202"
 },
 "Description": {
 "S": "202 Description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Brand-Company A"
 },
 "Price": {
 "N": "200"
 },
 "Color": {
 "L": [
 {
 "S": "Green"
 },
 {
 "S": "Black"
 }
]
 },
 "ProductCategory": {
 "S": "Bicycle"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "203"
 },

Sample data files API Version 2012-08-10 3513

Amazon DynamoDB Developer Guide

 "Title": {
 "S": "19-Bike-203"
 },
 "Description": {
 "S": "203 Description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Brand-Company B"
 },
 "Price": {
 "N": "300"
 },
 "Color": {
 "L": [
 {
 "S": "Red"
 },
 {
 "S": "Green"
 },
 {
 "S": "Black"
 }
]
 },
 "ProductCategory": {
 "S": "Bicycle"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "204"
 },
 "Title": {
 "S": "18-Bike-204"
 },
 "Description": {

Sample data files API Version 2012-08-10 3514

Amazon DynamoDB Developer Guide

 "S": "204 Description"
 },
 "BicycleType": {
 "S": "Mountain"
 },
 "Brand": {
 "S": "Brand-Company B"
 },
 "Price": {
 "N": "400"
 },
 "Color": {
 "L": [
 {
 "S": "Red"
 }
]
 },
 "ProductCategory": {
 "S": "Bicycle"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "N": "205"
 },
 "Title": {
 "S": "18-Bike-204"
 },
 "Description": {
 "S": "205 Description"
 },
 "BicycleType": {
 "S": "Hybrid"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "500"

Sample data files API Version 2012-08-10 3515

Amazon DynamoDB Developer Guide

 },
 "Color": {
 "L": [
 {
 "S": "Red"
 },
 {
 "S": "Black"
 }
]
 },
 "ProductCategory": {
 "S": "Bicycle"
 }
 }
 }
 }
]
}

Forum sample data

{
 "Forum": [
 {
 "PutRequest": {
 "Item": {
 "Name": {"S":"Amazon DynamoDB"},
 "Category": {"S":"Amazon Web Services"},
 "Threads": {"N":"2"},
 "Messages": {"N":"4"},
 "Views": {"N":"1000"}
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Name": {"S":"Amazon S3"},
 "Category": {"S":"Amazon Web Services"}
 }
 }
 }

Sample data files API Version 2012-08-10 3516

Amazon DynamoDB Developer Guide

]
}

Thread sample data

{
 "Thread": [
 {
 "PutRequest": {
 "Item": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "DynamoDB Thread 1"
 },
 "Message": {
 "S": "DynamoDB thread 1 message"
 },
 "LastPostedBy": {
 "S": "User A"
 },
 "LastPostedDateTime": {
 "S": "2015-09-22T19:58:22.514Z"
 },
 "Views": {
 "N": "0"
 },
 "Replies": {
 "N": "0"
 },
 "Answered": {
 "N": "0"
 },
 "Tags": {
 "L": [
 {
 "S": "index"
 },
 {
 "S": "primarykey"
 },
 {

Sample data files API Version 2012-08-10 3517

Amazon DynamoDB Developer Guide

 "S": "table"
 }
]
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "ForumName": {
 "S": "Amazon DynamoDB"
 },
 "Subject": {
 "S": "DynamoDB Thread 2"
 },
 "Message": {
 "S": "DynamoDB thread 2 message"
 },
 "LastPostedBy": {
 "S": "User A"
 },
 "LastPostedDateTime": {
 "S": "2015-09-15T19:58:22.514Z"
 },
 "Views": {
 "N": "3"
 },
 "Replies": {
 "N": "0"
 },
 "Answered": {
 "N": "0"
 },
 "Tags": {
 "L": [
 {
 "S": "items"
 },
 {
 "S": "attributes"
 },
 {
 "S": "throughput"

Sample data files API Version 2012-08-10 3518

Amazon DynamoDB Developer Guide

 }
]
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "ForumName": {
 "S": "Amazon S3"
 },
 "Subject": {
 "S": "S3 Thread 1"
 },
 "Message": {
 "S": "S3 thread 1 message"
 },
 "LastPostedBy": {
 "S": "User A"
 },
 "LastPostedDateTime": {
 "S": "2015-09-29T19:58:22.514Z"
 },
 "Views": {
 "N": "0"
 },
 "Replies": {
 "N": "0"
 },
 "Answered": {
 "N": "0"
 },
 "Tags": {
 "L": [
 {
 "S": "largeobjects"
 },
 {
 "S": "multipart upload"
 }
]
 }
 }

Sample data files API Version 2012-08-10 3519

Amazon DynamoDB Developer Guide

 }
 }
]
}

Reply sample data

{
 "Reply": [
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "S": "Amazon DynamoDB#DynamoDB Thread 1"
 },
 "ReplyDateTime": {
 "S": "2015-09-15T19:58:22.947Z"
 },
 "Message": {
 "S": "DynamoDB Thread 1 Reply 1 text"
 },
 "PostedBy": {
 "S": "User A"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "S": "Amazon DynamoDB#DynamoDB Thread 1"
 },
 "ReplyDateTime": {
 "S": "2015-09-22T19:58:22.947Z"
 },
 "Message": {
 "S": "DynamoDB Thread 1 Reply 2 text"
 },
 "PostedBy": {
 "S": "User B"
 }
 }

Sample data files API Version 2012-08-10 3520

Amazon DynamoDB Developer Guide

 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "S": "Amazon DynamoDB#DynamoDB Thread 2"
 },
 "ReplyDateTime": {
 "S": "2015-09-29T19:58:22.947Z"
 },
 "Message": {
 "S": "DynamoDB Thread 2 Reply 1 text"
 },
 "PostedBy": {
 "S": "User A"
 }
 }
 }
 },
 {
 "PutRequest": {
 "Item": {
 "Id": {
 "S": "Amazon DynamoDB#DynamoDB Thread 2"
 },
 "ReplyDateTime": {
 "S": "2015-10-05T19:58:22.947Z"
 },
 "Message": {
 "S": "DynamoDB Thread 2 Reply 2 text"
 },
 "PostedBy": {
 "S": "User A"
 }
 }
 }
 }
]
}

Sample data files API Version 2012-08-10 3521

Amazon DynamoDB Developer Guide

Creating example tables and uploading data in DynamoDB

This appendix provides code to both create the tables and add data programmatically.

Topics

• Creating example tables and uploading data using the Amazon SDK for Java

• Creating example tables and uploading data using the Amazon SDK for .NET

Creating example tables and uploading data using the Amazon SDK for
Java

The following Java code example creates tables and uploads data to the tables. For step-by-step
instructions to run this code using Eclipse, see Java code examples.

package com.amazonaws.codesamples;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Date;
import java.util.HashSet;
import java.util.TimeZone;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.CreateTableRequest;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.LocalSecondaryIndex;
import com.amazonaws.services.dynamodbv2.model.Projection;
import com.amazonaws.services.dynamodbv2.model.ProjectionType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;

public class CreateTablesLoadData {

Creating example tables and uploading data API Version 2012-08-10 3522

Amazon DynamoDB Developer Guide

 static AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();
 static DynamoDB dynamoDB = new DynamoDB(client);

 static SimpleDateFormat dateFormatter = new SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'");

 static String productCatalogTableName = "ProductCatalog";
 static String forumTableName = "Forum";
 static String threadTableName = "Thread";
 static String replyTableName = "Reply";

 public static void main(String[] args) throws Exception {

 try {

 deleteTable(productCatalogTableName);
 deleteTable(forumTableName);
 deleteTable(threadTableName);
 deleteTable(replyTableName);

 // Parameter1: table name
 // Parameter2: reads per second
 // Parameter3: writes per second
 // Parameter4/5: partition key and data type
 // Parameter6/7: sort key and data type (if applicable)

 createTable(productCatalogTableName, 10L, 5L, "Id", "N");
 createTable(forumTableName, 10L, 5L, "Name", "S");
 createTable(threadTableName, 10L, 5L, "ForumName", "S", "Subject", "S");
 createTable(replyTableName, 10L, 5L, "Id", "S", "ReplyDateTime", "S");

 loadSampleProducts(productCatalogTableName);
 loadSampleForums(forumTableName);
 loadSampleThreads(threadTableName);
 loadSampleReplies(replyTableName);

 } catch (Exception e) {
 System.err.println("Program failed:");
 System.err.println(e.getMessage());
 }
 System.out.println("Success.");
 }

 private static void deleteTable(String tableName) {

Creating example tables and uploading data - Java API Version 2012-08-10 3523

Amazon DynamoDB Developer Guide

 Table table = dynamoDB.getTable(tableName);
 try {
 System.out.println("Issuing DeleteTable request for " + tableName);
 table.delete();
 System.out.println("Waiting for " + tableName + " to be deleted...this may
 take a while...");
 table.waitForDelete();

 } catch (Exception e) {
 System.err.println("DeleteTable request failed for " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void createTable(String tableName, long readCapacityUnits, long
 writeCapacityUnits,
 String partitionKeyName, String partitionKeyType) {

 createTable(tableName, readCapacityUnits, writeCapacityUnits, partitionKeyName,
 partitionKeyType, null, null);
 }

 private static void createTable(String tableName, long readCapacityUnits, long
 writeCapacityUnits,
 String partitionKeyName, String partitionKeyType, String sortKeyName,
 String sortKeyType) {

 try {

 ArrayList<KeySchemaElement> keySchema = new ArrayList<KeySchemaElement>();
 keySchema.add(new
 KeySchemaElement().withAttributeName(partitionKeyName).withKeyType(KeyType.HASH)); //
 Partition

 // key

 ArrayList<AttributeDefinition> attributeDefinitions = new
 ArrayList<AttributeDefinition>();
 attributeDefinitions
 .add(new AttributeDefinition().withAttributeName(partitionKeyName)
 .withAttributeType(partitionKeyType));

 if (sortKeyName != null) {

Creating example tables and uploading data - Java API Version 2012-08-10 3524

Amazon DynamoDB Developer Guide

 keySchema.add(new
 KeySchemaElement().withAttributeName(sortKeyName).withKeyType(KeyType.RANGE)); // Sort

 // key
 attributeDefinitions
 .add(new
 AttributeDefinition().withAttributeName(sortKeyName).withAttributeType(sortKeyType));
 }

 CreateTableRequest request = new
 CreateTableRequest().withTableName(tableName).withKeySchema(keySchema)
 .withProvisionedThroughput(new
 ProvisionedThroughput().withReadCapacityUnits(readCapacityUnits)
 .withWriteCapacityUnits(writeCapacityUnits));

 // If this is the Reply table, define a local secondary index
 if (replyTableName.equals(tableName)) {

 attributeDefinitions
 .add(new
 AttributeDefinition().withAttributeName("PostedBy").withAttributeType("S"));

 ArrayList<LocalSecondaryIndex> localSecondaryIndexes = new
 ArrayList<LocalSecondaryIndex>();
 localSecondaryIndexes.add(new
 LocalSecondaryIndex().withIndexName("PostedBy-Index")
 .withKeySchema(
 new
 KeySchemaElement().withAttributeName(partitionKeyName).withKeyType(KeyType.HASH), //
 Partition

 // key
 new
 KeySchemaElement().withAttributeName("PostedBy").withKeyType(KeyType.RANGE)) // Sort

 // key
 .withProjection(new
 Projection().withProjectionType(ProjectionType.KEYS_ONLY)));

 request.setLocalSecondaryIndexes(localSecondaryIndexes);
 }

 request.setAttributeDefinitions(attributeDefinitions);

Creating example tables and uploading data - Java API Version 2012-08-10 3525

Amazon DynamoDB Developer Guide

 System.out.println("Issuing CreateTable request for " + tableName);
 Table table = dynamoDB.createTable(request);
 System.out.println("Waiting for " + tableName + " to be created...this may
 take a while...");
 table.waitForActive();

 } catch (Exception e) {
 System.err.println("CreateTable request failed for " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void loadSampleProducts(String tableName) {

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item().withPrimaryKey("Id", 101).withString("Title", "Book
 101 Title")
 .withString("ISBN", "111-1111111111")
 .withStringSet("Authors", new
 HashSet<String>(Arrays.asList("Author1"))).withNumber("Price", 2)
 .withString("Dimensions", "8.5 x 11.0 x
 0.5").withNumber("PageCount", 500)
 .withBoolean("InPublication", true).withString("ProductCategory",
 "Book");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 102).withString("Title", "Book 102
 Title")
 .withString("ISBN", "222-2222222222")
 .withStringSet("Authors", new
 HashSet<String>(Arrays.asList("Author1", "Author2")))
 .withNumber("Price", 20).withString("Dimensions", "8.5 x 11.0 x
 0.8").withNumber("PageCount", 600)
 .withBoolean("InPublication", true).withString("ProductCategory",
 "Book");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 103).withString("Title", "Book 103
 Title")

Creating example tables and uploading data - Java API Version 2012-08-10 3526

Amazon DynamoDB Developer Guide

 .withString("ISBN", "333-3333333333")
 .withStringSet("Authors", new
 HashSet<String>(Arrays.asList("Author1", "Author2")))
 // Intentional. Later we'll run Scan to find price error. Find
 // items > 1000 in price.
 .withNumber("Price", 2000).withString("Dimensions", "8.5 x 11.0 x
 1.5").withNumber("PageCount", 600)
 .withBoolean("InPublication", false).withString("ProductCategory",
 "Book");
 table.putItem(item);

 // Add bikes.

 item = new Item().withPrimaryKey("Id", 201).withString("Title", "18-
Bike-201")
 // Size, followed by some title.
 .withString("Description", "201
 Description").withString("BicycleType", "Road")
 .withString("Brand", "Mountain A")
 // Trek, Specialized.
 .withNumber("Price", 100).withStringSet("Color", new
 HashSet<String>(Arrays.asList("Red", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 202).withString("Title", "21-
Bike-202")
 .withString("Description", "202
 Description").withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company A").withNumber("Price", 200)
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Green",
 "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 203).withString("Title", "19-
Bike-203")
 .withString("Description", "203
 Description").withString("BicycleType", "Road")
 .withString("Brand", "Brand-Company B").withNumber("Price", 300)
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Red",
 "Green", "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

Creating example tables and uploading data - Java API Version 2012-08-10 3527

Amazon DynamoDB Developer Guide

 item = new Item().withPrimaryKey("Id", 204).withString("Title", "18-
Bike-204")
 .withString("Description", "204
 Description").withString("BicycleType", "Mountain")
 .withString("Brand", "Brand-Company B").withNumber("Price", 400)
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Red")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", 205).withString("Title", "20-
Bike-205")
 .withString("Description", "205
 Description").withString("BicycleType", "Hybrid")
 .withString("Brand", "Brand-Company C").withNumber("Price", 500)
 .withStringSet("Color", new HashSet<String>(Arrays.asList("Red",
 "Black")))
 .withString("ProductCategory", "Bicycle");
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleForums(String tableName) {

 Table table = dynamoDB.getTable(tableName);

 try {

 System.out.println("Adding data to " + tableName);

 Item item = new Item().withPrimaryKey("Name", "Amazon DynamoDB")
 .withString("Category", "Amazon Web
 Services").withNumber("Threads", 2).withNumber("Messages", 4)
 .withNumber("Views", 1000);
 table.putItem(item);

 item = new Item().withPrimaryKey("Name", "Amazon
 S3").withString("Category", "Amazon Web Services")
 .withNumber("Threads", 0);

Creating example tables and uploading data - Java API Version 2012-08-10 3528

Amazon DynamoDB Developer Guide

 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }
 }

 private static void loadSampleThreads(String tableName) {
 try {
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000); // 7
 // days
 // ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000); // 14
 // days
 // ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000); // 21
 // days
 // ago

 Date date1 = new Date();
 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 Item item = new Item().withPrimaryKey("ForumName", "Amazon DynamoDB")
 .withString("Subject", "DynamoDB Thread 1").withString("Message",
 "DynamoDB thread 1 message")
 .withString("LastPostedBy", "User
 A").withString("LastPostedDateTime", dateFormatter.format(date2))
 .withNumber("Views", 0).withNumber("Replies",
 0).withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(Arrays.asList("index",
 "primarykey", "table")));

Creating example tables and uploading data - Java API Version 2012-08-10 3529

Amazon DynamoDB Developer Guide

 table.putItem(item);

 item = new Item().withPrimaryKey("ForumName", "Amazon
 DynamoDB").withString("Subject", "DynamoDB Thread 2")
 .withString("Message", "DynamoDB thread 2
 message").withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime",
 dateFormatter.format(date3)).withNumber("Views", 0)
 .withNumber("Replies", 0).withNumber("Answered", 0)
 .withStringSet("Tags", new HashSet<String>(Arrays.asList("index",
 "partitionkey", "sortkey")));
 table.putItem(item);

 item = new Item().withPrimaryKey("ForumName", "Amazon
 S3").withString("Subject", "S3 Thread 1")
 .withString("Message", "S3 Thread 3
 message").withString("LastPostedBy", "User A")
 .withString("LastPostedDateTime",
 dateFormatter.format(date1)).withNumber("Views", 0)
 .withNumber("Replies", 0).withNumber("Answered", 0)
 .withStringSet("Tags", new
 HashSet<String>(Arrays.asList("largeobjects", "multipart upload")));
 table.putItem(item);

 } catch (Exception e) {
 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());
 }

 }

 private static void loadSampleReplies(String tableName) {
 try {
 // 1 day ago
 long time0 = (new Date()).getTime() - (1 * 24 * 60 * 60 * 1000);
 // 7 days ago
 long time1 = (new Date()).getTime() - (7 * 24 * 60 * 60 * 1000);
 // 14 days ago
 long time2 = (new Date()).getTime() - (14 * 24 * 60 * 60 * 1000);
 // 21 days ago
 long time3 = (new Date()).getTime() - (21 * 24 * 60 * 60 * 1000);

 Date date0 = new Date();
 date0.setTime(time0);

Creating example tables and uploading data - Java API Version 2012-08-10 3530

Amazon DynamoDB Developer Guide

 Date date1 = new Date();
 date1.setTime(time1);

 Date date2 = new Date();
 date2.setTime(time2);

 Date date3 = new Date();
 date3.setTime(time3);

 dateFormatter.setTimeZone(TimeZone.getTimeZone("UTC"));

 Table table = dynamoDB.getTable(tableName);

 System.out.println("Adding data to " + tableName);

 // Add threads.

 Item item = new Item().withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB
 Thread 1")
 .withString("ReplyDateTime", (dateFormatter.format(date3)))
 .withString("Message", "DynamoDB Thread 1 Reply 1
 text").withString("PostedBy", "User A");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 1")
 .withString("ReplyDateTime", dateFormatter.format(date2))
 .withString("Message", "DynamoDB Thread 1 Reply 2
 text").withString("PostedBy", "User B");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date1))
 .withString("Message", "DynamoDB Thread 2 Reply 1
 text").withString("PostedBy", "User A");
 table.putItem(item);

 item = new Item().withPrimaryKey("Id", "Amazon DynamoDB#DynamoDB Thread 2")
 .withString("ReplyDateTime", dateFormatter.format(date0))
 .withString("Message", "DynamoDB Thread 2 Reply 2
 text").withString("PostedBy", "User A");
 table.putItem(item);

 } catch (Exception e) {

Creating example tables and uploading data - Java API Version 2012-08-10 3531

Amazon DynamoDB Developer Guide

 System.err.println("Failed to create item in " + tableName);
 System.err.println(e.getMessage());

 }
 }

}

Creating example tables and uploading data using the Amazon SDK
for .NET

The following C# code example creates tables and uploads data to the tables. For step-by-step
instructions to run this code in Visual Studio, see .NET code examples.

using System;
using System.Collections.Generic;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.DynamoDBv2.Model;
using Amazon.Runtime;
using Amazon.SecurityToken;

namespace com.amazonaws.codesamples
{
 class CreateTablesLoadData
 {
 private static AmazonDynamoDBClient client = new AmazonDynamoDBClient();

 static void Main(string[] args)
 {
 try
 {
 //DeleteAllTables(client);
 DeleteTable("ProductCatalog");
 DeleteTable("Forum");
 DeleteTable("Thread");
 DeleteTable("Reply");

 // Create tables (using the AWS SDK for .NET low-level API).
 CreateTableProductCatalog();
 CreateTableForum();

Creating example tables and uploading data - .NET API Version 2012-08-10 3532

Amazon DynamoDB Developer Guide

 CreateTableThread(); // ForumTitle, Subject */
 CreateTableReply();

 // Load data (using the .NET SDK document API)
 LoadSampleProducts();
 LoadSampleForums();
 LoadSampleThreads();
 LoadSampleReplies();
 Console.WriteLine("Sample complete!");
 Console.WriteLine("Press ENTER to continue");
 Console.ReadLine();
 }
 catch (AmazonServiceException e) { Console.WriteLine(e.Message); }
 catch (Exception e) { Console.WriteLine(e.Message); }
 }

 private static void DeleteTable(string tableName)
 {
 try
 {
 var deleteTableResponse = client.DeleteTable(new DeleteTableRequest()
 {
 TableName = tableName
 });
 WaitTillTableDeleted(client, tableName, deleteTableResponse);
 }
 catch (ResourceNotFoundException)
 {
 // There is no such table.
 }
 }

 private static void CreateTableProductCatalog()
 {
 string tableName = "ProductCatalog";

 var response = client.CreateTable(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "Id",

Creating example tables and uploading data - .NET API Version 2012-08-10 3533

Amazon DynamoDB Developer Guide

 AttributeType = "N"
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 KeyType = "HASH"
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 }
 });

 WaitTillTableCreated(client, tableName, response);
 }

 private static void CreateTableForum()
 {
 string tableName = "Forum";

 var response = client.CreateTable(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "Name",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "Name", // forum Title
 KeyType = "HASH"
 }
 },

Creating example tables and uploading data - .NET API Version 2012-08-10 3534

Amazon DynamoDB Developer Guide

 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 }
 });

 WaitTillTableCreated(client, tableName, response);
 }

 private static void CreateTableThread()
 {
 string tableName = "Thread";

 var response = client.CreateTable(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "ForumName", // Hash attribute
 AttributeType = "S"
 },
 new AttributeDefinition
 {
 AttributeName = "Subject",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement
 {
 AttributeName = "ForumName", // Hash attribute
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "Subject", // Range attribute
 KeyType = "RANGE"
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput

Creating example tables and uploading data - .NET API Version 2012-08-10 3535

Amazon DynamoDB Developer Guide

 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 }
 });

 WaitTillTableCreated(client, tableName, response);
 }

 private static void CreateTableReply()
 {
 string tableName = "Reply";
 var response = client.CreateTable(new CreateTableRequest
 {
 TableName = tableName,
 AttributeDefinitions = new List<AttributeDefinition>()
 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 AttributeType = "S"
 },
 new AttributeDefinition
 {
 AttributeName = "ReplyDateTime",
 AttributeType = "S"
 },
 new AttributeDefinition
 {
 AttributeName = "PostedBy",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>()
 {
 new KeySchemaElement()
 {
 AttributeName = "Id",
 KeyType = "HASH"
 },
 new KeySchemaElement()
 {
 AttributeName = "ReplyDateTime",
 KeyType = "RANGE"

Creating example tables and uploading data - .NET API Version 2012-08-10 3536

Amazon DynamoDB Developer Guide

 }
 },
 LocalSecondaryIndexes = new List<LocalSecondaryIndex>()
 {
 new LocalSecondaryIndex()
 {
 IndexName = "PostedBy_index",

 KeySchema = new List<KeySchemaElement>() {
 new KeySchemaElement() {
 AttributeName = "Id", KeyType = "HASH"
 },
 new KeySchemaElement() {
 AttributeName = "PostedBy", KeyType =
 "RANGE"
 }
 },
 Projection = new Projection() {
 ProjectionType = ProjectionType.KEYS_ONLY
 }
 }
 },
 ProvisionedThroughput = new ProvisionedThroughput
 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 }
 });

 WaitTillTableCreated(client, tableName, response);
 }

 private static void WaitTillTableCreated(AmazonDynamoDBClient client, string
 tableName,
 CreateTableResponse response)
 {
 var tableDescription = response.TableDescription;

 string status = tableDescription.TableStatus;

 Console.WriteLine(tableName + " - " + status);

 // Let us wait until table is created. Call DescribeTable.

Creating example tables and uploading data - .NET API Version 2012-08-10 3537

Amazon DynamoDB Developer Guide

 while (status != "ACTIVE")
 {
 System.Threading.Thread.Sleep(5000); // Wait 5 seconds.
 try
 {
 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });
 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);
 status = res.Table.TableStatus;
 }
 // Try-catch to handle potential eventual-consistency issue.
 catch (ResourceNotFoundException)
 { }
 }
 }

 private static void WaitTillTableDeleted(AmazonDynamoDBClient client, string
 tableName,
 DeleteTableResponse response)
 {
 var tableDescription = response.TableDescription;

 string status = tableDescription.TableStatus;

 Console.WriteLine(tableName + " - " + status);

 // Let us wait until table is created. Call DescribeTable
 try
 {
 while (status == "DELETING")
 {
 System.Threading.Thread.Sleep(5000); // wait 5 seconds

 var res = client.DescribeTable(new DescribeTableRequest
 {
 TableName = tableName
 });
 Console.WriteLine("Table name: {0}, status: {1}",
 res.Table.TableName,
 res.Table.TableStatus);

Creating example tables and uploading data - .NET API Version 2012-08-10 3538

Amazon DynamoDB Developer Guide

 status = res.Table.TableStatus;
 }
 }
 catch (ResourceNotFoundException)
 {
 // Table deleted.
 }
 }

 private static void LoadSampleProducts()
 {
 Table productCatalogTable = Table.LoadTable(client, "ProductCatalog");
 // ********** Add Books *********************
 var book1 = new Document();
 book1["Id"] = 101;
 book1["Title"] = "Book 101 Title";
 book1["ISBN"] = "111-1111111111";
 book1["Authors"] = new List<string> { "Author 1" };
 book1["Price"] = -2; // *** Intentional value. Later used to illustrate
 scan.
 book1["Dimensions"] = "8.5 x 11.0 x 0.5";
 book1["PageCount"] = 500;
 book1["InPublication"] = true;
 book1["ProductCategory"] = "Book";
 productCatalogTable.PutItem(book1);

 var book2 = new Document();

 book2["Id"] = 102;
 book2["Title"] = "Book 102 Title";
 book2["ISBN"] = "222-2222222222";
 book2["Authors"] = new List<string> { "Author 1", "Author 2" }; ;
 book2["Price"] = 20;
 book2["Dimensions"] = "8.5 x 11.0 x 0.8";
 book2["PageCount"] = 600;
 book2["InPublication"] = true;
 book2["ProductCategory"] = "Book";
 productCatalogTable.PutItem(book2);

 var book3 = new Document();
 book3["Id"] = 103;
 book3["Title"] = "Book 103 Title";
 book3["ISBN"] = "333-3333333333";

Creating example tables and uploading data - .NET API Version 2012-08-10 3539

Amazon DynamoDB Developer Guide

 book3["Authors"] = new List<string> { "Author 1", "Author2", "Author
 3" }; ;
 book3["Price"] = 2000;
 book3["Dimensions"] = "8.5 x 11.0 x 1.5";
 book3["PageCount"] = 700;
 book3["InPublication"] = false;
 book3["ProductCategory"] = "Book";
 productCatalogTable.PutItem(book3);

 // ************ Add bikes. *******************
 var bicycle1 = new Document();
 bicycle1["Id"] = 201;
 bicycle1["Title"] = "18-Bike 201"; // size, followed by some title.
 bicycle1["Description"] = "201 description";
 bicycle1["BicycleType"] = "Road";
 bicycle1["Brand"] = "Brand-Company A"; // Trek, Specialized.
 bicycle1["Price"] = 100;
 bicycle1["Color"] = new List<string> { "Red", "Black" };
 bicycle1["ProductCategory"] = "Bike";
 productCatalogTable.PutItem(bicycle1);

 var bicycle2 = new Document();
 bicycle2["Id"] = 202;
 bicycle2["Title"] = "21-Bike 202Brand-Company A";
 bicycle2["Description"] = "202 description";
 bicycle2["BicycleType"] = "Road";
 bicycle2["Brand"] = "";
 bicycle2["Price"] = 200;
 bicycle2["Color"] = new List<string> { "Green", "Black" };
 bicycle2["ProductCategory"] = "Bicycle";
 productCatalogTable.PutItem(bicycle2);

 var bicycle3 = new Document();
 bicycle3["Id"] = 203;
 bicycle3["Title"] = "19-Bike 203";
 bicycle3["Description"] = "203 description";
 bicycle3["BicycleType"] = "Road";
 bicycle3["Brand"] = "Brand-Company B";
 bicycle3["Price"] = 300;
 bicycle3["Color"] = new List<string> { "Red", "Green", "Black" };
 bicycle3["ProductCategory"] = "Bike";
 productCatalogTable.PutItem(bicycle3);

 var bicycle4 = new Document();

Creating example tables and uploading data - .NET API Version 2012-08-10 3540

Amazon DynamoDB Developer Guide

 bicycle4["Id"] = 204;
 bicycle4["Title"] = "18-Bike 204";
 bicycle4["Description"] = "204 description";
 bicycle4["BicycleType"] = "Mountain";
 bicycle4["Brand"] = "Brand-Company B";
 bicycle4["Price"] = 400;
 bicycle4["Color"] = new List<string> { "Red" };
 bicycle4["ProductCategory"] = "Bike";
 productCatalogTable.PutItem(bicycle4);

 var bicycle5 = new Document();
 bicycle5["Id"] = 205;
 bicycle5["Title"] = "20-Title 205";
 bicycle4["Description"] = "205 description";
 bicycle5["BicycleType"] = "Hybrid";
 bicycle5["Brand"] = "Brand-Company C";
 bicycle5["Price"] = 500;
 bicycle5["Color"] = new List<string> { "Red", "Black" };
 bicycle5["ProductCategory"] = "Bike";
 productCatalogTable.PutItem(bicycle5);
 }

 private static void LoadSampleForums()
 {
 Table forumTable = Table.LoadTable(client, "Forum");

 var forum1 = new Document();
 forum1["Name"] = "Amazon DynamoDB"; // PK
 forum1["Category"] = "Amazon Web Services";
 forum1["Threads"] = 2;
 forum1["Messages"] = 4;
 forum1["Views"] = 1000;

 forumTable.PutItem(forum1);

 var forum2 = new Document();
 forum2["Name"] = "Amazon S3"; // PK
 forum2["Category"] = "Amazon Web Services";
 forum2["Threads"] = 1;

 forumTable.PutItem(forum2);
 }

 private static void LoadSampleThreads()

Creating example tables and uploading data - .NET API Version 2012-08-10 3541

Amazon DynamoDB Developer Guide

 {
 Table threadTable = Table.LoadTable(client, "Thread");

 // Thread 1.
 var thread1 = new Document();
 thread1["ForumName"] = "Amazon DynamoDB"; // Hash attribute.
 thread1["Subject"] = "DynamoDB Thread 1"; // Range attribute.
 thread1["Message"] = "DynamoDB thread 1 message text";
 thread1["LastPostedBy"] = "User A";
 thread1["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(14,
 0, 0, 0));
 thread1["Views"] = 0;
 thread1["Replies"] = 0;
 thread1["Answered"] = false;
 thread1["Tags"] = new List<string> { "index", "primarykey", "table" };

 threadTable.PutItem(thread1);

 // Thread 2.
 var thread2 = new Document();
 thread2["ForumName"] = "Amazon DynamoDB"; // Hash attribute.
 thread2["Subject"] = "DynamoDB Thread 2"; // Range attribute.
 thread2["Message"] = "DynamoDB thread 2 message text";
 thread2["LastPostedBy"] = "User A";
 thread2["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(21,
 0, 0, 0));
 thread2["Views"] = 0;
 thread2["Replies"] = 0;
 thread2["Answered"] = false;
 thread2["Tags"] = new List<string> { "index", "primarykey", "rangekey" };

 threadTable.PutItem(thread2);

 // Thread 3.
 var thread3 = new Document();
 thread3["ForumName"] = "Amazon S3"; // Hash attribute.
 thread3["Subject"] = "S3 Thread 1"; // Range attribute.
 thread3["Message"] = "S3 thread 3 message text";
 thread3["LastPostedBy"] = "User A";
 thread3["LastPostedDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(7, 0,
 0, 0));
 thread3["Views"] = 0;
 thread3["Replies"] = 0;
 thread3["Answered"] = false;

Creating example tables and uploading data - .NET API Version 2012-08-10 3542

Amazon DynamoDB Developer Guide

 thread3["Tags"] = new List<string> { "largeobjects", "multipart upload" };
 threadTable.PutItem(thread3);
 }

 private static void LoadSampleReplies()
 {
 Table replyTable = Table.LoadTable(client, "Reply");

 // Reply 1 - thread 1.
 var thread1Reply1 = new Document();
 thread1Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.
 thread1Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(21,
 0, 0, 0)); // Range attribute.
 thread1Reply1["Message"] = "DynamoDB Thread 1 Reply 1 text";
 thread1Reply1["PostedBy"] = "User A";

 replyTable.PutItem(thread1Reply1);

 // Reply 2 - thread 1.
 var thread1reply2 = new Document();
 thread1reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.
 thread1reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(14,
 0, 0, 0)); // Range attribute.
 thread1reply2["Message"] = "DynamoDB Thread 1 Reply 2 text";
 thread1reply2["PostedBy"] = "User B";

 replyTable.PutItem(thread1reply2);

 // Reply 3 - thread 1.
 var thread1Reply3 = new Document();
 thread1Reply3["Id"] = "Amazon DynamoDB#DynamoDB Thread 1"; // Hash
 attribute.
 thread1Reply3["ReplyDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(7,
 0, 0, 0)); // Range attribute.
 thread1Reply3["Message"] = "DynamoDB Thread 1 Reply 3 text";
 thread1Reply3["PostedBy"] = "User B";

 replyTable.PutItem(thread1Reply3);

 // Reply 1 - thread 2.
 var thread2Reply1 = new Document();

Creating example tables and uploading data - .NET API Version 2012-08-10 3543

Amazon DynamoDB Developer Guide

 thread2Reply1["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.
 thread2Reply1["ReplyDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(7,
 0, 0, 0)); // Range attribute.
 thread2Reply1["Message"] = "DynamoDB Thread 2 Reply 1 text";
 thread2Reply1["PostedBy"] = "User A";

 replyTable.PutItem(thread2Reply1);

 // Reply 2 - thread 2.
 var thread2Reply2 = new Document();
 thread2Reply2["Id"] = "Amazon DynamoDB#DynamoDB Thread 2"; // Hash
 attribute.
 thread2Reply2["ReplyDateTime"] = DateTime.UtcNow.Subtract(new TimeSpan(1,
 0, 0, 0)); // Range attribute.
 thread2Reply2["Message"] = "DynamoDB Thread 2 Reply 2 text";
 thread2Reply2["PostedBy"] = "User A";

 replyTable.PutItem(thread2Reply2);
 }
 }
}

DynamoDB example application using the Amazon SDK for
Python (Boto): Tic-tac-toe

The Tic-Tac-Toe game is an example web application built on Amazon DynamoDB. The application
uses the Amazon SDK for Python (Boto) to make the necessary DynamoDB calls to store game data
in a DynamoDB table, and the Python web framework Flask to illustrate end-to-end application
development in DynamoDB, including how to model data. It also demonstrates best practices when
it comes to modeling data in DynamoDB, including the table you create for the game application,
the primary key you define, additional indexes you need based on your query requirements, and
the use of concatenated value attributes.

You play the Tic-Tac-Toe application on the web as follows:

1. You log in to the application home page.

2. You then invite another user to play the game as your opponent.

Example application using Amazon SDK for Python (Boto3) API Version 2012-08-10 3544

Amazon DynamoDB Developer Guide

Until another user accepts your invitation, the game status remains as PENDING. After an
opponent accepts the invite, the game status changes to IN_PROGRESS.

3. The game begins after the opponent logs in and accepts the invite.

4. The application stores all game moves and status information in a DynamoDB table.

5. The game ends with a win or a draw, which sets the game status to FINISHED.

The end-to-end application building exercise is described in steps:

• Step 1: Deploy and test locally – In this section, you download, deploy, and test the application
on your local computer. You will create the required tables in the downloadable version of
DynamoDB.

• Step 2: Examine the data model and implementation details – This section first describes in
detail the data model, including the indexes and the use of the concatenated value attribute.
Then the section explains how the application works.

• Step 3: Deploy in production using the DynamoDB service – This section focuses on
deployment considerations in production. In this step, you create a table using the Amazon
DynamoDB service and deploy the application using Amazon Elastic Beanstalk. When you have
the application in production, you also grant appropriate permissions so the application can
access the DynamoDB table. The instructions in this section walk you through the end-to-end
production deployment.

• Step 4: Clean up resources – This section highlights areas that are not covered by this example.
The section also provides steps for you to remove the Amazon resources you created in the
preceding steps so that you avoid incurring any charges.

Step 1: Deploy and test locally

Topics

• 1.1: Download and install the required packages

• 1.2: Test the game application

In this step you download, deploy, and test the Tic-Tac-Toe game application on your local
computer. Instead of using the Amazon DynamoDB web service, you will download DynamoDB to
your computer, and create the required table there.

Step 1: Deploy and test locally API Version 2012-08-10 3545

Amazon DynamoDB Developer Guide

1.1: Download and install the required packages

You will need the following to test this application locally:

• Python

• Flask (a microframework for Python)

• Amazon SDK for Python (Boto)

• DynamoDB running on your computer

• Git

To get these tools, do the following:

1. Install Python. For step-by-step instructions, see Download Python.

The Tic-Tac-Toe application has been tested using Python version 2.7.

2. Install Flask and Amazon SDK for Python (Boto) using the Python Package Installer (PIP):

• Install PIP.

For instructions, see Install PIP. On the installation page, choose the get-pip.py link, and then
save the file. Then open a command terminal as an administrator, and enter the following at
the command prompt.

python.exe get-pip.py

On Linux, you don't specify the .exe extension. You only specify python get-pip.py.

• Using PIP, install the Flask and Boto packages using the following code.

pip install Flask
pip install boto
pip install configparser

3. Download DynamoDB to your computer. For instructions on how to run it, see Setting up
DynamoDB local (downloadable version) .

4. Download the Tic-Tac-Toe application:

a. Install Git. For instructions, see git downloads.

b. Run the following code to download the application.
Step 1: Deploy and test locally API Version 2012-08-10 3546

https://www.python.org/downloads/
http://pip.readthedocs.org/en/stable/installing/
http://git-scm.com/downloads

Amazon DynamoDB Developer Guide

git clone https://github.com/awslabs/dynamodb-tictactoe-example-app.git

1.2: Test the game application

To test the Tic-Tac-Toe application, you need to run DynamoDB locally on your computer.

To run the tic-tac-toe application

1. Start DynamoDB.

2. Start the web server for the Tic-Tac-Toe application.

To do so, open a command terminal, navigate to the folder where you downloaded the Tic-
Tac-Toe application, and run the application locally using the following code.

python.exe application.py --mode local --serverPort 5000 --port 8000

On Linux, you don't specify the .exe extension.

3. Open your web browser, and enter the following.

http://localhost:5000/

The browser shows the home page.

4. Enter user1 in the Log in box to log in as user1.

Step 1: Deploy and test locally API Version 2012-08-10 3547

Amazon DynamoDB Developer Guide

Note

This example application does not perform any user authentication. The user ID is only
used to identify players. If two players log in with the same alias, the application works
as if you are playing in two different browsers.

5. If this is your first time playing the game, a page appears requesting you to create the required
table (Games) in DynamoDB. Choose CREATE TABLE.

6. Choose CREATE to create the first tic-tac-toe game.

7. Enter user2 in the Choose an Opponent box, and choose Create Game!

Doing this creates the game by adding an item in the Games table. It sets the game status to
PENDING.

8. Open another browser window, and enter the following.

http://localhost:5000/

Step 1: Deploy and test locally API Version 2012-08-10 3548

Amazon DynamoDB Developer Guide

The browser passes information through cookies, so you should use incognito mode or private
browsing so that your cookies don't carry over.

9. Log in as user2.

A page appears that shows a pending invitation from user1.

10. Choose accept to accept the invitation.

The game page appears with an empty tic-tac-toe grid. The page also shows relevant game
information such as the game ID, whose turn it is, and game status.

11. Play the game.

Step 1: Deploy and test locally API Version 2012-08-10 3549

Amazon DynamoDB Developer Guide

For each user move, the web service sends a request to DynamoDB to conditionally update the
game item in the Games table. For example, the conditions ensure that the move is valid, the
square that the user chose is available, and that it was the turn of the user who made the move.
For a valid move, the update operation adds a new attribute corresponding to the selection on the
board. The update operation also sets the value of the existing attribute to the user who can make
the next move.

On the game page, the application makes asynchronous JavaScript calls every second, for up to 5
minutes, to check if the game state in DynamoDB has changed. If it has, the application updates
the page with new information. After 5 minutes, the application stops making the requests, and
you need to refresh the page to get updated information.

Step 2: Examine the data model and implementation details

Topics

• 2.1: Basic data model

• 2.2: Application in action (code walkthrough)

2.1: Basic data model

This example application highlights the following DynamoDB data model concepts:

• Table – In DynamoDB, a table is a collection of items (that is, records), and each item is a
collection of name-value pairs called attributes.

In this Tic-Tac-Toe example, the application stores all game data in a table, Games. The
application creates one item in the table per game and stores all game data as attributes. A tic-
tac-toe game can have up to nine moves. Because DynamoDB tables do not have a schema in
cases where only the primary key is the required attribute, the application can store varying
number of attributes per game item.

The Games table has a simple primary key made of one attribute, GameId, of string type. The
application assigns a unique ID to each game. For more information on DynamoDB primary keys,
see Primary key.

When a user initiates a tic-tac-toe game by inviting another user to play, the application creates a
new item in the Games table with attributes storing game metadata, such as the following:

• HostId, the user who initiated the game.

Step 2: Examine the data model and implementation details API Version 2012-08-10 3550

Amazon DynamoDB Developer Guide

• Opponent, the user who was invited to play.

• The user whose turn it is to play. The user who initiated the game plays first.

• The user who uses the O symbol on the board. The user who initiates the games uses the O
symbol.

In addition, the application creates a StatusDate concatenated attribute, marking the initial
game state as PENDING. The following screenshot shows an example item as it appears in the
DynamoDB console:

As the game progresses, the application adds one attribute to the table for each game move.
The attribute name is the board position, for example TopLeft or BottomRight. For example, a
move might have a TopLeft attribute with the value O, a TopRight attribute with the value O,
and a BottomRight attribute with the value X. The attribute value is either O or X, depending on
which user made the move. For example, consider the following board.

Step 2: Examine the data model and implementation details API Version 2012-08-10 3551

Amazon DynamoDB Developer Guide

• Concatenated value attributes – The StatusDate attribute illustrates a concatenated
value attribute. In this approach, instead of creating separate attributes to store game status
(PENDING, IN_PROGRESS, and FINISHED) and date (when the last move was made), you
combine them as single attribute, for example IN_PROGRESS_2014-04-30 10:20:32.

The application then uses the StatusDate attribute in creating secondary indexes by specifying
StatusDate as a sort key for the index. The benefit of using the StatusDate concatenated
value attribute is further illustrated in the indexes discussed next.

• Global secondary indexes – You can use the table's primary key, GameId, to efficiently query the
table to find a game item. To query the table on attributes other than the primary key attributes,
DynamoDB supports the creation of secondary indexes. In this example application, you build the
following two secondary indexes:

• HostId-StatusDate-index. This index has HostId as a partition key and StatusDate as a
sort key. You can use this index to query on HostId, for example to find games hosted by a
particular user.

• OpponentId-StatusDate-index. This index has OpponentId as a partition key and
StatusDate as a sort key. You can use this index to query on Opponent, for example to find
games where a particular user is the opponent.

These indexes are called global secondary indexes because the partition key in these indexes is
not the same the partition key (GameId), used in the primary key of the table.

Note that both the indexes specify StatusDate as a sort key. Doing this enables the following:

• You can query using the BEGINS_WITH comparison operator. For example, you can find
all games with the IN_PROGRESS attribute hosted by a particular user. In this case, the
BEGINS_WITH operator checks for the StatusDate value that begins with IN_PROGRESS.

Step 2: Examine the data model and implementation details API Version 2012-08-10 3552

Amazon DynamoDB Developer Guide

• DynamoDB stores the items in the index in sorted order, by sort key value. So if all status
prefixes are the same (for example, IN_PROGRESS), the ISO format used for the date part
will have items sorted from oldest to the newest. This approach enables certain queries to be
performed efficiently, for example the following:

• Retrieve up to 10 of the most recent IN_PROGRESS games hosted by the user who is logged
in. For this query, you specify the HostId-StatusDate-index index.

• Retrieve up to 10 of the most recent IN_PROGRESS games where the user logged in is the
opponent. For this query, you specify the OpponentId-StatusDate-index index.

For more information about secondary indexes, see Improving data access with secondary indexes
in DynamoDB.

2.2: Application in action (code walkthrough)

This application has two main pages:

• Home page – This page provides the user a simple login, a CREATE button to create a new tic-
tac-toe game, a list of games in progress, game history, and any active pending game invitations.

The home page is not refreshed automatically; you must refresh the page to refresh the lists.

• Game page – This page shows the tic-tac-toe grid where users play.

The application updates the game page automatically every second. The JavaScript in your
browser calls the Python web server every second to query the Games table whether the game
items in the table have changed. If they have, JavaScript triggers a page refresh so that the user
sees the updated board.

Let us see in detail how the application works.

Home page

After the user logs in, the application displays the following three lists of information.

Step 2: Examine the data model and implementation details API Version 2012-08-10 3553

Amazon DynamoDB Developer Guide

• Invitations – This list shows up to the 10 most recent invitations from others that are pending
acceptance by the user who is logged in. In the preceding screenshot, user1 has invitations from
user5 and user2 pending.

• Games in-progress – This list shows up to the 10 most recent games that are in progress.
These are games that the user is actively playing, which have the status IN_PROGRESS. In the
screenshot, user1 is actively playing a tic-tac-toe game with user3 and user4.

• Recent history – This list shows up to the 10 most recent games that the user finished, which
have the status FINISHED. In game shown in the screenshot, user1 has previously played with
user2. For each completed game, the list shows the game result.

In the code, the index function (in application.py) makes the following three calls to retrieve
game status information:

inviteGames = controller.getGameInvites(session["username"])
inProgressGames = controller.getGamesWithStatus(session["username"], "IN_PROGRESS")
finishedGames = controller.getGamesWithStatus(session["username"], "FINISHED")

Each of these calls returns a list of items from DynamoDB that are wrapped by the Game objects. It
is easy to extract data from these objects in the view. The index function passes these object lists to
the view to render the HTML.

return render_template("index.html",
 user=session["username"],
 invites=inviteGames,

Step 2: Examine the data model and implementation details API Version 2012-08-10 3554

Amazon DynamoDB Developer Guide

 inprogress=inProgressGames,
 finished=finishedGames)

The Tic-Tac-Toe application defines the Game class primarily to store game data retrieved from
DynamoDB. These functions return lists of Game objects that enable you to isolate the rest of
the application from code related to Amazon DynamoDB items. Thus, these functions help you
decouple your application code from the details of the data store layer.

The architectural pattern described here is also referred as the model-view-controller (MVC)
UI pattern. In this case, the Game object instances (representing data) are the model, and
the HTML page is the view. The controller is divided into two files. The application.py
file has the controller logic for the Flask framework, and the business logic is isolated in the
gameController.py file. That is, the application stores everything that has to do with
DynamoDB SDK in its own separate file in the dynamodb folder.

Let us review the three functions and how they query the Games table using global secondary
indexes to retrieve relevant data.

Using getGameInvites to get the list of pending game invitations

The getGameInvites function retrieves the list of the 10 most recent pending invitations. These
games have been created by users, but the opponents have not accepted the game invitations. For
these games, the status remains PENDING until the opponent accepts the invite. If the opponent
declines the invite, the application removes the corresponding item from the table.

The function specifies the query as follows:

• It specifies the OpponentId-StatusDate-index index to use with the following index key
values and comparison operators:

• The partition key is OpponentId and takes the index key user ID.

• The sort key is StatusDate and takes the comparison operator and index key value
beginswith="PENDING_".

You use the OpponentId-StatusDate-index index to retrieve games to which the logged-in
user is invited—that is, where the logged-in user is the opponent.

• The query limits the result to 10 items.

gameInvitesIndex = self.cm.getGamesTable().query(

Step 2: Examine the data model and implementation details API Version 2012-08-10 3555

Amazon DynamoDB Developer Guide

 Opponent__eq=user,
 StatusDate__beginswith="PENDING_",
 index="OpponentId-StatusDate-index",
 limit=10)

In the index, for each OpponentId (the partition key) DynamoDB keeps items sorted by
StatusDate (the sort key). Therefore, the games that the query returns will be the 10 most recent
games.

Using getGamesWithStatus to get the list of games with a specific status

After an opponent accepts a game invitation, the game status changes to IN_PROGRESS. After the
game completes, the status changes to FINISHED.

Queries to find games that are either in progress or finished are the same except for the different
status value. Therefore, the application defines the getGamesWithStatus function, which takes
the status value as a parameter.

inProgressGames = controller.getGamesWithStatus(session["username"], "IN_PROGRESS")
finishedGames = controller.getGamesWithStatus(session["username"], "FINISHED")

The following section discusses in-progress games, but the same description also applies to
finished games.

A list of in-progress games for a given user includes both the following:

• In-progress games hosted by the user

• In-progress games where the user is the opponent

The getGamesWithStatus function runs the following two queries, each time using the
appropriate secondary index.

• The function queries the Games table using the HostId-StatusDate-index index. For the
index, the query specifies primary key values—both the partition key (HostId) and sort key
(StatusDate) values, along with comparison operators.

hostGamesInProgress = self.cm.getGamesTable ().query(HostId__eq=user,
 StatusDate__beginswith=status,
 index="HostId-StatusDate-index",
 limit=10)

Step 2: Examine the data model and implementation details API Version 2012-08-10 3556

Amazon DynamoDB Developer Guide

Note the Python syntax for comparison operators:

• HostId__eq=user specifies the equality comparison operator.

• StatusDate__beginswith=status specifies the BEGINS_WITH comparison operator.

• The function queries the Games table using the OpponentId-StatusDate-index index.

oppGamesInProgress = self.cm.getGamesTable().query(Opponent__eq=user,
 StatusDate__beginswith=status,
 index="OpponentId-StatusDate-index",
 limit=10)

• The function then combines the two lists, sorts, and for the first 0 to 10 items creates a list of
the Game objects and returns the list to the calling function (that is, the index).

games = self.mergeQueries(hostGamesInProgress,
 oppGamesInProgress)
return games

Game page

The game page is where the user plays tic-tac-toe games. It shows the game grid along with game-
relevant information. The following screenshot shows an example game in progress:

Step 2: Examine the data model and implementation details API Version 2012-08-10 3557

Amazon DynamoDB Developer Guide

The application displays the game page in the following situations:

• The user creates a game inviting another user to play.

In this case, the page shows the user as host and the game status as PENDING, waiting for the
opponent to accept.

• The user accepts one of the pending invitations on the home page.

In this case, the page shows the user as the opponent and game status as IN_PROGRESS.

A user selection on the board generates a form POST request to the application. That is, Flask calls
the selectSquare function (in application.py) with the HTML form data. This function, in
turn, calls the updateBoardAndTurn function (in gameController.py) to update the game
item as follows:

• It adds a new attribute specific to the move.

• It updates the Turn attribute value to the user whose turn is next.

controller.updateBoardAndTurn(item, value, session["username"])

The function returns true if the item update was successful; otherwise, it returns false. Note the
following about the updateBoardAndTurn function:

• The function calls the update_item function of the SDK for Python to make a finite set of
updates to an existing item. The function maps to the UpdateItem operation in DynamoDB. For
more information, see UpdateItem.

Note

The difference between the UpdateItem and PutItem operations is that PutItem
replaces the entire item. For more information, see PutItem.

For the update_item call, the code identifies the following:

• The primary key of the Games table (that is, ItemId).

Step 2: Examine the data model and implementation details API Version 2012-08-10 3558

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_PutItem.html

Amazon DynamoDB Developer Guide

key = { "GameId" : { "S" : gameId } }

• The new attribute to add, specific to the current user move, and its value (for example,
TopLeft="X").

attributeUpdates = {
 position : {
 "Action" : "PUT",
 "Value" : { "S" : representation }
 }
}

• Conditions that must be true for the update to take place:

• The game must be in progress. That is, the StatusDate attribute value must begin with
IN_PROGRESS.

• The current turn must be a valid user turn as specified by the Turn attribute.

• The square that the user chose must be available. That is, the attribute corresponding to the
square must not exist.

expectations = {"StatusDate" : {"AttributeValueList": [{"S" : "IN_PROGRESS_"}],
 "ComparisonOperator": "BEGINS_WITH"},
 "Turn" : {"Value" : {"S" : current_player}},
 position : {"Exists" : False}}

Now the function calls update_item to update the item.

self.cm.db.update_item("Games", key=key,
 attribute_updates=attributeUpdates,
 expected=expectations)

After the function returns, the selectSquare function calls redirect, as shown in the following
example.

redirect("/game="+gameId)

This call causes the browser to refresh. As part of this refresh, the application checks to see if the
game has ended in a win or draw. If it has, the application updates the game item accordingly.

Step 2: Examine the data model and implementation details API Version 2012-08-10 3559

Amazon DynamoDB Developer Guide

Step 3: Deploy in production using the DynamoDB service

Topics

• 3.1: Create an IAM role for Amazon EC2

• 3.2: Create the games table in Amazon DynamoDB

• 3.3: Bundle and deploy the tic-tac-toe application code

• 3.4: Set up the Amazon Elastic Beanstalk environment

In the preceding sections, you deployed and tested the Tic-Tac-Toe application locally on your
computer using DynamoDB local. Now, you deploy the application in production as follows:

• Deploy the application using Amazon Elastic Beanstalk, an easy-to-use service for deploying and
scaling web applications and services. For more information, see Deploying a flask application to
Amazon Elastic Beanstalk.

Elastic Beanstalk launches one or more Amazon Elastic Compute Cloud (Amazon EC2) instances,
which you configure through Elastic Beanstalk, on which your Tic-Tac-Toe application will run.

• Using the Amazon DynamoDB service, create a Games table that exists on Amazon rather than
locally on your computer.

In addition, you also have to configure permissions. Any Amazon resources you create, such as
the Games table in DynamoDB, are private by default. Only the resource owner, that is the AWS
account that created the Games table, can access this table. Thus, by default your Tic-Tac-Toe
application cannot update the Games table.

To grant necessary permissions, you create an Amazon Identity and Access Management (IAM)
role and grant this role permissions to access the Games table. Your Amazon EC2 instance first
assumes this role. In response, Amazon returns temporary security credentials that the Amazon
EC2 instance can use to update the Games table on behalf of the Tic-Tac-Toe application. When
you configure your Elastic Beanstalk application, you specify the IAM role that the Amazon EC2
instance or instances can assume. For more information about IAM roles, see IAM roles for amazon
EC2 in the Amazon EC2 User Guide.

Step 3: Deploy in production API Version 2012-08-10 3560

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

Amazon DynamoDB Developer Guide

Note

Before you create Amazon EC2 instances for the Tic-Tac-Toe application, you must first
decide the Amazon Region where you want Elastic Beanstalk to create the instances.
After you create the Elastic Beanstalk application, you provide the same Region name and
endpoint in a configuration file. The Tic-Tac-Toe application uses information in this file to
create the Games table and send subsequent requests in a specific Amazon Region. Both
the DynamoDB Games table and the Amazon EC2 instances that Elastic Beanstalk launches
must be in the same Region. For a list of available Regions, see Amazon DynamoDB in the
Amazon Web Services General Reference.

In summary, you do the following to deploy the Tic-Tac-Toe application in production:

1. Create an IAM role using the IAM service. You attach a policy to this role granting permissions
for DynamoDB actions to access the Games table.

2. Bundle the Tic-Tac-Toe application code and a configuration file, and create a .zip file. You
use this .zip file to give the Tic-Tac-Toe application code to Elastic Beanstalk to put on your
servers. For more information about creating a bundle, see Creating an application source
bundle in the Amazon Elastic Beanstalk Developer Guide.

In the configuration file (beanstalk.config), you provide Amazon Region and endpoint
information. The Tic-Tac-Toe application uses this information to determine which DynamoDB
Region to talk to.

3. Set up the Elastic Beanstalk environment. Elastic Beanstalk launches an Amazon EC2 instance or
instances and deploys your Tic-Tac-Toe application bundle on them. After the Elastic Beanstalk
environment is ready, you provide the configuration file name by adding the CONFIG_FILE
environment variable.

4. Create the DynamoDB table. Using the Amazon DynamoDB service, you create the Games table
on Amazon, rather than locally on your computer. Remember, this table has a simple primary
key made of the GameId partition key of string type.

5. Test the game in production.

Step 3: Deploy in production API Version 2012-08-10 3561

https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.deployment.source.html
https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/using-features.deployment.source.html

Amazon DynamoDB Developer Guide

3.1: Create an IAM role for Amazon EC2

Creating an IAM role of the Amazon EC2 type allows the Amazon EC2 instance that is running your
Tic-Tac-Toe application to assume the correct role and make application requests to access the
Games table. When creating the role, choose the Custom Policy option and copy and paste the
following policy.

JSON

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Action":[
 "dynamodb:ListTables"
],
 "Effect":"Allow",
 "Resource":"*"
 },
 {
 "Action":[
 "dynamodb:*"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:dynamodb:us-west-2:922852403271:table/Games",
 "arn:aws:dynamodb:us-west-2:922852403271:table/Games/index/*"
]
 }
]
}

For further instructions, see Creating a role for an Amazon service (Amazon Web Services
Management Console) in the IAM User Guide.

3.2: Create the games table in Amazon DynamoDB

The Games table in DynamoDB stores game data. If the table does not exist, the application creates
the table for you. In this case, let the application create the Games table.

Step 3: Deploy in production API Version 2012-08-10 3562

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon DynamoDB Developer Guide

3.3: Bundle and deploy the tic-tac-toe application code

If you followed this example's steps, then you already have the downloaded the Tic-Tac-Toe
application. If not, download the application and extract all the files to a folder on your local
computer. For instructions, see Step 1: Deploy and test locally.

After you extract all files, you will have a code folder. To hand off this folder to Elastic Beanstalk,
you bundle the contents of this folder as a .zip file. First, you add a configuration file to that
folder. Your application uses the Region and endpoint information to create a DynamoDB table in
the specified Region and make subsequent table operation requests using the specified endpoint.

1. Switch to the folder where you downloaded the Tic-Tac-Toe application.

2. In the root folder of the application, create a text file named beanstalk.config with the
following content.

[dynamodb]
region=<Amazon region>
endpoint=<DynamoDB endpoint>

For example, you might use the following content.

[dynamodb]
region=us-west-2
endpoint=dynamodb.us-west-2.amazonaws.com

For a list of available Regions, see Amazon DynamoDB in the Amazon Web Services General
Reference.

Important

The Region specified in the configuration file is the location where the Tic-Tac-
Toe application creates the Games table in DynamoDB. You must create the Elastic
Beanstalk application discussed in the next section in the same Region.

Step 3: Deploy in production API Version 2012-08-10 3563

https://docs.amazonaws.cn/general/latest/gr/rande.html#ddb_region

Amazon DynamoDB Developer Guide

Note

When you create your Elastic Beanstalk application, you request to launch an
environment where you can choose the environment type. To test the Tic-Tac-Toe
example application, you can choose the Single Instance environment type, skip the
following, and go to the next step.
However, the Load balancing, autoscaling environment type provides a highly
available and scalable environment, something you should consider when you create
and deploy other applications. If you choose this environment type, you also need to
generate a UUID and add it to the configuration file, as shown following.

[dynamodb]
region=us-west-2
endpoint=dynamodb.us-west-2.amazonaws.com
[flask]
secret_key= 284e784d-1a25-4a19-92bf-8eeb7a9example

In client-server communication, when the server sends a response, for security's
sake the server sends a signed cookie that the client sends back to the server in
the next request. When there is only one server, the server can locally generate an
encryption key when it starts. When there are many servers, they all need to know the
same encryption key; otherwise, they won't be able to read cookies set by the peer
servers. By adding secret_key to the configuration file, you tell all servers to use this
encryption key.

3. Zip the content of the root folder of the application (which includes the beanstalk.config
file)—for example, TicTacToe.zip.

4. Upload the .zip file to an Amazon Simple Storage Service (Amazon S3) bucket. In the next
section, you provide this .zip file to Elastic Beanstalk to upload on the server or servers.

For instructions on how to upload to an Amazon S3 bucket, see Create a bucket and Add an
object to a bucket in the Amazon Simple Storage Service User Guide.

Step 3: Deploy in production API Version 2012-08-10 3564

https://docs.amazonaws.cn/AmazonS3/latest/userguide/CreatingABucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/PuttingAnObjectInABucket.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/PuttingAnObjectInABucket.html

Amazon DynamoDB Developer Guide

3.4: Set up the Amazon Elastic Beanstalk environment

In this step, you create an Elastic Beanstalk application, which is a collection of components
including environments. For this example, you launch one Amazon EC2 instance to deploy and run
your Tic-Tac-Toe application.

1. Enter the following custom URL to set up an Elastic Beanstalk console to set up the
environment.

https://console.aws.amazon.com/elasticbeanstalk/?region=<AWS-Region>#/
newApplication
?applicationName=TicTacToeyour-name
&solutionStackName=Python
&sourceBundleUrl=https://s3.amazonaws.com/<bucket-name>/TicTacToe.zip
&environmentType=SingleInstance
&instanceType=t1.micro

For more information about custom URLs, see Constructing a Launch Now URL in the Amazon
Elastic Beanstalk Developer Guide. For the URL, note the following:

• You must provide an Amazon Region name (the same as the one you provided in the
configuration file), an Amazon S3 bucket name, and the object name.

• For testing, the URL requests the SingleInstance environment type, and t1.micro as the
instance type.

• The application name must be unique. Thus, in the preceding URL, we suggest you prepend
your name to the applicationName.

Doing this opens the Elastic Beanstalk console. In some cases, you might need to sign in.

2. In the Elastic Beanstalk console, choose Review and Launch, and then choose Launch.

3. Note the URL for future reference. This URL opens your Tic-Tac-Toe application home page.

Step 3: Deploy in production API Version 2012-08-10 3565

https://docs.amazonaws.cn/elasticbeanstalk/latest/dg/launch-now-url.html

Amazon DynamoDB Developer Guide

4. Configure the Tic-Tac-Toe application so it knows the location of the configuration file.

After Elastic Beanstalk creates the application, choose Configuration.

a. Choose the gear icon next to Software Configuration, as shown in the following
screenshot.

b. At the end of the Environment Properties section, enter CONFIG_FILE and its value
beanstalk.config, and then choose Save.

It might take a few minutes for this environment update to complete.

Step 3: Deploy in production API Version 2012-08-10 3566

Amazon DynamoDB Developer Guide

After the update completes, you can play the game.

5. In the browser, enter the URL you copied in the previous step, as shown in the following
example.

http://<pen-name>.elasticbeanstalk.com

Doing this opens the application home page.

6. Log in as testuser1, and choose CREATE to start a new tic-tac-toe game.

7. Enter testuser2 in the Choose an Opponent box.

Step 3: Deploy in production API Version 2012-08-10 3567

Amazon DynamoDB Developer Guide

8. Open another browser window.

Make sure that you clear all cookies in your browser window so you won't be logged in as same
user.

9. Enter the same URL to open the application home page, as shown in the following example.

http://<env-name>.elasticbeanstalk.com

10. Log in as testuser2.

11. For the invitation from testuser1 in the list of pending invitations, choose accept.

12. Now the game page appears.

Step 3: Deploy in production API Version 2012-08-10 3568

Amazon DynamoDB Developer Guide

Both testuser1 and testuser2 can play the game. For each move, the application saves the
move in the corresponding item in the Games table.

Step 4: Clean up resources

Now you have completed the Tic-Tac-Toe application deployment and testing. The application
covers end-to-end web application development on Amazon DynamoDB, except for user
authentication. The application uses the login information on the home page only to add a player
name when creating a game. In a production application, you would add the necessary code to
perform user login and authentication.

If you are done testing, you can remove the resources you created to test the Tic-Tac-Toe
application to avoid incurring any charges.

To remove the resources you created

1. Remove the Games table that you created in DynamoDB.

2. Terminate the Elastic Beanstalk environment to free up the Amazon EC2 instances.

3. Delete the IAM role that you created.

Step 4: Clean up resources API Version 2012-08-10 3569

Amazon DynamoDB Developer Guide

4. Remove the object that you created in Amazon S3.

Reserved words in DynamoDB

The following keywords are reserved for use by DynamoDB. Don't use any of these words as
attribute names in expressions. This list isn't case-sensitive.

If you need to write an expression containing an attribute name that conflicts with a DynamoDB
reserved word, you can define an expression attribute name to use in the place of the reserved
word. For more information, see Expression attribute names (aliases) in DynamoDB.

ABORT
ABSOLUTE
ACTION
ADD
AFTER
AGENT
AGGREGATE
ALL
ALLOCATE
ALTER
ANALYZE
AND
ANY
ARCHIVE
ARE
ARRAY
AS
ASC
ASCII
ASENSITIVE
ASSERTION
ASYMMETRIC
AT
ATOMIC
ATTACH
ATTRIBUTE
AUTH
AUTHORIZATION
AUTHORIZE
AUTO

Reserved words in DynamoDB API Version 2012-08-10 3570

Amazon DynamoDB Developer Guide

AVG
BACK
BACKUP
BASE
BATCH
BEFORE
BEGIN
BETWEEN
BIGINT
BINARY
BIT
BLOB
BLOCK
BOOLEAN
BOTH
BREADTH
BUCKET
BULK
BY
BYTE
CALL
CALLED
CALLING
CAPACITY
CASCADE
CASCADED
CASE
CAST
CATALOG
CHAR
CHARACTER
CHECK
CLASS
CLOB
CLOSE
CLUSTER
CLUSTERED
CLUSTERING
CLUSTERS
COALESCE
COLLATE
COLLATION
COLLECTION
COLUMN

Reserved words in DynamoDB API Version 2012-08-10 3571

Amazon DynamoDB Developer Guide

COLUMNS
COMBINE
COMMENT
COMMIT
COMPACT
COMPILE
COMPRESS
CONDITION
CONFLICT
CONNECT
CONNECTION
CONSISTENCY
CONSISTENT
CONSTRAINT
CONSTRAINTS
CONSTRUCTOR
CONSUMED
CONTINUE
CONVERT
COPY
CORRESPONDING
COUNT
COUNTER
CREATE
CROSS
CUBE
CURRENT
CURSOR
CYCLE
DATA
DATABASE
DATE
DATETIME
DAY
DEALLOCATE
DEC
DECIMAL
DECLARE
DEFAULT
DEFERRABLE
DEFERRED
DEFINE
DEFINED
DEFINITION

Reserved words in DynamoDB API Version 2012-08-10 3572

Amazon DynamoDB Developer Guide

DELETE
DELIMITED
DEPTH
DEREF
DESC
DESCRIBE
DESCRIPTOR
DETACH
DETERMINISTIC
DIAGNOSTICS
DIRECTORIES
DISABLE
DISCONNECT
DISTINCT
DISTRIBUTE
DO
DOMAIN
DOUBLE
DROP
DUMP
DURATION
DYNAMIC
EACH
ELEMENT
ELSE
ELSEIF
EMPTY
ENABLE
END
EQUAL
EQUALS
ERROR
ESCAPE
ESCAPED
EVAL
EVALUATE
EXCEEDED
EXCEPT
EXCEPTION
EXCEPTIONS
EXCLUSIVE
EXEC
EXECUTE
EXISTS

Reserved words in DynamoDB API Version 2012-08-10 3573

Amazon DynamoDB Developer Guide

EXIT
EXPLAIN
EXPLODE
EXPORT
EXPRESSION
EXTENDED
EXTERNAL
EXTRACT
FAIL
FALSE
FAMILY
FETCH
FIELDS
FILE
FILTER
FILTERING
FINAL
FINISH
FIRST
FIXED
FLATTERN
FLOAT
FOR
FORCE
FOREIGN
FORMAT
FORWARD
FOUND
FREE
FROM
FULL
FUNCTION
FUNCTIONS
GENERAL
GENERATE
GET
GLOB
GLOBAL
GO
GOTO
GRANT
GREATER
GROUP
GROUPING

Reserved words in DynamoDB API Version 2012-08-10 3574

Amazon DynamoDB Developer Guide

HANDLER
HASH
HAVE
HAVING
HEAP
HIDDEN
HOLD
HOUR
IDENTIFIED
IDENTITY
IF
IGNORE
IMMEDIATE
IMPORT
IN
INCLUDING
INCLUSIVE
INCREMENT
INCREMENTAL
INDEX
INDEXED
INDEXES
INDICATOR
INFINITE
INITIALLY
INLINE
INNER
INNTER
INOUT
INPUT
INSENSITIVE
INSERT
INSTEAD
INT
INTEGER
INTERSECT
INTERVAL
INTO
INVALIDATE
IS
ISOLATION
ITEM
ITEMS
ITERATE

Reserved words in DynamoDB API Version 2012-08-10 3575

Amazon DynamoDB Developer Guide

JOIN
KEY
KEYS
LAG
LANGUAGE
LARGE
LAST
LATERAL
LEAD
LEADING
LEAVE
LEFT
LENGTH
LESS
LEVEL
LIKE
LIMIT
LIMITED
LINES
LIST
LOAD
LOCAL
LOCALTIME
LOCALTIMESTAMP
LOCATION
LOCATOR
LOCK
LOCKS
LOG
LOGED
LONG
LOOP
LOWER
MAP
MATCH
MATERIALIZED
MAX
MAXLEN
MEMBER
MERGE
METHOD
METRICS
MIN
MINUS

Reserved words in DynamoDB API Version 2012-08-10 3576

Amazon DynamoDB Developer Guide

MINUTE
MISSING
MOD
MODE
MODIFIES
MODIFY
MODULE
MONTH
MULTI
MULTISET
NAME
NAMES
NATIONAL
NATURAL
NCHAR
NCLOB
NEW
NEXT
NO
NONE
NOT
NULL
NULLIF
NUMBER
NUMERIC
OBJECT
OF
OFFLINE
OFFSET
OLD
ON
ONLINE
ONLY
OPAQUE
OPEN
OPERATOR
OPTION
OR
ORDER
ORDINALITY
OTHER
OTHERS
OUT
OUTER

Reserved words in DynamoDB API Version 2012-08-10 3577

Amazon DynamoDB Developer Guide

OUTPUT
OVER
OVERLAPS
OVERRIDE
OWNER
PAD
PARALLEL
PARAMETER
PARAMETERS
PARTIAL
PARTITION
PARTITIONED
PARTITIONS
PATH
PERCENT
PERCENTILE
PERMISSION
PERMISSIONS
PIPE
PIPELINED
PLAN
POOL
POSITION
PRECISION
PREPARE
PRESERVE
PRIMARY
PRIOR
PRIVATE
PRIVILEGES
PROCEDURE
PROCESSED
PROJECT
PROJECTION
PROPERTY
PROVISIONING
PUBLIC
PUT
QUERY
QUIT
QUORUM
RAISE
RANDOM
RANGE

Reserved words in DynamoDB API Version 2012-08-10 3578

Amazon DynamoDB Developer Guide

RANK
RAW
READ
READS
REAL
REBUILD
RECORD
RECURSIVE
REDUCE
REF
REFERENCE
REFERENCES
REFERENCING
REGEXP
REGION
REINDEX
RELATIVE
RELEASE
REMAINDER
RENAME
REPEAT
REPLACE
REQUEST
RESET
RESIGNAL
RESOURCE
RESPONSE
RESTORE
RESTRICT
RESULT
RETURN
RETURNING
RETURNS
REVERSE
REVOKE
RIGHT
ROLE
ROLES
ROLLBACK
ROLLUP
ROUTINE
ROW
ROWS
RULE

Reserved words in DynamoDB API Version 2012-08-10 3579

Amazon DynamoDB Developer Guide

RULES
SAMPLE
SATISFIES
SAVE
SAVEPOINT
SCAN
SCHEMA
SCOPE
SCROLL
SEARCH
SECOND
SECTION
SEGMENT
SEGMENTS
SELECT
SELF
SEMI
SENSITIVE
SEPARATE
SEQUENCE
SERIALIZABLE
SESSION
SET
SETS
SHARD
SHARE
SHARED
SHORT
SHOW
SIGNAL
SIMILAR
SIZE
SKEWED
SMALLINT
SNAPSHOT
SOME
SOURCE
SPACE
SPACES
SPARSE
SPECIFIC
SPECIFICTYPE
SPLIT
SQL

Reserved words in DynamoDB API Version 2012-08-10 3580

Amazon DynamoDB Developer Guide

SQLCODE
SQLERROR
SQLEXCEPTION
SQLSTATE
SQLWARNING
START
STATE
STATIC
STATUS
STORAGE
STORE
STORED
STREAM
STRING
STRUCT
STYLE
SUB
SUBMULTISET
SUBPARTITION
SUBSTRING
SUBTYPE
SUM
SUPER
SYMMETRIC
SYNONYM
SYSTEM
TABLE
TABLESAMPLE
TEMP
TEMPORARY
TERMINATED
TEXT
THAN
THEN
THROUGHPUT
TIME
TIMESTAMP
TIMEZONE
TINYINT
TO
TOKEN
TOTAL
TOUCH
TRAILING

Reserved words in DynamoDB API Version 2012-08-10 3581

Amazon DynamoDB Developer Guide

TRANSACTION
TRANSFORM
TRANSLATE
TRANSLATION
TREAT
TRIGGER
TRIM
TRUE
TRUNCATE
TTL
TUPLE
TYPE
UNDER
UNDO
UNION
UNIQUE
UNIT
UNKNOWN
UNLOGGED
UNNEST
UNPROCESSED
UNSIGNED
UNTIL
UPDATE
UPPER
URL
USAGE
USE
USER
USERS
USING
UUID
VACUUM
VALUE
VALUED
VALUES
VARCHAR
VARIABLE
VARIANCE
VARINT
VARYING
VIEW
VIEWS
VIRTUAL

Reserved words in DynamoDB API Version 2012-08-10 3582

Amazon DynamoDB Developer Guide

VOID
WAIT
WHEN
WHENEVER
WHERE
WHILE
WINDOW
WITH
WITHIN
WITHOUT
WORK
WRAPPED
WRITE
YEAR
ZONE

Amazon SDK for Java 1.x examples

This section contains example code for DAX applications using SDK for Java 1.x.

Topics

• Using DAX with Amazon SDK for Java 1.x

• Modifying an existing SDK for Java 1.x application to use DAX

• Querying global secondary indexes with SDK for Java 1.x

Using DAX with Amazon SDK for Java 1.x

Follow this procedure to run the Java sample for Amazon DynamoDB Accelerator (DAX) on your
Amazon EC2 instance.

Note

These instructions are for applications using Amazon SDK for Java 1.x. For applications
using Amazon SDK for Java 2.x, see Java and DAX.

To run the Java sample for DAX

1. Install the Java Development Kit (JDK).

Amazon SDK for Java 1.x examples API Version 2012-08-10 3583

Amazon DynamoDB Developer Guide

sudo yum install -y java-devel

2. Download the Amazon SDK for Java (.zip file), and then extract it.

wget http://sdk-for-java.amazonwebservices.com/latest/aws-java-sdk.zip

unzip aws-java-sdk.zip

3. Download the latest version of the DAX Java client (.jar file).

wget http://dax-sdk.s3-website-us-west-2.amazonaws.com/java/DaxJavaClient-
latest.jar

Note

The client for the DAX SDK for Java is available on Apache Maven. For more
information, see Using the client as an Apache Maven dependency.

4. Set your CLASSPATH variable. In this example, replace sdkVersion with the actual version
number of the Amazon SDK for Java (for example, 1.11.112).

export SDKVERSION=sdkVersion

export CLASSPATH=$(pwd)/TryDax/java:$(pwd)/DaxJavaClient-latest.jar:$(pwd)/
aws-java-sdk-$SDKVERSION/lib/aws-java-sdk-$SDKVERSION.jar:$(pwd)/aws-java-sdk-
$SDKVERSION/third-party/lib/*

5. Download the sample program source code (.zip file).

wget http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
TryDax.zip

When the download is complete, extract the source files.

unzip TryDax.zip

6. Navigate to the Java code directory and compile the code as follows.

cd TryDax/java/

DAX and Java SDK v1 API Version 2012-08-10 3584

Amazon DynamoDB Developer Guide

javac TryDax*.java

7. Run the program.

java TryDax

You should see output similar to the following.

Creating a DynamoDB client

Attempting to create table; please wait...
Successfully created table. Table status: ACTIVE
Writing data to the table...
Writing 10 items for partition key: 1
Writing 10 items for partition key: 2
Writing 10 items for partition key: 3
Writing 10 items for partition key: 4
Writing 10 items for partition key: 5
Writing 10 items for partition key: 6
Writing 10 items for partition key: 7
Writing 10 items for partition key: 8
Writing 10 items for partition key: 9
Writing 10 items for partition key: 10

Running GetItem, Scan, and Query tests...
First iteration of each test will result in cache misses
Next iterations are cache hits

GetItem test - partition key 1 and sort keys 1-10
 Total time: 136.681 ms - Avg time: 13.668 ms
 Total time: 122.632 ms - Avg time: 12.263 ms
 Total time: 167.762 ms - Avg time: 16.776 ms
 Total time: 108.130 ms - Avg time: 10.813 ms
 Total time: 137.890 ms - Avg time: 13.789 ms
Query test - partition key 5 and sort keys between 2 and 9
 Total time: 13.560 ms - Avg time: 2.712 ms
 Total time: 11.339 ms - Avg time: 2.268 ms
 Total time: 7.809 ms - Avg time: 1.562 ms
 Total time: 10.736 ms - Avg time: 2.147 ms
 Total time: 12.122 ms - Avg time: 2.424 ms
Scan test - all items in the table
 Total time: 58.952 ms - Avg time: 11.790 ms
 Total time: 25.507 ms - Avg time: 5.101 ms

DAX and Java SDK v1 API Version 2012-08-10 3585

Amazon DynamoDB Developer Guide

 Total time: 37.660 ms - Avg time: 7.532 ms
 Total time: 26.781 ms - Avg time: 5.356 ms
 Total time: 46.076 ms - Avg time: 9.215 ms

Attempting to delete table; please wait...
Successfully deleted table.

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

8. In the previous step, you ran the program against the DynamoDB endpoint. Now run the
program again, but this time, the GetItem, Query, and Scan operations are processed by your
DAX cluster.

To determine the endpoint for your DAX cluster, choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Now run the program again, but this time, specify the cluster endpoint as a command line
parameter.

java TryDax dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

DAX and Java SDK v1 API Version 2012-08-10 3586

Amazon DynamoDB Developer Guide

Look at the rest of the output, and take note of the timing information. The elapsed times for
GetItem, Query, and Scan should be significantly lower with DAX than with DynamoDB.

For more information about this program, see the following sections:

• TryDax.java

• TryDaxHelper.java

• TryDaxTests.java

Using the client as an Apache Maven dependency

Follow these steps to use the client for the DAX SDK for Java in your application as a dependency.

To use the client as a Maven dependency

1. Download and install Apache Maven. For more information, see Downloading Apache Maven
and Installing Apache Maven.

2. Add the client Maven dependency to your application's Project Object Model (POM) file. In
this example, replace x.x.x.x with the actual version number of the client (for example,
1.0.200704.0).

<!--Dependency:-->
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>amazon-dax-client</artifactId>
 <version>x.x.x.x</version>
 </dependency>
</dependencies>

TryDax.java

The TryDax.java file contains the main method. If you run the program with no command line
parameters, it creates an Amazon DynamoDB client and uses that client for all API operations. If
you specify a DynamoDB Accelerator (DAX) cluster endpoint on the command line, the program
also creates a DAX client and uses it for GetItem, Query, and Scan operations.

DAX and Java SDK v1 API Version 2012-08-10 3587

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html

Amazon DynamoDB Developer Guide

You can modify the program in several ways:

• Use the DAX client instead of the DynamoDB client. For more information, see Java and DAX.

• Choose a different name for the test table.

• Modify the number of items written by changing the helper.writeData parameters. The
second parameter is the number of partition keys, and the third parameter is the number of sort
keys. By default, the program uses 1–10 for partition key values and 1–10 for sort key values, for
a total of 100 items written to the table. For more information, see TryDaxHelper.java.

• Modify the number of GetItem, Query, and Scan tests, and modify their parameters.

• Comment out the lines containing helper.createTable and helper.deleteTable (if you
don't want to create and delete the table each time you run the program).

Note

To run this program, you can set up Maven to use the client for the DAX SDK for Java and
the Amazon SDK for Java as dependencies. For more information, see Using the client as an
Apache Maven dependency.
Alternatively, you can download and include both the DAX Java client and the Amazon SDK
for Java in your classpath. See Java and DAX for an example of setting your CLASSPATH
variable.

public class TryDax {

 public static void main(String[] args) throws Exception {

 TryDaxHelper helper = new TryDaxHelper();
 TryDaxTests tests = new TryDaxTests();

 DynamoDB ddbClient = helper.getDynamoDBClient();
 DynamoDB daxClient = null;
 if (args.length >= 1) {
 daxClient = helper.getDaxClient(args[0]);
 }

 String tableName = "TryDaxTable";

DAX and Java SDK v1 API Version 2012-08-10 3588

Amazon DynamoDB Developer Guide

 System.out.println("Creating table...");
 helper.createTable(tableName, ddbClient);
 System.out.println("Populating table...");
 helper.writeData(tableName, ddbClient, 10, 10);

 DynamoDB testClient = null;
 if (daxClient != null) {
 testClient = daxClient;
 } else {
 testClient = ddbClient;
 }

 System.out.println("Running GetItem, Scan, and Query tests...");
 System.out.println("First iteration of each test will result in cache misses");
 System.out.println("Next iterations are cache hits\n");

 // GetItem
 tests.getItemTest(tableName, testClient, 1, 10, 5);

 // Query
 tests.queryTest(tableName, testClient, 5, 2, 9, 5);

 // Scan
 tests.scanTest(tableName, testClient, 5);

 helper.deleteTable(tableName, ddbClient);
 }

}

TryDaxHelper.java

The TryDaxHelper.java file contains utility methods.

The getDynamoDBClient and getDaxClient methods provide Amazon DynamoDB and
DynamoDB Accelerator (DAX) clients. For control plane operations (CreateTable, DeleteTable)
and write operations, the program uses the DynamoDB client. If you specify a DAX cluster
endpoint, the main program creates a DAX client for performing read operations (GetItem, Query,
Scan).

The other TryDaxHelper methods (createTable, writeData, deleteTable) are for setting up
and tearing down the DynamoDB table and its data.

DAX and Java SDK v1 API Version 2012-08-10 3589

Amazon DynamoDB Developer Guide

You can modify the program in several ways:

• Use different provisioned throughput settings for the table.

• Modify the size of each item written (see the stringSize variable in the writeData method).

• Modify the number of GetItem, Query, and Scan tests and their parameters.

• Comment out the lines containing helper.CreateTable and helper.DeleteTable (if you
don't want to create and delete the table each time you run the program).

Note

To run this program, you can set up Maven to use the client for the DAX SDK for Java and
the Amazon SDK for Java as dependencies. For more information, see Using the client as an
Apache Maven dependency.
Or, you can download and include both the DAX Java client and the Amazon SDK for Java
in your classpath. See Java and DAX for an example of setting your CLASSPATH variable.

import com.amazon.dax.client.dynamodbv2.AmazonDaxClientBuilder;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.model.AttributeDefinition;
import com.amazonaws.services.dynamodbv2.model.KeySchemaElement;
import com.amazonaws.services.dynamodbv2.model.KeyType;
import com.amazonaws.services.dynamodbv2.model.ProvisionedThroughput;
import com.amazonaws.services.dynamodbv2.model.ScalarAttributeType;
import com.amazonaws.util.EC2MetadataUtils;

public class TryDaxHelper {

 private static final String region = EC2MetadataUtils.getEC2InstanceRegion();

 DynamoDB getDynamoDBClient() {
 System.out.println("Creating a DynamoDB client");
 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(region)

DAX and Java SDK v1 API Version 2012-08-10 3590

Amazon DynamoDB Developer Guide

 .build();
 return new DynamoDB(client);
 }

 DynamoDB getDaxClient(String daxEndpoint) {
 System.out.println("Creating a DAX client with cluster endpoint " +
 daxEndpoint);
 AmazonDaxClientBuilder daxClientBuilder = AmazonDaxClientBuilder.standard();
 daxClientBuilder.withRegion(region).withEndpointConfiguration(daxEndpoint);
 AmazonDynamoDB client = daxClientBuilder.build();
 return new DynamoDB(client);
 }

 void createTable(String tableName, DynamoDB client) {
 Table table = client.getTable(tableName);
 try {
 System.out.println("Attempting to create table; please wait...");

 table = client.createTable(tableName,
 Arrays.asList(
 new KeySchemaElement("pk", KeyType.HASH), // Partition key
 new KeySchemaElement("sk", KeyType.RANGE)), // Sort key
 Arrays.asList(
 new AttributeDefinition("pk", ScalarAttributeType.N),
 new AttributeDefinition("sk", ScalarAttributeType.N)),
 new ProvisionedThroughput(10L, 10L));
 table.waitForActive();
 System.out.println("Successfully created table. Table status: " +
 table.getDescription().getTableStatus());

 } catch (Exception e) {
 System.err.println("Unable to create table: ");
 e.printStackTrace();
 }
 }

 void writeData(String tableName, DynamoDB client, int pkmax, int skmax) {
 Table table = client.getTable(tableName);
 System.out.println("Writing data to the table...");

 int stringSize = 1000;
 StringBuilder sb = new StringBuilder(stringSize);
 for (int i = 0; i < stringSize; i++) {
 sb.append('X');

DAX and Java SDK v1 API Version 2012-08-10 3591

Amazon DynamoDB Developer Guide

 }
 String someData = sb.toString();

 try {
 for (Integer ipk = 1; ipk <= pkmax; ipk++) {
 System.out.println(("Writing " + skmax + " items for partition key: " +
 ipk));
 for (Integer isk = 1; isk <= skmax; isk++) {
 table.putItem(new Item()
 .withPrimaryKey("pk", ipk, "sk", isk)
 .withString("someData", someData));
 }
 }
 } catch (Exception e) {
 System.err.println("Unable to write item:");
 e.printStackTrace();
 }
 }

 void deleteTable(String tableName, DynamoDB client) {
 Table table = client.getTable(tableName);
 try {
 System.out.println("\nAttempting to delete table; please wait...");
 table.delete();
 table.waitForDelete();
 System.out.println("Successfully deleted table.");

 } catch (Exception e) {
 System.err.println("Unable to delete table: ");
 e.printStackTrace();
 }
 }

}

TryDaxTests.java

The TryDaxTests.java file contains methods that perform read operations against a test table
in Amazon DynamoDB. These methods are not concerned with how they access the data (using
either the DynamoDB client or the DAX client), so there is no need to modify the application logic.

You can modify the program in several ways:

DAX and Java SDK v1 API Version 2012-08-10 3592

Amazon DynamoDB Developer Guide

• Modify the queryTest method so that it uses a different KeyConditionExpression.

• Add a ScanFilter to the scanTest method so that only some of the items are returned to
you.

Note

To run this program, you can set up Maven to use the client for the DAX SDK for Java and
the Amazon SDK for Java as dependencies. For more information, see Using the client as an
Apache Maven dependency.
Or, you can download and include both the DAX Java client and the Amazon SDK for Java
in your classpath. See Java and DAX for an example of setting your CLASSPATH variable.

import java.util.Iterator;

import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.Item;
import com.amazonaws.services.dynamodbv2.document.ItemCollection;
import com.amazonaws.services.dynamodbv2.document.QueryOutcome;
import com.amazonaws.services.dynamodbv2.document.ScanOutcome;
import com.amazonaws.services.dynamodbv2.document.Table;
import com.amazonaws.services.dynamodbv2.document.spec.QuerySpec;

public class TryDaxTests {

 void getItemTest(String tableName, DynamoDB client, int pk, int sk, int iterations)
 {
 long startTime, endTime;
 System.out.println("GetItem test - partition key " + pk + " and sort keys 1-" +
 sk);
 Table table = client.getTable(tableName);

 for (int i = 0; i < iterations; i++) {
 startTime = System.nanoTime();
 try {
 for (Integer ipk = 1; ipk <= pk; ipk++) {
 for (Integer isk = 1; isk <= sk; isk++) {
 table.getItem("pk", ipk, "sk", isk);
 }
 }

DAX and Java SDK v1 API Version 2012-08-10 3593

Amazon DynamoDB Developer Guide

 } catch (Exception e) {
 System.err.println("Unable to get item:");
 e.printStackTrace();
 }
 endTime = System.nanoTime();
 printTime(startTime, endTime, pk * sk);
 }
 }

 void queryTest(String tableName, DynamoDB client, int pk, int sk1, int sk2, int
 iterations) {
 long startTime, endTime;
 System.out.println("Query test - partition key " + pk + " and sort keys between
 " + sk1 + " and " + sk2);
 Table table = client.getTable(tableName);

 HashMap<String, Object> valueMap = new HashMap<String, Object>();
 valueMap.put(":pkval", pk);
 valueMap.put(":skval1", sk1);
 valueMap.put(":skval2", sk2);

 QuerySpec spec = new QuerySpec()
 .withKeyConditionExpression("pk = :pkval and sk between :skval1
 and :skval2")
 .withValueMap(valueMap);

 for (int i = 0; i < iterations; i++) {
 startTime = System.nanoTime();
 ItemCollection<QueryOutcome> items = table.query(spec);

 try {
 Iterator<Item> iter = items.iterator();
 while (iter.hasNext()) {
 iter.next();
 }
 } catch (Exception e) {
 System.err.println("Unable to query table:");
 e.printStackTrace();
 }
 endTime = System.nanoTime();
 printTime(startTime, endTime, iterations);
 }
 }

DAX and Java SDK v1 API Version 2012-08-10 3594

Amazon DynamoDB Developer Guide

 void scanTest(String tableName, DynamoDB client, int iterations) {
 long startTime, endTime;
 System.out.println("Scan test - all items in the table");
 Table table = client.getTable(tableName);

 for (int i = 0; i < iterations; i++) {
 startTime = System.nanoTime();
 ItemCollection<ScanOutcome> items = table.scan();
 try {

 Iterator<Item> iter = items.iterator();
 while (iter.hasNext()) {
 iter.next();
 }
 } catch (Exception e) {
 System.err.println("Unable to scan table:");
 e.printStackTrace();
 }
 endTime = System.nanoTime();
 printTime(startTime, endTime, iterations);
 }
 }

 public void printTime(long startTime, long endTime, int iterations) {
 System.out.format("\tTotal time: %.3f ms - ", (endTime - startTime) /
 (1000000.0));
 System.out.format("Avg time: %.3f ms\n", (endTime - startTime) / (iterations *
 1000000.0));
 }
}

Modifying an existing SDK for Java 1.x application to use DAX

If you already have a Java application that uses Amazon DynamoDB, you have to modify it so
that it can access your DynamoDB Accelerator (DAX) cluster. You don't have to rewrite the entire
application because the DAX Java client is similar to the DynamoDB low-level client included in the
Amazon SDK for Java.

Modifying an existing SDK for Java 1.x application to use DAX API Version 2012-08-10 3595

Amazon DynamoDB Developer Guide

Note

These instructions are for applications using Amazon SDK for Java 1.x. For applications
using Amazon SDK for Java 2.x, see Modifying an existing application to use DAX.

Suppose that you have a DynamoDB table named Music. The partition key for the table is Artist,
and its sort key is SongTitle. The following program reads an item directly from the Music table.

import java.util.HashMap;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import com.amazonaws.services.dynamodbv2.model.GetItemResult;

public class GetMusicItem {

 public static void main(String[] args) throws Exception {

 // Create a DynamoDB client
 AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard().build();

 HashMap<String, AttributeValue> key = new HashMap<String, AttributeValue>();
 key.put("Artist", new AttributeValue().withS("No One You Know"));
 key.put("SongTitle", new AttributeValue().withS("Scared of My Shadow"));

 GetItemRequest request = new GetItemRequest()
 .withTableName("Music").withKey(key);

 try {
 System.out.println("Attempting to read the item...");
 GetItemResult result = client.getItem(request);
 System.out.println("GetItem succeeded: " + result);

 } catch (Exception e) {
 System.err.println("Unable to read item");
 System.err.println(e.getMessage());
 }
 }
}

Modifying an existing SDK for Java 1.x application to use DAX API Version 2012-08-10 3596

Amazon DynamoDB Developer Guide

To modify the program, replace the DynamoDB client with a DAX client.

import java.util.HashMap;

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazon.dax.client.dynamodbv2.AmazonDaxClientBuilder;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import com.amazonaws.services.dynamodbv2.model.GetItemResult;

public class GetMusicItem {

 public static void main(String[] args) throws Exception {

 //Create a DAX client

 AmazonDaxClientBuilder daxClientBuilder = AmazonDaxClientBuilder.standard();
 daxClientBuilder.withRegion("us-
east-1").withEndpointConfiguration("mydaxcluster.2cmrwl.clustercfg.dax.use1.cache.amazonaws.com:8111");
 AmazonDynamoDB client = daxClientBuilder.build();

 /*
 ** ...
 ** Remaining code omitted (it is identical)
 ** ...
 */

 }
}

Using the DynamoDB document API

The Amazon SDK for Java provides a document interface for DynamoDB. The document API acts as
a wrapper around the low-level DynamoDB client. For more information, see Document interfaces.

The document interface can also be used with the low-level DAX client, as shown in the following
example.

import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
import com.amazon.dax.client.dynamodbv2.AmazonDaxClientBuilder;
import com.amazonaws.services.dynamodbv2.document.DynamoDB;
import com.amazonaws.services.dynamodbv2.document.GetItemOutcome;

Modifying an existing SDK for Java 1.x application to use DAX API Version 2012-08-10 3597

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKs.Interfaces.Document.html

Amazon DynamoDB Developer Guide

import com.amazonaws.services.dynamodbv2.document.Table;

public class GetMusicItemWithDocumentApi {

 public static void main(String[] args) throws Exception {

 //Create a DAX client

 AmazonDaxClientBuilder daxClientBuilder = AmazonDaxClientBuilder.standard();
 daxClientBuilder.withRegion("us-
east-1").withEndpointConfiguration("mydaxcluster.2cmrwl.clustercfg.dax.use1.cache.amazonaws.com:8111");
 AmazonDynamoDB client = daxClientBuilder.build();

 // Document client wrapper
 DynamoDB docClient = new DynamoDB(client);

 Table table = docClient.getTable("Music");

 try {
 System.out.println("Attempting to read the item...");
 GetItemOutcome outcome = table.tgetItemOutcome(
 "Artist", "No One You Know",
 "SongTitle", "Scared of My Shadow");
 System.out.println(outcome.getItem());
 System.out.println("GetItem succeeded: " + outcome);
 } catch (Exception e) {
 System.err.println("Unable to read item");
 System.err.println(e.getMessage());
 }

 }
}

DAX async client

The AmazonDaxClient is synchronous. For a long-running DAX API operation, such as a
Scan of a large table, this can block program execution until the operation is complete. If your
program needs to perform other work while a DAX API operation is in progress, you can use
ClusterDaxAsyncClient instead.

The following program shows how to use ClusterDaxAsyncClient, along with Java Future, to
implement a non-blocking solution.

Modifying an existing SDK for Java 1.x application to use DAX API Version 2012-08-10 3598

Amazon DynamoDB Developer Guide

import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

import com.amazon.dax.client.dynamodbv2.ClientConfig;
import com.amazon.dax.client.dynamodbv2.ClusterDaxAsyncClient;
import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.handlers.AsyncHandler;
import com.amazonaws.services.dynamodbv2.AmazonDynamoDBAsync;
import com.amazonaws.services.dynamodbv2.model.AttributeValue;
import com.amazonaws.services.dynamodbv2.model.GetItemRequest;
import com.amazonaws.services.dynamodbv2.model.GetItemResult;

public class DaxAsyncClientDemo {
 public static void main(String[] args) throws Exception {

 ClientConfig daxConfig = new ClientConfig().withCredentialsProvider(new
 ProfileCredentialsProvider())
 .withEndpoints("mydaxcluster.2cmrwl.clustercfg.dax.use1.cache.amazonaws.com:8111");

 AmazonDynamoDBAsync client = new ClusterDaxAsyncClient(daxConfig);

 HashMap<String, AttributeValue> key = new HashMap<String, AttributeValue>();
 key.put("Artist", new AttributeValue().withS("No One You Know"));
 key.put("SongTitle", new AttributeValue().withS("Scared of My Shadow"));

 GetItemRequest request = new GetItemRequest()
 .withTableName("Music").withKey(key);

 // Java Futures
 Future<GetItemResult> call = client.getItemAsync(request);
 while (!call.isDone()) {
 // Do other processing while you're waiting for the response
 System.out.println("Doing something else for a few seconds...");
 Thread.sleep(3000);
 }
 // The results should be ready by now

 try {
 call.get();

 } catch (ExecutionException ee) {
 // Futures always wrap errors as an ExecutionException.
 // The *real* exception is stored as the cause of the

Modifying an existing SDK for Java 1.x application to use DAX API Version 2012-08-10 3599

Amazon DynamoDB Developer Guide

 // ExecutionException
 Throwable exception = ee.getCause();
 System.out.println("Error getting item: " + exception.getMessage());
 }

 // Async callbacks
 call = client.getItemAsync(request, new AsyncHandler<GetItemRequest, GetItemResult>()
 {

 @Override
 public void onSuccess(GetItemRequest request, GetItemResult getItemResult) {
 System.out.println("Result: " + getItemResult);
 }

 @Override
 public void onError(Exception e) {
 System.out.println("Unable to read item");
 System.err.println(e.getMessage());
 // Callers can also test if exception is an instance of
 // AmazonServiceException or AmazonClientException and cast
 // it to get additional information
 }

 });
 call.get();

 }
}

Querying global secondary indexes with SDK for Java 1.x

You can use Amazon DynamoDB Accelerator (DAX) to query global secondary indexes using
DynamoDB programmatic interfaces.

The following example demonstrates how to use DAX to query the CreateDateIndex global
secondary index that is created in Example: Global secondary indexes using the Amazon SDK for
Java document API.

The DAXClient class instantiates the client objects that are needed to interact with the
DynamoDB programming interfaces.

import com.amazon.dax.client.dynamodbv2.AmazonDaxClientBuilder;

Querying global secondary indexes with SDK for Java 1.x API Version 2012-08-10 3600

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSI.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKs.Interfaces.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSIJavaDocumentAPI.Example.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GSIJavaDocumentAPI.Example.html

Amazon DynamoDB Developer Guide

import software.amazon.dynamodb.datamodeling.DynamoDBMapper;
import software.amazon.dynamodb.document.DynamoDB;
import com.amazonaws.util.EC2MetadataUtils;
import software.amazon.dynamodb.AmazonDynamoDB;

public class DaxClient {

 private static final String region = EC2MetadataUtils.getEC2InstanceRegion();

 DynamoDB getDaxDocClient(String daxEndpoint) {
 System.out.println("Creating a DAX client with cluster endpoint " + daxEndpoint);
 AmazonDaxClientBuilder daxClientBuilder = AmazonDaxClientBuilder.standard();

 daxClientBuilder.withRegion(region).withEndpointConfiguration(daxEndpoint);
 AmazonDynamoDB client = daxClientBuilder.build();

 return new DynamoDB(client);
 }

 DynamoDBMapper getDaxMapperClient(String daxEndpoint) {
 System.out.println("Creating a DAX client with cluster endpoint " + daxEndpoint);
 AmazonDaxClientBuilder daxClientBuilder = AmazonDaxClientBuilder.standard();

 daxClientBuilder.withRegion(region).withEndpointConfiguration(daxEndpoint);
 AmazonDynamoDB client = daxClientBuilder.build();

 return new DynamoDBMapper(client);
 }
}

You can query a global secondary index in the following ways:

• Use the queryIndex method on the QueryIndexDax class defined in the following
example. The QueryIndexDax takes as a parameter the client object that is returned by the
getDaxDocClient method on the DaxClient class.

• If you are using the object persistence interface, use the queryIndexMapper method on the
QueryIndexDax class defined in the following example. The queryIndexMapper takes as a
parameter the client object that is returned by the getDaxMapperClient method defined on
the DaxClient class.

import java.util.Iterator;

Querying global secondary indexes with SDK for Java 1.x API Version 2012-08-10 3601

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKs.Interfaces.Mapper.html

Amazon DynamoDB Developer Guide

import software.amazon.dynamodb.datamodeling.DynamoDBMapper;
import java.util.List;
import software.amazon.dynamodb.datamodeling.DynamoDBQueryExpression;
import software.amazon.dynamodb.model.AttributeValue;
import java.util.HashMap;
import software.amazon.dynamodb.document.Item;
import software.amazon.dynamodb.document.utils.ValueMap;
import software.amazon.dynamodb.document.spec.QuerySpec;
import software.amazon.dynamodb.document.QueryOutcome;
import software.amazon.dynamodb.document.ItemCollection;
import software.amazon.dynamodb.document.Index;
import software.amazon.dynamodb.document.Table;
import software.amazon.dynamodb.document.DynamoDB;

public class QueryIndexDax {

 //This is used to query Index using the low-level interface.
 public static void queryIndex(DynamoDB client, String tableName, String indexName) {
 Table table = client.getTable(tableName);

 System.out.println("\n***
\n");
 System.out.print("Querying index " + indexName + "...");

 Index index = table.getIndex(indexName);

 ItemCollection<QueryOutcome> items = null;

 QuerySpec querySpec = new QuerySpec();

 if (indexName == "CreateDateIndex") {
 System.out.println("Issues filed on 2013-11-01");
 querySpec.withKeyConditionExpression("CreateDate = :v_date and
 begins_with(IssueId, :v_issue)")
 .withValueMap(new ValueMap().withString(":v_date",
 "2013-11-01").withString(":v_issue", "A-"));
 items = index.query(querySpec);
 } else {
 System.out.println("\nNo valid index name provided");
 return;
 }

 Iterator<Item> iterator = items.iterator();

Querying global secondary indexes with SDK for Java 1.x API Version 2012-08-10 3602

Amazon DynamoDB Developer Guide

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 System.out.println(iterator.next().toJSONPretty());
 }

 }

 //This is used to query Index using the high-level mapper interface.
 public static void queryIndexMapper(DynamoDBMapper mapper, String tableName, String
 indexName) {
 HashMap<String, AttributeValue> eav = new HashMap<String, AttributeValue>();
 eav.put(":v_date", new AttributeValue().withS("2013-11-01"));
 eav.put(":v_issue", new AttributeValue().withS("A-"));
 DynamoDBQueryExpression<CreateDate> queryExpression = new
 DynamoDBQueryExpression<CreateDate>()
 .withIndexName("CreateDateIndex").withConsistentRead(false)
 .withKeyConditionExpression("CreateDate = :v_date and
 begins_with(IssueId, :v_issue)")
 .withExpressionAttributeValues(eav);

 List<CreateDate> items = mapper.query(CreateDate.class, queryExpression);
 Iterator<CreateDate> iterator = items.iterator();

 System.out.println("Query: printing results...");

 while (iterator.hasNext()) {
 CreateDate iterObj = iterator.next();
 System.out.println(iterObj.getCreateDate());
 System.out.println(iterObj.getIssueId());
 }
 }
}

The class definition below represents the Issues table and is used in the queryIndexMapper
method.

import software.amazon.dynamodb.datamodeling.DynamoDBTable;
import software.amazon.dynamodb.datamodeling.DynamoDBIndexHashKey;
import software.amazon.dynamodb.datamodeling.DynamoDBIndexRangeKey;
import software.amazon.dynamodb.datamodeling.DynamoDBHashKey;

@DynamoDBTable(tableName = "Issues")

Querying global secondary indexes with SDK for Java 1.x API Version 2012-08-10 3603

Amazon DynamoDB Developer Guide

public class CreateDate {
 private String createDate;
 @DynamoDBHashKey(attributeName = "IssueId")
 private String issueId;

 @DynamoDBIndexHashKey(globalSecondaryIndexName = "CreateDateIndex", attributeName =
 "CreateDate")
 public String getCreateDate() {
 return createDate;
 }

 public void setCreateDate(String createDate) {
 this.createDate = createDate;
 }

 @DynamoDBIndexRangeKey(globalSecondaryIndexName = "CreateDateIndex", attributeName =
 "IssueId")
 public String getIssueId() {
 return issueId;
 }

 public void setIssueId(String issueId) {
 this.issueId = issueId;
 }
}

Amazon SDK for Go 1.x examples

This section contains example code for DAX applications using Go 1.x.

Topics

• DAX SDK for Go

DAX SDK for Go

Follow this procedure to run the Amazon DynamoDB Accelerator (DAX) SDK for Go sample
application on your Amazon EC2 instance.

To run the SDK for Go sample for DAX

1. Set up the SDK for Go on your Amazon EC2 instance:

Amazon SDK for Go 1.x examples API Version 2012-08-10 3604

Amazon DynamoDB Developer Guide

a. Install the Go programming language (Golang).

sudo yum install -y golang

b. Test that Golang is installed and running correctly.

go version

A message like this should appear.

go version go1.15.5 linux/amd64

The remaining instructions rely on module support, which became the default with Go
version 1.13.

2. Install the sample Golang application.

go get github.com/aws-samples/aws-dax-go-sample

3. Run the following Golang programs. The first program creates a DynamoDB table named
TryDaxGoTable. The second program writes data to the table.

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command create-table

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command put-item

4. Run the following Golang programs.

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command get-item

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command query

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command scan

Go and DAX API Version 2012-08-10 3605

Amazon DynamoDB Developer Guide

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

5. In the previous step, you ran the programs against the DynamoDB endpoint. Now, run the
programs again, but this time, the GetItem, Query, and Scan operations are processed by
your DAX cluster.

To determine the endpoint for your DAX cluster, choose one of the following:

• Using the DynamoDB console — Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI — Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Now run the programs again, but this time, specify the cluster endpoint as a command line
parameter.

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go
 -service dax -command get-item -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go
 -service dax -command query -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

Go and DAX API Version 2012-08-10 3606

Amazon DynamoDB Developer Guide

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go
 -service dax -command scan -endpoint my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com:8111

Look at the rest of the output, and take note of the timing information. The elapsed times for
GetItem, Query, and Scan should be significantly lower with DAX than with DynamoDB.

6. Run the following Golang program to delete TryDaxGoTable.

go run ~/go/pkg/mod/github.com/aws-samples/aws-dax-go-sample@v1.0.2/try_dax.go -
service dynamodb -command delete-table

Amazon SDK for Node.js 2.x examples

This section contains example code for DAX applications using Amazon SDK for Node.js 2.x.

Topics

• Node.js and DAX

Node.js and DAX

Follow these steps to run the Node.js sample application on your Amazon EC2 instance.

To run the Node.js sample for DAX

1. Set up Node.js on your Amazon EC2 instance, as follows:

a. Install node version manager (nvm).

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh | bash

b. Use nvm to install Node.js.

nvm install 12.16.3

c. Test that Node.js is installed and running correctly.

node -e "console.log('Running Node.js ' + process.version)"

Amazon SDK for Node.js 2.x examples API Version 2012-08-10 3607

Amazon DynamoDB Developer Guide

This should display the following message.

Running Node.js v12.16.3

2. Install the DAX Node.js client using the node package manager (npm).

npm install amazon-dax-client

3. Download the sample program source code (.zip file).

wget http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
TryDax.zip

When the download is complete, extract the source files.

unzip TryDax.zip

4. Run the following Node.js programs. The first program creates an Amazon DynamoDB table
named TryDaxTable. The second program writes data to the table.

node 01-create-table.js
node 02-write-data.js

5. Run the following Node.js programs.

node 03-getitem-test.js
node 04-query-test.js
node 05-scan-test.js

Take note of the timing information—the number of milliseconds required for the GetItem,
Query, and Scan tests.

6. In the previous step, you ran the programs against the DynamoDB endpoint. Run the programs
again, but this time, the GetItem, Query and Scan operations are processed by your DAX
cluster.

To determine the endpoint for your DAX cluster, choose one of the following.

• Using the DynamoDB console—Choose your DAX cluster. The cluster endpoint is shown on
the console, as in the following example.

Node.js and DAX API Version 2012-08-10 3608

Amazon DynamoDB Developer Guide

dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

• Using the Amazon CLI—Enter the following command.

aws dax describe-clusters --query "Clusters[*].ClusterDiscoveryEndpoint"

The cluster endpoint is shown in the output, as in the following example.

{
 "Address": "my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com",
 "Port": 8111,
 "URL": "dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com"
}

Now run the programs again, but this time, specify the cluster endpoint as a command line
parameter.

node 03-getitem-test.js dax://my-cluster.l6fzcv.dax-clusters.us-
east-1.amazonaws.com
node 04-query-test.js dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com
node 05-scan-test.js dax://my-cluster.l6fzcv.dax-clusters.us-east-1.amazonaws.com

Look at the rest of the output, and take note of the timing information. The elapsed times for
GetItem, Query, and Scan should be significantly lower with DAX than with DynamoDB.

7. Run the following Node.js program to delete TryDaxTable.

node 06-delete-table

For more information about these programs, see the following sections:

• 01-create-table.js

• 02-write-data.js

• 03-getitem-test.js

• 04-query-test.js

• 05-scan-test.js

Node.js and DAX API Version 2012-08-10 3609

Amazon DynamoDB Developer Guide

• 06-delete-table.js

01-create-table.js

The 01-create-table.js program creates a table (TryDaxTable). The remaining Node.js
programs in this section depend on this table.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var dynamodb = new AWS.DynamoDB(); //low-level client

var tableName = "TryDaxTable";

var params = {
 TableName: tableName,
 KeySchema: [
 { AttributeName: "pk", KeyType: "HASH" }, //Partition key
 { AttributeName: "sk", KeyType: "RANGE" }, //Sort key
],
 AttributeDefinitions: [
 { AttributeName: "pk", AttributeType: "N" },
 { AttributeName: "sk", AttributeType: "N" },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: 10,
 WriteCapacityUnits: 10,
 },
};

dynamodb.createTable(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to create table. Error JSON:",
 JSON.stringify(err, null, 2)
);
 } else {

Node.js and DAX API Version 2012-08-10 3610

Amazon DynamoDB Developer Guide

 console.log(
 "Created table. Table description JSON:",
 JSON.stringify(data, null, 2)
);
 }
});

02-write-data.js

The 02-write-data.js program writes test data to TryDaxTable.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var ddbClient = new AWS.DynamoDB.DocumentClient();

var tableName = "TryDaxTable";

var someData = "X".repeat(1000);
var pkmax = 10;
var skmax = 10;

for (var ipk = 1; ipk <= pkmax; ipk++) {
 for (var isk = 1; isk <= skmax; isk++) {
 var params = {
 TableName: tableName,
 Item: {
 pk: ipk,
 sk: isk,
 someData: someData,
 },
 };

 //
 //put item

Node.js and DAX API Version 2012-08-10 3611

Amazon DynamoDB Developer Guide

 ddbClient.put(params, function (err, data) {
 if (err) {
 console.error("Unable to write data: ", JSON.stringify(err, null, 2));
 } else {
 console.log("PutItem succeeded");
 }
 });
 }
}

03-getitem-test.js

The 03-getitem-test.js program performs GetItem operations on TryDaxTable.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var ddbClient = new AWS.DynamoDB.DocumentClient();
var daxClient = null;

if (process.argv.length > 2) {
 var dax = new AmazonDaxClient({
 endpoints: [process.argv[2]],
 region: region,
 });
 daxClient = new AWS.DynamoDB.DocumentClient({ service: dax });
}

var client = daxClient != null ? daxClient : ddbClient;
var tableName = "TryDaxTable";

var pk = 1;
var sk = 10;
var iterations = 5;

for (var i = 0; i < iterations; i++) {

Node.js and DAX API Version 2012-08-10 3612

Amazon DynamoDB Developer Guide

 var startTime = new Date().getTime();

 for (var ipk = 1; ipk <= pk; ipk++) {
 for (var isk = 1; isk <= sk; isk++) {
 var params = {
 TableName: tableName,
 Key: {
 pk: ipk,
 sk: isk,
 },
 };

 client.get(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to read item. Error JSON:",
 JSON.stringify(err, null, 2)
);
 } else {
 // GetItem succeeded
 }
 });
 }
 }

 var endTime = new Date().getTime();
 console.log(
 "\tTotal time: ",
 endTime - startTime,
 "ms - Avg time: ",
 (endTime - startTime) / iterations,
 "ms"
);
}

04-query-test.js

The 04-query-test.js program performs Query operations on TryDaxTable.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

Node.js and DAX API Version 2012-08-10 3613

Amazon DynamoDB Developer Guide

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var ddbClient = new AWS.DynamoDB.DocumentClient();
var daxClient = null;

if (process.argv.length > 2) {
 var dax = new AmazonDaxClient({
 endpoints: [process.argv[2]],
 region: region,
 });
 daxClient = new AWS.DynamoDB.DocumentClient({ service: dax });
}

var client = daxClient != null ? daxClient : ddbClient;
var tableName = "TryDaxTable";

var pk = 5;
var sk1 = 2;
var sk2 = 9;
var iterations = 5;

var params = {
 TableName: tableName,
 KeyConditionExpression: "pk = :pkval and sk between :skval1 and :skval2",
 ExpressionAttributeValues: {
 ":pkval": pk,
 ":skval1": sk1,
 ":skval2": sk2,
 },
};

for (var i = 0; i < iterations; i++) {
 var startTime = new Date().getTime();

 client.query(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to read item. Error JSON:",
 JSON.stringify(err, null, 2)
);

Node.js and DAX API Version 2012-08-10 3614

Amazon DynamoDB Developer Guide

 } else {
 // Query succeeded
 }
 });

 var endTime = new Date().getTime();
 console.log(
 "\tTotal time: ",
 endTime - startTime,
 "ms - Avg time: ",
 (endTime - startTime) / iterations,
 "ms"
);
}

05-scan-test.js

The 05-scan-test.js program performs Scan operations on TryDaxTable.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

var region = "us-west-2";

AWS.config.update({
 region: region,
});

var ddbClient = new AWS.DynamoDB.DocumentClient();
var daxClient = null;

if (process.argv.length > 2) {
 var dax = new AmazonDaxClient({
 endpoints: [process.argv[2]],
 region: region,
 });
 daxClient = new AWS.DynamoDB.DocumentClient({ service: dax });
}

var client = daxClient != null ? daxClient : ddbClient;
var tableName = "TryDaxTable";

Node.js and DAX API Version 2012-08-10 3615

Amazon DynamoDB Developer Guide

var iterations = 5;

var params = {
 TableName: tableName,
};
var startTime = new Date().getTime();
for (var i = 0; i < iterations; i++) {
 client.scan(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to read item. Error JSON:",
 JSON.stringify(err, null, 2)
);
 } else {
 // Scan succeeded
 }
 });
}

var endTime = new Date().getTime();
console.log(
 "\tTotal time: ",
 endTime - startTime,
 "ms - Avg time: ",
 (endTime - startTime) / iterations,
 "ms"
);

06-delete-table.js

The 06-delete-table.js program deletes TryDaxTable. Run this program after you have
finished testing.

const AmazonDaxClient = require("amazon-dax-client");
var AWS = require("aws-sdk");

var region = "us-west-2";

AWS.config.update({
 region: region,
});

Node.js and DAX API Version 2012-08-10 3616

Amazon DynamoDB Developer Guide

var dynamodb = new AWS.DynamoDB(); //low-level client

var tableName = "TryDaxTable";

var params = {
 TableName: tableName,
};

dynamodb.deleteTable(params, function (err, data) {
 if (err) {
 console.error(
 "Unable to delete table. Error JSON:",
 JSON.stringify(err, null, 2)
);
 } else {
 console.log(
 "Deleted table. Table description JSON:",
 JSON.stringify(data, null, 2)
);
 }
});

Node.js and DAX API Version 2012-08-10 3617

Amazon DynamoDB Developer Guide

Document history for DynamoDB

The following table describes the important changes in each release of the DynamoDB Developer
Guide from July 3, 2018 onward. For notification about updates to this documentation, you can
subscribe to the RSS feed (at the top left corner of this page).

Change Description Date

DAX now supports Amazon
PrivateLink in commercial and
China Regions

Added guidance for using
Amazon PrivateLink with
DynamoDB Accelerator
(DAX) to help users establish
private, secure connectiv
ity to DAX control plane
endpoints within the same
Amazon Web Services Region.
For more information, see
Generate infrastructure code
for Amazon DynamoDB using
Console-to-Code.

October 30, 2025

Added documentation for the
new Console-to-Code feature
for DynamoDB

Console-to-Code transform
s manual DynamoDB table
creation steps in the Amazon
Web Services Managemen
t Console into automated
, reproducible infrastru
cture code across multiple
formats like Amazon CDK and
Amazon CloudFormation.
For more information, see
Generate infrastructure code
for Amazon DynamoDB using
Console-to-Code.

September 23, 2025

Released DynamoDB Local
version 3.1.0

This update improves
performance for PartiQL

September 14, 2025

API Version 2012-08-10 3618

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-private-link.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-private-link.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-private-link.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/console-to-code.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/console-to-code.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/console-to-code.html

Amazon DynamoDB Developer Guide

queries, including Joda-time
dependency.

DynamoDB has enhanced
its throttling diagnostics
capabilities with a new
CloudWatch Contribut
or Insights mode, added
throttling exception details,
and targeted CloudWatch
metrics

DynamoDB provides
enhanced throttling
diagnostics with a new
Throttled keys only
mode in CloudWatch
Contributor Insights that
specifically tracks the most
throttled partition keys,
more detailed throttlin
g exceptions that include
structured Throttlin
gReason fields, providing
specific reason codes and
resource ARNs to help identify
exactly what resource is
throttled and why, and 16
new targeted CloudWatch
metrics that correspond to
different throttling scenario,
 for precise monitoring of
specific throttling events.
For more information, see
Troubleshooting throttling in
DynamoDB.

August 14, 2025

API Version 2012-08-10 3619

https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/contributorinsights_HowItWorks.html
https://docs.amazonaws.cn//amazondynamodb/latest/developerguide/contributorinsights_HowItWorks.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TroubleshootingThrottling.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TroubleshootingThrottling.html

Amazon DynamoDB Developer Guide

Increased limit for switching
between capacity modes

Increased the limit for
switching a table from
provisioned to on-demand
 capacity mode from once
every 24 hours to four times
every 24 hours. This change
provides more flexibility
for workloads that require
loading large volumes of
data multiple times per day
or need to accommodate
unexpected traffic increases
. For more information,
see Considerations when
switching capacity modes in
DynamoDB.

August 12, 2025

Released DynamoDB Local
version 3.0, which migrates
from Amazon SDK for Java V1
to V2

This update removes the
V1 dependency, improves
performance, and aligns with
the Amazon SDK V2 package
structure.

July 17, 2025

Added support for optimized
shard discovery in DynamoDB
Streams

The new shard discovery
mechanism reduces initial
discovery time, improves
steady-state processing
performance, provides visibilit
y into processing status,
and maintains consistent
p100 latency across large-
scale operations. For more
information, see Amazon
PrivateLink for Amazon
DynamoDB Streams.

July 17, 2025

API Version 2012-08-10 3620

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-switching-capacity-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-switching-capacity-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-switching-capacity-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#ShardDiscovery
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#ShardDiscovery
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Streams.html#ShardDiscovery

Amazon DynamoDB Developer Guide

Added Multi-Region Strong
Consistency (MRSC) support
for DynamoDB global tables

DynamoDB now supports
Multi-Region Strong
Consistency (MRSC) for global
tables with optional witness
Region. MRSC allows strongly
consistent reads across
Regions with a Recovery
Point Objective (RPO) of
zero during regional failures.
 MRSC global tables must
be deployed in exactly three
Regions, with either three
replicas or two replicas
and one witness. For more
information and available
 Regions, see Multi-Region
strong consistency (MRSC).

June 30, 2025

Amazon DynamoDB Streams
Kinesis Client Library (KCL) 2.x
adapter

DynamoDB now supports an
upgraded DynamoDB Streams
adapter compatible with
KCL 2.x and Amazon SDK v2.
For more information, see
Migrating from KCL1.x to KCL
3.x.

June 11, 2025

Added support for running
DynamoDB local in Amazon
CloudShell

You can now run DynamoDB
local directly in your browser
through the Amazon Web
Services Management
Console without downloadi
ng or installing software.
For more information, see
Deploying DynamoDB locally
on your computer.

May 19, 2025

API Version 2012-08-10 3621

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_HowItWorks.html#V2globaltables_HowItWorks.consistency-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_HowItWorks.html#V2globaltables_HowItWorks.consistency-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/streams-migrating-kcl.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/streams-migrating-kcl.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.DownloadingAndRunning.html

Amazon DynamoDB Developer Guide

Added support for r7i
instance types in DAX

Expanded instance type
options for DAX to provide
more flexibility in performan
ce and capacity. For more
details about the new
r7i instance types and
their capabilities, see DAX
encryption at rest.

April 29, 2025

New scoped-down full
access policy AmazonDyn
amoDBFullAccess_v2

 replaces AmazonDyn
amoDBFullAccess .

Effective April 25, 2025,
DynamoDB has deprecated
the AmazonDynamoDBFull
Access policy and replaced
it with a scoped-down
policy named AmazonDyn
amoDBFullAccess_v2

. For more information, see
Amazon managed policy:
AmazonDynamoDBFull
Access_v2.

April 28, 2025

API Version 2012-08-10 3622

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAXEncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAXEncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.fullaccesspolicy-v2
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.fullaccesspolicy-v2
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.fullaccesspolicy-v2

Amazon DynamoDB Developer Guide

DynamoDB introduces
Amazon PrivateLink support
for DynamoDB Streams

Amazon added Amazon
PrivateLink support for
DynamoDB Streams,
enabling customers to invoke
DynamoDB Streams APIs
from within Amazon Virtual
Private Cloud (VPC) using
private network connectiv
ity. This feature allows
simplified private network
access without traversing the
public internet, supportin
g compliance and security
requirements for DynamoDB
workloads. For more informati
on, see Amazon PrivateLi
nk for Amazon DynamoDB
Streams.

March 26, 2025

DAX SDK For JS 3.x and Go 2.x
is now available

DynamoDB Accelerator (DAX)
SDK for JS 3.x is now available
and is compatible with the
Amazon SDK for Java 3.x.

March 17, 2025

NoSQL Workbench 3.13.5 on-
demand capacity mode for
default table settings release

When you create a table with
default settings, DynamoDB
creates a table that uses
on-demand capacity mode
instead of provisioned
capacity mode.

February 24, 2025

New best practice for
configuring your DAX client

Published a new DAX
prescriptive guidance best
practices topic for configuri
ng your DAX client. For more
information, see Configuring
your DAX client.

February 17, 2025

API Version 2012-08-10 3623

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-streams.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-streams.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-streams.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.client.run-application-nodejs-3.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.client.run-application-nodejs-3.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-config-dax-client.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-config-dax-client.html

Amazon DynamoDB Developer Guide

New best practices for bulk
data operations

Published new best practices
topics for working with
complex data models in
DynamoDB. For more
information, see Best
practices for using bulk data
operations in DynamoDB.

January 9, 2025

Amazon DynamoDB now
supports configurable point-
in-time recovery (PITR)

DynamoDB now supports
configurable recovery periods
for PITR. You can now set the
PITR period for each table
to between 1 and 35 days.
For more information, see
Point-in-time backups for
DynamoDB.

January 7, 2025

Published new topic on
integrating Amazon Managed
Streaming for Apache Kafka
with Amazon DynamoDB

Learn how Amazon Managed
Streaming for Apache Kafka
integrates with Amazon
DynamoDB by reading data
from Apache Kafka topics
and storing it in DynamoDB.
For more information, see
Integrating DynamoDB with
Amazon Managed Streaming
for Apache Kafka.

December 26, 2024

DynamoDB introduces
support for a zero-ETL
integration with SageMaker AI
Lakehouse

DynamoDB introduces a
zero-ETL integration that
automates the extracting and
loading of data from Amazon
DynamoDB into a customer's
data lake. For more informati
on, see DynamoDB zero-ETL
integration with SageMaker AI
Lakehouse.

December 3, 2024

API Version 2012-08-10 3624

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/BestPractices_BulkDataOperations.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/BestPractices_BulkDataOperations.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/BestPractices_BulkDataOperations.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Point-in-time-recovery.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Point-in-time-recovery.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/msk-for-dynamodb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/msk-for-dynamodb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/msk-for-dynamodb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/amazon-sagemaker-lakehouse-for-DynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/amazon-sagemaker-lakehouse-for-DynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/amazon-sagemaker-lakehouse-for-DynamoDB.html

Amazon DynamoDB Developer Guide

DynamoDB global tables now
supports multi-Region strong
consistency

With multi-Region strong
consistency, you can build
highly available multi-Region
applications with a recovery
point objective (RPO) of zero,
achieving the highest level of
resilience. For more informati
on, see Global tables with
multi-Region strong consisten
cy.

December 3, 2024

DynamoDB managed policy
update

Added two new permissio
ns to the AmazonDyn
amoDBReadOnlyAccess
managed policy: dynamodb:
GetAbacStatus and
dynamodb:UpdateAba
cStatus . These permissio
ns allow you to view the ABAC
status and enable ABAC for
your Amazon Web Services
account in the current Region.
For more information, see
Amazon managed policy:
AmazonDynamoDBRead
OnlyAccess.

November 18, 2024

API Version 2012-08-10 3625

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/multi-region-strong-consistency-gt.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy

Amazon DynamoDB Developer Guide

DynamoDB introduces
support for attribute-based
access control (ABAC)

ABAC is an authorization
strategy that lets you define
access permissions based on
tags attached to users, roles,
and Amazon resources. ABAC
uses tag-based conditions in
your Amazon Identity and
Access Management (IAM)
policies or other policies to
allow or deny specific actions
on your tables or indexes
when IAM principals’ tags
match the tags for the tables.
For more information, see
Using attribute-based access
control with DynamoDB.

November 18, 2024

DynamoDB introduces warm
throughput for on-demand
and provisioned tables

DynamoDB now supports
warm throughput. Warm
throughput provides visibilit
y into the number of read
and write operations your
DynamoDB table can
instantaneously support as
well as the ability to pre-
warm your DynamoDB tables.
For more information, see
DynamoDB warm throughput.

November 13, 2024

API Version 2012-08-10 3626

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/attribute-based-access-control.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/attribute-based-access-control.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/warm-throughput.html

Amazon DynamoDB Developer Guide

Ability to consume Amazon
DynamoDB Streams records
with Apache Flink

You can now consume
Amazon DynamoDB Streams
records with Apache Flink
and leverage the Amazon
Managed Service for Apache
Flink to quickly build and
manage end-to-end stream
processing applications.
For more information, see
DynamoDB Streams and
Apache Flink.

November 12, 2024

Published new billing topics
for global tables and backups

Published two new topics
regarding billing for global
tables and billing for backups.
For more information, see
Understanding Amazon
DynamoDB billing for global
tables and Understanding
Amazon DynamoDB billing for
backups.

October 16, 2024

Amazon DynamoDB zero-
ETL integration with Amazon
Redshift

Amazon DynamoDB zero-
ETL integration with Amazon
Redshift provides a no-
code, fully managed ETL
pipeline with replication
from DynamoDB to Amazon
Redshift. For more informati
on, see Amazon DynamoDB
zero-ETL integration with
Amazon Redshift.

October 15, 2024

API Version 2012-08-10 3627

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/StreamsApacheFlink.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/StreamsApacheFlink.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/global-tables-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/global-tables-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/global-tables-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backup-restore-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backup-restore-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backup-restore-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html

Amazon DynamoDB Developer Guide

Documentation-only update
to add a topic about using
generative AI with DynamoDB

Published a new topic
that provides information
about using generative AI
with DynamoDB, including
examples of gen AI use
cases for DynamoDB. For
more information, see
Using generative AI with
DynamoDB.

October 11, 2024

SDK now supports Amazon
account-based endpoints

Added documentation for
account-based endpoints and
the ACCOUNT_ID_ENDPOIN
T_MODE setting for SDK
clients. For more information,
see SDK support of Amazon
account-based endpoints.

September 3, 2024

Redesigned the getting
started experience

Redesigned the getting
started experience to
consolidate information
and get you started with
quicker onboarding. For more
information, see Getting
started with DynamoDB.

August 1, 2024

DAX expansion to new
Regions for Spain and
Sweden

DAX is now available in Spain
and Sweden Regions. For
more information, see DAX
cluster components.

July 30, 2024

Restructured and consolida
ted the DynamoDB backup
and restore documentation

The DynamoDB Developer
Guide has a new structure for
backing up and restoring. For
more information, see Backup
and restore for DynamoDB.

July 2, 2024

API Version 2012-08-10 3628

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-ai-integration.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-ai-integration.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Programming.SDKOverview.html#Programming.SDKs.endpoints
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.concepts.cluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.concepts.cluster.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Backup-and-Restore.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Backup-and-Restore.html

Amazon DynamoDB Developer Guide

What is Amazon DynamoDB?
topic rewrite

Published a revised and
updated version of the What
is Amazon DynamoDB? topic.
For more information, see
What is Amazon DynamoDB?.

June 21, 2024

Integrate DynamoDB Streams
with EventBridge

Published a new topic on
integrating DynamoDB
Streams with EventBridge.
For more information, see
Integrating with EventBridge.

June 21, 2024

DAX prescriptive guidance Published a new best
practices topic that provides
you comprehensive insights
for using DynamoDB
Accelerator effectively. This
topic covers performan
ce optimization, cost
management, and operation
al best practices. For more
information, see DAX
prescriptive guidance.

June 3, 2024

Migrating a DynamoDB table
from one account to another

Added a new topic on
migrating DynamoDB tables
from one account to another.
For more information, see
Migrating a DynamoDB table
from one account to another.

May 29, 2024

Restructured and consolida
ted the DynamoDB monitorin
g and logging documentation

A new structure for monitorin
g and logging in DynamoDB
includes three concise
chapters for metrics, logging
operations, and contributor
insights.

May 3, 2024

API Version 2012-08-10 3629

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Introduction.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/eventbridge-for-dynamodb.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-prescriptive-guidance.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-prescriptive-guidance.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-migrating-table-between-accounts.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-migrating-table-between-accounts.html

Amazon DynamoDB Developer Guide

Restructured and consolida
ted the DynamoDB capacity
mode documentation

DynamoDB guide now
includes a new chapter
that contains all informati
on about the DynamoDB
capacity modes – on-demand
 and provisioned. With this
update, the Considerations
when changing read/writ
e Capacity Mode topic has
been moved inside the Best
practices chapter. This topic
is now renamed as Considera
tions when switching capacity
modes and includes elaborate
information about the best
practices when switching
between the capacity modes.
In addition, the guide now
features a new chapter that
includes all information
about DynamoDB reads
and writes, and capacity
units consumptions for
read and write operation
s. For more information,
see DynamoDB throughput
capacity, Considerations when
switching capacity modes,
and DynamoDB reads and
writes.

May 1, 2024

API Version 2012-08-10 3630

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/capacity-mode.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/capacity-mode.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-switching-capacity-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-switching-capacity-modes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-reads-writes.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-reads-writes.html

Amazon DynamoDB Developer Guide

Maximum number of on-
demand requests

You can now specify the
maximum number of on-
demand requests that an
individual table, index, or
both, can perform. Specifyin
g the maximum on-demand
 throughput will help keep
your table-level usage and
costs bounded and protect
against inadvertent surge in
consumed resources. For more
information, see Maximum
throughput for on-demand
tables.

May 1, 2024

NoSQL Workbench operation
builder improvements

NoSQL Workbench now
includes native support
for dark mode. Improved
table and item operation
s in the operations builder.
Item results and operation
builder request information is
available in JSON format. For
more information, see NoSQL
Workbench operation builder.

April 24, 2024

API Version 2012-08-10 3631

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/on-demand-capacity-mode-max-throughput.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/on-demand-capacity-mode-max-throughput.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/on-demand-capacity-mode-max-throughput.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.html

Amazon DynamoDB Developer Guide

Resource-based policies for
Amazon DynamoDB resources

DynamoDB now supports
resource-based policies for
tables, indexes, and streams.
Resource-based policies let
you define access permissions
by specifying who has access
to each resource, and the
actions they are allowed to
perform on each resource. For
more information, see Using
resource-based policies for
DynamoDB.

March 20, 2024

DynamoDB managed policy
update

Added a new permission
dynamodb:GetResour
cePolicy to the
AmazonDynamoDBRead
OnlyAccess managed
policy. This permission
provides access to read
resource-based policies
attached to DynamoDB
resources. For more
information, see Amazon
managed policy: AmazonDyn
amoDBReadOnlyAccess.

March 20, 2024

API Version 2012-08-10 3632

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/access-control-resource-based.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/access-control-resource-based.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/access-control-resource-based.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ddb-security-iam.awsmanpol.html#ddb-security-iam.awsmanpol.readonlypolicy

Amazon DynamoDB Developer Guide

Amazon PrivateLink for
Amazon DynamoDB

Amazon DynamoDB now
supports Amazon PrivateLi
nk. With Amazon PrivateLi
nk, you can simplify private
network connectivity between
virtual private clouds (VPCs),
DynamoDB, and your on-
premises data centers using
interface VPC endpoints and
private IP addresses. For more
information, see Amazon
PrivateLink for DynamoDB.

March 19, 2024

Programming with JavaScript
guide

Amazon DynamoDB presents
a programming guide for
Amazon SDK for JavaScript.
Learn about the Amazon SDK
for JavaScript, abstraction
layers, configuring connectio
n, handling errors, defining
retry policies, managing keep-
alive, and more. For more
information, see Programmi
ng with JavaScript.

March 6, 2024

API Version 2012-08-10 3633

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-interface-endpoints.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/privatelink-interface-endpoints.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/programming-with-javascript.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/programming-with-javascript.html

Amazon DynamoDB Developer Guide

Programming with Amazon
SDK for Java 2.x guide

Created a new programmi
ng guide that goes in depth
about high-level, low-level
, and document interface
s, HTTP clients and their
configuration, error handling,
and addresses the most
common configuration
settings that you should
consider when using the
SDK for Java 2.x. For more
information, see Programmi
ng Amazon DynamoDB with
Amazon SDK for Java 2.x.

March 5, 2024

Clone tables with NoSQL
Workbench

Allow developers to use
NoSQL Workbench to copy
or clone tables between
development environme
nts and regions (DynamoDB
Local and DynamoDB web).
For more information, see
Cloning tables with NoSQL
Workbench.

February 26, 2024

Programming with Python
guide

Created a new guide that
goes in depth about both
high level and low level
libraries and addresses the
most common configura
tion settings that one should
consider when using the
Python SDK. For more
information, see Programmi
ng with Python.

January 5, 2024

API Version 2012-08-10 3634

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ProgrammingWithJava.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ProgrammingWithJava.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ProgrammingWithJava.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.cloning-tables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.cloning-tables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/programming-with-python.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/programming-with-python.html

Amazon DynamoDB Developer Guide

Time to live (TTL) topic
rewrite

Completely rewrote the TTL
section of the guide. The
new guide helps you get
started with TTL by providing
ready-to-use code snippets
along the way. The current
code snippets provided are
in Python and Javascript. For
more information, see TTL.

December 20, 2023

Best Practices for Understan
ding your Amazon Billing and
Usage Reports

Added a new section that
clarifies various usage types
and the charges for those
usage types in DynamoDB.
For more information, see
Billing and usage reports.

December 15, 2023

Amazon DynamoDB zero-
ETL integration with Amazon
OpenSearch Service

Amazon DynamoDB now
supports zero-ETL integrati
on with Amazon OpenSearc
h Service, which lets you
perform a search on your
DynamoDB data by automatic
ally replicating and transform
ing it without custom code
or infrastructure. For more
information, see DynamoDB
zero-ETL integration with
Amazon OpenSearch Service.

November 28, 2023

Migrating to DynamoDB from
a relational database

Created a migration guide
to help users understsand
how to migrate to DynamoDB
from a relational database.

November 27, 2023

API Version 2012-08-10 3635

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/TTL.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-understanding-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-understanding-billing.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/OpenSearchIngestionForDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/OpenSearchIngestionForDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/OpenSearchIngestionForDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/migration-guide.html

Amazon DynamoDB Developer Guide

Generate sample data with
NoSQL Workbench

NoSQL Workbench for
Amazon DynamoDB now
supports creating data
models directly from sample
data model templates to help
you design data schemas
for your workloads. You
can use this feature to get
familiar with NoSQL data
modeling best practices when
building your applications on
DynamoDB.

September 28, 2023

Incremental Export to S3 You can now export data
that was inserted, updated or
deleted, in small increment
s. With incremental export,
you can export changed
data ranging from a few
megabytes to terabytes with
a few clicks in the Amazon
Management Console, an API
call, or the Amazon Command
Line Interface.

September 26, 2023

Data modeling for DynamoDB You can now learn more
about data modeling with
DynamoDB examples that
focus on specific use cases,
their access patterns, and
step-by-step guidance
in realizing those access
patterns.

July 14, 2023

API Version 2012-08-10 3636

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.SampleModels.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.SampleModels.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataExport_Requesting.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/data-modeling.html

Amazon DynamoDB Developer Guide

Troubleshooting section You can now find troublesh
ooting content for latency
and throttling issues
that might occur in your
DynamoDB tables.

March 13, 2023

Deletion protection for
Amazon DynamoDB

Deletion protection is
now available for Amazon
DynamoDB tables in all
Amazon Regions. DynamoDB
now makes it possible for you
to protect your tables from
accidental deletion when
performing regular table
management operations.

March 8, 2023

Amazon CloudFormation
support for KDSD in global
tables

Amazon Kinesis Data Streams
for DynamoDB now supports
Amazon CloudFormation for
DynamoDB global tables,
which means you can enable
streaming to an Amazon
Kinesis Data Streams on your
DynamoDB global tables with
CloudFormation templates.

February 15, 2023

DynamoDB local supports
100 actions per transaction

You can now perform up
to 100 actions in a single
transaction on DynamoDB
local.

February 9, 2023

API Version 2012-08-10 3637

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Troubleshooting.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/Troubleshooting.html

Amazon DynamoDB Developer Guide

Using the DynamoDB Well-
Architected Lens to optimize
your DynamoDB workload

You can now use the
DynamoDB Well-Architected
Lens, a collection of design
principles and guidance that
you can use for designing
well-architected DynamoDB
workloads.

February 3, 2023

PartiQL GovGloud availability PartiQL—a SQL-compatible
query language for Amazon
DynamoDB is now supported
in Amazon GovCloud (US-
East) and Amazon GovCloud
(US-West).

December 21, 2022

Single installation suite
for NoSQL Workbench and
DynamoDB local

NoSQL Workbench for
DynamoDB now includes
a guided DynamoDB local
installation process to
streamline setting up your
DynamoDB local development
environment.

December 6, 2022

Bulk import from S3 Amazon DynamoDB now
makes it easier for you to
migrate and load data into
new DynamoDB tables by
supporting bulk data imports
from Amazon S3.

August 18, 2022

API Version 2012-08-10 3638

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-wal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-wal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataImport.HowItWorks.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataImport.HowItWorks.html

Amazon DynamoDB Developer Guide

Enhanced integration with
Service Quotas

Service Quotas now enables
you to proactively manage
your account and table
quotas. You can view current
values, set alarms for when
your utilization of a quota
exceeds a configurable
threshold, and more.

June 15, 2022

NoSQL Workbench adds table
and GSI support

You can now use NoSQL
Workbench for table and
global secondary index (GSI)
control plane operations such
as CreateTable, UpdateTable,
and DeleteTable.

June 2, 2022

Standard-infrequent access
table class now available in
China

Amazon DynamoDB
Standard-Infrequent Access
table class is available in
China Regions. Reduce your
DynamoDB costs by up to 60
percent, by using this new
table class for tables that
store infrequently accessed
data.

April 18, 2022

Increase in default service
quotas and table managemen
t operations

DynamoDB increased the
default quota for the number
of tables per account and
Region from 256 to 2,500
tables, and increased the
number of concurrent table
management operations from
50 to 500.

March 9, 2022

API Version 2012-08-10 3639

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.API.html#HowItWorks.API.ControlPlane
https://www.amazonaws.cn/en/dynamodb/dynamodb-standard-ia/
https://www.amazonaws.cn/en/dynamodb/dynamodb-standard-ia/
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#limits-tables
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#limits-tables
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#limits-tables
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ServiceQuotas.html#limits-tables

Amazon DynamoDB Developer Guide

Optional limiting of items
with PartiQL for DynamoDB

DynamoDB can limit the
number of items processed
in PartiQL for DynamoDB
operations as an optional
parameter on each request.

March 8, 2022

Amazon Backup integration
available in China (Beijing and
Ningxia) Regions

Amazon Backup now
integrates with DynamoDB
in the China (Beijing and
Ningxia) Regions. You
can meet compliance and
business continuity requireme
nts more easily through
enhanced backup features
in Amazon Backup, such as
cross-account and cross-Reg
ion backups.

January 26, 2022

Throughput capacity
information through PartiQL
API calls

DynamoDB can return
the throughput capacity
consumed by PartiQL API calls
to help you optimize your
queries and throughput costs.

January 18, 2022

Amazon Backup integration DynamoDB now helps
you meet compliance and
business continuity requireme
nts more easily through
enhanced backup features
in Amazon Backup, such as
cross-account and cross-Reg
ion backups.

November 24, 2021

API Version 2012-08-10 3640

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backuprestore_HowItWorksAWS.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/backuprestore_HowItWorksAWS.html

Amazon DynamoDB Developer Guide

NoSQL Workbench import/ex
port datasets in CSV

NoSQL Workbench for
Amazon DynamoDB now
enables you to import and
automatically populate
sample data to help build and
visualize your data models.

October 11, 2021

Filter and retrieve Amazon
DynamoDB Streams data-
plane activity with Amazon
CloudTrail

Amazon DynamoDB now
provides you more granular
control of audit logging by
enabling you to filter Streams
data-plane API activity in
Amazon CloudTrail.

September 22, 2021

Updated console The DynamoDB console is
now your default console
to help you manage data
more easily, simplify your
common tasks, and give you
faster access to resources and
features.

August 25, 2021

DAX SDK For Java 2.x is now
available

DynamoDB Accelerator
(DAX) SDK for Java 2.x is now
available and is compatible
with the Amazon SDK for Java
2.x. You can benefit from the
latest features, including non-
blocking I/O.

July 29, 2021

NoSQL Workbench feature
updates including control
plane operations

NoSQL Workbench for
Amazon DynamoDB now
helps you run frequent
operations more easily to
modify and access table data.

July 28, 2021

API Version 2012-08-10 3641

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/governance-controls.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/governance-controls.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/governance-controls.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ConsoleDynamoDB.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.client.run-application-java.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.client.run-application-java.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html

Amazon DynamoDB Developer Guide

DynamoDB global tables
are now available in the Asia
Pacific Region

DynamoDB global tables
are now available in the
Asia Pacific (Osaka) Region.
Replicate your DynamoDB
tables automatically across
your choice of 22 Amazon
Regions.

July 28, 2021

DAX is now available in China DynamoDB Accelerator (DAX)
is now available in the China
(Beijing) Region, operated by
Sinnet.

July 28, 2021

DAX encryption in transit DynamoDB Accelerator (DAX)
now supports encryption in
transit of data between your
applications and DAX clusters,
and between the nodes within
a DAX cluster.

July 24, 2021

CloudFormation and
CloudTrail integration

Integration with Amazon
CloudFormation and
security enhancements with
CloudFormation data-plane
logging.

June 18, 2021

CloudFormation now
supported for global tables

Amazon DynamoDB global
tables now support Amazon
CloudFormation, which
means you can create global
tables and manage their
settings with CloudFormation
templates.

May 14, 2021

API Version 2012-08-10 3642

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-globaltable.html

Amazon DynamoDB Developer Guide

Amazon DynamoDB local
support for Java 2.x

You now can use the
Amazon SDK for Java 2.x
with DynamoDB local, the
downloadable version of
Amazon DynamoDB. With
DynamoDB local, you can
develop and test applicati
ons by using a version of
DynamoDB running in your
local development environme
nt without incurring any
additional costs.

May 3, 2021

NoSQL Workbench now
supports Amazon CloudForm
ation

NoSQL Workbench for
Amazon DynamoDB now
supports Amazon CloudForm
ation, so you can manage
and modify DynamoDB data
models with CloudFormation
templates. In addition, you
now can configure table
capacity settings in NoSQL
Workbench.

April 22, 2021

DynamoDB and Amazon
Amplify now feature integrati
on

Amazon Amplify now
orchestrates multiple
DynamoDB global secondary
index updates in a single
deployment.

April 20, 2021

Amazon CloudTrail to log
Amazon DynamoDB Streams
data-plane APIs

You now can use Amazon
CloudTrail to log Amazon
DynamoDB Streams data-plan
e API activity, and monitor
and investigate item-level
changes in your DynamoDB
tables.

April 20, 2021

API Version 2012-08-10 3643

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/amplify/index.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/aws-resource-dynamodb-globaltable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/aws-resource-dynamodb-globaltable.html

Amazon DynamoDB Developer Guide

Amazon Kinesis Data Streams
for Amazon DynamoDB now
supports Amazon CloudForm
ation

Amazon Kinesis Data Streams
for Amazon DynamoDBnow
supports Amazon CloudForm
ation, which means you
can enable streaming to
an Amazon Kinesis data
stream on your DynamoDB
tables with CloudFormation
templates. By streaming your
DynamoDB data changes to
a Kinesis data stream, you
can build advanced streaming
applications with AAmazon
Kinesis services.

April 12, 2021

Amazon Keyspaces now
offers FIPS 140-2 compliant
endpoints

Amazon Keyspaces (for
Apache Cassandra) now
offers Federal Information
Processing Standards (FIPS)
140-2 compliant endpoints
 to help you run highly
regulated workloads more
easily. FIPS 140-2 is a US
and Canadian government
standard that specifies the
security requirements for
cryptographic modules that
protect sensitive information.

April 8, 2021

Amazon EC2 T3 instances for
DAX

DAX now supports Amazon
EC2 T3 instance types, which
provide a baseline level of
CPU performance with the
ability to burst above the
baseline when needed.

February 15, 2021

API Version 2012-08-10 3644

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/kds.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/kds.html
https://docs.amazonaws.cn/keyspaces/index.html
https://docs.amazonaws.cn/keyspaces/index.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.Burstable.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.Burstable.html

Amazon DynamoDB Developer Guide

NoSQL Workbench for
Amazon DynamoDB support
for PartiQL

You now can use the NoSQL
Workbench for DynamoDB to
build PartiQL statements for
DynamoDB.

December 4, 2020

PartiQL for DynamoDB You now can use PartiQL for
DynamoDB—a SQL-compa
tible query language—to
interact with DynamoDB
tables and run ad hoc
queries by using the
Amazon Web Services
Management Console,
Amazon Command Line
Interface, and DynamoDB
APIs for PartiQL.

November 23, 2020

Amazon Kinesis Data Streams
for Amazon DynamoDB

You now can use Amazon
Kinesis Data Streams for
Amazon DynamoDB with your
DynamoDB tables to capture
item-level changes and
replicate them to a Kinesis
data stream.

November 23, 2020

DynamoDB table export You can now export your
DynamoDB tables to Amazon
S3, enabling you to perform
analytics and complex queries
on your data with services like
Athena, Amazon Glue, and
Lake Formation.

November 9, 2020

API Version 2012-08-10 3645

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.operationbuilder.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.querybuilder.operationbuilder.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/ql-reference.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/kds.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/kds.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/kds.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataExport.HowItWorks.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataExport.HowItWorks.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/S3DataExport.HowItWorks.html

Amazon DynamoDB Developer Guide

Support for empty values DynamoDB now supports
empty values for non-key
String and Binary attributes
in DynamoDB tables. Empty
value support gives you
greater flexibility to use
attributes for a broader set
of use cases without having
to transform such attribute
s before sending them to
DynamoDB. List, Map, and
Set data types also support
empty String and Binary
values.

May 18, 2020

NoSQL Workbench for
Amazon DynamoDB support
for Linux

NoSQL Workbench for
Amazon DynamoDB is now
supported on Linux- Ubuntu ,
Fedora and Debian.

May 4, 2020

CloudWatch Contributor
Insights for DynamoDB – GA

CloudWatch Contributor
Insights for DynamoDB
is generally available.
CloudWatch Contributor
Insights for DynamoDB is a
diagnostic tool that provides
an at-a-glance view of your
DynamoDB table's traffic
trends and helps you identify
your table's most frequently
accessed keys (also known as
hot keys).

April 2, 2020

API Version 2012-08-10 3646

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.settingup.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/contributorinsights.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/contributorinsights.html

Amazon DynamoDB Developer Guide

Upgrading global tables You now can update your
global tables from version
2017.11.29 to the latest
version of global tables
(2019.11.21), with a few clicks
in the DynamoDB Console.
By upgrading the version
of your global tables, you
can increase the availability
of your DynamoDB tables
easily by extending your
existing tables into additiona
l Amazon Regions, with no
table rebuilds required.

March 16, 2020

NoSQL Workbench for
Amazon DynamoDB – GA

NoSQL Workbench for
Amazon DynamoDB is
generally available. Use the
NoSQL Workbench to design,
create, query, and manage
DynamoDB tables.

March 2, 2020

DAX cache cluster metrics DAX support for new
CloudWatch metrics,
that allow you to better
understand your DAX cluster's
performance.

February 6, 2020

CloudWatch Contributor
Insights for DynamoDB –
Preview

CloudWatch Contributor
Insights for DynamoDB is a
diagnostic tool that provides
an at-a-glance view of your
DynamoDB table's traffic
trends and helps you identify
your table's most frequently
accessed keys (also known as
hot keys).

November 26, 2019

API Version 2012-08-10 3647

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_upgrade.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_upgrade.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/V2globaltables_upgrade.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dax-metrics-dimensions-dax.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/contributorinsights.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/contributorinsights.html

Amazon DynamoDB Developer Guide

Adaptive capacity support for
imbalanced workload

Amazon DynamoDB adaptive
capacity now handles
imbalanced workloads better
by isolating frequently
accessed items automatic
ally. If your application drives
disproportionately high
traffic to one or more items,
DynamoDB will rebalance
your partitions such that
frequently accessed items
do not reside on the same
partition.

November 26, 2019

Support for customer
managed keys

DynamoDB now supports
customer managed keys,
which means you can have
full control over how you
encrypt and manage the
security of your DynamoDB
data.

November 25, 2019

NoSQL Workbench support
for DynamoDB local
(Downloadable Version)

The NoSQL Workbench
now supports connecting to
DynamoDB local (Download
able Version) to design,
create, query, and manage
DynamoDB tables.

November 8, 2019

API Version 2012-08-10 3648

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/bp-partition-key-design.html#bp-partition-key-partitions-adaptive-split
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/EncryptionAtRest.html
amazondynamodb/latest/developerguide/DynamoDBLocal.html
amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Amazon DynamoDB Developer Guide

NoSQL Workbench - Preview This is the initial release
of NoSQL Workbench for
DynamoDB. Use NoSQL
Workbench to design,
create, query, and manage
DynamoDB tables. For more
information, see NoSQL
Workbench for Amazon
DynamoDB (Preview).

September 16, 2019

DAX adds support for
transactional operations using
Python and .NET

DAX supports the TransactW
riteItems and
TransactGetItems APIs
for applications written in
Go, Java, .NET, Node.js, and
Python. For more informati
on, see In-Memory Accelerat
ion with DAX.

February 14, 2019

Amazon DynamoDB local
(Downloadable Version)
Updates

DynamoDB local (Download
able Version) now supports
transactional APIs, on-
demand read/write capacity,
capacity reporting for read
and write operations, and 20
global secondary indexes.
For more information,
see Differences Between
Downloadable DynamoDB
and the DynamoDB Web
Service.

February 4, 2019

API Version 2012-08-10 3649

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/workbench.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAX.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.UsageNotes.html#DynamoDBLocal.Differences
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.UsageNotes.html#DynamoDBLocal.Differences
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.UsageNotes.html#DynamoDBLocal.Differences
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.UsageNotes.html#DynamoDBLocal.Differences

Amazon DynamoDB Developer Guide

Amazon DynamoDB On-
Demand

DynamoDB on-demand is a
flexible billing option capable
of serving thousands of
requests per second without
capacity planning. DynamoDB
on-demand offers pay-per-
request pricing for read
and write requests so that
you pay only for what you
use. For more information,
see DynamoDB throughput
capacity.

November 28, 2018

Amazon DynamoDB Transacti
ons

DynamoDB transactions make
coordinated, all-or-nothing
changes to multiple items
both within and across tables,
providing atomicity, consisten
cy, isolation, and durabilit
y (ACID) in DynamoDB.
For more information, see
Amazon DynamoDB Transacti
ons.

November 27, 2018

API Version 2012-08-10 3650

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/capacity-mode.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/capacity-mode.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/transactions.html

Amazon DynamoDB Developer Guide

Amazon DynamoDB encrypts
all customer data at rest

DynamoDB encryption at
rest provides an additional
layer of data protection by
securing your data in the
encrypted table, including its
primary key, local and global
secondary indexes, streams,
global tables, backups, and
DAX clusters whenever the
data is stored in durable
media. For more informati
on, see Amazon DynamoDB
Encryption at Rest.

November 15, 2018

Use Amazon DynamoDB Local
More Easily with the New
Docker Image

Now, it’s easier to use
DynamoDB local, the
downloadable version of
DynamoDB, to help you
develop and test your
DynamoDB applications by
using the new DynamoDB
local Docker image. For more
information, see DynamoDB
(Downloadable Version) and
Docker.

August 22, 2018

API Version 2012-08-10 3651

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.Docker.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.Docker.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DynamoDBLocal.Docker.html

Amazon DynamoDB Developer Guide

DynamoDB Accelerator (DAX)
Adds Support for Encryption
at Rest

DynamoDB Accelerator (DAX)
now supports encryption at
rest for new DAX clusters to
help you accelerate reads
from Amazon DynamoDB
tables in security-sensitive
 applications that are subject
to strict compliance and
regulatory requirements. For
more information, see DAX
Encryption at Rest.

August 9, 2018

DynamoDB point-in-time
recovery (PITR) adds support
for restoring deleted tables

If you delete a table with
point-in-time recovery
enabled, a system backup is
automatically created and is
retained for 35 days (at no
additional cost). For more
information, see Before You
Begin Using Point In Time
Recovery.

August 7, 2018

Updates now available over
RSS

You can now subscribe to
the RSS feed (at the top left
corner of this page) to receive
notifications about updates
to the Amazon DynamoDB
Developer Guide.

July 3, 2018

Earlier updates

The following table describes important changes of the DynamoDB Developer Guide before July 3,
2018.

Earlier updates API Version 2012-08-10 3652

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAXEncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/DAXEncryptionAtRest.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/pointintimerecovery_beforeyoubegin.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/pointintimerecovery_beforeyoubegin.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/pointintimerecovery_beforeyoubegin.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/dynamodbupdates.rss

Amazon DynamoDB Developer Guide

Change Description Date Changed

Go support for DAX Now, you can enable
microsecond read performan
ce for Amazon DynamoDB
tables in your applications
written in the Go programmi
ng language by using the
new DynamoDB Accelerator
(DAX) SDK for Go. For more
information, see DAX SDK for
Go.

June 26, 2018

DynamoDB announces SLA DynamoDB has released
a public availability SLA.
For more information, see
Amazon DynamoDB Service
Level Agreement.

June 19, 2018

DynamoDB continuous
backups and Point-In-Time
Recovery (PITR)

Point-in-time recovery
helps protect your Amazon
DynamoDB tables from
accidental write or delete
operations. With point in
time recovery, you don't have
to worry about creating,
maintaining, or schedulin
g on-demand backups. For
example, suppose that a test
script writes accidentally
to a production DynamoDB
table. With point-in-time
recovery, you can restore
that table to any point in
time during the last 35
days. DynamoDB maintains
incremental backups of your

April 25, 2018

Earlier updates API Version 2012-08-10 3653

http://www.amazonaws.cn/dynamodb/sla/
http://www.amazonaws.cn/dynamodb/sla/

Amazon DynamoDB Developer Guide

Change Description Date Changed

table. For more information,
see Point-in-time backups for
DynamoDB.

Encryption at rest for
DynamoDB

DynamoDB encryption at rest,
available for new DynamoDB
tables, helps you secure your
application data in Amazon
DynamoDB tables by using
Amazon-managed encryptio
n keys stored in Amazon
Key Management Service.
For more information, see
DynamoDB encryption at rest.

February 8, 2018

DynamoDB Backup and
restore

On-Demand Backup allows
you to create full backups
of your DynamoDB tables
data for data archival, helping
you meet your corporate and
governmental regulatory
requirements. You can backup
tables from a few megabytes
to hundreds of terabytes
of data, with no impact on
performance and availability
to your production applicati
ons. For more information,
see Backup and restore for
DynamoDB.

November 29, 2017

Earlier updates API Version 2012-08-10 3654

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDB Global tables Global Tables builds upon
DynamoDB’s global footprint
to provide you with a fully
managed, multi-region, and
multi-active database that
provides fast, local, read
and write performance for
massively scaled, global
applications. Global Tables
replicates your Amazon
DynamoDB tables automatic
ally across your choice of
Amazon regions. For more
information, see Global tables
- multi-active, multi-Region
replication.

November 29, 2017

Node.js support for DAX Node.js developers can
leverage DynamoDB Accelerat
or (DAX), using the DAX
client for Node.js. For more
information, see In-memory
acceleration with DynamoDB
Accelerator (DAX).

October 5, 2017

Earlier updates API Version 2012-08-10 3655

Amazon DynamoDB Developer Guide

Change Description Date Changed

VPC Endpoints for DynamoDB DynamoDB endpoints allow
Amazon EC2 instances in
your Amazon VPC to access
DynamoDB, without exposure
to the public Internet.
Network traffic between your
VPC and DynamoDB does not
leave the Amazon network.
For more information, see
Using Amazon VPC endpoints
to access DynamoDB.

August 16, 2017

Auto Scaling for DynamoDB DynamoDB auto scaling
eliminates the need for
manually defining or adjust
provisioned throughput
settings. Instead, DynamoDB
auto scaling dynamical
ly adjusts read and write
capacity in response to actual
traffic patterns. This allows a
table or a global secondary
index to increase its provision
ed read and write capacity
to handle sudden increases
in traffic, without throttling.
When the workload decreases
, DynamoDB auto scaling
decreases the provisioned
capacity. For more informati
on, see Managing throughpu
t capacity automatically with
DynamoDB auto scaling.

June 14, 2017

Earlier updates API Version 2012-08-10 3656

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDB Accelerator (DAX) DynamoDB Accelerator (DAX)
is a fully managed, highly
available, in-memory cache
for DynamoDB that delivers
up to a 10x performance
improvement – from milliseco
nds to microseconds – even
at millions of requests per
second. For more information,
see In-memory acceleration
with DynamoDB Accelerator
(DAX).

April 19, 2017

DynamoDB now supports
automatic item expiration
with Time to Live (TTL)

Amazon DynamoDB Time
to Live (TTL) enables you to
automatically delete expired
items from your tables, at
no additional cost. For more
information, see Using time
to live (TTL) in DynamoDB.

Feb 27, 2017

DynamoDB now supports
Cost Allocation Tags

You can now add tags to
your Amazon DynamoDB
tables for improved usage
categorization and more
granular cost reporting. For
more information, see Adding
tags and labels to resources in
DynamoDB.

Jan 19, 2017

Earlier updates API Version 2012-08-10 3657

Amazon DynamoDB Developer Guide

Change Description Date Changed

New DynamoDB DescribeL
imits API

The DescribeLimits API
returns the current provision
ed capacity limits for your
Amazon account in a region,
both for the region as a whole
and for any one DynamoDB
table that you create there.
It lets you determine what
your current account-l
evel limits are so that you
can compare them to the
provisioned capacity that you
are currently using, and have
plenty of time to apply for an
increase before you hit a limit.
For more information, see
Quotas in Amazon DynamoDB
and the DescribeLimits in
the Amazon DynamoDB API
Reference.

March 1, 2016

Earlier updates API Version 2012-08-10 3658

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_DescribeLimits.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDB Console Update
and New Terminology for
Primary Key Attributes

The DynamoDB managemen
t console has been redesigne
d to be more intuitive and
easy to use. As part of this
update, we are introducing
new terminology for primary
key attributes:

• Partition Key—also known
as a hash attribute.

• Sort Key—also known as a
range attribute.

Only the names have
changed; the functionality
remains the same.

When you create a table
or a secondary index, you
can choose either a simple
primary key (partition
key only), or a composite
primary key (partition key
and sort key). The DynamoDB
documentation has been
updated to reflect these
changes.

November 12, 2015

Earlier updates API Version 2012-08-10 3659

Amazon DynamoDB Developer Guide

Change Description Date Changed

Amazon DynamoDB Storage
Backend for Titan

The DynamoDB Storage
Backend for Titan is a storage
backend for the Titan graph
database implemented on
top of Amazon DynamoDB.
When using the DynamoDB
Storage Backend for Titan,
your data benefits from the
protection of DynamoDB,
 which runs across Amazon’s
high-availability data centers.
The plugin is available for
Titan version 0.4.4 (primarily
for compatibility with existing
applications) and Titan
version 0.5.4 (recommended
for new applications). Like
other storage backends for
Titan, this plugin supports
the Tinkerpop stack (versions
2.4 and 2.5), including the
Blueprints API and the
Gremlin shell.

August 20, 2015

Earlier updates API Version 2012-08-10 3660

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDB Streams, Cross-
Region Replication, and Scan
with Strongly Consistent
Reads

DynamoDB Streams captures
a time-ordered sequence of
item-level modifications in
any DynamoDB table, and
stores this information in
a log for up to 24 hours.
Applications can access this
log and view the data items
as they appeared before and
after they were modified,
in near real time. For more
information, see Change
data capture for DynamoDB
Streams and the DynamoDB
Streams API Reference.

DynamoDB cross-region
replication is a client-side
solution for maintaining
identical copies of DynamoDB
tables across different
Amazon regions, in near
real time. You can use cross
region replication to back
up DynamoDB tables, or to
provide low-latency access
to data where users are
geographically distributed.

The DynamoDB Scan
operation uses eventuall
y consistent reads, by
default. You can use strongly
consistent reads instead
by setting the Consisten

July 16, 2015

Earlier updates API Version 2012-08-10 3661

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/Welcome.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

tRead parameter to true.
For more information, see
Read consistency for scan
and Scan in the Amazon
DynamoDB API Reference.

Amazon CloudTrail support
for Amazon DynamoDB

DynamoDB is now integrate
d with CloudTrail. CloudTrai
l captures API calls made
from the DynamoDB console
or from the DynamoDB API
and tracks them in log files.
For more information, see
Logging DynamoDB operation
s by using Amazon CloudTrai
l and the Amazon CloudTrail
User Guide.

May 28, 2015

Earlier updates API Version 2012-08-10 3662

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_Scan.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/

Amazon DynamoDB Developer Guide

Change Description Date Changed

Improved support for Query
expressions

This release adds a new
KeyConditionExpres
sion parameter to the
Query API. A Query reads
items from a table or an index
using primary key values.
The KeyConditionExpres
sion parameter is a string
that identifies primary key
names, and conditions to be
applied to the key values;
the Query retrieves only
those items that satisfy the
expression. The syntax of
KeyConditionExpres
sion is similar to that of
other expression parameter
s in DynamoDB, and allows
you to define substitution
variables for names and
values within the expressio
n. For more information,
see Querying tables in
DynamoDB.

April 27, 2015

Earlier updates API Version 2012-08-10 3663

Amazon DynamoDB Developer Guide

Change Description Date Changed

New comparison functions for
conditional writes

In DynamoDB, the
ConditionExpressio
n parameter determine
s whether a PutItem,
UpdateItem , or
DeleteItem succeeds:
The item is written only if
the condition evaluates to
true. This release adds two
new functions, attribute
_type and size, for use
withConditionExpressio
n . These functions allow
you to perform a condition
al writes based on the data
type or size of an attribute in
a table. For more informati
on, see DynamoDB condition
expression CLI example.

April 27, 2015

Earlier updates API Version 2012-08-10 3664

Amazon DynamoDB Developer Guide

Change Description Date Changed

Scan API for secondary
indexes

In DynamoDB, a Scan
operation reads all of the
items in a table, applies user-
defined filtering criteria,
and returns the selected
data items to the applicati
on. This same capability is
now available for secondary
indexes too. To scan a local
secondary index or a global
secondary index, you specify
the index name and the
name of its parent table.
By default, an index Scan
returns all of the data in the
index; you can use a filter
expression to narrow the
results that are returned to
the application. For more
information, see Scanning
tables in DynamoDB.

February 10, 2015

Earlier updates API Version 2012-08-10 3665

Amazon DynamoDB Developer Guide

Change Description Date Changed

Online operations for global
secondary indexes

Online indexing lets you add
or remove global secondary
indexes on existing tables.
With online indexing, you
do not need to define all of
a table's indexes when you
create a table; instead, you
can add a new index at any
time. Similarly, if you decide
you no longer need an index,
you can remove it at any time.
Online indexing operation
s are non-blocking, so that
the table remains available
for read and write activity
while indexes are being
added or removed. For more
information, see Managing
Global Secondary Indexes in
DynamoDB.

January 27, 2015

Earlier updates API Version 2012-08-10 3666

Amazon DynamoDB Developer Guide

Change Description Date Changed

Document model support
with JSON

DynamoDB allows you to
store and retrieve documents
with full support for
document models. New data
types are fully compatible
with the JSON standard and
allow you to nest document
elements within one another.
You can use document path
dereference operators to read
and write individual elements,
without having to retrieve the
entire document. This release
also introduces new expressio
n parameters for specifying
projections, conditions and
update actions when reading
or writing data items. To learn
more about document model
support with JSON, see Data
types and Using expressions
in DynamoDB.

October 7, 2014

Flexible scaling For tables and global
secondary indexes, you can
increase provisioned read and
write throughput capacity by
any amount, provided that
you stay within your per-table
and per-account limits. For
more information, see Quotas
in Amazon DynamoDB.

October 7, 2014

Earlier updates API Version 2012-08-10 3667

Amazon DynamoDB Developer Guide

Change Description Date Changed

Larger item sizes The maximum item size in
DynamoDB has increased
from 64 KB to 400 KB. For
more information, see Quotas
in Amazon DynamoDB.

October 7, 2014

Improved conditional
expressions

DynamoDB expands the
operators that are available
for conditional expressio
ns, giving you additional
flexibility for conditional puts,
updates, and deletes. The
newly available operators
let you check whether an
attribute does or does not
exist, is greater than or less
than a particular value, is
between two values, begins
with certain characters, and
much more. DynamoDB
also provides an optional
OR operator for evaluatin
g multiple conditions. By
default, multiple conditions
in an expression are ANDed
together, so the expression is
true only if all of its condition
s are true. If you specify OR
instead, the expression is true
if one or more one condition
s are true. For more informati
on, see Working with items
and attributes in DynamoDB.

April 24, 2014

Earlier updates API Version 2012-08-10 3668

Amazon DynamoDB Developer Guide

Change Description Date Changed

Query filter The DynamoDB Query API
supports a new QueryFilt
er option. By default,
a Query finds items that
match a specific partition
key value and an optional
sort key condition. A Query
filter applies conditional
expressions to other, non-key
attributes; if a Query filter is
present, then items that do
not match the filter condition
s are discarded before the
Query results are returned
to the application. For more
information, see Querying
tables in DynamoDB.

April 24, 2014

Earlier updates API Version 2012-08-10 3669

Amazon DynamoDB Developer Guide

Change Description Date Changed

Data export and import using
the Amazon Web Services
Management Console

The DynamoDB console has
been enhanced to simplify
exports and imports of data
in DynamoDB tables. With
just a few clicks, you can set
up an Amazon Data Pipeline
to orchestrate the workflow,
and an Amazon Elastic
MapReduce cluster to copy
data from DynamoDB tables
to an Amazon S3 bucket, or
vice-versa. You can perform
an export or import one time
only, or set up a daily export
job. You can even perform
cross-region exports and
imports, copying DynamoDB
data from a table in one
Amazon region to a table in
another Amazon region.

March 6, 2014

Reorganized higher-level API
documentation

Information about the
following APIs is now easier
to find:

• Java: DynamoDBMappper

• .NET: Document model and
object-persistence model

These higher-level APIs
are now documented here:
Higher-level programming
interfaces for DynamoDB.

January 20, 2014

Earlier updates API Version 2012-08-10 3670

Amazon DynamoDB Developer Guide

Change Description Date Changed

Global secondary indexes DynamoDB adds support for
global secondary indexes. As
with a local secondary index,
you define a global secondary
index by using an alternate
key from a table and then
issuing Query requests on
the index. Unlike a local
secondary index, the partition
key for the global secondary
index does not have to be the
same as that of the table; it
can be any scalar attribute
from the table. The sort key
is optional and can also be
any scalar table attribute
. A global secondary index
also has its own provisioned
throughput settings, which
are separate from those of
the parent table. For more
information, see Improving
data access with secondary
indexes in DynamoDB and
Using Global Secondary
Indexes in DynamoDB.

December 12, 2013

Earlier updates API Version 2012-08-10 3671

Amazon DynamoDB Developer Guide

Change Description Date Changed

Fine-grained access control DynamoDB adds support for
fine-grained access control.
This feature allows customers
to specify which principals
(users, groups, or roles) can
access individual items and
attributes in a DynamoDB
table or secondary index.
Applications can also leverage
web identity federation
to offload the task of user
authentication to a third-par
ty identity provider, such as
Facebook, Google, or Login
with Amazon. In this way,
applications (including mobile
apps) can handle very large
numbers of users, while
ensuring that no one can
access DynamoDB data items
unless they are authorized
to do so. For more informati
on, see Using IAM policy
conditions for fine-grained
access control.

October 29, 2013

Earlier updates API Version 2012-08-10 3672

Amazon DynamoDB Developer Guide

Change Description Date Changed

4 KB read capacity unit size The capacity unit size for
reads has increased from 1
KB to 4 KB. This enhanceme
nt can reduce the number
of provisioned read capacity
units required for many
applications. For example,
prior to this release, reading
a 10 KB item would consume
10 read capacity units; now
that same 10 KB read would
consume only 3 units (10 KB /
4 KB, rounded up to the next
4 KB boundary). For more
information, see DynamoDB
throughput capacity.

May 14, 2013

Parallel scans DynamoDB adds support
for parallel Scan operations.
Applications can now divide
a table into logical segments
and scan all of the segments
simultaneously. This feature
reduces the time required for
a Scan to complete, and fully
utilizes a table's provision
ed read capacity. For more
information, see Scanning
tables in DynamoDB.

May 14, 2013

Earlier updates API Version 2012-08-10 3673

Amazon DynamoDB Developer Guide

Change Description Date Changed

Local secondary indexes DynamoDB adds support
for local secondary indexes.
You can define sort key
indexes on non-key attribute
s, and then use these indexes
in Query requests. With
local secondary indexes,
applications can efficiently
retrieve data items across
multiple dimensions. For
more information, see Local
secondary indexes.

April 18, 2013

New API version With this release, DynamoDB
introduces a new API version
(2012-08-10). The previous
API version (2011-12-05) is
still supported for backward
compatibility with existing
applications. New applicati
ons should use the new API
version 2012-08-10. We
recommend that you migrate
your existing applications to
API version 2012-08-10, since
new DynamoDB features
(such as local secondary
indexes) will not be backporte
d to the previous API version.
For more information on
API version 2012-08-10, see
the Amazon DynamoDB API
Reference.

April 18, 2013

Earlier updates API Version 2012-08-10 3674

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Change Description Date Changed

IAM policy variable support The IAM access policy
language now supports
variables. When a policy
is evaluated, any policy
variables are replaced with
values that are supplied by
context-based informati
on from the authenticated
user's session. You can use
policy variables to define
general purpose policies
without explicitly listing
all the components of the
policy. For more informati
on about policy variables,
go to Policy Variables in the
Amazon Identity and Access
Management Using IAM guide.

For examples of policy
variables in DynamoDB,
see Identity and Access
Management for Amazon
DynamoDB.

April 4, 2013

PHP code examples updated
for Amazon SDK for PHP
version 2

Version 2 of the Amazon
SDK for PHP is now available
. The PHP code examples
in the Amazon DynamoDB
Developer Guide have been
updated to use this new SDK.
For more information on
Version 2 of the SDK, see
Amazon SDK for PHP.

January 23, 2013

Earlier updates API Version 2012-08-10 3675

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
http://www.amazonaws.cn/sdkforphp

Amazon DynamoDB Developer Guide

Change Description Date Changed

New endpoint DynamoDB expands to the
Amazon GovCloud (US-West)
region. For the current list
of service endpoints and
protocols, see Regions and
Endpoints.

December 3, 2012

New endpoint DynamoDB expands to the
South America (São Paulo)
region. For the current list
of supported endpoints, see
Regions and Endpoints.

December 3, 2012

New endpoint DynamoDB expands to
the Asia Pacific (Sydney)
region. For the current list
of supported endpoints, see
Regions and Endpoints.

November 13, 2012

Earlier updates API Version 2012-08-10 3676

https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/general/latest/gr/rande.html
https://docs.amazonaws.cn/general/latest/gr/rande.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

DynamoDB implements
support for CRC32 checksums
, supports strongly consisten
t batch gets, and removes
restrictions on concurrent
table updates.

• DynamoDB calculates a
CRC32 checksum of the
HTTP payload and returns
this checksum in a new
header, x-amz-crc32 .
For more information, see
DynamoDB low-level API.

• By default, read operation
s performed by the
BatchGetItem API are
eventually consistent. A
new ConsistentRead
parameter in BatchGetI
tem lets you choose
strong read consistency
instead, for any table(s)
in the request. For more
information, see Descripti
on.

• This release removes some
restrictions when updating
many tables simultane
ously. The total number of
tables that can be updated
at once is still 10; however,
these tables can now
be any combination of
CREATING, UPDATING or
DELETING status. Additiona
lly, there is no longer any
minimum amount for
increasing or reducing
the ReadCapacityUnits or
WriteCapacityUnits for a

November 2, 2012

Earlier updates API Version 2012-08-10 3677

Amazon DynamoDB Developer Guide

Change Description Date Changed

table. For more informati
on, see Quotas in Amazon
DynamoDB.

Best practices documentation The Amazon DynamoDB
Developer Guide identifies
best practices for working
with tables and items, along
with recommendations for
query and scan operations.

September 28, 2012

Earlier updates API Version 2012-08-10 3678

Amazon DynamoDB Developer Guide

Change Description Date Changed

Support for binary data type In addition to the Number
and String types, DynamoDB
now supports Binary data
type.

Prior to this release, to store
binary data, you converted
your binary data into string
format and stored it in
DynamoDB. In addition to the
required conversion work on
the client-side, the conversio
n often increased the size
of the data item requiring
more storage and potential
ly additional provisioned
throughput capacity.

With the binary type attribute
s you can now store any
binary data, for example
compressed data, encrypted
data, and images. For more
information see Data types.
For working examples of
handling binary type data
using the Amazon SDKs, see
the following sections:

• Example: Handling binary
type attributes using the
Amazon SDK for Java
document API

• Example: Handling binary
type attributes using the

August 21, 2012

Earlier updates API Version 2012-08-10 3679

Amazon DynamoDB Developer Guide

Change Description Date Changed

Amazon SDK for .NET low-
level API

For the added binary data
type support in the Amazon
SDKs, you will need to
download the latest SDKs
and you might also need
to update any existing
applications. For informati
on about downloading the
Amazon SDKs, see .NET code
examples.

DynamoDB table items can be
updated and copied using the
DynamoDB console

DynamoDB users can now
update and copy table items
using the DynamoDB Console,
in addition to being able to
add and delete items. This
new functionality simplifies
making changes to individual
items through the Console.

August 14, 2012

DynamoDB lowers minimum
table throughput requireme
nts

DynamoDB now supports
lower minimum table
throughput requireme
nts, specifically 1 write
capacity unit and 1 read
capacity unit. For more
information, see the Quotas
in Amazon DynamoDB topic
in the Amazon DynamoDB
Developer Guide.

August 9, 2012

Earlier updates API Version 2012-08-10 3680

Amazon DynamoDB Developer Guide

Change Description Date Changed

Signature Version 4 support DynamoDB now supports
Signature Version 4 for
authenticating requests.

July 5, 2012

Table explorer support in
DynamoDB Console

The DynamoDB Console now
supports a table explorer that
enables you to browse and
query the data in your tables.
You can also insert new items
or delete existing items. The
SampleData and Using the
console sections have been
updated for these features.

May 22, 2012

New endpoints DynamoDB availability
expands with new endpoints
in the US West (N. Californi
a) region, US West (Oregon)
region, and the Asia Pacific
(Singapore) region.

For the current list of
supported endpoints, go to
Regions and Endpoints.

April 24, 2012

Earlier updates API Version 2012-08-10 3681

https://docs.amazonaws.cn/general/latest/gr/rande.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

BatchWriteItem API support DynamoDB now supports a
batch write API that enables
you to put and delete several
items from one or more
tables in a single API call. For
more information about the
DynamoDB batch write API,
see BatchWriteItem.

For information about
working with items and using
batch write feature using
Amazon SDKs, see Working
with items and attributes in
DynamoDB and .NET code
examples.

April 19, 2012

Documented more error
codes

For more information,
see Error handling with
DynamoDB.

April 5, 2012

New endpoint DynamoDB expands to
the Asia Pacific (Tokyo)
region. For the current list
of supported endpoints, see
Regions and Endpoints.

February 29, 2012

ReturnedItemCount
metric added

A new metric, ReturnedI
temCount , provides the
number of items returned
in the response of a Query
or Scan operation for
DynamoDB is available
for monitoring through
CloudWatch.

February 24, 2012

Earlier updates API Version 2012-08-10 3682

https://docs.amazonaws.cn/general/latest/gr/rande.html

Amazon DynamoDB Developer Guide

Change Description Date Changed

Added examples for
incrementing values

DynamoDB supports
incrementing and decrement
ing existing numeric values.
Examples show adding
to existing values in the
"Updating an Item" sections
at:

Working with items: Java.

Working with items: .NET.

January 25, 2012

Initial product release DynamoDB is introduced as a
new service in Beta release.

January 18, 2012

Earlier updates API Version 2012-08-10 3683

Amazon DynamoDB Developer Guide

Legacy features of DynamoDB

The following topics are legacy features that DynamoDB still supports. No active development is
made on these features.

Topics

• Global tables version 2017.11.29 (Legacy)

• Previous low-level DynamoDB API version (2011-12-05)

• Legacy DynamoDB conditional parameters

Global tables version 2017.11.29 (Legacy)

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).
To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

Topics

• Global tables: How it works

• Best practices and requirements for managing global tables

• Creating a global table

• Monitoring global tables

• Using IAM with global tables

Global tables version 2017.11.29 (Legacy) API Version 2012-08-10 3684

Amazon DynamoDB Developer Guide

Global tables: How it works

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).
To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

The following sections help you understand the concepts and behavior of global tables in Amazon
DynamoDB.

Global table concepts for Version 2017.11.29 (Legacy)

A global table is a collection of one or more replica tables, all owned by a single Amazon account.

A replica table (or replica, for short) is a single DynamoDB table that functions as a part of a global
table. Each replica stores the same set of data items. Any given global table can only have one
replica table per Amazon Region.

The following is a conceptual overview of how a global table is created.

1. Create an ordinary DynamoDB table, with DynamoDB Streams enabled, in an Amazon Region.

2. Repeat step 1 for every other Region where you want to replicate your data.

3. Define a DynamoDB global table based on the tables that you have created.

The Amazon Web Services Management Console automates these tasks, so you can create a global
table more quickly and easily. For more information, see Creating a global table.

The resulting DynamoDB global table consists of multiple replica tables, one per Region, that
DynamoDB treats as a single unit. Every replica has the same table name and the same primary key
schema. When an application writes data to a replica table in one Region, DynamoDB automatically
propagates the write to the other replica tables in the other Amazon Regions.

How it works API Version 2012-08-10 3685

Amazon DynamoDB Developer Guide

Important

To keep your table data in sync, global tables automatically create the following attributes
for every item:

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

Do not modify these attributes or create attributes with the same name.

You can add replica tables to the global table so that it can be available in additional Regions. (To
do this, the global table must be empty. In other words, none of the replica tables can have any
data in them.)

You can also remove a replica table from a global table. If you do this, the table is completely
disassociated from the global table. This newly independent table no longer interacts with the
global table, and data is no longer propagated to or from the global table.

Warning

Be aware that removing a replica isn't an atomic process. To ensure consistent behavior and
known state, you may want to consider diverting your application write traffic away from
the replica to be removed ahead of time. After removing it, wait until all replica Region
endpoints show the replica as disassociated before making any further writes to it as its
own isolated regional table.

Common tasks

Common tasks for global tables work as follows.

You can delete a global table’s replica table the same as a regular table. This will stop replication
to that Region and delete the table copy kept in that Region. You cannot sever the replication and
have copies of the table exist as independent entities.

How it works API Version 2012-08-10 3686

Amazon DynamoDB Developer Guide

Note

You won’t be able to delete a source table until at least 24 hours after it’s used to initiate a
new Region. If you try to delete it too soon you will receive an error.

Conflicts can arise if applications update the same item in different Regions at about the same
time. To help ensure eventual consistency, DynamoDB global tables use a “last writer wins” method
to reconcile between concurrent updates. All the replicas will agree on the latest update and
converge toward a state in which they all have identical data.

Note

There are several ways to avoid conflicts, including:

• Using an IAM policy to only allow writes to the table in one Region.

• Using an IAM policy to route users to only one Region and keeping the other as an
idle standby, or alternately routing odd users to one Region and even users to another
Region.

• Avoiding the use of non-idempotent updates such as Bookmark = Bookmark + 1, in favor
of static updates such as Bookmark=25.

Monitoring global tables

You can use CloudWatch to observe the metric ReplicationLatency. This metric tracks the
elapsed time between when an updated item appears in the DynamoDB stream for one replica
table, and when that item appears in another replica in the global table. ReplicationLatency is
expressed in milliseconds and is emitted for every source-Region and destination-Region pair. This
is the only CloudWatch metric provided by Global Tables v2.

The latencies you will observe depend on the distance between your chosen Regions, as well as
other variables. Latencies in the 0.5 to 2.5 second range for Regions can be common within the
same geographic area.

How it works API Version 2012-08-10 3687

Amazon DynamoDB Developer Guide

Time To Live (TTL)

You can use Time To Live (TTL) to specify an attribute name whose value indicates the time of
expiration for the item. This value is specified as a number in seconds since the start of the Unix
epoch.

With global tables legacy version, the TTL deletes are not automatically replicated across other
replicas. When an item is deleted via a TTL rule, that work is performed without consuming Write
Units.

Be aware that if the source and target table have very low Provisioned write capacity, this may
cause throttling as the TTL deletes require write capacity.

Streams and transactions with global tables

Each global table produces an independent stream based on all its writes, regardless of the
origination point for those writes. You can choose to consume this DynamoDB stream in one
Region or in all Regions independently.

If you want processed local writes but not replicated writes, you can add your own region attribute
to each item. Then you can use a Lambda event filter to invoke only the Lambda for writes in the
local Region.

Transactional operations provide ACID (Atomicity, Consistency, Isolation, and Durability) guarantees
ONLY within the Region where the write is originally made. Transactions aren't supported across
Regions in global tables.

For example, if you have a global table with replicas in the US East (Ohio) and US West (Oregon)
Regions and perform a TransactWriteItems operation in the US East (Ohio) Region, you may
observe partially completed transactions in US West (Oregon) Region as changes are replicated.
Changes will only be replicated to other Regions once they have been committed in the source
Region.

Note

• Global tables “write around” DynamoDB Accelerator by updating DynamoDB directly.
As a result DAX will not be aware it is holding stale data. The DAX cache will only be
refreshed when the cache’s TTL expires.

• Tags on global tables do not automatically propagate.

How it works API Version 2012-08-10 3688

Amazon DynamoDB Developer Guide

Read and write throughput

Global tables manage read and write throughput in the following ways.

• The write capacity must be the same on all table instances across Regions.

• With Version 2019.11.21 (Current, if the table is set to support auto scaling or is in on-demand
mode then the write capacity is automatically kept in sync. The current amount of write capacity
provisioned in each Region will rise and fall independently within those synchronized auto
scaling settings. If the table is placed in on-demand mode, that mode will sync to the other
replicas.

• Read capacity can differ between Regions because reads may not be equal. When adding a global
replica to a table, the capacity of the source Region is propagated. After creation you can adjust
the read capacity for one replica, and this new setting isn't transferred to the other side.

Consistency and conflict resolution

Any changes made to any item in any replica table are replicated to all the other replicas within the
same global table. In a global table, a newly written item is usually propagated to all replica tables
within seconds.

With a global table, each replica table stores the same set of data items. DynamoDB does not
support partial replication of only some of the items.

An application can read and write data to any replica table. DynamoDB supports eventually
consistent reads across Regions, but does not support strongly consistent reads across Regions. If
your application only uses eventually consistent reads and only issues reads against one Amazon
Region, it will work without any modification. However, if your application requires strongly
consistent reads then it must perform all the strongly consistent reads and writes in the same
Region. Otherwise, if you write to one Region and read from another Region then the read
response might include stale data that doesn't reflect the results of recently completed writes in
the other Region.

Conflicts can arise if applications update the same item in different Regions at about the same
time. To help ensure eventual consistency, DynamoDB global tables use a last writer wins
reconciliation between concurrent updates, in which DynamoDB makes a best effort to determine
the last writer. With this conflict resolution mechanism, all the replicas will agree on the latest
update and converge toward a state in which they all have identical data.

How it works API Version 2012-08-10 3689

Amazon DynamoDB Developer Guide

Availability and durability

If a single Amazon Region becomes isolated or degraded, your application can redirect to a
different Region and perform reads and writes against a different replica table. You can apply
custom business logic to determine when to redirect requests to other Regions.

If a Region becomes isolated or degraded, DynamoDB keeps track of any writes that have been
performed but have not yet been propagated to all of the replica tables. When the Region comes
back online, DynamoDB resumes propagating any pending writes from that Region to the replica
tables in other Regions. It also resumes propagating writes from other replica tables to the Region
that is now back online. All previously successful writes will be propagated eventually no matter
how long the Region is isolated.

Best practices and requirements for managing global tables

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).
To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

Using Amazon DynamoDB global tables, you can replicate your table data across Amazon Regions.
It is important that the replica tables and secondary indexes in your global table have identical
write capacity settings to ensure proper replication of data.

Topics

• Global tables version

• Requirements for adding a new replica table

• Best practices and requirements for managing capacity

Best Practices and Requirements API Version 2012-08-10 3690

Amazon DynamoDB Developer Guide

Global tables version

There are two versions of DynamoDB global tables available: Global Tables version 2019.11.21
(Current) and Global tables version 2017.11.29 (Legacy). Customers should use Global Tables
version 2019.11.21 (Current) when possible, as it provides greater flexibility, higher efficiency and
consumes less write capacity than 2017.11.29 (Legacy).

To determine which version you are using, see Determining the version of a global table. To update
existing global tables from Version 2017.11.29 (Legacy) to Version 2019.11.21 (Current), see
Upgrading global tables.

Requirements for adding a new replica table

If you want to add a new replica table to a global table, each of the following conditions must be
true:

• The table must have the same partition key as all of the other replicas.

• The table must have the same write capacity management settings specified.

• The table must have the same name as all of the other replicas.

• The table must have DynamoDB Streams enabled, with the stream containing both the new and
the old images of the item.

• None of the new or existing replica tables in the global table can contain any data.

If global secondary indexes are specified, the following conditions must also be met:

• The global secondary indexes must have the same name.

• The global secondary indexes must have the same partition key and sort key (if present).

Important

Write capacity settings should be set consistently across all of your global tables’
replica tables and matching secondary indexes. To update write capacity settings
for your global table, we strongly recommend using the DynamoDB console or the
UpdateGlobalTableSettings API operation. UpdateGlobalTableSettings applies
changes to write capacity settings to all replica tables and matching secondary indexes in
a global table automatically. If you use the UpdateTable, RegisterScalableTarget,

Best Practices and Requirements API Version 2012-08-10 3691

Amazon DynamoDB Developer Guide

or PutScalingPolicy operations, you should apply the change to each replica
table and matching secondary index individually. For more information, see
UpdateGlobalTableSettings in the Amazon DynamoDB API Reference.
We strongly recommend that you enable auto scaling to manage provisioned write capacity
settings. If you prefer to manage write capacity settings manually, you should provision
equal replicated write capacity units to all of your replica tables. Also provision equal
replicated write capacity units to matching secondary indexes across your global table.
You must also have appropriate Amazon Identity and Access Management (IAM)
permissions. For more information, see Using IAM with global tables.

Best practices and requirements for managing capacity

Consider the following when managing capacity settings for replica tables in DynamoDB.

Using DynamoDB auto scaling

Using DynamoDB auto scaling is the recommended way to manage throughput capacity settings
for replica tables that use the provisioned mode. DynamoDB auto scaling automatically adjusts
read capacity units (RCUs) and write capacity units (WCUs) for each replica table based upon
your actual application workload. For more information, see Managing throughput capacity
automatically with DynamoDB auto scaling.

If you create your replica tables using the Amazon Web Services Management Console, auto scaling
is enabled by default for each replica table, with default auto scaling settings for managing read
capacity units and write capacity units.

Changes to auto scaling settings for a replica table or secondary index made through the
DynamoDB console or using the UpdateGlobalTableSettings call are applied to all of the
replica tables and matching secondary indexes in the global table automatically. These changes
overwrite any existing auto scaling settings. This ensures that provisioned write capacity settings
are consistent across the replica tables and secondary indexes in your global table. If you use the
UpdateTable, RegisterScalableTarget, or PutScalingPolicy calls, you should apply the
change to each replica table and matching secondary index individually.

Note

If auto scaling doesn't satisfy your application's capacity changes (unpredictable workload),
or if you don't want to configure its settings (target settings for minimum, maximum, or

Best Practices and Requirements API Version 2012-08-10 3692

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/API_UpdateGlobalTableSettings.html
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

utilization threshold), you can use on-demand mode to manage capacity for your global
tables. For more information, see On-demand mode.
If you enable on-demand mode on a global table, your consumption of replicated
write request units (rWCUs) will be consistent with how rWCUs are provisioned. For
example, if you perform 10 writes to a local table that is replicated in two additional
Regions, you will consume 60 write request units (10 + 10 + 10 = 30; 30 x 2 = 60). The
consumed 60 write request units include the extra write consumed by global tables Version
2017.11.29 (Legacy) to update the aws:rep:deleting, aws:rep:updatetime, and
aws:rep:updateregion attributes.

Managing capacity manually

If you decide not to use DynamoDB auto scaling, you must manually set the read capacity and
write capacity settings on each replica table and secondary index.

The provisioned replicated write capacity units (rWCUs) on every replica table should be set to the
total number of rWCUs needed for application writes across all Regions multiplied by two. This
accommodates application writes that occur in the local Region and replicated application writes
coming from other Regions. For example, suppose that you expect 5 writes per second to your
replica table in Ohio and 5 writes per second to your replica table in N. Virginia. In this case, you
should provision 20 rWCUs to each replica table (5 + 5 = 10; 10 x 2 = 20).

To update write capacity settings for your global table, we strongly recommend
using the DynamoDB console or the UpdateGlobalTableSettings API operation.
UpdateGlobalTableSettings applies changes to write capacity settings to all replica tables
and matching secondary indexes in a global table automatically. If you use the UpdateTable,
RegisterScalableTarget, or PutScalingPolicy operations, you should apply the change to
each replica table and matching secondary index individually. For more information, see Amazon
DynamoDB API Reference.

Note

To update the settings (UpdateGlobalTableSettings) for a global table in DynamoDB,
you must have the dynamodb:UpdateGlobalTable, dynamodb:DescribeLimits,
application-autoscaling:DeleteScalingPolicy, and application-
autoscaling:DeregisterScalableTarget permissions. For more information, see
Using IAM with global tables.

Best Practices and Requirements API Version 2012-08-10 3693

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Creating a global table

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).
To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

This section describes how to create a global table using the Amazon DynamoDB console or the
Amazon Command Line Interface (Amazon CLI).

Topics

• Creating a global table (console)

• Creating a global table (Amazon CLI)

Creating a global table (console)

Follow these steps to create a global table using the console. The following example creates a
global table with replica tables in United States and Europe.

1. Open the DynamoDB console at https://console.amazonaws.cn/dynamodb/home. For this
example, choose the us-east-2 (US East Ohio) Region.

2. In the navigation pane on the left side of the console, choose Tables.

3. Choose Create Table.

For Table name, enter Music.

For Primary key enter Artist. Choose Add sort key, and enter SongTitle. (Artist and
SongTitle should both be strings.)

To create the table, choose Create. This table serves as the first replica table in a new global
table. It is the prototype for other replica tables that you add later.

Creating a global table API Version 2012-08-10 3694

https://console.amazonaws.cn/dynamodb/home

Amazon DynamoDB Developer Guide

4. Choose the Global Tables tab, and then choose Create a Version 2017.11.29 (Legacy) replica.

5. From the Available replication Regions dropdown, choose US West (Oregon).

The console checks to ensure that a table with the same name doesn't exist in the selected
Region. If a table with the same name does exist, you must delete the existing table before you
can create a new replica table in that Region.

6. Choose Create Replica. This starts the table creation process in US West (Oregon);.

The Global Table tab for the selected table (and for any other replica tables) shows that the
table has been replicated in multiple Regions.

7. Now add another Region so that your global table is replicated and synchronized across the
United States and Europe. To do this, repeat step 5, but this time, specify Europe (Frankfurt)
instead of US West (Oregon).

8. You should still be using the Amazon Web Services Management Console in the US East (Ohio)
Region. Select Items in the left navigation menu, select the Music table, then choose Create
Item.

a. For Artist, enter item_1.

b. For SongTitle, enter Song Value 1.

Creating a global table API Version 2012-08-10 3695

Amazon DynamoDB Developer Guide

c. To write the item, choose Create item.

9. After a short time, the item is replicated across all three Regions of your global table. To
verify this, in the console, on the Region selector in the upper-right corner, choose Europe
(Frankfurt). The Music table in Europe (Frankfurt) should contain the new item.

10. Repeat step 9 and choose US West (Oregon) to verify replication in that region.

Creating a global table (Amazon CLI)

Follow these steps to create a global table Music using the Amazon CLI. The following example
creates a global table, with replica tables in the United States and in Europe.

1. Create a new table (Music) in US East (Ohio), with DynamoDB Streams enabled
(NEW_AND_OLD_IMAGES).

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \
 --region us-east-2

2. Create an identical Music table in US East (N. Virginia).

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \

Creating a global table API Version 2012-08-10 3696

Amazon DynamoDB Developer Guide

 --region us-east-1

3. Create a global table (Music) consisting of replica tables in the us-east-2 and us-east-1
Regions.

aws dynamodb create-global-table \
 --global-table-name Music \
 --replication-group RegionName=us-east-2 RegionName=us-east-1 \
 --region us-east-2

Note

The global table name (Music) must match the name of each of the replica tables
(Music). For more information, see Best practices for global tables.

4. Create another table in Europe (Ireland), with the same settings as those you created in step 1
and step 2.

aws dynamodb create-table \
 --table-name Music \
 --attribute-definitions \
 AttributeName=Artist,AttributeType=S \
 AttributeName=SongTitle,AttributeType=S \
 --key-schema \
 AttributeName=Artist,KeyType=HASH \
 AttributeName=SongTitle,KeyType=RANGE \
 --provisioned-throughput \
 ReadCapacityUnits=10,WriteCapacityUnits=5 \
 --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES \
 --region eu-west-1

After doing this step, add the new table to the Music global table.

aws dynamodb update-global-table \
 --global-table-name Music \
 --replica-updates 'Create={RegionName=eu-west-1}' \
 --region us-east-2

5. To verify that replication is working, add a new item to the Music table in US East (Ohio).

aws dynamodb put-item \

Creating a global table API Version 2012-08-10 3697

Amazon DynamoDB Developer Guide

 --table-name Music \
 --item '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-2

6. Wait for a few seconds, and then check to see whether the item has been successfully
replicated to US East (N. Virginia) and Europe (Ireland).

aws dynamodb get-item \
 --table-name Music \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region us-east-1

aws dynamodb get-item \
 --table-name Music \
 --key '{"Artist": {"S":"item_1"},"SongTitle": {"S":"Song Value 1"}}' \
 --region eu-west-1

Monitoring global tables

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).
To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

You can use Amazon CloudWatch to monitor the behavior and performance of a global table.
Amazon DynamoDB publishes ReplicationLatency and PendingReplicationCount metrics
for each replica in the global table.

• ReplicationLatency—The elapsed time between when an updated item appears in the
DynamoDB stream for one replica table, and when that item appears in another replica in
the global table. ReplicationLatency is expressed in milliseconds and is emitted for every
source- and destination-Region pair.

Monitoring global tables API Version 2012-08-10 3698

Amazon DynamoDB Developer Guide

During normal operation, ReplicationLatency should be fairly constant. An elevated value
for ReplicationLatency could indicate that updates from one replica are not propagating
to other replica tables in a timely manner. Over time, this could result in other replica tables
falling behind because they no longer receive updates consistently. In this case, you should verify
that the read capacity units (RCUs) and write capacity units (WCUs) are identical for each of the
replica tables. In addition, when choosing WCU settings, follow the recommendations in Global
tables version.

ReplicationLatency can increase if an Amazon Region becomes degraded and you have a
replica table in that Region. In this case, you can temporarily redirect your application's read and
write activity to a different Amazon Region.

• PendingReplicationCount—The number of item updates that are written to one
replica table, but that have not yet been written to another replica in the global table.
PendingReplicationCount is expressed in number of items and is emitted for every source-
and destination-Region pair.

During normal operation, PendingReplicationCount should be very low. If
PendingReplicationCount increases for extended periods, investigate whether your replica
tables' provisioned write capacity settings are sufficient for your current workload.

PendingReplicationCount can increase if an Amazon Region becomes degraded and you
have a replica table in that Region. In this case, you can temporarily redirect your application's
read and write activity to a different Amazon Region.

For more information, see DynamoDB Metrics and dimensions.

Using IAM with global tables

Important

This documentation is for version 2017.11.29 (Legacy) of global tables, which should be
avoided for new global tables. Customers should use Global Tables version 2019.11.21
(Current) when possible, as it provides greater flexibility, higher efficiency and consumes
less write capacity than 2017.11.29 (Legacy).

Using IAM with global tables API Version 2012-08-10 3699

Amazon DynamoDB Developer Guide

To determine which version you are using, see Determining the version of a global table.
To update existing global tables from version 2017.11.29 (Legacy) to version 2019.11.21
(Current), see DynamoDB global tables versions.

When you create a global table for the first time, Amazon DynamoDB automatically creates an
Amazon Identity and Access Management (IAM) service-linked role for you. This role is named , and
it allows DynamoDB to manage cross-Region replication for global tables on your behalf. Don't
delete this service-linked role. If you do, then all of your global tables will no longer function.

For more information about service-linked roles, see Using service-linked roles in the IAM User
Guide.

To create and maintain global tables in DynamoDB, you must have the
dynamodb:CreateGlobalTable permission to access each of the following:

• The replica table that you want to add.

• Each existing replica that's already part of the global table.

• The global table itself.

To update the settings (UpdateGlobalTableSettings) for a global table in DynamoDB,
you must have the dynamodb:UpdateGlobalTable, dynamodb:DescribeLimits,
application-autoscaling:DeleteScalingPolicy, and application-
autoscaling:DeregisterScalableTarget permissions.

The application-autoscaling:DeleteScalingPolicy and application-
autoscaling:DeregisterScalableTarget permissions are required when updating an
existing scaling policy. This is so that the global tables service can remove the old scaling policy
before attaching the new policy to the table or secondary index.

If you use an IAM policy to manage access to one replica table, you should apply an identical
policy to all other replicas within that global table. This practice helps you maintain a consistent
permissions model across all of the replica tables.

By using identical IAM policies on all replicas in a global table, you can also avoid granting
unintended read and write access to your global table data. For example, consider a user who
has access to only one replica in a global table. If that user can write to this replica, DynamoDB
propagates the write to all of the other replica tables. In effect, the user can (indirectly) write to

Using IAM with global tables API Version 2012-08-10 3700

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html

Amazon DynamoDB Developer Guide

all of the other replicas in the global table. This scenario can be avoided by using consistent IAM
policies on all of the replica tables.

Example: Allow the CreateGlobalTable action

Before you can add a replica to a global table, you must have the
dynamodb:CreateGlobalTable permission for the global table and for each of its replica tables.

The following IAM policy grants permissions to allow the CreateGlobalTable action on all
tables.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["dynamodb:CreateGlobalTable"],
 "Resource": "*"
 }
]
}

Example: Allow the UpdateGlobalTable, DescribeLimits,
application-autoscaling:DeleteScalingPolicy, and application-
autoscaling:DeregisterScalableTarget actions

To update the settings (UpdateGlobalTableSettings) for a global table in DynamoDB,
you must have the dynamodb:UpdateGlobalTable, dynamodb:DescribeLimits,
application-autoscaling:DeleteScalingPolicy, and application-
autoscaling:DeregisterScalableTarget permissions.

The following IAM policy grants permissions to allow the UpdateGlobalTableSettings action
on all tables.

JSON

{

Using IAM with global tables API Version 2012-08-10 3701

Amazon DynamoDB Developer Guide

 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:UpdateGlobalTable",
 "dynamodb:DescribeLimits",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeregisterScalableTarget"
],
 "Resource": "*"
 }
]
}

Example: Allow the CreateGlobalTable action for a specific global table name
with replicas allowed in certain regions only

The following IAM policy grants permissions to allow the CreateGlobalTable action to create a
global table named Customers with replicas in two Regions.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:CreateGlobalTable",
 "Resource": [
 "arn:aws:dynamodb::123456789012:global-table/Customers",
 "arn:aws:dynamodb:us-east-1:123456789012:table/Customers",
 "arn:aws:dynamodb:us-west-1:123456789012:table/Customers"
]
 }
]
}

Using IAM with global tables API Version 2012-08-10 3702

Amazon DynamoDB Developer Guide

Previous low-level DynamoDB API version (2011-12-05)

This section documents the operations available in the previous DynamoDB low-level API version
(2011-12-05). This version of the low-level API is maintained for backward compatibility with
existing applications.

New applications should use the current API version (2012-08-10). For more information, see
DynamoDB API reference.

Note

We recommend that you migrate your applications to the latest API version (2012-08-10),
since new DynamoDB features will not be backported to the previous API version.

Topics

• BatchGetItem

• BatchWriteItem

• CreateTable

• DeleteItem

• DeleteTable

• DescribeTables

• GetItem

• ListTables

• PutItem

• Query

• Scan

• UpdateItem

• UpdateTable

Previous low-level DynamoDB API version (2011-12-05) API Version 2012-08-10 3703

Amazon DynamoDB Developer Guide

BatchGetItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

The BatchGetItem operation returns the attributes for multiple items from multiple tables using
their primary keys. The maximum number of items that can be retrieved for a single operation
is 100. Also, the number of items retrieved is constrained by a 1 MB size limit. If the response
size limit is exceeded or a partial result is returned because the table’s provisioned throughput is
exceeded, or because of an internal processing failure, DynamoDB returns an UnprocessedKeys
value so you can retry the operation starting with the next item to get. DynamoDB automatically
adjusts the number of items returned per page to enforce this limit. For example, even if you ask
to retrieve 100 items, but each individual item is 50 KB in size, the system returns 20 items and
an appropriate UnprocessedKeys value so you can get the next page of results. If desired, your
application can include its own logic to assemble the pages of results into one set.

If no items could be processed because of insufficient provisioned throughput on each of the tables
involved in the request, DynamoDB returns a ProvisionedThroughputExceededException
error.

Note

By default, BatchGetItem performs eventually consistent reads on every table in the
request. You can set the ConsistentRead parameter to true, on a per-table basis, if you
want consistent reads instead.
BatchGetItem fetches items in parallel to minimize response latencies.
When designing your application, keep in mind that DynamoDB does not guarantee how
attributes are ordered in the returned response. Include the primary key values in the
AttributesToGet for the items in your request to help parse the response by item.

BatchGetItem API Version 2012-08-10 3704

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

If the requested items do not exist, nothing is returned in the response for those items.
Requests for non-existent items consume the minimum read capacity units according to the
type of read. For more information, see DynamoDB item sizes and formats.

Requests

Syntax

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{"RequestItems":
 {"Table1":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue1"}, "RangeKeyElement":
{"N":"KeyValue2"}},
 {"HashKeyElement": {"S":"KeyValue3"}, "RangeKeyElement":{"N":"KeyValue4"}},
 {"HashKeyElement": {"S":"KeyValue5"}, "RangeKeyElement":
{"N":"KeyValue6"}}],
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]},
 "Table2":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue4"}},
 {"HashKeyElement": {"S":"KeyValue5"}}],
 "AttributesToGet": ["AttributeName4", "AttributeName5", "AttributeName6"]
 }
 }
}

Name Description Required

RequestItems A container of the table name
and corresponding items to
get by primary key. While
requesting items, each table

Yes

BatchGetItem API Version 2012-08-10 3705

Amazon DynamoDB Developer Guide

Name Description Required

name can be invoked only
once per operation.

Type: String

Default: None

Table The name of the table
containing the items to get.
The entry is simply a string
specifying an existing table
with no label.

Type: String

Default: None

Yes

Table:Keys The primary key values
that define the items in the
specified table. For more
information about primary
keys, see Primary key.

Type: Keys

Yes

Table:AttributesToGet Array of Attribute names
within the specified table.
If attribute names are not
specified then all attribute
s will be returned. If some
attributes are not found, they
will not appear in the result.

Type: Array

No

BatchGetItem API Version 2012-08-10 3706

Amazon DynamoDB Developer Guide

Name Description Required

Table:ConsistentRead If set to true, then a
consistent read is issued,
otherwise eventually
consistent is used.

Type: Boolean

No

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 855

{"Responses":
 {"Table1":
 {"Items":
 [{"AttributeName1": {"S":"AttributeValue"},
 "AttributeName2": {"N":"AttributeValue"},
 "AttributeName3": {"SS":["AttributeValue", "AttributeValue", "AttributeValue"]}
 },
 {"AttributeName1": {"S": "AttributeValue"},
 "AttributeName2": {"S": "AttributeValue"},
 "AttributeName3": {"NS": ["AttributeValue", "AttributeValue",
 "AttributeValue"]}
 }],
 "ConsumedCapacityUnits":1},
 "Table2":
 {"Items":
 [{"AttributeName1": {"S":"AttributeValue"},
 "AttributeName2": {"N":"AttributeValue"},
 "AttributeName3": {"SS":["AttributeValue", "AttributeValue", "AttributeValue"]}
 },
 {"AttributeName1": {"S": "AttributeValue"},
 "AttributeName2": {"S": "AttributeValue"},
 "AttributeName3": {"NS": ["AttributeValue", "AttributeValue","AttributeValue"]}
 }],

BatchGetItem API Version 2012-08-10 3707

Amazon DynamoDB Developer Guide

 "ConsumedCapacityUnits":1}
 },
 "UnprocessedKeys":
 {"Table3":
 {"Keys":
 [{"HashKeyElement": {"S":"KeyValue1"}, "RangeKeyElement":
{"N":"KeyValue2"}},
 {"HashKeyElement": {"S":"KeyValue3"}, "RangeKeyElement":{"N":"KeyValue4"}},
 {"HashKeyElement": {"S":"KeyValue5"}, "RangeKeyElement":
{"N":"KeyValue6"}}],
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]}
 }
}

Name Description

Responses Table names and the respective item attribute
s from the tables.

Type: Map

Table The name of the table containing the items.
The entry is simply a string specifying the
table with no label.

Type: String

Items Container for the attribute names and values
meeting the operation parameters.

Type: Map of attribute names to and their
data types and values.

ConsumedCapacityUnits The number of read capacity units consumed,
for each table. This value shows the number
applied toward your provisioned throughpu
t. Requests for non-existent items consume
the minimum read capacity units, depending
on the type of read. For more information see
DynamoDB provisioned capacity mode.

BatchGetItem API Version 2012-08-10 3708

Amazon DynamoDB Developer Guide

Name Description

Type: Number

UnprocessedKeys Contains an array of tables and their respectiv
e keys that were not processed with the
current response, possibly due to reaching a
limit on the response size. The Unprocess
edKeys value is in the same form as a
RequestItems parameter (so the value
can be provided directly to a subsequen
t BatchGetItem operation). For more
information, see the above RequestItems
parameter.

Type: Array

UnprocessedKeys : Table: Keys The primary key attribute values that define
the items and the attributes associated
with the items. For more information about
primary keys, see Primary key .

Type: Array of attribute name-value pairs.

UnprocessedKeys : Table: Attribute
sToGet

Attribute names within the specified table.
If attribute names are not specified then all
attributes will be returned. If some attribute
s are not found, they will not appear in the
result.

Type: Array of attribute names.

UnprocessedKeys : Table: Consisten
tRead

If set to true, then a consistent read is used
for the specified table, otherwise an eventuall
y consistent read is used.

Type: Boolean.

BatchGetItem API Version 2012-08-10 3709

Amazon DynamoDB Developer Guide

Special errors

Error Description

ProvisionedThroughputExceed
edException

Your maximum allowed provisioned
throughput has been exceeded.

Examples

The following examples show an HTTP POST request and response using the BatchGetItem
operation. For examples using the Amazon SDK, see Working with items and attributes in
DynamoDB.

Sample request

The following sample requests attributes from two different tables.

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0
content-length: 409

{"RequestItems":
 {"comp1":
 {"Keys":
 [{"HashKeyElement":{"S":"Casey"},"RangeKeyElement":{"N":"1319509152"}},
 {"HashKeyElement":{"S":"Dave"},"RangeKeyElement":{"N":"1319509155"}},
 {"HashKeyElement":{"S":"Riley"},"RangeKeyElement":{"N":"1319509158"}}],
 "AttributesToGet":["user","status"]},
 "comp2":
 {"Keys":
 [{"HashKeyElement":{"S":"Julie"}},{"HashKeyElement":{"S":"Mingus"}}],
 "AttributesToGet":["user","friends"]}
 }
}

Sample response

The following sample is the response.

BatchGetItem API Version 2012-08-10 3710

Amazon DynamoDB Developer Guide

HTTP/1.1 200 OK
x-amzn-RequestId: GTPQVRM4VJS792J1UFJTKUBVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 373
Date: Fri, 02 Sep 2011 23:07:39 GMT

{"Responses":
 {"comp1":
 {"Items":
 [{"status":{"S":"online"},"user":{"S":"Casey"}},
 {"status":{"S":"working"},"user":{"S":"Riley"}},
 {"status":{"S":"running"},"user":{"S":"Dave"}}],
 "ConsumedCapacityUnits":1.5},
 "comp2":
 {"Items":
 [{"friends":{"SS":["Elisabeth", "Peter"]},"user":{"S":"Mingus"}},
 {"friends":{"SS":["Dave", "Peter"]},"user":{"S":"Julie"}}],
 "ConsumedCapacityUnits":1}
 },
 "UnprocessedKeys":{}
}

BatchWriteItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

This operation enables you to put or delete several items across multiple tables in a single call.

To upload one item, you can use PutItem, and to delete one item, you can use DeleteItem.
However, when you want to upload or delete large amounts of data, such as uploading large
amounts of data from Amazon EMR (Amazon EMR) or migrating data from another database in to
DynamoDB, BatchWriteItem offers an efficient alternative.

BatchWriteItem API Version 2012-08-10 3711

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

If you use languages such as Java, you can use threads to upload items in parallel. This adds
complexity in your application to handle the threads. Other languages don't support threading. For
example, if you are using PHP, you must upload or delete items one at a time. In both situations,
BatchWriteItem provides an alternative where the specified put and delete operations are
processed in parallel, giving you the power of the thread pool approach without having to
introduce complexity in your application.

Note that each individual put and delete specified in a BatchWriteItem operation costs the same
in terms of consumed capacity units. However, because BatchWriteItem performs the specified
operations in parallel, you get lower latency. Delete operations on non-existent items consume 1
write capacity unit. For more information about consumed capacity units, see Working with tables
and data in DynamoDB.

When using BatchWriteItem, note the following limitations:

• Maximum operations in a single request—You can specify a total of up to 25 put or delete
operations; however, the total request size cannot exceed 1 MB (the HTTP payload).

• You can use the BatchWriteItem operation only to put and delete items. You cannot use it to
update existing items.

• Not an atomic operation—Individual operations specified in a BatchWriteItem are atomic;
however BatchWriteItem as a whole is a "best-effort" operation and not an atomic operation.
That is, in a BatchWriteItem request, some operations might succeed and others might fail.
The failed operations are returned in an UnprocessedItems field in the response. Some of
these failures might be because you exceeded the provisioned throughput configured for the
table or a transient failure such as a network error. You can investigate and optionally resend
the requests. Typically, you call BatchWriteItem in a loop and in each iteration check for
unprocessed items, and submit a new BatchWriteItem request with those unprocessed items.

• Does not return any items—The BatchWriteItem is designed for uploading large amounts
of data efficiently. It does not provide some of the sophistication offered by PutItem and
DeleteItem. For example, DeleteItem supports the ReturnValues field in your request body
to request the deleted item in the response. The BatchWriteItem operation does not return
any items in the response.

• Unlike PutItem and DeleteItem, BatchWriteItem does not allow you to specify conditions
on individual write requests in the operation.

• Attribute values must not be null; string and binary type attributes must have lengths greater
than zero; and set type attributes must not be empty. Requests that have empty values will be
rejected with a ValidationException.

BatchWriteItem API Version 2012-08-10 3712

Amazon DynamoDB Developer Guide

DynamoDB rejects the entire batch write operation if any one of the following is true:

• If one or more tables specified in the BatchWriteItem request does not exist.

• If primary key attributes specified on an item in the request does not match the corresponding
table's primary key schema.

• If you try to perform multiple operations on the same item in the same BatchWriteItem
request. For example, you cannot put and delete the same item in the same BatchWriteItem
request.

• If the total request size exceeds the 1 MB request size (the HTTP payload) limit.

• If any individual item in a batch exceeds the 64 KB item size limit.

Requests

Syntax

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{
 "RequestItems" : RequestItems
}

RequestItems
{
 "TableName1" : [Request, Request, ...],
 "TableName2" : [Request, Request, ...],
 ...
}

Request ::=
 PutRequest | DeleteRequest

PutRequest ::=
{
 "PutRequest" : {
 "Item" : {
 "Attribute-Name1" : Attribute-Value,

BatchWriteItem API Version 2012-08-10 3713

Amazon DynamoDB Developer Guide

 "Attribute-Name2" : Attribute-Value,
 ...
 }
 }
}

DeleteRequest ::=
{
 "DeleteRequest" : {
 "Key" : PrimaryKey-Value
 }
}

PrimaryKey-Value ::= HashTypePK | HashAndRangeTypePK

HashTypePK ::=
{
 "HashKeyElement" : Attribute-Value
}

HashAndRangeTypePK
{
 "HashKeyElement" : Attribute-Value,
 "RangeKeyElement" : Attribute-Value,
}

Attribute-Value ::= String | Numeric| Binary | StringSet | NumericSet | BinarySet

Numeric ::=
{
 "N": "Number"
}

String ::=
{
 "S": "String"
}

Binary ::=
{
 "B": "Base64 encoded binary data"
}

BatchWriteItem API Version 2012-08-10 3714

Amazon DynamoDB Developer Guide

StringSet ::=
{
 "SS": ["String1", "String2", ...]
}

NumberSet ::=
{
 "NS": ["Number1", "Number2", ...]
}

BinarySet ::=
{
 "BS": ["Binary1", "Binary2", ...]
}

In the request body, the RequestItems JSON object describes the operations that you want to
perform. The operations are grouped by tables. You can use BatchWriteItem to update or delete
several items across multiple tables. For each specific write request, you must identify the type of
request (PutItem, DeleteItem) followed by detail information about the operation.

• For a PutRequest, you provide the item, that is, a list of attributes and their values.

• For a DeleteRequest, you provide the primary key name and value.

Responses

Syntax

The following is the syntax of the JSON body returned in the response.

{
 "Responses" : ConsumedCapacityUnitsByTable
 "UnprocessedItems" : RequestItems
}

ConsumedCapacityUnitsByTable
{
 "TableName1" : { "ConsumedCapacityUnits", : NumericValue },
 "TableName2" : { "ConsumedCapacityUnits", : NumericValue },
 ...
}

RequestItems

BatchWriteItem API Version 2012-08-10 3715

Amazon DynamoDB Developer Guide

This syntax is identical to the one described in the JSON syntax in the request.

Special errors

No errors specific to this operation.

Examples

The following example shows an HTTP POST request and the response of a BatchWriteItem
operation. The request specifies the following operations on the Reply and the Thread tables:

• Put an item and delete an item from the Reply table

• Put an item into the Thread table

For examples using the Amazon SDK, see Working with items and attributes in DynamoDB.

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.BatchGetItem
content-type: application/x-amz-json-1.0

{
 "RequestItems":{
 "Reply":[
 {
 "PutRequest":{
 "Item":{
 "ReplyDateTime":{
 "S":"2012-04-03T11:04:47.034Z"
 },
 "Id":{
 "S":"DynamoDB#DynamoDB Thread 5"
 }
 }
 }
 },
 {
 "DeleteRequest":{
 "Key":{

BatchWriteItem API Version 2012-08-10 3716

Amazon DynamoDB Developer Guide

 "HashKeyElement":{
 "S":"DynamoDB#DynamoDB Thread 4"
 },
 "RangeKeyElement":{
 "S":"oops - accidental row"
 }
 }
 }
 }
],
 "Thread":[
 {
 "PutRequest":{
 "Item":{
 "ForumName":{
 "S":"DynamoDB"
 },
 "Subject":{
 "S":"DynamoDB Thread 5"
 }
 }
 }
 }
]
 }
}

Sample response

The following example response shows a put operation on both the Thread and Reply tables
succeeded and a delete operation on the Reply table failed (for reasons such as throttling that is
caused when you exceed the provisioned throughput on the table). Note the following in the JSON
response:

• The Responses object shows one capacity unit was consumed on both the Thread and Reply
tables as a result of the successful put operation on each of these tables.

• The UnprocessedItems object shows the unsuccessful delete operation on the Reply table.
You can then issue a new BatchWriteItem call to address these unprocessed requests.

HTTP/1.1 200 OK
x-amzn-RequestId: G8M9ANLOE5QA26AEUHJKJE0ASBVV4KQNSO5AEMVJF66Q9ASUAAJG

BatchWriteItem API Version 2012-08-10 3717

Amazon DynamoDB Developer Guide

Content-Type: application/x-amz-json-1.0
Content-Length: 536
Date: Thu, 05 Apr 2012 18:22:09 GMT

{
 "Responses":{
 "Thread":{
 "ConsumedCapacityUnits":1.0
 },
 "Reply":{
 "ConsumedCapacityUnits":1.0
 }
 },
 "UnprocessedItems":{
 "Reply":[
 {
 "DeleteRequest":{
 "Key":{
 "HashKeyElement":{
 "S":"DynamoDB#DynamoDB Thread 4"
 },
 "RangeKeyElement":{
 "S":"oops - accidental row"
 }
 }
 }
 }
]
 }
}

CreateTable

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

CreateTable API Version 2012-08-10 3718

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Description

The CreateTable operation adds a new table to your account.

The table name must be unique among those associated with the Amazon Account issuing
the request, and the Amazon region that receives the request (such as dynamodb.us-
west-2.amazonaws.com.cn). Each DynamoDB endpoint is entirely independent. For example, if
you have two tables called "MyTable," one in dynamodb.us-west-2.amazonaws.com.cn and one in
dynamodb.us-west-1.amazonaws.com.cn, they are completely independent and do not share any
data.

The CreateTable operation triggers an asynchronous workflow to begin creating the table.
DynamoDB immediately returns the state of the table (CREATING) until the table is in the ACTIVE
state. Once the table is in the ACTIVE state, you can perform data plane operations.

Use the DescribeTables operation to check the status of the table.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.CreateTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"AttributeName2","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10}
}

Name Description Required

TableName
The name of the table to
create.

Yes

CreateTable API Version 2012-08-10 3719

Amazon DynamoDB Developer Guide

Name Description Required

Allowed characters are a-
z, A-Z, 0-9, '_' (underscore),
'-' (dash), and '.' (dot). Names
can be between 3 and 255
characters long.

Type: String

KeySchema The primary key (simple or
composite) structure for the
 table. A name-value pair
for the HashKeyElement
is required, and a name-va
lue pair for the RangeKeyE
lement is optional (only
required for composite
primary keys). For more info
rmation about primary keys,
see Primary key.

Primary key element names
can be between 1 and 255
characters long with no
character restrictions.

Possible values for the
AttributeType are "S" (string),
"N" (numeric), or "B" (binary).

Type: Map of HashKeyEl
ement , or HashKeyEl
ement and RangeKeyE
lement for a composite
 primary key.

Yes

CreateTable API Version 2012-08-10 3720

Amazon DynamoDB Developer Guide

Name Description Required

ProvisionedThrough
put

New throughput for the
specified table, consisting
of values for ReadCapac
ityUnits and WriteCapa
cityUnits . For details,
see DynamoDB provisioned
capacity mode.

Note

For current
maximum/minimum
values, see Quotas in
Amazon DynamoDB.

Type: Array

Yes

CreateTable API Version 2012-08-10 3721

Amazon DynamoDB Developer Guide

Name Description Required

ProvisionedThrough
put : ReadCapac
ityUnits

Sets the minimum number
of consistent ReadCapac
ityUnits consumed per
second for the specified table
before DynamoDB balances
the load with other operation
s.

Eventually consistent read
operations require less effort
than a consistent read
operation, so a setting of
50 consistent ReadCapac
ityUnits per second
provides 100 eventuall
y consistent ReadCapac
ityUnits per second.

Type: Number

Yes

ProvisionedThrough
put : WriteCapa
cityUnits

Sets the minimum number
of WriteCapacityUnits

 consumed per second for
the specified table before
DynamoDB balances the load
with other operations.

Type: Number

Yes

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG

CreateTable API Version 2012-08-10 3722

Amazon DynamoDB Developer Guide

content-type: application/x-amz-json-1.0
content-length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"TableDescription":
 {"CreationDateTime":1.310506263362E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"AttributeName2","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"CREATING"
 }
}

Name Description

TableDescription A container for the table properties.

CreationDateTime Date when the table was created in UNIX
epoch time.

Type: Number

KeySchema The primary key (simple or composite)
structure for the table. A name-value pair for
the HashKeyElement is required, and a
 name-value pair for the RangeKeyElement
 is optional (only required for composite
primary keys). For more information about
primary keys, see Primary key .

Type: Map of HashKeyElement , or
HashKeyElement and RangeKeyElement
for a composite primary key.

ProvisionedThroughput
Throughput for the specified table, consistin
g of values for ReadCapacityUnits and

CreateTable API Version 2012-08-10 3723

http://www.epochconverter.com/
http://www.epochconverter.com/

Amazon DynamoDB Developer Guide

Name Description

 WriteCapacityUnits . See DynamoDB
provisioned capacity mode.

Type: Array

ProvisionedThroughput :ReadCapac
ityUnits The minimum number of ReadCapac

ityUnits consumed per second before
DynamoDB. balances the load with other ope
rations

Type: Number

ProvisionedThroughput :WriteCapa
cityUnits The minimum number of ReadCapac

ityUnits consumed per second before
WriteCapacityUnits . balances the load
with other operations

Type: Number

TableName
The name of the created table.

Type: String

TableStatus The current state of the table (CREATING).
Once the table is in the ACTIVE state, you can
put data in it.

Use the DescribeTables API to check the
status of the table.

Type: String

CreateTable API Version 2012-08-10 3724

Amazon DynamoDB Developer Guide

Special errors

Error Description

ResourceInUseException Attempt to recreate an already existing table.

LimitExceededException The number of simultaneous table requests
(cumulative number of tables in the
CREATING, DELETING or UPDATING state)
exceeds the maximum allowed.

Note

For current maximum/minimum
values, see Quotas in Amazon
DynamoDB.

.

Examples

The following example creates a table with a composite primary key containing a string and a
number. For examples using the Amazon SDK, see Working with tables and data in DynamoDB.

Sample request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.CreateTable
content-type: application/x-amz-json-1.0

{"TableName":"comp-table",
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10}

CreateTable API Version 2012-08-10 3725

Amazon DynamoDB Developer Guide

}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"TableDescription":
 {"CreationDateTime":1.310506263362E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":10},
 "TableName":"comp-table",
 "TableStatus":"CREATING"
 }
}

Related actions

• DescribeTables

• DeleteTable

DeleteItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Deletes a single item in a table by primary key. You can perform a conditional delete operation that
deletes the item if it exists, or if it has an expected attribute value.

DeleteItem API Version 2012-08-10 3726

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Note

If you specify DeleteItem without attributes or values, all the attributes for the item are
deleted.
Unless you specify conditions, the DeleteItem is an idempotent operation; running it
multiple times on the same item or attribute does not result in an error response.
Conditional deletes are useful for only deleting items and attributes if specific conditions
are met. If the conditions are met, DynamoDB performs the delete. Otherwise, the item is
not deleted.
You can perform the expected conditional check on one attribute per operation.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement":{"S":"AttributeValue1"},"RangeKeyElement":
{"N":"AttributeValue2"}},
 "Expected":{"AttributeName3":{"Value":{"S":"AttributeValue3"}}},
 "ReturnValues":"ALL_OLD"}
}

Name Description Required

TableName The name of the table
containing the item to delete.

Type: String

Yes

Key The primary key that defines
the item. For more informati

Yes

DeleteItem API Version 2012-08-10 3727

Amazon DynamoDB Developer Guide

Name Description Required

on about primary keys, see
Primary key.

Type: Map of HashKeyEl
ement to its value and
RangeKeyElement to its
 value.

Expected Designates an attribute for
a conditional delete. The
Expected parameter allows
you to provide an attribute
name, and whether or not
 DynamoDB should check
to see if the attribute has a
particular value before dele
ting it.

Type: Map of attribute names.

No

Expected:Attribute
Name

The name of the attribute for
the conditional put.

Type: String

No

DeleteItem API Version 2012-08-10 3728

Amazon DynamoDB Developer Guide

Name Description Required

Expected:Attribute
Name: ExpectedA
ttributeValue

Use this parameter to
specify whether or not a
value already exists for the
attribute name-value pair.

The following JSON notation
deletes the item if the "Color"
attribute doesn't exist for
that item:

"Expected" :
 {"Color":{"Exis
ts":false}}

The following JSON notation
checks to see if the attribute
with name "Color" has an
existing value of "Yellow"
before deleting the item:

"Expected" :
 {"Color":{"Exist
s":true},{"Value":
{"S":"Yellow"}}}

By default, if you use the
Expected parameter and
provide a Value, DynamoDB
 assumes the attribute exists
and has a current value to be
replaced. So you don't have to
specify {"Exists":true} ,
because it is implied. You can
 shorten the request to:

"Expected" :

No

DeleteItem API Version 2012-08-10 3729

Amazon DynamoDB Developer Guide

Name Description Required

 {"Color":{"Value":
{"S":"Yellow"}}}

Note

If you specify
{"Exists":true}
without an attri
bute value to check,
DynamoDB returns an
error.

ReturnValues Use this parameter if you
want to get the attribute
name-value pairs before
they were deleted. Possible
parameter values are NONE
(default) or ALL_OLD. If
 ALL_OLD is specified, the
content of the old item is
returned. If this parameter
is not provided or is NONE,
nothing is returned.

Type: String

No

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 353
Date: Tue, 12 Jul 2011 21:31:03 GMT

DeleteItem API Version 2012-08-10 3730

Amazon DynamoDB Developer Guide

{"Attributes":
 {"AttributeName3":{"SS":["AttributeValue3","AttributeValue4","AttributeValue5"]},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName1":{"N":"AttributeValue1"}
 },
"ConsumedCapacityUnits":1
}

Name Description

Attributes If the ReturnValues parameter is provided
as ALL_OLD in the request, DynamoDB
returns an array of attribute name-value pairs
(essentially, the deleted item). Otherwise, the
response contains an empty set.

Type: Array of attribute name-value pairs.

ConsumedCapacityUnits The number of write capacity units consumed
by the operation. This value shows the
number applied toward your provisioned
throughput. Delete requests on non-existent
items consume 1 write capacity unit. For more
 information see DynamoDB provisioned
capacity mode.

Type: Number

Special errors

Error Description

ConditionalCheckFailedException Conditional check failed. An expected
attribute value was not found.

DeleteItem API Version 2012-08-10 3731

Amazon DynamoDB Developer Guide

Examples

Sample request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteItem
content-type: application/x-amz-json-1.0

{"TableName":"comp-table",
 "Key":
 {"HashKeyElement":{"S":"Mingus"},"RangeKeyElement":{"N":"200"}},
 "Expected":
 {"status":{"Value":{"S":"shopping"}}},
 "ReturnValues":"ALL_OLD"
}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: U9809LI6BBFJA5N2R0TB0P017JVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 353
Date: Tue, 12 Jul 2011 22:31:23 GMT

{"Attributes":
 {"friends":{"SS":["Dooley","Ben","Daisy"]},
 "status":{"S":"shopping"},
 "time":{"N":"200"},
 "user":{"S":"Mingus"}
 },
"ConsumedCapacityUnits":1
}

Related actions

• PutItem

DeleteItem API Version 2012-08-10 3732

Amazon DynamoDB Developer Guide

DeleteTable

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

The DeleteTable operation deletes a table and all of its items. After a DeleteTable request, the
specified table is in the DELETING state until DynamoDB completes the deletion. If the table is in
the ACTIVE state, you can delete it. If a table is in CREATING or UPDATING states, then DynamoDB
returns a ResourceInUseException error. If the specified table does not exist, DynamoDB
returns a ResourceNotFoundException. If table is already in the DELETING state, no error is
returned.

Note

DynamoDB might continue to accept data plane operation requests, such as GetItem and
PutItem, on a table in the DELETING state until the table deletion is complete.

Tables are unique among those associated with the Amazon Account issuing the request, and
the Amazon region that receives the request (such as dynamodb.us-west-1.amazonaws.com.cn).
Each DynamoDB endpoint is entirely independent. For example, if you have two tables
called "MyTable," one in dynamodb.us-west-2.amazonaws.com.cn and one in dynamodb.us-
west-1.amazonaws.com.cn, they are completely independent and do not share any data; deleting
one does not delete the other.

Use the DescribeTables operation to check the status of the table.

Requests

Syntax

// This header is abbreviated.

DeleteTable API Version 2012-08-10 3733

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1"}

Name Description Required

TableName The name of the table to
delete.

Type: String

Yes

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: 4HONCKIVH1BFUDQ1U68CTG3N27VV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 311
Date: Sun, 14 Aug 2011 22:56:22 GMT

{"TableDescription":
 {"CreationDateTime":1.313362508446E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"ReadCapacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"DELETING"
 }
}

Name Description

TableDescription A container for the table properties.

CreationDateTime Date when the table was created.

DeleteTable API Version 2012-08-10 3734

Amazon DynamoDB Developer Guide

Name Description

Type: Number

KeySchema The primary key (simple or composite)
structure for the table. A name-value pair
for the HashKeyElement is required, and a
name-value pair for the RangeKeyElement
is optional (only required for composite
primary keys). For more information about
primary keys, see Primary key.

Type: Map of HashKeyElement , or
HashKeyElement and RangeKeyElement
for a composite primary key.

ProvisionedThroughput Throughput for the specified table, consistin
g of values for ReadCapacityUnits and
 WriteCapacityUnits . See DynamoDB
provisioned capacity mode.

ProvisionedThroughput : ReadCapac
ityUnits The minimum number of ReadCapac

ityUnits consumed per second for the
specified table before DynamoDB balances the
load with other operations.

Type: Number

ProvisionedThroughput : WriteCapa
cityUnits

The minimum number of WriteCapa
cityUnits consumed per second for the
specified table before DynamoDB balances the
load with other operations.

Type: Number

TableName The name of the deleted table.

Type: String

DeleteTable API Version 2012-08-10 3735

Amazon DynamoDB Developer Guide

Name Description

TableStatus The current state of the table (DELETING).
Once the table is deleted, subsequent
requests for the table return resource n
ot found .

Use the DescribeTables operation to check the
status of the table.

Type: String

Special errors

Error Description

ResourceInUseException Table is in state CREATING or UPDATING and
can't be deleted.

Examples

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DeleteTable
content-type: application/x-amz-json-1.0
content-length: 40

{"TableName":"favorite-movies-table"}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: 4HONCKIVH1BFUDQ1U68CTG3N27VV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 160

DeleteTable API Version 2012-08-10 3736

Amazon DynamoDB Developer Guide

Date: Sun, 14 Aug 2011 17:20:03 GMT

{"TableDescription":
 {"CreationDateTime":1.313362508446E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"name","AttributeType":"S"}},
 "TableName":"favorite-movies-table",
 "TableStatus":"DELETING"
}

Related actions

• CreateTable

• DescribeTables

DescribeTables

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Returns information about the table, including the current status of the table, the primary
key schema and when the table was created. DescribeTable results are eventually consistent.
If you use DescribeTable too early in the process of creating a table, DynamoDB returns a
ResourceNotFoundException. If you use DescribeTable too early in the process of updating a
table, the new values might not be immediately available.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.

DescribeTables API Version 2012-08-10 3737

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DescribeTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1"}

Name Description Required

TableName The name of the table to
describe.

Type: String

Yes

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
Content-Length: 543

{"Table":
 {"CreationDateTime":1.309988345372E9,
 ItemCount:1,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeName1","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"AttributeName2","AttributeType":"N"}},
 "ProvisionedThroughput":{"LastIncreaseDateTime": Date, "LastDecreaseDateTime":
 Date, "ReadCapacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableSizeBytes":1,
 "TableStatus":"ACTIVE"
 }
}

Name Description

Table Container for the table being described.

DescribeTables API Version 2012-08-10 3738

Amazon DynamoDB Developer Guide

Name Description

Type: String

CreationDateTime Date when the table was created in UNIX
epoch time.

ItemCount Number of items in the specified table.
DynamoDB updates this value approximately
every six hours. Recent changes might not be
reflected in this value.

Type: Number

KeySchema The primary key (simple or composite)
structure for the table. A name-value pair
for the HashKeyElement is required, and a
name-value pair for the RangeKeyElement
is optional (only required for composite
primary keys). The maximum hash key size is
2048 bytes. The maximum range key size is
1024 bytes. Both limits are enforced separatel
y (i.e. you can have a combined hash + range
2048 + 1024 key). For more information about
primary keys, see Primary key .

ProvisionedThroughput Throughput for the specified table, consistin
g of values for LastIncreaseDateTime
(if applicable), LastDecreaseDateTime
(if applicable), ReadCapacityUnits and
WriteCapacityUnits . If the throughpu
t for the table has never been increased or
decreased, DynamoDB does not return values
for those elements. See DynamoDB provision
ed capacity mode.

Type: Array

DescribeTables API Version 2012-08-10 3739

http://www.epochconverter.com/
http://www.epochconverter.com/

Amazon DynamoDB Developer Guide

Name Description

TableName The name of the requested table.

Type: String

TableSizeBytes Total size of the specified table, in bytes.
DynamoDB updates this value approximately
every six hours. Recent changes might not be
reflected in this value.

Type: Number

TableStatus The current state of the table (CREATING,
ACTIVE, DELETING or UPDATING). Once the
table is in the ACTIVE state, you can add data.

Special errors

No errors are specific to this operation.

Examples

The following examples show an HTTP POST request and response using the DescribeTable
operation for a table named "comp-table". The table has a composite primary key.

Sample Request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.DescribeTable
content-type: application/x-amz-json-1.0

{"TableName":"users"}

Sample response

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375

DescribeTables API Version 2012-08-10 3740

Amazon DynamoDB Developer Guide

content-type: application/x-amz-json-1.0
content-length: 543

{"Table":
 {"CreationDateTime":1.309988345372E9,
 "ItemCount":23,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":{"LastIncreaseDateTime": 1.309988345384E9,
 "ReadCapacityUnits":10,"WriteCapacityUnits":10},
 "TableName":"users",
 "TableSizeBytes":949,
 "TableStatus":"ACTIVE"
 }
}

Related actions

• CreateTable

• DeleteTable

• ListTables

GetItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

The GetItem operation returns a set of Attributes for an item that matches the primary key. If
there is no matching item, GetItem does not return any data.

The GetItem operation provides an eventually consistent read by default. If eventually consistent
reads are not acceptable for your application, use ConsistentRead. Although this operation

GetItem API Version 2012-08-10 3741

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

might take longer than a standard read, it always returns the last updated value. For more
information, see DynamoDB read consistency.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.GetItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement": {"S":"AttributeValue1"},
 "RangeKeyElement": {"N":"AttributeValue2"}
 },
 "AttributesToGet":["AttributeName3","AttributeName4"],
 "ConsistentRead":Boolean
}

Name Description Required

TableName The name of the table
containing the requested
item.

Type: String

Yes

Key The primary key values that
define the item. For more
information about primary
keys, see Primary key.

Type: Map of HashKeyEl
ement to its value and
RangeKeyElement to its
 value.

Yes

GetItem API Version 2012-08-10 3742

Amazon DynamoDB Developer Guide

Name Description Required

AttributesToGet Array of Attribute names.
If attribute names are not
specified then all attribute
s will be returned. If some
attributes are not found, they
will not appear in the result.

Type: Array

No

ConsistentRead If set to true, then a
consistent read is issued,
otherwise eventually
consistent is used.

Type: Boolean

No

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 144

{"Item":{
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName4":{"N":"AttributeValue4"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
"ConsumedCapacityUnits": 0.5
}

Name Description

Item Contains the requested attributes.

GetItem API Version 2012-08-10 3743

Amazon DynamoDB Developer Guide

Name Description

Type: Map of attribute name-value pairs.

ConsumedCapacityUnits The number of read capacity units consumed
by the operation. This value shows the
number applied toward your provisioned
throughput. Requests for non-existent items
consume the minimum read capacity units,
 depending on the type of read. For more
information see DynamoDB provisioned
capacity mode.

Type: Number

Special errors

No errors specific to this operation.

Examples

For examples using the Amazon SDK, see Working with items and attributes in DynamoDB.

Sample request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.GetItem
content-type: application/x-amz-json-1.0

{"TableName":"comptable",
 "Key":
 {"HashKeyElement":{"S":"Julie"},
 "RangeKeyElement":{"N":"1307654345"}},
 "AttributesToGet":["status","friends"],
 "ConsistentRead":true
}

GetItem API Version 2012-08-10 3744

Amazon DynamoDB Developer Guide

Sample response

Notice the ConsumedCapacityUnits value is 1, because the optional parameter ConsistentRead
is set to true. If ConsistentRead is set to false (or not specified) for the same request, the
response is eventually consistent and the ConsumedCapacityUnits value would be 0.5.

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 72

{"Item":
 {"friends":{"SS":["Lynda, Aaron"]},
 "status":{"S":"online"}
 },
"ConsumedCapacityUnits": 1
}

ListTables

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Returns an array of all the tables associated with the current account and endpoint.

Each DynamoDB endpoint is entirely independent. For example, if you have two tables
called "MyTable," one in dynamodb.us-west-2.amazonaws.com.cn and one in dynamodb.us-
east-1.amazonaws.com.cn, they are completely independent and do not share any data. The
ListTables operation returns all of the table names associated with the account making the request,
for the endpoint that receives the request.

ListTables API Version 2012-08-10 3745

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.ListTables
content-type: application/x-amz-json-1.0

{"ExclusiveStartTableName":"Table1","Limit":3}

The ListTables operation, by default, requests all of the table names associated with the account
making the request, for the endpoint that receives the request.

Name Description Required

Limit A number of maximum table
names to return.

Type: Integer

No

ExclusiveStartTabl
eName

The name of the table that
starts the list. If you already
ran a ListTables operation
and received an LastEvalu
atedTableName value in
the response, use that value
here to continue the list.

Type: String

No

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: S1LEK2DPQP8OJNHVHL8OU2M7KRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0

ListTables API Version 2012-08-10 3746

Amazon DynamoDB Developer Guide

content-length: 81
Date: Fri, 21 Oct 2011 20:35:38 GMT

{"TableNames":["Table1","Table2","Table3"], "LastEvaluatedTableName":"Table3"}

Name Description

TableNames The names of the tables associated with the
current account at the current endpoint.

Type: Array

LastEvaluatedTableName The name of the last table in the current
list, only if some tables for the account and
endpoint have not been returned. This value
does not exist in a response if all table names
are already returned. Use this value as the
ExclusiveStartTableName in a new
request to continue the list until all the table
names are returned.

Type: String

Special errors

No errors are specific to this operation.

Examples

The following examples show an HTTP POST request and response using the ListTables operation.

Sample request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.ListTables
content-type: application/x-amz-json-1.0

ListTables API Version 2012-08-10 3747

Amazon DynamoDB Developer Guide

{"ExclusiveStartTableName":"comp2","Limit":3}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: S1LEK2DPQP8OJNHVHL8OU2M7KRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 81
Date: Fri, 21 Oct 2011 20:35:38 GMT

{"LastEvaluatedTableName":"comp5","TableNames":["comp3","comp4","comp5"]}

Related actions

• DescribeTables

• CreateTable

• DeleteTable

PutItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Creates a new item, or replaces an old item with a new item (including all the attributes). If an item
already exists in the specified table with the same primary key, the new item completely replaces
the existing item. You can perform a conditional put (insert a new item if one with the specified
primary key doesn't exist), or replace an existing item if it has certain attribute values.

Attribute values may not be null; string and binary type attributes must have lengths greater than
zero; and set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException.

PutItem API Version 2012-08-10 3748

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Note

To ensure that a new item does not replace an existing item, use a conditional put
operation with Exists set to false for the primary key attribute, or attributes.

For more information about using PutItem, see Working with items and attributes in DynamoDB.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.PutItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Item":{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"N":"AttributeValue2"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
 "Expected":{"AttributeName3":{"Value": {"S":"AttributeValue"}, "Exists":Boolean}},
 "ReturnValues":"ReturnValuesConstant"}

Name Description Required

TableName The name of the table to
contain the item.

Type: String

Yes

Item A map of the attributes for
the item, and must include
the primary key values that
 define the item. Other
attribute name-value pairs
can be provided for the item.

Yes

PutItem API Version 2012-08-10 3749

Amazon DynamoDB Developer Guide

Name Description Required

For more information about
primary keys, see Primary key.

Type: Map of attribute names
to attribute values.

Expected Designates an attribute
for a conditional put. The
Expected parameter allows
you to provide an attribute
name, and whether or not
DynamoDB should check
to see if the attribute value
already exists; or if the
attribute value exists and
has a particular value before
changing it.

Type: Map of an attribute
 names to an attribute value,
and whether it exists.

No

Expected:Attribute
Name

The name of the attribute for
the conditional put.

Type: String

No

PutItem API Version 2012-08-10 3750

Amazon DynamoDB Developer Guide

Name Description Required

Expected:Attribute
Name: ExpectedA
ttributeValue

Use this parameter to
specify whether or not a
value already exists for the
attribute name-value pair.

The following JSON notation
replaces the item if the
"Color" attribute doesn't
already exist for that item:

"Expected" :
 {"Color":{"Exis
ts":false}}

The following JSON notation
checks to see if the attribute
with name "Color" has an
existing value of "Yellow"
before replacing the item:

"Expected" :
 {"Color":{"Exist
s":true,{"Value":{
"S":"Yellow"}}}

By default, if you use the
Expected parameter and
provide a Value, DynamoDB
 assumes the attribute exists
and has a current value to be
replaced. So you don't have to
specify {"Exists":true} ,
because it is implied. You can
 shorten the request to:

"Expected" :

No

PutItem API Version 2012-08-10 3751

Amazon DynamoDB Developer Guide

Name Description Required

 {"Color":{"Value":
{"S":"Yellow"}}}

Note

If you specify
{"Exists":true}
without an attri
bute value to check,
DynamoDB returns an
error.

ReturnValues Use this parameter if you
want to get the attribute
name-value pairs before
they were updated with the
PutItem request. Possible
parameter values are NONE
(default) or ALL_OLD. If
 ALL_OLD is specified, and
 PutItem overwrote an
attribute name-value pair,
the content of the old item
is returned. If this parameter
is not provided or is NONE,
nothing is returned.

Type: String

No

Responses

Syntax

The following syntax example assumes the request specified a ReturnValues parameter of
ALL_OLD; otherwise, the response has only the ConsumedCapacityUnits element.

PutItem API Version 2012-08-10 3752

Amazon DynamoDB Developer Guide

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 85

{"Attributes":
 {"AttributeName3":{"S":"AttributeValue3"},
 "AttributeName2":{"SS":"AttributeValue2"},
 "AttributeName1":{"SS":"AttributeValue1"},
 },
"ConsumedCapacityUnits":1
}

Name Description

Attributes Attribute values before the put operation,
but only if the ReturnValues parameter is
specified as ALL_OLD in the request.

Type: Map of attribute name-value pairs.

ConsumedCapacityUnits The number of write capacity units consumed
by the operation. This value shows the
number applied toward your provision
ed throughput. For more information see
DynamoDB provisioned capacity mode.

Type: Number

Special errors

Error Description

ConditionalCheckFailedException Conditional check failed. An expected
attribute value was not found.

ResourceNotFoundException The specified item or attribute was not found.

PutItem API Version 2012-08-10 3753

Amazon DynamoDB Developer Guide

Examples

For examples using the Amazon SDK, see Working with items and attributes in DynamoDB.

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.PutItem
content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Item":
 {"time":{"N":"300"},
 "feeling":{"S":"not surprised"},
 "user":{"S":"Riley"}
 },
 "Expected":
 {"feeling":{"Value":{"S":"surprised"},"Exists":true}}
 "ReturnValues":"ALL_OLD"
}

Sample response

HTTP/1.1 200
x-amzn-RequestId: 8952fa74-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 84

{"Attributes":
 {"feeling":{"S":"surprised"},
 "time":{"N":"300"},
 "user":{"S":"Riley"}},
"ConsumedCapacityUnits":1
}

Related actions

• UpdateItem

• DeleteItem

• GetItem

PutItem API Version 2012-08-10 3754

Amazon DynamoDB Developer Guide

• BatchGetItem

Query

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

A Query operation gets the values of one or more items and their attributes by primary key
(Query is only available for hash-and-range primary key tables). You must provide a specific
HashKeyValue, and can narrow the scope of the query using comparison operators on the
RangeKeyValue of the primary key. Use the ScanIndexForward parameter to get results in
forward or reverse order by range key.

Queries that do not return results consume the minimum read capacity units according to the type
of read.

Note

If the total number of items meeting the query parameters exceeds the 1MB limit, the
query stops and results are returned to the user with a LastEvaluatedKey to continue
the query in a subsequent operation. Unlike a Scan operation, a Query operation never
returns an empty result set and a LastEvaluatedKey. The LastEvaluatedKey is only
provided if the results exceed 1MB, or if you have used the Limit parameter.
The result can be set for a consistent read using the ConsistentRead parameter.

Requests

Syntax

// This header is abbreviated.

Query API Version 2012-08-10 3755

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Limit":2,
 "ConsistentRead":true,
 "HashKeyValue":{"S":"AttributeValue1":},
 "RangeKeyCondition": {"AttributeValueList":
[{"N":"AttributeValue2"}],"ComparisonOperator":"GT"}
 "ScanIndexForward":true,
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"}
 },
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]},
}

Name Description Required

TableName The name of the table
containing the requested
items.

Type: String

Yes

AttributesToGet Array of Attribute names.
If attribute names are not
specified then all attribute
s will be returned. If some
attributes are not found, they
will not appear in the result.

Type: Array

No

Limit The maximum number
of items to return (not
necessarily the number of
matching items). If Dynamo

No

Query API Version 2012-08-10 3756

Amazon DynamoDB Developer Guide

Name Description Required

DB processes the number of
items up to the limit while
 querying the table, it stops
the query and returns the
matching values up to that
point, and a LastEvalu
atedKey to apply in a
 subsequent operation to
continue the query. Also, if
the result set size exceeds
1MB before DynamoDB hits
this limit, it stops the query
and returns the matching
values, and a LastEvalu
atedKey to apply in a
 subsequent operation to
continue the query.

Type: Number

ConsistentRead If set to true, then a
consistent read is issued,
otherwise eventually
consistent is used.

Type: Boolean

No

Query API Version 2012-08-10 3757

Amazon DynamoDB Developer Guide

Name Description Required

Count If set to true, DynamoDB
returns a total number of
items that match the query
 parameters, instead of a
list of the matching items
and their attributes. You can
apply the Limit parameter
to count-only queries.

Do not set Count to true
while providing a list of
AttributesToGet ;
otherwise, DynamoDB
returns a validation error.
For more information, see
Counting the items in the
results.

Type: Boolean

No

HashKeyValue Attribute value of the hash
component of the composite
primary key.

Type: String, Number, or
Binary

Yes

Query API Version 2012-08-10 3758

Amazon DynamoDB Developer Guide

Name Description Required

RangeKeyCondition A container for the attribute
values and comparison
operators to use for the
query. A query request does
not require a RangeKeyC
ondition . If you provide
only the HashKeyValue ,
DynamoDB returns all items
with the specified hash key
element value.

Type: Map

No

RangeKeyCondition :
 AttributeValueList

The attribute values to
evaluate for the query
parameters. The Attribute
ValueList contains
one attribute value, unless
a BETWEEN comparison is
specified. For the BETWEEN
comparison, the Attribute
ValueList contains two
attribute values.

Type: A map of Attribute
Value to a Compariso
nOperator .

No

Query API Version 2012-08-10 3759

Amazon DynamoDB Developer Guide

Name Description Required

RangeKeyCondition :
 ComparisonOperator

The criteria for evaluatin
g the provided attributes,
such as equals, greater-than,
etc. The following are valid
comparison operators for a
Query operation.

Note

String value
comparisons for
greater than, equals,
or less than are based
on ASCII character
code values. For
example, a is greater
than A, and aa is
greater than B. For
a list of code values,
see http://en.wikiped
ia.org/wiki/ASCI
I#ASCII_printable_
characters.
For Binary, DynamoDB
treats each byte of
the binary data as
unsigned when it
 compares binary
values, for example
when evaluating
query expressions.

Type: String or Binary

No

Query API Version 2012-08-10 3760

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon DynamoDB Developer Guide

Name Description Required

 EQ : Equal.

For EQ, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
equal {"NS":["6", "2",
"1"]}.

 LE : Less than or equal.

For LE, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Query API Version 2012-08-10 3761

Amazon DynamoDB Developer Guide

Name Description Required

 LT : Less than.

For LT, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

 GE : Greater than or equal.

For GE, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Query API Version 2012-08-10 3762

Amazon DynamoDB Developer Guide

Name Description Required

 GT : Greater than.

For GT, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

 BEGINS_WITH : checks for a
prefix.

For BEGINS_WITH ,
 AttributeValueList

 can contain only one
AttributeValue of type
String or Binary (not a
Number or a set). The target
attribute of the comparison
must be a String or Binary
(not a Number or a set).

Query API Version 2012-08-10 3763

Amazon DynamoDB Developer Guide

Name Description Required

 BETWEEN : Greater than, or
equal to, the first value and
less than, or equal to, the
second value.

For BETWEEN, Attribute
ValueList must contain
two AttributeValue
elements of the same type
, either String, Number, or
Binary (not a set). A target
 attribute matches if the
target value is greater than,
or equal to, the first element
and less than, or equal to,
the second element. If an
item contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
compare to {"N":"6"} .
Also, {"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Query API Version 2012-08-10 3764

Amazon DynamoDB Developer Guide

Name Description Required

ScanIndexForward Specifies ascending or
descending traversal of
the index. DynamoDB
returns results reflecting the
requested order determine
d by the range key: If the
data type is Number, the
results are returned in
numeric order; otherwise,
the traversal is based on ASCII
character code values.

Type: Boolean

Default is true (ascending).

No

ExclusiveStartKey Primary key of the item from
which to continue an earlier
query. An earlier query might
 provide this value as the
LastEvaluatedKey if that
query operation was interrupt
ed before completing the
query; either because of the
result set size or the Limit
parameter. The LastEvalu
atedKey can be passed
 back in a new query request
to continue the operation
from that point.

Type: HashKeyElement ,
or HashKeyElement and
 RangeKeyElement for a
composite primary key.

No

Query API Version 2012-08-10 3765

Amazon DynamoDB Developer Guide

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 308

{"Count":2,"Items":[{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"N":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"}
 },{
 "AttributeName1":{"S":"AttributeValue3"},
 "AttributeName2":{"N":"AttributeValue4"},
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName5":{"B":"dmFsdWU="}
}],
 "LastEvaluatedKey":{"HashKeyElement":{"AttributeValue3":"S"},
 "RangeKeyElement":{"AttributeValue4":"N"}
 },
 "ConsumedCapacityUnits":1
}

Name Description

Items Item attributes meeting the query parameters.

Type: Map of attribute names to and their
data types and values.

Count Number of items in the response. For more
information, see Counting the items in the
results.

Type: Number

LastEvaluatedKey Primary key of the item where the query
operation stopped, inclusive of the previous
 result set. Use this value to start a new

Query API Version 2012-08-10 3766

Amazon DynamoDB Developer Guide

Name Description

operation excluding this value in the new
request.

The LastEvaluatedKey is null when the
entire query result set is complete (i.e. the
operation processed the “last page”).

Type: HashKeyElement , or HashKeyEl
ement and RangeKeyElement for a
composite primary key.

ConsumedCapacityUnits The number of read capacity units consumed
by the operation. This value shows the
number applied toward your provision
ed throughput. For more information see
DynamoDB provisioned capacity mode.

Type: Number

Special errors

Error Description

ResourceNotFoundException The specified table was not found.

Examples

For examples using the Amazon SDK, see Querying tables in DynamoDB.

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

Query API Version 2012-08-10 3767

Amazon DynamoDB Developer Guide

{"TableName":"1-hash-rangetable",
 "Limit":2,
 "HashKeyValue":{"S":"John"},
 "ScanIndexForward":false,
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"John"},
 "RangeKeyElement":{"S":"The Matrix"}
 }
}

Sample response

HTTP/1.1 200
x-amzn-RequestId: 3647e778-71eb-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 308

{"Count":2,"Items":[{
 "fans":{"SS":["Jody","Jake"]},
 "name":{"S":"John"},
 "rating":{"S":"***"},
 "title":{"S":"The End"}
 },{
 "fans":{"SS":["Jody","Jake"]},
 "name":{"S":"John"},
 "rating":{"S":"***"},
 "title":{"S":"The Beatles"}
 }],
 "LastEvaluatedKey":{"HashKeyElement":{"S":"John"},"RangeKeyElement":{"S":"The
 Beatles"}},
"ConsumedCapacityUnits":1
}

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Query
content-type: application/x-amz-json-1.0

Query API Version 2012-08-10 3768

Amazon DynamoDB Developer Guide

{"TableName":"1-hash-rangetable",
 "Limit":2,
 "HashKeyValue":{"S":"Airplane"},
 "RangeKeyCondition":{"AttributeValueList":[{"N":"1980"}],"ComparisonOperator":"EQ"},
 "ScanIndexForward":false}

Sample response

HTTP/1.1 200
x-amzn-RequestId: 8b9ee1ad-774c-11e0-9172-d954e38f553a
content-type: application/x-amz-json-1.0
content-length: 119

{"Count":1,"Items":[{
 "fans":{"SS":["Dave","Aaron"]},
 "name":{"S":"Airplane"},
 "rating":{"S":"***"},
 "year":{"N":"1980"}
 }],
"ConsumedCapacityUnits":1
}

Related actions

• Scan

Scan

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

The Scan operation returns one or more items and its attributes by performing a full scan of a
table. Provide a ScanFilter to get more specific results.

Scan API Version 2012-08-10 3769

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Note

If the total number of scanned items exceeds the 1MB limit, the scan stops and results
are returned to the user with a LastEvaluatedKey to continue the scan in a subsequent
operation. The results also include the number of items exceeding the limit. A scan can
result in no table data meeting the filter criteria.
The result set is eventually consistent.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Limit": 2,
 "ScanFilter":{
 "AttributeName1":{"AttributeValueList":
[{"S":"AttributeValue"}],"ComparisonOperator":"EQ"}
 },
 "ExclusiveStartKey":{
 "HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"}
 },
 "AttributesToGet":["AttributeName1", "AttributeName2", "AttributeName3"]},
}

Name Description Required

TableName The name of the table
containing the requested
items.

Type: String

Yes

Scan API Version 2012-08-10 3770

Amazon DynamoDB Developer Guide

Name Description Required

AttributesToGet Array of Attribute names.
If attribute names are not
specified then all attribute
s will be returned. If some
attributes are not found, they
will not appear in the result.

Type: Array

No

Limit The maximum number
of items to evaluate (not
necessarily the number of
matching items). If Dynamo
DB processes the number of
items up to the limit while
processing the results, it stops
and returns the matching
values up to that point, and
a LastEvaluatedKey
 to apply in a subsequen
t operation to continue
retrieving items. Also, if the
scanned data set size exceeds
1MB before DynamoDB
reaches this limit, it stops
the scan and returns the
matching values up to the
limit, and a LastEvalu
atedKey to apply in a
 subsequent operation to
continue the scan.

Type: Number

No

Scan API Version 2012-08-10 3771

Amazon DynamoDB Developer Guide

Name Description Required

Count If set to true, DynamoDB
returns a total number of
items for the Scan operation,
even if the operation has no
matching items for the assig
ned filter. You can apply the
Limit parameter to count-onl
y scans.

Do not set Count to true
while providing a list of
 AttributesToGet ,
otherwise DynamoDB returns
a validation error. For more
information, see Counting the
items in the results.

Type: Boolean

No

ScanFilter Evaluates the scan results
and returns only the desired
values. Multiple condition
s are treated as "AND"
operations: all conditions
must be met to be included
in the results.

Type: A map of attribute
names to values with
comparison operators.

No

Scan API Version 2012-08-10 3772

Amazon DynamoDB Developer Guide

Name Description Required

ScanFilter :Attribute
ValueList

The values and conditions to
evaluate the scan results for
the filter.

Type: A map of Attribute
Value to a Condition .

No

Scan API Version 2012-08-10 3773

Amazon DynamoDB Developer Guide

Name Description Required

ScanFilter : Compariso
nOperator

The criteria for evaluatin
g the provided attributes,
such as equals, greater-than,
etc. The following are valid
comparison operators for a
scan operation.

Note

String value
comparisons for
greater than, equals,
or less than are based
on ASCII character
code values. For
example, a is greater
than A, and aa is
greater than B. For
a list of code values,
see http://en.wikiped
ia.org/wiki/ASCI
I#ASCII_printable_
characters.
For Binary, DynamoDB
treats each byte of
the binary data as
unsigned when it
 compares binary
values, for example
when evaluating
query expressions.

Type: String or Binary

No

Scan API Version 2012-08-10 3774

http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon DynamoDB Developer Guide

Name Description Required

 EQ : Equal.

For EQ, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
equal {"NS":["6", "2",
"1"]}.

 NE : Not Equal.

For NE, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
equal {"NS":["6", "2",
"1"]}.

Scan API Version 2012-08-10 3775

Amazon DynamoDB Developer Guide

Name Description Required

 LE : Less than or equal.

For LE, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

 LT : Less than.

For LT, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Scan API Version 2012-08-10 3776

Amazon DynamoDB Developer Guide

Name Description Required

 GE : Greater than or equal.

For GE, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

 GT : Greater than.

For GT, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If an item
contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
equal {"N":"6"} . Also,
{"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Scan API Version 2012-08-10 3777

Amazon DynamoDB Developer Guide

Name Description Required

 NOT_NULL : Attribute exists.

 NULL : Attribute does not
exist.

 CONTAINS : checks for a
subsequence, or value in a
set.

For CONTAINS, Attribute
ValueList can contain
only one AttributeValue
of type String, Number, or
Binary (not a set). If the target
attribute of the comparison
is a String, then the operation
checks for a substring match.
If the target attribute of the
comparison is Binary, then
the operation looks for a
subsequence of the target th
at matches the input. If the
target attribute of the compa
rison is a set ("SS", "NS", or
"BS"), then the operation
 checks for a member of the
set (not as a substring).

Scan API Version 2012-08-10 3778

Amazon DynamoDB Developer Guide

Name Description Required

 NOT_CONTAINS : checks for
absence of a subsequence, or
absence of a value in a set.

For NOT_CONTAINS ,
 AttributeValueList

 can contain only one
AttributeValue of type
String, Number, or Binary
(not a set). If the target
attribute of the compa
rison is a String, then the
operation checks for the
absence of a substring match.
If the target attribute of the
 comparison is Binary, then
the operation checks for the
absence of a subsequence of
the target that matches the
input. If the target attribute
of the comparison is a set
("SS", "NS", or "BS"), then
the operation checks for the
absence of a member of the
set (not as a substring).

Scan API Version 2012-08-10 3779

Amazon DynamoDB Developer Guide

Name Description Required

 BEGINS_WITH : checks for a
prefix.

For BEGINS_WITH ,
 AttributeValueList

 can contain only one
AttributeValue of type
String or Binary (not a
Number or a set). The target
attribute of the comparison
must be a String or Binary
(not a Number or a set).

 IN : checks for exact matches.

For IN, Attribute
ValueList can contain
more than one Attribute
Value of type String,
Number, or Binary (not a
set). The target attribute of
the comparison must be of
the same type and exact val
ue to match. A String never
matches a String set.

Scan API Version 2012-08-10 3780

Amazon DynamoDB Developer Guide

Name Description Required

 BETWEEN : Greater than, or
equal to, the first value and
less than, or equal to, the
second value.

For BETWEEN, Attribute
ValueList must contain
two AttributeValue
elements of the same type
, either String, Number, or
Binary (not a set). A target
 attribute matches if the
target value is greater than,
or equal to, the first element
and less than, or equal to,
the second element. If an
item contains an Attribute
Value of a different type
 than the one specified in
the request, the value does
not match. For example,
{"S":"6"} does not
compare to {"N":"6"} .
Also, {"N":"6"} does not
compare to {"NS":["6",
"2", "1"]}.

Scan API Version 2012-08-10 3781

Amazon DynamoDB Developer Guide

Name Description Required

ExclusiveStartKey Primary key of the item from
which to continue an earlier
scan. An earlier scan might
provide this value if that scan
operation was interrupted
before scanning the entire
table; either because of the
 result set size or the Limit
parameter. The LastEvalu
atedKey can be passed
back in a new scan request to
continue the operation from
that point.

Type: HashKeyElement ,
or HashKeyElement and
RangeKeyElement for a
composite primary key.

No

Responses

Syntax

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 229

{"Count":2,"Items":[{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"}
 },{
 "AttributeName1":{"S":"AttributeValue4"},
 "AttributeName2":{"S":"AttributeValue5"},
 "AttributeName3":{"S":"AttributeValue6"},
 "AttributeName5":{"B":"dmFsdWU="}

Scan API Version 2012-08-10 3782

Amazon DynamoDB Developer Guide

 }],
 "LastEvaluatedKey":
 {"HashKeyElement":{"S":"AttributeName1"},
 "RangeKeyElement":{"N":"AttributeName2"},
 "ConsumedCapacityUnits":1,
 "ScannedCount":2}
}

Name Description

Items Container for the attributes meeting the
operation parameters.

Type: Map of attribute names to and their
data types and values.

Count Number of items in the response. For more
information, see Counting the items in the
results.

Type: Number

ScannedCount Number of items in the complete scan before
any filters are applied. A high ScannedCo
unt value with few, or no, Count results
indicates an inefficient Scan operation. For
more information, see Counting the items in
the results.

Type: Number

LastEvaluatedKey Primary key of the item where the scan
operation stopped. Provide this value in a
subsequent scan operation to continue the
operation from that point.

The LastEvaluatedKey is null when
the entire scan result set is complete (i.e. the
operation processed the “last page”).

Scan API Version 2012-08-10 3783

Amazon DynamoDB Developer Guide

Name Description

ConsumedCapacityUnits The number of read capacity units consumed
by the operation. This value shows the
number applied toward your provision
ed throughput. For more information see
DynamoDB provisioned capacity mode.

Type: Number

Special errors

Error Description

ResourceNotFoundException The specified table was not found.

Examples

For examples using the Amazon SDK, see Scanning tables in DynamoDB.

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0

{"TableName":"1-hash-rangetable","ScanFilter":{}}

Sample response

HTTP/1.1 200
x-amzn-RequestId: 4e8a5fa9-71e7-11e0-a498-71d736f27375
content-type: application/x-amz-json-1.0
content-length: 465

{"Count":4,"Items":[{

Scan API Version 2012-08-10 3784

Amazon DynamoDB Developer Guide

 "date":{"S":"1980"},
 "fans":{"SS":["Dave","Aaron"]},
 "name":{"S":"Airplane"},
 "rating":{"S":"***"}
 },{
 "date":{"S":"1999"},
 "fans":{"SS":["Ziggy","Laura","Dean"]},
 "name":{"S":"Matrix"},
 "rating":{"S":"*****"}
 },{
 "date":{"S":"1976"},
 "fans":{"SS":["Riley"]},"
 name":{"S":"The Shaggy D.A."},
 "rating":{"S":"**"}
 },{
 "date":{"S":"1985"},
 "fans":{"SS":["Fox","Lloyd"]},
 "name":{"S":"Back To The Future"},
 "rating":{"S":"****"}
 }],
 "ConsumedCapacityUnits":0.5
 "ScannedCount":4}

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0
content-length: 125

{"TableName":"comp5",
 "ScanFilter":
 {"time":
 {"AttributeValueList":[{"N":"400"}],
 "ComparisonOperator":"GT"}
 }
}

Sample response

HTTP/1.1 200 OK

Scan API Version 2012-08-10 3785

Amazon DynamoDB Developer Guide

x-amzn-RequestId: PD1CQK9QCTERLTJP20VALJ60TRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 262
Date: Mon, 15 Aug 2011 16:52:02 GMT

{"Count":2,
 "Items":[
 {"friends":{"SS":["Dave","Ziggy","Barrie"]},
 "status":{"S":"chatting"},
 "time":{"N":"2000"},
 "user":{"S":"Casey"}},
 {"friends":{"SS":["Dave","Ziggy","Barrie"]},
 "status":{"S":"chatting"},
 "time":{"N":"2000"},
 "user":{"S":"Fredy"}
 }],
"ConsumedCapacityUnits":0.5
"ScannedCount":4
}

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.Scan
content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Limit":2,
 "ScanFilter":
 {"time":
 {"AttributeValueList":[{"N":"400"}],
 "ComparisonOperator":"GT"}
 },
 "ExclusiveStartKey":
 {"HashKeyElement":{"S":"Fredy"},"RangeKeyElement":{"N":"2000"}}
}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: PD1CQK9QCTERLTJP20VALJ60TRVV4KQNSO5AEMVJF66Q9ASUAAJG

Scan API Version 2012-08-10 3786

Amazon DynamoDB Developer Guide

content-type: application/x-amz-json-1.0
content-length: 232
Date: Mon, 15 Aug 2011 16:52:02 GMT

{"Count":1,
 "Items":[
 {"friends":{"SS":["Jane","James","John"]},
 "status":{"S":"exercising"},
 "time":{"N":"2200"},
 "user":{"S":"Roger"}}
],
 "LastEvaluatedKey":{"HashKeyElement":{"S":"Riley"},"RangeKeyElement":{"N":"250"}},
"ConsumedCapacityUnits":0.5
"ScannedCount":2
}

Related actions

• Query

• BatchGetItem

UpdateItem

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Edits an existing item's attributes. You can perform a conditional update (insert a new attribute
name-value pair if it doesn't exist, or replace an existing name-value pair if it has certain expected
attribute values).

UpdateItem API Version 2012-08-10 3787

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Note

You cannot update the primary key attributes using UpdateItem. Instead, delete the item
and use PutItem to create a new item with new attributes.

The UpdateItem operation includes an Action parameter, which defines how to perform the
update. You can put, delete, or add attribute values.

Attribute values may not be null; string and binary type attributes must have lengths greater than
zero; and set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException.

If an existing item has the specified primary key:

• PUT— Adds the specified attribute. If the attribute exists, it is replaced by the new value.

• DELETE— If no value is specified, this removes the attribute and its value. If a set of values is
specified, then the values in the specified set are removed from the old set. So if the attribute
value contains [a,b,c] and the delete action contains [a,c], then the final attribute value is [b].
The type of the specified value must match the existing value type. Specifying an empty set is
not valid.

• ADD— Only use the add action for numbers or if the target attribute is a set (including string
sets). ADD does not work if the target attribute is a single string value or a scalar binary value.
The specified value is added to a numeric value (incrementing or decrementing the existing
numeric value) or added as an additional value in a string set. If a set of values is specified, the
values are added to the existing set. For example if the original set is [1,2] and supplied value is
[3], then after the add operation the set is [1,2,3], not [4,5]. An error occurs if an Add action is
specified for a set attribute and the attribute type specified does not match the existing set type.

If you use ADD for an attribute that does not exist, the attribute and its values are added to the
item.

If no item matches the specified primary key:

• PUT— Creates a new item with specified primary key. Then adds the specified attribute.

• DELETE— Nothing happens.

UpdateItem API Version 2012-08-10 3788

Amazon DynamoDB Developer Guide

• ADD— Creates an item with supplied primary key and number (or set of numbers) for the
attribute value. Not valid for a string or a binary type.

Note

If you use ADD to increment or decrement a number value for an item that doesn't exist
before the update, DynamoDB uses 0 as the initial value. Also, if you update an item using
ADD to increment or decrement a number value for an attribute that doesn't exist before
the update (but the item does) DynamoDB uses 0 as the initial value. For example, you use
ADD to add +3 to an attribute that did not exist before the update. DynamoDB uses 0 for
the initial value, and the value after the update is 3.

For more information about using this operation, see Working with items and attributes in
DynamoDB.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateItem
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "Key":
 {"HashKeyElement":{"S":"AttributeValue1"},
 "RangeKeyElement":{"N":"AttributeValue2"}},
 "AttributeUpdates":{"AttributeName3":{"Value":
{"S":"AttributeValue3_New"},"Action":"PUT"}},
 "Expected":{"AttributeName3":{"Value":{"S":"AttributeValue3_Current"}}},
 "ReturnValues":"ReturnValuesConstant"
}

UpdateItem API Version 2012-08-10 3789

Amazon DynamoDB Developer Guide

Name Description Required

TableName The name of the table
containing the item to
update.

Type: String

Yes

Key The primary key that defines
the item. For more informati
on about primary keys, see
 Primary key.

Type: Map of HashKeyEl
ement to its value and
RangeKeyElement to its
value.

Yes

AttributeUpdates Map of attribute name to
the new value and action for
the update. The attribute
names specify the attributes
to modify, and cannot contain
any primary key attributes.

Type: Map of attribute name,
value, and an action for the
attribute update.

Attribute
Updates :Action

Specifies how to perform the
update. Possible values: PUT
(default), ADD or DELETE.
The semantics are explained
in the UpdateItem descripti
on.

Type: String

No

UpdateItem API Version 2012-08-10 3790

Amazon DynamoDB Developer Guide

Name Description Required

Default: PUT

Expected Designates an attribute
for a conditional update.
The Expected parameter
allows you to provide an
attribute name, and whether
or not DynamoDB should
check to see if the attribute
value already exists; or if the
attribute value exists and
has a particular value before
changing it.

Type: Map of attribute names.

No

Expected:Attribute
Name

The name of the attribute for
the conditional put.

Type: String

No

UpdateItem API Version 2012-08-10 3791

Amazon DynamoDB Developer Guide

Name Description Required

Expected:Attribute
Name: ExpectedA
ttributeValue

Use this parameter to
specify whether or not a
value already exists for the
attribute name-value pair.

The following JSON notation
updates the item if the
"Color" attribute doesn't
already exist for that item:

"Expected" :
 {"Color":{"Exis
ts":false}}

The following JSON notation
checks to see if the attribute
with name "Color" has an
existing value of "Yellow"
before updating the item:

"Expected" :
 {"Color":{"Exist
s":true},{"Value":
{"S":"Yellow"}}}

By default, if you use the
Expected parameter and
provide a Value, DynamoDB
 assumes the attribute exists
and has a current value to be
replaced. So you don't have to
specify {"Exists":true} ,
because it is implied. You can
 shorten the request to:

"Expected" :

No

UpdateItem API Version 2012-08-10 3792

Amazon DynamoDB Developer Guide

Name Description Required

 {"Color":{"Value":
{"S":"Yellow"}}}

Note

If you specify
{"Exists":true}
without an attri
bute value to check,
DynamoDB returns an
error.

UpdateItem API Version 2012-08-10 3793

Amazon DynamoDB Developer Guide

Name Description Required

ReturnValues Use this parameter if you
want to get the attribute
name-value pairs before
they were updated with
the UpdateItem request.
Possible parameter values
are NONE (default) or
 ALL_OLD, UPDATED_OLD ,
 ALL_NEW or UPDATED_NEW .
If ALL_OLD is specified, and
UpdateItem overwrote an
attribute name-value pair,
the content of the old item
is returned. If this parame
ter is not provided or is
NONE, nothing is returned
. If ALL_NEW is specified,
then all the attributes of the
new version of the item are
returned. If UPDATED_NEW
is specified, then the new
 versions of only the updated
attributes are returned.

Type: String

No

Responses

Syntax

The following syntax example assumes the request specified a ReturnValues parameter of
ALL_OLD; otherwise, the response has only the ConsumedCapacityUnits element.

HTTP/1.1 200
x-amzn-RequestId: 8966d095-71e9-11e0-a498-71d736f27375

UpdateItem API Version 2012-08-10 3794

Amazon DynamoDB Developer Guide

content-type: application/x-amz-json-1.0
content-length: 140

{"Attributes":{
 "AttributeName1":{"S":"AttributeValue1"},
 "AttributeName2":{"S":"AttributeValue2"},
 "AttributeName3":{"S":"AttributeValue3"},
 "AttributeName5":{"B":"dmFsdWU="}
 },
"ConsumedCapacityUnits":1
}

Name Description

Attributes A map of attribute name-value pairs, but only
if the ReturnValues parameter is specified
as something other than NONE in the request.

Type: Map of attribute name-value pairs.

ConsumedCapacityUnits The number of write capacity units consumed
by the operation. This value shows the
number applied toward your provision
ed throughput. For more information see
DynamoDB provisioned capacity mode.

Type: Number

Special errors

Error Description

ConditionalCheckFailedException Conditional check failed. Attribute ("+ name
+") value is ("+ value +") but was expected ("+
expValue +")

ResourceNotFoundExceptions The specified item or attribute was not found.

UpdateItem API Version 2012-08-10 3795

Amazon DynamoDB Developer Guide

Examples

For examples using the Amazon SDK, see Working with items and attributes in DynamoDB.

Sample request

// This header is abbreviated. For a sample of a complete header, see DynamoDB low-
level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateItem
content-type: application/x-amz-json-1.0

{"TableName":"comp5",
 "Key":
 {"HashKeyElement":{"S":"Julie"},"RangeKeyElement":{"N":"1307654350"}},
 "AttributeUpdates":
 {"status":{"Value":{"S":"online"},
 "Action":"PUT"}},
 "Expected":{"status":{"Value":{"S":"offline"}}},
 "ReturnValues":"ALL_NEW"
}

Sample response

HTTP/1.1 200 OK
x-amzn-RequestId: 5IMHO7F01Q9P7Q6QMKMMI3R3QRVV4KQNSO5AEMVJF66Q9ASUAAJG
content-type: application/x-amz-json-1.0
content-length: 121
Date: Fri, 26 Aug 2011 21:05:00 GMT

{"Attributes":
 {"friends":{"SS":["Lynda, Aaron"]},
 "status":{"S":"online"},
 "time":{"N":"1307654350"},
 "user":{"S":"Julie"}},
"ConsumedCapacityUnits":1
}

Related actions

• PutItem

• DeleteItem

UpdateItem API Version 2012-08-10 3796

Amazon DynamoDB Developer Guide

UpdateTable

Important

This section refers to API version 2011-12-05, which is deprecated
and should not be used for new applications.
For documentation on the current low-level API, see the Amazon DynamoDB API
Reference.

Description

Updates the provisioned throughput for the given table. Setting the throughput for a table helps
you manage performance and is part of the provisioned throughput feature of DynamoDB. For
more information, see DynamoDB provisioned capacity mode.

The provisioned throughput values can be upgraded or downgraded based on the maximums and
minimums listed in Quotas in Amazon DynamoDB.

The table must be in the ACTIVE state for this operation to succeed. UpdateTable is an
asynchronous operation; while executing the operation, the table is in the UPDATING state. While
the table is in the UPDATING state, the table still has the provisioned throughput from before the
call. The new provisioned throughput setting is in effect only when the table returns to the ACTIVE
state after the UpdateTable operation.

Requests

Syntax

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateTable
content-type: application/x-amz-json-1.0

{"TableName":"Table1",
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":15}
}

UpdateTable API Version 2012-08-10 3797

https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/
https://docs.amazonaws.cn/amazondynamodb/latest/APIReference/

Amazon DynamoDB Developer Guide

Name Description Required

TableName The name of the table to
update.

Type: String

Yes

ProvisionedThrough
put

New throughput for the
specified table, consisting
of values for ReadCapac
ityUnits and WriteCapa
cityUnits . See
DynamoDB provisioned
capacity mode.

Type: Array

Yes

ProvisionedThrough
put :ReadCapac
ityUnits

Sets the minimum number
of consistent ReadCapac
ityUnits consumed per
second for the specified table
before DynamoDB balances
the load with other operation
s.

Eventually consistent read
operations require less effort
than a consistent read
operation, so a setting of
50 consistent ReadCapac
ityUnits per second
provides 100 eventuall
y consistent ReadCapac
ityUnits per second.

Type: Number

Yes

UpdateTable API Version 2012-08-10 3798

Amazon DynamoDB Developer Guide

Name Description Required

ProvisionedThrough
put :WriteCapa
cityUnits

Sets the minimum number
of WriteCapacityUnits

 consumed per second for
the specified table before
DynamoDB balances the load
 with other operations.

Type: Number

Yes

Responses

Syntax

HTTP/1.1 200 OK
x-amzn-RequestId: CSOC7TJPLR0OOKIRLGOHVAICUFVV4KQNSO5AEMVJF66Q9ASUAAJG
Content-Type: application/json
Content-Length: 311
Date: Tue, 12 Jul 2011 21:31:03 GMT

{"TableDescription":
 {"CreationDateTime":1.321657838135E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"AttributeValue1","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"AttributeValue2","AttributeType":"N"}},
 "ProvisionedThroughput":
 {"LastDecreaseDateTime":1.321661704489E9,
 "LastIncreaseDateTime":1.321663607695E9,
 "ReadCapacityUnits":5,
 "WriteCapacityUnits":10},
 "TableName":"Table1",
 "TableStatus":"UPDATING"}}

Name Description

CreationDateTime Date when the table was created.

UpdateTable API Version 2012-08-10 3799

Amazon DynamoDB Developer Guide

Name Description

Type: Number

KeySchema The primary key (simple or composite)
structure for the table. A name-value pair
for the HashKeyElement is required, and a
name-value pair for the RangeKeyElement
is optional (only required for composite
primary keys). The maximum hash key size is
2048 bytes. The maximum range key size is
1024 bytes. Both limits are enforced separatel
y (i.e. you can have a combined hash + range
2048 + 1024 key). For more information about
primary keys, see Primary key.

Type: Map of HashKeyElement , or
HashKeyElement and RangeKeyElement
for a composite primary key.

ProvisionedThroughput Current throughput settings for the specified
table, including values for LastIncre
aseDateTime (if applicable), LastDecre
aseDateTime (if applicable),

Type: Array

TableName The name of the updated table.

Type: String

TableStatus The current state of the table (CREATING,
ACTIVE, DELETING or UPDATING), which
should be UPDATING.

Use the DescribeTables operationto check the
status of the table.

Type: String

UpdateTable API Version 2012-08-10 3800

Amazon DynamoDB Developer Guide

Special errors

Error Description

ResourceNotFoundException The specified table was not found.

ResourceInUseException The table is not in the ACTIVE state.

Examples

Sample request

// This header is abbreviated.
// For a sample of a complete header, see DynamoDB low-level API.
POST / HTTP/1.1
x-amz-target: DynamoDB_20111205.UpdateTable
content-type: application/x-amz-json-1.0

{"TableName":"comp1",
 "ProvisionedThroughput":{"ReadCapacityUnits":5,"WriteCapacityUnits":15}
}

Sample response

HTTP/1.1 200 OK
content-type: application/x-amz-json-1.0
content-length: 390
Date: Sat, 19 Nov 2011 00:46:47 GMT

{"TableDescription":
 {"CreationDateTime":1.321657838135E9,
 "KeySchema":
 {"HashKeyElement":{"AttributeName":"user","AttributeType":"S"},
 "RangeKeyElement":{"AttributeName":"time","AttributeType":"N"}},
 "ProvisionedThroughput":
 {"LastDecreaseDateTime":1.321661704489E9,
 "LastIncreaseDateTime":1.321663607695E9,
 "ReadCapacityUnits":5,
 "WriteCapacityUnits":10},
 "TableName":"comp1",

UpdateTable API Version 2012-08-10 3801

Amazon DynamoDB Developer Guide

 "TableStatus":"UPDATING"}
}

Related actions

• CreateTable

• DescribeTables

• DeleteTable

Legacy DynamoDB conditional parameters

This document provides an overview of legacy conditional parameters in DynamoDB and
recommends using the new expression parameters instead. It covers details on parameters like
AttributesToGet, AttributeUpdates, ConditionalOperator, Expected, KeyConditions, QueryFilter, and
ScanFilter, and provides examples of how to use the new expression parameters as replacements.

Important

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
Additionally, DynamoDB does not allow mixing legacy conditional parameters and
expression parameters in a single call. For example, calling the Query operation with
AttributesToGet and ConditionExpression will result in an error.

The following table shows the DynamoDB API operations that still support these legacy
parameters, and which expression parameter to use instead. This table can be helpful if you are
considering updating your applications so that they use expression parameters instead.

If you use this API operation
...

With these legacy parameter
s...

Use this expression
parameter instead

BatchGetItem AttributesToGet ProjectionExpression

DeleteItem Expected ConditionExpression

GetItem AttributesToGet ProjectionExpression

Legacy DynamoDB conditional parameters API Version 2012-08-10 3802

Amazon DynamoDB Developer Guide

If you use this API operation
...

With these legacy parameter
s...

Use this expression
parameter instead

PutItem Expected ConditionExpression

AttributesToGet ProjectionExpression

KeyConditions KeyConditionExpres
sion

Query

QueryFilter FilterExpression

AttributesToGet ProjectionExpressionScan

ScanFilter FilterExpression

AttributeUpdates UpdateExpressionUpdateItem

Expected ConditionExpression

The following sections provide more information about legacy conditional parameters.

Topics

• AttributesToGet (legacy)

• AttributeUpdates (legacy)

• ConditionalOperator (legacy)

• Expected (legacy)

• KeyConditions (legacy)

• QueryFilter (legacy)

• ScanFilter (legacy)

• Writing conditions with legacy parameters

Legacy DynamoDB conditional parameters API Version 2012-08-10 3803

Amazon DynamoDB Developer Guide

AttributesToGet (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
For specific information on the new parameter replacing this one, Use ProjectionExpression
instead.

The legacy conditional parameter AttributesToGet is an array of one or more attributes to
retrieve from DynamoDB. If no attribute names are provided, then all attributes will be returned. If
any of the requested attributes are not found, they will not appear in the result.

AttributesToGet allows you to retrieve attributes of type List or Map; however, it cannot
retrieve individual elements within a List or a Map.

Note that AttributesToGet has no effect on provisioned throughput consumption. DynamoDB
determines capacity units consumed based on item size, not on the amount of data that is returned
to an application.

Use ProjectionExpression instead – Example

Suppose you wanted to retrieve an item from the Music table, but that you only wanted to return
some of the attributes. You could use a GetItem request with an AttributesToGet parameter,
as in this Amazon CLI example:

aws dynamodb get-item \
 --table-name Music \
 --attributes-to-get '["Artist", "Genre"]' \
 --key '{
 "Artist": {"S":"No One You Know"},
 "SongTitle": {"S":"Call Me Today"}
 }'

You can use a ProjectionExpression instead:

aws dynamodb get-item \
 --table-name Music \
 --projection-expression "Artist, Genre" \

AttributesToGet API Version 2012-08-10 3804

Amazon DynamoDB Developer Guide

 --key '{
 "Artist": {"S":"No One You Know"},
 "SongTitle": {"S":"Call Me Today"}
 }'

AttributeUpdates (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
For specific information on the new parameter replacing this one, use UpdateExpression
instead..

In an UpdateItem operation, the legacy conditional parameter AttributeUpdates contains the
names of attributes to be modified, the action to perform on each, and the new value for each.
If you are updating an attribute that is an index key attribute for any indexes on that table, the
attribute type must match the index key type defined in the AttributesDefinition of the table
description. You can use UpdateItem to update any non-key attributes.

Attribute values cannot be null. String and Binary type attributes must have lengths greater than
zero. Set type attributes must not be empty. Requests with empty values will be rejected with a
ValidationException exception.

Each AttributeUpdates element consists of an attribute name to modify, along with the
following:

• Value - The new value, if applicable, for this attribute.

• Action - A value that specifies how to perform the update. This action is only valid for an
existing attribute whose data type is Number or is a set; do not use ADD for other data types.

If an item with the specified primary key is found in the table, the following values perform the
following actions:

• PUT - Adds the specified attribute to the item. If the attribute already exists, it is replaced by
the new value.

• DELETE - Removes the attribute and its value, if no value is specified for DELETE. The data
type of the specified value must match the existing value's data type.

AttributeUpdates API Version 2012-08-10 3805

Amazon DynamoDB Developer Guide

If a set of values is specified, then those values are subtracted from the old set. For example, if
the attribute value was the set [a,b,c] and the DELETE action specifies [a,c], then the final
attribute value is [b]. Specifying an empty set is an error.

• ADD - Adds the specified value to the item, if the attribute does not already exist. If the
attribute does exist, then the behavior of ADD depends on the data type of the attribute:

• If the existing attribute is a number, and if Value is also a number, then Value is
mathematically added to the existing attribute. If Value is a negative number, then it is
subtracted from the existing attribute.

Note

If you use ADD to increment or decrement a number value for an item that doesn't
exist before the update, DynamoDB uses 0 as the initial value.
Similarly, if you use ADD for an existing item to increment or decrement an attribute
value that doesn't exist before the update, DynamoDB uses 0 as the initial value. For
example, suppose that the item you want to update doesn't have an attribute named
itemcount, but you decide to ADD the number 3 to this attribute anyway. DynamoDB
will create the itemcount attribute, set its initial value to 0, and finally add 3 to it.
The result will be a new itemcount attribute, with a value of 3.

• If the existing data type is a set, and if Value is also a set, then Value is appended to the
existing set. For example, if the attribute value is the set [1,2], and the ADD action specified
[3], then the final attribute value is [1,2,3]. An error occurs if an ADD action is specified
for a set attribute and the attribute type specified does not match the existing set type.

Both sets must have the same primitive data type. For example, if the existing data type is a
set of strings, Value must also be a set of strings.

If no item with the specified key is found in the table, the following values perform the following
actions:

• PUT - Causes DynamoDB to create a new item with the specified primary key, and then adds
the attribute.

• DELETE - Nothing happens, because attributes cannot be deleted from a nonexistent item.
The operation succeeds, but DynamoDB does not create a new item.

• ADD - Causes DynamoDB to create an item with the supplied primary key and number (or set
of numbers) for the attribute value. The only data types allowed are Number and Number Set.

AttributeUpdates API Version 2012-08-10 3806

Amazon DynamoDB Developer Guide

If you provide any attributes that are part of an index key, then the data types for those attributes
must match those of the schema in the table's attribute definition.

Use UpdateExpression instead – Example

Suppose you wanted to modify an item in the Music table. You could use an UpdateItem request
with an AttributeUpdates parameter, as in this Amazon CLI example:

aws dynamodb update-item \
 --table-name Music \
 --key '{
 "SongTitle": {"S":"Call Me Today"},
 "Artist": {"S":"No One You Know"}
 }' \
 --attribute-updates '{
 "Genre": {
 "Action": "PUT",
 "Value": {"S":"Rock"}
 }
 }'

You can use a UpdateExpression instead:

aws dynamodb update-item \
 --table-name Music \
 --key '{
 "SongTitle": {"S":"Call Me Today"},
 "Artist": {"S":"No One You Know"}
 }' \
 --update-expression 'SET Genre = :g' \
 --expression-attribute-values '{
 ":g": {"S":"Rock"}
 }'

ConditionalOperator (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.

ConditionalOperator API Version 2012-08-10 3807

Amazon DynamoDB Developer Guide

The legacy conditional parameter ConditionalOperator is a logical operator used to apply to
the conditions in a Expected, QueryFilter or ScanFilter map:

• AND - If all of the conditions evaluate to true, then the entire map evaluates to true.

• OR - If at least one of the conditions evaluates to true, then the entire map evaluates to true.

If you omit ConditionalOperator, then AND is the default.

The operation will succeed only if the entire map evaluates to true.

Note

This parameter does not support attributes of type List or Map.

Expected (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
For specific information on the new parameter replacing this one, use ConditionExpression
instead..

The legacy conditional parameter Expected is a conditional block for an UpdateItem operation.
Expected is a map of attribute/condition pairs. Each element of the map consists of an attribute
name, a comparison operator, and one or more values. DynamoDB compares the attribute with the
value(s) you supplied, using the comparison operator. For each Expected element, the result of
the evaluation is either true or false.

If you specify more than one element in the Expected map, then by default all of the conditions
must evaluate to true. In other words, the conditions are combined using AND operator. (You can
use the ConditionalOperator parameter to OR the conditions instead. If you do this, then at
least one of the conditions must evaluate to true, rather than all of them.)

If the Expected map evaluates to true, then the conditional operation succeeds; otherwise, it fails.

Expected API Version 2012-08-10 3808

Amazon DynamoDB Developer Guide

Expected contains the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The
number of values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on Unicode with UTF-8
binary encoding. For example, a is greater than A, and a is greater than B.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

• ComparisonOperator - A comparator for evaluating attributes in the AttributeValueList.
When performing the comparison, DynamoDB uses strongly consistent reads.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

The following are descriptions of each comparison operator.

• EQ : Equal. EQ is supported for all data types, including lists and maps.

AttributeValueList can contain only one AttributeValue element of type
String, Number, Binary, String Set, Number Set, or Binary Set. If an item contains an
AttributeValue element of a different type than the one provided in the request, the value
does not match. For example, {"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does
not equal {"NS":["6", "2", "1"]}.

• NE : Not equal. NE is supported for all data types, including lists and maps.

AttributeValueList can contain only one AttributeValue of type String, Number,
Binary, String Set, Number Set, or Binary Set. If an item contains an AttributeValue of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6",
"2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a

Expected API Version 2012-08-10 3809

Amazon DynamoDB Developer Guide

different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or
Binary (not a set type). If an item contains an AttributeValue element of a different type
than the one provided in the request, the value does not match. For example, {"S":"6"} does
not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• GT : Greater than.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• NOT_NULL : The attribute exists. NOT_NULL is supported for all data types, including lists and
maps.

Note

This operator tests for the existence of an attribute, not its data type. If the data type
of attribute "a" is null, and you evaluate it using NOT_NULL, the result is a Boolean
true. This result is because the attribute "a" exists; its data type is not relevant to the
NOT_NULL comparison operator.

• NULL : The attribute does not exist. NULL is supported for all data types, including lists and
maps.

Expected API Version 2012-08-10 3810

Amazon DynamoDB Developer Guide

Note

This operator tests for the nonexistence of an attribute, not its data type. If the data
type of attribute "a" is null, and you evaluate it using NULL, the result is a Boolean
false. This is because the attribute "a" exists; its data type is not relevant to the NULL
comparison operator.

• CONTAINS : Checks for a subsequence, or value in a set.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If the target attribute of the comparison is of type String,
then the operator checks for a substring match. If the target attribute of the comparison is of
type Binary, then the operator looks for a subsequence of the target that matches the input. If
the target attribute of the comparison is a set ("SS", "NS", or "BS"), then the operator evaluates
to true if it finds an exact match with any member of the set.

CONTAINS is supported for lists: When evaluating "a CONTAINS b", " a" can be a list; however,
"b" cannot be a set, a map, or a list.

• NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If the target attribute of the comparison is a String,
then the operator checks for the absence of a substring match. If the target attribute of the
comparison is Binary, then the operator checks for the absence of a subsequence of the target
that matches the input. If the target attribute of the comparison is a set ("SS", "NS", or "BS"),
then the operator evaluates to true if it does not find an exact match with any member of
the set.

NOT_CONTAINS is supported for lists: When evaluating "a NOT CONTAINS b", " a" can be a
list; however, "b" cannot be a set, a map, or a list.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a
Number or a set type). The target attribute of the comparison must be of type String or Binary
(not a Number or a set type).

• IN : Checks for matching elements within two sets.

Expected API Version 2012-08-10 3811

Amazon DynamoDB Developer Guide

AttributeValueList can contain one or more AttributeValue elements of type String,
Number, or Binary (not a set type). These attributes are compared against an existing set type
attribute of an item. If any elements of the input set are present in the item attribute, the
expression evaluates to true.

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type,
either String, Number, or Binary (not a set type). A target attribute matches if the target value
is greater than, or equal to, the first element and less than, or equal to, the second element.
If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not compare to
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}

The following parameters can be used instead of AttributeValueList and
ComparisonOperator:

• Value - A value for DynamoDB to compare with an attribute.

• Exists - A Boolean value that causes DynamoDB to evaluate the value before attempting the
conditional operation:

• If Exists is true, DynamoDB will check to see if that attribute value already exists in the
table. If it is found, then the condition evaluates to true; otherwise the condition evaluates to
false.

• If Exists is false, DynamoDB assumes that the attribute value does not exist in the table.
If in fact the value does not exist, then the assumption is valid and the condition evaluates
to true. If the value is found, despite the assumption that it does not exist, the condition
evaluates to false.

Note that the default value for Exists is true.

The Value and Exists parameters are incompatible with AttributeValueList and
ComparisonOperator. Note that if you use both sets of parameters at once, DynamoDB will
return a ValidationException exception.

Expected API Version 2012-08-10 3812

Amazon DynamoDB Developer Guide

Note

This parameter does not support attributes of type List or Map.

Use ConditionExpression instead – Example

Suppose you wanted to modify an item in the Music table, but only if a certain condition was
true. You could use an UpdateItem request with an Expected parameter, as in this Amazon CLI
example:

aws dynamodb update-item \
 --table-name Music \
 --key '{
 "Artist": {"S":"No One You Know"},
 "SongTitle": {"S":"Call Me Today"}
 }' \
 --attribute-updates '{
 "Price": {
 "Action": "PUT",
 "Value": {"N":"1.98"}
 }
 }' \
 --expected '{
 "Price": {
 "ComparisonOperator": "LE",
 "AttributeValueList": [{"N":"2.00"}]
 }
 }'

You can use a ConditionExpression instead:

aws dynamodb update-item \
 --table-name Music \
 --key '{
 "Artist": {"S":"No One You Know"},
 "SongTitle": {"S":"Call Me Today"}
 }' \
 --update-expression 'SET Price = :p1' \
 --condition-expression 'Price <= :p2' \
 --expression-attribute-values '{

Expected API Version 2012-08-10 3813

Amazon DynamoDB Developer Guide

 ":p1": {"N":"1.98"},
 ":p2": {"N":"2.00"}
 }'

KeyConditions (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in
DynamoDB. For specific information on the new parameter replacing this one, use
KeyConditionExpression instead..

The legacy conditional parameter KeyConditions contains selection criteria for a Query
operation. For a query on a table, you can have conditions only on the table primary key attributes.
You must provide the partition key name and value as an EQ condition. You can optionally provide
a second condition, referring to the sort key.

Note

If you don't provide a sort key condition, all of the items that match the partition key will
be retrieved. If a FilterExpression or QueryFilter is present, it will be applied after
the items are retrieved.

For a query on an index, you can have conditions only on the index key attributes. You must
provide the index partition key name and value as an EQ condition. You can optionally provide a
second condition, referring to the index sort key.

Each KeyConditions element consists of an attribute name to compare, along with the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The
number of values in the list depends on the ComparisonOperator being used.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on Unicode with UTF-8
binary encoding. For example, a is greater than A, and a is greater than B.

KeyConditions API Version 2012-08-10 3814

Amazon DynamoDB Developer Guide

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

• ComparisonOperator - A comparator for evaluating attributes. For example: equals, greater
than, and less than.

For KeyConditions, only the following comparison operators are supported:

EQ | LE | LT | GE | GT | BEGINS_WITH | BETWEEN

The following are descriptions of these comparison operators.

• EQ : Equal.

AttributeValueList can contain only one AttributeValue of type String, Number, or
Binary (not a set type). If an item contains an AttributeValue element of a different type
than the one specified in the request, the value does not match. For example, {"S":"6"}
does not equal {"N":"6"}. Also, {"N":"6"} does not equal {"NS":["6", "2", "1"]}.

• LE : Less than or equal.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• LT : Less than.

AttributeValueList can contain only one AttributeValue of type String, Number, or
Binary (not a set type). If an item contains an AttributeValue element of a different type
than the one provided in the request, the value does not match. For example, {"S":"6"} does
not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

• GE : Greater than or equal.

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• GT : Greater than.
KeyConditions API Version 2012-08-10 3815

Amazon DynamoDB Developer Guide

AttributeValueList can contain only one AttributeValue element of type String,
Number, or Binary (not a set type). If an item contains an AttributeValue element of a
different type than the one provided in the request, the value does not match. For example,
{"S":"6"} does not equal {"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6",
"2", "1"]}.

• BEGINS_WITH : Checks for a prefix.

AttributeValueList can contain only one AttributeValue of type String or Binary (not a
Number or a set type). The target attribute of the comparison must be of type String or Binary
(not a Number or a set type).

• BETWEEN : Greater than or equal to the first value, and less than or equal to the second value.

AttributeValueList must contain two AttributeValue elements of the same type,
either String, Number, or Binary (not a set type). A target attribute matches if the target value
is greater than, or equal to, the first element and less than, or equal to, the second element.
If an item contains an AttributeValue element of a different type than the one provided
in the request, the value does not match. For example, {"S":"6"} does not compare to
{"N":"6"}. Also, {"N":"6"} does not compare to {"NS":["6", "2", "1"]}.

Use KeyConditionExpression instead – Example

Suppose you wanted to retrieve several items with the same partition key from the Music table.
You could use a Query request with a KeyConditions parameter, as in this Amazon CLI example:

aws dynamodb query \
 --table-name Music \
 --key-conditions '{
 "Artist":{
 "ComparisonOperator":"EQ",
 "AttributeValueList": [{"S": "No One You Know"}]
 },
 "SongTitle":{
 "ComparisonOperator":"BETWEEN",
 "AttributeValueList": [{"S": "A"}, {"S": "M"}]
 }
 }'

You can use a KeyConditionExpression instead:

KeyConditions API Version 2012-08-10 3816

Amazon DynamoDB Developer Guide

aws dynamodb query \
 --table-name Music \
 --key-condition-expression 'Artist = :a AND SongTitle BETWEEN :t1 AND :t2' \
 --expression-attribute-values '{
 ":a": {"S": "No One You Know"},
 ":t1": {"S": "A"},
 ":t2": {"S": "M"}
 }'

QueryFilter (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
For specific information on the new parameter replacing this one, use FilterExpression
instead..

In a Query operation, the legacy conditional parameter QueryFilter is a condition that evaluates
the query results after the items are read and returns only the desired values.

This parameter does not support attributes of type List or Map.

Note

A QueryFilter is applied after the items have already been read; the process of filtering
does not consume any additional read capacity units.

If you provide more than one condition in the QueryFilter map, then by default all of the
conditions must evaluate to true. In other words, the conditions are combined using the AND
operator. (You can use the ConditionalOperator (legacy) parameter to OR the conditions instead. If
you do this, then at least one of the conditions must evaluate to true, rather than all of them.)

Note that QueryFilter does not allow key attributes. You cannot define a filter condition on a
partition key or a sort key.

Each QueryFilter element consists of an attribute name to compare, along with the following:

QueryFilter API Version 2012-08-10 3817

Amazon DynamoDB Developer Guide

• AttributeValueList - One or more values to evaluate against the supplied attribute. The
number of values in the list depends on the operator specified in ComparisonOperator.

For type Number, value comparisons are numeric.

String value comparisons for greater than, equals, or less than are based on UTF-8 binary
encoding. For example, a is greater than A, and a is greater than B.

For type Binary, DynamoDB treats each byte of the binary data as unsigned when it compares
binary values.

For information on specifying data types in JSON, see DynamoDB low-level API.

• ComparisonOperator - A comparator for evaluating attributes. For example: equals, greater
than, and less than.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

Use FilterExpression instead – Example

Suppose you wanted to query the Music table and apply a condition to the matching items. You
could use a Query request with a QueryFilter parameter, as in this Amazon CLI example:

aws dynamodb query \
 --table-name Music \
 --key-conditions '{
 "Artist": {
 "ComparisonOperator": "EQ",
 "AttributeValueList": [{"S": "No One You Know"}]
 }
 }' \
 --query-filter '{
 "Price": {
 "ComparisonOperator": "GT",
 "AttributeValueList": [{"N": "1.00"}]
 }
 }'

You can use a FilterExpression instead:

QueryFilter API Version 2012-08-10 3818

Amazon DynamoDB Developer Guide

aws dynamodb query \
 --table-name Music \
 --key-condition-expression 'Artist = :a' \
 --filter-expression 'Price > :p' \
 --expression-attribute-values '{
 ":p": {"N":"1.00"},
 ":a": {"S":"No One You Know"}
 }'

ScanFilter (legacy)

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.
For specific information on the new parameter replacing this one, use FilterExpression
instead..

In a Scan operation, the legacy conditional parameter ScanFilter is a condition that evaluates
the scan results and returns only the desired values.

Note

This parameter does not support attributes of type List or Map.

If you specify more than one condition in the ScanFilter map, then by default all of the
conditions must evaluate to true. In other words, the conditions are ANDed together. (You can use
the ConditionalOperator (legacy) parameter to OR the conditions instead. If you do this, then at
least one of the conditions must evaluate to true, rather than all of them.)

Each ScanFilter element consists of an attribute name to compare, along with the following:

• AttributeValueList - One or more values to evaluate against the supplied attribute. The
number of values in the list depends on the operator specified in ComparisonOperator .

For type Number, value comparisons are numeric.

ScanFilter API Version 2012-08-10 3819

Amazon DynamoDB Developer Guide

String value comparisons for greater than, equals, or less than are based on UTF-8 binary
encoding. For example, a is greater than A, and a is greater than B.

For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary
values.

For information on specifying data types in JSON, see DynamoDB low-level API.

• ComparisonOperator - A comparator for evaluating attributes. For example: equals, greater
than, and less than.

The following comparison operators are available:

EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS |
BEGINS_WITH | IN | BETWEEN

Use FilterExpression instead – Example

Suppose you wanted to scan the Music table and apply a condition to the matching items. You
could use a Scan request with a ScanFilter parameter, as in this Amazon CLI example:

aws dynamodb scan \
 --table-name Music \
 --scan-filter '{
 "Genre":{
 "AttributeValueList":[{"S":"Rock"}],
 "ComparisonOperator": "EQ"
 }
 }'

You can use a FilterExpression instead:

aws dynamodb scan \
 --table-name Music \
 --filter-expression 'Genre = :g' \
 --expression-attribute-values '{
 ":g": {"S":"Rock"}
 }'

ScanFilter API Version 2012-08-10 3820

Amazon DynamoDB Developer Guide

Writing conditions with legacy parameters

Note

We recommend that you use the new expression parameters instead of these legacy
parameters whenever possible. For more information, see Using expressions in DynamoDB.

The following section describes how to write conditions for use with legacy parameters, such as
Expected, QueryFilter, and ScanFilter.

Note

New applications should use expression parameters instead. For more information, see
Using expressions in DynamoDB.

Simple conditions

With attribute values, you can write conditions for comparisons against table attributes. A
condition always evaluates to true or false, and consists of:

• ComparisonOperator — greater than, less than, equal to, and so on.

• AttributeValueList (optional) — attribute value(s) to compare against. Depending on the
ComparisonOperator being used, the AttributeValueList might contain one, two, or more
values; or it might not be present at all.

The following sections describe the various comparison operators, along with examples of how to
use them in conditions.

Comparison operators with no attribute values

• NOT_NULL - true if an attribute exists.

• NULL - true if an attribute does not exist.

Use these operators to check whether an attribute exists, or doesn't exist. Because there is no value
to compare against, do not specify AttributeValueList.

Writing conditions with legacy parameters API Version 2012-08-10 3821

Amazon DynamoDB Developer Guide

Example

The following expression evaluates to true if the Dimensions attribute exists.

...
 "Dimensions": {
 ComparisonOperator: "NOT_NULL"
 }
...

Comparison operators with one attribute value

• EQ - true if an attribute is equal to a value.

AttributeValueList can contain only one value of type String, Number, Binary, String Set,
Number Set, or Binary Set. If an item contains a value of a different type than the one specified
in the request, the value does not match. For example, the string "3" is not equal to the number
3. Also, the number 3 is not equal to the number set [3, 2, 1].

• NE - true if an attribute is not equal to a value.

AttributeValueList can contain only one value of type String, Number, Binary, String Set,
Number Set, or Binary Set. If an item contains a value of a different type than the one specified
in the request, the value does not match.

• LE - true if an attribute is less than or equal to a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a
set). If an item contains an AttributeValue of a different type than the one specified in the
request, the value does not match.

• LT - true if an attribute is less than a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set).
If an item contains a value of a different type than the one specified in the request, the value
does not match.

• GE - true if an attribute is greater than or equal to a value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set).
If an item contains a value of a different type than the one specified in the request, the value
does not match.

• GT - true if an attribute is greater than a value.

Writing conditions with legacy parameters API Version 2012-08-10 3822

Amazon DynamoDB Developer Guide

AttributeValueList can contain only one value of type String, Number, or Binary (not a set).
If an item contains a value of a different type than the one specified in the request, the value
does not match.

• CONTAINS - true if a value is present within a set, or if one value contains another.

AttributeValueList can contain only one value of type String, Number, or Binary (not
a set). If the target attribute of the comparison is a String, then the operator checks for a
substring match. If the target attribute of the comparison is Binary, then the operator looks for
a subsequence of the target that matches the input. If the target attribute of the comparison is a
set, then the operator evaluates to true if it finds an exact match with any member of the set.

• NOT_CONTAINS - true if a value is not present within a set, or if one value does not contain
another value.

AttributeValueList can contain only one value of type String, Number, or Binary (not a set).
If the target attribute of the comparison is a String, then the operator checks for the absence of
a substring match. If the target attribute of the comparison is Binary, then the operator checks
for the absence of a subsequence of the target that matches the input. If the target attribute
of the comparison is a set, then the operator evaluates to true if it does not find an exact match
with any member of the set.

• BEGINS_WITH - true if the first few characters of an attribute match the provided value. Do not
use this operator for comparing numbers.

AttributeValueList can contain only one value of type String or Binary (not a Number or a
set). The target attribute of the comparison must be a String or Binary (not a Number or a set).

Use these operators to compare an attribute with a value. You must specify an
AttributeValueList consisting of a single value. For most of the operators, this value must be a
scalar; however, the EQ and NE operators also support sets.

Examples

The following expressions evaluate to true if:

• A product's price is greater than 100.

...
 "Price": {

Writing conditions with legacy parameters API Version 2012-08-10 3823

Amazon DynamoDB Developer Guide

 ComparisonOperator: "GT",
 AttributeValueList: [{"N":"100"}]
 }
...

• A product category begins with "Bo".

...
 "ProductCategory": {
 ComparisonOperator: "BEGINS_WITH",
 AttributeValueList: [{"S":"Bo"}]
 }
...

• A product is available in either red, green, or black:

...
 "Color": {
 ComparisonOperator: "EQ",
 AttributeValueList: [
 [{"S":"Black"}, {"S":"Red"}, {"S":"Green"}]
]
 }
...

Note

When comparing set data types, the order of the elements does not matter. DynamoDB
will return only the items with the same set of values, regardless of the order in which
you specify them in your request.

Comparison operators with two attribute values

• BETWEEN - true if a value is between a lower bound and an upper bound, endpoints inclusive.

AttributeValueList must contain two elements of the same type, either String, Number,
or Binary (not a set). A target attribute matches if the target value is greater than, or equal to,
the first element and less than, or equal to, the second element. If an item contains a value of a
different type than the one specified in the request, the value does not match.

Writing conditions with legacy parameters API Version 2012-08-10 3824

Amazon DynamoDB Developer Guide

Use this operator to determine if an attribute value is within a range. The AttributeValueList
must contain two scalar elements of the same type - String, Number, or Binary.

Example

The following expression evaluates to true if a product's price is between 100 and 200.

...
 "Price": {
 ComparisonOperator: "BETWEEN",
 AttributeValueList: [{"N":"100"}, {"N":"200"}]
 }
...

Comparison operators with n attribute values

• IN - true if a value is equal to any of the values in an enumerated list. Only scalar values are
supported in the list, not sets. The target attribute must be of the same type and exact value in
order to match.

AttributeValueList can contain one or more elements of type String, Number, or Binary (not
a set). These attributes are compared against an existing non-set type attribute of an item. If any
elements of the input set are present in the item attribute, the expression evaluates to true.

AttributeValueList can contain one or more values of type String, Number, or Binary (not a
set). The target attribute of the comparison must be of the same type and exact value to match.
A String never matches a String set.

Use this operator to determine whether the supplied value is within an enumerated list. You can
specify any number of scalar values in AttributeValueList, but they all must be of the same
data type.

Example

The following expression evaluates to true if the value for Id is 201, 203, or 205.

...
 "Id": {
 ComparisonOperator: "IN",
 AttributeValueList: [{"N":"201"}, {"N":"203"}, {"N":"205"}]

Writing conditions with legacy parameters API Version 2012-08-10 3825

Amazon DynamoDB Developer Guide

 }
...

Using multiple conditions

DynamoDB lets you combine multiple conditions to form complex expressions. You do this by
providing at least two expressions, with an optional ConditionalOperator (legacy).

By default, when you specify more than one condition, all of the conditions must evaluate to true
in order for the entire expression to evaluate to true. In other words, an implicit AND operation
takes place.

Example

The following expression evaluates to true if a product is a book that has at least 600 pages. Both
of the conditions must evaluate to true, since they are implicitly ANDed together.

...
 "ProductCategory": {
 ComparisonOperator: "EQ",
 AttributeValueList: [{"S":"Book"}]
 },
 "PageCount": {
 ComparisonOperator: "GE",
 AttributeValueList: [{"N":600"}]
 }
...

You can use ConditionalOperator (legacy) to clarify that an AND operation will take place. The
following example behaves in the same manner as the previous one.

...
 "ConditionalOperator" : "AND",
 "ProductCategory": {
 "ComparisonOperator": "EQ",
 "AttributeValueList": [{"N":"Book"}]
 },
 "PageCount": {
 "ComparisonOperator": "GE",
 "AttributeValueList": [{"N":600"}]
 }

Writing conditions with legacy parameters API Version 2012-08-10 3826

Amazon DynamoDB Developer Guide

...

You can also set ConditionalOperator to OR, which means that at least one of the conditions
must evaluate to true.

Example

The following expression evaluates to true if a product is a mountain bike, if it is a particular brand
name, or if its price is greater than 100.

...
 ConditionalOperator : "OR",
 "BicycleType": {
 "ComparisonOperator": "EQ",
 "AttributeValueList": [{"S":"Mountain"]
 },
 "Brand": {
 "ComparisonOperator": "EQ",
 "AttributeValueList": [{"S":"Brand-Company A"]
 },
 "Price": {
 "ComparisonOperator": "GT",
 "AttributeValueList": [{"N":"100"}]
 }
...

Note

In a complex expression, the conditions are processed in order, from the first condition to
the last.
You cannot use both AND and OR in a single expression.

Other conditional operators

In previous releases of DynamoDB, the Expected parameter behaved differently for conditional
writes. Each item in the Expected map represented an attribute name for DynamoDB to check,
along with the following:

• Value — a value to compare against the attribute.

• Exists — determine whether the value exists prior to attempting the operation.

Writing conditions with legacy parameters API Version 2012-08-10 3827

Amazon DynamoDB Developer Guide

The Value and Exists options continue to be supported in DynamoDB; however, they only
let you test for an equality condition, or whether an attribute exists. We recommend that you
use ComparisonOperator and AttributeValueList instead, because these options let you
construct a much wider range of conditions.

Example

A DeleteItem can check to see whether a book is no longer in publication, and only delete it if
this condition is true. Here is an Amazon CLI example using a legacy condition:

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{
 "Id": {"N":"600"}
 }' \
 --expected '{
 "InPublication": {
 "Exists": true,
 "Value": {"BOOL":false}
 }
 }'

The following example does the same thing, but does not use a legacy condition:

aws dynamodb delete-item \
 --table-name ProductCatalog \
 --key '{
 "Id": {"N":"600"}
 }' \
 --expected '{
 "InPublication": {
 "ComparisonOperator": "EQ",
 "AttributeValueList": [{"BOOL":false}]
 }
 }'

Example

A PutItem operation can protect against overwriting an existing item with the same primary key
attributes. Here is an example using a legacy condition:

Writing conditions with legacy parameters API Version 2012-08-10 3828

Amazon DynamoDB Developer Guide

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item '{
 "Id": {"N":"500"},
 "Title": {"S":"Book 500 Title"}
 }' \
 --expected '{
 "Id": { "Exists": false }
 }'

The following example does the same thing, but does not use a legacy condition:

aws dynamodb put-item \
 --table-name ProductCatalog \
 --item '{
 "Id": {"N":"500"},
 "Title": {"S":"Book 500 Title"}
 }' \
 --expected '{
 "Id": { "ComparisonOperator": "NULL" }
 }'

Note

For conditions in the Expected map, do not use the legacy Value and Exists options
together with ComparisonOperator and AttributeValueList. If you do this, your
conditional write will fail.

Writing conditions with legacy parameters API Version 2012-08-10 3829

	Amazon DynamoDB
	Table of Contents
	What is Amazon DynamoDB?
	Characteristics of DynamoDB
	Serverless
	NoSQL
	Fully managed
	Single-digit millisecond performance at any scale

	DynamoDB use cases
	Capabilities of DynamoDB
	Multi-active replication with global tables
	ACID transactions
	Change data capture for event-driven architectures
	Secondary indexes

	Service integrations
	Serverless integrations
	Importing and exporting data to Amazon S3
	Zero-ETL integration
	Caching

	Security
	Resilience
	Global tables
	Continuous backups and point-in-time recovery
	On-demand backup and restore

	Accessing DynamoDB
	DynamoDB pricing
	Getting started with DynamoDB

	Getting started with DynamoDB
	Amazon DynamoDB resources for first-time users
	Amazon DynamoDB additional best practices for first-time users
	Amazon CLI resources
	Programming resources

	Accessing DynamoDB
	Using the console
	Using the Amazon CLI
	Downloading and configuring the Amazon CLI
	Using the Amazon CLI with DynamoDB
	Using the Amazon CLI with DynamoDB local

	Using the API
	Using the NoSQL workbench for DynamoDB
	IP address ranges

	Prerequisites
	Setting up DynamoDB
	Setting up DynamoDB (web service)
	Signing up for Amazon
	Granting programmatic access
	Configuring your credentials
	Integrating with other DynamoDB services

	Setting up DynamoDB local (downloadable version)
	Deploying DynamoDB locally on your computer
	Download DynamoDB local
	Run DynamoDB local as Docker image
	Run DynamoDB local as an Apache Maven dependency
	Run DynamoDB local in Amazon CloudShell

	DynamoDB local usage notes
	Command line options
	Setting the local endpoint
	Amazon Command Line Interface
	Amazon SDKs

	Differences between downloadable DynamoDB and the DynamoDB web service

	Release history for DynamoDB local
	Telemetry in DynamoDB local
	Turn off telemetry using command line options
	Turn off telemetry for a single session
	Turn off telemetry for your profile in all sessions
	Turn off telemetry using DynamoDB local embedded on Maven projects
	Types of information collected
	Learn more

	Step 1: Create a table in DynamoDB
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Step 2: Write data to a DynamoDB table
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Step 3: Read data from a DynamoDB table
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Step 4: Update data in a DynamoDB table
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Step 5: Query data in a DynamoDB table
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Step 6: (Optional) Delete your DynamoDB table to clean up resources
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Continue learning about DynamoDB
	Generate infrastructure code for Amazon DynamoDB using Console-to-Code
	How it works
	Benefits of using Console-to-Code with DynamoDB
	Example use cases
	Getting started

	Amazon DynamoDB: How it works
	Cheat sheet for DynamoDB
	Initial setup
	SDK or CLI
	Basic actions
	Create a table
	Write item to a table
	Read item from a table
	Delete item from a table
	Query a table
	Delete a table
	List table names

	Naming rules
	Service quota basics
	Items, attributes, and expression parameters

	More information

	Core components of Amazon DynamoDB
	Tables, items, and attributes
	Primary key
	Secondary indexes
	DynamoDB Streams

	DynamoDB API
	Control plane
	Data plane
	PartiQL - A SQL-compatible query language
	Classic APIs
	Creating data
	Reading data
	Updating data
	Deleting data

	DynamoDB Streams
	Transactions
	PartiQL - A SQL-compatible query language
	Classic APIs

	Supported data types and naming rules in Amazon DynamoDB
	Naming rules
	Reserved words and special characters

	Data types
	Scalar types
	Number
	String
	Binary
	Boolean
	Null

	Document types
	List
	Map

	Sets

	Data type descriptors

	DynamoDB table classes
	Partitions and data distribution in DynamoDB
	Data distribution: Partition key
	Data distribution: Partition key and sort key

	Learn how to go from SQL to NoSQL
	Choosing between relational (SQL) and NoSQL
	Differences in accessing a relational (SQL) database and DynamoDB
	Differences between a relational (SQL) database and DynamoDB when creating a table
	Creating a table with SQL
	Creating a table with DynamoDB

	Differences between getting table information from a relational (SQL) database and DynamoDB
	Getting information about a table with SQL
	Getting information about a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when writing data to a table
	Writing data to a table with SQL
	Writing data to a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when reading data from a table
	Differences in reading an item using its primary key
	Reading an item using its primary key with SQL
	Reading an item using its primary key in DynamoDB

	Differences in querying a table
	Querying a table with SQL
	Querying a table in DynamoDB

	Differences in scanning a table
	Scanning a table with SQL
	Scanning a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when managing indexes
	Differences between a relational (SQL) database and DynamoDB when creating an index
	Creating an index with SQL
	Creating an index in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when querying and scanning an index
	Querying and scanning an index with SQL
	Querying and scanning an index in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when modifying data in a table
	Modifying data in a table with SQL
	Modifying data in a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when deleting data from a table
	Deleting data from a table with SQL
	Deleting data from a table in DynamoDB

	Differences between a relational (SQL) database and DynamoDB when removing a table
	Removing a table with SQL
	Removing a table in DynamoDB

	Amazon DynamoDB learning resources and tools
	Tools for coding and visualization
	Prescriptive Guidance articles
	Knowledge Center articles
	Blog posts, repositories, and guides
	Data modeling and design pattern presentations
	Training courses

	DynamoDB reads and writes
	DynamoDB read consistency
	Eventually consistent reads
	Strongly consistent reads
	Global tables read consistency

	DynamoDB read and write operations
	Capacity unit consumption for read operations
	Capacity unit consumption for write operations

	DynamoDB throughput capacity
	On-demand mode
	Provisioned mode
	DynamoDB on-demand capacity mode
	Read request units and write request units
	Initial throughput and scaling properties
	DynamoDB maximum throughput for on-demand tables
	Considerations when using maximum throughput for on-demand mode
	Request throttling and CloudWatch metrics

	DynamoDB provisioned capacity mode
	Read capacity units and write capacity units
	Choosing initial throughput settings
	DynamoDB auto scaling
	Utilization rate

	Managing throughput capacity automatically with DynamoDB auto scaling
	How DynamoDB auto scaling works
	Usage notes
	Using the Amazon Web Services Management Console with DynamoDB auto scaling
	Before you begin: Granting user permissions for DynamoDB auto scaling
	Creating a new table with auto scaling enabled
	Enabling DynamoDB auto scaling on existing tables
	Viewing auto scaling activities on the console
	Modifying or disabling DynamoDB auto scaling settings

	Using the Amazon CLI to manage DynamoDB auto scaling
	Before you begin
	Install the Amazon CLI
	Install Python

	Step 1: Create a DynamoDB table
	Step 2: Register a scalable target
	Step 3: Create a scaling policy
	Step 4: Drive write traffic to TestTable
	Step 5: View Application Auto Scaling actions
	(Optional) Step 6: Clean up

	Using the Amazon SDK to configure auto scaling on Amazon DynamoDB tables
	Enabling Application Auto Scaling for a table
	Disabling Application Auto Scaling for a table

	DynamoDB reserved capacity

	Understanding DynamoDB warm throughput
	Check your DynamoDB table's current warm throughput
	Amazon Web Services Management Console
	Amazon CLI

	Increase your existing DynamoDB table's warm throughput
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Create a new DynamoDB table with higher warm throughput
	Amazon Web Services Management Console
	Amazon CLI
	Amazon SDK

	Understanding DynamoDB warm throughput in different scenarios
	Warm throughput and uneven access patterns
	Warm throughput for a provisioned table
	Warm throughput for an on-demand table
	Warm throughput for an on-demand table with maximum throughput configured

	DynamoDB burst and adaptive capacity
	Burst capacity
	Adaptive capacity
	Isolate frequently accessed items

	Considerations when switching capacity modes in DynamoDB
	Switching from provisioned capacity mode to on-demand capacity mode
	Initial throughput for on-demand capacity mode
	Auto scaling settings
	Bulk editing capacity mode in the DynamoDB console

	Switching from on-demand capacity mode to provisioned capacity mode
	Managing capacity
	Managing auto scaling

	Programming with DynamoDB and the Amazon SDKs
	Overview of Amazon SDK support for DynamoDB
	SDK support of Amazon account-based endpoints
	Programmatic interfaces that work with DynamoDB
	Low-level interfaces that work with DynamoDB
	Low-level interface example

	Document interfaces that work with DynamoDB
	Document interface example

	Object persistence interfaces that work with DynamoDB
	Object persistence interface example

	Higher-level programming interfaces for DynamoDB
	Java 1.x: DynamoDBMapper
	DynamoDBMapper Class
	save
	load
	delete
	query
	queryPage
	scan
	scanPage
	parallelScan
	batchSave
	batchLoad
	batchDelete
	batchWrite
	transactionWrite
	transactionLoad
	count
	generateCreateTableRequest
	createS3Link
	getS3ClientCache

	Supported data types for DynamoDBMapper for Java
	Java Annotations for DynamoDB
	DynamoDBAttribute
	DynamoDBAutoGeneratedKey
	DynamoDBAutoGeneratedTimestamp
	DynamoDBDocument
	DynamoDBHashKey
	DynamoDBIgnore
	DynamoDBIndexHashKey
	DynamoDBIndexRangeKey
	DynamoDBRangeKey
	DynamoDBTable
	DynamoDBTypeConverted
	DynamoDBTyped
	DynamoDBVersionAttribute

	Optional configuration settings for DynamoDBMapper
	DynamoDB and optimistic locking with version number
	Disabling optimistic locking

	Mapping arbitrary data in DynamoDB
	DynamoDBMapper examples

	Java 2.x: DynamoDB Enhanced Client
	Working with the .NET document model in DynamoDB
	Supported data types

	Working with the .NET object persistence model and DynamoDB
	Supported data types
	DynamoDB attributes from the .NET object persistence model
	DynamoDBGlobalSecondaryIndexHashKey
	DynamoDBGlobalSecondaryIndexRangeKey
	DynamoDBHashKey
	DynamoDBIgnore
	DynamoDBLocalSecondaryIndexRangeKey
	DynamoDBProperty
	DynamoDBRenamable
	DynamoDBRangeKey
	DynamoDBTable
	DynamoDBVersion

	DynamoDBContext class from the .NET object persistence model
	Create​MultiTable​BatchGet
	Create​MultiTable​BatchWrite
	CreateBatchGet
	CreateBatchWrite
	Delete
	Dispose
	Execute​Batch​Get
	Execute​Batch​Write
	FromDocument
	FromQuery
	FromScan
	Get​Target​Table
	Load
	Query
	Save
	Scan
	ToDocument
	Specifying optional parameters for DynamoDBContext

	Optimistic locking using DynamoDB and the Amazon SDK for .NET object persistence model
	Disabling optimistic locking

	Mapping arbitrary data with DynamoDB using the Amazon SDK for .NET object persistence model

	Running the code examples in this Developer Guide
	Creating tables and loading data for code examples in DynamoDB
	Java code examples
	Java: Setting your Amazon credentials
	Java: Setting the Amazon Region and endpoint
	Amazon SDK V1
	Amazon SDK V2

	.NET code examples
	.NET: Setting your Amazon credentials
	.NET: Setting the Amazon Region and endpoint

	DynamoDB low-level API
	Request format
	Response format
	Data type descriptors
	Numeric data
	Binary data

	Programming Amazon DynamoDB with Python and Boto3
	About Boto
	Using the Boto documentation
	Understanding the client and resource abstraction layers
	Using the table resource batch_writer
	Additional code examples that explore the client and resource layers
	Understanding how the Client and Resource objects interact with sessions and threads
	Customizing the Config object
	Error handling
	Logging
	Event hooks
	Pagination and the Paginator
	Waiters

	Programming Amazon DynamoDB with JavaScript
	About Amazon SDK for JavaScript
	Using the Amazon SDK for JavaScript V3
	Accessing JavaScript documentation
	Abstraction layers
	Low-level client (DynamoDBClient)
	High-level client (DynamoDBDocumentClient)

	Using the marshall utility function
	Reading items
	Conditional writes
	Pagination
	Using the paginateScan convenience method

	Specifying configuration
	Config for timeouts
	Config for keep-alive
	Config for retries

	Waiters
	Error handling
	Logging
	Considerations

	Programming DynamoDB with the Amazon SDK for Java 2.x
	About the Amazon SDK for Java 2.x
	Support for Java versions

	Getting started with the Amazon SDK for Java 2.x
	Step 1: Set up for this tutorial
	Step 2: Create the project
	pom.xml

	Step 3: Write the code
	App class
	DependencyFactory class
	Handler class, Maven-generated
	Handler class, implemented

	Step 4: Build and run the application
	Success
	Cleanup

	Reviewing the Amazon SDK for Java 2.x documentation
	Supported interfaces
	Low-level interface
	High-level interface
	High-level interface using immutable data classes
	High-level interface using immutable data classes and third-party boilerplate generation libraries

	Document interface
	Comparing interfaces with a Query example

	Additional code examples
	Synchronous and asynchronous programming
	HTTP clients
	Apache-based HTTP client
	URLConnection-based HTTP client
	Netty-based HTTP client
	Amazon CRT-based HTTP client

	Configuring an HTTP client
	Timeout configuration
	RetryMode
	Retry policies

	DefaultsMode
	Keep-Alive configuration

	Error handling
	Amazon request ID
	Logging
	Amazon request ID logging

	Pagination
	Data class annotations

	Error handling with DynamoDB
	Error components
	Transactional errors
	Error messages and codes
	HTTP status code 400
	HTTP status code 5xx

	Error handling in your application
	Error retries and exponential backoff
	Batch operations and error handling

	Using DynamoDB with an Amazon SDK

	Working with tables, items, queries, scans, and indexes
	Working with tables and data in DynamoDB
	Basic operations on DynamoDB tables
	Creating a table
	Example 1: Create an on-demand table
	Example 2: Create a provisioned table
	Example 3: Create a table using the DynamoDB standard-infrequent access table class

	Describing a table
	Updating a table
	Deleting a table
	Using deletion protection
	Listing table names
	Describing provisioned throughput quotas

	Considerations when choosing a table class in DynamoDB
	Adding tags and labels to resources in DynamoDB
	Tagging restrictions in DynamoDB
	Tagging resources in DynamoDB
	Setting permissions to filter by tags
	Adding tags to new or existing tables (Amazon Web Services Management Console)
	Adding tags to new or existing tables (Amazon CLI)

	Using DynamoDB tags to create cost allocation reports

	Global tables - multi-active, multi-Region replication
	Consistency modes
	Account configurations
	Global tables core concepts
	Concepts
	Versions
	Availability
	Fault injection testing
	Time To Live (TTL)
	Streams
	Transactions
	Read and write throughput
	Provisioned mode
	On-demand mode

	Monitoring global tables
	Considerations for managing global tables

	DynamoDB same-account global table
	How DynamoDB global tables work
	Concepts
	Versions
	Availability
	Consistency modes
	Multi-Region eventual consistency (MREC)
	Multi-Region strong consistency (MRSC)

	Choosing a consistency mode
	Monitoring global tables
	Fault injection testing
	Time To Live (TTL)
	Streams
	Transactions
	Read and write throughput
	Provisioned mode
	On-demand mode

	Settings synchronization
	DynamoDB Accelerator (DAX)
	Considerations for managing global tables

	Tutorials: Creating global tables
	Creating a global table configured for MREC
	Creating a MREC global table using the DynamoDB Console
	Creating a MREC global table using the Amazon CLI or Java

	Creating a global table configured for MRSC
	Creating a MRSC global table using the DynamoDB Console
	Creating a MRSC global table using the Amazon CLI or Java

	DynamoDB global tables security
	Service-linked roles for global tables
	Replication service-linked role
	Auto scaling service-linked role
	Example IAM policies for service-linked roles
	Excluding required SLR permissions from deny policies

	How global tables use Amazon IAM
	Creating global tables and adding replicas
	Permissions for creating global tables
	Additional permissions for MRSC global tables using a witness
	Example IAM policies for creating global tables
	Creating MREC or MRSC global table across three Regions
	Restricting MREC or MRSC global table creation to specific Regions
	Creating MRSC global table with witness
	Restricting MRSC witness creation to specific Regions

	Updating global tables
	Deleting global tables and removing replicas
	Permissions for deleting global tables and removing replicas
	Additional permissions for MRSC global tables using a witness
	Examples IAM policies to delete a global table replicas
	Deleting global table replicas
	Deleting a MRSC global table with a witness

	How global tables use Amazon KMS

	DynamoDB multi-account global tables
	How DynamoDB global tables work
	Monitoring

	Tutorials: Creating multi-account global tables
	Create a multi-account global table using the DynamoDB console
	Create a multi-account global table using the Amazon CLI

	DynamoDB global tables security
	Service principal authorization for replication
	Service-linked roles for multi-account global tables
	Settings management service-linked role
	Auto scaling service-linked role

	How global tables use Amazon IAM
	Creating global tables and adding replicas
	Permissions for creating global tables
	Example IAM policies for creating global tables
	Example IAM policies for a 2-replica setup
	Example IAM policies for a 3-replica setup

	Updating a multi-account global table
	Deleting global tables and removing replicas
	Permissions for deleting global tables and removing replicas

	How global tables use Amazon KMS
	Example Amazon KMS policy

	Understanding Amazon DynamoDB billing for global tables
	How it works
	Consistency modes and billing
	DynamoDB global tables billing example

	DynamoDB global tables versions
	Determining the version of a global table
	Determining the version using the Amazon CLI
	Identifying a version 2019.11.21 (Current) global table replica
	Identifying a version 2017.11.29 (Legacy) global table replica

	Determining the version using the DynamoDB Console

	Differences in behavior between Legacy and Current versions
	Upgrading to the current version
	Required permissions for global tables upgrade
	What to expect during the upgrade
	DynamoDB Streams behavior before, during, and after upgrade
	Upgrading to version 2019.11.21 (Current)

	Best practices for global tables
	Version
	Deletion protection
	Using Amazon CloudFormation
	Backups and Point-in-Time Recovery
	Designing for multi-Region high availability

	Working with items and attributes in DynamoDB
	DynamoDB item sizes and formats
	Reading an item
	Writing an item
	PutItem
	UpdateItem
	DeleteItem

	Return values
	PutItem
	UpdateItem
	DeleteItem

	Batch operations
	BatchGetItem
	BatchWriteItem

	Atomic counters
	Conditional writes
	Conditional write idempotence
	Capacity units consumed by conditional writes

	Using expressions in DynamoDB
	Referring to item attributes when using expressions in DynamoDB
	Top-level attributes
	Nested attributes
	Accessing list elements
	Accessing map elements

	Document paths

	Expression attribute names (aliases) in DynamoDB
	Reserved words
	Attribute names containing special characters
	Nested attributes
	Repeatedly referencing attribute names

	Using expression attribute values in DynamoDB
	Using projection expressions in DynamoDB
	Using update expressions in DynamoDB
	SET — modifying or adding item attributes
	Modifying attributes
	Adding lists and maps
	Adding elements to a list
	Adding nested map attributes
	Incrementing and decrementing numeric attributes
	Appending elements to a list
	Preventing overwrites of an existing attribute

	REMOVE — deleting attributes from an item
	Removing elements from a list

	ADD — updating numbers and sets
	Adding a number
	Adding elements to a set

	DELETE — removing elements from a set
	Using multiple update expressions

	Condition and filter expressions, operators, and functions in DynamoDB
	Syntax for filter and condition expressions
	Making comparisons
	Functions
	Logical evaluations
	Parentheses
	Precedence in conditions

	DynamoDB condition expression CLI example
	Conditional put
	Conditional deletes
	Conditional updates
	Conditional expression examples
	Checking for attributes in an item
	Checking for attribute type
	Checking string starting value
	Checking for an element in a set
	Checking the size of an attribute value

	Using time to live (TTL) in DynamoDB
	Enable time to live (TTL) in DynamoDB
	Enable DynamoDB TTL using the Amazon console
	Enable DynamoDB TTL using the API
	Enable Time to Live using the Amazon CLI
	Enable DynamoDB TTL using Amazon CloudFormation

	Computing time to live (TTL) in DynamoDB
	Create an item and set the Time to Live
	Update an item and refresh the Time to Live

	Working with expired items and time to live (TTL)
	Filter expired items from read operations
	Conditionally write to expired items
	Identifying deleted items in DynamoDB Streams

	Querying tables in DynamoDB
	Key condition expressions for the Query operation in DynamoDB
	Key condition expression examples

	Filter expressions for the Query operation in DynamoDB
	Paginating table query results in DynamoDB
	Other aspects of working with the Query operation in DynamoDB
	Limiting the number of items in the result set
	Counting the items in the results
	Capacity units consumed by query
	Read consistency for query

	Scanning tables in DynamoDB
	Filter expressions for scan
	Limiting the number of items in the result set
	Paginating the results
	Counting the items in the results
	Capacity units consumed by scan
	Read consistency for scan
	Parallel scan

	PartiQL - a SQL-compatible query language for Amazon DynamoDB
	What is PartiQL?
	PartiQL in Amazon DynamoDB
	Getting started with PartiQL for DynamoDB
	PartiQL data types for DynamoDB
	Examples

	PartiQL statements for DynamoDB
	PartiQL select statements for DynamoDB
	Syntax
	Parameters
	Examples

	PartiQL update statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	PartiQL delete statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	PartiQL insert statements for DynamoDB
	Syntax
	Parameters
	Return value
	Examples

	Use PartiQL functions with DynamoDB
	Aggregate functions
	Conditional functions
	Using the EXISTS function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the BEGINS_WITH function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the MISSING function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the ATTRIBUTE_TYPE function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the CONTAINS function with PartiQL for DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	Using the SIZE function with PartiQL for amazon DynamoDB
	Syntax
	Arguments
	Return type
	Examples

	PartiQL arithmetic, comparison, and logical operators for DynamoDB
	Arithmetic operators
	Comparison operators
	Logical operators

	Performing transactions with PartiQL for DynamoDB
	Syntax
	Parameters
	Return values
	Examples

	Running batch operations with PartiQL for DynamoDB
	Syntax
	Parameters
	Examples

	IAM security policies with PartiQL for DynamoDB
	Example: Allow all PartiQL for DynamoDB statements (Select/Insert/Update/Delete) on a table
	Example: Allow PartiQL for DynamoDB select statements on a table
	Example: Allow PartiQL for DynamoDB insert statements on an index
	Example: Allow PartiQL for DynamoDB transactional statements only on a table
	Example: Allow PartiQL for DynamoDB non-transactional reads and writes and block PartiQL transactional reads and writes transactional statements on a table.
	Example: Allow select statements and deny full table scan statements in PartiQL for DynamoDB

	Working with items: Java
	Putting an item
	Specifying optional parameters
	PutItem and JSON documents

	Getting an item
	Specifying optional parameters
	GetItem and JSON documents

	Batch write: Putting and deleting multiple items
	Batch get: Getting multiple items
	Specifying optional parameters

	Updating an item
	Specifying optional parameters
	Atomic counter

	Deleting an item
	Specifying optional parameters

	Example: CRUD operations using the Amazon SDK for Java document API
	Example: Batch operations using Amazon SDK for Java document API
	Example: Batch write operation using the Amazon SDK for Java document API
	Example: Batch get operation using the Amazon SDK for Java document API

	Example: Handling binary type attributes using the Amazon SDK for Java document API

	Working with items: .NET
	Putting an item
	Specifying optional parameters

	Getting an item
	Specifying optional parameters

	Updating an item
	Specifying optional parameters

	Atomic counter
	Deleting an item
	Specifying optional parameters

	Batch write: Putting and deleting multiple items
	Batch get: Getting multiple items
	Specifying optional parameters

	Example: CRUD operations using the Amazon SDK for .NET low-level API
	Example: Batch operations using the Amazon SDK for .NET low-level API
	Example: Batch write operation using the Amazon SDK for .NET low-level API
	Example: Batch get operation using the Amazon SDK for .NET low-level API

	Example: Handling binary type attributes using the Amazon SDK for .NET low-level API

	Improving data access with secondary indexes in DynamoDB
	Using Global Secondary Indexes in DynamoDB
	Scenario: Using a Global Secondary Index
	Attribute projections
	Multi-attribute key schema
	Reading data from a Global Secondary Index
	Querying a Global Secondary Index
	Scanning a Global Secondary Index

	Data synchronization between tables and Global Secondary Indexes
	Table classes with Global Secondary Index
	Provisioned throughput considerations for Global Secondary Indexes
	Read capacity units
	Write capacity units

	Storage considerations for Global Secondary Indexes
	Design patterns
	Multi-attribute keys pattern
	Overview
	Application example
	Data model
	Base table: TournamentMatches
	GSI: TournamentRegionIndex (multi-attribute keys)
	GSI: PlayerMatchHistoryIndex (multi-attribute keys)

	Prerequisites
	Account and permissions
	Development Environment
	Install Required Packages

	Implementation
	Step 1: Create table with GSIs using multi-attribute keys
	Code example

	Step 2: Insert data with native attributes
	Code example

	Step 3: Query TournamentRegionIndex Global Secondary Index with all partition key attributes
	Code example

	Step 4: Query Global Secondary Index sort keys left-to-right
	Code example

	Step 5: Use inequality conditions on Global Secondary Index sort keys
	Code example

	Step 6: Query PlayerMatchHistoryIndex Global Secondary Index with multi-attribute sort key
	Code example

	Pattern variations
	Time-series data with multi-attribute keys
	Code example

	E-commerce orders with multi-attribute keys
	Code example

	Hierarchical organization data
	Code example

	Sparse multi-attribute keys
	Code example

	SaaS multi-tenancy
	Code example

	Financial transactions
	Code example

	Complete example
	Code example
	Code example

	Additional resources

	Managing Global Secondary Indexes in DynamoDB
	Creating a table with Global Secondary Indexes
	Describing the Global Secondary Indexes on a table
	Adding a Global Secondary Index to an existing table
	Phases of index creation
	Adding a Global Secondary Index to a large table

	Deleting a Global Secondary Index
	Modifying a Global Secondary Index during creation

	Detecting and correcting index key violations in DynamoDB
	Downloading and running Violation Detector
	The Violation Detector configuration file
	Detection
	Correction

	Working with Global Secondary Indexes: Java
	Create a table with a Global Secondary Index
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes using the Amazon SDK for Java document API

	Working with Global Secondary Indexes: .NET
	Create a table with a Global Secondary Index
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index
	Example: Global Secondary Indexes using the Amazon SDK for .NET low-level API

	Working with Global Secondary Indexes in DynamoDB using Amazon CLI
	Create a table with a Global Secondary Index
	Add a Global Secondary Index to an existing table
	Describe a table with a Global Secondary Index
	Query a Global Secondary Index

	Local secondary indexes
	Scenario: Using a Local Secondary Index
	Attribute projections
	Creating a Local Secondary Index
	Reading data from a Local Secondary Index
	Querying a Local Secondary Index
	Scanning a Local Secondary Index

	Item writes and Local Secondary Indexes
	Provisioned throughput considerations for Local Secondary Indexes
	Read capacity units
	Write capacity units

	Storage considerations for Local Secondary Indexes
	Item collections in Local Secondary Indexes
	Item collection size limit
	Item collections and partitions

	Working with Local Secondary Indexes: Java
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes using the Java document API

	Working with Local Secondary Indexes: .NET
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index
	Example: Local Secondary Indexes using the Amazon SDK for .NET low-level API

	Working with Local Secondary Indexes in DynamoDB Amazon CLI
	Create a table with a Local Secondary Index
	Describe a table with a Local Secondary Index
	Query a Local Secondary Index

	Managing complex workflows with DynamoDB transactions
	Amazon DynamoDB Transactions: How it works
	TransactWriteItems API
	Idempotency
	Error handling for writing

	TransactGetItems API
	Error handling for reading

	Isolation levels for DynamoDB transactions
	SERIALIZABLE
	READ-COMMITTED
	Operation summary

	Transaction conflict handling in DynamoDB
	Using transactional APIs in DynamoDB Accelerator (DAX)
	Capacity management for transactions
	Best practices for transactions
	Using transactional APIs with global tables
	DynamoDB Transactions vs. the AWSLabs transactions client library

	Using IAM with DynamoDB transactions
	Example 1: Allow transactional operations
	Example 2: Allow only transactional operations
	Example 3: Allow nontransactional reads and writes, and block transactional reads and writes
	Example 4: Prevent information from being returned on a ConditionCheck failure

	DynamoDB transactions example
	Making an order
	Validate the customer
	Update the product status
	Create the order
	Run the transaction

	Reading the order details

	Change data capture with Amazon DynamoDB
	Streaming options for change data capture
	Using Kinesis Data Streams to capture changes to DynamoDB
	How Kinesis Data Streams works with DynamoDB
	Turning on a Kinesis data stream for your DynamoDB table
	Making changes to a Kinesis Data Streams destination on your DynamoDB table

	Getting started with Kinesis Data Streams for Amazon DynamoDB
	Creating an active Amazon Kinesis data stream
	Making changes to an active Amazon Kinesis data stream

	Using shards and metrics with DynamoDB Streams and Kinesis Data Streams
	Shard management considerations for Kinesis Data Streams
	Monitoring change data capture with Kinesis Data Streams

	Using IAM policies for Amazon Kinesis Data Streams and Amazon DynamoDB
	Example: Enable Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Update Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Disable Amazon Kinesis Data Streams for Amazon DynamoDB
	Example: Selectively apply permissions for Amazon Kinesis Data Streams for Amazon DynamoDB based on resource
	Using service-linked roles for Kinesis Data Streams for DynamoDB
	Service-linked role permissions for Kinesis Data Streams for DynamoDB
	Creating a service-linked role for Kinesis Data Streams for DynamoDB
	Editing a service-linked role for Kinesis Data Streams for DynamoDB
	Deleting a service-linked role for Kinesis Data Streams for DynamoDB

	Change data capture for DynamoDB Streams
	Endpoints for DynamoDB Streams
	Enabling a stream
	Reading and processing a stream
	Shard discovery
	Data retention limit for DynamoDB Streams

	DynamoDB Streams and Time to Live
	Using DynamoDB Streams and Lambda to archive TTL deleted items
	DynamoDB Time to Live event filter pattern
	Create an Amazon Lambda event source mapping

	Using the DynamoDB Streams Kinesis adapter to process stream records
	Migrating from KCL 1.x to KCL 3.x
	Overview
	Migration steps
	Step 1: Migrate the record processor
	Step 2: Migrate the record processor factory
	Step 3: Migrate the worker
	Step 4: KCL 3.x configuration overview and recommendations
	Configurations with update default value in KCL 3.x
	New configurations in KCL 3.x

	Step 5: Migrate from KCL 2.x to KCL 3.x

	Roll back to the previous KCL version
	Step 1: Run the KCL Migration Tool
	Parameters

	Step 2: Redeploy the code with the previous KCL version

	Roll forward to KCL 3.x after a rollback
	Step 1: Run the KCL Migration Tool
	Parameters

	Step 2: Deploy the code with KCL 3.x

	Walkthrough: DynamoDB Streams Kinesis adapter
	Step 1: Create DynamoDB tables
	Step 2: Generate update activity in source table
	Step 3: Process the stream
	Step 4: Ensure that both tables have identical contents
	Step 5: Clean up
	Complete program: DynamoDB Streams Kinesis adapter
	StreamsAdapterDemo.java
	StreamsRecordProcessor.java
	StreamsRecordProcessorFactory.java
	StreamsAdapterDemoHelper.java

	DynamoDB Streams low-level API: Java example
	DynamoDB Streams and Amazon Lambda triggers
	Tutorial #1: Using filters to process all events with Amazon DynamoDB and Amazon Lambda using the Amazon CLI
	Step 1: Create a DynamoDB table with a stream enabled
	Step 2: Create a Lambda execution role
	Step 3: Create an Amazon SNS topic
	Step 4: Create and test a Lambda function
	Step 5: Create and test a trigger

	Tutorial #2: Using filters to process some events with DynamoDB and Lambda
	Putting it all together - Amazon CloudFormation
	Putting it all together - CDK

	Best practices using DynamoDB Streams with Lambda

	DynamoDB Streams and Apache Flink

	In-memory acceleration with DynamoDB Accelerator (DAX)
	Use cases for DAX
	DAX usage notes
	DAX: How it works
	How DAX processes requests
	Read operations
	Write operations
	Other operations
	Request rate limiting

	Item cache
	Query cache

	DAX cluster components
	Nodes
	Clusters
	Regions and availability zones
	Parameter groups
	Security groups
	Cluster ARN
	Cluster endpoint
	Node endpoints
	Subnet groups
	Events
	Maintenance window

	Creating a DAX cluster
	Creating an IAM service role for DAX to access DynamoDB
	Permissions required to create a service role
	Troubleshooting

	Creating a DAX cluster using the Amazon CLI
	Step 1: Create an IAM service role for DAX to access DynamoDB using the Amazon CLI
	Step 2: Create a subnet group
	Step 3: Create a DAX cluster using the Amazon CLI
	Step 4: Configure security group inbound rules using the Amazon CLI

	Creating a DAX cluster using the Amazon Web Services Management Console
	Step 1: Create a subnet group using the Amazon Web Services Management Console
	Step 2: Create a DAX cluster using the Amazon Web Services Management Console
	Step 3: Configure security group inbound rules using the Amazon Web Services Management Console

	DAX and DynamoDB consistency models
	Consistency among DAX cluster nodes
	DAX item cache behavior
	Consistency of reads
	Consistency of writes
	How DAX processes writes

	DAX query cache behavior
	Consistency of query-update-query

	Strongly consistent and transactional reads
	Negative caching
	Strategies for writes
	Write-through
	Write-around

	Developing with the DynamoDB Accelerator (DAX) client
	Tutorial: Running a sample application using DynamoDB Accelerator (DAX)
	Step 1: Launch an Amazon EC2 instance
	Step 2: Create a user and policy
	Sign up for an Amazon Web Services account
	Secure IAM users

	Step 3: Configure an Amazon EC2 instance
	Step 4: Run a sample application
	Node.js and DAX
	Default client configuration for Node.js
	Migrating to DAX Node.js SDK V3
	V2 Node.js DAX usage
	V3 Node.js DAX usage

	TryDax sample code
	Features not in parity with Amazon SDK V3
	TryDax.js

	DAX SDK for Go
	Features not in parity with Amazon SDK for Go V2
	Default client configuration for Go
	DAX Go SDK Client Defaults
	Client creation

	Migrating to DAX Go SDK V2
	V1 DAX Go SDK usage
	V2 DAX Go SDK usage

	Java and DAX
	Using the client as a Maven dependency
	TryDax sample code
	SDK metrics
	TryDax.java

	.NET and DAX
	01-CreateTable.cs
	02-Write-Data.cs
	03-GetItem-Test.cs
	04-Query-Test.cs
	05-Scan-Test.cs
	06-DeleteTable.cs

	Python and DAX
	01-create-table.py
	02-write-data.py
	03-getitem-test.py
	04-query-test.py
	05-scan-test.py
	06-delete-table.py

	Modifying an existing application to use DAX

	Managing DAX clusters
	IAM permissions for managing a DAX cluster
	Scaling a DAX cluster
	Horizontal scaling
	Vertical scaling

	Customizing DAX cluster settings
	Configuring TTL settings
	Tagging support for DAX
	Using the Amazon Web Services Management Console
	Using the Amazon CLI

	Amazon CloudTrail integration
	Deleting a DAX cluster

	Monitoring DynamoDB Accelerator
	Monitoring tools for DynamoDB Accelerator
	Automated monitoring tools
	Manual monitoring tools

	Monitoring with Amazon CloudWatch
	How do I use DAX metrics?
	Viewing DAX metrics and dimensions
	DAX metrics and dimensions
	DAX Metrics
	Dimensions for DAX Metrics

	Creating CloudWatch alarms to monitor DAX
	How can I be notified of query cache misses?
	How can I be notified if requests cause an internal error in the cluster?

	Production monitoring

	Logging DAX operations using Amazon CloudTrail

	DAX T3/T2 burstable instances
	DAX T2 instance family
	DAX T3 instance family

	DAX access control
	IAM service role for DAX
	IAM policy to allow DAX cluster access
	Case study: Accessing DynamoDB and DAX
	Access to DynamoDB, but no access with DAX
	Read-only access to DynamoDB (only)
	Read/write access to DynamoDB (only)

	Access to DynamoDB and to DAX
	Read-only access to DynamoDB and read-only access to DAX
	Read/write access to DynamoDB and read-only with DAX
	Read/write access to DynamoDB and read/write access to DAX

	Access to DynamoDB via DAX, but no direct access to DynamoDB

	DAX encryption at rest
	Enabling encryption at rest using the Amazon Web Services Management Console

	DAX encryption in transit
	Using service-linked IAM roles for DAX
	Service-linked role permissions for DAX
	Creating a service-linked role for DAX
	Editing a service-linked role for DAX
	Deleting a service-linked role for DAX
	Cleaning up a service-linked role
	Deleting all of your DAX clusters
	Deleting the service-linked role

	Accessing DAX across Amazon accounts
	Set up IAM
	Set up a VPC
	Modify the DAX client to allow cross-account access

	DAX cluster sizing guide
	Overview
	Estimating traffic
	Estimating cache hit rate
	Estimating read and write capacity units

	Load testing

	Data modeling for DynamoDB tables
	Item collections - how to model one-to-many relationships in DynamoDB
	Speed up queries by organizing your data with item collections

	Data Modeling foundations in DynamoDB
	Single table design foundation
	Multiple table design foundation

	Data modeling building blocks in DynamoDB
	Composite sort key building block
	Multi-tenancy building block
	Sparse index building block
	Time to live building block
	Time to live for archival building block
	Vertical partitioning building block
	Write sharding building block

	Data modeling schema design packages in DynamoDB
	Prerequisites
	Social network schema design in DynamoDB
	Social network business use case
	Social network entity relationship diagram
	Social network access patterns
	Social network schema design evolution
	Social network final schema
	Using NoSQL Workbench with this schema design

	Gaming profile schema design in DynamoDB
	Gaming profile business use case
	Gaming profile entity relationship diagram
	Gaming profile access patterns
	Gaming profile schema design evolution
	Gaming profile final schema
	Using NoSQL Workbench with this schema design

	Complaint management system schema design in DynamoDB
	Complaint management system business use case
	Complaint management system architecture diagram
	Complaint management system entity relationship diagram
	Complaint management system access patterns
	Complaint management system schema design evolution
	Complaint management system final schema
	Using NoSQL Workbench with this schema design

	Recurring payments schema design in DynamoDB
	Recurring payments business use case
	Recurring payments entity relationship diagram
	Recurring payments system access patterns
	Recurring payments schema design
	Recurring payments final schema
	Using NoSQL Workbench with this schema design

	Monitoring device status updates in DynamoDB
	Use case
	Entity relationship diagram
	Access patterns
	Schema design evolution
	Final schema
	Using NoSQL Workbench with this schema design

	Using DynamoDB as a data store for an online shop
	Use case
	Entity relationship diagram
	Access patterns
	Schema design evolution
	Online shop final schema

	Using NoSQL Workbench with this schema design

	Best practices for modeling relational data in DynamoDB
	Traditional relational database models
	How DynamoDB eliminates the need for JOIN operations
	How DynamoDB transactions eliminate overhead to the write process
	First steps for modeling relational data in DynamoDB
	Example of modeling relational data in DynamoDB

	Migrating to DynamoDB from a relational database
	Reasons to migrate to DynamoDB
	Considerations when migrating a relational database to DynamoDB
	Understanding how a migration to DynamoDB works
	Tools to help migrate to DynamoDB
	Choosing the appropriate strategy to migrate to DynamoDB
	Performing an offline migration to DynamoDB
	Performing a hybrid migration to DynamoDB
	Performing an online migration to DynamoDB by migrating each table 1:1
	Perform an online migration to DynamoDB using a custom staging table

	NoSQL Workbench for DynamoDB
	Download NoSQL Workbench for DynamoDB
	Install NoSQL Workbench for DynamoDB
	Building data models with NoSQL Workbench
	Creating a new data model
	Importing an existing data model
	Exporting a data model
	Editing an existing data model

	Visualizing data access patterns
	Adding sample data to a data model
	Importing sample data from a CSV file
	Viewing data access patterns
	Viewing all tables in a data model using aggregate view
	Committing a data model to DynamoDB

	Exploring datasets and building operations with NoSQL Workbench
	Connecting to live datasets
	Building complex operations
	Building PartiQL statements
	Singleton statements
	Transactions
	Batch

	Building API operations
	Delete table
	Delete GSI
	Create table
	Create GSI
	Update table
	Update GSI
	Put item
	Update item
	Delete item
	Duplicate item
	Query
	Scan
	TransactGetItems
	TransactWriteItems

	Cloning tables with NoSQL Workbench
	Exporting data to a CSV file

	Sample data models for NoSQL Workbench
	Employee data model
	Discussion forum data model
	Music library data model
	Ski resort data model
	Credit card offers data model
	Bookmarks data model

	Release history for NoSQL Workbench

	Backup and restore for DynamoDB
	Point-in-time backups for DynamoDB
	Before you begin
	Enable point-in-time recovery in DynamoDB
	Enabling point-in-time recovery
	Enable PITR (console)
	Enable PITR (Amazon CLI)
	Enable PITR (Amazon CloudFormation)
	Enable PITR (API)
	Recovery Period
	Edit PITR
	Delete a table with PITR enabled

	Using on-demand DynamoDB backup and restore
	Backing up and restoring DynamoDB tables with DynamoDB: How it works
	Backups
	Restores

	Backing up a DynamoDB table
	Creating a table backup (console)
	Creating a table backup (Amazon CLI)

	Restoring a DynamoDB table from a backup
	Restoring a table from a backup (console)
	Restoring a table from a backup (Amazon CLI)

	Deleting a DynamoDB table backup
	Deleting a table backup (console)
	Deleting a table backup (Amazon CLI)

	Using IAM with DynamoDB backup and restore
	Example 1: Allow the CreateBackup and RestoreTableFromBackup actions
	Example 2: Allow CreateBackup and deny RestoreTableFromBackup
	Example 3: Allow ListBackups and deny CreateBackup and RestoreTableFromBackup
	Example 4: Allow ListBackups and deny DeleteBackup
	Example 5: Allow RestoreTableFromBackup and DescribeBackup for all resources and deny DeleteBackup for a specific backup
	Example 6: Allow CreateBackup for a specific table
	Example 7: Allow ListBackups
	Example 8: Allow access to Amazon Backup features
	Example 9: Deny RestoreTableToPointInTime for a Specific Source Table
	Example 10: Deny RestoreTableFromBackup for all Backups for a Specific Source Table

	Understanding Amazon DynamoDB billing for backups
	How it works
	DynamoDB backup billing example

	Restore a table in DynamoDB
	Restoring a table using point-in-time recovery
	Restoring a DynamoDB table to a point in time
	Restoring a DynamoDB table to a point in time (console)
	Restoring a table to a point in time (Amazon CLI)

	Using Amazon Backup with DynamoDB
	Backing up and restoring DynamoDB tables with Amazon Backup: How it works
	Backups
	Restores

	Creating backups of DynamoDB tables with Amazon Backup
	Turning on Amazon Backup features
	On-demand backups
	Scheduled backups

	Copying a backup of a DynamoDB table with Amazon Backup
	Restoring a backup of a DynamoDB table from Amazon Backup
	Restoring a DynamoDB table from Amazon Backup
	Restoring a DynamoDB table to another Region or account

	Deleting a backup of a DynamoDB table with Amazon Backup
	Usage note differences between on-demand backups managed by Amazon Backup and DynamoDB

	Code examples for DynamoDB using Amazon SDKs
	Basic examples for DynamoDB using Amazon SDKs
	Hello DynamoDB
	Learn the basics of DynamoDB with an Amazon SDK
	Actions for DynamoDB using Amazon SDKs
	Use BatchExecuteStatement with an Amazon SDK
	Use BatchGetItem with an Amazon SDK or CLI
	Use BatchWriteItem with an Amazon SDK or CLI
	Use CreateTable with an Amazon SDK or CLI
	Use DeleteItem with an Amazon SDK or CLI
	Use DeleteTable with an Amazon SDK or CLI
	Use DescribeTable with an Amazon SDK or CLI
	Use DescribeTimeToLive with an Amazon SDK or CLI
	Use ExecuteStatement with an Amazon SDK
	Use GetItem with an Amazon SDK or CLI
	Use ListTables with an Amazon SDK or CLI
	Use PutItem with an Amazon SDK or CLI
	Use Query with an Amazon SDK or CLI
	Use Scan with an Amazon SDK or CLI
	Use UpdateItem with an Amazon SDK or CLI
	Use UpdateTable with an Amazon SDK or CLI
	Use UpdateTimeToLive with an Amazon SDK or CLI

	Scenarios for DynamoDB using Amazon SDKs
	Accelerate DynamoDB reads with DAX using an Amazon SDK
	Work with advanced DynamoDB Global Secondary Index scenarios using Amazon Command Line Interface v2
	Build an application to submit data to a DynamoDB table
	Compare multiple values with a single attribute in DynamoDB with an Amazon SDK
	Conditionally update a DynamoDB item with a TTL using an Amazon SDK
	Connect to a local DynamoDB instance using an Amazon SDK
	Count expression operators in DynamoDB with an Amazon SDK
	Create an API Gateway REST API to track COVID-19 data
	Create a messenger application with Step Functions
	Create a photo asset management application that lets users manage photos using labels
	Create a DynamoDB table with a Global Secondary Index using the Amazon SDK
	Create a DynamoDB table with warm throughput setting using an Amazon SDK
	Create a web application to track DynamoDB data
	Create a websocket chat application with API Gateway
	Create a DynamoDB item with a TTL using an Amazon SDK
	Create and manage DynamoDB global tables with Multi-Region Strong Consistency using an Amazon SDK
	Create and manage DynamoDB global tables demonstrating MREC using an Amazon SDK
	Delete DynamoDB data using PartiQL DELETE statements with an Amazon SDK
	Detect PPE in images with Amazon Rekognition using an Amazon SDK
	Insert DynamoDB data using PartiQL INSERT statements with an Amazon SDK
	Invoke a Lambda function from a browser
	Manage DynamoDB Global Secondary Indexes using Amazon Command Line Interface v2
	Manage DynamoDB resource-based policies using Amazon Command Line Interface v2
	Monitor performance of Amazon DynamoDB using an Amazon SDK
	Perform advanced DynamoDB query operations using an Amazon SDK
	Perform list operations in DynamoDB with an Amazon SDK
	Perform map operations in DynamoDB with an Amazon SDK
	Perform set operations in DynamoDB with an Amazon SDK
	Query a DynamoDB table by using batches of PartiQL statements and an Amazon SDK
	Query a DynamoDB table using PartiQL and an Amazon SDK
	Query a DynamoDB table using a Global Secondary Index with an Amazon SDK
	Query a DynamoDB table using a begins_with condition with an Amazon SDK
	Query a DynamoDB table using a date range in the sort key with an Amazon SDK
	Query a DynamoDB table with a complex filter expression with an Amazon SDK
	Query a DynamoDB table with a dynamic filter expression with an Amazon SDK
	Query a DynamoDB table with a filter expression and limit with an Amazon SDK
	Query a DynamoDB table with nested attributes using an Amazon SDK
	Query a DynamoDB table with pagination using an Amazon SDK
	Query a DynamoDB table with strongly consistent reads using an Amazon SDK
	Query DynamoDB data using PartiQL SELECT statements with an Amazon SDK
	Query a DynamoDB table for TTL items using an Amazon SDK
	Query DynamoDB tables using date and time patterns with an Amazon SDK
	Save EXIF and other image information using an Amazon SDK
	Set up Attribute-Based Access Control for DynamoDB using Amazon Command Line Interface v2
	Understand update expression order in DynamoDB with an Amazon SDK
	Update a DynamoDB table setting with warm throughput using an Amazon SDK
	Update a DynamoDB item with a TTL using an Amazon SDK
	Update DynamoDB data using PartiQL UPDATE statements with an Amazon SDK
	Use API Gateway to invoke a Lambda function
	Use Step Functions to invoke Lambda functions
	Use a document model for DynamoDB using an Amazon SDK
	Use a high-level object persistence model for DynamoDB using an Amazon SDK
	Use atomic counter operations in DynamoDB with an Amazon SDK
	Use conditional operations in DynamoDB with an Amazon SDK
	Use expression attribute names in DynamoDB with an Amazon SDK
	Use scheduled events to invoke a Lambda function
	Work with DynamoDB Local Secondary Indexes using Amazon Command Line Interface v2
	Work with DynamoDB Streams and Time-to-Live using Amazon Command Line Interface v2
	Work with DynamoDB global tables and multi-Region replication with eventual consistency (MREC) using Amazon Command Line Interface v2
	Work with DynamoDB resource tagging using Amazon Command Line Interface v2
	Work with DynamoDB table encryption using Amazon Command Line Interface v2

	Serverless examples for DynamoDB
	Invoke a Lambda function from a DynamoDB trigger
	Reporting batch item failures for Lambda functions with a DynamoDB trigger

	Amazon community contributions for DynamoDB
	Build and test a serverless application

	Security and compliance in Amazon DynamoDB
	Amazon managed policies for Amazon DynamoDB
	Amazon managed policy: DynamoDBReplicationServiceRolePolicy
	Amazon managed policy: AmazonDynamoDBFullAccess_v2
	Amazon managed policy: AmazonDynamoDBReadOnlyAccess
	DynamoDB updates to Amazon managed policies

	Using resource-based policies for DynamoDB
	Create a table with a resource-based policy
	Amazon CLI
	Amazon Web Services Management Console
	Amazon CloudFormation template

	Attach a policy to an DynamoDB existing table
	Amazon CLI example to attach a new policy
	Amazon CLI example to conditionally update an existing policy
	Amazon Web Services Management Console
	Amazon SDK for Java 2.x

	Attach a resource-based policy to a DynamoDB stream
	Amazon CLI
	Amazon Web Services Management Console

	Remove a resource-based policy from a DynamoDB table
	Amazon CLI
	Amazon Web Services Management Console

	Cross-account access with resource-based policies in DynamoDB
	Share access with cross-account Amazon Lambda functions

	Blocking public access with resource-based policies in DynamoDB
	DynamoDB API operations supported by resource-based policies
	Data plane API operations
	PartiQL API operations
	Control plane API operations
	Version 2019.11.21 (Current) global tables API operations
	Version 2017.11.29 (Legacy) global tables API operations
	Tags API operations
	Backup and Restore API operations
	Continuous Backup/Restore (PITR) API operations
	Contributor Insights API operations
	Export API operations
	Import API operations
	Amazon Kinesis Data Streams API operations
	Resource-based policy API operations
	Time-to-Live API operations
	Other API operations
	DynamoDB Streams API operations

	Authorization with IAM identity-based policies and DynamoDB resource-based policies
	DynamoDB resource-based policy examples
	Resource-based policy for a table
	Resource-based policy for a stream
	Resource-based policy for access to perform all actions on specified resources
	Resource-based policy for cross-account access
	Resource-based policy with IP address conditions
	Resource-based policy using an IAM role

	DynamoDB resource-based policy considerations
	DynamoDB resource-based policy best practices
	Simplify access control to DynamoDB resources
	Protect your DynamoDB resources with resource-based policies
	Apply least-privilege permissions
	Analyze cross-account access activity for generating least-privilege policies
	Use IAM Access Analyzer to generate least-privilege policies

	Using attribute-based access control with DynamoDB
	Why should I use ABAC?
	Condition keys to implement ABAC with DynamoDB
	Considerations for using ABAC with DynamoDB
	Enabling ABAC in DynamoDB
	Attribute-based access control – not enabled
	Auditing your policies before enabling ABAC
	IAM permissions required to enable ABAC
	Enabling ABAC in console

	Using ABAC with DynamoDB tables and indexes
	Step 1: Add tags to a DynamoDB table
	Step 2: Create an IAM role with a policy including tag-based conditions
	Step 3: Test allowed permissions

	Examples for using ABAC with DynamoDB tables and indexes
	Example 1: Allow an action using aws:ResourceTag
	Example 2: Allow an action using aws:RequestTag
	Example 3: Deny an action using aws:TagKeys

	Troubleshooting common ABAC errors for DynamoDB tables and indexes
	Service-specific condition keys in policies result in an error
	Unable to opt out of ABAC

	Data protection in DynamoDB
	DynamoDB encryption at rest
	DynamoDB encryption at rest: How it works
	Amazon owned keys
	Amazon managed keys
	Customer managed keys
	Notes on using Amazon managed keys

	DynamoDB encryption at rest usage notes
	All table data is encrypted
	Encryption types
	Using KMS keys and data keys
	Authorizing use of your KMS key
	Key policy for an Amazon managed key
	Key policy for a customer managed key
	Using grants to authorize DynamoDB

	DynamoDB encryption context
	Monitoring DynamoDB interaction with Amazon KMS

	Managing encrypted tables in DynamoDB
	Specifying the encryption key for a new table
	Creating an encrypted table (console)
	Creating an encrypted table (Amazon CLI)

	Updating an encryption key
	Updating an encryption key (console)
	Updating an encryption key (Amazon CLI)

	Securing DynamoDB connections using VPC endpoints and IAM policies"
	Required policy for endpoints
	Traffic between service and on-premises clients and applications
	Traffic between Amazon resources in the same Region

	Amazon Identity and Access Management (IAM) and DynamoDB
	Identity and Access Management for Amazon DynamoDB
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Other policy types
	Multiple policy types

	How Amazon DynamoDB works with IAM
	Identity-based policies for DynamoDB
	Identity-based policy examples for DynamoDB

	Resource-based policies within DynamoDB
	Policy actions for DynamoDB
	Policy resources for DynamoDB
	Policy condition keys for DynamoDB
	Access control lists (ACLs) in DynamoDB
	Attribute-based access control (ABAC) with DynamoDB
	Using Temporary credentials with DynamoDB
	Cross-service principal permissions for DynamoDB
	Service roles for DynamoDB
	Service-linked roles for DynamoDB
	Supported service-linked roles in DynamoDB

	Identity-based policy examples for Amazon DynamoDB
	Policy best practices
	Using the DynamoDB console
	Allow users to view their own permissions
	Using identity-based policies with Amazon DynamoDB
	IAM permissions required to use the Amazon DynamoDB console
	Amazon managed (predefined) IAM policies for Amazon DynamoDB
	Customer managed policy examples
	IAM policy to grant permissions to all DynamoDB actions on a table
	IAM policy to grant read-only permissions on items in a DynamoDB table
	IAM policy to grant access to a specific DynamoDB table and its indexes
	IAM policy to read, write, update, and delete access on a DynamoDB table
	IAM policy to separate DynamoDB environments in the same Amazon account
	IAM policy to prevent the purchase of DynamoDB reserved capacity
	IAM policy to grant read access for a DynamoDB stream only (not for the table)
	IAM policy to allow an Amazon Lambda function to access DynamoDB stream records
	IAM policy for read and write access to a DynamoDB Accelerator (DAX) cluster

	Troubleshooting Amazon DynamoDB identity and access
	I am not authorized to perform an action in DynamoDB
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my Amazon Web Services account to access my DynamoDB resources

	IAM policy to prevent the purchase of DynamoDB reserved capacity

	Using IAM policy conditions for fine-grained access control
	Overview
	Permissions use case

	Understanding Fine-Grained Access Control in DynamoDB
	Specifying conditions: Using condition keys
	Ensuring attribute-based restrictions are enforced
	Limiting user access
	Example policies: Using conditions for fine-grained access control
	Example 1. Basic partition key-based access control with attribute restrictions
	Example 2: Grant permissions that limit access to items with a specific partition key value
	Example 3: Grant permissions that limit access to specific attributes in a table
	Example 4: Grant permissions to prevent updates on certain attributes
	Example 5: Grant permissions to query only projected attributes in an index
	Example 6: Grant permissions to limit access to certain attributes and partition key values
	Example 7: Deny permissions to limit access to specific attributes in a table

	Related topics
	Using web identity federation
	Additional resources for web identity federation
	Example policy for web identity federation
	Preparing to use web identity federation
	Generating an IAM policy using the DynamoDB console

	Writing your app to use web identity federation

	DynamoDB API permissions: Actions, resources, and conditions reference
	Related topics

	Compliance validation by industry for DynamoDB
	Resilience and disaster recovery in Amazon DynamoDB
	Infrastructure security in Amazon DynamoDB
	Using Amazon VPC endpoints to access DynamoDB
	Sharing Amazon VPC endpoints and DynamoDB
	Tutorial: Using a VPC endpoint for DynamoDB
	Step 1: Launch an Amazon EC2 instance
	Step 2: Configure your Amazon EC2 instance
	Step 3: Create a VPC endpoint for DynamoDB
	Step 4: (Optional) Clean up

	Amazon PrivateLink for DynamoDB
	Types of Amazon VPC endpoints for Amazon DynamoDB
	Considerations when using Amazon PrivateLink for Amazon DynamoDB
	Creating an Amazon VPC endpoint
	Accessing Amazon DynamoDB interface endpoints
	Accessing DynamoDB tables and control API operations from DynamoDB interface endpoints
	Amazon CLI examples
	Amazon SDK examples

	Updating an on-premises DNS configuration
	Using interface endpoints to access DynamoDB without a gateway endpoint or an internet gateway in the Amazon VPC
	Using gateway endpoints and interface endpoints together in the same Amazon VPC to access DynamoDB

	Creating an Amazon VPC endpoint policy for DynamoDB
	Example: Restricting access to a specific table from an Amazon VPC endpoint

	Using DynamoDB endpoints with Amazon Web Services Management Console Private Access
	Amazon PrivateLink for DynamoDB Streams
	Considerations when using Amazon PrivateLink for Amazon DynamoDB Streams
	Creating an Amazon VPC endpoint
	Accessing Amazon DynamoDB Streams interface endpoints
	Accessing DynamoDB Streams API operations from DynamoDB Streams interface endpoints
	Amazon CLI examples

	Amazon SDK examples
	Creating an Amazon VPC endpoint policy for DynamoDB Streams
	Example: Restricting access to a specific stream from an Amazon VPC endpoint

	Using DynamoDB endpoints with Amazon Web Services Management Console Private Access

	Using Amazon PrivateLink for DynamoDB Accelerator (DAX)
	Considerations when using Amazon PrivateLink for DynamoDB Accelerator (DAX)
	How Amazon PrivateLink works with DAX
	Creating Interface Endpoints for DAX
	Additional resources

	Configuration and vulnerability analysis in Amazon DynamoDB
	Security best practices for Amazon DynamoDB
	DynamoDB preventative security best practices
	DynamoDB detective security best practices

	Monitoring and logging in DynamoDB
	Monitoring plan
	Performance baseline
	Integrated services
	Automated monitoring tools
	Monitoring metrics in DynamoDB with Amazon CloudWatch
	How do I use DynamoDB metrics?
	Viewing metrics in the CloudWatch console
	Viewing metrics in the Amazon CLI
	DynamoDB Metrics and dimensions
	Viewing metrics and dimensions
	DynamoDB metrics
	AccountMaxReads
	AccountMaxTableLevelReads
	AccountMaxTableLevelWrites
	AccountMaxWrites
	AccountProvisionedReadCapacityUtilization
	AccountProvisionedWriteCapacityUtilization
	AgeOfOldestUnreplicatedRecord
	ConditionalCheckFailedRequests
	ConsumedChangeDataCaptureUnits
	ConsumedReadCapacityUnits
	ConsumedWriteCapacityUnits
	FailedToReplicateRecordCount
	MaxProvisionedTableReadCapacityUtilization
	MaxProvisionedTableWriteCapacityUtilization
	OnDemandMaxReadRequestUnits
	OnDemandMaxWriteRequestUnits
	OnlineIndexConsumedWriteCapacity
	OnlineIndexPercentageProgress
	OnlineIndexThrottleEvents
	PendingReplicationCount
	ProvisionedReadCapacityUnits
	ProvisionedWriteCapacityUnits
	ReadAccountLimitThrottleEvents
	ReadKeyRangeThroughputThrottleEvents
	ReadMaxOnDemandThroughputThrottleEvents
	ReadProvisionedThroughputThrottleEvents
	ReadThrottleEvents
	ReplicationLatency
	ReturnedBytes
	ReturnedItemCount
	ReturnedRecordsCount
	SuccessfulRequestLatency
	SystemErrors
	TimeToLiveDeletedItemCount
	ThrottledPutRecordCount
	ThrottledRequests
	TransactionConflict
	UserErrors
	WriteAccountLimitThrottleEvents
	WriteKeyRangeThroughputThrottleEvents
	WriteMaxOnDemandThroughputThrottleEvents
	WriteProvisionedThroughputThrottleEvents
	WriteThrottleEvents
	FaultInjectionServiceInducedErrors

	Understanding metrics and dimensions for DynamoDB
	DelegatedOperation
	GlobalSecondaryIndexName
	Operation
	OperationType
	Verb
	ReceivingRegion
	StreamLabel
	TableName

	Creating CloudWatch alarms in DynamoDB
	Creating an alarm in the CloudWatch console
	Creating an alarm in the Amazon CLI
	More Amazon CLI examples

	Logging DynamoDB operations by using Amazon CloudTrail
	DynamoDB information in CloudTrail
	Control plane events in CloudTrail
	DynamoDB data plane events in CloudTrail

	Understanding DynamoDB log file entries
	UpdateTable
	DeleteTable
	CreateCluster
	PutItem (Successful)
	UpdateItem (Unsuccessful)
	TransactWriteItems (Successful)
	TransactWriteItems (With TransactionCanceledException)
	ExecuteStatement
	BatchExecuteStatement
	GetRecords

	Analyzing data access using CloudWatch contributor insights for DynamoDB
	CloudWatch contributor insights for DynamoDB: How it works
	CloudWatch contributor insights modes for DynamoDB
	Throttled keys mode
	Accessed and throttled keys mode
	Switching between modes

	CloudWatch contributor insights for DynamoDB rules
	Rules for accessed and throttled keys mode
	Rules for throttled keys mode

	Understanding CloudWatch contributor insights for DynamoDB graphs
	Graph availability by mode
	Most accessed items
	Most throttled items
	Report examples

	Interactions with other DynamoDB features
	Global tables
	DynamoDB Accelerator (DAX)
	Encryption at rest
	Fine-grained access control
	Access control

	CloudWatch contributor insights for DynamoDB billing
	Billing by mode
	Billing examples
	Common billing factors

	Getting started with CloudWatch Contributor Insights for DynamoDB
	Choosing a Contributor Insights mode
	Using Contributor Insights (console)
	Switching between modes
	Creating CloudWatch alarms

	Using Contributor Insights (Amazon CLI)
	Basic operations with default mode
	Enabling throttled keys mode
	Switching between modes
	Managing Contributor Insights
	Example responses
	Accessed and throttled keys mode response
	Throttled keys mode response

	Using IAM with CloudWatch contributor insights for DynamoDB
	Example: Enable or disable CloudWatch contributor insights for DynamoDB
	Example: Retrieve CloudWatch contributor insights rule report
	Example: Selectively apply CloudWatch contributor insights for DynamoDB permissions based on resource
	Using service-linked roles for CloudWatch Contributor Insights for DynamoDB
	Service-linked role permissions for CloudWatch Contributor Insights for DynamoDB
	Creating a service-linked role for CloudWatch Contributor Insights for DynamoDB
	Editing a service-linked role for CloudWatch Contributor Insights for DynamoDB
	Deleting a service-linked role for CloudWatch Contributor Insights for DynamoDB

	Best practices for designing and architecting with DynamoDB
	NoSQL design for DynamoDB
	Differences between relational data design and NoSQL
	Two key concepts for NoSQL design
	Approaching NoSQL design
	NoSQL Workbench for DynamoDB

	Using the DynamoDB Well-Architected Lens to optimize your DynamoDB workload
	Optimizing costs on DynamoDB tables
	Evaluate your costs at the table level
	How to view the costs of a single DynamoDB table
	Cost Explorer's default view
	How to use and apply table tags in Cost Explorer

	Evaluate your DynamoDB table's capacity mode
	What table capacity modes are available
	When to select on-demand capacity mode
	When to select provisioned capacity mode
	Additional factors to consider when choosing a table capacity mode

	Evaluate your DynamoDB table's auto scaling settings
	Understanding your auto scaling settings
	How to identify tables with low target utilization (<=50%)
	How to address workloads with seasonal variance
	How to address spiky workloads with unknown patterns
	How to address workloads with linked applications

	Evaluate your DynamoDB table class selection
	What table classes are available
	When to select the DynamoDB Standard table class
	When to select DynamoDB Standard-IA table class
	Additional factors to consider when choosing a table class

	Identify your unused resources in DynamoDB
	How to identify unused resources
	Identifying unused table resources
	Cleaning up unused table resources
	Identifying unused GSI resources
	Cleaning up unused GSI resources
	Cleaning up unused global tables
	Cleaning up unused backups or point-in-time recovery (PITR)

	Evaluate your DynamoDB table usage patterns
	Perform fewer strongly-consistent read operations
	Perform fewer transactions for read operations
	Perform fewer scans
	Shorten attribute names
	Enable Time to Live (TTL)
	Replace global tables with cross-Region backups

	Evaluate your DynamoDB streams usage
	Optimizing costs for DynamoDB Streams
	Optimizing costs for Kinesis Data Streams
	Cost optimization strategies for both types of Streams usage

	Evaluate your provisioned capacity for right-sized provisioning in your DynamoDB table
	How to retrieve consumption metrics on your DynamoDB tables
	How to identify under-provisioned DynamoDB tables
	How to identify over-provisioned DynamoDB tables

	Conducting the Amazon DynamoDB Well-Architected Lens review
	The pillars of the Amazon DynamoDB Well-Architected Lens

	Best practices for designing and using partition keys effectively in DynamoDB
	Designing partition keys to distribute your workload in DynamoDB
	Using write sharding to distribute workloads evenly in your DynamoDB table
	Sharding using random suffixes
	Sharding using calculated suffixes

	Distributing write activity efficiently during data upload in DynamoDB

	Best practices for using sort keys to organize data in DynamoDB
	Using sort keys for version control

	Best practices for using secondary indexes in DynamoDB
	General guidelines for secondary indexes in DynamoDB
	Use indexes efficiently
	Choose projections carefully
	Optimize frequent queries to avoid fetches
	Be aware of item-collection size limits when creating local secondary indexes

	Take advantage of sparse indexes
	Examples of sparse indexes in DynamoDB

	Using Global Secondary Indexes for materialized aggregation queries in DynamoDB
	Overloading Global Secondary Indexes in DynamoDB
	Using Global Secondary Index write sharding for selective table queries in DynamoDB
	Pattern design
	Sharding strategy
	Querying the sharded GSI
	Parallel query execution considerations
	Code example

	Using Global Secondary Indexes to create an eventually consistent replica in DynamoDB

	Best practices for storing large items and attributes in DynamoDB
	Compressing large attribute values
	Vertical partitioning
	Storing large attribute values in Amazon S3

	Best practices for handling time series data in DynamoDB
	Design pattern for time series data
	Time series table examples

	Best practices for managing many-to-many relationships in DynamoDB tables
	Adjacency list design pattern
	Materialized graph pattern

	Best practices for querying and scanning data in DynamoDB
	Performance considerations for scans
	Avoiding sudden spikes in read activity
	Taking advantage of parallel scans
	Choosing TotalSegments

	Best practices for DynamoDB table design
	Using DynamoDB global tables
	Key facts about DynamoDB global table design
	Consistency modes

	Key facts about MREC
	Key facts about MRSC
	MREC DynamoDB global table use cases
	Write modes with DynamoDB global tables
	Write to any Region mode (no primary)
	Write to one Region (single primary)
	Write to your Region (mixed primary)

	Routing strategies in DynamoDB
	Client-driven request routing
	Compute-layer request routing
	Route 53 request routing
	Global Accelerator request routing

	Evacuation processes
	Evacuating a live Region
	Evacuating an offline Region

	Throughput capacity planning for DynamoDB global tables
	Preparation checklist for DynamoDB global tables
	Frequently Asked Questions (FAQ) for deploying global tables

	Conclusion and resources

	Best practices for managing the control plane in DynamoDB
	Best practices for using bulk data operations in DynamoDB
	Conditional batch update
	Code examples

	Efficient bulk operations
	Using the pattern

	Best practices for implementing version control in DynamoDB
	When to use this pattern
	Tradeoffs

	Pattern design
	Using the pattern

	Best practices for understanding your Amazon billing and usage reports in DynamoDB
	Throughput Capacity
	Streams
	Storage
	Backup and Restore
	Amazon Backup
	Export and Import

	Data Transfer
	CloudWatch Contributor Insights
	DynamoDB Accelerator (DAX)

	Migrating a DynamoDB table from one account to another
	Migrate a table using Amazon Backup for cross-account backup and restore
	Step 1: Enable advanced features for DynamoDB and cross-account backup
	Step 2: Create a backup vault in the source account and target account
	Step 3: Create a DynamoDB table backup in the source account
	Step 4: Copy the DynamoDB table backup from the source account to the target account
	Step 5: Restore the DynamoDB table backup in the target account

	Migrate a table using export to S3 and import from S3
	Requesting a table export to Amazon S3
	Requesting a table import from Amazon S3
	Keeping tables in sync during migration

	Prescriptive guidance to integrate DAX with DynamoDB applications
	Evaluating the suitability of DAX for your use cases
	When and why to choose DAX
	When not to use DAX

	Configuring your DAX client
	Best practices

	Configuring your DAX cluster
	DAX pricing
	Item cache and query cache
	Selecting TTL setting for the caches
	Understand your data access patterns
	Evaluate your application's performance requirements
	Analyze cache eviction and memory usage
	Use metrics and monitoring to adjust TTL
	Consider business requirements and compliance
	Cache behavior if you set TTL to zero

	Caching multiple tables with a DAX cluster
	Considerations for using DAX with multiple tables

	Data replication in DAX and DynamoDB global tables
	DAX Region availability
	DAX caching behavior

	Sizing your DAX cluster
	Planning availability
	Planning write throughput
	Planning read throughput
	Planning dataset size
	Calculating approximate cluster capacity requirements
	Approximating cluster throughput capacity by node type
	Scaling write capacity in DAX clusters

	Deploying a cluster
	Configure networks
	Configure security
	Parameter group
	Maintenance window

	Managing cluster operations
	Scaling a cluster horizontally
	Horizontal scaling considerations

	Scaling a cluster vertically

	Monitoring DAX
	Scaling your DAX cluster using monitoring data

	Using DynamoDB with other Amazon services
	Configuring Amazon credentials using Amazon Cognito for DynamoDB
	Integrating with Amazon Redshift
	Cross-account integration considerations with CMK
	Required Amazon KMS policies and permissions
	KMS key policy in the DynamoDB account
	IAM Policy for the Amazon Redshift role (in Amazon Redshift account)
	Trust relationship for the Amazon Redshift role
	DynamoDB Table policy (if using resource-based policies)

	Important considerations

	DynamoDB zero-ETL integration with Amazon Redshift
	Prerequisites before creating a DynamoDB zero-ETL integration with Amazon Redshift
	Limitations when using DynamoDB zero-ETL integrations with Amazon Redshift
	Creating a DynamoDB zero-ETL integration with Amazon Redshift
	Step 1: Configuring a source DynamoDB table
	Step 2: Creating an Amazon Redshift data warehouse
	Step 3: Creating a DynamoDB zero-ETL integration

	Viewing DynamoDB zero-ETL integrations with Amazon Redshift
	Deleting DynamoDB zero-ETL integrations with Amazon Redshift

	Loading data from DynamoDB into Amazon Redshift with the COPY command

	Processing DynamoDB data with Apache Hive on Amazon EMR
	Overview
	Tutorial: Working with Amazon DynamoDB and Apache Hive
	Before you begin
	Step 1: Create an Amazon EC2 key pair
	Step 2: Launch an Amazon EMR cluster
	Cluster log files and Amazon S3

	Step 3: Connect to the Leader node
	Step 4: Load data into HDFS
	Step 5: Copy data to DynamoDB
	Step 6: Query the data in the DynamoDB table
	Step 7: (Optional) clean up

	Creating an external table in Hive
	CREATE EXTERNAL TABLE syntax
	Data type mappings

	Processing HiveQL statements
	Monitoring and canceling jobs

	Querying data in DynamoDB
	Using aggregate functions
	Using the GROUP BY and HAVING clauses
	Joining two DynamoDB tables
	Joining tables from different sources

	Copying data to and from Amazon DynamoDB
	Copying data between DynamoDB and a native Hive table
	Copying data between DynamoDB and Amazon S3
	Copying data using the Hive default format
	Copying data with a user-specified format
	Copying data without a column mapping
	Viewing the data in Amazon S3

	Copying data between DynamoDB and HDFS
	Copying data using the Hive default format
	Copying data with a user-specified format
	Copying data without a column mapping
	Accessing the data in HDFS

	Using data compression
	Reading non-printable UTF-8 character data

	Performance tuning
	DynamoDB provisioned throughput
	Read capacity
	Write capacity

	Adjusting the mappers
	Increasing the number of mappers
	Decreasing the number of mappers

	Additional topics
	Retry duration
	Parallel data requests
	Process duration
	Request time

	Integrating DynamoDB with Amazon S3
	DynamoDB data import from Amazon S3: how it works
	Requesting a table import in DynamoDB
	Setting up IAM permissions
	Amazon S3 permissions
	Amazon Key Management Service
	CloudWatch permissions

	Requesting an import using the Amazon Web Services Management Console
	Getting details about past imports in the Amazon Web Services Management Console
	Requesting an import using the Amazon CLI
	Getting details about past imports in the Amazon CLI

	Amazon S3 import formats for DynamoDB
	CSV
	DynamoDB Json
	Amazon Ion

	Import format quotas and validation
	Import quotas
	Validation errors
	API validation errors
	Data validation errors
	Configuration errors
	Validating source Amazon S3 objects
	Troubleshooting
	CloudWatch logs
	Missing the key pk in the item
	Target table exists
	The specified bucket does not exist

	Best practices for importing from Amazon S3 into DynamoDB
	Stay under the limit of 50,000 S3 objects
	Avoid excessively large S3 objects
	Randomize sorted data
	Compress data to keep the total S3 object size below the Regional limit
	Be aware of how item size impacts performance
	Do not modify S3 objects during active imports
	Consider importing without any Global Secondary Indexes

	DynamoDB data export to Amazon S3: how it works
	Requesting a table export in DynamoDB
	Prerequisites
	Requesting an export using the Amazon Web Services Management Console
	Getting details about past exports in the Amazon Web Services Management Console
	Requesting an export using the Amazon CLI
	Getting details about past exports in the Amazon CLI
	Requesting an export using the Amazon SDK
	Getting details about past exports using the Amazon SDK

	DynamoDB table export output format
	Full export output
	Manifest files
	The summary manifest
	The files manifest

	Data files
	DynamoDB JSON
	Amazon Ion

	Incremental export output
	Manifest files
	The summary manifest
	The files manifest

	Data files
	DynamoDB JSON
	Amazon Ion

	DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Prerequisites before creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Creating a DynamoDB zero-ETL integration with Amazon SageMaker Lakehouse
	Creating an integration
	Enabling compaction on target Amazon S3 tables

	Viewing CloudWatch metrics for integration

	DynamoDB zero-ETL integration with Amazon OpenSearch Service
	How it works
	Integrated create experience through the console
	Next steps
	Handling breaking changes to your index
	How it works
	Delete your index and reset the pipeline (pipeline-centric option)
	Recreate your index and reset the pipeline (index-centric option)
	Create a new index and sink (online option)
	Best practices for avoiding and debugging type conflicts

	Best practices for working with DynamoDB zero-ETL integration and OpenSearch Service
	Configuration
	Observability
	Scaling

	Integrating DynamoDB with Amazon EventBridge
	How it works
	Creating an integration through the console
	Next steps

	Integrating DynamoDB with Amazon Managed Streaming for Apache Kafka
	How it works
	Set up an integration between Amazon MSK and DynamoDB
	Next steps

	Best practices for integrating with DynamoDB
	Creating a snapshot in DynamoDB
	Capturing data change in DynamoDB

	Using generative AI with DynamoDB
	Generative AI use cases for DynamoDB
	Generative AI blogs for DynamoDB
	Leveraging DynamoDB Zero-ETL integration with OpenSearch Service

	Quotas and constraints for Amazon DynamoDB
	Performing quota management tasks in DynamoDB
	Accessing DynamoDB quotas
	Viewing current quotas in the console
	Viewing current quotas using the Amazon CLI

	Requesting a quota increase in DynamoDB
	Quotas in Amazon DynamoDB
	Read/write throughput
	Throughput default quotas
	Increasing or decreasing throughput (for provisioned tables)
	Increasing provisioned throughput
	Decreasing provisioned throughput

	Reserved Capacity
	Tables
	Table size
	Maximum number of tables per account per region

	Global tables
	Secondary indexes
	Projected secondary index attributes
	DynamoDB Streams
	Simultaneous readers of a shard in DynamoDB Streams
	Maximum write capacity for a table with DynamoDB Streams enabled

	Import from Amazon S3
	Table export to Amazon S3
	Backup and restore
	Contributor Insights

	Constraints in Amazon DynamoDB
	Read/write capacity mode
	Capacity unit sizes (for provisioned tables)
	Request unit sizes (for on-demand tables)

	Secondary indexes
	Projected Secondary Index attributes per table

	Partition keys and sort keys
	Partition key length
	Partition key values
	Sort key length
	Sort key values

	Naming rules
	Table names and Secondary Index names
	Attribute names

	Data types
	String
	Number
	Binary

	Items
	Item size
	Item size for tables with Local Secondary Indexes

	Attributes
	Attribute name-value pairs per item
	Number of values in list, map, or set
	Attribute values
	Nested attribute depth

	Expression parameters
	Lengths
	Operators and operands
	Reserved words

	DynamoDB transactions
	DynamoDB Streams
	Simultaneous readers of a shard in DynamoDB Streams

	DynamoDB Accelerator (DAX)
	Amazon Region availability
	Nodes
	Parameter groups
	Subnet groups

	API-specific constraints
	DynamoDB encryption at rest

	DynamoDB API reference
	Troubleshooting Amazon DynamoDB
	Troubleshooting internal server errors in Amazon DynamoDB
	Investigating internal server errors
	Minimizing the impact from internal server errors
	Improving operational awareness

	Troubleshooting latency issues in Amazon DynamoDB
	Troubleshooting throttling in Amazon DynamoDB
	Diagnosing throttling
	Understanding throttling exceptions
	Example exceptions
	Example 1: Provisioned capacity exceeded on a GSI
	Example 2: On-demand maximum throughput exceeded

	DynamoDB throttling diagnosis framework
	Step 1 - Analyze the ThrottlingReason details
	Step 2 - Identify and analyze the related CloudWatch metrics
	Step 3 - Identify your throttled keys and high access rates using CloudWatch Contributor Insights (for partition-related throttling)
	Step 4 - Determine the appropriate solution
	Step 5 - Monitor your progress

	DynamoDB throttling resolution guide
	Key range throughput exceeded (hot partitions)
	Provisioned throughput exceeded
	Account limits exceeded
	On-demand maximum throughput exceeded
	1- Key range throughput exceeded (hot partitions)
	Key range throughput exceeded mitigation measures
	TableReadKeyRangeThroughputExceeded
	TableWriteKeyRangeThroughputExceeded
	IndexReadKeyRangeThroughputExceeded
	IndexWriteKeyRangeThroughputExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Identifying hot keys using CloudWatch Contributor Insights
	Improving partition key design
	Optimizing GSI projections

	Additional resources

	2- Provisioned throughput exceeded
	Provisioned throughput exceeded mitigation measures
	TableReadProvisionedThroughputExceeded
	TableWriteProvisionedThroughputExceeded
	IndexReadProvisionedThroughputExceeded
	IndexWriteProvisionedThroughputExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Increasing table throughput capacity
	Configuring table Auto Scaling to adjust the read or write capacity of your table or GSI
	Optimizing your table's or index's read or write Auto Scaling settings
	Switching to on-demand capacity mode
	Increasing GSI throughput capacity

	Additional resources

	3- Account limits exceeded
	Account limit exceeded mitigation measures
	TableReadAccountLimitExceeded
	TableWriteAccountLimitExceeded
	IndexReadAccountLimitExceeded
	IndexWriteAccountLimitExceeded

	Common diagnosis and monitoring
	Resolution procedures
	Requesting per-table quota increases
	Optimizing GSI projections and design

	4- On-demand maximum throughput exceeded
	On-demand maximum throughput exceeded throttling
	TableReadMaxOnDemandThroughputExceeded
	TableWriteMaxOnDemandThroughputExceeded
	IndexReadMaxOnDemandThroughputExceeded
	IndexWriteMaxOnDemandThroughputExceeded

	Common diagnosis and monitoring

	Understanding Global Secondary Index (GSI) write throttling and back pressure in DynamoDB
	Understanding GSI back-pressure throttling
	Types of GSI throttling

	CloudWatch throttling metrics

	DynamoDB Appendix
	Troubleshooting SSL/TLS connection establishment issues with DynamoDB
	Testing your application or service
	Testing your client browser
	Updating your software application client
	Updating your client browser
	Manually updating your certificate bundle

	Example tables and data for use in DynamoDB
	Sample data files
	ProductCatalog sample data
	Forum sample data
	Thread sample data
	Reply sample data

	Creating example tables and uploading data in DynamoDB
	Creating example tables and uploading data using the Amazon SDK for Java
	Creating example tables and uploading data using the Amazon SDK for .NET

	DynamoDB example application using the Amazon SDK for Python (Boto): Tic-tac-toe
	Step 1: Deploy and test locally
	1.1: Download and install the required packages
	1.2: Test the game application

	Step 2: Examine the data model and implementation details
	2.1: Basic data model
	2.2: Application in action (code walkthrough)
	Home page
	Using getGameInvites to get the list of pending game invitations
	Using getGamesWithStatus to get the list of games with a specific status

	Game page

	Step 3: Deploy in production using the DynamoDB service
	3.1: Create an IAM role for Amazon EC2
	3.2: Create the games table in Amazon DynamoDB
	3.3: Bundle and deploy the tic-tac-toe application code
	3.4: Set up the Amazon Elastic Beanstalk environment

	Step 4: Clean up resources

	Reserved words in DynamoDB
	Amazon SDK for Java 1.x examples
	Using DAX with Amazon SDK for Java 1.x
	Using the client as an Apache Maven dependency
	TryDax.java
	TryDaxHelper.java
	TryDaxTests.java

	Modifying an existing SDK for Java 1.x application to use DAX
	Using the DynamoDB document API
	DAX async client

	Querying global secondary indexes with SDK for Java 1.x

	Amazon SDK for Go 1.x examples
	DAX SDK for Go

	Amazon SDK for Node.js 2.x examples
	Node.js and DAX
	01-create-table.js
	02-write-data.js
	03-getitem-test.js
	04-query-test.js
	05-scan-test.js
	06-delete-table.js

	Document history for DynamoDB
	Earlier updates

	Legacy features of DynamoDB
	Global tables version 2017.11.29 (Legacy)
	Global tables: How it works
	Global table concepts for Version 2017.11.29 (Legacy)
	Common tasks
	Monitoring global tables
	Time To Live (TTL)
	Streams and transactions with global tables
	Read and write throughput
	Consistency and conflict resolution
	Availability and durability

	Best practices and requirements for managing global tables
	Global tables version
	Requirements for adding a new replica table
	Best practices and requirements for managing capacity
	Using DynamoDB auto scaling
	Managing capacity manually

	Creating a global table
	Creating a global table (console)
	Creating a global table (Amazon CLI)

	Monitoring global tables
	Using IAM with global tables
	Example: Allow the CreateGlobalTable action
	Example: Allow the UpdateGlobalTable, DescribeLimits, application-autoscaling:DeleteScalingPolicy, and application-autoscaling:DeregisterScalableTarget actions
	Example: Allow the CreateGlobalTable action for a specific global table name with replicas allowed in certain regions only

	Previous low-level DynamoDB API version (2011-12-05)
	BatchGetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	BatchWriteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	CreateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DeleteItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DeleteTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	DescribeTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample Request
	Sample response

	Related actions

	GetItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	ListTables
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	PutItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	Query
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response
	Sample request
	Sample response

	Related actions

	Scan
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response
	Sample request
	Sample response
	Sample request
	Sample response

	Related actions

	UpdateItem
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	UpdateTable
	Description
	Requests
	Syntax

	Responses
	Syntax

	Special errors
	Examples
	Sample request
	Sample response

	Related actions

	Legacy DynamoDB conditional parameters
	AttributesToGet (legacy)
	Use ProjectionExpression instead – Example

	AttributeUpdates (legacy)
	Use UpdateExpression instead – Example

	ConditionalOperator (legacy)
	Expected (legacy)
	Use ConditionExpression instead – Example

	KeyConditions (legacy)
	Use KeyConditionExpression instead – Example

	QueryFilter (legacy)
	Use FilterExpression instead – Example

	ScanFilter (legacy)
	Use FilterExpression instead – Example

	Writing conditions with legacy parameters
	Simple conditions
	Comparison operators with no attribute values
	Comparison operators with one attribute value
	Comparison operators with two attribute values
	Comparison operators with n attribute values

	Using multiple conditions
	Other conditional operators

