
User Guide

Application Auto Scaling

Application Auto Scaling User Guide

Application Auto Scaling: User Guide

Application Auto Scaling User Guide

Table of Contents

What is Application Auto Scaling? ... 1
Features of Application Auto Scaling ... 2
Work with Application Auto Scaling .. 2
Concepts ... 3

Learn more ... 5
Services that integrate .. 6

Amazon AppStream 2.0 .. 8
Service-linked role .. 9
Service principal .. 9
Registering AppStream 2.0 fleets as scalable targets with Application Auto Scaling 9
Related resources .. 10

Amazon Aurora ... 10
Service-linked role .. 10
Service principal .. 11
Registering Aurora DB clusters as scalable targets with Application Auto Scaling 11
Related resources .. 12

Amazon Comprehend .. 12
Service-linked role .. 12
Service principal .. 12
Registering Amazon Comprehend resources as scalable targets with Application Auto
Scaling ... 13
Related resources .. 14

Amazon DynamoDB ... 14
Service-linked role .. 14
Service principal .. 15
Registering DynamoDB resources as scalable targets with Application Auto Scaling 15
Related resources .. 17

Amazon ECS .. 18
Service-linked role .. 18
Service principal .. 18
Registering ECS services as scalable targets with Application Auto Scaling 18
Related resources .. 19

Amazon ElastiCache ... 20
Service-linked role .. 20

iii

Application Auto Scaling User Guide

Service principal .. 20
Registering ElastiCache resources as scalable targets with Application Auto Scaling 20
Related resources .. 22

Amazon Keyspaces (for Apache Cassandra) ... 22
Service-linked role .. 23
Service principal .. 23
Registering Amazon Keyspaces tables as scalable targets with Application Auto Scaling 23
Related resources .. 24

Amazon Lambda ... 25
Service-linked role .. 25
Service principal .. 25
Registering Lambda functions as scalable targets with Application Auto Scaling 25
Related resources .. 26

Amazon Managed Streaming for Apache Kafka (MSK) .. 26
Service-linked role .. 27
Service principal .. 27
Registering Amazon MSK cluster storage as scalable targets with Application Auto
Scaling ... 27
Related resources .. 28

Amazon Neptune .. 28
Service-linked role .. 29
Service principal .. 29
Registering Neptune clusters as scalable targets with Application Auto Scaling 29
Related resources .. 30

Amazon SageMaker AI .. 30
Service-linked role .. 30
Service principal .. 31
Registering SageMaker AI endpoint variants as scalable targets with Application Auto
Scaling ... 31
Registering the provisioned concurrency of serverless endpoints as scalable targets with
Application Auto Scaling ... 32
Registering inference components as scalable targets with Application Auto Scaling 33
Related resources .. 34

Spot Fleet (Amazon EC2) ... 34
Service-linked role .. 34
Service principal .. 35

iv

Application Auto Scaling User Guide

Registering Spot Fleets as scalable targets with Application Auto Scaling 35
Related resources .. 36

Amazon WorkSpaces ... 36
Service-linked role .. 36
Service principal .. 36
Registering WorkSpaces pools as scalable targets with Application Auto Scaling 37
Related resources .. 38

Custom resources ... 38
Service-linked role .. 38
Service principal .. 38
Registering custom resources as scalable targets with Application Auto Scaling 38
Related resources .. 39

Configure scaling using Amazon CloudFormation .. 41
Application Auto Scaling and Amazon CloudFormation templates ... 41
Example template snippets ... 42
Learn more about Amazon CloudFormation .. 42

Scheduled scaling .. 43
How scheduled scaling works .. 44

How it works .. 44
Considerations ... 44
Commonly used commands ... 45
Related resources .. 46
Limitations .. 46

Create scheduled actions .. 46
Create a scheduled action that occurs only once .. 47
Create a scheduled action that runs on a recurring interval ... 48
Create a scheduled action that runs on a recurring schedule ... 49
Create a one-time scheduled action that specifies a time zone ... 50
Create a recurring scheduled action that specifies a time zone .. 51

Describe scheduled scaling .. 51
Describe scaling activities for a service .. 52
Describe the scheduled actions for a service .. 54
Describe the scheduled actions for a scalable target .. 56

Schedule recurring scaling actions ... 57
Turn off scheduled scaling ... 60
Delete a scheduled action .. 61

v

Application Auto Scaling User Guide

Target tracking scaling policies .. 63
How target tracking works .. 64

How it works .. 64
Choose metrics .. 65
Define target value ... 66
Define cooldown periods .. 67
Considerations ... 68
Multiple scaling policies .. 69
Commonly used commands ... 70
Related resources .. 70
Limitations .. 70

Create a target tracking scaling policy .. 71
Step 1: Register a scalable target ... 71
Step 2: Create a target tracking scaling policy .. 72
Step 3: Describe target tracking scaling policies ... 74

Delete a target tracking scaling policy .. 76
Use metric math ... 76

Example: Amazon SQS queue backlog per task ... 77
Limitations .. 81

Step scaling policies .. 82
How step scaling works .. 83

How it works .. 83
Step adjustments .. 84
Scaling adjustment types .. 86
Cooldown period ... 87
Commonly used commands ... 88
Considerations ... 88
Related resources .. 46
Console access ... 89

Create a step scaling policy ... 89
Step 1: Register a scalable target .. 89
Step 2: Create a step scaling policy ... 90
Step 3: Create an alarm that invokes a scaling policy .. 94

Describe step scaling policies .. 95
Delete a step scaling policy ... 97

Predictive scaling ... 98

vi

Application Auto Scaling User Guide

How it works ... 98
Maximum capacity limit .. 99
Commonly used commands for scaling policy creation, management, and deletion 100
Considerations ... 100

Create a predictive scaling policy ... 101
Override the forecast .. 102

Step 1: (Optional) Analyze time series data ... 103
Step 2: Create two scheduled actions ... 103

Use custom metrics ... 105
Best practices .. 105
Prerequisites .. 106
Constructing the JSON for custom metrics .. 106
Considerations for custom metrics ... 115

Tutorial: Configure auto scaling to handle a heavy workload .. 116
Prerequisites .. 116
Step 1: Register your scalable target .. 117
Step 2: Set up scheduled actions according to your requirements ... 118
Step 3: Add a target tracking scaling policy .. 121
Step 4: Next steps ... 124
Step 5: Clean up .. 124

Suspend scaling ... 127
Scaling activities ... 127
Suspend and resume scaling activities .. 128

View suspended scaling activities ... 131
Resume scaling activities .. 131

Scaling activities .. 133
Look up scaling activities by scalable target ... 133
Include not scaled activities .. 134
Reason codes .. 136

Monitoring ... 139
Monitor using CloudWatch .. 140

CloudWatch metrics for monitoring resource usage ... 141
Predefined metrics for target tracking scaling policies .. 154

Log API calls using CloudTrail ... 157
Application Auto Scaling management events in CloudTrail .. 158
Application Auto Scaling event examples ... 159

vii

Application Auto Scaling User Guide

Application Auto Scaling RemoveAction calls on CloudWatch ... 160
Amazon EventBridge ... 160

Application Auto Scaling events ... 160
Working with Amazon SDKs ... 165
Code examples ... 166

Basics .. 166
Actions .. 167

Tagging support .. 205
Tagging example .. 205
Tags for security ... 206
Control access to tags .. 207

Security .. 209
Data protection .. 209
Identity and Access Management .. 210

Access control .. 211
How Application Auto Scaling works with IAM .. 211
Amazon managed policies .. 217
Service-linked roles .. 228
Identity-based policy examples ... 233
Troubleshooting .. 247
Permissions validation ... 248

Amazon PrivateLink ... 250
Create an interface VPC endpoint .. 251
Create a VPC endpoint policy .. 251

Resilience ... 252
Infrastructure security ... 252
Compliance validation .. 253

Quotas .. 255
Document history .. 256

viii

Application Auto Scaling User Guide

What is Application Auto Scaling?

Application Auto Scaling is a web service for developers and system administrators who need a
solution for automatically scaling their scalable resources for individual Amazon services beyond
Amazon EC2 Auto Scaling.

In the China (Beijing) Region, you can configure automatic scaling for the following resources:

• Aurora replicas

• DynamoDB tables and global secondary indexes

• Amazon ECS services

• Amazon EMR clusters

• Amazon Keyspaces (for Apache Cassandra) tables

• Lambda function provisioned concurrency

• Amazon Managed Streaming for Apache Kafka (MSK) broker storage

• Amazon Neptune clusters

• SageMaker AI endpoint variants

• Spot Fleet requests

• Custom resources provided by your own applications or services. For more information, see the
GitHub repository.

In the China (Ningxia) Region, you can configure automatic scaling for the following resources:

• Aurora replicas

• DynamoDB tables and global secondary indexes

• Amazon ECS services

• Amazon EMR clusters

• Amazon Keyspaces (for Apache Cassandra) tables

• Lambda function provisioned concurrency

• Amazon Managed Streaming for Apache Kafka (MSK) broker storage

• Amazon Neptune clusters

• SageMaker AI endpoint variants

• Spot Fleet requests

1

https://docs.amazonaws.cn/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://github.com/aws/aws-auto-scaling-custom-resource

Application Auto Scaling User Guide

To see the regional availability for any of the Amazon services listed above, see the Region table.

For information about scaling your fleet of Amazon EC2 instances using Auto Scaling groups, see
the Amazon EC2 Auto Scaling User Guide.

Features of Application Auto Scaling

Application Auto Scaling allows you to automatically scale your scalable resources according to
conditions that you define.

• Target tracking scaling – Scale a resource based on a target value for a specific CloudWatch
metric.

• Step scaling – Scale a resource based on a set of scaling adjustments that vary based on the size
of the alarm breach.

• Scheduled scaling – Scale a resource one time only or on a recurring schedule.

• Predictive scaling – Scale a resource proactively to match anticipated load based on historical
data.

Work with Application Auto Scaling

You can configure scaling using the following interfaces depending on the resource that you are
scaling:

• Amazon Web Services Management Console – Provides a web interface that you can use
to configure scaling. Sign up for an Amazon account and sign into the Amazon Web Services
Management Console. Then, open the service console for one of the resources listed in the
introduction. For example, to scale a Lambda function, open the Amazon Lambda console.
Ensure that you open the console in the same Amazon Web Services Region as the resource that
you want to work with.

Note

Console access is not available for all resources. For more information, see Amazon Web
Services services that you can use with Application Auto Scaling.

• Amazon Command Line Interface (Amazon CLI) – Provides commands for a broad set of
Amazon Web Services services, and is supported on Windows, macOS, and Linux. To get started,

Features of Application Auto Scaling 2

http://www.amazonaws.cn/about-aws/regional-product-services/
https://docs.amazonaws.cn/autoscaling/ec2/userguide/

Application Auto Scaling User Guide

see Amazon Command Line Interface. For a list of commands, see application-autoscaling in the
Amazon CLI Command Reference.

• Amazon Tools for Windows PowerShell – Provides commands for a broad set of Amazon
products for those who script in the PowerShell environment. To get started, see the Amazon
Tools for Windows PowerShell User Guide. For more information, see the Amazon Tools for
PowerShell Cmdlet Reference.

• Amazon SDKs – Provides language-specific API operations and takes care of many of the
connection details, such as calculating signatures, handling request retries, and handling errors.
For more information, see Tools to Build on Amazon.

• HTTPS API – Provides low-level API actions that you call using HTTPS requests. For more
information, see the Application Auto Scaling API Reference.

• Amazon CloudFormation – Supports configuring scaling using a CloudFormation template.
For more information, see Configure Application Auto Scaling resources using Amazon
CloudFormation.

To connect programmatically to an Amazon Web Services service, you use an endpoint. For
information about endpoints for calls to Application Auto Scaling, see Endpoints and ARNs for
Amazon Web Services in China in the Getting Started with Amazon Web Services in China.

Application Auto Scaling concepts

This topic explains key concepts to help you learn about Application Auto Scaling and start using it.

Scalable target

An entity that you create to specify the resource that you want to scale. Each scalable target
is uniquely identified by a service namespace, resource ID, and scalable dimension, which
represents some capacity dimension of the underlying service. For example, an Amazon ECS
service supports auto scaling of its task count, a DynamoDB table supports auto scaling of the
read and write capacity of the table and its global secondary indexes, and an Aurora cluster
supports scaling of its replica count.

Tip

Each scalable target also has a minimum and maximum capacity. Scaling policies will
never go higher or lower than the minimum-maximum range. You can make out-of-
band changes directly to the underlying resource that are outside of this range, which

Concepts 3

https://docs.amazonaws.cn/cli/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/
https://docs.amazonaws.cn/powershell/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/userguide/
https://docs.amazonaws.cn/powershell/latest/reference/Index.html
https://docs.amazonaws.cn/powershell/latest/reference/Index.html
https://www.amazonaws.cn/developer/tools/
https://docs.amazonaws.cn/autoscaling/application/APIReference/
https://docs.amazonaws.cn/aws/latest/userguide/endpoints-arns.html
https://docs.amazonaws.cn/aws/latest/userguide/endpoints-arns.html

Application Auto Scaling User Guide

Application Auto Scaling doesn't know about. However, anytime a scaling policy is
invoked or the RegisterScalableTarget API is called, Application Auto Scaling
retrieves the current capacity and compares it to the minimum and maximum capacity.
If it falls outside of the minimum-maximum range, then the capacity is updated to
comply with the set minimum and maximum.

Scale in

When Application Auto Scaling automatically decreases capacity for a scalable target, the
scalable target scales in. When scaling policies are set, they cannot scale in the scalable target
lower than its minimum capacity.

Scale out

When Application Auto Scaling automatically increases capacity for a scalable target, the
scalable target scales out. When scaling policies are set, they cannot scale out the scalable
target higher than its maximum capacity.

Scaling policy

A scaling policy instructs Application Auto Scaling to track a specific CloudWatch metric. Then,
it determines what scaling action to take when the metric is higher or lower than a certain
threshold value. For example, you might want to scale out if the CPU usage across your cluster
starts to rise, and scale in when it drops again.

The metrics that are used for auto scaling are published by the target service, but you can also
publish your own metric to CloudWatch and then use it with a scaling policy.

A cooldown period between scaling activities lets the resource stabilize before another scaling
activity starts. Application Auto Scaling continues to evaluate metrics during the cooldown
period. When the cooldown period ends, the scaling policy initiates another scaling activity
if needed. While a cooldown period is in effect, if a larger scale out is necessary based on the
current metric value, the scaling policy scales out immediately.

Scheduled action

Scheduled actions automatically scale resources at a specific date and time. They work by
modifying the minimum and maximum capacity for a scalable target, and therefore can be
used to scale in and out on a schedule by setting the minimum capacity high or the maximum
capacity low. For example, you can use scheduled actions to scale an application that doesn't

Concepts 4

Application Auto Scaling User Guide

consume resources on weekends by decreasing capacity on Friday and increasing capacity on
the following Monday.

You can also use scheduled actions to optimize the minimum and maximum values over time
to adapt to situations where higher than normal traffic is expected, for example, marketing
campaigns or seasonal fluctuations. Doing this can help you improve performance for times
when you need to scale out higher for the increasing usage, and reduce costs at times when you
use fewer resources.

Learn more

Amazon Web Services services that you can use with Application Auto Scaling — This section
introduces you to the services that you can scale and helps you set up auto scaling by registering a
scalable target. It also describes each of the IAM service-linked roles that Application Auto Scaling
creates to access resources in the target service.

Target tracking scaling policies for Application Auto Scaling — One of the primary features of
Application Auto Scaling is target tracking scaling policies. Learn how target tracking policies
automatically adjust desired capacity to keep utilization at a constant level based on your
configured metric and target values. For example, you can configure target tracking to keep the
average CPU utilization for your Spot Fleet at 50 percent. Application Auto Scaling then launches
or terminates EC2 instances as required to keep the aggregated CPU utilization across all servers at
50 percent.

Learn more 5

Application Auto Scaling User Guide

Amazon Web Services services that you can use with
Application Auto Scaling

Application Auto Scaling integrates with other Amazon services so that you can add scaling
capabilities to meet your application's demand. Auto scaling is an optional feature of the service
that is disabled by default in almost all cases.

The following table lists the Amazon services that you can use with Application Auto Scaling,
including information about supported methods for configuring auto scaling. You can also use
Application Auto Scaling with custom resources.

• Console access – You can configure a compatible Amazon service to start auto scaling by
configuring a scaling policy in the console of the target service.

• CLI access – You can configure a compatible Amazon service to start auto scaling using the
Amazon CLI.

• SDK access – You can configure a compatible Amazon service to start auto scaling using the
Amazon SDKs.

• CloudFormation access – You can configure a compatible Amazon service to start auto
scaling using an Amazon CloudFormation stack template. For more information, see Configure
Application Auto Scaling resources using Amazon CloudFormation.

Amazon
service

Console
access¹

CLI access SDK access CloudFormation access

AppStream
2.0

Yes Yes Yes Yes

Aurora

Yes Yes Yes Yes

6

Application Auto Scaling User Guide

Amazon
service

Console
access¹

CLI access SDK access CloudFormation access

Amazon
Comprehend

No Yes Yes Yes

Amazon
DynamoDB

Yes Yes Yes Yes

Amazon ECS

Yes Yes Yes Yes

Amazon
ElastiCache

Yes Yes Yes Yes

Amazon EMR

Yes Yes Yes Yes

Amazon
Keyspaces

Yes Yes Yes Yes

Lambda

No Yes Yes Yes

Amazon MSK

Yes Yes Yes Yes

7

https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-automatic-scaling.html

Application Auto Scaling User Guide

Amazon
service

Console
access¹

CLI access SDK access CloudFormation access

Amazon
Neptune

No Yes Yes Yes

SageMaker AI

Yes Yes Yes Yes

Spot Fleet

Yes Yes Yes Yes

WorkSpaces

Yes Yes Yes Yes

Custom
resources

No Yes Yes Yes

¹ Console access for configuring scaling policies. Most services don't support configuring scheduled
scaling from the console. Currently, only Amazon AppStream 2.0, ElastiCache, and Spot Fleet
provide console access for scheduled scaling.

Amazon AppStream 2.0 and Application Auto Scaling

You can scale AppStream 2.0 fleets using target tracking scaling policies, step scaling policies, and
scheduled scaling.

Use the following information to help you integrate AppStream 2.0 with Application Auto Scaling.

Amazon AppStream 2.0 8

Application Auto Scaling User Guide

Service-linked role created for AppStream 2.0

The following service-linked role is automatically created in your Amazon Web Services account
when registering AppStream 2.0 resources as scalable targets with Application Auto Scaling. This
role allows Application Auto Scaling to perform supported operations within your account. For
more information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_AppStreamFleet

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• appstream.application-autoscaling.amazonaws.com

Registering AppStream 2.0 fleets as scalable targets with Application
Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an AppStream 2.0 fleet. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

If you configure auto scaling using the AppStream 2.0 console, then AppStream 2.0 automatically
registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for an AppStream 2.0 fleet. The following example
registers the desired capacity of a fleet called sample-fleet, with a minimum capacity of one
fleet instance and a maximum capacity of five fleet instances.

aws application-autoscaling register-scalable-target \

Service-linked role 9

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 --service-namespace appstream \
 --scalable-dimension appstream:fleet:DesiredCapacity \
 --resource-id fleet/sample-fleet \
 --min-capacity 1 \
 --max-capacity 5

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Fleet Auto Scaling for Amazon AppStream 2.0 in the Amazon AppStream
2.0 Administration Guide.

Amazon Aurora and Application Auto Scaling

You can scale Aurora DB clusters using target tracking scaling policies, step scaling policies, and
scheduled scaling.

Use the following information to help you integrate Aurora with Application Auto Scaling.

Service-linked role created for Aurora

The following service-linked role is automatically created in your Amazon Web Services account
when registering Aurora resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_RDSCluster

Related resources 10

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/appstream2/latest/developerguide/autoscaling.html

Application Auto Scaling User Guide

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• rds.application-autoscaling.amazonaws.com

Registering Aurora DB clusters as scalable targets with Application
Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an Aurora cluster. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

If you configure auto scaling using the Aurora console, then Aurora automatically registers a
scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for an Aurora cluster. The following example registers
the count of Aurora Replicas in a cluster called my-db-cluster, with a minimum capacity of
one Aurora Replica and a maximum capacity of eight Aurora Replicas.

aws application-autoscaling register-scalable-target \
 --service-namespace rds \
 --scalable-dimension rds:cluster:ReadReplicaCount \
 --resource-id cluster:my-db-cluster \
 --min-capacity 1 \
 --max-capacity 8

If successful, this command returns the ARN of the scalable target.

{

Service principal 11

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Amazon Aurora Auto Scaling with Aurora Replicas in the Amazon RDS
User Guide for Aurora.

Amazon Comprehend and Application Auto Scaling

You can scale Amazon Comprehend document classification and entity recognizer endpoints using
target tracking scaling policies and scheduled scaling.

Use the following information to help you integrate Amazon Comprehend with Application Auto
Scaling.

Service-linked role created for Amazon Comprehend

The following service-linked role is automatically created in your Amazon Web Services account
when registering Amazon Comprehend resources as scalable targets with Application Auto Scaling.
This role allows Application Auto Scaling to perform supported operations within your account. For
more information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_ComprehendEndpoint

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• comprehend.application-autoscaling.amazonaws.com

Related resources 12

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

Application Auto Scaling User Guide

Registering Amazon Comprehend resources as scalable targets with
Application Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an Amazon Comprehend document classification or entity recognizer
endpoint. A scalable target is a resource that Application Auto Scaling can scale out and scale in.
Scalable targets are uniquely identified by the combination of resource ID, scalable dimension, and
namespace.

To configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can use the
following options:

• Amazon CLI:

Call the register-scalable-target command for a document classification endpoint. The following
example registers the desired number of inference units to be used by the model for a document
classifier endpoint using the endpoint's ARN, with a minimum capacity of one inference unit and
a maximum capacity of three inference units.

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --scalable-dimension comprehend:document-classifier-endpoint:DesiredInferenceUnits
 \
 --resource-id arn:aws-cn:comprehend:us-west-2:123456789012:document-classifier-
endpoint/EXAMPLE \
 --min-capacity 1 \
 --max-capacity 3

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Call the register-scalable-target command for an entity recognizer endpoint. The following
example registers the desired number of inference units to be used by the model for an entity
recognizer using the endpoint's ARN, with a minimum capacity of one inference unit and a
maximum capacity of three inference units.

Registering Amazon Comprehend resources as scalable targets with Application Auto Scaling 13

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

aws application-autoscaling register-scalable-target \
 --service-namespace comprehend \
 --scalable-dimension comprehend:entity-recognizer-endpoint:DesiredInferenceUnits \
 --resource-id arn:aws-cn:comprehend:us-west-2:123456789012:entity-recognizer-
endpoint/EXAMPLE \
 --min-capacity 1 \
 --max-capacity 3

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Auto scaling with endpoints in the Amazon Comprehend Developer Guide.

Amazon DynamoDB and Application Auto Scaling

You can scale DynamoDB tables and global secondary indexes using target tracking scaling policies
and scheduled scaling.

Use the following information to help you integrate DynamoDB with Application Auto Scaling.

Service-linked role created for DynamoDB

The following service-linked role is automatically created in your Amazon Web Services account
when registering DynamoDB resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_DynamoDBTable

Related resources 14

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/comprehend/latest/dg/comprehend-autoscaling.html

Application Auto Scaling User Guide

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• dynamodb.application-autoscaling.amazonaws.com

Registering DynamoDB resources as scalable targets with Application
Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a DynamoDB table or global secondary index. A scalable target is a resource
that Application Auto Scaling can scale out and scale in. Scalable targets are uniquely identified by
the combination of resource ID, scalable dimension, and namespace.

If you configure auto scaling using the DynamoDB console, then DynamoDB automatically registers
a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for a table's write capacity. The following example
registers the provisioned write capacity of a table called my-table, with a minimum capacity of
five write capacity units and a maximum capacity of 10 write capacity units:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:WriteCapacityUnits \
 --resource-id table/my-table \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target:

{

Service principal 15

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Call the register-scalable-target command for a table's read capacity. The following example
registers the provisioned read capacity of a table called my-table, with a minimum capacity of
five read capacity units and a maximum capacity of 10 read units:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits \
 --resource-id table/my-table \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target:

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Call the register-scalable-target command for the write capacity of a global secondary index.
The following example registers the provisioned write capacity of a global secondary index
called my-table-index, with a minimum capacity of five write capacity units and a maximum
capacity of 10 write capacity units:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:index:WriteCapacityUnits \
 --resource-id table/my-table/index/my-table-index \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target:

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"

Registering DynamoDB resources as scalable targets with Application Auto Scaling 16

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

}

Call the register-scalable-target command for the read capacity of a global secondary index. The
following example registers the provisioned read capacity of a global secondary index called my-
table-index, with a minimum capacity of five read capacity units and a maximum capacity of
10 read capacity units:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:index:ReadCapacityUnits \
 --resource-id table/my-table/index/my-table-index \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target:

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

If you are just getting started with Application Auto Scaling, you can find additional useful
information about scaling your DynamoDB resources in the following documentation:

• Managing throughput capacity with DynamoDB Auto Scaling in the Amazon DynamoDB
Developer Guide

• Evaluate your table's auto scaling settings in the Amazon DynamoDB Developer Guide

• How to use Amazon CloudFormation to configure auto scaling for DynamoDB tables and indexes
on the Amazon Blog

Related resources 17

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/CostOptimization_AutoScalingSettings.html
https://amazonaws-china.com/blogs/database/how-to-use-aws-cloudformation-to-configure-auto-scaling-for-amazon-dynamodb-tables-and-indexes/

Application Auto Scaling User Guide

Amazon ECS and Application Auto Scaling

You can scale ECS services using target tracking scaling policies, predictive scaling policies, step
scaling policies, and scheduled scaling.

Use the following information to help you integrate Amazon ECS with Application Auto Scaling.

Service-linked role created for Amazon ECS

The following service-linked role is automatically created in your Amazon Web Services account
when registering Amazon ECS resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_ECSService

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• ecs.application-autoscaling.amazonaws.com

Registering ECS services as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an Amazon ECS service. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

If you configure auto scaling using the Amazon ECS console, then Amazon ECS automatically
registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

Amazon ECS 18

Application Auto Scaling User Guide

• Amazon CLI:

Call the register-scalable-target command for an Amazon ECS service. The following example
registers a scalable target for a service called sample-app-service, running on the default
cluster, with a minimum task count of one task and a maximum task count of 10 tasks.

aws application-autoscaling register-scalable-target \
 --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/default/sample-app-service \
 --min-capacity 1 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

If you are just getting started with Application Auto Scaling, you can find additional useful
information about scaling your Amazon ECS resources in the following documentation:

• Service auto scaling in the Amazon Elastic Container Service Developer Guide

• Optimize Amazon ECS service auto scaling in the Amazon Elastic Container Service Developer
Guide

Note

For instructions for suspending scale-out processes while Amazon ECS deployments are in
progress, see the following documentation:

Related resources 19

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/service-auto-scaling.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/capacity-autoscaling.html

Application Auto Scaling User Guide

Service auto scaling and deployments in the Amazon Elastic Container Service Developer
Guide

ElastiCache and Application Auto Scaling

You can horizontally scale Amazon ElastiCache replication groups (Redis OSS and Valkey) and
Memcached self-designed clusters using target tracking scaling policies and scheduled scaling.

To integrate ElastiCache with Application Auto Scaling, use the following information.

Service-linked role created for ElastiCache

The following service-linked role is automatically created in your Amazon Web Services account
when registering ElastiCache resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• elasticache.application-autoscaling.amazonaws.com

Registering ElastiCache resources as scalable targets with Application
Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an ElastiCache replication group, cluster, or node. A scalable target is a
resource that Application Auto Scaling can scale out and scale in. Scalable targets are uniquely
identified by the combination of resource ID, scalable dimension, and namespace.

If you configure auto scaling using the ElastiCache console, then ElastiCache automatically
registers a scalable target for you.

Amazon ElastiCache 20

https://docs.amazonaws.cn/AmazonECS/latest/developerguide/service-auto-scaling.html#service-auto-scaling-deployments

Application Auto Scaling User Guide

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for an ElastiCache replication group. The
following example registers the desired number of node groups for a replication group called
mycluster1, with a minimum capacity of one and a maximum capacity of five.

aws application-autoscaling register-scalable-target \
 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:NodeGroups \
 --resource-id replication-group/mycluster1 \
 --min-capacity 1 \
 --max-capacity 5

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

The following example registers the desired number of replicas per node group for a replication
group called mycluster2, with a minimum capacity of one and a maximum capacity of five.

aws application-autoscaling register-scalable-target \
 --service-namespace elasticache \
 --scalable-dimension elasticache:replication-group:Replicas \
 --resource-id replication-group/mycluster2 \
 --min-capacity 1 \
 --max-capacity 5

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/234abcd56ab78cd901ef1234567890ab1234"
}

Registering ElastiCache resources as scalable targets with Application Auto Scaling 21

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

The following example registers the desired number of nodes for a cluster called mynode1, with
a minimum capacity of 20 and a maximum capacity of 50.

aws application-autoscaling register-scalable-target \
 --service-namespace elasticache \
 --scalable-dimension elasticache:cache-cluster:Nodes \
 --resource-id cache-cluster/mynode1 \
 --min-capacity 20 \
 --max-capacity 50

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/01234abcd56ab78cd901ef1234567890ab12"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Auto Scaling Valkey and Redis OSS clusters and Scaling clusters for
Memcached in the Amazon ElastiCache User Guide.

Amazon Keyspaces (for Apache Cassandra) and Application
Auto Scaling

You can scale Amazon Keyspaces tables using target tracking scaling policies and scheduled
scaling.

Use the following information to help you integrate Amazon Keyspaces with Application Auto
Scaling.

Related resources 22

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/AutoScaling.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/Scaling-self-designed.mem-heading.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/Scaling-self-designed.mem-heading.html

Application Auto Scaling User Guide

Service-linked role created for Amazon Keyspaces

The following service-linked role is automatically created in your Amazon Web Services account
when registering Amazon Keyspaces resources as scalable targets with Application Auto Scaling.
This role allows Application Auto Scaling to perform supported operations within your account. For
more information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_CassandraTable

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• cassandra.application-autoscaling.amazonaws.com

Registering Amazon Keyspaces tables as scalable targets with
Application Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for an Amazon Keyspaces table. A scalable target is a resource that Application
Auto Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination
of resource ID, scalable dimension, and namespace.

If you configure auto scaling using the Amazon Keyspaces console, then Amazon Keyspaces
automatically registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for an Amazon Keyspaces table. The following
example registers the provisioned write capacity of a table called mytable, with a minimum
capacity of five write capacity units and a maximum capacity of 10 write capacity units.

aws application-autoscaling register-scalable-target \

Service-linked role 23

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 --service-namespace cassandra \
 --scalable-dimension cassandra:table:WriteCapacityUnits \
 --resource-id keyspace/mykeyspace/table/mytable \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

The following example registers the provisioned read capacity of a table called mytable, with a
minimum capacity of five read capacity units and a maximum capacity of 10 read capacity units.

aws application-autoscaling register-scalable-target \
 --service-namespace cassandra \
 --scalable-dimension cassandra:table:ReadCapacityUnits \
 --resource-id keyspace/mykeyspace/table/mytable \
 --min-capacity 5 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Manage throughput capacity automatically with Amazon Keyspaces auto
scaling in the Amazon Keyspaces Developer Guide.

Related resources 24

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/keyspaces/latest/devguide/autoscaling.html
https://docs.amazonaws.cn/keyspaces/latest/devguide/autoscaling.html

Application Auto Scaling User Guide

Amazon Lambda and Application Auto Scaling

You can scale Amazon Lambda provisioned concurrency using target tracking scaling policies and
scheduled scaling.

Use the following information to help you integrate Lambda with Application Auto Scaling.

Service-linked role created for Lambda

The following service-linked role is automatically created in your Amazon Web Services account
when registering Lambda resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_LambdaConcurrency

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• lambda.application-autoscaling.amazonaws.com

Registering Lambda functions as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a Lambda function. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

To configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can use the
following options:

• Amazon CLI:

Amazon Lambda 25

Application Auto Scaling User Guide

Call the register-scalable-target command for a Lambda function. The following example
registers the provisioned concurrency for an alias called BLUE for a function called my-
function, with a minimum capacity of 0 and a maximum capacity of 100.

aws application-autoscaling register-scalable-target \
 --service-namespace lambda \
 --scalable-dimension lambda:function:ProvisionedConcurrency \
 --resource-id function:my-function:BLUE \
 --min-capacity 0 \
 --max-capacity 100

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

If you are just getting started with Application Auto Scaling, you can find additional useful
information about scaling your Lambda functions in the following documentation:

• Configuring provisioned concurrency in the Amazon Lambda Developer Guide

• Scheduling Lambda Provisioned Concurrency for recurring peak usage on the Amazon Blog

Amazon Managed Streaming for Apache Kafka (MSK) and
Application Auto Scaling

You can scale out Amazon MSK cluster storage using target tracking scaling policies. Scale in by the
target tracking policy is disabled.

Related resources 26

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/lambda/latest/dg/provisioned-concurrency.html
https://amazonaws-china.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/

Application Auto Scaling User Guide

Use the following information to help you integrate Amazon MSK with Application Auto Scaling.

Service-linked role created for Amazon MSK

The following service-linked role is automatically created in your Amazon Web Services account
when registering Amazon MSK resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_KafkaCluster

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• kafka.application-autoscaling.amazonaws.com

Registering Amazon MSK cluster storage as scalable targets with
Application Auto Scaling

Application Auto Scaling requires a scalable target before you can create a scaling policy for the
storage volume size per broker of an Amazon MSK cluster. A scalable target is a resource that
Application Auto Scaling can scale. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

If you configure auto scaling using the Amazon MSK console, then Amazon MSK automatically
registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for an Amazon MSK cluster. The following example
registers the storage volume size per broker of an Amazon MSK cluster, with a minimum capacity
of 100 GiB and a maximum capacity of 800 GiB.

Service-linked role 27

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

aws application-autoscaling register-scalable-target \
 --service-namespace kafka \
 --scalable-dimension kafka:broker-storage:VolumeSize \
 --resource-id arn:aws-cn:kafka:us-east-1:123456789012:cluster/demo-
cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5 \
 --min-capacity 100 \
 --max-capacity 800

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Note

When an Amazon MSK cluster is the scalable target, scale in is disabled and cannot be
enabled.

Related resources

For more information, see Automatic scaling for Amazon MSK clusters in the Amazon Managed
Streaming for Apache Kafka Developer Guide.

Amazon Neptune and Application Auto Scaling

You can scale Neptune clusters using target tracking scaling policies and scheduled scaling.

Use the following information to help you integrate Neptune with Application Auto Scaling.

Related resources 28

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/msk/latest/developerguide/msk-autoexpand.html

Application Auto Scaling User Guide

Service-linked role created for Neptune

The following service-linked role is automatically created in your Amazon Web Services account
when registering Neptune resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_NeptuneCluster

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• neptune.application-autoscaling.amazonaws.com

Registering Neptune clusters as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a Neptune cluster. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

To configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can use the
following options:

• Amazon CLI:

Call the register-scalable-target command for a Neptune cluster. The following example registers
the desired capacity of a cluster called mycluster, with a minimum capacity of one and a
maximum capacity of eight.

aws application-autoscaling register-scalable-target \
 --service-namespace neptune \
 --scalable-dimension neptune:cluster:ReadReplicaCount \
 --resource-id cluster:mycluster \

Service-linked role 29

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 --min-capacity 1 \
 --max-capacity 8

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Auto scaling the number of replicas in an Amazon Neptune DB cluster in
the Neptune User Guide.

Amazon SageMaker AI and Application Auto Scaling

You can scale SageMaker AI endpoint variants, provisioned concurrency for serverless endpoints,
and inference components using target tracking scaling policies, step scaling policies, and
scheduled scaling.

Use the following information to help you integrate SageMaker AI with Application Auto Scaling.

Service-linked role created for SageMaker AI

The following service-linked role is automatically created in your Amazon Web Services account
when registering SageMaker AI resources as scalable targets with Application Auto Scaling. This
role allows Application Auto Scaling to perform supported operations within your account. For
more information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint

Related resources 30

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/neptune/latest/userguide/manage-console-autoscaling.html

Application Auto Scaling User Guide

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• sagemaker.application-autoscaling.amazonaws.com

Registering SageMaker AI endpoint variants as scalable targets with
Application Auto Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a SageMaker AI model (variant). A scalable target is a resource that
Application Auto Scaling can scale out and scale in. Scalable targets are uniquely identified by the
combination of resource ID, scalable dimension, and namespace.

If you configure auto scaling using the SageMaker AI console, then SageMaker AI automatically
registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for a product variant. The following example registers
the desired instance count for a product variant called my-variant, running on the my-
endpoint endpoint, with a minimum capacity of one instance and a maximum capacity of eight
instances.

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredInstanceCount \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --min-capacity 1 \
 --max-capacity 8

If successful, this command returns the ARN of the scalable target.

{

Service principal 31

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Registering the provisioned concurrency of serverless endpoints as
scalable targets with Application Auto Scaling

Application Auto Scaling also requires a scalable target before you can create scaling policies or
scheduled actions for the provisioned concurrency of serverless endpoints.

If you configure auto scaling using the SageMaker AI console, then SageMaker AI automatically
registers a scalable target for you.

Otherwise, use one of the following methods to register the scalable target:

• Amazon CLI:

Call the register-scalable-target command for a product variant. The following example registers
the provisioned concurrency for a product variant called my-variant, running on the my-
endpoint endpoint, with a minimum capacity of one and a maximum capacity of ten.

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:variant:DesiredProvisionedConcurrency \
 --resource-id endpoint/my-endpoint/variant/my-variant \
 --min-capacity 1 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Registering the provisioned concurrency of serverless endpoints as scalable targets with Application
Auto Scaling

32

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Registering inference components as scalable targets with Application
Auto Scaling

Application Auto Scaling also requires a scalable target before you can create scaling policies or
scheduled actions for inference components.

• Amazon CLI:

Call the register-scalable-target command for an inference component. The following example
registers the desired copy count for an inference component called my-inference-component,
with a minimum capacity of zero copies and a maximum capacity of three copies.

aws application-autoscaling register-scalable-target \
 --service-namespace sagemaker \
 --scalable-dimension sagemaker:inference-component:DesiredCopyCount \
 --resource-id inference-component/my-inference-component \
 --min-capacity 0 \
 --max-capacity 3

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Registering inference components as scalable targets with Application Auto Scaling 33

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Application Auto Scaling User Guide

Related resources

If you are just getting started with Application Auto Scaling, you can find additional useful
information about scaling your SageMaker AI resources in the Amazon SageMaker AI Developer
Guide:

• Automatically scale Amazon SageMaker AI models

• Automatically scale Provisioned Concurrency for a serverless endpoint

• Set auto scaling policies for multi-model endpoint deployments

• Autoscale an asynchronous endpoint

Note

In 2023, SageMaker AI introduced new inference capabilities built on real-time inference
endpoints. You create a SageMaker AI endpoint with an endpoint configuration that defines
the instance type and initial instance count for the endpoint. Then, create an inference
component, which is a SageMaker AI hosting object that you can use to deploy a model to
an endpoint. For information about scaling inference components, see Amazon SageMaker
AI adds new inference capabilities to help reduce foundation model deployment costs and
latency and Reduce model deployment costs by 50% on average using the latest features
of Amazon SageMaker AI on the Amazon Blog.

Amazon EC2 Spot Fleet and Application Auto Scaling

You can scale Spot Fleets using target tracking scaling policies, step scaling policies, and scheduled
scaling.

Use the following information to help you integrate Spot Fleet with Application Auto Scaling.

Service-linked role created for Spot Fleet

The following service-linked role is automatically created in your Amazon Web Services account
when registering Spot Fleet resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

Related resources 34

https://docs.amazonaws.cn/sagemaker/latest/dg/endpoint-auto-scaling.html
https://docs.amazonaws.cn/sagemaker/latest/dg/serverless-endpoints-autoscale.html
https://docs.amazonaws.cn/sagemaker/latest/dg/multi-model-endpoints-autoscaling.html
https://docs.amazonaws.cn/sagemaker/latest/dg/async-inference-autoscale.html
https://amazonaws-china.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/
https://amazonaws-china.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/
https://amazonaws-china.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/
https://amazonaws-china.com/blogs/machine-learning/reduce-model-deployment-costs-by-50-on-average-using-sagemakers-latest-features/
https://amazonaws-china.com/blogs/machine-learning/reduce-model-deployment-costs-by-50-on-average-using-sagemakers-latest-features/

Application Auto Scaling User Guide

• AWSServiceRoleForApplicationAutoScaling_EC2SpotFleetRequest

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• ec2.application-autoscaling.amazonaws.com

Registering Spot Fleets as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a Spot Fleet. A scalable target is a resource that Application Auto Scaling can
scale out and scale in. Scalable targets are uniquely identified by the combination of resource ID,
scalable dimension, and namespace.

If you configure auto scaling using the Spot Fleet console, then Spot Fleet automatically registers a
scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for a Spot Fleet. The following example registers the
target capacity of a Spot Fleet using its request ID, with a minimum capacity of two instances
and a maximum capacity of 10 instances.

aws application-autoscaling register-scalable-target \
 --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE \
 --min-capacity 2 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

Service principal 35

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

For more information, see Understand automatic scaling for Spot Fleet in the Amazon EC2 User
Guide.

Amazon WorkSpaces and Application Auto Scaling

You can scale a pool of WorkSpaces using target tracking scaling policies, step scaling policies, and
scheduled scaling.

Use the following information to help you integrate WorkSpaces with Application Auto Scaling.

Service-linked role created for WorkSpaces

Application Auto Scaling automatically creates the service-linked role named
AWSServiceRoleForApplicationAutoScaling_WorkSpacesPool in your Amazon Web Services account
when you register WorkSpaces resources as scalable targets with Application Auto Scaling. For
more information, see Service-linked roles for Application Auto Scaling.

This service-linked role uses the managed policy
AWSApplicationAutoscalingWorkSpacesPoolPolicy. This policy grants Application Auto
Scaling permissions to call Amazon WorkSpaces on your behalf. For more information, see
AWSApplicationAutoscalingWorkSpacesPoolPolicy in the Amazon Managed Policy Reference.

Service principal used by the service-linked role

The service-linked role trusts the following service principal to assume the role:

Related resources 36

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/spot-fleet-automatic-scaling.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingWorkSpacesPoolPolicy.html

Application Auto Scaling User Guide

• workspaces.application-autoscaling.amazonaws.com

Registering WorkSpaces pools as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for WorkSpaces. A scalable target is a resource that Application Auto Scaling can
scale out and scale in. Scalable targets are uniquely identified by the combination of resource ID,
scalable dimension, and namespace.

If you configure auto scaling using the WorkSpaces console, then WorkSpaces automatically
registers a scalable target for you.

If you want to configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can
use the following options:

• Amazon CLI:

Call the register-scalable-target command for a pool of WorkSpaces. The following example
registers the target capacity of a pool of WorkSpaces using its request ID, with a minimum
capacity of two virtual desktops and a maximum capacity of ten virtual desktops.

aws application-autoscaling register-scalable-target \
 --service-namespace workspaces \
 --resource-id workspacespool/wspool-abcdef012 \
 --scalable-dimension workspaces:workspacespool:DesiredUserSessions \
 --min-capacity 2 \
 --max-capacity 10

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Registering WorkSpaces pools as scalable targets with Application Auto Scaling 37

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Application Auto Scaling User Guide

Related resources

For more information, see Auto Scaling for WorkSpaces Pools in the Amazon WorkSpaces
Administration Guide.

Custom resources and Application Auto Scaling

You can scale custom resources using target tracking scaling policies, step scaling policies, and
scheduled scaling.

Use the following information to help you integrate custom resources with Application Auto
Scaling.

Service-linked role created for custom resources

The following service-linked role is automatically created in your Amazon Web Services account
when registering custom resources as scalable targets with Application Auto Scaling. This role
allows Application Auto Scaling to perform supported operations within your account. For more
information, see Service-linked roles for Application Auto Scaling.

• AWSServiceRoleForApplicationAutoScaling_CustomResource

Service principal used by the service-linked role

The service-linked role in the previous section can be assumed only by the service principal
authorized by the trust relationships defined for the role. The service-linked role used by
Application Auto Scaling grants access to the following service principal:

• custom-resource.application-autoscaling.amazonaws.com

Registering custom resources as scalable targets with Application Auto
Scaling

Application Auto Scaling requires a scalable target before you can create scaling policies or
scheduled actions for a custom resource. A scalable target is a resource that Application Auto
Scaling can scale out and scale in. Scalable targets are uniquely identified by the combination of
resource ID, scalable dimension, and namespace.

Related resources 38

https://docs.amazonaws.cn/workspaces/latest/adminguide/autoscaling.html

Application Auto Scaling User Guide

To configure auto scaling using the Amazon CLI or one of the Amazon SDKs, you can use the
following options:

• Amazon CLI:

Call the register-scalable-target command for a custom resource. The following example
registers a custom resource as a scalable target, with a minimum desired count of one capacity
unit and a maximum desired count of 10 capacity units. The custom-resource-id.txt
file contains a string that identifies the resource ID, which represents the path to the custom
resource through your Amazon API Gateway endpoint.

aws application-autoscaling register-scalable-target \
 --service-namespace custom-resource \
 --scalable-dimension custom-resource:ResourceType:Property \
 --resource-id file://~/custom-resource-id.txt \
 --min-capacity 1 \
 --max-capacity 10

Contents of custom-resource-id.txt:

https://example.execute-api.us-west-2.amazonaws.com/prod/
scalableTargetDimensions/1-23456789

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

• Amazon SDK:

Call the RegisterScalableTarget operation and provide ResourceId, ScalableDimension,
ServiceNamespace, MinCapacity, and MaxCapacity as parameters.

Related resources

If you are just getting started with Application Auto Scaling, you can find additional useful
information about scaling your custom resources in the following documentation:

Related resources 39

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Application Auto Scaling User Guide

GitHub repository

Related resources 40

https://github.com/aws/aws-auto-scaling-custom-resource

Application Auto Scaling User Guide

Configure Application Auto Scaling resources using
Amazon CloudFormation

Application Auto Scaling is integrated with Amazon CloudFormation, a service that helps you to
model and set up your Amazon resources so that you can spend less time creating and managing
your resources and infrastructure. You create a template that describes all the Amazon resources
that you want, and Amazon CloudFormation provisions and configures those resources for you.

When you use Amazon CloudFormation, you can reuse your template to set up your Application
Auto Scaling resources consistently and repeatedly. Describe your resources once, and then
provision the same resources over and over in multiple Amazon Web Services accounts and
Regions.

Application Auto Scaling and Amazon CloudFormation
templates

To provision and configure resources for Application Auto Scaling and related services, you
must understand Amazon CloudFormation templates. Templates are formatted text files in
JSON or YAML. These templates describe the resources that you want to provision in your
Amazon CloudFormation stacks. If you're unfamiliar with JSON or YAML, you can use Amazon
CloudFormation Designer to help you get started with Amazon CloudFormation templates. For
more information, see What is Amazon CloudFormation Designer? in the Amazon CloudFormation
User Guide.

When you create a stack template for Application Auto Scaling resources, you must provide the
following:

• A namespace for the target service (for example, appstream). See the
AWS::ApplicationAutoScaling::ScalableTarget reference to obtain service namespaces.

• A scalable dimension associated with the target resource (for example,
appstream:fleet:DesiredCapacity). See the AWS::ApplicationAutoScaling::ScalableTarget
reference to obtain scalable dimensions.

• A resource ID for the target resource (for example, fleet/sample-fleet). See the
AWS::ApplicationAutoScaling::ScalableTarget reference for information about the syntax and
examples of specific resource IDs.

Application Auto Scaling and Amazon CloudFormation templates 41

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html

Application Auto Scaling User Guide

• A service-linked role for the target resource (for example, arn:aws-
cn:iam::012345678910:role/aws-service-role/appstream.application-
autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_AppStreamFleet). See the Service-linked
role ARN reference table to obtain role ARNs.

To learn more about Application Auto Scaling resources, see the Application Auto Scaling reference
in the Amazon CloudFormation User Guide.

Example template snippets

You can find example snippets to include in Amazon CloudFormation templates in the following
sections of the Amazon CloudFormation User Guide:

• For examples of scaling policies and scheduled actions, see Configure Application Auto Scaling
resources with Amazon CloudFormation.

• For more examples of scaling policies, see AWS::ApplicationAutoScaling::ScalingPolicy.

Learn more about Amazon CloudFormation

To learn more about Amazon CloudFormation, see the following resources:

• Amazon CloudFormation

• Amazon CloudFormation User Guide

• Amazon CloudFormation API Reference

• Amazon CloudFormation Command Line Interface User Guide

Example template snippets 42

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/AWS_ApplicationAutoScaling.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/quickref-application-auto-scaling.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/quickref-application-auto-scaling.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalingpolicy.html
https://www.amazonaws.cn/cloudformation/
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Application Auto Scaling User Guide

Scheduled scaling for Application Auto Scaling

With scheduled scaling, you can set up automatic scaling for your application based on predictable
load changes by creating scheduled actions that increase or decrease capacity at specific times.
This allows you to scale your application proactively to match predictable load changes.

For example, let's say you experience a regular weekly traffic pattern where load increases mid-
week and declines toward the end of the week. You can configure a scaling schedule in Application
Auto Scaling that aligns with this pattern:

• On Wednesday morning, one scheduled action increases capacity by increasing the previously set
minimum capacity of the scalable target.

• On Friday evening, another scheduled action decreases capacity by decreasing the previously set
maximum capacity of the scalable target.

These scheduled scaling actions allow you to optimize costs and performance. Your application
has sufficient capacity to handle the mid-week traffic peak, but does not over-provision unneeded
capacity at other times.

You can use scheduled scaling and scaling policies together to get the benefits of proactive
and reactive approaches to scaling. After a scheduled scaling action runs, the scaling policy can
continue to make decisions about whether to further scale capacity. This helps you ensure that you
have sufficient capacity to handle the load for your application. While your application scales to
match demand, current capacity must fall within the minimum and maximum capacity that was set
by your scheduled action.

Contents

• How scheduled scaling for Application Auto Scaling works

• Create scheduled actions for Application Auto Scaling using the Amazon CLI

• Describe scheduled scaling for Application Auto Scaling using the Amazon CLI

• Schedule recurring scaling actions using Application Auto Scaling

• Turn off scheduled scaling for a scalable target

• Delete a scheduled action for Application Auto Scaling using the Amazon CLI

43

Application Auto Scaling User Guide

How scheduled scaling for Application Auto Scaling works

This topic describes how scheduled scaling works and introduces the key considerations you need
to understand to use it effectively.

Contents

• How it works

• Considerations

• Commonly used commands for scheduled action creation, management, and deletion

• Related resources

• Limitations

How it works

To use scheduled scaling, create scheduled actions, which tell Application Auto Scaling to perform
scaling activities at specific times. When you create a scheduled action, you specify the scalable
target, when the scaling activity should occur, a minimum capacity, and a maximum capacity. You
can create scheduled actions that scale one time only or that scale on a recurring schedule.

At the specified time, Application Auto Scaling scales based on the new capacity values, by
comparing current capacity to the specified minimum and maximum capacity.

• If current capacity is less than the specified minimum capacity, Application Auto Scaling scales
out (increases capacity) to the specified minimum capacity.

• If current capacity is greater than the specified maximum capacity, Application Auto Scaling
scales in (decreases capacity) to the specified maximum capacity.

Considerations

When you create a scheduled action, keep the following in mind:

• A scheduled action sets the MinCapacity and MaxCapacity to what is specified by the
scheduled action at the date and time specified. The request can optionally include only one
of these sizes. For example, you can create a scheduled action with only the minimum capacity
specified. In some cases, however, you must include both sizes to ensure that the new minimum

How scheduled scaling works 44

Application Auto Scaling User Guide

capacity is not greater than the maximum capacity, or the new maximum capacity is not less
than the minimum capacity.

• By default, the recurring schedules that you set are in Coordinated Universal Time (UTC). You
can change the time zone to correspond to your local time zone or a time zone for another
part of your network. When you specify a time zone that observes daylight saving time, the
action automatically adjusts for Daylight Saving Time (DST). For more information, see Schedule
recurring scaling actions using Application Auto Scaling.

• You can temporarily turn off scheduled scaling for a scalable target. This helps you prevent
scheduled actions from being active without having to delete them. You can then resume
scheduled scaling when you want to use it again. For more information, see Suspend and resume
scaling for Application Auto Scaling.

• The order in which scheduled actions run is guaranteed for the same scalable target, but not for
scheduled actions across scalable targets.

• To complete a scheduled action successfully, the specified resource must be in a scalable state
in the target service. If it isn't, the request fails and returns an error message, for example,
Resource Id [ActualResourceId] is not scalable. Reason: The status of all
DB instances must be 'available' or 'incompatible-parameters'.

• Due to the distributed nature of Application Auto Scaling and the target services, the delay
between the time the scheduled action is triggered and the time the target service honors the
scaling action might be a few seconds. Because scheduled actions are run in the order that they
are specified, scheduled actions with start times close to each other can take longer to run.

Commonly used commands for scheduled action creation,
management, and deletion

The commonly used commands for working with schedule scaling include:

• register-scalable-target to register Amazon or custom resources as scalable targets (a resource
that Application Auto Scaling can scale), and to suspend and resume scaling.

• put-scheduled-action to add or modify scheduled actions for an existing scalable target.

• describe-scaling-activities to return information about scaling activities in an Amazon Region.

• describe-scheduled-actions to return information about scheduled actions in an Amazon Region.

• delete-scheduled-action to delete a scheduled action.

Commonly used commands 45

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scheduled-action.html

Application Auto Scaling User Guide

Related resources

For a detailed example of using scheduled scaling, see the blog post Scheduling Amazon Lambda
Provisioned Concurrency for recurring peak usage on the Amazon Compute Blog.

For information about creating scheduled actions for Auto Scaling groups, see Scheduled scaling
for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

Limitations

The following are limitations when using scheduled scaling:

• The names of scheduled actions must be unique per scalable target.

• Application Auto Scaling doesn't provide second-level precision in schedule expressions. The
finest resolution using a cron expression is 1 minute.

• The scalable target can't be an Amazon MSK cluster. Scheduled scaling is not supported for
Amazon MSK.

• Console access to view, add, update, or remove scheduled actions on scalable resources depends
on the resource that you use. For more information, see Amazon Web Services services that you
can use with Application Auto Scaling.

Create scheduled actions for Application Auto Scaling using the
Amazon CLI

The following examples show how to create scheduled actions using the Amazon CLI put-
scheduled-action command. When you specify the new capacity, you can specify a minimum
capacity, a maximum capacity, or both.

These examples use scalable targets for a few of the services that integrate with Application Auto
Scaling. To use a different scalable target, specify its namespace in --service-namespace, its
scalable dimension in --scalable-dimension, and its resource ID in --resource-id.

When using the Amazon CLI, remember that your commands run in the Amazon Web Services
Region configured for your profile. If you want to run the commands in a different Region, either
change the default Region for your profile, or use the --region parameter with the command.

Examples

• Create a scheduled action that occurs only once

Related resources 46

https://amazonaws-china.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/
https://amazonaws-china.com/blogs/compute/scheduling-aws-lambda-provisioned-concurrency-for-recurring-peak-usage/
https://docs.amazonaws.cn/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html

Application Auto Scaling User Guide

• Create a scheduled action that runs on a recurring interval

• Create a scheduled action that runs on a recurring schedule

• Create a one-time scheduled action that specifies a time zone

• Create a recurring scheduled action that specifies a time zone

Create a scheduled action that occurs only once

To automatically scale your scalable target one time only, at a specified date and time, use the --
schedule "at(yyyy-mm-ddThh:mm:ss)" option.

Example Example: To scale out one time only

The following is an example of creating a scheduled action to scale out capacity at a specific date
and time.

At the date and time specified for --schedule (10:00 PM UTC on March 31, 2021), if the value
specified for MinCapacity is above the current capacity, Application Auto Scaling scales out to
MinCapacity.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action --service-namespace custom-resource \
 --scalable-dimension custom-resource:ResourceType:Property \
 --resource-id file://~/custom-resource-id.txt \
 --scheduled-action-name scale-out \
 --schedule "at(2021-03-31T22:00:00)" \
 --scalable-target-action MinCapacity=3

Windows

aws application-autoscaling put-scheduled-action --service-namespace custom-resource ^
 --scalable-dimension custom-resource:ResourceType:Property ^
 --resource-id file://~/custom-resource-id.txt ^
 --scheduled-action-name scale-out ^
 --schedule "at(2021-03-31T22:00:00)" ^
 --scalable-target-action MinCapacity=3

When this scheduled action runs, if the maximum capacity is less than the value specified for
minimum capacity, you must specify a new minimum and maximum capacity, and not just the
minimum capacity.

Create a scheduled action that occurs only once 47

Application Auto Scaling User Guide

Example Example: To scale in one time only

The following is an example of creating a scheduled action to scale in capacity at a specific date
and time.

At the date and time specified for --schedule (10:30 PM UTC on March 31, 2021), if the value
specified for MaxCapacity is below the current capacity, Application Auto Scaling scales in to
MaxCapacity.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action --service-namespace custom-resource \
 --scalable-dimension custom-resource:ResourceType:Property \
 --resource-id file://~/custom-resource-id.txt \
 --scheduled-action-name scale-in \
 --schedule "at(2021-03-31T22:30:00)" \
 --scalable-target-action MinCapacity=0,MaxCapacity=0

Windows

aws application-autoscaling put-scheduled-action --service-namespace custom-resource ^
 --scalable-dimension custom-resource:ResourceType:Property ^
 --resource-id file://~/custom-resource-id.txt ^
 --scheduled-action-name scale-in ^
 --schedule "at(2021-03-31T22:30:00)" ^
 --scalable-target-action MinCapacity=0,MaxCapacity=0

Create a scheduled action that runs on a recurring interval

To schedule scaling at a recurring interval, use the --schedule "rate(value unit)" option.
The value must be a positive integer. The unit can be minute, minutes, hour, hours, day, or
days. For more information, see Rate expressions in the Amazon EventBridge User Guide.

The following is an example of a scheduled action that uses a rate expression.

On the specified schedule (every 5 hours starting on January 30, 2021 at 12:00 PM UTC and
ending on January 31, 2021 at 10:00 PM UTC), if the value specified for MinCapacity is above the
current capacity, Application Auto Scaling scales out to MinCapacity. If the value specified for
MaxCapacity is below the current capacity, Application Auto Scaling scales in to MaxCapacity.

Linux, macOS, or Unix

Create a scheduled action that runs on a recurring interval 48

https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-scheduled-rule-pattern.html#eb-rate-expressions

Application Auto Scaling User Guide

aws application-autoscaling put-scheduled-action --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service \
 --scheduled-action-name my-recurring-action \
 --schedule "rate(5 hours)" \
 --start-time 2021-01-30T12:00:00 \
 --end-time 2021-01-31T22:00:00 \
 --scalable-target-action MinCapacity=3,MaxCapacity=10

Windows

aws application-autoscaling put-scheduled-action --service-namespace ecs ^
 --scalable-dimension ecs:service:DesiredCount ^
 --resource-id service/my-cluster/my-service ^
 --scheduled-action-name my-recurring-action ^
 --schedule "rate(5 hours)" ^
 --start-time 2021-01-30T12:00:00 ^
 --end-time 2021-01-31T22:00:00 ^
 --scalable-target-action MinCapacity=3,MaxCapacity=10

Create a scheduled action that runs on a recurring schedule

To schedule scaling on a recurring schedule, use the --schedule "cron(fields)" option. For
more information, see Schedule recurring scaling actions using Application Auto Scaling.

The following is an example of a scheduled action that uses a cron expression.

On the specified schedule (every day at 9:00 AM UTC), if the value specified for MinCapacity
is above the current capacity, Application Auto Scaling scales out to MinCapacity. If the value
specified for MaxCapacity is below the current capacity, Application Auto Scaling scales in to
MaxCapacity.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action --service-namespace appstream \
 --scalable-dimension appstream:fleet:DesiredCapacity \
 --resource-id fleet/sample-fleet \
 --scheduled-action-name my-recurring-action \
 --schedule "cron(0 9 * * ? *)" \
 --scalable-target-action MinCapacity=10,MaxCapacity=50

Create a scheduled action that runs on a recurring schedule 49

Application Auto Scaling User Guide

Windows

aws application-autoscaling put-scheduled-action --service-namespace appstream ^
 --scalable-dimension appstream:fleet:DesiredCapacity ^
 --resource-id fleet/sample-fleet ^
 --scheduled-action-name my-recurring-action ^
 --schedule "cron(0 9 * * ? *)" ^
 --scalable-target-action MinCapacity=10,MaxCapacity=50

Create a one-time scheduled action that specifies a time zone

Scheduled actions are set to the UTC time zone by default. To specify a different time zone, include
the --timezone option and specify the canonical name for the time zone (America/New_York,
for example). For more information, see https://www.joda.org/joda-time/timezones.html, which
provides information about the IANA time zones that are supported when calling put-scheduled-
action.

The following is an example that uses the --timezone option when creating a scheduled action to
scale capacity at a specific date and time.

At the date and time specified for --schedule (5:00 PM local time on January 31, 2021), if the
value specified for MinCapacity is above the current capacity, Application Auto Scaling scales
out to MinCapacity. If the value specified for MaxCapacity is below the current capacity,
Application Auto Scaling scales in to MaxCapacity.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action --service-namespace comprehend \
 --scalable-dimension comprehend:document-classifier-endpoint:DesiredInferenceUnits \
 --resource-id arn:aws-cn:comprehend:us-west-2:123456789012:document-classifier-
endpoint/EXAMPLE \
 --scheduled-action-name my-one-time-action \
 --schedule "at(2021-01-31T17:00:00)" --timezone "America/New_York" \
 --scalable-target-action MinCapacity=1,MaxCapacity=3

Windows

aws application-autoscaling put-scheduled-action --service-namespace comprehend ^
 --scalable-dimension comprehend:document-classifier-endpoint:DesiredInferenceUnits ^
 --resource-id arn:aws-cn:comprehend:us-west-2:123456789012:document-classifier-
endpoint/EXAMPLE ^

Create a one-time scheduled action that specifies a time zone 50

https://www.joda.org/joda-time/timezones.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html

Application Auto Scaling User Guide

 --scheduled-action-name my-one-time-action ^
 --schedule "at(2021-01-31T17:00:00)" --timezone "America/New_York" ^
 --scalable-target-action MinCapacity=1,MaxCapacity=3

Create a recurring scheduled action that specifies a time zone

The following is an example that uses the --timezone option when creating a recurring scheduled
action to scale capacity. For more information, see Schedule recurring scaling actions using
Application Auto Scaling.

On the specified schedule (every Monday through Friday at 6:00 PM local time), if the value
specified for MinCapacity is above the current capacity, Application Auto Scaling scales out to
MinCapacity. If the value specified for MaxCapacity is below the current capacity, Application
Auto Scaling scales in to MaxCapacity.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action --service-namespace lambda \
 --scalable-dimension lambda:function:ProvisionedConcurrency \
 --resource-id function:my-function:BLUE \
 --scheduled-action-name my-recurring-action \
 --schedule "cron(0 18 ? * MON-FRI *)" --timezone "Etc/GMT+9" \
 --scalable-target-action MinCapacity=10,MaxCapacity=50

Windows

aws application-autoscaling put-scheduled-action --service-namespace lambda ^
 --scalable-dimension lambda:function:ProvisionedConcurrency ^
 --resource-id function:my-function:BLUE ^
 --scheduled-action-name my-recurring-action ^
 --schedule "cron(0 18 ? * MON-FRI *)" --timezone "Etc/GMT+9" ^
 --scalable-target-action MinCapacity=10,MaxCapacity=50

Describe scheduled scaling for Application Auto Scaling using
the Amazon CLI

These example Amazon CLI commands describe scaling activities and scheduled actions using
resources from services that integrate with Application Auto Scaling. For a different scalable

Create a recurring scheduled action that specifies a time zone 51

Application Auto Scaling User Guide

target, specify its namespace in --service-namespace, its scalable dimension in --scalable-
dimension, and its resource ID in --resource-id.

When using the Amazon CLI, remember that your commands run in the Amazon Web Services
Region configured for your profile. If you want to run the commands in a different Region, either
change the default Region for your profile, or use the --region parameter with the command.

Examples

• Describe scaling activities for a service

• Describe the scheduled actions for a service

• Describe the scheduled actions for a scalable target

Describe scaling activities for a service

To view the scaling activities for all of the scalable targets in a specified service namespace, use the
describe-scaling-activities command.

The following example retrieves the scaling activities associated with the dynamodb service
namespace.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-activities --service-namespace dynamodb

Windows

aws application-autoscaling describe-scaling-activities --service-namespace dynamodb

Output

If the command succeeds, it returns output similar to the following.

{
 "ScalingActivities": [
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting write capacity units to 10.",
 "ResourceId": "table/my-table",
 "ActivityId": "4d1308c0-bbcf-4514-a673-b0220ae38547",
 "StartTime": 1561574415.086,

Describe scaling activities for a service 52

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html

Application Auto Scaling User Guide

 "ServiceNamespace": "dynamodb",
 "EndTime": 1561574449.51,
 "Cause": "maximum capacity was set to 10",
 "StatusMessage": "Successfully set write capacity units to 10. Change
 successfully fulfilled by dynamodb.",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting min capacity to 5 and max capacity to 10",
 "ResourceId": "table/my-table",
 "ActivityId": "f2b7847b-721d-4e01-8ef0-0c8d3bacc1c7",
 "StartTime": 1561574414.644,
 "ServiceNamespace": "dynamodb",
 "Cause": "scheduled action name my-second-scheduled-action was triggered",
 "StatusMessage": "Successfully set min capacity to 5 and max capacity to
 10",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting write capacity units to 15.",
 "ResourceId": "table/my-table",
 "ActivityId": "d8ea4de6-9eaa-499f-b466-2cc5e681ba8b",
 "StartTime": 1561574108.904,
 "ServiceNamespace": "dynamodb",
 "EndTime": 1561574140.255,
 "Cause": "minimum capacity was set to 15",
 "StatusMessage": "Successfully set write capacity units to 15. Change
 successfully fulfilled by dynamodb.",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting min capacity to 15 and max capacity to 20",
 "ResourceId": "table/my-table",
 "ActivityId": "3250fd06-6940-4e8e-bb1f-d494db7554d2",
 "StartTime": 1561574108.512,
 "ServiceNamespace": "dynamodb",
 "Cause": "scheduled action name my-first-scheduled-action was triggered",
 "StatusMessage": "Successfully set min capacity to 15 and max capacity to
 20",
 "StatusCode": "Successful"
 }

Describe scaling activities for a service 53

Application Auto Scaling User Guide

]
}

To change this command so that it retrieves the scaling activities for only one of your scalable
targets, add the --resource-id option.

Describe the scheduled actions for a service

To describe the scheduled actions for all of the scalable targets in a specified service namespace,
use the describe-scheduled-actions command.

The following example retrieves the scheduled actions associated with the ec2 service namespace.

Linux, macOS, or Unix

aws application-autoscaling describe-scheduled-actions --service-namespace ec2

Windows

aws application-autoscaling describe-scheduled-actions --service-namespace ec2

Output

If the command succeeds, it returns output similar to the following.

{
 "ScheduledActions": [
 {
 "ScheduledActionName": "my-one-time-action",
 "ScheduledActionARN": "arn:aws-cn:autoscaling:us-
west-2:123456789012:scheduledAction:493a6261-fbb9-432d-855d-3c302c14bdb9:resource/ec2/
spot-fleet-request/sfr-107dc873-0802-4402-a901-37294EXAMPLE:scheduledActionName/my-one-
time-action",
 "ServiceNamespace": "ec2",
 "Schedule": "at(2021-01-31T17:00:00)",
 "Timezone": "America/New_York",
 "ResourceId": "spot-fleet-request/sfr-107dc873-0802-4402-
a901-37294EXAMPLE",
 "ScalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "ScalableTargetAction": {
 "MaxCapacity": 1
 },

Describe the scheduled actions for a service 54

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html

Application Auto Scaling User Guide

 "CreationTime": 1607454792.331
 },
 {
 "ScheduledActionName": "my-recurring-action",
 "ScheduledActionARN": "arn:aws-cn:autoscaling:us-
west-2:123456789012:scheduledAction:493a6261-fbb9-432d-855d-3c302c14bdb9:resource/ec2/
spot-fleet-request/sfr-107dc873-0802-4402-a901-37294EXAMPLE:scheduledActionName/my-
recurring-action",
 "ServiceNamespace": "ec2",
 "Schedule": "rate(5 minutes)",
 "ResourceId": "spot-fleet-request/sfr-107dc873-0802-4402-
a901-37294EXAMPLE",
 "ScalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "StartTime": 1604059200.0,
 "EndTime": 1612130400.0,
 "ScalableTargetAction": {
 "MinCapacity": 3,
 "MaxCapacity": 10
 },
 "CreationTime": 1607454949.719
 },
 {
 "ScheduledActionName": "my-one-time-action",
 "ScheduledActionARN": "arn:aws-cn:autoscaling:us-
west-2:123456789012:scheduledAction:4bce34c7-bb81-4ecf-b776-5c726efb1567:resource/ec2/
spot-fleet-request/sfr-40edeb7b-9ae7-44be-bef2-5c4c8EXAMPLE:scheduledActionName/my-one-
time-action",
 "ServiceNamespace": "ec2",
 "Schedule": "at(2020-12-08T9:36:00)",
 "Timezone": "America/New_York",
 "ResourceId": "spot-fleet-request/sfr-40edeb7b-9ae7-44be-
bef2-5c4c8EXAMPLE",
 "ScalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "ScalableTargetAction": {
 "MinCapacity": 1,
 "MaxCapacity": 3
 },
 "CreationTime": 1607456031.391
 }
]
}

Describe the scheduled actions for a service 55

Application Auto Scaling User Guide

Describe the scheduled actions for a scalable target

To retrieve information about the scheduled actions for a specified scalable target, add the --
resource-id option when describing scheduled actions using the describe-scheduled-actions
command.

If you include the --scheduled-action-names option and specify the name of a scheduled
action as its value, the command returns only the scheduled action whose name is a match, as
shown in the following example.

Linux, macOS, or Unix

aws application-autoscaling describe-scheduled-actions --service-namespace ec2 \
 --resource-id spot-fleet-request/sfr-40edeb7b-9ae7-44be-bef2-5c4c8EXAMPLE \
 --scheduled-action-names my-one-time-action

Windows

aws application-autoscaling describe-scheduled-actions --service-namespace ec2 ^
 --resource-id spot-fleet-request/sfr-40edeb7b-9ae7-44be-bef2-5c4c8EXAMPLE ^
 --scheduled-action-names my-one-time-action

Output

If the command succeeds, it returns output similar to the following. If you provided more than one
value for --scheduled-action-names, the output includes all scheduled actions whose names
are a match.

{
 "ScheduledActions": [
 {
 "ScheduledActionName": "my-one-time-action",
 "ScheduledActionARN": "arn:aws-cn:autoscaling:us-
west-2:123456789012:scheduledAction:4bce34c7-bb81-4ecf-b776-5c726efb1567:resource/ec2/
spot-fleet-request/sfr-40edeb7b-9ae7-44be-bef2-5c4c8EXAMPLE:scheduledActionName/my-one-
time-action",
 "ServiceNamespace": "ec2",
 "Schedule": "at(2020-12-08T9:36:00)",
 "Timezone": "America/New_York",
 "ResourceId": "spot-fleet-request/sfr-40edeb7b-9ae7-44be-
bef2-5c4c8EXAMPLE",

Describe the scheduled actions for a scalable target 56

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html

Application Auto Scaling User Guide

 "ScalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "ScalableTargetAction": {
 "MinCapacity": 1,
 "MaxCapacity": 3
 },
 "CreationTime": 1607456031.391
 }
]
}

Schedule recurring scaling actions using Application Auto
Scaling

Important

For help with cron expressions for Amazon EC2 Auto Scaling, see the Recurring schedules
topic in the Amazon EC2 Auto Scaling User Guide. With Amazon EC2 Auto Scaling, you use
traditional cron syntax instead of the custom cron syntax that Application Auto Scaling
uses.

You can create scheduled actions that run on a recurring schedule using a cron expression.

To create a recurring schedule, specify a cron expression and a time zone to describe when that
scheduled action is to recur. The supported time zone values are the canonical names of the IANA
time zones supported by Joda-Time (such as Etc/GMT+9 or Pacific/Tahiti). You can optionally
specify a date and time for the start time, the end time, or both. For an example command that
uses the Amazon CLI to create a scheduled action, see Create a recurring scheduled action that
specifies a time zone.

The supported cron expression format consists of six fields separated by white spaces: [Minutes]
[Hours] [Day_of_Month] [Month] [Day_of_Week] [Year]. For example, the cron expression 30 6 ?
* MON * configures a scheduled action that recurs every Monday at 6:30 AM. The asterisk is used
as a wildcard to match all values for a field.

For more information about the cron syntax for Application Auto Scaling scheduled actions, see
Cron expressions reference in the Amazon EventBridge User Guide.

Schedule recurring scaling actions 57

https://docs.amazonaws.cn/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html#scheduled-scaling-recurring-schedules
https://www.joda.org/joda-time/timezones.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-scheduled-rule-pattern.html#eb-cron-expressions

Application Auto Scaling User Guide

When you create a recurring schedule, choose your start and end times carefully. Keep the
following in mind:

• If you specify a start time, Application Auto Scaling performs the action at this time, and then
performs the action based on the specified recurrence.

• If you specify an end time, the action stops repeating after this time. Application Auto Scaling
does not keep track of previous values and revert back to those previous values after the end
time.

• The start time and end time must be set in UTC when you use the Amazon CLI or the Amazon
SDKs to create or update a scheduled action.

Examples

You can refer to the following table when you create a recurring schedule for an Application Auto
Scaling scalable target. The following examples are the correct syntax for using Application Auto
Scaling to create or update a scheduled action.

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 10 * * ? * Run at
10:00
am (UTC)
every day

15 12 * * ? * Run at
12:15
pm (UTC)
every day

0 18 ? * MON-FRI * Run at
6:00 pm
(UTC)
every
Monday
through
Friday

Schedule recurring scaling actions 58

Application Auto Scaling User Guide

Minutes Hours Day of
month

Month Day of
week

Year Meaning

0 8 1 * ? * Run at
8:00 am
(UTC) the
1st day
of every
month

0/15 * * * ? * Run every
15 minutes

0/10 * ? * MON-FRI * Run every
10 minutes
Monday
through
Friday

0/5 8-17 ? * MON-FRI * Run every
5 minutes
Monday
through
Friday
between
8:00 am
and 5:55
pm (UTC)

Exception

You can also create a cron expression with a string value that contains seven fields. In this case,
you can use the first three fields to specify the time for when a scheduled action should be run,
including the seconds. The full cron expression has the following space-separated fields: [Seconds]
[Minutes] [Hours] [Day_of_Month] [Month] [Day_of_Week] [Year]. However, this approach doesn't
guarantee that the scheduled action will run on the precise second that you specify. Also, some
service consoles may not support the seconds field in a cron expression.

Schedule recurring scaling actions 59

Application Auto Scaling User Guide

Turn off scheduled scaling for a scalable target

You can temporarily turn off scheduled scaling without deleting your scheduled actions. For more
information, see Suspend and resume scaling for Application Auto Scaling.

To suspend scheduled scaling

Suspend scheduled scaling on a scalable target by using the register-scalable-target
command with the --suspended-state option, and specifying true as the value of the
ScheduledScalingSuspended attribute, as shown in the following example.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace rds \
 --scalable-dimension rds:cluster:ReadReplicaCount --resource-id cluster:my-db-cluster
 \
 --suspended-state '{"ScheduledScalingSuspended": true}'

Windows

aws application-autoscaling register-scalable-target --service-namespace rds ^
 --scalable-dimension rds:cluster:ReadReplicaCount --resource-id cluster:my-db-cluster
 ^
 --suspended-state "{\"ScheduledScalingSuspended\": true}"

Output

If the command succeeds, it returns the ARN of the scalable target. The following is example
output.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

To resume scheduled scaling

To resume scheduled scaling, run the register-scalable-target command again, specifying false
as the value for ScheduledScalingSuspended.

Turn off scheduled scaling 60

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

Delete a scheduled action for Application Auto Scaling using
the Amazon CLI

When you are finished with a scheduled action, you can delete it.

To delete your scheduled action

Use the delete-scheduled-action command. If successful, this command does not return any
output.

Linux, macOS, or Unix

aws application-autoscaling delete-scheduled-action \
 --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-37294EXAMPLE \
 --scheduled-action-name my-recurring-action

Windows

aws application-autoscaling delete-scheduled-action ^
 --service-namespace ec2 ^
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity ^
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-37294EXAMPLE ^
 --scheduled-action-name my-recurring-action

To deregister the scalable target

If you are also finished with the scalable target, you can deregister it. Use the following deregister-
scalable-target command. If there are any scaling policies or scheduled actions that have not yet
been deleted, they are deleted by this command. If successful, this command does not return any
output.

Linux, macOS, or Unix

aws application-autoscaling deregister-scalable-target \
 --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-37294EXAMPLE

Delete a scheduled action 61

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/deregister-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/deregister-scalable-target.html

Application Auto Scaling User Guide

Windows

aws application-autoscaling deregister-scalable-target ^
 --service-namespace ec2 ^
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity ^
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-37294EXAMPLE

Delete a scheduled action 62

Application Auto Scaling User Guide

Target tracking scaling policies for Application Auto
Scaling

A target tracking scaling policy automatically scales your application based on a target metric
value. This allows your application to maintain optimal performance and cost efficiency without
manual intervention.

With target tracking, you select a metric and a target value to represent the ideal average
utilization or throughput level for your application. Application Auto Scaling creates and manages
the CloudWatch alarms that trigger scaling events when the metric deviates from the target. This is
similar to how a thermostat maintains a target temperature.

For example, let's say that you currently have an application that runs on Spot Fleet, and you want
the CPU utilization of the fleet to stay at around 50 percent when the load on the application
changes. This gives you extra capacity to handle traffic spikes without maintaining an excessive
number of idle resources.

You can meet this need by creating a target tracking scaling policy that targets an average CPU
utilization of 50 percent. Then, Application Auto Scaling will scale out (increase capacity) when CPU
exceeds 50 percent to handle increased load. It will scale in (decrease capacity) when CPU drops
below 50 percent to optimize costs during periods of low utilization.

Target tracking policies remove the need to manually define CloudWatch alarms and scaling
adjustments. Application Auto Scaling handles this automatically based on the target you set.

You can base target tracking policies on either predefined or custom metrics:

• Predefined metrics—Metrics provided by Application Auto Scaling like average CPU utilization
or average request count per target.

• Custom metrics—You can use metric math to combine metrics, leverage existing metrics, or use
your own custom metrics published to CloudWatch.

Choose a metric that changes inversely proportional to a change in the capacity of your scalable
target. So if you double capacity, the metric decreases by 50 percent. This allows the metric data to
accurately trigger proportional scaling events.

Contents

63

Application Auto Scaling User Guide

• How target tracking scaling for Application Auto Scaling works

• Create a target tracking scaling policy for Application Auto Scaling using the Amazon CLI

• Delete a target tracking scaling policy for Application Auto Scaling using the Amazon CLI

• Create a target tracking scaling policy for Application Auto Scaling using metric math

How target tracking scaling for Application Auto Scaling works

This topic describes how target tracking scaling works and introduces the key elements of a target
tracking scaling policy.

Contents

• How it works

• Choose metrics

• Define target value

• Define cooldown periods

• Considerations

• Multiple scaling policies

• Commonly used commands for scaling policy creation, management, and deletion

• Related resources

• Limitations

How it works

To use target tracking scaling, you create a target tracking scaling policy and specify the following:

• Metric—A CloudWatch metric to track, such as average CPU utilization or average request count
per target.

• Target value—The target value for the metric, such as 50 percent CPU utilization or 1000
requests per target per minute.

Application Auto Scaling creates and manages the CloudWatch alarms that invoke the scaling
policy and calculates the scaling adjustment based on the metric and the target value. It adds and
removes capacity as required to keep the metric at, or close to, the specified target value.

How target tracking works 64

Application Auto Scaling User Guide

When the metric is above the target value, Application Auto Scaling scales out by adding capacity
to reduce the difference between the metric value and the target value. When the metric is below
the target value, Application Auto Scaling scales in by removing capacity.

Scaling activities are performed with cooldown periods between them to prevent rapid fluctuations
in capacity. You can optionally configure the cooldown periods for your scaling policy.

The following diagram shows an overview of how a target tracking scaling policy works when the
set up is complete.

Note that a target tracking scaling policy is more aggressive in adding capacity when utilization
increases than it is in removing capacity when utilization decreases. For example, if the policy's
specified metric reaches its target value, the policy assumes that your application is already heavily
loaded. So it responds by adding capacity proportional to the metric value as fast as it can. The
higher the metric, the more capacity is added.

When the metric falls below the target value, the policy expects that utilization will eventually
increase again. In this case, it slows down scaling by removing capacity only when utilization passes
a threshold that is far enough below the target value (usually more than 10% lower) for utilization
to be considered to have slowed. The intention of this more conservative behavior is to ensure that
removing capacity only happens when the application is no longer experiencing demand at the
same high level that it was previously.

Choose metrics

You can create target tracking scaling policies with either predefined metrics or custom metrics.

When you create a target tracking scaling policy with a predefined metric type, you choose one
metric from the list of predefined metrics in Predefined metrics for target tracking scaling policies.

Keep the following in mind when choosing a metric:

Choose metrics 65

Application Auto Scaling User Guide

• Not all custom metrics work for target tracking. The metric must be a valid utilization metric and
describe how busy a scalable target is. The metric value must increase or decrease proportionally
to the capacity of the scalable target so that the metric data can be used to proportionally scale
the scalable target.

• To use the ALBRequestCountPerTarget metric, you must specify the ResourceLabel
parameter to identify the target group that is associated with the metric.

• When a metric emits real 0 values to CloudWatch (for example, ALBRequestCountPerTarget),
Application Auto Scaling can scale in to 0 when there is no traffic to your application for a
sustained period of time. To have your scalable target scale in to 0 when no requests are routed
it, the scalable target's minimum capacity must be set to 0.

• Instead of publishing new metrics to use in your scaling policy, you can use metric math to
combine existing metrics. For more information, see Create a target tracking scaling policy for
Application Auto Scaling using metric math.

• To see whether the service you are using supports specifying a custom metric in the service's
console, consult the documentation for that service.

• We recommend that you use metrics that are available at one-minute intervals to help you scale
faster in response to utilization changes. Target tracking will evaluate metrics aggregated at a
one-minute granularity for all predefined metrics and custom metrics, but the underlying metric
might publish data less frequently. For example, all Amazon EC2 metrics are sent in five-minute
intervals by default, but they are configurable to one minute (known as detailed monitoring).
This choice is up to the individual services. Most try to use the smallest interval possible.

Define target value

When you create a target tracking scaling policy, you must specify a target value. The target value
represents the optimal average utilization or throughput for your application. To use resources cost
efficiently, set the target value as high as possible with a reasonable buffer for unexpected traffic
increases. When your application is optimally scaled out for a normal traffic flow, the actual metric
value should be at or just below the target value.

When a scaling policy is based on throughput, such as the request count per target for an
Application Load Balancer, network I/O, or other count metrics, the target value represents the
optimal average throughput from a single entity (such as a single target of your Application Load
Balancer target group), for a one-minute period.

Define target value 66

Application Auto Scaling User Guide

Define cooldown periods

You can optionally define cooldown periods in your target tracking scaling policy.

A cooldown period specifies the amount of time the scaling policy waits for a previous scaling
activity to take effect.

There are two types of cooldown periods:

• With the scale-out cooldown period, the intention is to continuously (but not excessively) scale
out. After Application Auto Scaling successfully scales out using a scaling policy, it starts to
calculate the cooldown time. A scaling policy won‘t increase the desired capacity again unless
either a larger scale out is triggered or the cooldown period ends. While the scale-out cooldown
period is in effect, the capacity added by the initiating scale-out activity is calculated as part of
the desired capacity for the next scale-out activity.

• With the scale-in cooldown period, the intention is to scale in conservatively to protect your
application‘s availability, so scale-in activities are blocked until the scale-in cooldown period has
expired. However, if another alarm triggers a scale-out activity during the scale-in cooldown
period, Application Auto Scaling scales out the target immediately. In this case, the scale-in
cooldown period stops and doesn‘t complete.

Each cooldown period is measured in seconds and applies only to scaling policy-related scaling
activities. During a cooldown period, when a scheduled action starts at the scheduled time, it can
trigger a scaling activity immediately without waiting for the cooldown period to expire.

You can start with the default values, which can be later fine-tuned. For example, you might
need to increase a cooldown period to prevent your target tracking scaling policy from being too
aggressive about changes that occur over short periods of time.

Default values

Application Auto Scaling provides a default value of 600 for ElastiCache and a default value of 300
for the following scalable targets:

• AppStream 2.0 fleets

• Aurora DB clusters

• ECS services

• Neptune clusters

Define cooldown periods 67

Application Auto Scaling User Guide

• SageMaker AI endpoint variants

• SageMaker AI inference components

• SageMaker AI Serverless provisioned concurrency

• Spot Fleets

• Pool of WorkSpaces

• Custom resources

For all other scalable targets, the default value is 0 or null:

• Amazon Comprehend document classification and entity recognizer endpoints

• DynamoDB tables and global secondary indexes

• Amazon Keyspaces tables

• Lambda provisioned concurrency

• Amazon MSK broker storage

Null values are treated the same as zero values when Application Auto Scaling evaluates the
cooldown period.

You can update any of the default values, including null values, to set your own cooldown periods.

Considerations

The following considerations apply when working with target tracking scaling policies:

• Do not create, edit, or delete the CloudWatch alarms that are used with a target tracking scaling
policy. Application Auto Scaling creates and manages the CloudWatch alarms that are associated
with your target tracking scaling policies and deletes them when no longer needed.

• If the metric is missing data points, this causes the CloudWatch alarm state to change to
INSUFFICIENT_DATA. When this happens, Application Auto Scaling cannot scale your scalable
target until new data points are found. For more information, see Configuring how CloudWatch
alarms treat missing data in the Amazon CloudWatch User Guide.

• If the metric is sparsely reported by design, metric math can be helpful. For example, to use the
most recent values, then use the FILL(m1,REPEAT) function where m1 is the metric.

• You may see gaps between the target value and the actual metric data points. This is because
Application Auto Scaling always acts conservatively by rounding up or down when it determines

Considerations 68

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-missing-data
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-missing-data

Application Auto Scaling User Guide

how much capacity to add or remove. This prevents it from adding insufficient capacity or
removing too much capacity. However, for a scalable target with a small capacity, the actual
metric data points might seem far from the target value.

For a scalable target with a larger capacity, adding or removing capacity causes less of a gap
between the target value and the actual metric data points.

• A target tracking scaling policy assumes that it should perform scale out when the specified
metric is above the target value. You cannot use a target tracking scaling policy to scale out
when the specified metric is below the target value.

Multiple scaling policies

You can have multiple target tracking scaling policies for a scalable target, provided that each
of them uses a different metric. The intention of Application Auto Scaling is to always prioritize
availability, so its behavior differs depending on whether the target tracking policies are ready
for scale out or scale in. It will scale out the scalable target if any of the target tracking policies
are ready for scale out, but will scale in only if all of the target tracking policies (with the scale-in
portion enabled) are ready to scale in.

If multiple scaling policies instruct the scalable target to scale out or in at the same time,
Application Auto Scaling scales based on the policy that provides the largest capacity for both scale
in and scale out. This provides greater flexibility to cover multiple scenarios and ensures that there
is always enough capacity to process your workloads.

You can disable the scale-in portion of a target tracking scaling policy to use a different method for
scale in than you use for scale out. For example, you can use a step scaling policy for scale in while
using a target tracking scaling policy for scale out.

We recommend caution, however, when using target tracking scaling policies with step scaling
policies because conflicts between these policies can cause undesirable behavior. For example, if
the step scaling policy initiates a scale-in activity before the target tracking policy is ready to scale
in, the scale-in activity will not be blocked. After the scale-in activity completes, the target tracking
policy could instruct the scalable target to scale out again.

For workloads that are cyclical in nature, you also have the option to automate capacity changes
on a schedule using scheduled scaling. For each scheduled action, a new minimum capacity value
and a new maximum capacity value can be defined. These values form the boundaries of the

Multiple scaling policies 69

Application Auto Scaling User Guide

scaling policy. The combination of scheduled scaling and target tracking scaling can help reduce
the impact of a sharp increase in utilization levels, when capacity is needed immediately.

Commonly used commands for scaling policy creation, management,
and deletion

The commonly used commands for working with scaling policies include:

• register-scalable-target to register Amazon or custom resources as scalable targets (a resource
that Application Auto Scaling can scale), and to suspend and resume scaling.

• put-scaling-policy to add or modify scaling policies for an existing scalable target.

• describe-scaling-activities to return information about scaling activities in an Amazon Region.

• describe-scaling-policies to return information about scaling policies in an Amazon Region.

• delete-scaling-policy to delete a scaling-policy.

Related resources

For information about creating target tracking scaling policies for Auto Scaling groups, see Target
tracking scaling policies for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

Limitations

The following are limitations when using target tracking scaling policies:

• The scalable target can't be an Amazon EMR cluster. Target tracking scaling policies are not
supported for Amazon EMR.

• When an Amazon MSK cluster is the scalable target, scale in is disabled and cannot be enabled.

• You cannot use the RegisterScalableTarget or PutScalingPolicy API operations to
update an Amazon Auto Scaling scaling plan.

• Console access to view, add, update, or remove target tracking scaling policies on scalable
resources depends on the resource that you use. For more information, see Amazon Web Services
services that you can use with Application Auto Scaling.

Commonly used commands 70

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scaling-target-tracking.html

Application Auto Scaling User Guide

Create a target tracking scaling policy for Application Auto
Scaling using the Amazon CLI

This example uses Amazon CLI commands to create a target racking policy for an Amazon EC2 Spot
Fleet. For a different scalable target, specify its namespace in --service-namespace, its scalable
dimension in --scalable-dimension, and its resource ID in --resource-id.

When using the Amazon CLI, remember that your commands run in the Amazon Web Services
Region configured for your profile. If you want to run the commands in a different Region, either
change the default Region for your profile, or use the --region parameter with the command.

Tasks

• Step 1: Register a scalable target

• Step 2: Create a target tracking scaling policy

• Step 3: Describe target tracking scaling policies

Step 1: Register a scalable target

If you haven't already done so, register the scalable target. Use the register-scalable-target
command to register a specific resource in the target service as a scalable target. The following
example registers a Spot Fleet request with Application Auto Scaling. Application Auto Scaling can
scale the number of instances in the Spot Fleet at a minimum of 2 instances and a maximum of 10.
Replace each user input placeholder with your own information.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE \
 --min-capacity 2 --max-capacity 10

Windows

aws application-autoscaling register-scalable-target --service-namespace ec2 ^
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity ^
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE ^
 --min-capacity 2 --max-capacity 10

Create a target tracking scaling policy 71

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

Output

If successful, this command returns the ARN of the scalable target. The following is example
output.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Step 2: Create a target tracking scaling policy

To create a target tracking scaling policy, you can use the following examples to help you get
started.

To create a target tracking scaling policy

1. Use the following cat command to store a target value for your scaling policy and a
predefined metric specification in a JSON file named config.json in your home directory.
The following is an example target tracking configuration that keeps the average CPU
utilization at 50 percent.

$ cat ~/config.json
{
 "TargetValue": 50.0,
 "PredefinedMetricSpecification":
 {
 "PredefinedMetricType": "EC2SpotFleetRequestAverageCPUUtilization"
 }
}

For more information, see PredefinedMetricSpecification in the Application Auto Scaling API
Reference.

Alternatively, you can use a custom metric for scaling by creating a customized metric
specification and adding values for each parameter from CloudWatch. The following is an
example target tracking configuration that keeps the average utilization of the specified metric
at 100.

$ cat ~/config.json

Step 2: Create a target tracking scaling policy 72

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_PredefinedMetricSpecification.html

Application Auto Scaling User Guide

{
 "TargetValue": 100.0,
 "CustomizedMetricSpecification":{
 "MetricName": "MyUtilizationMetric",
 "Namespace": "MyNamespace",
 "Dimensions": [
 {
 "Name": "MyOptionalMetricDimensionName",
 "Value": "MyOptionalMetricDimensionValue"
 }
],
 "Statistic": "Average",
 "Unit": "Percent"
 }
}

For more information, see CustomizedMetricSpecification in the Application Auto Scaling API
Reference.

2. Use the following put-scaling-policy command, along with the config.json file you created,
to create a scaling policy named cpu50-target-tracking-scaling-policy.

Linux, macOS, or Unix

aws application-autoscaling put-scaling-policy --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE \
 --policy-name cpu50-target-tracking-scaling-policy --policy-type
 TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration file://config.json

Windows

aws application-autoscaling put-scaling-policy --service-namespace ec2 ^
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity ^
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE ^
 --policy-name cpu50-target-tracking-scaling-policy --policy-type
 TargetTrackingScaling ^
 --target-tracking-scaling-policy-configuration file://config.json

Output

Step 2: Create a target tracking scaling policy 73

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_CustomizedMetricSpecification.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

If successful, this command returns the ARNs and names of the two CloudWatch alarms
created on your behalf. The following is example output.

{
 "PolicyARN": "arn:aws-cn:autoscaling:region:account-
id:scalingPolicy:policy-id:resource/ec2/spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE:policyName/cpu50-target-tracking-scaling-policy",
 "Alarms": [
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:region:account-
id:alarm:TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmHigh-d4f0770c-b46e-434a-a60f-3b36d653feca",
 "AlarmName": "TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmHigh-d4f0770c-b46e-434a-a60f-3b36d653feca"
 },
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:region:account-
id:alarm:TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d",
 "AlarmName": "TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d"
 }
]
}

Step 3: Describe target tracking scaling policies

You can describe all scaling policies for the specified service namespace using the following
describe-scaling-policies command.

aws application-autoscaling describe-scaling-policies --service-namespace ec2

You can filter the results to just the target tracking scaling policies using the --query parameter.
For more information about the syntax for query, see Controlling command output from the
Amazon CLI in the Amazon Command Line Interface User Guide.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-policies --service-namespace ec2 \

Step 3: Describe target tracking scaling policies 74

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-output.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-output.html

Application Auto Scaling User Guide

 --query 'ScalingPolicies[?PolicyType==`TargetTrackingScaling`]'

Windows

aws application-autoscaling describe-scaling-policies --service-namespace ec2 ^
 --query "ScalingPolicies[?PolicyType==`TargetTrackingScaling`]"

Output

The following is example output.

[
 {
 "PolicyARN": "PolicyARN",
 "TargetTrackingScalingPolicyConfiguration": {
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "EC2SpotFleetRequestAverageCPUUtilization"
 },
 "TargetValue": 50.0
 },
 "PolicyName": "cpu50-target-tracking-scaling-policy",
 "ScalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "ServiceNamespace": "ec2",
 "PolicyType": "TargetTrackingScaling",
 "ResourceId": "spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE",
 "Alarms": [
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:region:account-
id:alarm:TargetTracking-spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE-
AlarmHigh-d4f0770c-b46e-434a-a60f-3b36d653feca",
 "AlarmName": "TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmHigh-d4f0770c-b46e-434a-a60f-3b36d653feca"
 },
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:region:account-
id:alarm:TargetTracking-spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE-
AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d",
 "AlarmName": "TargetTracking-spot-fleet-request/sfr-73fbd2ce-
aa30-494c-8788-1cee4EXAMPLE-AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d"
 }
],
 "CreationTime": 1515021724.807
 }

Step 3: Describe target tracking scaling policies 75

Application Auto Scaling User Guide

]

Delete a target tracking scaling policy for Application Auto
Scaling using the Amazon CLI

When you are finished with a target tracking scaling policy, you can delete it using the delete-
scaling-policy command.

The following command deletes the specified target tracking scaling policy for the specified Spot
Fleet request. It also deletes the CloudWatch alarms that Application Auto Scaling created on your
behalf.

Linux, macOS, or Unix

aws application-autoscaling delete-scaling-policy --service-namespace ec2 \
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity \
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE \
 --policy-name cpu50-target-tracking-scaling-policy

Windows

aws application-autoscaling delete-scaling-policy --service-namespace ec2 ^
 --scalable-dimension ec2:spot-fleet-request:TargetCapacity ^
 --resource-id spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE ^
 --policy-name cpu50-target-tracking-scaling-policy

Create a target tracking scaling policy for Application Auto
Scaling using metric math

Using metric math, you can query multiple CloudWatch metrics and use math expressions to
create new time series based on these metrics. You can visualize the resulting time series in the
CloudWatch console and add them to dashboards. For more information about metric math, see
Using metric math in the Amazon CloudWatch User Guide.

The following considerations apply to metric math expressions:

• You can query any available CloudWatch metric. Each metric is a unique combination of metric
name, namespace, and zero or more dimensions.

Delete a target tracking scaling policy 76

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Application Auto Scaling User Guide

• You can use any arithmetic operator (+ - * / ^), statistical function (such as AVG or SUM), or other
function that CloudWatch supports.

• You can use both metrics and the results of other math expressions in the formulas of the math
expression.

• Any expressions used in a metric specification must eventually return a single time series.

• You can verify that a metric math expression is valid by using the CloudWatch console or the
CloudWatch GetMetricData API.

Topics

• Example: Amazon SQS queue backlog per task

• Limitations

Example: Amazon SQS queue backlog per task

To calculate the Amazon SQS queue backlog per task, take the approximate number of messages
available for retrieval from the queue and divide that number by the number of Amazon ECS tasks
running in the service. For more information, see Amazon Elastic Container Service (ECS) Auto
Scaling using custom metrics on the Amazon Compute Blog.

The logic for the expression is this:

sum of (number of messages in the queue)/(number of tasks that are
currently in the RUNNING state)

Then your CloudWatch metric information is the following.

ID CloudWatch metric Statistic Period

m1 Approxima
teNumberO
fMessagesVisible

Sum 1 minute

m2 RunningTaskCount Average 1 minute

Your metric math ID and expression are the following.

Example: Amazon SQS queue backlog per task 77

https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html
https://amazonaws-china.com/blogs/containers/amazon-elastic-container-service-ecs-auto-scaling-using-custom-metrics/
https://amazonaws-china.com/blogs/containers/amazon-elastic-container-service-ecs-auto-scaling-using-custom-metrics/

Application Auto Scaling User Guide

ID Expression

e1 (m1)/(m2)

The following diagram illustrates the architecture for this metric:

To use this metric math to create a target tracking scaling policy (Amazon CLI)

1. Store the metric math expression as part of a customized metric specification in a JSON file
named config.json.

Use the following example to help you get started. Replace each user input placeholder
with your own information.

{
 "CustomizedMetricSpecification": {

Example: Amazon SQS queue backlog per task 78

Application Auto Scaling User Guide

 "Metrics": [
 {
 "Label": "Get the queue size (the number of messages waiting to be
 processed)",
 "Id": "m1",
 "MetricStat": {
 "Metric": {
 "MetricName": "ApproximateNumberOfMessagesVisible",
 "Namespace": "AWS/SQS",
 "Dimensions": [
 {
 "Name": "QueueName",
 "Value": "my-queue"
 }
]
 },
 "Stat": "Sum"
 },
 "ReturnData": false
 },
 {
 "Label": "Get the ECS running task count (the number of currently
 running tasks)",
 "Id": "m2",
 "MetricStat": {
 "Metric": {
 "MetricName": "RunningTaskCount",
 "Namespace": "ECS/ContainerInsights",
 "Dimensions": [
 {
 "Name": "ClusterName",
 "Value": "my-cluster"
 },
 {
 "Name": "ServiceName",
 "Value": "my-service"
 }
]
 },
 "Stat": "Average"
 },
 "ReturnData": false
 },
 {

Example: Amazon SQS queue backlog per task 79

Application Auto Scaling User Guide

 "Label": "Calculate the backlog per instance",
 "Id": "e1",
 "Expression": "m1 / m2",
 "ReturnData": true
 }
]
 },
 "TargetValue": 100
}

For more information, see TargetTrackingScalingPolicyConfiguration in the Application Auto
Scaling API Reference.

Note

Following are some additional resources that can help you find metric names,
namespaces, dimensions, and statistics for CloudWatch metrics:

• For information about the available metrics for Amazon services, see Amazon
services that publish CloudWatch metrics in the Amazon CloudWatch User Guide.

• To get the exact metric name, namespace, and dimensions (if applicable) for a
CloudWatch metric with the Amazon CLI, see list-metrics.

2. To create this policy, run the put-scaling-policy command using the JSON file as input, as
demonstrated in the following example.

aws application-autoscaling put-scaling-policy --policy-name sqs-backlog-target-
tracking-scaling-policy \
 --service-namespace ecs --scalable-dimension ecs:service:DesiredCount --resource-
id service/my-cluster/my-service \
 --policy-type TargetTrackingScaling --target-tracking-scaling-policy-
configuration file://config.json

If successful, this command returns the policy's Amazon Resource Name (ARN) and the ARNs of
the two CloudWatch alarms created on your behalf.

{
 "PolicyARN": "arn:aws-cn:autoscaling:us-west-2:012345678910:scalingPolicy:
 8784a896-b2ba-47a1-b08c-27301cc499a1:resource/ecs/service/my-cluster/my-
service:policyName/sqs-backlog-target-tracking-scaling-policy",

Example: Amazon SQS queue backlog per task 80

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_TargetTrackingScalingPolicyConfiguration.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/list-metrics.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

 "Alarms": [
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/my-cluster/my-service-
AlarmHigh-9bc77b56-0571-4276-ba0f-d4178882e0a0",
 "AlarmName": "TargetTracking-service/my-cluster/my-service-
AlarmHigh-9bc77b56-0571-4276-ba0f-d4178882e0a0"
 },
 {
 "AlarmARN": "arn:aws-cn:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/my-cluster/my-service-
AlarmLow-9b6ad934-6d37-438e-9e05-02836ddcbdc4",
 "AlarmName": "TargetTracking-service/my-cluster/my-service-
AlarmLow-9b6ad934-6d37-438e-9e05-02836ddcbdc4"
 }
]
}

Note

If this command throws an error, make sure that you have updated the Amazon CLI
locally to the latest version.

Limitations

• The maximum request size is 50 KB. This is the total payload size for the PutScalingPolicy API
request when you use metric math in the policy definition. If you exceed this limit, Application
Auto Scaling rejects the request.

• The following services are not supported when using metric math with target tracking scaling
policies:

• Amazon Keyspaces (for Apache Cassandra)

• DynamoDB

• Amazon EMR

• Amazon MSK

• Amazon Neptune

Limitations 81

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_PutScalingPolicy.html

Application Auto Scaling User Guide

Step scaling policies for Application Auto Scaling

A step scaling policy scales your application's capacity in predefined increments based on
CloudWatch alarms. You can define separate scaling policies to handle scaling out (increasing
capacity) and scaling in (decreasing capacity) when an alarm threshold is breached.

With step scaling policies, you create and manage the CloudWatch alarms that invoke the scaling
process. When an alarm is breached, Application Auto Scaling initiates the scaling policy associated
with that alarm.

The step scaling policy scales capacity using a set of adjustments, known as step adjustments. The
size of the adjustment varies based on the magnitude of the alarm breach.

• If the breach exceeds the first threshold, Application Auto Scaling will apply the first step
adjustment.

• If the breach exceeds the second threshold, Application Auto Scaling will apply the second step
adjustment, and so on.

This allows the scaling policy to respond appropriately to both minor and major changes in the
alarm metric.

The policy will continue to respond to additional alarm breaches, even while a scaling activity is
in progress. This means Application Auto Scaling will evaluate all alarm breaches as they occur. A
cooldown period is used to protect against over-scaling due to multiple alarm breaches occurring
in rapid succession.

Like target tracking, step scaling can help automatically scale your application's capacity as traffic
changes occur. However, target tracking policies tend to be easier to implement and manage for
steady scaling needs.

Supported scalable targets

You can use step scaling policies with the following scalable targets:

• AppStream 2.0 fleets

• Aurora DB clusters

• ECS services

82

Application Auto Scaling User Guide

• EMR clusters

• SageMaker AI endpoint variants

• SageMaker AI inference components

• SageMaker AI Serverless provisioned concurrency

• Spot Fleets

• Custom resources

Contents

• How step scaling for Application Auto Scaling works

• Create a step scaling policy for Application Auto Scaling using the Amazon CLI

• Describe step scaling policies for Application Auto Scaling using the Amazon CLI

• Delete a step scaling policy for Application Auto Scaling using the Amazon CLI

How step scaling for Application Auto Scaling works

This topic describes how step scaling works and introduces the key elements of a step scaling
policy.

Contents

• How it works

• Step adjustments

• Scaling adjustment types

• Cooldown period

• Commonly used commands for scaling policy creation, management, and deletion

• Considerations

• Related resources

• Console access

How it works

To use step scaling, you create a CloudWatch alarm that monitors a metric for your scalable target.
Define the metric, threshold value, and number of evaluation periods that determine an alarm

How step scaling works 83

Application Auto Scaling User Guide

breach. You also create a step scaling policy that defines how to scale capacity when the alarm
threshold is breached and associate it with your scalable target.

Add the step adjustments in the policy. You can define different step adjustments based on the
breach size of the alarm. For example:

• Scale out by 10 capacity units if the alarm metric reaches 60 percent

• Scale out by 30 capacity units if the alarm metric reaches 75 percent

• Scale out by 40 capacity units if the alarm metric reaches 85 percent

When the alarm threshold is breached for the specified number of evaluation periods, Application
Auto Scaling will apply the step adjustments defined in the policy. The adjustments can continue
for additional alarm breaches until the alarm state returns to OK.

Scaling activities are performed with cooldown periods between them to prevent rapid fluctuations
in capacity. You can optionally configure the cooldown periods for your scaling policy.

Step adjustments

When you create a step scaling policy, you specify one or more step adjustments that automatically
scale the capacity of the target dynamically based on the size of the alarm breach. Each step
adjustment specifies the following:

• A lower bound for the metric value

• An upper bound for the metric value

• The amount by which to scale, based on the scaling adjustment type

CloudWatch aggregates metric data points based on the statistic for the metric associated with
your CloudWatch alarm. When the alarm is breached, the appropriate scaling policy is invoked.
Application Auto Scaling applies your specified aggregation type to the most recent metric data
points from CloudWatch (as opposed to the raw metric data). It compares this aggregated metric
value against the upper and lower bounds defined by the step adjustments to determine which
step adjustment to perform.

You specify the upper and lower bounds relative to the breach threshold. For example, let's say you
made a CloudWatch alarm and a scale-out policy for when the metric is above 50 percent. You then
made a second alarm and a scale-in policy for when the metric is below 50 percent. You made a set
of step adjustments with an adjustment type of PercentChangeInCapacity for each policy:

Step adjustments 84

Application Auto Scaling User Guide

Example: Step adjustments for scale-out policy

Lower bound Upper bound Adjustment

0 10 0

10 20 10

20 null 30

Example: Step adjustments for scale-in policy

Lower bound Upper bound Adjustment

-10 0 0

-20 -10 -10

null -20 -30

This creates the following scaling configuration.

Metric value

-infinity 30% 40% 60% 70% infinity

 -30% | -10% | Unchanged | +10% | +30%

Now, let's say that you use this scaling configuration on a scalable target that has a capacity of
10. The following points summarize the behavior of the scaling configuration in relation to the
capacity of the scalable target:

• The original capacity is maintained while the aggregated metric value is greater than 40 and less
than 60.

• If the metric value gets to 60, Application Auto Scaling increases the capacity of the scalable
target by 1, to 11. That's based on the second step adjustment of the scale-out policy (add 10
percent of 10). After the new capacity is added, Application Auto Scaling increases the current
capacity to 11. If the metric value rises to 70 even after this increase in capacity, Application Auto

Step adjustments 85

Application Auto Scaling User Guide

Scaling increases the target capacity by 3, to 14. That's based on the third step adjustment of the
scale-out policy (add 30 percent of 11, 3.3, rounded down to 3).

• If the metric value gets to 40, Application Auto Scaling decreases the capacity of the scalable
target by 1, to 13, based on the second step adjustment of the scale-in policy (remove 10
percent of 14, 1.4, rounded down to 1). If the metric value falls to 30 even after this decrease in
capacity, Application Auto Scaling decreases the target capacity by 3, to 10, based on the third
step adjustment of the scale-in policy (remove 30 percent of 13, 3.9, rounded down to 3).

When you specify the step adjustments for your scaling policy, note the following:

• The ranges of your step adjustments can't overlap or have a gap.

• Only one step adjustment can have a null lower bound (negative infinity). If one step adjustment
has a negative lower bound, then there must be a step adjustment with a null lower bound.

• Only one step adjustment can have a null upper bound (positive infinity). If one step adjustment
has a positive upper bound, then there must be a step adjustment with a null upper bound.

• The upper and lower bound can't be null in the same step adjustment.

• If the metric value is above the breach threshold, the lower bound is inclusive and the upper
bound is exclusive. If the metric value is below the breach threshold, the lower bound is exclusive
and the upper bound is inclusive.

Scaling adjustment types

You can define a scaling policy that performs the optimal scaling action, based on the scaling
adjustment type that you choose. You can specify the adjustment type as a percentage of the
current capacity of your scalable target or in absolute numbers.

Application Auto Scaling supports the following adjustment types for step scaling policies:

• ChangeInCapacity—Increase or decrease the current capacity of the scalable target by the
specified value. A positive value increases the capacity and a negative value decreases the
capacity. For example: If the current capacity is 3 and the adjustment is 5, then Application Auto
Scaling adds 5 to the capacity for a total of 8.

• ExactCapacity—Change the current capacity of the scalable target to the specified value. Specify
a non-negative value with this adjustment type. For example: If the current capacity is 3 and the
adjustment is 5, then Application Auto Scaling changes the capacity to 5.

Scaling adjustment types 86

Application Auto Scaling User Guide

• PercentChangeInCapacity—Increase or decrease the current capacity of the scalable target by
the specified percentage. A positive value increases the capacity and a negative value decreases
the capacity. For example: If the current capacity is 10 and the adjustment is 10 percent, then
Application Auto Scaling adds 1 to the capacity for a total of 11.

If the resulting value is not an integer, Application Auto Scaling rounds it as follows:

• Values greater than 1 are rounded down. For example, 12.7 is rounded to 12.

• Values between 0 and 1 are rounded to 1. For example, .67 is rounded to 1.

• Values between 0 and -1 are rounded to -1. For example, -.58 is rounded to -1.

• Values less than -1 are rounded up. For example, -6.67 is rounded to -6.

With PercentChangeInCapacity, you can also specify the minimum amount to scale using the
MinAdjustmentMagnitude parameter. For example, suppose that you create a policy that adds
25 percent and you specify a minimum amount of 2. If the scalable target has a capacity of 4 and
the scaling policy is performed, 25 percent of 4 is 1. However, because you specified a minimum
increment of 2, Application Auto Scaling adds 2.

Cooldown period

You can optionally define a cooldown period in your step scaling policy.

A cooldown period specifies the amount of time the scaling policy waits for a previous scaling
activity to take effect.

There are two ways to plan for the use of cooldown periods for a step scaling configuration:

• With the cooldown period for scale-out policies, the intention is to continuously (but not
excessively) scale out. After Application Auto Scaling successfully scales out using a scaling
policy, it starts to calculate the cooldown time. A scaling policy won‘t increase the desired
capacity again unless either a larger scale out is triggered or the cooldown period ends. While the
scale-out cooldown period is in effect, the capacity added by the initiating scale-out activity is
calculated as part of the desired capacity for the next scale-out activity.

• With the cooldown period for scale-in policies, the intention is to scale in conservatively
to protect your application‘s availability, so scale-in activities are blocked until the scale-in
cooldown period has expired. However, if another alarm triggers a scale-out activity during the
scale-in cooldown period, Application Auto Scaling scales out the target immediately. In this
case, the scale-in cooldown period stops and doesn‘t complete.

Cooldown period 87

Application Auto Scaling User Guide

For example, when a traffic peak occurs, an alarm is triggered and Application Auto Scaling
automatically adds capacity to help handle the increased load. If you set a cooldown period for
your scale-out policy, when the alarm triggers the policy to increase the capacity by 2, the scaling
activity completes successfully, and the scale-out cooldown period starts. If an alarm triggers again
during the cooldown period but at a more aggressive step adjustment of 3, the previous increase of
2 is considered part of the current capacity. Therefore, only 1 is added to the capacity. This allows
faster scaling than waiting for the cooldown to expire but without adding more capacity than you
need.

The cooldown period is measured in seconds and applies only to scaling policy-related scaling
activities. During a cooldown period, when a scheduled action starts at the scheduled time, it can
trigger a scaling activity immediately without waiting for the cooldown period to expire.

The default value is 300 if no value is specified.

Commonly used commands for scaling policy creation, management,
and deletion

The commonly used commands for working with scaling policies include:

• register-scalable-target to register Amazon or custom resources as scalable targets (a resource
that Application Auto Scaling can scale), and to suspend and resume scaling.

• put-scaling-policy to add or modify scaling policies for an existing scalable target.

• describe-scaling-activities to return information about scaling activities in an Amazon Region.

• describe-scaling-policies to return information about scaling policies in an Amazon Region.

• delete-scaling-policy to delete a scaling-policy.

Considerations

The following considerations apply when working with step scaling policies:

• Consider whether you can predict the step adjustments on the application accurately enough to
use step scaling. If your scaling metric increases or decreases proportionally to the capacity of
the scalable target, we recommend that you use a target tracking scaling policy instead. You still
have the option to use step scaling as an additional policy for a more advanced configuration.
For example, you can configure a more aggressive response when utilization reaches a certain
level.

Commonly used commands 88

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html

Application Auto Scaling User Guide

• Make sure to choose an adequate margin between the scale-out and scale-in thresholds to
prevent flapping. Flapping is an infinite loop of scaling in and scaling out. That is, if a scaling
action is taken, the metric value would change and start another scaling action in the reverse
direction.

Related resources

For information about creating step scaling policies for Auto Scaling groups, see Step and simple
scaling policies for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

Console access

Console access to view, add, update, or remove step scaling policies on scalable resources depends
on the resource that you use. For more information, see Amazon Web Services services that you
can use with Application Auto Scaling.

Create a step scaling policy for Application Auto Scaling using
the Amazon CLI

This example uses Amazon CLI commands to create a step scaling policy for an Amazon ECS
service. For a different scalable target, specify its namespace in --service-namespace, its
scalable dimension in --scalable-dimension, and its resource ID in --resource-id.

When using the Amazon CLI, remember that your commands run in the Amazon Web Services
Region configured for your profile. If you want to run the commands in a different Region, either
change the default Region for your profile, or use the --region parameter with the command.

Tasks

• Step 1: Register a scalable target

• Step 2: Create a step scaling policy

• Step 3: Create an alarm that invokes a scaling policy

Step 1: Register a scalable target

If you haven't already done so, register the scalable target. Use the register-scalable-target
command to register a specific resource in the target service as a scalable target. The following

Related resources 89

https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.amazonaws.cn/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

example registers an Amazon ECS service with Application Auto Scaling. Application Auto Scaling
can scale the number of tasks at a minimum of 2 tasks and a maximum of 10. Replace each user
input placeholder with your own information.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service \
 --min-capacity 2 --max-capacity 10

Windows

aws application-autoscaling register-scalable-target --service-namespace ecs ^
 --scalable-dimension ecs:service:DesiredCount ^
 --resource-id service/my-cluster/my-service ^
 --min-capacity 2 --max-capacity 10

Output

If successful, this command returns the ARN of the scalable target. The following is example
output.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Step 2: Create a step scaling policy

To create a step scaling policy for your scalable target, you can use the following examples to help
you get started.

Scale out

To create a step scaling policy for scale out (increase capacity)

1. Use the following cat command to store a step scaling policy configuration in a JSON file
named config.json in your home directory. The following is an example configuration
with an adjustment type of PercentChangeInCapacity that increases the capacity of

Step 2: Create a step scaling policy 90

Application Auto Scaling User Guide

the scalable target based on the following step adjustments (assuming a CloudWatch alarm
threshold of 70):

• Increase capacity by 10 percent when the value of the metric is greater than or equal to
70 but less than 85

• Increase capacity by 20 percent when the value of the metric is greater than or equal to
85 but less than 95

• Increase capacity by 30 percent when the value of the metric is greater than or equal to
95

$ cat ~/config.json
{
 "AdjustmentType": "PercentChangeInCapacity",
 "MetricAggregationType": "Average",
 "Cooldown": 60,
 "MinAdjustmentMagnitude": 1,
 "StepAdjustments": [
 {
 "MetricIntervalLowerBound": 0.0,
 "MetricIntervalUpperBound": 15.0,
 "ScalingAdjustment": 10
 },
 {
 "MetricIntervalLowerBound": 15.0,
 "MetricIntervalUpperBound": 25.0,
 "ScalingAdjustment": 20
 },
 {
 "MetricIntervalLowerBound": 25.0,
 "ScalingAdjustment": 30
 }
]
}

For more information, see StepScalingPolicyConfiguration in the Application Auto Scaling
API Reference.

2. Use the following put-scaling-policy command, along with the config.json file that you
created, to create a scaling policy named my-step-scaling-policy.

Step 2: Create a step scaling policy 91

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_StepScalingPolicyConfiguration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

Linux, macOS, or Unix

aws application-autoscaling put-scaling-policy --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service \
 --policy-name my-step-scaling-policy --policy-type StepScaling \
 --step-scaling-policy-configuration file://config.json

Windows

aws application-autoscaling put-scaling-policy --service-namespace ecs ^
 --scalable-dimension ecs:service:DesiredCount ^
 --resource-id service/my-cluster/my-service ^
 --policy-name my-step-scaling-policy --policy-type StepScaling ^
 --step-scaling-policy-configuration file://config.json

Output

The output includes the ARN that serves as a unique name for the policy. You need it to
create a CloudWatch alarm for your policy. The following is example output.

{
 "PolicyARN": "arn:aws-
cn:autoscaling:region:123456789012:scalingPolicy:ac542982-cbeb-4294-891c-
a5a941dfa787:resource/ecs/service/my-cluster/my-service:policyName/my-step-
scaling-policy"
}

Scale in

To create a step scaling policy for scale in (decrease capacity)

1. Use the following cat command to store a step scaling policy configuration in a JSON file
named config.json in your home directory. The following is an example configuration
with an adjustment type of ChangeInCapacity that decreases the capacity of the
scalable target based on the following step adjustments (assuming a CloudWatch alarm
threshold of 50):

Step 2: Create a step scaling policy 92

Application Auto Scaling User Guide

• Decrease capacity by 1 when the value of the metric is less than or equal to 50 but
greater than 40

• Decrease capacity by 2 when the value of the metric is less than or equal to 40 but
greater than 30

• Decrease capacity by 3 when the value of the metric is less than or equal to 30

$ cat ~/config.json
{
 "AdjustmentType": "ChangeInCapacity",
 "MetricAggregationType": "Average",
 "Cooldown": 60,
 "StepAdjustments": [
 {
 "MetricIntervalUpperBound": 0.0,
 "MetricIntervalLowerBound": -10.0,
 "ScalingAdjustment": -1
 },
 {
 "MetricIntervalUpperBound": -10.0,
 "MetricIntervalLowerBound": -20.0,
 "ScalingAdjustment": -2
 },
 {
 "MetricIntervalUpperBound": -20.0,
 "ScalingAdjustment": -3
 }
]
}

For more information, see StepScalingPolicyConfiguration in the Application Auto Scaling
API Reference.

2. Use the following put-scaling-policy command, along with the config.json file that you
created, to create a scaling policy named my-step-scaling-policy.

Linux, macOS, or Unix

aws application-autoscaling put-scaling-policy --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service \

Step 2: Create a step scaling policy 93

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_StepScalingPolicyConfiguration.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

 --policy-name my-step-scaling-policy --policy-type StepScaling \
 --step-scaling-policy-configuration file://config.json

Windows

aws application-autoscaling put-scaling-policy --service-namespace ecs ^
 --scalable-dimension ecs:service:DesiredCount ^
 --resource-id service/my-cluster/my-service ^
 --policy-name my-step-scaling-policy --policy-type StepScaling ^
 --step-scaling-policy-configuration file://config.json

Output

The output includes the ARN that serves as a unique name for the policy. You need this
ARN to create a CloudWatch alarm for your policy. The following is example output.

{
 "PolicyARN": "arn:aws-
cn:autoscaling:region:123456789012:scalingPolicy:ac542982-cbeb-4294-891c-
a5a941dfa787:resource/ecs/service/my-cluster/my-service:policyName/my-step-
scaling-policy"
}

Step 3: Create an alarm that invokes a scaling policy

Finally, use the following CloudWatch put-metric-alarm command to create an alarm to use with
your step scaling policy. In this example, you have an alarm based on average CPU utilization. The
alarm is configured to be in an ALARM state if it reaches a threshold of 70 percent for at least two
consecutive evaluation periods of 60 seconds. To specify a different CloudWatch metric or use your
own custom metric, specify its name in --metric-name and its namespace in --namespace.

Linux, macOS, or Unix

aws cloudwatch put-metric-alarm --alarm-name Step-Scaling-AlarmHigh-ECS:service/my-
cluster/my-service \
 --metric-name CPUUtilization --namespace AWS/ECS --statistic Average \
 --period 60 --evaluation-periods 2 --threshold 70 \
 --comparison-operator GreaterThanOrEqualToThreshold \
 --dimensions Name=ClusterName,Value=default Name=ServiceName,Value=sample-app-service
 \

Step 3: Create an alarm that invokes a scaling policy 94

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/put-metric-alarm.html

Application Auto Scaling User Guide

 --alarm-actions PolicyARN

Windows

aws cloudwatch put-metric-alarm --alarm-name Step-Scaling-AlarmHigh-ECS:service/my-
cluster/my-service ^
 --metric-name CPUUtilization --namespace AWS/ECS --statistic Average ^
 --period 60 --evaluation-periods 2 --threshold 70 ^
 --comparison-operator GreaterThanOrEqualToThreshold ^
 --dimensions Name=ClusterName,Value=default Name=ServiceName,Value=sample-app-service
 ^
 --alarm-actions PolicyARN

Describe step scaling policies for Application Auto Scaling
using the Amazon CLI

You can describe all scaling policies for a service namespace using the describe-scaling-policies
command. The following example describes all scaling policies for all Amazon ECS services. To list
them for a specific Amazon ECS service only add the --resource-id option.

aws application-autoscaling describe-scaling-policies --service-namespace ecs

You can filter the results to just the step scaling policies using the --query parameter. For more
information about the syntax for query, see Controlling command output from the Amazon CLI in
the Amazon Command Line Interface User Guide.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-policies --service-namespace ecs \
 --query 'ScalingPolicies[?PolicyType==`StepScaling`]'

Windows

aws application-autoscaling describe-scaling-policies --service-namespace ecs ^
 --query "ScalingPolicies[?PolicyType==`StepScaling`]"

Output

Describe step scaling policies 95

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-output.html

Application Auto Scaling User Guide

The following is example output.

[
 {
 "PolicyARN": "PolicyARN",
 "StepScalingPolicyConfiguration": {
 "MetricAggregationType": "Average",
 "Cooldown": 60,
 "StepAdjustments": [
 {
 "MetricIntervalLowerBound": 0.0,
 "MetricIntervalUpperBound": 15.0,
 "ScalingAdjustment": 1
 },
 {
 "MetricIntervalLowerBound": 15.0,
 "MetricIntervalUpperBound": 25.0,
 "ScalingAdjustment": 2
 },
 {
 "MetricIntervalLowerBound": 25.0,
 "ScalingAdjustment": 3
 }
],
 "AdjustmentType": "ChangeInCapacity"
 },
 "PolicyType": "StepScaling",
 "ResourceId": "service/my-cluster/my-service",
 "ServiceNamespace": "ecs",
 "Alarms": [
 {
 "AlarmName": "Step-Scaling-AlarmHigh-ECS:service/my-cluster/my-
service",
 "AlarmARN": "arn:aws-cn:cloudwatch:region:012345678910:alarm:Step-
Scaling-AlarmHigh-ECS:service/my-cluster/my-service"
 }
],
 "PolicyName": "my-step-scaling-policy",
 "ScalableDimension": "ecs:service:DesiredCount",
 "CreationTime": 1515024099.901
 }
]

Describe step scaling policies 96

Application Auto Scaling User Guide

Delete a step scaling policy for Application Auto Scaling using
the Amazon CLI

When you no longer need a step scaling policy, you can delete it. To delete both the scaling policy
and the associated CloudWatch alarm, complete the following tasks.

To delete your scaling policy

Use the delete-scaling-policy command.

Linux, macOS, or Unix

aws application-autoscaling delete-scaling-policy --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service \
 --policy-name my-step-scaling-policy

Windows

aws application-autoscaling delete-scaling-policy --service-namespace ecs ^
 --scalable-dimension ecs:service:DesiredCount ^
 --resource-id service/my-cluster/my-service ^
 --policy-name my-step-scaling-policy

To delete the CloudWatch alarm

Use the delete-alarms command. You can delete one or more alarms at a time. For example, use
the following command to delete the Step-Scaling-AlarmHigh-ECS:service/my-cluster/
my-service and Step-Scaling-AlarmLow-ECS:service/my-cluster/my-service alarms.

aws cloudwatch delete-alarms --alarm-name Step-Scaling-AlarmHigh-ECS:service/my-
cluster/my-service Step-Scaling-AlarmLow-ECS:service/my-cluster/my-service

Delete a step scaling policy 97

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/delete-alarms.html

Application Auto Scaling User Guide

Predictive scaling for Application Auto Scaling

Predictive scaling proactively scales your application. Predictive scaling analyzes historical load
data to detect daily or weekly patterns in traffic flows. It uses this information to forecast future
capacity needs to proactively increase the capacity of your application to match the anticipated
load.

Predictive scaling is well suited for situations where you have:

• Cyclical traffic, such as high use of resources during regular business hours and low use of
resources during evenings and weekends

• Recurring on-and-off workload patterns, such as batch processing, testing, or periodic data
analysis.

• Applications that take a long time to initialize, causing a noticeable latency impact on application
performance during scale-out events

Contents

• How Application Auto Scaling predictive scaling works

• Create a predictive scaling policy for Application Auto Scaling

• Override forecast values using scheduled actions

• Advanced predictive scaling policy using custom metrics

How Application Auto Scaling predictive scaling works

To use predictive scaling, create a predictive scaling policy that specifies the CloudWatch metric to
monitor and analyze. You can use a predefined metric or a custom metric. For predictive scaling to
start forecasting future values, this metric must have at least 24 hours of data.

After you create the policy, predictive scaling starts analyzing metric data from up to the past
14 days to identify patterns. It uses this analysis to generate an hourly forecast of capacity
requirements for the next 48 hours. The forecast is updated every 6 hours using the latest
CloudWatch data. As new data comes in, predictive scaling is able to continuously improve the
accuracy of future forecasts.

How it works 98

Application Auto Scaling User Guide

You can first enable predictive scaling in forecast only mode. In this mode, it generates capacity
forecasts but does not actually scale your capacity based on those forecasts. This allows you to
evaluate the accuracy and suitability of the forecast.

After you review the forecast data and decide to start scaling based on that data, switch the scaling
policy to forecast and scale mode. In this mode:

• If the forecast expects an increase in load, predictive scaling will increase the capacity.

• If the forecast expects a decrease in load, predictive scaling will not scale in to remove capacity.
This ensures that you scale-in only when the demand actually drops, and not just on predictions.
To remove capacity that is no longer needed, you must create a Target Tracking or Step Scaling
policy because they respond to real time metric data.

By default, predictive scaling scales your scalable targets at the start of each hour based
on the forecast for that hour. You can optionally specify an earlier start time by using the
SchedulingBufferTime property in the PutScalingPolicy API operation. This allows you to
launch predicted capacity ahead of the forecasted demand, which gives the new capacity adequate
time to become ready to handle traffic.

Maximum capacity limit

By default, when scaling policies are set, they cannot increase capacity higher than its maximum
capacity.

Alternatively, you can allow the scalable target's maximum capacity to be automatically increased
if the forecast capacity approaches or exceeds the maximum capacity of the scalable target.
To enable this behavior, use the MaxCapacityBreachBehavior and MaxCapacityBuffer
properties in the PutScalingPolicy API operation or the Max capacity behavior setting in the
Amazon Web Services Management Console.

Warning

Use caution when allowing the maximum capacity to be automatically increased. The
maximum capacity does not automatically decrease back to the original maximum.

Maximum capacity limit 99

Application Auto Scaling User Guide

Commonly used commands for scaling policy creation, management,
and deletion

The commonly used commands for working with predictive scaling policies include:

• register-scalable-target to register Amazon or custom resources as scalable targets, to
suspend scaling, and to resume scaling.

• put-scaling-policy to create a predictive scaling policy.

• get-predictive-scaling-forecast to retrieve the forecast data for a predictive scaling
policy.

• describe-scaling-activities to return information about scaling activities in an Amazon
Web Services Region.

• describe-scaling-policies to return information about scaling policies in an Amazon Web
Services Region.

• delete-scaling-policy to delete a scaling policy.

Custom metrics

Custom metrics can be used to predict the capacity needed for an application. Custom metrics are
useful when predefined metrics are not enough to capture the load on your application.

Considerations

The following considerations apply when working with predictive scaling.

• Confirm whether predictive scaling is suitable for your application. An application is a good fit
for predictive scaling if it exhibits recurring load patterns that are specific to the day of the week
or the time of day. Evaluate the forecast before letting predictive scaling actively scale your
application.

• Predictive scaling needs at least 24 hours of historical data to start forecasting. However,
forecasts are more effective if historical data spans two full weeks.

• Choose a load metric that accurately represents the full load on your application and is the
aspect of your application that's most important to scale on.

Commonly used commands for scaling policy creation, management, and deletion 100

Application Auto Scaling User Guide

Create a predictive scaling policy for Application Auto Scaling

The following example policy uses the Amazon CLI to configure a predictive scaling policy for
Amazon ECS service. Replace each user input placeholder with your own information.

For more information about the CloudWatch metrics you can specify, see
PredictiveScalingMetricSpecification in the Amazon EC2 Auto Scaling API Reference.

The following is an example policy with a predefined memory configuration.

cat policy.json
{
 "MetricSpecifications": [
 {
 "TargetValue": 40,
 "PredefinedMetricPairSpecification": {
 "PredefinedMetricType": "ECSServiceMemoryUtilization"
 }
 }
],
 "SchedulingBufferTime": 3600,
 "MaxCapacityBreachBehavior": "HonorMaxCapacity",
 "Mode": "ForecastOnly"
}

The following example illustrates creating the policy by running the put-scaling-policy command
with the configuration file specified.

aws aas put-scaling-policy \
--service-namespace ecs \
--region us-east-1 \
--policy-name predictive-scaling-policy-example \
--resource-id service/MyCluster/test \
--policy-type PredictiveScaling \
--scalable-dimension ecs:service:DesiredCount \
--predictive-scaling-policy-configuration file://policy.json

If successful, this command returns the policy's ARN.

{

Create a predictive scaling policy 101

https://docs.amazonaws.cn/autoscaling/ec2/APIReference/API_PredictiveScalingMetricSpecification.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

"PolicyARN": "arn:aws:autoscaling:us-
east-1:012345678912:scalingPolicy:d1d72dfe-5fd3-464f-83cf-824f16cb88b7:resource/ecs/
service/MyCluster/test:policyName/predictive-scaling-policy-example",
"Alarms": []
}

Override forecast values using scheduled actions

Sometimes, you might have additional information about your future application requirements
that the forecast calculation is unable to take into account. For example, forecast calculations
might underestimate the capacity needed for an upcoming marketing event. You can use
scheduled actions to temporarily override the forecast during future time periods. The scheduled
actions can run on a recurring basis, or at a specific date and time when there are one-time
demand fluctuations.

For example, you can create a scheduled action with a higher minimum capacity than what is
forecasted. At runtime, Application Auto Scaling updates the minimum capacity of your scalable
target. Because predictive scaling optimizes for capacity, a scheduled action with a minimum
capacity that is higher than the forecast values is honored. This prevents capacity from being
less than expected. To stop overriding the forecast, use a second scheduled action to return the
minimum capacity to its original setting.

The following procedure outlines the steps for overriding the forecast during future time periods.

Topics

• Step 1: (Optional) Analyze time series data

• Step 2: Create two scheduled actions

Important

This topic assumes that you are trying to override the forecast to scale to a higher capacity
than what is forecasted. If you need to temporarily decrease capacity without interference
from a predictive scaling policy, use forecast only mode instead. While in forecast only
mode, predictive scaling will continue to generate forecasts, but it will not automatically
increase capacity. You can then monitor resource utilization and manually decrease the size
of your group as needed.

Override the forecast 102

Application Auto Scaling User Guide

Step 1: (Optional) Analyze time series data

Start by analyzing the forecast time series data. This is an optional step, but it is helpful if you want
to understand the details of the forecast.

1. Retrieve the forecast

After the forecast is created, you can query for a specific time period in the forecast. The goal
of the query is to get a complete view of the time series data for a specific time period.

Your query can include up to two days of future forecast data. If you have been using
predictive scaling for a while, you can also access your past forecast data. However, the
maximum time duration between the start and end time is 30 days.

To retrieve the forecast, use the get-predictive-scaling-forecast command. The following
example gets the predictive scaling forecast for the Amazon ECS service.

aws application-autoscaling get-predictive-scaling-forecast --service-namespace ecs
 \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id 1234567890abcdef0
 --policy-name predictive-scaling-policy \
 --start-time "2021-05-19T17:00:00Z" \
 --end-time "2021-05-19T23:00:00Z"

The response includes two forecasts: LoadForecast and CapacityForecast.
LoadForecast shows the hourly load forecast. CapacityForecast shows forecast values
for the capacity that is needed on an hourly basis to handle the forecasted load while
maintaining a specified TargetValue.

2. Identify the target time period

Identify the hour or hours when the one-time demand fluctuation should take place.
Remember that dates and times shown in the forecast are in UTC.

Step 2: Create two scheduled actions

Next, create two scheduled actions for a specific time period when your application will have a
higher than forecasted load. For example, if you have a marketing event that will drive traffic to
your site for a limited period of time, you can schedule a one-time action to update the minimum

Step 1: (Optional) Analyze time series data 103

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/get-predictive-scaling-forecast.html

Application Auto Scaling User Guide

capacity when it starts. Then, schedule another action to return the minimum capacity to the
original setting when the event ends.

To create two scheduled actions for one-time events (Amazon CLI)

To create the scheduled actions, use the put-scheduled-action command.

The following example defines an schedule for Amazon EC2 Auto Scaling that maintains a
minimum capacity of three instances on May 19 at 5:00 PM for eight hours. The following
commands show how to implement this scenario.

The first put-scheduled-update-group-action command instructs Amazon EC2 Auto Scaling to
update the minimum capacity of the specified Auto Scaling group at 5:00 PM UTC on May 19,
2021.

aws autoscaling put-scheduled-update-group-action --scheduled-action-name my-event-
start \
 --auto-scaling-group-name my-asg --start-time "2021-05-19T17:00:00Z" --minimum-
capacity 3

The second command instructs Amazon EC2 Auto Scaling to set the group's minimum capacity to
one at 1:00 AM UTC on May 20, 2021.

aws autoscaling put-scheduled-update-group-action --scheduled-action-name my-event-end
 \
 --auto-scaling-group-name my-asg --start-time "2021-05-20T01:00:00Z" --minimum-
capacity 1

After you add these scheduled actions to the Auto Scaling group, Amazon EC2 Auto Scaling does
the following:

• At 5:00 PM UTC on May 19, 2021, the first scheduled action runs. If the group currently has
fewer than three instances, the group scales out to three instances. During this time and for the
next eight hours, Amazon EC2 Auto Scaling can continue to scale out if the predicted capacity is
higher than the actual capacity or if there is a dynamic scaling policy in effect.

• At 1:00 AM UTC on May 20, 2021, the second scheduled action runs. This returns the minimum
capacity to its original setting at the end of the event.

Step 2: Create two scheduled actions 104

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/autoscaling/put-scheduled-update-group-action.html

Application Auto Scaling User Guide

Scaling based on recurring schedules

To override the forecast for the same time period every week, create two scheduled actions and
provide the time and date logic using a cron expression.

The cron expression format consists of five fields separated by spaces: [Minute] [Hour]
[Day_of_Month] [Month_of_Year] [Day_of_Week]. Fields can contain any allowed values, including
special characters.

For example, the following cron expression runs the action every Tuesday at 6:30 AM. The asterisk
is used as a wildcard to match all values for a field.

30 6 * * 2

Advanced predictive scaling policy using custom metrics

In a predictive scaling policy, you can use predefined or custom metrics. Custom metrics are useful
when the predefined metrics do not sufficiently describe your application load.

When creating a predictive scaling policy with custom metrics, you can specify other CloudWatch
metrics provided by Amazon, or you can specify metrics that you define and publish yourself.
You can also use metric math to aggregate and transform existing metrics into a new time series
that Amazon doesn't automatically track. When you combine values in your data, for example, by
calculating new sums or averages, it's called aggregating. The resulting data is called an aggregate.

The following section contains best practices and examples of how to construct the JSON structure
for the policy.

Topics

• Best practices

• Prerequisites

• Constructing the JSON for custom metrics

• Considerations for custom metrics in a predictive scaling policy

Best practices

The following best practices can help you use custom metrics more effectively:

Use custom metrics 105

Application Auto Scaling User Guide

• For the load metric specification, the most useful metric is a metric that represents the load on
your application.

• The scaling metric must be inversely proportional to capacity. That is, if the scalable target
increases, the scaling metric should decrease by roughly the same proportion. To ensure that
predictive scaling behaves as expected, the load metric and the scaling metric must also correlate
strongly with each other.

• The target utilization must match the type of scaling metric. For a policy configuration that uses
CPU utilization, this is a target percentage. For a policy configuration that uses throughput, such
as the number of requests or messages, this is the target number of requests or messages per
instance during any one-minute interval.

• If these recommendations are not followed, the forecasted future values of the time series will
probably be incorrect. To validate that the data is correct, you can view the forecasted values.
Alternatively, after you create your predictive scaling policy, inspect the LoadForecast and
CapacityForecast objects returned by a call to the GetPredictiveScalingForecast API.

• We strongly recommend that you configure predictive scaling in forecast only mode so that you
can evaluate the forecast before predictive scaling starts actively scaling capacity.

Prerequisites

To add custom metrics to your predictive scaling policy, you must have
cloudwatch:GetMetricData permissions.

To specify your own metrics instead of the metrics that Amazon provides, you must first publish
your metrics to CloudWatch. For more information, see Publishing custom metrics in the Amazon
CloudWatch User Guide.

If you publish your own metrics, make sure to publish the data points at a minimum frequency of
five minutes. Application Auto Scaling retrieves the data points from CloudWatch based on the
length of the period that it needs. For example, the load metric specification uses hourly metrics
to measure the load on your application. CloudWatch uses your published metric data to provide a
single data value for any one-hour period by aggregating all data points with timestamps that fall
within each one-hour period.

Constructing the JSON for custom metrics

The following section contains examples for how to configure predictive scaling to query data
from CloudWatch for Amazon EC2 Auto Scaling. There are two different methods to configure this

Prerequisites 106

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_GetPredictiveScalingForecast.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/publishingMetrics.html

Application Auto Scaling User Guide

option, and the method that you choose affects which format you use to construct the JSON for
your predictive scaling policy. When you use metric math, the format of the JSON varies further
based on the metric math being performed.

1. To create a policy that gets data directly from other CloudWatch metrics provided by Amazon or
metrics that you publish to CloudWatch, see Example predictive scaling policy with custom load
and scaling metrics (Amazon CLI).

2. To create a policy that can query multiple CloudWatch metrics and use math expressions to
create new time series based on these metrics, see Use metric math expressions.

Example predictive scaling policy with custom load and scaling metrics (Amazon
CLI)

To create a predictive scaling policy with custom load and scaling metrics with the Amazon CLI,
store the arguments for --predictive-scaling-configuration in a JSON file named
config.json.

You start adding custom metrics by replacing the replaceable values in the following example with
those of your metrics and your target utilization.

{
 "MetricSpecifications": [
 {
 "TargetValue": 50,
 "CustomizedScalingMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "scaling_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "MyUtilizationMetric",
 "Namespace": "MyNameSpace",
 "Dimensions": [
 {
 "Name": "MyOptionalMetricDimensionName",
 "Value": "MyOptionalMetricDimensionValue"
 }
]
 },
 "Stat": "Average"

Constructing the JSON for custom metrics 107

Application Auto Scaling User Guide

 }
 }
]
 },
 "CustomizedLoadMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "MyLoadMetric",
 "Namespace": "MyNameSpace",
 "Dimensions": [
 {
 "Name": "MyOptionalMetricDimensionName",
 "Value": "MyOptionalMetricDimensionValue"
 }
]
 },
 "Stat": "Sum"
 }
 }
]
 }
 }
]
}

For more information, see MetricDataQuery in the Amazon EC2 Auto Scaling API Reference.

Note

Following are some additional resources that can help you find metric names, namespaces,
dimensions, and statistics for CloudWatch metrics:

• For information about the available metrics for Amazon services, see Amazon services
that publish CloudWatch metrics in the Amazon CloudWatch User Guide.

• To get the exact metric name, namespace, and dimensions (if applicable) for a
CloudWatch metric with the Amazon CLI, see list-metrics.

Constructing the JSON for custom metrics 108

https://docs.amazonaws.cn/autoscaling/ec2/APIReference/API_MetricDataQuery.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/list-metrics.html

Application Auto Scaling User Guide

To create this policy, run the put-scaling-policy command using the JSON file as input, as
demonstrated in the following example.

aws autoscaling put-scaling-policy --policy-name my-predictive-scaling-policy \
 --auto-scaling-group-name my-asg --policy-type PredictiveScaling \
 --predictive-scaling-configuration file://config.json

If successful, this command returns the policy's Amazon Resource Name (ARN).

{
 "PolicyARN": "arn:aws-cn:autoscaling:region:account-id:scalingPolicy:2f4f5048-
d8a8-4d14-b13a-d1905620f345:autoScalingGroupName/my-asg:policyName/my-predictive-
scaling-policy",
 "Alarms": []
}

Use metric math expressions

The following section provides information and examples of predictive scaling policies that show
how you can use metric math in your policy.

Topics

• Understand metric math

• Example predictive scaling policy for Amazon EC2 Auto Scaling that combines metrics using
metric math (Amazon CLI)

• Example predictive scaling policy to use in a blue/green deployment scenario (Amazon CLI)

Understand metric math

If all you want to do is aggregate existing metric data, CloudWatch metric math saves you the
effort and cost of publishing another metric to CloudWatch. You can use any metric that Amazon
provides, and you can also use metrics that you define as part of your applications.

For more information, see Using metric math in the Amazon CloudWatch User Guide.

If you choose to use a metric math expression in your predictive scaling policy, consider the
following points:

• Metric math operations use the data points of the unique combination of metric name,
namespace, and dimension keys/value pairs of metrics.

Constructing the JSON for custom metrics 109

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/autoscaling/put-scaling-policy.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Application Auto Scaling User Guide

• You can use any arithmetic operator (+ - * / ^), statistical function (such as AVG or SUM), or other
function that CloudWatch supports.

• You can use both metrics and the results of other math expressions in the formulas of the math
expression.

• Your metric math expressions can be made up of different aggregations. However, it's a best
practice for the final aggregation result to use Average for the scaling metric and Sum for the
load metric.

• Any expressions used in a metric specification must eventually return a single time series.

To use metric math, do the following:

• Choose one or more CloudWatch metrics. Then, create the expression. For more information, see
Using metric math in the Amazon CloudWatch User Guide.

• Verify that the metric math expression is valid by using the CloudWatch console or the
CloudWatch GetMetricData API.

Example predictive scaling policy for Amazon EC2 Auto Scaling that combines metrics using
metric math (Amazon CLI)

Sometimes, instead of specifying the metric directly, you might need to first process its data in
some way. For example, you might have an application that pulls work from an Amazon SQS
queue, and you might want to use the number of items in the queue as criteria for predictive
scaling. The number of messages in the queue does not solely define the number of instances
that you need. Therefore, more work is needed to create a metric that can be used to calculate the
backlog per instance.

The following is an example predictive scaling policy for this scenario. It specifies scaling and load
metrics that are based on the Amazon SQS ApproximateNumberOfMessagesVisible metric,
which is the number of messages available for retrieval from the queue. It also uses the Amazon
EC2 Auto Scaling GroupInServiceInstances metric and a math expression to calculate the
backlog per instance for the scaling metric.

aws autoscaling put-scaling-policy --policy-name my-sqs-custom-metrics-policy \
 --auto-scaling-group-name my-asg --policy-type PredictiveScaling \
 --predictive-scaling-configuration file://config.json
{
 "MetricSpecifications": [

Constructing the JSON for custom metrics 110

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/APIReference/API_GetMetricData.html

Application Auto Scaling User Guide

 {
 "TargetValue": 100,
 "CustomizedScalingMetricSpecification": {
 "MetricDataQueries": [
 {
 "Label": "Get the queue size (the number of messages waiting to be
 processed)",
 "Id": "queue_size",
 "MetricStat": {
 "Metric": {
 "MetricName": "ApproximateNumberOfMessagesVisible",
 "Namespace": "AWS/SQS",
 "Dimensions": [
 {
 "Name": "QueueName",
 "Value": "my-queue"
 }
]
 },
 "Stat": "Sum"
 },
 "ReturnData": false
 },
 {
 "Label": "Get the group size (the number of running instances)",
 "Id": "running_capacity",
 "MetricStat": {
 "Metric": {
 "MetricName": "GroupInServiceInstances",
 "Namespace": "AWS/AutoScaling",
 "Dimensions": [
 {
 "Name": "AutoScalingGroupName",
 "Value": "my-asg"
 }
]
 },
 "Stat": "Sum"
 },
 "ReturnData": false
 },
 {
 "Label": "Calculate the backlog per instance",
 "Id": "scaling_metric",

Constructing the JSON for custom metrics 111

Application Auto Scaling User Guide

 "Expression": "queue_size / running_capacity",
 "ReturnData": true
 }
]
 },
 "CustomizedLoadMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_metric",
 "MetricStat": {
 "Metric": {
 "MetricName": "ApproximateNumberOfMessagesVisible",
 "Namespace": "AWS/SQS",
 "Dimensions": [
 {
 "Name": "QueueName",
 "Value": "my-queue"
 }
],
 },
 "Stat": "Sum"
 },
 "ReturnData": true
 }
]
 }
 }
]
}

The example returns the policy's ARN.

{
 "PolicyARN": "arn:aws-cn:autoscaling:region:account-id:scalingPolicy:2f4f5048-
d8a8-4d14-b13a-d1905620f345:autoScalingGroupName/my-asg:policyName/my-sqs-custom-
metrics-policy",
 "Alarms": []
}

Constructing the JSON for custom metrics 112

Application Auto Scaling User Guide

Example predictive scaling policy to use in a blue/green deployment scenario (Amazon CLI)

A search expression provides an advanced option in which you can query for a metric from multiple
Auto Scaling groups and perform math expressions on them. This is especially useful for blue/
green deployments.

Note

A blue/green deployment is a deployment method in which you create two separate but
identical Auto Scaling groups. Only one of the groups receives production traffic. User
traffic is initially directed to the earlier ("blue") Auto Scaling group, while a new group
("green") is used for testing and evaluation of a new version of an application or service.
User traffic is shifted to the green Auto Scaling group after a new deployment is tested and
accepted. You can then delete the blue group after the deployment is successful.

When new Auto Scaling groups get created as part of a blue/green deployment, the metric history
of each group can be automatically included in the predictive scaling policy without you having
to change its metric specifications. For more information, see Using EC2 Auto Scaling predictive
scaling policies with Blue/Green deployments on the Amazon Compute Blog.

The following example policy shows how this can be done. In this example, the policy
uses the CPUUtilization metric emitted by Amazon EC2. It uses the Amazon EC2 Auto
Scaling GroupInServiceInstances metric and a math expression to calculate the value
of the scaling metric per instance. It also specifies a capacity metric specification to get the
GroupInServiceInstances metric.

The search expression finds the CPUUtilization of instances in multiple Auto Scaling groups
based on the specified search criteria. If you later create a new Auto Scaling group that matches
the same search criteria, the CPUUtilization of the instances in the new Auto Scaling group is
automatically included.

aws autoscaling put-scaling-policy --policy-name my-blue-green-predictive-scaling-
policy \
 --auto-scaling-group-name my-asg --policy-type PredictiveScaling \
 --predictive-scaling-configuration file://config.json
{
 "MetricSpecifications": [
 {
 "TargetValue": 25,

Constructing the JSON for custom metrics 113

https://amazonaws-china.com/blogs/compute/retaining-metrics-across-blue-green-deployment-for-predictive-scaling/
https://amazonaws-china.com/blogs/compute/retaining-metrics-across-blue-green-deployment-for-predictive-scaling/

Application Auto Scaling User Guide

 "CustomizedScalingMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_sum",
 "Expression": "SUM(SEARCH('{AWS/EC2,AutoScalingGroupName} MetricName=
\"CPUUtilization\" ASG-myapp', 'Sum', 300))",
 "ReturnData": false
 },
 {
 "Id": "capacity_sum",
 "Expression": "SUM(SEARCH('{AWS/AutoScaling,AutoScalingGroupName}
 MetricName=\"GroupInServiceInstances\" ASG-myapp', 'Average', 300))",
 "ReturnData": false
 },
 {
 "Id": "weighted_average",
 "Expression": "load_sum / capacity_sum",
 "ReturnData": true
 }
]
 },
 "CustomizedLoadMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "load_sum",
 "Expression": "SUM(SEARCH('{AWS/EC2,AutoScalingGroupName} MetricName=
\"CPUUtilization\" ASG-myapp', 'Sum', 3600))"
 }
]
 },
 "CustomizedCapacityMetricSpecification": {
 "MetricDataQueries": [
 {
 "Id": "capacity_sum",
 "Expression": "SUM(SEARCH('{AWS/AutoScaling,AutoScalingGroupName}
 MetricName=\"GroupInServiceInstances\" ASG-myapp', 'Average', 300))"
 }
]
 }
 }
]
}

Constructing the JSON for custom metrics 114

Application Auto Scaling User Guide

The example returns the policy's ARN.

{
 "PolicyARN": "arn:aws-cn:autoscaling:region:account-id:scalingPolicy:2f4f5048-
d8a8-4d14-b13a-d1905620f345:autoScalingGroupName/my-asg:policyName/my-blue-green-
predictive-scaling-policy",
 "Alarms": []
}

Considerations for custom metrics in a predictive scaling policy

If an issue occurs while using custom metrics, we recommend that you do the following:

• If an error message is provided, read the message and resolve the issue it reports, if possible.

• If you did not validate an expression in advance, the put-scaling-policy command validates it
when you create your scaling policy. However, there is a possibility that this command might
fail to identify the exact cause of the detected errors. To fix the issues, troubleshoot the errors
that you receive in a response from a request to the get-metric-data command. You can also
troubleshoot the expression from the CloudWatch console.

• You must specify false for ReturnData if MetricDataQueries specifies the SEARCH()
function on its own without a math function like SUM(). This is because search expressions might
return multiple time series, and a metric specification based on an expression can return only one
time series.

• All metrics involved in a search expression should be of the same resolution.

Limitations

The following limitations apply.

• You can query data points of up to 10 metrics in one metric specification.

• For the purposes of this limit, one expression counts as one metric.

Considerations for custom metrics 115

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudwatch/get-metric-data.html

Application Auto Scaling User Guide

Tutorial: Configure auto scaling to handle a heavy
workload

In this tutorial, you learn how to scale out and in based on time windows when your application
will have a heavier than normal workload. This is helpful when you have an application that can
suddenly have a large number of visitors on a regular schedule or on a seasonal basis.

You can use a target tracking scaling policy together with scheduled scaling to handle the extra
load. Scheduled scaling automatically initiates changes to your MinCapacity and MaxCapacity
on your behalf, based on a schedule that you specify. When a target tracking scaling policy is active
on the resource, it can scale dynamically based on current resource utilization, within the new
minimum and maximum capacity range.

After completing this tutorial, you’ll know how to:

• Use scheduled scaling to add extra capacity to meet a heavy load before it arrives, and then
remove the extra capacity when it's no longer required.

• Use a target tracking scaling policy to scale your application based on current resource
utilization.

Contents

• Prerequisites

• Step 1: Register your scalable target

• Step 2: Set up scheduled actions according to your requirements

• Step 3: Add a target tracking scaling policy

• Step 4: Next steps

• Step 5: Clean up

Prerequisites

This tutorial assumes that you have already done the following:

• Created an Amazon Web Services account.

Prerequisites 116

Application Auto Scaling User Guide

• Installed and configured the Amazon CLI.

• Granted the necessary permissions for registering and deregistering resources as scalable targets
with Application Auto Scaling. In addition, granted the necessary permissions for creating scaling
policies and scheduled actions. For more information, see Identity and Access Management for
Application Auto Scaling.

• Created a supported resource in a non-production environment available to use for this tutorial.
If you don't already have one, create one now. For information about the Amazon services and
resources that work with Application Auto Scaling, see the Amazon Web Services services that
you can use with Application Auto Scaling section.

Note

While completing this tutorial, there are two steps in which you set your resource's
minimum and maximum capacity values to 0 to reset the current capacity to 0. Depending
on which resource you're using with Application Auto Scaling, you might be unable to reset
the current capacity to 0 during these steps. To help you address the issue, a message in
the output will indicate that minimum capacity cannot be less than the value specified and
will provide the minimum capacity value that the Amazon resource can accept.

Step 1: Register your scalable target

Start by registering your resource as a scalable target with Application Auto Scaling. A scalable
target is a resource that Application Auto Scaling can scale out and scale in.

To register your scalable target with Application Auto Scaling

• Use the following register-scalable-target command to register a new scalable target. Set the
--min-capacity and --max-capacity values to 0 to reset the current capacity to 0.

Replace the sample text for --service-namespace with the namespace of the Amazon
service you're using with Application Auto Scaling, --scalable-dimension with the scalable
dimension associated with the resource you're registering, and --resource-id with an
identifier for the resource. These values vary based on which resource is used and how the
resource ID is constructed. See the topics in the Amazon Web Services services that you can
use with Application Auto Scaling section for more information. These topics include example
commands that show you how to register scalable targets with Application Auto Scaling.

Step 1: Register your scalable target 117

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --min-capacity 0 --max-capacity 0

Windows

aws application-autoscaling register-scalable-target --service-namespace namespace
 --scalable-dimension dimension --resource-id identifier --min-capacity 0 --max-
capacity 0

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Step 2: Set up scheduled actions according to your
requirements

You can use the put-scheduled-action command to create scheduled actions that are configured
to meet your business needs. In this tutorial, we focus on a configuration that stops consuming
resources outside of working hours by reducing capacity to 0.

To create a scheduled action that scales out in the morning

1. To scale out the scalable target, use the following put-scheduled-action command. Include the
--schedule parameter with a recurring schedule, in UTC, using a cron expression.

On the specified schedule (every day at 9:00 AM UTC), Application Auto Scaling updates the
MinCapacity and MaxCapacity values to the desired range of 1-5 capacity units.

Linux, macOS, or Unix

Step 2: Set up scheduled actions according to your requirements 118

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html

Application Auto Scaling User Guide

aws application-autoscaling put-scheduled-action \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --scheduled-action-name my-first-scheduled-action \
 --schedule "cron(0 9 * * ? *)" \
 --scalable-target-action MinCapacity=1,MaxCapacity=5

Windows

aws application-autoscaling put-scheduled-action --service-namespace namespace --
scalable-dimension dimension --resource-id identifier --scheduled-action-name my-
first-scheduled-action --schedule "cron(0 9 * * ? *)" --scalable-target-action
 MinCapacity=1,MaxCapacity=5

This command does not return any output if it is successful.

2. To confirm that your scheduled action exists, use the following describe-scheduled-actions
command.

Linux, macOS, or Unix

aws application-autoscaling describe-scheduled-actions \
 --service-namespace namespace \
 --query 'ScheduledActions[?ResourceId==`identifier`]'

Windows

aws application-autoscaling describe-scheduled-actions --service-
namespace namespace --query "ScheduledActions[?ResourceId==`identifier`]"

The following is example output.

[
 {
 "ScheduledActionName": "my-first-scheduled-action",
 "ScheduledActionARN": "arn",
 "Schedule": "cron(0 9 * * ? *)",
 "ScalableTargetAction": {
 "MinCapacity": 1,

Step 2: Set up scheduled actions according to your requirements 119

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html

Application Auto Scaling User Guide

 "MaxCapacity": 5
 },
 ...
 }
]

To create a scheduled action that scales in at night

1. Repeat the preceding procedure to create another scheduled action that Application Auto
Scaling uses to scale in at the end of the day.

On the specified schedule (every day at 8:00 PM UTC), Application Auto Scaling updates the
target's MinCapacity and MaxCapacity to 0, as instructed by the following put-scheduled-
action command.

Linux, macOS, or Unix

aws application-autoscaling put-scheduled-action \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --scheduled-action-name my-second-scheduled-action \
 --schedule "cron(0 20 * * ? *)" \
 --scalable-target-action MinCapacity=0,MaxCapacity=0

Windows

aws application-autoscaling put-scheduled-action --service-namespace namespace --
scalable-dimension dimension --resource-id identifier --scheduled-action-name my-
second-scheduled-action --schedule "cron(0 20 * * ? *)" --scalable-target-action
 MinCapacity=0,MaxCapacity=0

2. To confirm that your scheduled action exists, use the following describe-scheduled-actions
command.

Linux, macOS, or Unix

aws application-autoscaling describe-scheduled-actions \
 --service-namespace namespace \
 --query 'ScheduledActions[?ResourceId==`identifier`]'

Step 2: Set up scheduled actions according to your requirements 120

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html

Application Auto Scaling User Guide

Windows

aws application-autoscaling describe-scheduled-actions --service-
namespace namespace --query "ScheduledActions[?ResourceId==`identifier`]"

The following is example output.

[
 {
 "ScheduledActionName": "my-first-scheduled-action",
 "ScheduledActionARN": "arn",
 "Schedule": "cron(0 9 * * ? *)",
 "ScalableTargetAction": {
 "MinCapacity": 1,
 "MaxCapacity": 5
 },
 ...
 },
 {
 "ScheduledActionName": "my-second-scheduled-action",
 "ScheduledActionARN": "arn",
 "Schedule": "cron(0 20 * * ? *)",
 "ScalableTargetAction": {
 "MinCapacity": 0,
 "MaxCapacity": 0
 },
 ...
 }
]

Step 3: Add a target tracking scaling policy

Now that you have the basic schedule in place, add a target tracking scaling policy to scale based
on current resource utilization.

With target tracking, Application Auto Scaling compares the target value in the policy to the
current value of the specified metric. When they are unequal for a period of time, Application Auto
Scaling adds or removes capacity to maintain steady performance. As the load on your application
and the metric value increases, Application Auto Scaling adds capacity as fast as it can without

Step 3: Add a target tracking scaling policy 121

Application Auto Scaling User Guide

going above MaxCapacity. When Application Auto Scaling removes capacity because the load is
minimal, it does so without going below MinCapacity. By adjusting the capacity based on usage,
you only pay for what your application needs.

If the metric has insufficient data because your application does not have any load, Application
Auto Scaling does not add or remove capacity. In other words, Application Auto Scaling prioritizes
availability in situations where not enough information is available.

You can add multiple scaling policies, but make sure you do not add conflicting step scaling
policies, which might cause undesirable behavior. For example, if the step scaling policy initiates a
scale-in activity before the target tracking policy is ready to scale in, the scale-in activity will not be
blocked. After the scale-in activity completes, the target tracking policy could instruct Application
Auto Scaling to scale out again.

To create a target tracking scaling policy

1. Use the following put-scaling-policy command to create the policy.

The metrics that are most frequently used for target tracking are predefined, and you can use
them without supplying the full metric specification from CloudWatch. For more information
about the available predefined metrics, see Target tracking scaling policies for Application
Auto Scaling.

Before you run this command, make sure that your predefined metric expects the target value.
For example, to scale out when CPU reaches 50% utilization, specify a target value of 50.0.
Or, to scale out Lambda provisioned concurrency when usage reaches 70% utilization, specify
a target value of 0.7. For information about target values for a particular resource, refer to
the documentation that is provided by the service about how to configure target tracking. For
more information, see Amazon Web Services services that you can use with Application Auto
Scaling.

Linux, macOS, or Unix

aws application-autoscaling put-scaling-policy \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --policy-name my-scaling-policy --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration '{ "TargetValue": 50.0,
 "PredefinedMetricSpecification": { "PredefinedMetricType": "predefinedmetric" }}'

Step 3: Add a target tracking scaling policy 122

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

Windows

aws application-autoscaling put-scaling-policy --service-namespace namespace --
scalable-dimension dimension --resource-id identifier --policy-name my-scaling-
policy --policy-type TargetTrackingScaling --target-tracking-scaling-policy-
configuration "{ \"TargetValue\": 50.0, \"PredefinedMetricSpecification\":
 { \"PredefinedMetricType\": \"predefinedmetric\" }}"

If successful, this command returns the ARNs and names of the two CloudWatch alarms that
were created on your behalf.

2. To confirm that your scheduled action exists, use the following describe-scaling-policies
command.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-policies --service-namespace namespace
 \
 --query 'ScalingPolicies[?ResourceId==`identifier`]'

Windows

aws application-autoscaling describe-scaling-policies --service-namespace namespace
 --query "ScalingPolicies[?ResourceId==`identifier`]"

The following is example output.

[
 {
 "PolicyARN": "arn",
 "TargetTrackingScalingPolicyConfiguration": {
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "predefinedmetric"
 },
 "TargetValue": 50.0
 },
 "PolicyName": "my-scaling-policy",
 "PolicyType": "TargetTrackingScaling",
 "Alarms": [],
 ...
 }

Step 3: Add a target tracking scaling policy 123

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html

Application Auto Scaling User Guide

]

Step 4: Next steps

When a scaling activity occurs, you see a record of it in the output of the scaling activities for the
scalable target, for example:

Successfully set desired count to 1. Change successfully fulfilled by ecs.

To monitor your scaling activities with Application Auto Scaling, you can use the following
describe-scaling-activities command.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-activities
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier

Windows

aws application-autoscaling describe-scaling-activities --service-namespace namespace
 --scalable-dimension dimension --resource-id identifier

Step 5: Clean up

To prevent your account from accruing charges for resources created while actively scaling, you can
clean up the associated scaling configuration as follows.

Deleting the scaling configuration does not delete the underlying Amazon resource. It also does
not return it to its original capacity. You can use the console of the service where you created the
resource to delete it or adjust its capacity.

To delete the scheduled actions

The following delete-scheduled-action command deletes a specified scheduled action. You can skip
this step if you want to keep the scheduled actions that you created.

Step 4: Next steps 124

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scheduled-action.html

Application Auto Scaling User Guide

Linux, macOS, or Unix

aws application-autoscaling delete-scheduled-action \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --scheduled-action-name my-second-scheduled-action

Windows

aws application-autoscaling delete-scheduled-action --service-namespace namespace
 --scalable-dimension dimension --resource-id identifier --scheduled-action-name my-
second-scheduled-action

To delete the scaling policy

The following delete-scaling-policy command deletes a specified target tracking scaling policy. You
can skip this step if you want to keep the scaling policy that you created.

Linux, macOS, or Unix

aws application-autoscaling delete-scaling-policy \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \
 --policy-name my-scaling-policy

Windows

aws application-autoscaling delete-scaling-policy --service-namespace namespace --
scalable-dimension dimension --resource-id identifier --policy-name my-scaling-policy

To deregister the scalable target

Use the following deregister-scalable-target command to deregister the scalable target. If you
have any scaling policies that you created or any scheduled actions that have not yet been deleted,
they are deleted by this command. You can skip this step if you want to keep the scalable target
registered for future use.

Linux, macOS, or Unix

Step 5: Clean up 125

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/deregister-scalable-target.html

Application Auto Scaling User Guide

aws application-autoscaling deregister-scalable-target \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier

Windows

aws application-autoscaling deregister-scalable-target --service-namespace namespace --
scalable-dimension dimension --resource-id identifier

Step 5: Clean up 126

Application Auto Scaling User Guide

Suspend and resume scaling for Application Auto Scaling

This topic explains how to suspend and then resume one or more of the scaling activities for the
scalable targets in your application. The suspend-resume feature is used to temporarily pause
scaling activities triggered by your scaling policies and scheduled actions. This can be useful, for
example, when you don't want automatic scaling to potentially interfere while you are making a
change or investigating a configuration issue. Your scaling policies and scheduled actions can be
retained, and when you are ready, scaling activities can be resumed.

In the example CLI commands that follow, you pass the JSON-formatted parameters in a
config.json file. You can also pass these parameters on the command line by using quotation marks
to enclose the JSON data structure. For more information, see Using quotation marks with strings
in the Amazon CLI in the Amazon Command Line Interface User Guide.

Contents

• Scaling activities

• Suspend and resume scaling activities

Note

For instructions for suspending scale-out processes while Amazon ECS deployments are in
progress, see the following documentation:
Service auto scaling and deployments in the Amazon Elastic Container Service Developer
Guide

Scaling activities

Application Auto Scaling supports putting the following scaling activities in a suspended state:

• All scale-in activities that are triggered by a scaling policy.

• All scale-out activities that are triggered by a scaling policy.

• All scaling activities that involve scheduled actions.

Scaling activities 127

https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-parameters-quoting-strings.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/service-auto-scaling.html#service-auto-scaling-deployments

Application Auto Scaling User Guide

The following descriptions explain what happens when individual scaling activities are suspended.
Each one can be suspended and resumed independently. Depending on the reason for suspending
a scaling activity, you might need to suspend multiple scaling activities together.

DynamicScalingInSuspended

• Application Auto Scaling does not remove capacity when a target tracking scaling policy or
a step scaling policy is triggered. This allows you to temporarily disable scale-in activities
associated with scaling policies without deleting the scaling policies or their associated
CloudWatch alarms. When you resume scale in, Application Auto Scaling evaluates policies with
alarm thresholds that are currently in breach.

DynamicScalingOutSuspended

• Application Auto Scaling does not add capacity when a target tracking scaling policy or a step
scaling policy is triggered. This allows you to temporarily disable scale-out activities associated
with scaling policies without deleting the scaling policies or their associated CloudWatch alarms.
When you resume scale out, Application Auto Scaling evaluates policies with alarm thresholds
that are currently in breach.

ScheduledScalingSuspended

• Application Auto Scaling does not initiate the scaling actions that are scheduled to run during
the suspension period. When you resume scheduled scaling, Application Auto Scaling only
evaluates scheduled actions whose execution time has not yet passed.

Suspend and resume scaling activities

You can suspend and resume individual scaling activities or all scaling activities for your Application
Auto Scaling scalable target.

Note

For brevity, these examples illustrate how to suspend and resume scaling for a DynamoDB
table. To specify a different scalable target, specify its namespace in --service-
namespace, its scalable dimension in --scalable-dimension, and its resource ID in

Suspend and resume scaling activities 128

Application Auto Scaling User Guide

--resource-id. For more information and examples for each service, see the topics in
Amazon Web Services services that you can use with Application Auto Scaling.

To suspend a scaling activity

Open a command-line window and use the register-scalable-target command with the --
suspended-state option as follows.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table \
 --suspended-state file://config.json

Windows

aws application-autoscaling register-scalable-target --service-namespace dynamodb --
scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table --
suspended-state file://config.json

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

To only suspend scale-in activities that are triggered by a scaling policy, specify the following in
config.json.

{
 "DynamicScalingInSuspended":true
}

To only suspend scale-out activities that are triggered by a scaling policy, specify the following in
config.json.

{

Suspend and resume scaling activities 129

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 "DynamicScalingOutSuspended":true
}

To only suspend scaling activities that involve scheduled actions, specify the following in
config.json.

{
 "ScheduledScalingSuspended":true
}

To suspend all scaling activities

Use the register-scalable-target command with the --suspended-state option as follows.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table \
 --suspended-state file://config.json

Windows

aws application-autoscaling register-scalable-target --service-namespace dynamodb --
scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table --
suspended-state file://config.json

This example assumes that the file config.json contains the following JSON-formatted parameters.

{
 "DynamicScalingInSuspended":true,
 "DynamicScalingOutSuspended":true,
 "ScheduledScalingSuspended":true
}

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Suspend and resume scaling activities 130

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

View suspended scaling activities

Use the describe-scalable-targets command to determine which scaling activities are in a
suspended state for a scalable target.

Linux, macOS, or Unix

aws application-autoscaling describe-scalable-targets --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table

Windows

aws application-autoscaling describe-scalable-targets --service-namespace dynamodb --
scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table

The following is example output.

{
 "ScalableTargets": [
 {
 "ServiceNamespace": "dynamodb",
 "ScalableDimension": "dynamodb:table:ReadCapacityUnits",
 "ResourceId": "table/my-table",
 "MinCapacity": 1,
 "MaxCapacity": 20,
 "SuspendedState": {
 "DynamicScalingOutSuspended": true,
 "DynamicScalingInSuspended": true,
 "ScheduledScalingSuspended": true
 },
 "CreationTime": 1558125758.957,
 "RoleARN": "arn:aws-cn:iam::123456789012:role/aws-
service-role/dynamodb.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable"
 }
]
}

Resume scaling activities

When you are ready to resume the scaling activity, you can resume it using the register-scalable-
target command.

View suspended scaling activities 131

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scalable-targets.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

The following example command resumes all scaling activities for the specified scalable target.

Linux, macOS, or Unix

aws application-autoscaling register-scalable-target --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table \
 --suspended-state file://config.json

Windows

aws application-autoscaling register-scalable-target --service-namespace dynamodb --
scalable-dimension dynamodb:table:ReadCapacityUnits --resource-id table/my-table --
suspended-state file://config.json

This example assumes that the file config.json contains the following JSON-formatted parameters.

{
 "DynamicScalingInSuspended":false,
 "DynamicScalingOutSuspended":false,
 "ScheduledScalingSuspended":false
}

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Resume scaling activities 132

Application Auto Scaling User Guide

Scaling activities for Application Auto Scaling

Application Auto Scaling monitors your scaling policy's CloudWatch metrics and initiates a scaling
activity when thresholds are exceeded. It also initiates scaling activities when you modify the
maximum or minimum size of the scalable target, either manually or following a schedule.

When a scaling activity occurs, Application Auto Scaling does one of the following:

• Increases the capacity of the scalable target (referred to as scaling out)

• Decreases the capacity of the scalable target (referred to as scaling in)

You can look up scaling activities from the last six weeks.

Look up scaling activities by scalable target

To see the scaling activities for a specific scalable target, use the following describe-scaling-
activities command.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-activities --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount --resource-id service/my-cluster/my-
service

Windows

aws application-autoscaling describe-scaling-activities --service-namespace ecs --
scalable-dimension ecs:service:DesiredCount --resource-id service/my-cluster/my-service

The following is an example response, where StatusCode contains the current status of the
activity and StatusMessage contains information about the status of the scaling activity.

{
 "ScalingActivities": [
 {
 "ScalableDimension": "ecs:service:DesiredCount",
 "Description": "Setting desired count to 1.",
 "ResourceId": "service/my-cluster/my-service",

Look up scaling activities by scalable target 133

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html

Application Auto Scaling User Guide

 "ActivityId": "e6c5f7d1-dbbb-4a3f-89b2-51f33e766399",
 "StartTime": 1462575838.171,
 "ServiceNamespace": "ecs",
 "EndTime": 1462575872.111,
 "Cause": "monitor alarm web-app-cpu-lt-25 in state ALARM triggered policy
 web-app-cpu-lt-25",
 "StatusMessage": "Successfully set desired count to 1. Change successfully
 fulfilled by ecs.",
 "StatusCode": "Successful"
 }
]
}

For a description of the fields in the response, see ScalingActivity in the Application Auto Scaling
API Reference.

The following status codes indicate when the scaling event that leads to the scaling activity
reaches a completed state:

• Successful – Scaling was completed successfully

• Overridden – The desired capacity was updated by a newer scaling event

• Unfulfilled – Scaling timed out or the target service cannot fulfill the request

• Failed – Scaling failed with an exception

Note

The scaling activity might also have a status of Pending or InProgress. All scaling
activities have a Pending status before the target service responds. After the target
responds, the status of the scaling activity changes to InProgress.

Include not scaled activities

By default, the scaling activities do not reflect times when Application Auto Scaling makes a
decision about whether to not scale.

For example, suppose that an Amazon ECS service exceeds the maximum threshold of a given
metric, but the number of tasks is already at the maximum number of allowed tasks. In this case,
Application Auto Scaling does not scale out the desired number of tasks.

Include not scaled activities 134

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_ScalingActivity.html

Application Auto Scaling User Guide

To include activities that aren't scaled (not scaled activities) in the response, add the --include-
not-scaled-activities option to the describe-scaling-activities command.

Linux, macOS, or Unix

aws application-autoscaling describe-scaling-activities --include-not-scaled-activities
 \
 --service-namespace ecs --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/my-cluster/my-service

Windows

aws application-autoscaling describe-scaling-activities --include-not-scaled-activities
 --service-namespace ecs --scalable-dimension ecs:service:DesiredCount --resource-
id service/my-cluster/my-service

Note

If this command throws an error, make sure that you have updated the Amazon CLI locally
to the latest version.

To confirm that the response includes the not scaled activities, the NotScaledReasons element is
shown in the output for some, if not all, failed scaling activities.

{
 "ScalingActivities": [
 {
 "ScalableDimension": "ecs:service:DesiredCount",
 "Description": "Attempting to scale due to alarm triggered",
 "ResourceId": "service/my-cluster/my-service",
 "ActivityId": "4d759079-a31f-4d0c-8468-504c56e2eecf",
 "StartTime": 1664928867.915,
 "ServiceNamespace": "ecs",
 "Cause": "monitor alarm web-app-cpu-gt-75 in state ALARM triggered policy
 web-app-cpu-gt-75",
 "StatusCode": "Failed",
 "NotScaledReasons": [
 {
 "Code": "AlreadyAtMaxCapacity",
 "MaxCapacity": 4

Include not scaled activities 135

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html

Application Auto Scaling User Guide

 }
]
 }
]
}

For a description of the fields in the response, see ScalingActivity in the Application Auto Scaling
API Reference.

If a not scaled activity is returned, depending on the reason code listed in Code, attributes like
CurrentCapacity, MaxCapacity, and MinCapacity might be present in the response.

To prevent large quantities of duplicate entries, only the first not scaled activity will be recorded
in the scaling activity history. Any subsequent not scaled activities will not generate new entries
unless the reason for not scaling changes.

Reason codes

The following are the reason codes for a not scaled activity.

Reason
code

Definition

AutoScali
ngAnticip
atedFlapp
ing

Auto scaling
algorithm decided
not to take a
scaling action
because it would
lead to flapping.
Flapping is an
infinite loop of
scaling in and
scaling out. That
is, if a scaling
action is taken,
the metric value
would change
to start another

Reason codes 136

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_ScalingActivity.html

Application Auto Scaling User Guide

Reason
code

Definition

scaling action
in the reverse
direction.

TargetSer
vicePutRe
sourceAsU
nscalable

The target service
has temporarily
put the resource
in an unscalabl
e state. Applicati
on Auto Scaling
will attempt to
scale again when
the automatic
scaling condition
s specified in the
scaling policy are
met.

AlreadyAt
MaxCapaci
ty

Scaling is blocked
by the maximum
capacity that you
specified. If you
want Application
Auto Scaling to
scale out, you need
to increase the
maximum capacity.

Reason codes 137

Application Auto Scaling User Guide

Reason
code

Definition

AlreadyAt
MinCapaci
ty

Scaling is blocked
by the minimum
capacity that you
specified. If you
want Application
Auto Scaling to
scale in, you need
to decrease the
minimum capacity.

AlreadyAt
DesiredCa
pacity

Auto scaling
algorithm
calculated the
revised capacity
to be equal to the
current capacity.

Reason codes 138

Application Auto Scaling User Guide

Monitoring Application Auto Scaling

Monitoring is an important part of maintaining the reliability, availability, and performance of
Application Auto Scaling and your other Amazon solutions. You should collect monitoring data
from all parts of your Amazon solution so that you can more easily debug a multi-point failure if
one occurs. Amazon provides monitoring tools to watch Application Auto Scaling, report when
something is wrong, and take automatic actions when appropriate.

You can use the following features to help you manage your Amazon resources:

Amazon CloudTrail

With Amazon CloudTrail, you can track the calls made to the Application Auto Scaling API by
or on behalf of your Amazon Web Services account. CloudTrail stores the information in log
files in the Amazon S3 bucket that you specify. You can identify which users and accounts called
Application Auto Scaling, the source IP address from which the calls were made, and when the
calls occurred. For more information, see Log Application Auto Scaling API calls using Amazon
CloudTrail.

Note

For information about other Amazon services that can help you log and collect data
about your workloads, see the Logging and monitoring guide for application owners
guide in the Amazon Prescriptive Guidance.

Amazon CloudWatch

Amazon CloudWatch helps you analyze logs and, in real time, monitor the metrics of your
Amazon resources and hosted applications. You can collect and track metrics, create customized
dashboards, and set alarms that notify you or take actions when a specified metric reaches a
threshold that you specify. For example, you can have CloudWatch track resource utilization
and notify you when utilization is very high or when the metric's alarm has gone into the
INSUFFICIENT_DATA state. For more information, see Monitor usage of scalable resources
using CloudWatch.

CloudWatch also tracks Amazon API usage metrics for Application Auto Scaling. You can use
these metrics to configure alarms that alert you when your API call volume violates a threshold

139

https://docs.amazonaws.cn/prescriptive-guidance/latest/logging-monitoring-for-application-owners/introduction.html

Application Auto Scaling User Guide

that you define. For more information, see Amazon usage metrics in the Amazon CloudWatch
User Guide.

Amazon EventBridge

Amazon EventBridge is a serverless event bus service that makes it easy to connect your
applications with data from a variety of sources. EventBridge delivers a stream of real-time data
from your own applications, Software-as-a-Service (SaaS) applications, and Amazon services
and routes that data to targets such as Lambda. This lets you monitor events that happen in
services, and build event-driven architectures. For more information, see Monitor Application
Auto Scaling events using Amazon EventBridge.

Amazon Health Dashboard

The Amazon Health Dashboard (PHD) displays information, and also provides notifications that
are invoked by changes in the health of Amazon resources. The information is presented in two
ways: on a dashboard that shows recent and upcoming events organized by category, and in a
full event log that shows all events from the past 90 days. For more information, see Getting
started with your Amazon Health Dashboard.

Monitor usage of scalable resources using CloudWatch

With Amazon CloudWatch, you get nearly continuous visibility into your applications across
scalable resources. CloudWatch is a monitoring service for Amazon resources. You can use
CloudWatch to collect and track metrics, set alarms, and automatically react to changes in your
Amazon resources. You can also create dashboards to monitor the specific metrics or sets of
metrics you need.

When you interact with the services that integrate with Application Auto Scaling, they send the
metrics shown in the following table to CloudWatch. In CloudWatch, metrics are grouped first by
the service namespace, and then by the various dimension combinations within each namespace.
These metrics can help you monitor resource usage and plan capacity for your applications. If your
application's workload is not constant, this indicates that you should consider using auto scaling.
For detailed descriptions of these metrics, see the documentation for the metric of interest.

Contents

• CloudWatch metrics for monitoring resource usage

• Predefined metrics for target tracking scaling policies

Monitor using CloudWatch 140

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/AWS-API-Usage-Metrics.html
https://docs.amazonaws.cn/health/latest/ug/getting-started-health-dashboard.html
https://docs.amazonaws.cn/health/latest/ug/getting-started-health-dashboard.html

Application Auto Scaling User Guide

CloudWatch metrics for monitoring resource usage

The following table lists the CloudWatch metrics that are available to support monitoring resource
usage. The list is not exhaustive but will give you a good starting point. If you do not see these
metrics in the CloudWatch console, make sure that you have completed the set up of the resource.
For more information, see the Amazon CloudWatch User Guide.

Scalable resource Namespace CloudWatc
h metric

Link to documentation

AppStream 2.0

Fleets AWS/
AppSt
ream

Name:
Available
Capacity

Dimension
: Fleet

AppStream 2.0 metrics

Fleets AWS/
AppSt
ream

Name:
CapacityU
tilization

Dimension
: Fleet

AppStream 2.0 metrics

Aurora

Replicas AWS/
RDS

Name:
CPUUtiliz
ation

Dimension
s:
DBCluster
Identifie
r, Role
(READER)

Aurora cluster-level metrics

CloudWatch metrics for monitoring resource usage 141

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/
https://docs.amazonaws.cn/appstream2/latest/developerguide/monitoring.html
https://docs.amazonaws.cn/appstream2/latest/developerguide/monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMonitoring.Metrics.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Replicas AWS/
RDS

Name:
DatabaseC
onnection
s

Dimension
s:
DBCluster
Identifie
r, Role
(READER)

Aurora cluster-level metrics

Amazon Comprehen
d

Document classific
ation endpoints

AWS/
Compr
ehend

Name:
Inference
Utilizati
on

Dimension
:
EndpointA
rn

Amazon Comprehend endpoint metrics

Entity recognizer
endpoints

AWS/
Compr
ehend

Name:
Inference
Utilizati
on

Dimension
:
EndpointA
rn

Amazon Comprehend endpoint metrics

CloudWatch metrics for monitoring resource usage 142

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraMonitoring.Metrics.html
https://docs.amazonaws.cn/comprehend/latest/dg/manage-endpoints-monitor.html
https://docs.amazonaws.cn/comprehend/latest/dg/manage-endpoints-monitor.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

DynamoDB

Tables and global
secondary indexes

AWS/
Dynam
oDB

Name:
Provision
edReadCap
acityUnit
s

Dimension
s:
TableName
,
GlobalSec
ondaryInd
exName

DynamoDB metrics

Tables and global
secondary indexes

AWS/
Dynam
oDB

Name:
Provision
edWriteCa
pacityUni
ts

Dimension
s:
TableName
,
GlobalSec
ondaryInd
exName

DynamoDB metrics

CloudWatch metrics for monitoring resource usage 143

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Tables and global
secondary indexes

AWS/
Dynam
oDB

Name:
ConsumedR
eadCapaci
tyUnits

Dimension
s:
TableName
,
GlobalSec
ondaryInd
exName

DynamoDB metrics

Tables and global
secondary indexes

AWS/
Dynam
oDB

Name:
ConsumedW
riteCapac
ityUnits

Dimension
s:
TableName
,
GlobalSec
ondaryInd
exName

DynamoDB metrics

Amazon ECS

CloudWatch metrics for monitoring resource usage 144

https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/metrics-dimensions.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Services AWS/ECS Name:
CPUUtiliz
ation

Dimension
s:
ClusterNa
me,
ServiceNa
me

Amazon ECS metrics

Services AWS/ECS Name:
MemoryUti
lization

Dimension
s:
ClusterNa
me,
ServiceNa
me

Amazon ECS metrics

Services AWS/
Appli
cationELB

Name:
RequestCo
untPerTar
get

Dimension
:
TargetGro
up

Application Load Balancer metrics

ElastiCache

CloudWatch metrics for monitoring resource usage 145

https://docs.amazonaws.cn/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/cloudwatch-metrics.html
https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Clusters (replication
groups)

AWS/
Elast
iCache

Name:
DatabaseM
emoryUsag
eCountedF
orEvictPe
rcentage

Dimension
:
Replicati
onGroupId

ElastiCache Valkey and Redis OSS metrics

Clusters (replication
groups)

AWS/
Elast
iCache

Name:
DatabaseC
apacityUs
ageCounte
dForEvict
Percentag
e

Dimension
:
Replicati
onGroupId

ElastiCache Valkey and Redis OSS metrics

CloudWatch metrics for monitoring resource usage 146

https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Redis.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Redis.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Clusters (replication
groups)

AWS/
Elast
iCache

Name:
EngineCPU
Utilizati
on

Dimension
s:
Replicati
onGroupId
, Role
(Primary)

ElastiCache Valkey and Redis OSS metrics

Clusters (replication
groups)

AWS/
Elast
iCache

Name:
EngineCPU
Utilizati
on

Dimension
s:
Replicati
onGroupId
, Role
(Replica)

ElastiCache Valkey and Redis OSS metrics

Clusters (cache) AWS/
Elast
iCache

Name:
EngineCPU
Utilizati
on

Dimension
s:
CacheClus
terId,
Node

ElastiCache Memcached metrics

CloudWatch metrics for monitoring resource usage 147

https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Redis.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Redis.html
https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Memcached.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Clusters (cache) AWS/
Elast
iCache

Name:
DatabaseC
apacityMe
moryUsage
Percentag
e

Dimension
s:
CacheClus
terId

ElastiCache Memcached metrics

Amazon EMR

Clusters AWS/
Elast
icMapRedu
ce

Name:
YARNMemor
yAvailabl
ePercenta
ge

Dimension
:
ClusterId

Amazon EMR metrics

Amazon Keyspaces

CloudWatch metrics for monitoring resource usage 148

https://docs.amazonaws.cn/AmazonElastiCache/latest/dg/CacheMetrics.Memcached.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/UsingEMR_ViewingMetrics.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Tables AWS/
Cassa
ndra

Name:
Provision
edReadCap
acityUnit
s

Dimension
s:
Keyspace,
TableName

Amazon Keyspaces metrics

Tables AWS/
Cassa
ndra

Name:
Provision
edWriteCa
pacityUni
ts

Dimension
s:
Keyspace,
TableName

Amazon Keyspaces metrics

Tables AWS/
Cassa
ndra

Name:
ConsumedR
eadCapaci
tyUnits

Dimension
s:
Keyspace,
TableName

Amazon Keyspaces metrics

CloudWatch metrics for monitoring resource usage 149

https://docs.amazonaws.cn/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.amazonaws.cn/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.amazonaws.cn/keyspaces/latest/devguide/metrics-dimensions.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Tables AWS/
Cassa
ndra

Name:
ConsumedW
riteCapac
ityUnits

Dimension
s:
Keyspace,
TableName

Amazon Keyspaces metrics

Lambda

Provisioned
concurrency

AWS/
Lambda

Name:
Provision
edConcurr
encyUtili
zation

Dimension
s:
FunctionN
ame,
Resource

Lambda function metrics

Amazon MSK

Broker storage AWS/
Kafka

Name:
KafkaData
LogsDiskU
sed

Dimension
s: Cluster
Name

Amazon MSK metrics

CloudWatch metrics for monitoring resource usage 150

https://docs.amazonaws.cn/keyspaces/latest/devguide/metrics-dimensions.html
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-metrics.html
https://docs.amazonaws.cn/msk/latest/developerguide/metrics-details.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Broker storage AWS/
Kafka

Name:
KafkaData
LogsDiskU
sed

Dimension
s: Cluster
Name,
Broker ID

Amazon MSK metrics

Neptune

Clusters AWS/
Neptune

Name:
CPUUtiliz
ation

Dimension
s:
DBCluster
Identifie
r, Role
(READER)

Neptune metrics

SageMaker AI

CloudWatch metrics for monitoring resource usage 151

https://docs.amazonaws.cn/msk/latest/developerguide/metrics-details.html
https://docs.amazonaws.cn/neptune/latest/userguide/cw-metrics.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Endpoint variants AWS/
SageM
aker

Name:
Invocatio
nsPerInst
ance

Dimension
s:
EndpointN
ame,
VariantNa
me

Invocation metrics

Inference component
s

AWS/
SageM
aker

Name:
Invocatio
nsPerCopy

Dimension
s:
Inference
Component
Name

Invocation metrics

Provisioned
concurrency for a
serverless endpoint

AWS/
SageM
aker

Name:
Serverles
sProvisio
nedConcur
rencyUtil
ization

Dimension
s:
EndpointN
ame,
VariantNa
me

Serverless endpoint metrics

CloudWatch metrics for monitoring resource usage 152

https://docs.amazonaws.cn/sagemaker/latest/dg/monitoring-cloudwatch.html
https://docs.amazonaws.cn/sagemaker/latest/dg/monitoring-cloudwatch.html
https://docs.amazonaws.cn/sagemaker/latest/dg/serverless-endpoints-monitoring.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Spot Fleet (Amazon
EC2)

Spot Fleets AWS/
EC2Spot

Name:
CPUUtiliz
ation

Dimension
:
FleetRequ
estId

Spot Fleet metrics

Spot Fleets AWS/
EC2Spot

Name:
NetworkIn

Dimension
:
FleetRequ
estId

Spot Fleet metrics

Spot Fleets AWS/
EC2Spot

Name:
NetworkOu
t

Dimension
:
FleetRequ
estId

Spot Fleet metrics

CloudWatch metrics for monitoring resource usage 153

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-fleet-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-fleet-cloudwatch-metrics.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/ec2-fleet-cloudwatch-metrics.html

Application Auto Scaling User Guide

Scalable resource Namespace CloudWatc
h metric

Link to documentation

Spot Fleets AWS/
Appli
cationELB

Name:
RequestCo
untPerTar
get

Dimension
:
TargetGro
up

Application Load Balancer metrics

Predefined metrics for target tracking scaling policies

The following table lists the predefined metric types from the Application Auto Scaling API
Reference with their corresponding CloudWatch metric name. Each predefined metric represents an
aggregation of the values of the underlying CloudWatch metric. The result is the average resource
usage over a one-minute period, based on a percentage unless otherwise noted. The predefined
metrics are only used within the context of setting up target tracking scaling policies.

You can find more information about these metrics in the service's documentation that's available
from the table in CloudWatch metrics for monitoring resource usage.

Predefined metric type CloudWatch metric name

AppStream 2.0

AppStreamAverageCapacityUti
lization

CapacityUtilization

Aurora

RDSReaderAverageCPUUtilization CPUUtilization

RDSReaderAverageDatabaseCon
nections

DatabaseConnections¹

Predefined metrics for target tracking scaling policies 154

https://docs.amazonaws.cn/elasticloadbalancing/latest/application/load-balancer-cloudwatch-metrics.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/
https://docs.amazonaws.cn/autoscaling/application/APIReference/

Application Auto Scaling User Guide

Predefined metric type CloudWatch metric name

Amazon Comprehend

ComprehendInferenceUtilization InferenceUtilization

DynamoDB

DynamoDBReadCapacityUtilization ProvisionedReadCapacityUnits, ConsumedR
eadCapacityUnits²

DynamoDBWriteCapacityUtilization ProvisionedWriteCapacityUnits, ConsumedW
riteCapacityUnits²

Amazon ECS

ECSServiceAverageCPUUtilization CPUUtilization

ECSServiceAverageMemoryUtil
ization

MemoryUtilization

ALBRequestCountPerTarget RequestCountPerTarget¹

ElastiCache

ElastiCacheDatabaseMemoryUs
ageCountedForEvictPercentage

DatabaseMemoryUsageCountedForEvictPe
rcentage

ElastiCacheDatabaseCapacity
UsageCountedForEvictPercentage

DatabaseCapacityUsageCountedForEvict
Percentage

ElastiCachePrimaryEngineCPU
Utilization

EngineCPUUtilization

ElastiCacheReplicaEngineCPU
Utilization

EngineCPUUtilization

ElastiCacheEngineCPUUtilization EngineCPUUtilization

Predefined metrics for target tracking scaling policies 155

Application Auto Scaling User Guide

Predefined metric type CloudWatch metric name

ElastiCacheDatabaseMemoryUs
agePercentage

DatabaseMemoryUsagePercentage

Amazon Keyspaces

CassandraReadCapacityUtilization ProvisionedReadCapacityUnits, ConsumedR
eadCapacityUnits²

CassandraWriteCapacityUtili
zation

ProvisionedWriteCapacityUnits, ConsumedW
riteCapacityUnits²

Lambda

LambdaProvisionedConcurrenc
yUtilization

ProvisionedConcurrencyUtilization

Amazon MSK

KafkaBrokerStorageUtilization KafkaDataLogsDiskUsed

Neptune

NeptuneReaderAverageCPUUtil
ization

CPUUtilization

SageMaker AI

SageMakerVariantInvocations
PerInstance

InvocationsPerInstance¹

SageMakerInferenceComponent
InvocationsPerCopy

InvocationsPerCopy¹

SageMakerVariantProvisioned
ConcurrencyUtilization

ServerlessProvisionedConcurrencyUtilization

Predefined metrics for target tracking scaling policies 156

Application Auto Scaling User Guide

Predefined metric type CloudWatch metric name

SageMakerInferenceComponent
ConcurrentRequestsPerCopyHi
ghResolution

ConcurrentRequestsPerCopy

SageMakerVariantConcurrentR
equestsPerModelHighResolution

ConcurrentRequestsPerModel

Spot Fleet

EC2SpotFleetRequestAverageC
PUUtilization

CPUUtilization³

EC2SpotFleetRequestAverageN
etworkIn³

NetworkIn¹ ³

EC2SpotFleetRequestAverageN
etworkOut³

NetworkOut¹ ³

ALBRequestCountPerTarget RequestCountPerTarget¹

¹ Metric is based on a count instead of a percentage.

² For DynamoDB and Amazon Keyspaces, the predefined metrics are an aggregation of two
CloudWatch metrics to support scaling based on provisioned throughput consumption.

³ For best scaling performance, Amazon EC2 detailed monitoring should be used.

Log Application Auto Scaling API calls using Amazon CloudTrail

Application Auto Scaling is integrated with Amazon CloudTrail, a service that provides a record of
actions taken by a user, role, or an Amazon Web Services service. CloudTrail captures API calls for
Application Auto Scaling as events. The calls captured include calls from the Amazon Web Services
Management Console and code calls to the Application Auto Scaling API operations. Using the
information collected by CloudTrail, you can determine the request that was made to Application
Auto Scaling, the IP address from which the request was made, when it was made, and additional
details.

Log API calls using CloudTrail 157

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Application Auto Scaling User Guide

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon Web Services service.

CloudTrail is active in your Amazon Web Services account when you create the account and you
automatically have access to the CloudTrail Event history. The CloudTrail Event history provides
a viewable, searchable, downloadable, and immutable record of the past 90 days of recorded
management events in an Amazon Web Services Region. For more information, see Working with
CloudTrail Event history in the Amazon CloudTrail User Guide. There are no CloudTrail charges for
viewing the Event history.

For an ongoing record of events in your Amazon Web Services account past 90 days, create a trail.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
Amazon Web Services Management Console are multi-Region. You can create a single-Region
or a multi-Region trail by using the Amazon CLI. Creating a multi-Region trail is recommended
because you capture activity in all Amazon Web Services Regions in your account. If you create
a single-Region trail, you can view only the events logged in the trail's Amazon Web Services
Region. For more information about trails, see Creating a trail for your Amazon Web Services
account and Creating a trail for an organization in the Amazon CloudTrail User Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at
no charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges.
For more information about CloudTrail pricing, see Amazon CloudTrail Pricing. For information
about Amazon S3 pricing, see Amazon S3 Pricing.

Application Auto Scaling management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your Amazon Web Services account. These are also known as control plane operations.
By default, CloudTrail logs management events.

Application Auto Scaling management events in CloudTrail 158

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/creating-trail-organization.html
https://www.amazonaws.cn/cloudtrail/pricing/
https://www.amazonaws.cn/s3/pricing/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events

Application Auto Scaling User Guide

Application Auto Scaling logs all Application Auto Scaling control plane operations as management
events. For a list of the Application Auto Scaling control plane operations that Application Auto
Scaling logs to CloudTrail, see the Application Auto Scaling API Reference.

Application Auto Scaling event examples

An event represents a single request from any source and includes information about the requested
API operation, the date and time of the operation, request parameters, and so on. CloudTrail log
files aren't an ordered stack trace of the public API calls, so events don't appear in any specific
order.

The following example shows a CloudTrail event that demonstrates the
DescribeScalableTargets operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "Root",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:root",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-08-21T17:05:42Z"
 }
 }
 },
 "eventTime": "2018-08-16T23:20:32Z",
 "eventSource": "autoscaling.amazonaws.com",
 "eventName": "DescribeScalableTargets",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "72.21.196.68",
 "userAgent": "EC2 Spot Console",
 "requestParameters": {
 "serviceNamespace": "ec2",
 "scalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "resourceIds": [
 "spot-fleet-request/sfr-05ceaf79-3ba2-405d-e87b-612857f1357a"
]
 },

Application Auto Scaling event examples 159

https://docs.amazonaws.cn/autoscaling/application/APIReference/Welcome.html

Application Auto Scaling User Guide

 "responseElements": null,
 "additionalEventData": {
 "service": "application-autoscaling"
 },
 "requestID": "0737e2ea-fb2d-11e3-bfd8-99133058e7bb",
 "eventID": "3fcfb182-98f8-4744-bd45-b38835ab61cb",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

For information about CloudTrail record contents, see CloudTrail record contents in the Amazon
CloudTrail User Guide.

Application Auto Scaling RemoveAction calls on CloudWatch

Your Amazon CloudTrail log might show that Application Auto Scaling calls the CloudWatch
RemoveAction API when Application Auto Scaling instructs CloudWatch to remove the automatic
scaling action from an alarm. This could happen if you deregister a scalable target, delete a scaling
policy, or if an alarm invokes a nonexistent scaling policy.

Monitor Application Auto Scaling events using Amazon
EventBridge

Amazon EventBridge, formerly called CloudWatch Events, helps you monitor events that are
specific to Application Auto Scaling and initiate target actions that use other Amazon Web Services
services. Events from Amazon Web Services services are delivered to EventBridge in near real time.

Using EventBridge, you can create rules that match incoming events and route them to targets for
processing.

For more information, see Getting started with Amazon EventBridge in the Amazon EventBridge
User Guide.

Application Auto Scaling events

The following examples show events for Application Auto Scaling. Events are produced on a best-
effort basis.

Only events that are specific to scaled to max and API calls via CloudTrail are currently available for
Application Auto Scaling.

Application Auto Scaling RemoveAction calls on CloudWatch 160

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
https://docs.amazonaws.cn/eventbridge/latest/userguide/eb-get-started.html

Application Auto Scaling User Guide

Event types

• Event for state change: scaled to max

• Events for API calls via CloudTrail

Event for state change: scaled to max

The following example event shows that Application Auto Scaling increased (scaled out) the
capacity of the scalable target to its maximum size limit. If demand increases again, Application
Auto Scaling will be prevented from scaling the target to a larger size because it is already scaled to
its maximum size.

In the detail object, the values for the resourceId, serviceNamespace, and
scalableDimension attributes identify the scalable target. The values for the
newDesiredCapacity and oldDesiredCapacity attributes refer to the new capacity after
the scale-out event and the original capacity before the scale-out event. The maxCapacity is the
maximum size limit of the scalable target.

{
 "version": "0",
 "id": "11112222-3333-4444-5555-666677778888",
 "detail-type": "Application Auto Scaling Scaling Activity State Change",
 "source": "aws.application-autoscaling",
 "account": "123456789012",
 "time": "2019-06-12T10:23:40Z",
 "region": "us-west-2",
 "resources": [],
 "detail": {
 "startTime": "2022-06-12T10:20:43Z",
 "endTime": "2022-06-12T10:23:40Z",
 "newDesiredCapacity": 8,
 "oldDesiredCapacity": 5,
 "minCapacity": 2,
 "maxCapacity": 8,
 "resourceId": "table/my-table",
 "scalableDimension": "dynamodb:table:WriteCapacityUnits",
 "serviceNamespace": "dynamodb",
 "statusCode": "Successful",
 "scaledToMax": true,
 "direction": "scale-out"
}

Application Auto Scaling events 161

Application Auto Scaling User Guide

To create a rule that captures all scaledToMax state change events for all scalable targets, use the
following sample event pattern.

{
 "source": [
 "aws.application-autoscaling"
],
 "detail-type": [
 "Application Auto Scaling Scaling Activity State Change"
],
 "detail": {
 "scaledToMax": [
 true
]
 }
}

Events for API calls via CloudTrail

A trail is a configuration that Amazon CloudTrail uses to deliver events as log files to an Amazon
S3 bucket. CloudTrail log files contain log entries. An event represents a log entry, and it includes
information about the requested action, the date and time of the action, and request parameters.
To learn how to get started with CloudTrail, see Creating a trail in the Amazon CloudTrail User
Guide.

Events that are delivered via CloudTrail have AWS API Call via CloudTrail as the value for
detail-type.

The following example event represents a CloudTrail log file entry that shows that a console user
called the Application Auto Scaling RegisterScalableTarget action.

{
 "version": "0",
 "id": "99998888-7777-6666-5555-444433332222",
 "detail-type": "AWS API Call via CloudTrail",
 "source": "aws.autoscaling",
 "account": "123456789012",
 "time": "2022-07-13T16:50:15Z",
 "region": "us-west-2",
 "resources": [],
 "detail": {
 "eventVersion": "1.08",

Application Auto Scaling events 162

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_RegisterScalableTarget.html

Application Auto Scaling User Guide

 "userIdentity": {
 "type": "IAMUser",
 "principalId": "123456789012",
 "arn": "arn:aws-cn:iam::123456789012:user/Bob",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "123456789012",
 "arn": "arn:aws:iam::123456789012:role/Admin",
 "accountId": "123456789012",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-07-13T15:17:08Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-07-13T16:50:15Z",
 "eventSource": "autoscaling.amazonaws.com",
 "eventName": "RegisterScalableTarget",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "EC2 Spot Console",
 "requestParameters": {
 "resourceId": "spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE",
 "serviceNamespace": "ec2",
 "scalableDimension": "ec2:spot-fleet-request:TargetCapacity",
 "minCapacity": 2,
 "maxCapacity": 10
 },
 "responseElements": null,
 "additionalEventData": {
 "service": "application-autoscaling"
 },
 "requestID": "e9caf887-8d88-11e5-a331-3332aa445952",
 "eventID": "49d14f36-6450-44a5-a501-b0fdcdfaeb98",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",

Application Auto Scaling events 163

Application Auto Scaling User Guide

 "eventCategory": "Management",
 "sessionCredentialFromConsole": "true"
 }
}

To create a rule based on all DeleteScalingPolicy and DeregisterScalableTarget API calls for all
scalable targets, use the following sample event pattern:

{
 "source": [
 "aws.autoscaling"
],
 "detail-type": [
 "AWS API Call via CloudTrail"
],
 "detail": {
 "eventSource": [
 "autoscaling.amazonaws.com"
],
 "eventName": [
 "DeleteScalingPolicy",
 "DeregisterScalableTarget"
],
 "additionalEventData": {
 "service": [
 "application-autoscaling"
]
 }
 }
}

For more information about using CloudTrail, see Log Application Auto Scaling API calls using
Amazon CloudTrail.

Application Auto Scaling events 164

https://docs.amazonaws.cn/autoscaling/application/APIReference/API_DeleteScalingPolicy.html
https://docs.amazonaws.cn/autoscaling/application/APIReference/API_DeregisterScalableTarget.html

Application Auto Scaling User Guide

Using this service with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation

Amazon CLI

Amazon SDK for Java

Amazon SDK for JavaScript

Amazon SDK for .NET

Amazon SDK for PHP

Amazon Tools for PowerShell

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

For examples specific to this service, see Code examples for Application Auto Scaling using Amazon
SDKs.

165

https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript
https://docs.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-php
https://docs.amazonaws.cn/powershell
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap

Application Auto Scaling User Guide

Code examples for Application Auto Scaling using
Amazon SDKs

The following code examples show how to use Application Auto Scaling with an Amazon software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Basic examples for Application Auto Scaling using Amazon SDKs

• Actions for Application Auto Scaling using Amazon SDKs

• Use DeleteScalingPolicy with an Amazon SDK or CLI

• Use DeleteScheduledAction with a CLI

• Use DeregisterScalableTarget with a CLI

• Use DescribeScalableTargets with a CLI

• Use DescribeScalingActivities with a CLI

• Use DescribeScalingPolicies with an Amazon SDK or CLI

• Use DescribeScheduledActions with a CLI

• Use PutScalingPolicy with a CLI

• Use PutScheduledAction with a CLI

• Use RegisterScalableTarget with an Amazon SDK or CLI

Basic examples for Application Auto Scaling using Amazon
SDKs

The following code examples show how to use the basics of Application Auto Scaling with Amazon
SDKs.
Basics 166

Application Auto Scaling User Guide

Examples

• Actions for Application Auto Scaling using Amazon SDKs

• Use DeleteScalingPolicy with an Amazon SDK or CLI

• Use DeleteScheduledAction with a CLI

• Use DeregisterScalableTarget with a CLI

• Use DescribeScalableTargets with a CLI

• Use DescribeScalingActivities with a CLI

• Use DescribeScalingPolicies with an Amazon SDK or CLI

• Use DescribeScheduledActions with a CLI

• Use PutScalingPolicy with a CLI

• Use PutScheduledAction with a CLI

• Use RegisterScalableTarget with an Amazon SDK or CLI

Actions for Application Auto Scaling using Amazon SDKs

The following code examples demonstrate how to perform individual Application Auto Scaling
actions with Amazon SDKs. Each example includes a link to GitHub, where you can find instructions
for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Application Auto Scaling API Reference.

Examples

• Use DeleteScalingPolicy with an Amazon SDK or CLI

• Use DeleteScheduledAction with a CLI

• Use DeregisterScalableTarget with a CLI

• Use DescribeScalableTargets with a CLI

• Use DescribeScalingActivities with a CLI

• Use DescribeScalingPolicies with an Amazon SDK or CLI

• Use DescribeScheduledActions with a CLI

• Use PutScalingPolicy with a CLI

• Use PutScheduledAction with a CLI

• Use RegisterScalableTarget with an Amazon SDK or CLI

Actions 167

https://docs.amazonaws.cn/autoscaling/application/APIReference/Welcome.html

Application Auto Scaling User Guide

Use DeleteScalingPolicy with an Amazon SDK or CLI

The following code examples show how to use DeleteScalingPolicy.

CLI

Amazon CLI

To delete a scaling policy

This example deletes a scaling policy for the Amazon ECS service web-app running in the
default cluster.

Command:

aws application-autoscaling delete-scaling-policy --policy-name web-app-cpu-lt-25
 --scalable-dimension ecs:service:DesiredCount --resource-id service/default/web-
app --service-namespace ecs

• For API details, see DeleteScalingPolicy in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.applicationautoscaling.ApplicationAutoScalingClient;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ApplicationAutoScalingException;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DeleteScalingPolicyRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DeregisterScalableTargetRequest;

Actions 168

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scaling-policy.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/appautoscale#code-examples

Application Auto Scaling User Guide

import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsResponse;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesResponse;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ScalableDimension;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ServiceNamespace;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */

public class DisableDynamoDBAutoscaling {
 public static void main(String[] args) {
 final String usage = """

 Usage:
 <tableId> <policyName>\s

 Where:
 tableId - The table Id value (for example, table/Music).\s
 policyName - The name of the policy (for example, $Music5-scaling-
policy).

 """;
 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 ApplicationAutoScalingClient appAutoScalingClient =
 ApplicationAutoScalingClient.builder()
 .region(Region.US_EAST_1)

Actions 169

Application Auto Scaling User Guide

 .build();

 ServiceNamespace ns = ServiceNamespace.DYNAMODB;
 ScalableDimension tableWCUs =
 ScalableDimension.DYNAMODB_TABLE_WRITE_CAPACITY_UNITS;
 String tableId = args[0];
 String policyName = args[1];

 deletePolicy(appAutoScalingClient, policyName, tableWCUs, ns, tableId);
 verifyScalingPolicies(appAutoScalingClient, tableId, ns, tableWCUs);
 deregisterScalableTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 verifyTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 }

 public static void deletePolicy(ApplicationAutoScalingClient
 appAutoScalingClient, String policyName, ScalableDimension tableWCUs,
 ServiceNamespace ns, String tableId) {
 try {
 DeleteScalingPolicyRequest delSPRequest =
 DeleteScalingPolicyRequest.builder()
 .policyName(policyName)
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

 appAutoScalingClient.deleteScalingPolicy(delSPRequest);
 System.out.println(policyName +" was deleted successfully.");

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 // Verify that the scaling policy was deleted
 public static void verifyScalingPolicies(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalingPoliciesRequest dscRequest =
 DescribeScalingPoliciesRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

Actions 170

Application Auto Scaling User Guide

 DescribeScalingPoliciesResponse response =
 appAutoScalingClient.describeScalingPolicies(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);
 }

 public static void deregisterScalableTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 try {
 DeregisterScalableTargetRequest targetRequest =
 DeregisterScalableTargetRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceId(tableId)
 .build();

 appAutoScalingClient.deregisterScalableTarget(targetRequest);
 System.out.println("The scalable target was deregistered.");

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 public static void verifyTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalableTargetsRequest dscRequest =
 DescribeScalableTargetsRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceIds(tableId)
 .build();

 DescribeScalableTargetsResponse response =
 appAutoScalingClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);
 }
}

Actions 171

Application Auto Scaling User Guide

• For API details, see DeleteScalingPolicy in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet deletes the specified scaling policy for an Application Auto
Scaling scalable target.

Remove-AASScalingPolicy -ServiceNamespace AppStream -PolicyName "default-scale-
out" -ResourceId fleet/Test -ScalableDimension appstream:fleet:DesiredCapacity

• For API details, see DeleteScalingPolicy in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: This cmdlet deletes the specified scaling policy for an Application Auto
Scaling scalable target.

Remove-AASScalingPolicy -ServiceNamespace AppStream -PolicyName "default-scale-
out" -ResourceId fleet/Test -ScalableDimension appstream:fleet:DesiredCapacity

• For API details, see DeleteScalingPolicy in Amazon Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteScheduledAction with a CLI

The following code examples show how to use DeleteScheduledAction.

CLI

Amazon CLI

To delete a scheduled action

Actions 172

https://docs.amazonaws.cn/goto/SdkForJavaV2/application-autoscaling-2016-02-06/DeleteScalingPolicy
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

The follwing delete-scheduled-action example deletes the specified scheduled action
from the specified Amazon AppStream 2.0 fleet:

aws application-autoscaling delete-scheduled-action \
 --service-namespace appstream \
 --scalable-dimension appstream:fleet:DesiredCapacity \
 --resource-id fleet/sample-fleet \
 --scheduled-action-name my-recurring-action

This command produces no output.

For more information, see Scheduled Scaling in the Application Auto Scaling User Guide.

• For API details, see DeleteScheduledAction in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet deletes the specified scheduled action for an Application Auto
Scaling scalable target.

Remove-AASScheduledAction -ServiceNamespace AppStream -ScheduledActionName
 WeekDaysFleetScaling -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity

Output:

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove-AASScheduledAction (DeleteScheduledAction)" on
 target "WeekDaysFleetScaling".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"): Y

• For API details, see DeleteScheduledAction in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This cmdlet deletes the specified scheduled action for an Application Auto
Scaling scalable target.

Actions 173

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/delete-scheduled-action.html
https://docs.aws.amazon.com/powershell/v4/reference

Application Auto Scaling User Guide

Remove-AASScheduledAction -ServiceNamespace AppStream -ScheduledActionName
 WeekDaysFleetScaling -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity

Output:

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove-AASScheduledAction (DeleteScheduledAction)" on
 target "WeekDaysFleetScaling".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"): Y

• For API details, see DeleteScheduledAction in Amazon Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeregisterScalableTarget with a CLI

The following code examples show how to use DeregisterScalableTarget.

CLI

Amazon CLI

To deregister a scalable target

This example deregisters a scalable target for an Amazon ECS service called web-app that is
running in the default cluster.

Command:

aws application-autoscaling deregister-scalable-target --service-namespace ecs --
scalable-dimension ecs:service:DesiredCount --resource-id service/default/web-app

This example deregisters a scalable target for a custom resource. The custom-resource-id.txt
file contains a string that identifies the Resource ID, which, for a custom resource, is the path
to the custom resource through your Amazon API Gateway endpoint.

Actions 174

https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

Command:

aws application-autoscaling deregister-scalable-target --
service-namespace custom-resource --scalable-dimension custom-
resource:ResourceType:Property --resource-id file://~/custom-resource-id.txt

Contents of custom-resource-id.txt file:

https://example.execute-api.us-west-2.amazonaws.com/prod/
scalableTargetDimensions/1-23456789

• For API details, see DeregisterScalableTarget in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet deregisters an Application Auto Scaling scalable
target.Deregistering a scalable target deletes the scaling policies that are associated with
it.

Remove-AASScalableTarget -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity -ServiceNamespace AppStream

Output:

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove-AASScalableTarget (DeregisterScalableTarget)" on
 target "fleet/MyFleet".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"): Y

• For API details, see DeregisterScalableTarget in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This cmdlet deregisters an Application Auto Scaling scalable
target.Deregistering a scalable target deletes the scaling policies that are associated with
it.

Actions 175

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/deregister-scalable-target.html
https://docs.aws.amazon.com/powershell/v4/reference

Application Auto Scaling User Guide

Remove-AASScalableTarget -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity -ServiceNamespace AppStream

Output:

Confirm
Are you sure you want to perform this action?
Performing the operation "Remove-AASScalableTarget (DeregisterScalableTarget)" on
 target "fleet/MyFleet".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is
 "Y"): Y

• For API details, see DeregisterScalableTarget in Amazon Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeScalableTargets with a CLI

The following code examples show how to use DescribeScalableTargets.

CLI

Amazon CLI

To describe scalable targets

The following describe-scalable-targets example describes the scalable targets for
the ecs service namespace.

aws application-autoscaling describe-scalable-targets \
 --service-namespace ecs

Output:

{
 "ScalableTargets": [
 {
 "ServiceNamespace": "ecs",

Actions 176

https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

 "ScalableDimension": "ecs:service:DesiredCount",
 "ResourceId": "service/default/web-app",
 "MinCapacity": 1,
 "MaxCapacity": 10,
 "RoleARN": "arn:aws:iam::123456789012:role/
aws-service-role/ecs.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_ECSService",
 "CreationTime": 1462558906.199,
 "SuspendedState": {
 "DynamicScalingOutSuspended": false,
 "ScheduledScalingSuspended": false,
 "DynamicScalingInSuspended": false
 },
 "ScalableTargetARN": "arn:aws:application-autoscaling:us-
west-2:123456789012:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
 }
]
}

For more information, see Amazon services that you can use with Application Auto Scaling in
the Application Auto Scaling User Guide.

• For API details, see DescribeScalableTargets in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This example will provide information about the Application Autoscaling
Scalable targets in the specified namespace.

Get-AASScalableTarget -ServiceNamespace "AppStream"

Output:

CreationTime : 11/7/2019 2:30:03 AM
MaxCapacity : 5
MinCapacity : 1
ResourceId : fleet/Test
RoleARN : arn:aws:iam::012345678912:role/aws-
service-role/appstream.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_AppStreamFleet

Actions 177

https://docs.aws.amazon.com/autoscaling/application/userguide/integrated-services-list.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scalable-targets.html

Application Auto Scaling User Guide

ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
SuspendedState : Amazon.ApplicationAutoScaling.Model.SuspendedState

• For API details, see DescribeScalableTargets in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This example will provide information about the Application Autoscaling
Scalable targets in the specified namespace.

Get-AASScalableTarget -ServiceNamespace "AppStream"

Output:

CreationTime : 11/7/2019 2:30:03 AM
MaxCapacity : 5
MinCapacity : 1
ResourceId : fleet/Test
RoleARN : arn:aws:iam::012345678912:role/aws-
service-role/appstream.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_AppStreamFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
SuspendedState : Amazon.ApplicationAutoScaling.Model.SuspendedState

• For API details, see DescribeScalableTargets in Amazon Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeScalingActivities with a CLI

The following code examples show how to use DescribeScalingActivities.

Actions 178

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

CLI

Amazon CLI

Example 1: To describe scaling activities for the specified Amazon ECS service

The following describe-scaling-activities example describes the scaling activities
for an Amazon ECS service called web-app that is running in the default cluster. The
output shows a scaling activity initiated by a scaling policy.

aws application-autoscaling describe-scaling-activities \
 --service-namespace ecs \
 --resource-id service/default/web-app

Output:

{
 "ScalingActivities": [
 {
 "ScalableDimension": "ecs:service:DesiredCount",
 "Description": "Setting desired count to 1.",
 "ResourceId": "service/default/web-app",
 "ActivityId": "e6c5f7d1-dbbb-4a3f-89b2-51f33e766399",
 "StartTime": 1462575838.171,
 "ServiceNamespace": "ecs",
 "EndTime": 1462575872.111,
 "Cause": "monitor alarm web-app-cpu-lt-25 in state ALARM triggered
 policy web-app-cpu-lt-25",
 "StatusMessage": "Successfully set desired count to 1. Change
 successfully fulfilled by ecs.",
 "StatusCode": "Successful"
 }
]
}

For more information, see Scaling activities for Application Auto Scaling in the Application
Auto Scaling User Guide.

Example 2: To describe scaling activities for the specified DynamoDB table

Actions 179

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html

Application Auto Scaling User Guide

The following describe-scaling-activities example describes the scaling activities
for a DynamoDB table called TestTable. The output shows scaling activities initiated by
two different scheduled actions.

aws application-autoscaling describe-scaling-activities \
 --service-namespace dynamodb \
 --resource-id table/TestTable

Output:

{
 "ScalingActivities": [
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting write capacity units to 10.",
 "ResourceId": "table/my-table",
 "ActivityId": "4d1308c0-bbcf-4514-a673-b0220ae38547",
 "StartTime": 1561574415.086,
 "ServiceNamespace": "dynamodb",
 "EndTime": 1561574449.51,
 "Cause": "maximum capacity was set to 10",
 "StatusMessage": "Successfully set write capacity units to 10. Change
 successfully fulfilled by dynamodb.",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting min capacity to 5 and max capacity to 10",
 "ResourceId": "table/my-table",
 "ActivityId": "f2b7847b-721d-4e01-8ef0-0c8d3bacc1c7",
 "StartTime": 1561574414.644,
 "ServiceNamespace": "dynamodb",
 "Cause": "scheduled action name my-second-scheduled-action was
 triggered",
 "StatusMessage": "Successfully set min capacity to 5 and max capacity
 to 10",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting write capacity units to 15.",
 "ResourceId": "table/my-table",
 "ActivityId": "d8ea4de6-9eaa-499f-b466-2cc5e681ba8b",

Actions 180

Application Auto Scaling User Guide

 "StartTime": 1561574108.904,
 "ServiceNamespace": "dynamodb",
 "EndTime": 1561574140.255,
 "Cause": "minimum capacity was set to 15",
 "StatusMessage": "Successfully set write capacity units to 15. Change
 successfully fulfilled by dynamodb.",
 "StatusCode": "Successful"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Description": "Setting min capacity to 15 and max capacity to 20",
 "ResourceId": "table/my-table",
 "ActivityId": "3250fd06-6940-4e8e-bb1f-d494db7554d2",
 "StartTime": 1561574108.512,
 "ServiceNamespace": "dynamodb",
 "Cause": "scheduled action name my-first-scheduled-action was
 triggered",
 "StatusMessage": "Successfully set min capacity to 15 and max
 capacity to 20",
 "StatusCode": "Successful"
 }
]
}

For more information, see Scaling activities for Application Auto Scaling in the Application
Auto Scaling User Guide.

• For API details, see DescribeScalingActivities in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Provides descriptive information about the scaling activities in the specified
namespace from the previous six weeks.

Get-AASScalingActivity -ServiceNamespace AppStream

Output:

ActivityId : 2827409f-b639-4cdb-a957-8055d5d07434

Actions 181

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-activities.html

Application Auto Scaling User Guide

Cause : monitor alarm Appstream2-MyFleet-default-scale-in-Alarm in
 state ALARM triggered policy default-scale-in
Description : Setting desired capacity to 2.
Details :
EndTime : 12/14/2019 11:32:49 AM
ResourceId : fleet/MyFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StartTime : 12/14/2019 11:32:14 AM
StatusCode : Successful
StatusMessage : Successfully set desired capacity to 2. Change successfully
 fulfilled by appstream.

• For API details, see DescribeScalingActivities in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: Provides descriptive information about the scaling activities in the specified
namespace from the previous six weeks.

Get-AASScalingActivity -ServiceNamespace AppStream

Output:

ActivityId : 2827409f-b639-4cdb-a957-8055d5d07434
Cause : monitor alarm Appstream2-MyFleet-default-scale-in-Alarm in
 state ALARM triggered policy default-scale-in
Description : Setting desired capacity to 2.
Details :
EndTime : 12/14/2019 11:32:49 AM
ResourceId : fleet/MyFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StartTime : 12/14/2019 11:32:14 AM
StatusCode : Successful
StatusMessage : Successfully set desired capacity to 2. Change successfully
 fulfilled by appstream.

• For API details, see DescribeScalingActivities in Amazon Tools for PowerShell Cmdlet
Reference (V5).

Actions 182

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeScalingPolicies with an Amazon SDK or CLI

The following code examples show how to use DescribeScalingPolicies.

CLI

Amazon CLI

To describe scaling policies

This example command describes the scaling policies for the ecs service namespace.

Command:

aws application-autoscaling describe-scaling-policies --service-namespace ecs

Output:

{
 "ScalingPolicies": [
 {
 "PolicyName": "web-app-cpu-gt-75",
 "ScalableDimension": "ecs:service:DesiredCount",
 "ResourceId": "service/default/web-app",
 "CreationTime": 1462561899.23,
 "StepScalingPolicyConfiguration": {
 "Cooldown": 60,
 "StepAdjustments": [
 {
 "ScalingAdjustment": 200,
 "MetricIntervalLowerBound": 0.0
 }
],
 "AdjustmentType": "PercentChangeInCapacity"
 },
 "PolicyARN": "arn:aws:autoscaling:us-
west-2:012345678910:scalingPolicy:6d8972f3-efc8-437c-92d1-6270f29a66e7:resource/
ecs/service/default/web-app:policyName/web-app-cpu-gt-75",

Actions 183

Application Auto Scaling User Guide

 "PolicyType": "StepScaling",
 "Alarms": [
 {
 "AlarmName": "web-app-cpu-gt-75",
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:web-app-cpu-gt-75"
 }
],
 "ServiceNamespace": "ecs"
 },
 {
 "PolicyName": "web-app-cpu-lt-25",
 "ScalableDimension": "ecs:service:DesiredCount",
 "ResourceId": "service/default/web-app",
 "CreationTime": 1462562575.099,
 "StepScalingPolicyConfiguration": {
 "Cooldown": 1,
 "StepAdjustments": [
 {
 "ScalingAdjustment": -50,
 "MetricIntervalUpperBound": 0.0
 }
],
 "AdjustmentType": "PercentChangeInCapacity"
 },
 "PolicyARN": "arn:aws:autoscaling:us-
west-2:012345678910:scalingPolicy:6d8972f3-efc8-437c-92d1-6270f29a66e7:resource/
ecs/service/default/web-app:policyName/web-app-cpu-lt-25",
 "PolicyType": "StepScaling",
 "Alarms": [
 {
 "AlarmName": "web-app-cpu-lt-25",
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:web-app-cpu-lt-25"
 }
],
 "ServiceNamespace": "ecs"
 }
]
}

• For API details, see DescribeScalingPolicies in Amazon CLI Command Reference.

Actions 184

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scaling-policies.html

Application Auto Scaling User Guide

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet describe the Application Auto Scaling scaling policies for the
specified service namespace.

Get-AASScalingPolicy -ServiceNamespace AppStream

Output:

Alarms : {Appstream2-LabFleet-default-scale-
out-Alarm}
CreationTime : 9/3/2019 2:48:15 AM
PolicyARN : arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:5659b069-b5cd-4af1-9f7f-3e956d36233e:resource/
appstream/fleet/LabFleet:
 policyName/default-scale-out
PolicyName : default-scale-out
PolicyType : StepScaling
ResourceId : fleet/LabFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StepScalingPolicyConfiguration :
 Amazon.ApplicationAutoScaling.Model.StepScalingPolicyConfiguration
TargetTrackingScalingPolicyConfiguration :

Alarms : {Appstream2-LabFleet-default-scale-in-
Alarm}
CreationTime : 9/3/2019 2:48:15 AM
PolicyARN : arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:5659b069-b5cd-4af1-9f7f-3e956d36233e:resource/
appstream/fleet/LabFleet:
 policyName/default-scale-in
PolicyName : default-scale-in
PolicyType : StepScaling
ResourceId : fleet/LabFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StepScalingPolicyConfiguration :
 Amazon.ApplicationAutoScaling.Model.StepScalingPolicyConfiguration
TargetTrackingScalingPolicyConfiguration :

Actions 185

Application Auto Scaling User Guide

• For API details, see DescribeScalingPolicies in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This cmdlet describe the Application Auto Scaling scaling policies for the
specified service namespace.

Get-AASScalingPolicy -ServiceNamespace AppStream

Output:

Alarms : {Appstream2-LabFleet-default-scale-
out-Alarm}
CreationTime : 9/3/2019 2:48:15 AM
PolicyARN : arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:5659b069-b5cd-4af1-9f7f-3e956d36233e:resource/
appstream/fleet/LabFleet:
 policyName/default-scale-out
PolicyName : default-scale-out
PolicyType : StepScaling
ResourceId : fleet/LabFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StepScalingPolicyConfiguration :
 Amazon.ApplicationAutoScaling.Model.StepScalingPolicyConfiguration
TargetTrackingScalingPolicyConfiguration :

Alarms : {Appstream2-LabFleet-default-scale-in-
Alarm}
CreationTime : 9/3/2019 2:48:15 AM
PolicyARN : arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:5659b069-b5cd-4af1-9f7f-3e956d36233e:resource/
appstream/fleet/LabFleet:
 policyName/default-scale-in
PolicyName : default-scale-in
PolicyType : StepScaling
ResourceId : fleet/LabFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ServiceNamespace : appstream
StepScalingPolicyConfiguration :
 Amazon.ApplicationAutoScaling.Model.StepScalingPolicyConfiguration
TargetTrackingScalingPolicyConfiguration :

Actions 186

https://docs.aws.amazon.com/powershell/v4/reference

Application Auto Scaling User Guide

• For API details, see DescribeScalingPolicies in Amazon Tools for PowerShell Cmdlet
Reference (V5).

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn show_policies(client: &Client) -> Result<(), Error> {
 let response = client
 .describe_scaling_policies()
 .service_namespace(ServiceNamespace::Ec2)
 .send()
 .await?;
 println!("Auto Scaling Policies:");
 for policy in response.scaling_policies() {
 println!("{:?}\n", policy);
 }
 println!("Next token: {:?}", response.next_token());

 Ok(())
}

• For API details, see DescribeScalingPolicies in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DescribeScheduledActions with a CLI

The following code examples show how to use DescribeScheduledActions.

Actions 187

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/applicationautoscaling#code-examples
https://docs.rs/aws-sdk-applicationautoscaling/latest/aws_sdk_applicationautoscaling/client/struct.Client.html#method.describe_scaling_policies

Application Auto Scaling User Guide

CLI

Amazon CLI

To describe scheduled actions

The following describe-scheduled-actions example displays details for the scheduled
actions for the specified service namespace:

aws application-autoscaling describe-scheduled-actions \
 --service-namespace dynamodb

Output:

{
 "ScheduledActions": [
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Schedule": "at(2019-05-20T18:35:00)",
 "ResourceId": "table/my-table",
 "CreationTime": 1561571888.361,
 "ScheduledActionARN": "arn:aws:autoscaling:us-
west-2:123456789012:scheduledAction:2d36aa3b-cdf9-4565-
b290-81db519b227d:resource/dynamodb/table/my-table:scheduledActionName/my-first-
scheduled-action",
 "ScalableTargetAction": {
 "MinCapacity": 15,
 "MaxCapacity": 20
 },
 "ScheduledActionName": "my-first-scheduled-action",
 "ServiceNamespace": "dynamodb"
 },
 {
 "ScalableDimension": "dynamodb:table:WriteCapacityUnits",
 "Schedule": "at(2019-05-20T18:40:00)",
 "ResourceId": "table/my-table",
 "CreationTime": 1561571946.021,
 "ScheduledActionARN": "arn:aws:autoscaling:us-
west-2:123456789012:scheduledAction:2d36aa3b-cdf9-4565-
b290-81db519b227d:resource/dynamodb/table/my-table:scheduledActionName/my-second-
scheduled-action",
 "ScalableTargetAction": {
 "MinCapacity": 5,

Actions 188

Application Auto Scaling User Guide

 "MaxCapacity": 10
 },
 "ScheduledActionName": "my-second-scheduled-action",
 "ServiceNamespace": "dynamodb"
 }
]
}

For more information, see Scheduled Scaling in the Application Auto Scaling User Guide.

• For API details, see DescribeScheduledActions in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet lists the actions scheduled for your Auto Scaling group that
haven't run or that have not reached their end time.

Get-AASScheduledAction -ServiceNamespace AppStream

Output:

CreationTime : 12/22/2019 9:25:52 AM
EndTime : 1/1/0001 12:00:00 AM
ResourceId : fleet/MyFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ScalableTargetAction : Amazon.ApplicationAutoScaling.Model.ScalableTargetAction
Schedule : cron(0 0 8 ? * MON-FRI *)
ScheduledActionARN : arn:aws:autoscaling:us-
west-2:012345678912:scheduledAction:4897ca24-3caa-4bf1-8484-851a089b243c:resource/
appstream/fleet/MyFleet:scheduledActionName
 /WeekDaysFleetScaling
ScheduledActionName : WeekDaysFleetScaling
ServiceNamespace : appstream
StartTime : 1/1/0001 12:00:00 AM

• For API details, see DescribeScheduledActions in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Actions 189

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/describe-scheduled-actions.html
https://docs.aws.amazon.com/powershell/v4/reference

Application Auto Scaling User Guide

Tools for PowerShell V5

Example 1: This cmdlet lists the actions scheduled for your Auto Scaling group that
haven't run or that have not reached their end time.

Get-AASScheduledAction -ServiceNamespace AppStream

Output:

CreationTime : 12/22/2019 9:25:52 AM
EndTime : 1/1/0001 12:00:00 AM
ResourceId : fleet/MyFleet
ScalableDimension : appstream:fleet:DesiredCapacity
ScalableTargetAction : Amazon.ApplicationAutoScaling.Model.ScalableTargetAction
Schedule : cron(0 0 8 ? * MON-FRI *)
ScheduledActionARN : arn:aws:autoscaling:us-
west-2:012345678912:scheduledAction:4897ca24-3caa-4bf1-8484-851a089b243c:resource/
appstream/fleet/MyFleet:scheduledActionName
 /WeekDaysFleetScaling
ScheduledActionName : WeekDaysFleetScaling
ServiceNamespace : appstream
StartTime : 1/1/0001 12:00:00 AM

• For API details, see DescribeScheduledActions in Amazon Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use PutScalingPolicy with a CLI

The following code examples show how to use PutScalingPolicy.

CLI

Amazon CLI

Example 1: To apply a target tracking scaling policy with a predefined metric
specification

Actions 190

https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

The following put-scaling-policy example applies a target tracking scaling policy with
a predefined metric specification to an Amazon ECS service called web-app in the default
cluster. The policy keeps the average CPU utilization of the service at 75 percent, with scale-
out and scale-in cooldown periods of 60 seconds. The output contains the ARNs and names
of the two CloudWatch alarms created on your behalf.

aws application-autoscaling put-scaling-policy --service-namespace ecs \
--scalable-dimension ecs:service:DesiredCount \
--resource-id service/default/web-app \
--policy-name cpu75-target-tracking-scaling-policy --policy-
type TargetTrackingScaling \
--target-tracking-scaling-policy-configuration file://config.json

This example assumes that you have a config.json file in the current directory with the
following contents:

{
 "TargetValue": 75.0,
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "ECSServiceAverageCPUUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60
}

Output:

{
 "PolicyARN": "arn:aws:autoscaling:us-
west-2:012345678910:scalingPolicy:6d8972f3-efc8-437c-92d1-6270f29a66e7:resource/
ecs/service/default/web-app:policyName/cpu75-target-tracking-scaling-policy",
 "Alarms": [
 {
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/default/web-app-AlarmHigh-
d4f0770c-b46e-434a-a60f-3b36d653feca",
 "AlarmName": "TargetTracking-service/default/web-app-AlarmHigh-
d4f0770c-b46e-434a-a60f-3b36d653feca"
 },
 {

Actions 191

Application Auto Scaling User Guide

 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/default/web-app-
AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d",
 "AlarmName": "TargetTracking-service/default/web-app-
AlarmLow-1b437334-d19b-4a63-a812-6c67aaf2910d"
 }
]
}

Example 2: To apply a target tracking scaling policy with a customized metric
specification

The following put-scaling-policy example applies a target tracking scaling policy with
a customized metric specification to an Amazon ECS service called web-app in the default
cluster. The policy keeps the average utilization of the service at 75 percent, with scale-out
and scale-in cooldown periods of 60 seconds. The output contains the ARNs and names of
the two CloudWatch alarms created on your behalf.

aws application-autoscaling put-scaling-policy --service-namespace ecs \
--scalable-dimension ecs:service:DesiredCount \
--resource-id service/default/web-app \
--policy-name cms75-target-tracking-scaling-policy
--policy-type TargetTrackingScaling \
--target-tracking-scaling-policy-configuration file://config.json

This example assumes that you have a config.json file in the current directory with the
following contents:

{
 "TargetValue":75.0,
 "CustomizedMetricSpecification":{
 "MetricName":"MyUtilizationMetric",
 "Namespace":"MyNamespace",
 "Dimensions": [
 {
 "Name":"MyOptionalMetricDimensionName",
 "Value":"MyOptionalMetricDimensionValue"
 }
],
 "Statistic":"Average",
 "Unit":"Percent"

Actions 192

Application Auto Scaling User Guide

 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60
}

Output:

{
 "PolicyARN": "arn:aws:autoscaling:us-west-2:012345678910:scalingPolicy:
 8784a896-b2ba-47a1-b08c-27301cc499a1:resource/ecs/service/default/web-
app:policyName/cms75-target-tracking-scaling-policy",
 "Alarms": [
 {
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/default/web-app-
AlarmHigh-9bc77b56-0571-4276-ba0f-d4178882e0a0",
 "AlarmName": "TargetTracking-service/default/web-app-
AlarmHigh-9bc77b56-0571-4276-ba0f-d4178882e0a0"
 },
 {
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:012345678910:alarm:TargetTracking-service/default/web-app-
AlarmLow-9b6ad934-6d37-438e-9e05-02836ddcbdc4",
 "AlarmName": "TargetTracking-service/default/web-app-
AlarmLow-9b6ad934-6d37-438e-9e05-02836ddcbdc4"
 }
]
}

Example 3: To apply a target tracking scaling policy for scale out only

The following put-scaling-policy example applies a target tracking scaling policy to an
Amazon ECS service called web-app in the default cluster. The policy is used to scale out the
ECS service when the RequestCountPerTarget metric from the Application Load Balancer
exceeds the threshold. The output contains the ARN and name of the CloudWatch alarm
created on your behalf.

aws application-autoscaling put-scaling-policy \
 --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/default/web-app \
 --policy-name alb-scale-out-target-tracking-scaling-policy \

Actions 193

Application Auto Scaling User Guide

 --policy-type TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration file://config.json

Contents of config.json:

{
 "TargetValue": 1000.0,
 "PredefinedMetricSpecification": {
 "PredefinedMetricType": "ALBRequestCountPerTarget",
 "ResourceLabel": "app/EC2Co-EcsEl-1TKLTMITMM0EO/f37c06a68c1748aa/
targetgroup/EC2Co-Defau-LDNM7Q3ZH1ZN/6d4ea56ca2d6a18d"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "DisableScaleIn": true
}

Output:

{
 "PolicyARN": "arn:aws:autoscaling:us-
west-2:123456789012:scalingPolicy:6d8972f3-efc8-437c-92d1-6270f29a66e7:resource/
ecs/service/default/web-app:policyName/alb-scale-out-target-tracking-scaling-
policy",
 "Alarms": [
 {
 "AlarmName": "TargetTracking-service/default/web-app-AlarmHigh-
d4f0770c-b46e-434a-a60f-3b36d653feca",
 "AlarmARN": "arn:aws:cloudwatch:us-
west-2:123456789012:alarm:TargetTracking-service/default/web-app-AlarmHigh-
d4f0770c-b46e-434a-a60f-3b36d653feca"
 }
]
}

For more information, see Target Tracking Scaling Policies for Application Auto Scaling in
the Amazon Application Auto Scaling User Guide.

• For API details, see PutScalingPolicy in Amazon CLI Command Reference.

Actions 194

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scaling-policy.html

Application Auto Scaling User Guide

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet creates or updates a policy for an Application Auto Scaling
scalable target. Each scalable target is identified by a service namespace, resource ID,
and scalable dimension.

Set-AASScalingPolicy -ServiceNamespace AppStream -PolicyName ASFleetScaleInPolicy
 -PolicyType StepScaling -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity -StepScalingPolicyConfiguration_AdjustmentType
 ChangeInCapacity -StepScalingPolicyConfiguration_Cooldown 360
 -StepScalingPolicyConfiguration_MetricAggregationType Average -
StepScalingPolicyConfiguration_StepAdjustments @{ScalingAdjustment = -1;
 MetricIntervalUpperBound = 0}

Output:

Alarms PolicyARN
------ ---------
{} arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:4897ca24-3caa-4bf1-8484-851a089b243c:resource/
appstream/fleet/MyFleet:policyName/ASFleetScaleInPolicy

• For API details, see PutScalingPolicy in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: This cmdlet creates or updates a policy for an Application Auto Scaling
scalable target. Each scalable target is identified by a service namespace, resource ID,
and scalable dimension.

Set-AASScalingPolicy -ServiceNamespace AppStream -PolicyName ASFleetScaleInPolicy
 -PolicyType StepScaling -ResourceId fleet/MyFleet -ScalableDimension
 appstream:fleet:DesiredCapacity -StepScalingPolicyConfiguration_AdjustmentType
 ChangeInCapacity -StepScalingPolicyConfiguration_Cooldown 360
 -StepScalingPolicyConfiguration_MetricAggregationType Average -
StepScalingPolicyConfiguration_StepAdjustments @{ScalingAdjustment = -1;
 MetricIntervalUpperBound = 0}

Output:

Actions 195

https://docs.aws.amazon.com/powershell/v4/reference

Application Auto Scaling User Guide

Alarms PolicyARN
------ ---------
{} arn:aws:autoscaling:us-
west-2:012345678912:scalingPolicy:4897ca24-3caa-4bf1-8484-851a089b243c:resource/
appstream/fleet/MyFleet:policyName/ASFleetScaleInPolicy

• For API details, see PutScalingPolicy in Amazon Tools for PowerShell Cmdlet Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use PutScheduledAction with a CLI

The following code examples show how to use PutScheduledAction.

CLI

Amazon CLI

To add a scheduled action to a DynamoDB table

This example adds a scheduled action to a DynamoDB table called TestTable to scale out on
a recurring schedule. On the specified schedule (every day at 12:15pm UTC), if the current
capacity is below the value specified for MinCapacity, Application Auto Scaling scales out to
the value specified by MinCapacity.

Command:

aws application-autoscaling put-scheduled-action --service-
namespace dynamodb --scheduled-action-name my-recurring-action --
schedule "cron(15 12 * * ? *)" --resource-id table/TestTable --
scalable-dimension dynamodb:table:WriteCapacityUnits --scalable-target-
action MinCapacity=6

For more information, see Scheduled Scaling in the Application Auto Scaling User Guide.

• For API details, see PutScheduledAction in Amazon CLI Command Reference.

Actions 196

https://docs.aws.amazon.com/powershell/v5/reference
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/put-scheduled-action.html

Application Auto Scaling User Guide

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet creates or updates a scheduled action for an Application Auto
Scaling scalable target. Each scalable target is identified by a service namespace,
resource ID, and scalable dimension.

Set-AASScheduledAction -ServiceNamespace AppStream -ResourceId fleet/
MyFleet -Schedule "cron(0 0 8 ? * MON-FRI *)" -ScalableDimension
 appstream:fleet:DesiredCapacity -ScheduledActionName WeekDaysFleetScaling -
ScalableTargetAction_MinCapacity 5 -ScalableTargetAction_MaxCapacity 10

• For API details, see PutScheduledAction in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: This cmdlet creates or updates a scheduled action for an Application Auto
Scaling scalable target. Each scalable target is identified by a service namespace,
resource ID, and scalable dimension.

Set-AASScheduledAction -ServiceNamespace AppStream -ResourceId fleet/
MyFleet -Schedule "cron(0 0 8 ? * MON-FRI *)" -ScalableDimension
 appstream:fleet:DesiredCapacity -ScheduledActionName WeekDaysFleetScaling -
ScalableTargetAction_MinCapacity 5 -ScalableTargetAction_MaxCapacity 10

• For API details, see PutScheduledAction in Amazon Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use RegisterScalableTarget with an Amazon SDK or CLI

The following code examples show how to use RegisterScalableTarget.

Actions 197

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

CLI

Amazon CLI

Example 1: To register an ECS service as a scalable target

The following register-scalable-target example registers an Amazon ECS service
with Application Auto Scaling. It also adds a tag with the key name environment and the
value production to the scalable target.

aws application-autoscaling register-scalable-target \
 --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/default/web-app \
 --min-capacity 1 --max-capacity 10 \
 --tags environment=production

Output:

{
 "ScalableTargetARN": "arn:aws:application-autoscaling:us-
west-2:123456789012:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

For examples for other Amazon services and custom resources, see the topics in Amazon
services that you can use with Application Auto Scaling in the Application Auto Scaling User
Guide.

Example 2: To suspend scaling activities for a scalable target

The following register-scalable-target example suspends scaling activities for an
existing scalable target.

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits \
 --resource-id table/my-table \
 --suspended-
state DynamicScalingInSuspended=true,DynamicScalingOutSuspended=true,ScheduledScalingSuspended=true

Output:

Actions 198

https://docs.aws.amazon.com/autoscaling/application/userguide/integrated-services-list.html
https://docs.aws.amazon.com/autoscaling/application/userguide/integrated-services-list.html

Application Auto Scaling User Guide

{
 "ScalableTargetARN": "arn:aws:application-autoscaling:us-
west-2:123456789012:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

For more information, see Suspending and resuming scaling for Application Auto Scaling in
the Application Auto Scaling User Guide.

Example 3: To resume scaling activities for a scalable target

The following register-scalable-target example resumes scaling activities for an
existing scalable target.

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --scalable-dimension dynamodb:table:ReadCapacityUnits \
 --resource-id table/my-table \
 --suspended-
state DynamicScalingInSuspended=false,DynamicScalingOutSuspended=false,ScheduledScalingSuspended=false

Output:

{
 "ScalableTargetARN": "arn:aws:application-autoscaling:us-
west-2:123456789012:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

For more information, see Suspending and resuming scaling for Application Auto Scaling in
the Application Auto Scaling User Guide.

• For API details, see RegisterScalableTarget in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Actions 199

https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/appautoscale#code-examples

Application Auto Scaling User Guide

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.applicationautoscaling.ApplicationAutoScalingClient;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ApplicationAutoScalingException;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalableTargetsResponse;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.DescribeScalingPoliciesResponse;
import software.amazon.awssdk.services.applicationautoscaling.model.PolicyType;
import
 software.amazon.awssdk.services.applicationautoscaling.model.PredefinedMetricSpecification;
import
 software.amazon.awssdk.services.applicationautoscaling.model.PutScalingPolicyRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.RegisterScalableTargetRequest;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ScalingPolicy;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ServiceNamespace;
import
 software.amazon.awssdk.services.applicationautoscaling.model.ScalableDimension;
import software.amazon.awssdk.services.applicationautoscaling.model.MetricType;
import
 software.amazon.awssdk.services.applicationautoscaling.model.TargetTrackingScalingPolicyConfiguration;
import java.util.List;

/**
 * Before running this Java V2 code example, set up your development environment,
 including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class EnableDynamoDBAutoscaling {
 public static void main(String[] args) {
 final String usage = """

Actions 200

Application Auto Scaling User Guide

 Usage:
 <tableId> <roleARN> <policyName>\s

 Where:
 tableId - The table Id value (for example, table/Music).
 roleARN - The ARN of the role that has ApplicationAutoScaling
 permissions.
 policyName - The name of the policy to create.

 """;

 if (args.length != 3) {
 System.out.println(usage);
 System.exit(1);
 }

 System.out.println("This example registers an Amazon DynamoDB table,
 which is the resource to scale.");
 String tableId = args[0];
 String roleARN = args[1];
 String policyName = args[2];
 ServiceNamespace ns = ServiceNamespace.DYNAMODB;
 ScalableDimension tableWCUs =
 ScalableDimension.DYNAMODB_TABLE_WRITE_CAPACITY_UNITS;
 ApplicationAutoScalingClient appAutoScalingClient =
 ApplicationAutoScalingClient.builder()
 .region(Region.US_EAST_1)
 .build();

 registerScalableTarget(appAutoScalingClient, tableId, roleARN, ns,
 tableWCUs);
 verifyTarget(appAutoScalingClient, tableId, ns, tableWCUs);
 configureScalingPolicy(appAutoScalingClient, tableId, ns, tableWCUs,
 policyName);
 }

 public static void registerScalableTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, String roleARN, ServiceNamespace ns,
 ScalableDimension tableWCUs) {
 try {
 RegisterScalableTargetRequest targetRequest =
 RegisterScalableTargetRequest.builder()
 .serviceNamespace(ns)

Actions 201

Application Auto Scaling User Guide

 .scalableDimension(tableWCUs)
 .resourceId(tableId)
 .roleARN(roleARN)
 .minCapacity(5)
 .maxCapacity(10)
 .build();

 appAutoScalingClient.registerScalableTarget(targetRequest);
 System.out.println("You have registered " + tableId);

 } catch (ApplicationAutoScalingException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 }
 }

 // Verify that the target was created.
 public static void verifyTarget(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs) {
 DescribeScalableTargetsRequest dscRequest =
 DescribeScalableTargetsRequest.builder()
 .scalableDimension(tableWCUs)
 .serviceNamespace(ns)
 .resourceIds(tableId)
 .build();

 DescribeScalableTargetsResponse response =
 appAutoScalingClient.describeScalableTargets(dscRequest);
 System.out.println("DescribeScalableTargets result: ");
 System.out.println(response);
 }

 // Configure a scaling policy.
 public static void configureScalingPolicy(ApplicationAutoScalingClient
 appAutoScalingClient, String tableId, ServiceNamespace ns, ScalableDimension
 tableWCUs, String policyName) {
 // Check if the policy exists before creating a new one.
 DescribeScalingPoliciesResponse describeScalingPoliciesResponse =
 appAutoScalingClient.describeScalingPolicies(DescribeScalingPoliciesRequest.builder()
 .serviceNamespace(ns)
 .resourceId(tableId)
 .scalableDimension(tableWCUs)
 .build());

Actions 202

Application Auto Scaling User Guide

 if (!describeScalingPoliciesResponse.scalingPolicies().isEmpty()) {
 // If policies exist, consider updating an existing policy instead of
 creating a new one.
 System.out.println("Policy already exists. Consider updating it
 instead.");
 List<ScalingPolicy> polList =
 describeScalingPoliciesResponse.scalingPolicies();
 for (ScalingPolicy pol : polList) {
 System.out.println("Policy name:" +pol.policyName());
 }
 } else {
 // If no policies exist, proceed with creating a new policy.
 PredefinedMetricSpecification specification =
 PredefinedMetricSpecification.builder()

 .predefinedMetricType(MetricType.DYNAMO_DB_WRITE_CAPACITY_UTILIZATION)
 .build();

 TargetTrackingScalingPolicyConfiguration policyConfiguration =
 TargetTrackingScalingPolicyConfiguration.builder()
 .predefinedMetricSpecification(specification)
 .targetValue(50.0)
 .scaleInCooldown(60)
 .scaleOutCooldown(60)
 .build();

 PutScalingPolicyRequest putScalingPolicyRequest =
 PutScalingPolicyRequest.builder()
 .targetTrackingScalingPolicyConfiguration(policyConfiguration)
 .serviceNamespace(ns)
 .scalableDimension(tableWCUs)
 .resourceId(tableId)
 .policyName(policyName)
 .policyType(PolicyType.TARGET_TRACKING_SCALING)
 .build();

 try {
 appAutoScalingClient.putScalingPolicy(putScalingPolicyRequest);
 System.out.println("You have successfully created a scaling
 policy for an Application Auto Scaling scalable target");
 } catch (ApplicationAutoScalingException e) {
 System.err.println("Error: " +
 e.awsErrorDetails().errorMessage());
 }

Actions 203

Application Auto Scaling User Guide

 }
 }
}

• For API details, see RegisterScalableTarget in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: This cmdlet registers or updates a scalable target. A scalable target is a
resource that Application Auto Scaling can scale out and scale in.

Add-AASScalableTarget -ServiceNamespace AppStream -ResourceId fleet/MyFleet -
ScalableDimension appstream:fleet:DesiredCapacity -MinCapacity 2 -MaxCapacity 10

• For API details, see RegisterScalableTarget in Amazon Tools for PowerShell Cmdlet
Reference (V4).

Tools for PowerShell V5

Example 1: This cmdlet registers or updates a scalable target. A scalable target is a
resource that Application Auto Scaling can scale out and scale in.

Add-AASScalableTarget -ServiceNamespace AppStream -ResourceId fleet/MyFleet -
ScalableDimension appstream:fleet:DesiredCapacity -MinCapacity 2 -MaxCapacity 10

• For API details, see RegisterScalableTarget in Amazon Tools for PowerShell Cmdlet
Reference (V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions 204

https://docs.amazonaws.cn/goto/SdkForJavaV2/application-autoscaling-2016-02-06/RegisterScalableTarget
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Application Auto Scaling User Guide

Tagging support for Application Auto Scaling

You can use the Amazon CLI or an SDK to tag Application Auto Scaling scalable targets. Scalable
targets are the entities that represent the Amazon or custom resources that Application Auto
Scaling can scale.

Each tag is a label consisting of a user-defined key and value using the Application Auto Scaling
API. Tags can help you configure granular access to specific scalable targets according to your
organization's needs. For more information, see ABAC with Application Auto Scaling.

You can add tags to new scalable targets when you register them, or you can add them to existing
scalable targets.

The commonly used commands for managing tags include:

• register-scalable-target to tag new scalable targets when you register them.

• tag-resource to add tags to an existing scalable target.

• list-tags-for-resource to return the tags on a scalable target.

• untag-resource to delete a tag.

Tagging example

Use the following register-scalable-target command with the --tags option. This example tags a
scalable target with two tags: a tag key named environment with the tag value of production,
and a tag key named iscontainerbased with the tag value of true.

Replace the sample values for --min-capacity and --max-capacity and sample text for --
service-namespace with the namespace of the Amazon service you're using with Application
Auto Scaling, --scalable-dimension with the scalable dimension associated with the resource
you're registering, and --resource-id with an identifier for the resource. For more information
and examples for each service, see the topics in Amazon Web Services services that you can use
with Application Auto Scaling.

aws application-autoscaling register-scalable-target \
 --service-namespace namespace \
 --scalable-dimension dimension \
 --resource-id identifier \

Tagging example 205

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/tag-resource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/list-tags-for-resource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/untag-resource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/application-autoscaling/register-scalable-target.html

Application Auto Scaling User Guide

 --min-capacity 1 --max-capacity 10 \
 --tags environment=production,iscontainerbased=true

If successful, this command returns the ARN of the scalable target.

{
 "ScalableTargetARN": "arn:aws-cn:application-autoscaling:region:account-
id:scalable-target/1234abcd56ab78cd901ef1234567890ab123"
}

Note

If this command throws an error, make sure that you have updated the Amazon CLI locally
to the latest version.

Tags for security

Use tags to verify that the requester (such as an IAM user or role) has permissions to perform
certain actions. Provide tag information in the condition element of an IAM policy by using one or
more of the following condition keys:

• Use aws:ResourceTag/tag-key: tag-value to allow (or deny) user actions on scalable
targets with specific tags.

• Use aws:RequestTag/tag-key: tag-value to require that a specific tag be present (or not
present) in a request.

• Use aws:TagKeys [tag-key, ...] to require that specific tag keys be present (or not
present) in a request.

For example, the following IAM policy grants permissions to use the
DeregisterScalableTarget, DeleteScalingPolicy, and DeleteScheduledAction
actions. However, it also denies the actions if the scalable target being acted upon has the tag
environment=production.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Tags for security 206

Application Auto Scaling User Guide

 "Effect": "Allow",
 "Action": [
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeleteScheduledAction"
],
 "Resource": "*"
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:DeleteScalingPolicy",
 "application-autoscaling:DeleteScheduledAction"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/environment": "production"}
 }
 }
]
}

Control access to tags

Use tags to verify that the requester (such as an IAM user or role) has permissions to add, modify,
or delete tags for scalable targets.

For example, you could create an IAM policy that allows removing only the tag with the
temporary key from scalable targets.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "application-autoscaling:UntagResource",
 "Resource": "*",

Control access to tags 207

Application Auto Scaling User Guide

 "Condition": {
 "ForAllValues:StringEquals": { "aws:TagKeys": ["temporary"] }
 }
 }
]
}

Control access to tags 208

Application Auto Scaling User Guide

Security in Application Auto Scaling

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part
of the Amazon compliance programs. To learn about the compliance programs that apply to
Application Auto Scaling, see Amazon services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Application Auto Scaling. The following topics show you how to configure Application Auto
Scaling to meet your security and compliance objectives. You also learn how to use other Amazon
services that help you to monitor and secure your Application Auto Scaling resources.

Contents

• Data protection in Application Auto Scaling

• Identity and Access Management for Application Auto Scaling

• Access Application Auto Scaling using interface VPC endpoints

• Resilience in Application Auto Scaling

• Infrastructure security in Application Auto Scaling

• Compliance validation for Application Auto Scaling

Data protection in Application Auto Scaling

The Amazon shared responsibility model applies to data protection in Application Auto Scaling. As
described in this model, Amazon is responsible for protecting the global infrastructure that runs all

Data protection 209

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Application Auto Scaling User Guide

of the Amazon Web Services Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. You are also responsible for the security configuration and
management tasks for the Amazon Web Services services that you use. For more information about
data privacy, see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon Web Services account
credentials and set up individual users with Amazon IAM Identity Center or Amazon Identity and
Access Management (IAM). That way, each user is given only the permissions necessary to fulfill
their job duties. We also recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources. We require TLS 1.2 and recommend TLS
1.3.

• Set up API and user activity logging with Amazon CloudTrail. For information about using
CloudTrail trails to capture Amazon activities, see Working with CloudTrail trails in the Amazon
CloudTrail User Guide.

• Use Amazon encryption solutions, along with all default security controls within Amazon Web
Services services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing Amazon through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Application Auto Scaling or other Amazon Web Services services using the
console, API, Amazon CLI, or Amazon SDKs. Any data that you enter into tags or free-form text
fields used for names may be used for billing or diagnostic logs. If you provide a URL to an external
server, we strongly recommend that you do not include credentials information in the URL to
validate your request to that server.

Identity and Access Management for Application Auto Scaling

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can

Identity and Access Management 210

https://www.amazonaws.cn/compliance/data-privacy-faq/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://www.amazonaws.cn/compliance/fips/

Application Auto Scaling User Guide

be authenticated (signed in) and authorized (have permissions) to use Application Auto Scaling
resources. IAM is an Amazon Web Services service that you can use with no additional charge.

For complete IAM documentation, see the IAM User Guide.

Access control

You can have valid credentials to authenticate your requests, but unless you have permissions
you cannot create or access Application Auto Scaling resources. For example, you must have
permissions to create scaling policies, configure scheduled scaling, and so on.

The following sections provide details on how an IAM administrator can use IAM to help secure
your Amazon resources, by controlling who can perform Application Auto Scaling API actions.

Contents

• How Application Auto Scaling works with IAM

• Amazon managed policies for Application Auto Scaling

• Service-linked roles for Application Auto Scaling

• Application Auto Scaling identity-based policy examples

• Troubleshooting access to Application Auto Scaling

• Permissions validation for Application Auto Scaling API calls on target resources

How Application Auto Scaling works with IAM

Note

In December 2017, there was an update for Application Auto Scaling, enabling several
service-linked roles for Application Auto Scaling integrated services. Specific IAM
permissions and an Application Auto Scaling service-linked role (or a service role for
Amazon EMR auto scaling) are required so that users can configure scaling.

Before you use IAM to manage access to Application Auto Scaling, learn what IAM features are
available to use with Application Auto Scaling.

Access control 211

https://docs.amazonaws.cn/IAM/latest/UserGuide/

Application Auto Scaling User Guide

IAM features you can use with Application Auto Scaling

IAM feature Application Auto Scaling support

Identity-based policies Yes

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

Resource-based policies No

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Application Auto Scaling and other Amazon Web Services services
work with most IAM features, see Amazon Web Services services that work with IAM in the IAM
User Guide.

Application Auto Scaling identity-based policies

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all

How Application Auto Scaling works with IAM 212

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html

Application Auto Scaling User Guide

of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Application Auto Scaling

To view examples of Application Auto Scaling identity-based policies, see Application Auto Scaling
identity-based policy examples.

Actions

Supports policy actions: Yes

In an IAM policy statement, you can specify any API action from any service that supports IAM. For
Application Auto Scaling, use the following prefix with the name of the API action: application-
autoscaling:. For example: application-autoscaling:RegisterScalableTarget,
application-autoscaling:PutScalingPolicy, and application-
autoscaling:DeregisterScalableTarget.

To specify multiple actions in a single statement, separate them with commas as shown in the
following example.

"Action": [
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScalingActivities"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action.

"Action": "application-autoscaling:Describe*"

For a list of Application Auto Scaling actions, see Actions defined by Amazon Application Auto
Scaling in the Service Authorization Reference.

Resources

Supports policy resources: Yes

In an IAM policy statement, the Resource element specifies the object or objects that the
statement covers. For Application Auto Scaling, each IAM policy statement applies to the scalable
targets that you specify using their Amazon Resource Names (ARNs).

The ARN resource format for scalable targets:

How Application Auto Scaling works with IAM 213

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-actions-as-permissions
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-actions-as-permissions

Application Auto Scaling User Guide

arn:aws-cn:application-autoscaling:region:account-id:scalable-target/unique-identifier

For example, you can indicate a specific scalable target in your statement using its ARN as follows.
The unique ID (1234abcd56ab78cd901ef1234567890ab123) is a value assigned by Application
Auto Scaling to the scalable target.

"Resource": "arn:aws-cn:application-autoscaling:us-east-1:123456789012:scalable-
target/1234abcd56ab78cd901ef1234567890ab123"

You can specify all instances that belong to a specific account by replacing the unique identifier
with a wildcard (*) as follows.

"Resource": "arn:aws-cn:application-autoscaling:us-east-1:123456789012:scalable-target/
*"

To specify all resources, or if a specific API action does not support ARNs, use a wildcard (*) as the
Resource element as follows.

"Resource": "*"

For more information, see Resource types defined by Amazon Application Auto Scaling in the
Service Authorization Reference.

Condition keys

Supports service-specific policy condition keys: Yes

You can specify conditions in the IAM policies that control access to Application Auto Scaling
resources. The policy statement is effective only when the conditions are true.

Application Auto Scaling supports the following service-defined condition keys that you can use in
identity-based policies to determine who can perform Application Auto Scaling API actions.

• application-autoscaling:scalable-dimension

• application-autoscaling:service-namespace

To learn which Application Auto Scaling API actions you can use a condition key with, see Actions
defined by Amazon Application Auto Scaling in the Service Authorization Reference. For more

How Application Auto Scaling works with IAM 214

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-actions-as-permissions
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-actions-as-permissions

Application Auto Scaling User Guide

information about using Application Auto Scaling condition keys, see Condition keys for Amazon
Application Auto Scaling.

To view the global condition keys that are available to all services, see Amazon global condition
context keys in the IAM User Guide.

Resource-based policies

Supports resource-based policies: No

Other Amazon services, such as Amazon Simple Storage Service, support resource-based
permissions policies. For example, you can attach a permissions policy to an S3 bucket to manage
access permissions to that bucket.

Application Auto Scaling does not support resource-based policies.

Access Control Lists (ACLs)

Supports ACLs: No

Application Auto Scaling does not support Access Control Lists (ACLs).

ABAC with Application Auto Scaling

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

ABAC is possible for resources that support tags, but not everything supports tags. Scheduled
actions and scaling policies don't support tags, but scalable targets support tags. For more
information, see Tagging support for Application Auto Scaling.

How Application Auto Scaling works with IAM 215

https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awsapplicationautoscaling.html#awsapplicationautoscaling-policy-keys
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html

Application Auto Scaling User Guide

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Application Auto Scaling

Supports temporary credentials: Yes

Some Amazon Web Services services don't work when you sign in using temporary credentials.
For additional information, including which Amazon Web Services services work with temporary
credentials, see Amazon Web Services services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to
the console as a user and then switch roles. For more information about switching roles, see Switch
from a user to an IAM role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Service roles

Supports service roles: Yes

If your Amazon EMR cluster uses automatic scaling, this feature allows Application Auto Scaling
to assume a service role on your behalf. Similar to a service-linked role, a service role allows the
service to access resources in other services to complete an action on your behalf. Service roles
appear in your IAM account and are owned by the account. This means that an IAM administrator
can change the permissions for this role. However, doing so might break the functionality of the
service.

Application Auto Scaling supports service roles only for Amazon EMR. For documentation for
the EMR service role, see Using automatic scaling with a custom policy for instance groups in the
Amazon EMR Management Guide.

How Application Auto Scaling works with IAM 216

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-automatic-scaling.html

Application Auto Scaling User Guide

Note

With the introduction of service-linked roles, several legacy service roles are no longer
required, for example, for Amazon ECS and Spot Fleet.

Service-linked roles

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an Amazon Web Services service. The
service can assume the role to perform an action on your behalf. Service-linked roles appear in
your Amazon Web Services account and are owned by the service. An IAM administrator can view,
but not edit the permissions for service-linked roles.

For information about Application Auto Scaling service-linked roles, see Service-linked roles for
Application Auto Scaling.

Amazon managed policies for Application Auto Scaling

An Amazon managed policy is a standalone policy that is created and administered by Amazon.
Amazon managed policies are designed to provide permissions for many common use cases so that
you can start assigning permissions to users, groups, and roles.

Keep in mind that Amazon managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all Amazon customers to use. We recommend that
you reduce permissions further by defining customer managed policies that are specific to your
use cases.

You cannot change the permissions defined in Amazon managed policies. If Amazon updates
the permissions defined in an Amazon managed policy, the update affects all principal identities
(users, groups, and roles) that the policy is attached to. Amazon is most likely to update an Amazon
managed policy when a new Amazon Web Services service is launched or new API operations
become available for existing services.

For more information, see Amazon managed policies in the IAM User Guide.

Amazon managed policy: AppStream 2.0 and CloudWatch

Policy name: AWSApplicationAutoscalingAppStreamFleetPolicy

Amazon managed policies 217

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingAppStreamFleetPolicy.html

Application Auto Scaling User Guide

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_AppStreamFleet to allow Application Auto Scaling to
call Amazon AppStream and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: appstream:DescribeFleets

• Action: appstream:UpdateFleet

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: Aurora and CloudWatch

Policy name: AWSApplicationAutoscalingRDSClusterPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_RDSCluster to allow Application Auto Scaling to call
Aurora and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: rds:AddTagsToResource

• Action: rds:CreateDBInstance

• Action: rds:DeleteDBInstance

• Action: rds:DescribeDBClusters

• Action: rds:DescribeDBInstance

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

Amazon managed policies 218

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingRDSClusterPolicy.html

Application Auto Scaling User Guide

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: Amazon Comprehend and CloudWatch

Policy name: AWSApplicationAutoscalingComprehendEndpointPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_ComprehendEndpoint to allow Application Auto
Scaling to call Amazon Comprehend and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: comprehend:UpdateEndpoint

• Action: comprehend:DescribeEndpoint

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: DynamoDB and CloudWatch

Policy name: AWSApplicationAutoscalingDynamoDBTablePolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_DynamoDBTable to allow Application Auto Scaling to
call DynamoDBand CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: dynamodb:DescribeTable

• Action: dynamodb:UpdateTable

• Action: cloudwatch:DescribeAlarms

Amazon managed policies 219

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingComprehendEndpointPolicy.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingDynamoDBTablePolicy.html

Application Auto Scaling User Guide

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: Amazon ECS and CloudWatch

Policy name: AWSApplicationAutoscalingECSServicePolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_ECSService to allow Application Auto Scaling to call
Amazon ECS and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: ecs:DescribeServices

• Action: ecs:UpdateService

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:GetMetricData

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: ElastiCache and CloudWatch

Policy name: AWSApplicationAutoscalingElastiCacheRGPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_ElastiCacheRG to allow Application Auto Scaling to call
ElastiCache and CloudWatch and perform scaling on your behalf. This service-linked role can be
used for ElastiCache Memcached, Redis OSS, and Valkey.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on the
specified resources:

Amazon managed policies 220

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingECSServicePolicy.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingElastiCacheRGPolicy.html

Application Auto Scaling User Guide

• Action: elasticache:DescribeReplicationGroups on all resources

• Action: elasticache:ModifyReplicationGroupShardConfiguration on all resources

• Action: elasticache:IncreaseReplicaCount on all resources

• Action: elasticache:DecreaseReplicaCount on all resources

• Action: elasticache:DescribeCacheClusters on all resources

• Action: elasticache:DescribeCacheParameters on all resources

• Action: elasticache:ModifyCacheCluster on all resources

• Action: cloudwatch:DescribeAlarms on the resource arn:aws-
cn:cloudwatch:*:*:alarm:*

• Action: cloudwatch:PutMetricAlarm on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

• Action: cloudwatch:DeleteAlarms on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

Amazon managed policy: Amazon Keyspaces and CloudWatch

Policy name: AWSApplicationAutoscalingCassandraTablePolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_CassandraTable to allow Application Auto Scaling to
call Amazon Keyspaces and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on the
specified resources:

• Action: cassandra:Select on the following resources:

• arn:*:cassandra:*:*:/keyspace/system/table/*

• arn:*:cassandra:*:*:/keyspace/system_schema/table/*

• arn:*:cassandra:*:*:/keyspace/system_schema_mcs/table/*

• Action: cassandra:Alter on all resources

• Action: cloudwatch:DescribeAlarms on all resources

• Action: cloudwatch:PutMetricAlarm on all resources

Amazon managed policies 221

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingCassandraTablePolicy.html

Application Auto Scaling User Guide

• Action: cloudwatch:DeleteAlarms on all resources

Amazon managed policy: Lambda and CloudWatch

Policy name: AWSApplicationAutoscalingLambdaConcurrencyPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_LambdaConcurrency to allow Application Auto Scaling
to call Lambda and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: lambda:PutProvisionedConcurrencyConfig

• Action: lambda:GetProvisionedConcurrencyConfig

• Action: lambda:DeleteProvisionedConcurrencyConfig

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: Amazon MSK and CloudWatch

Policy name: AWSApplicationAutoscalingKafkaClusterPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_KafkaCluster to allow Application Auto Scaling to call
Amazon MSK and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: kafka:DescribeCluster

• Action: kafka:DescribeClusterOperation

• Action: kafka:UpdateBrokerStorage

Amazon managed policies 222

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingLambdaConcurrencyPolicy.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingKafkaClusterPolicy.html

Application Auto Scaling User Guide

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: Neptune and CloudWatch

Policy name: AWSApplicationAutoscalingNeptuneClusterPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_NeptuneCluster to allow Application Auto Scaling to
call Neptune and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on the
specified resources:

• Action: rds:ListTagsForResource on all resources

• Action: rds:DescribeDBInstances on all resources

• Action: rds:DescribeDBClusters on all resources

• Action: rds:DescribeDBClusterParameters on all resources

• Action: cloudwatch:DescribeAlarms on all resources

• Action: rds:AddTagsToResource on resources with the prefix autoscaled-reader
in the Amazon Neptune database engine ("Condition":{"StringEquals":
{"rds:DatabaseEngine":"neptune"})

• Action: rds:CreateDBInstance on resources with the prefix autoscaled-reader in all DB
clusters ("Resource":"arn:*:rds:*:*:db:autoscaled-reader*", "arn:aws-
cn:rds:*:*:cluster:*") in the Amazon Neptune database engine ("Condition":
{"StringEquals":{"rds:DatabaseEngine":"neptune"})

• Action: rds:DeleteDBInstance on the resource arn:aws-cn:rds:*:*:db:autoscaled-
reader*

• Action: cloudwatch:PutMetricAlarm on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

• Action: cloudwatch:DeleteAlarms on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

Amazon managed policies 223

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingNeptuneClusterPolicy.html

Application Auto Scaling User Guide

Amazon managed policy: SageMaker AI and CloudWatch

Policy name: AWSApplicationAutoscalingSageMakerEndpointPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_SageMakerEndpoint to allow Application Auto Scaling
to call SageMaker AI and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on the
specified resources:

• Action: sagemaker:DescribeEndpoint on all resources

• Action: sagemaker:DescribeEndpointConfig on all resources

• Action: sagemaker:DescribeInferenceComponent on all resources

• Action: sagemaker:UpdateEndpointWeightsAndCapacities on all resources

• Action: sagemaker:UpdateInferenceComponentRuntimeConfig on all resources

• Action: cloudwatch:DescribeAlarms on all resources

• Action: cloudwatch:GetMetricData on all resources

• Action: cloudwatch:PutMetricAlarm on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

• Action: cloudwatch:DeleteAlarms on the resource arn:aws-
cn:cloudwatch:*:*:alarm:TargetTracking*

Amazon managed policy: EC2 Spot Fleet and CloudWatch

Policy name: AWSApplicationAutoscalingEC2SpotFleetRequestPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_EC2SpotFleetRequest to allow Application Auto Scaling
to call Amazon EC2 and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

Amazon managed policies 224

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingSageMakerEndpointPolicy.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingEC2SpotFleetRequestPolicy.html

Application Auto Scaling User Guide

• Action: ec2:DescribeSpotFleetRequests

• Action: ec2:ModifySpotFleetRequest

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Amazon managed policy: WorkSpaces and CloudWatch

Policy name: AWSApplicationAutoscalingWorkSpacesPoolPolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_WorkSpacesPool to allow Application Auto Scaling to
call WorkSpaces and CloudWatch and perform scaling on your behalf.

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on the
specified resources:

• Action: workspaces:DescribeWorkspacesPools on all resources from the same account as
the SLR

• Action: workspaces:UpdateWorkspacesPool on all resources from the same account as the
SLR

• Action: cloudwatch:DescribeAlarms on all alarms from the same account as the SLR

• Action: cloudwatch:PutMetricAlarm on all alarms from the same account as the SLR, where
the alarm name starts with TargetTracking

• Action: cloudwatch:DeleteAlarms on all alarms from the same account as the SLR, where
the alarm name starts with TargetTracking

Amazon managed policy: custom resources and CloudWatch

Policy name: AWSApplicationAutoScalingCustomResourcePolicy

This policy is attached to the service-linked role named
AWSServiceRoleForApplicationAutoScaling_CustomResource to allow Application Auto Scaling to
call your custom resources that are available through API Gateway and CloudWatch and perform
scaling on your behalf.

Amazon managed policies 225

https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoscalingWorkSpacesPoolPolicy.html
https://docs.amazonaws.cn/aws-managed-policy/latest/reference/AWSApplicationAutoScalingCustomResourcePolicy.html

Application Auto Scaling User Guide

Permission details

The permissions policy allows Application Auto Scaling to complete the following actions on all
related resources ("Resource": "*"):

• Action: execute-api:Invoke

• Action: cloudwatch:DescribeAlarms

• Action: cloudwatch:PutMetricAlarm

• Action: cloudwatch:DeleteAlarms

Application Auto Scaling updates to Amazon managed policies

View details about updates to Amazon managed policies for Application Auto Scaling since this
service began tracking these changes. For automatic alerts about changes to this page, subscribe to
the RSS feed on the Application Auto Scaling Document history page.

Change Description Date

AWSApplicationAutoscalingEl
astiCacheRGPolicy – Update
an existing policy

Added permission to call
the ElastiCache ModifyCac
heCluster API action
to support Memcached
automatic scaling.

April 10, 2025

AWSApplicationAuto
scalingECSServicePolicy –
Update an existing policy

Added permission to call
the CloudWatch GetMetric
Data API action to support
predictive scaling.

November 21, 2024

AWSApplicationAuto
scalingWorkSpacesPoolPolicy
 – New policy

Added a managed policy
for Amazon WorkSpaces.
This policy is attached to
a service-linked role that
allows Application Auto
Scaling to call WorkSpaces
and CloudWatch and perform
scaling on your behalf.

June 24, 2024

Amazon managed policies 226

Application Auto Scaling User Guide

Change Description Date

AWSApplicationAutoscalingSa
geMakerEndpointPolicy –
Update to an existing policy

Added permissions to call the
SageMaker AI DescribeI
nferenceComponent
and UpdateInferenceCom
ponentRuntimeConfi
g API actions to support
compatibility for the auto
scaling of SageMaker AI
resources for an upcoming
integration. The policy also
now restricts the CloudWatc
h PutMetricAlarm and
DeleteAlarms API actions
to CloudWatch alarms that
are used with target tracking
scaling policies.

November 13, 2023

AWSApplicationAuto
scalingNeptuneClusterPolicy –
New policy

Added a managed policy
for Neptune. This policy is
attached to a service-linked
role that allows Application
Auto Scaling to call Neptune
and CloudWatch and perform
scaling on your behalf.

October 6, 2021

AWSApplicationAuto
scalingRDSClusterPolicy –
New policy

Added a managed policy for
ElastiCache. This policy is
attached to a service-linked
role that allows Application
Auto Scaling to call ElastiCac
he and CloudWatch and
perform scaling on your
behalf.

August 19, 2021

Amazon managed policies 227

Application Auto Scaling User Guide

Change Description Date

Application Auto Scaling
started tracking changes

Application Auto Scaling
started tracking changes for
its Amazon managed policies.

August 19, 2021

Service-linked roles for Application Auto Scaling

Application Auto Scaling uses service-linked roles for the permissions that it requires to call other
Amazon services on your behalf. A service-linked role is a unique type of Amazon Identity and
Access Management (IAM) role that is linked directly to an Amazon service. Service-linked roles
provide a secure way to delegate permissions to Amazon services because only the linked service
can assume a service-linked role.

For services that integrate with Application Auto Scaling, Application Auto Scaling creates service-
linked roles for you. There is one service-linked role for each service. Each service-linked role trusts
the specified service principal to assume it. For more information, see Service-linked role ARN
reference.

Application Auto Scaling includes all of the necessary permissions for each service-linked role.
These managed permissions are created and managed by Application Auto Scaling, and they define
the allowed actions for each resource type. For details about the permissions that each role grants,
see Amazon managed policies for Application Auto Scaling.

Contents

• Permissions required to create a service-linked role

• Create service-linked roles (automatic)

• Create service-linked roles (manual)

• Edit the service-linked roles

• Delete the service-linked roles

• Supported Regions for Application Auto Scaling service-linked roles

• Service-linked role ARN reference

Service-linked roles 228

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

Application Auto Scaling User Guide

Permissions required to create a service-linked role

Application Auto Scaling requires permissions to create a service-linked role the first time any
user in your Amazon Web Services account calls RegisterScalableTarget for a given service.
Application Auto Scaling creates a service-linked role for the target service in your account, if the
role does not exist already. The service-linked role grants permissions to Application Auto Scaling
so that it can call the target service on your behalf.

For automatic role creation to succeed, users must have permission for the
iam:CreateServiceLinkedRole action.

"Action": "iam:CreateServiceLinkedRole"

The following is an identity-based policy that grants permission to create a service-linked role for
Spot Fleet. You can specify the service-linked role in the policy's Resource field as an ARN, and
the service principal for your service-linked role as a condition, as shown. For the ARN for each
service, see Service-linked role ARN reference.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws-cn:iam::*:role/aws-
service-role/ec2.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_EC2SpotFleetRequest",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"ec2.application-
autoscaling.amazonaws.com"
 }
 }
 }
]
}

Service-linked roles 229

Application Auto Scaling User Guide

Note

The iam:AWSServiceName IAM condition key specifies the service principal to which
the role is attached, which is indicated in this example policy as ec2.application-
autoscaling.amazonaws.com. Do not try to guess the service principal. To view the
service principal for a service, see Amazon Web Services services that you can use with
Application Auto Scaling.

Create service-linked roles (automatic)

You don't need to manually create a service-linked role. Application Auto Scaling creates the
appropriate service-linked role for you when you call RegisterScalableTarget. For example,
if you set up automatic scaling for an Amazon ECS service, Application Auto Scaling creates the
AWSServiceRoleForApplicationAutoScaling_ECSService role.

Create service-linked roles (manual)

To create the service-linked role, you can use the IAM console, Amazon CLI, or IAM API. For more
information, see Create a service-linked role in the IAM User Guide.

To create a service-linked role (Amazon CLI)

Use the following create-service-linked-role command to create the Application Auto Scaling
service-linked role. In the request, specify the service name "prefix".

To find the service name prefix, refer to the information about the service principal for the
service-linked role for each service in the Amazon Web Services services that you can use with
Application Auto Scaling section. The service name and the service principal share the same prefix.
For example, to create the Amazon Lambda service-linked role, use lambda.application-
autoscaling.amazonaws.com.

aws iam create-service-linked-role --aws-service-name prefix.application-
autoscaling.amazonaws.com

Edit the service-linked roles

With the service-linked roles created by Application Auto Scaling, you can edit only their
descriptions. For more information, see Edit a service-linked role description in the IAM User Guide.

Service-linked roles 230

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create-service-linked-role.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iam/create-service-linked-role.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_update-service-linked-role.html#edit-service-linked-role-iam-console

Application Auto Scaling User Guide

Delete the service-linked roles

If you no longer use Application Auto Scaling with a supported service, we recommend that you
delete the corresponding service-linked role.

You can delete a service-linked role only after first deleting the related Amazon resources. This
protects you from inadvertently revoking Application Auto Scaling permissions to your resources.
For more information, see the documentation for the scalable resource. For example, to delete an
Amazon ECS service, see Deleting an Amazon ECS service in the Amazon Elastic Container Service
Developer Guide.

You can use IAM to delete a service-linked role. For more information, see Delete a service-linked
role in the IAM User Guide.

After you delete a service-linked role, Application Auto Scaling creates the role again when you call
RegisterScalableTarget.

Supported Regions for Application Auto Scaling service-linked roles

Application Auto Scaling supports using service-linked roles in all of the Amazon Regions where
the service is available.

Service-linked role ARN reference

The following table lists the Amazon Resource Name (ARN) of the service-linked role for each
Amazon Web Services service that works with Application Auto Scaling.

Service ARN

AppStream 2.0 arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
appstream.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_AppStr
eamFleet

Aurora arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
rds.application-autoscaling.amazonaws.com/AWSServ
iceRoleForApplicationAutoScaling_RDSCluster

Comprehend arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
comprehend.application-autoscaling.amazonaws.com/

Service-linked roles 231

https://docs.amazonaws.cn/
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/delete-service-v2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage_delete.html#id_roles_manage_delete_slr
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage_delete.html#id_roles_manage_delete_slr

Application Auto Scaling User Guide

Service ARN

AWSServiceRoleForApplicationAutoScaling_Compr
ehendEndpoint

DynamoDB arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
dynamodb.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_DynamoD
BTable

ECS arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
ecs.application-autoscaling.amazonaws.com/AWSServ
iceRoleForApplicationAutoScaling_ECSService

ElastiCache arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
elasticache.application-autoscaling.amazonaws.com
/AWSServiceRoleForApplicationAutoScaling_Elas
tiCacheRG

Keyspaces arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
cassandra.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_Cassan
draTable

Lambda arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
lambda.application-autoscaling.amazonaws.com/AWSS
erviceRoleForApplicationAutoScaling_LambdaCon
currency

MSK arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
kafka.application-autoscaling.amazonaws.com/AWSSe
rviceRoleForApplicationAutoScaling_KafkaCluster

Neptune arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
neptune.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_NeptuneC
luster

Service-linked roles 232

Application Auto Scaling User Guide

Service ARN

SageMaker AI arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
sagemaker.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_SageMa
kerEndpoint

Spot Fleets arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
ec2.application-autoscaling.amazonaws.com/AWSServ
iceRoleForApplicationAutoScaling_EC2SpotFleet
Request

WorkSpaces arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
workspaces.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_WorkS
pacesPool

Custom resources arn:aws-cn:iam:: 012345678910 :role/aws-service-role/
custom-resource.application-autoscaling.amazonaws
.com/AWSServiceRoleForApplicationAutoScaling_
CustomResource

Note

You can specify the ARN of a service-linked role for the RoleARN property of an
AWS::ApplicationAutoScaling::ScalableTarget resource in your Amazon CloudFormation
stack templates, even if the specified service-linked role doesn't yet exist. Application Auto
Scaling automatically creates the role for you.

Application Auto Scaling identity-based policy examples

By default, a brand new user in your Amazon Web Services account has no permissions to do
anything. An IAM administrator must create and assign IAM policies that give an IAM identity (such
as a user or role) permission to perform Application Auto Scaling API actions.

Identity-based policy examples 233

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/aws-resource-applicationautoscaling-scalabletarget.html

Application Auto Scaling User Guide

To learn how to create an IAM policy using the following example JSON policy documents, see
Creating policies on the JSON tab in the IAM User Guide.

Contents

• Permissions required for Application Auto Scaling API actions

• Permissions required for API actions on target services and CloudWatch

• Permissions for working in the Amazon Web Services Management Console

Permissions required for Application Auto Scaling API actions

The following policies grant permissions for common use cases when calling Application Auto
Scaling API. Refer to this section when writing identity-based policies. Each policy grants
permissions to all or some of the Application Auto Scaling API actions. You also need to make sure
that end users have permissions for the target service and CloudWatch (see the next section for
details).

The following identity-based policy grants permissions to all Application Auto Scaling API actions.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*"
],
 "Resource": "*"
 }
]
}

The following identity-based policy grants permissions to all Application Auto Scaling API actions
that are required to configure scaling policies and not scheduled actions.

Identity-based policy examples 234

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

Application Auto Scaling User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:RegisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:PutScalingPolicy",
 "application-autoscaling:DescribeScalingPolicies",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DeleteScalingPolicy"
],
 "Resource": "*"
 }
]
}

The following identity-based policy grants permissions to all Application Auto Scaling API actions
that are required to configure scheduled actions and not scaling policies.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:RegisterScalableTarget",
 "application-autoscaling:DescribeScalableTargets",
 "application-autoscaling:DeregisterScalableTarget",
 "application-autoscaling:PutScheduledAction",
 "application-autoscaling:DescribeScheduledActions",
 "application-autoscaling:DescribeScalingActivities",
 "application-autoscaling:DeleteScheduledAction"
],

Identity-based policy examples 235

Application Auto Scaling User Guide

 "Resource": "*"
 }
]
}

Permissions required for API actions on target services and CloudWatch

To successfully configure and use Application Auto Scaling with the target service, end users must
be granted permissions for Amazon CloudWatch and for each target service for which they will
configure scaling. Use the following policies to grant the minimum permissions required to work
with target services and CloudWatch.

Contents

• AppStream 2.0 fleets

• Aurora replicas

• Amazon Comprehend document classification and entity recognizer endpoints

• DynamoDB tables and global secondary indexes

• ECS services

• ElastiCache replication groups

• Amazon EMR clusters

• Amazon Keyspaces tables

• Lambda functions

• Amazon Managed Streaming for Apache Kafka (MSK) broker storage

• Neptune clusters

• SageMaker AI endpoints

• Spot Fleets (Amazon EC2)

• Custom resources

AppStream 2.0 fleets

The following identity-based policy grants permissions to all AppStream 2.0 and CloudWatch API
actions that are required.

Identity-based policy examples 236

Application Auto Scaling User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:DescribeFleets",
 "appstream:UpdateFleet",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Aurora replicas

The following identity-based policy grants permissions to all Aurora and CloudWatch API actions
that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds:AddTagsToResource",
 "rds:CreateDBInstance",
 "rds:DeleteDBInstance",
 "rds:DescribeDBClusters",
 "rds:DescribeDBInstances",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],

Identity-based policy examples 237

Application Auto Scaling User Guide

 "Resource": "*"
 }
]
}

Amazon Comprehend document classification and entity recognizer endpoints

The following identity-based policy grants permissions to all Amazon Comprehend and
CloudWatch API actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "comprehend:UpdateEndpoint",
 "comprehend:DescribeEndpoint",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

DynamoDB tables and global secondary indexes

The following identity-based policy grants permissions to all DynamoDB and CloudWatch API
actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 238

Application Auto Scaling User Guide

 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:UpdateTable",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

ECS services

The following identity-based policy grants permissions to all ECS and CloudWatch API actions that
are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:DescribeServices",
 "ecs:UpdateService",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Identity-based policy examples 239

Application Auto Scaling User Guide

ElastiCache replication groups

The following identity-based policy grants permissions to all ElastiCache and CloudWatch API
actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticache:ModifyReplicationGroupShardConfiguration",
 "elasticache:IncreaseReplicaCount",
 "elasticache:DecreaseReplicaCount",
 "elasticache:DescribeReplicationGroups",
 "elasticache:DescribeCacheClusters",
 "elasticache:DescribeCacheParameters",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Amazon EMR clusters

The following identity-based policy grants permissions to all Amazon EMR and CloudWatch API
actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Identity-based policy examples 240

Application Auto Scaling User Guide

 "Action": [
 "elasticmapreduce:ModifyInstanceGroups",
 "elasticmapreduce:ListInstanceGroups",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Amazon Keyspaces tables

The following identity-based policy grants permissions to all Amazon Keyspaces and CloudWatch
API actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cassandra:Select",
 "cassandra:Alter",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Lambda functions

The following identity-based policy grants permissions to all Lambda and CloudWatch API actions
that are required.

Identity-based policy examples 241

Application Auto Scaling User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:PutProvisionedConcurrencyConfig",
 "lambda:GetProvisionedConcurrencyConfig",
 "lambda:DeleteProvisionedConcurrencyConfig",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Amazon Managed Streaming for Apache Kafka (MSK) broker storage

The following identity-based policy grants permissions to all Amazon MSK and CloudWatch API
actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kafka:DescribeCluster",
 "kafka:DescribeClusterOperation",
 "kafka:UpdateBrokerStorage",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"

Identity-based policy examples 242

Application Auto Scaling User Guide

 }
]
}

Neptune clusters

The following identity-based policy grants permissions to all Neptune and CloudWatch API actions
that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds:AddTagsToResource",
 "rds:CreateDBInstance",
 "rds:DescribeDBInstances",
 "rds:DescribeDBClusters",
 "rds:DescribeDBClusterParameters",
 "rds:DeleteDBInstance",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

SageMaker AI endpoints

The following identity-based policy grants permissions to all SageMaker AI and CloudWatch API
actions that are required.

Identity-based policy examples 243

Application Auto Scaling User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:DescribeEndpoint",
 "sagemaker:DescribeEndpointConfig",
 "sagemaker:DescribeInferenceComponent",
 "sagemaker:UpdateEndpointWeightsAndCapacities",
 "sagemaker:UpdateInferenceComponentRuntimeConfig",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Spot Fleets (Amazon EC2)

The following identity-based policy grants permissions to all Spot Fleet and CloudWatch API
actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSpotFleetRequests",
 "ec2:ModifySpotFleetRequest",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],

Identity-based policy examples 244

Application Auto Scaling User Guide

 "Resource": "*"
 }
]
}

Custom resources

The following identity-based policy grants permission for the API Gateway API executing action.
This policy also grants permissions to all CloudWatch actions that are required.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DeleteAlarms"
],
 "Resource": "*"
 }
]
}

Permissions for working in the Amazon Web Services Management Console

There is no standalone Application Auto Scaling console. Most services that integrate with
Application Auto Scaling have features that are dedicated to helping you configure scaling with
their console.

In most cases, each service provides Amazon managed (predefined) IAM policies that define access
to their console, which includes permissions to the Application Auto Scaling API actions. For more
information, refer to the documentation for the service whose console you want to use.

You can also create your own custom IAM policies to give users fine-grained permissions to
view and work with specific Application Auto Scaling API actions in the Amazon Web Services

Identity-based policy examples 245

Application Auto Scaling User Guide

Management Console. You can use the example policies in the previous sections; however, they are
designed for requests that are made with the Amazon CLI or an SDK. The console uses additional
API actions for its features, so these policies may not work as expected. For example, to configure
step scaling, users might require additional permissions to create and manage CloudWatch alarms.

Tip

To help you work out which API actions are required to perform tasks in the console,
you can use a service such as Amazon CloudTrail. For more information, see the Amazon
CloudTrail User Guide.

The following identity-based policy grants permissions to configure scaling policies for Spot Fleet.
In addition to the IAM permissions for Spot Fleet, the console user that accesses fleet scaling
settings from the Amazon EC2 console must have the appropriate permissions for the services that
support dynamic scaling.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "application-autoscaling:*",
 "ec2:DescribeSpotFleetRequests",
 "ec2:ModifySpotFleetRequest",
 "cloudwatch:DeleteAlarms",
 "cloudwatch:DescribeAlarmHistory",
 "cloudwatch:DescribeAlarms",
 "cloudwatch:DescribeAlarmsForMetric",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics",
 "cloudwatch:PutMetricAlarm",
 "cloudwatch:DisableAlarmActions",
 "cloudwatch:EnableAlarmActions",
 "sns:CreateTopic",
 "sns:Subscribe",
 "sns:Get*",

Identity-based policy examples 246

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Application Auto Scaling User Guide

 "sns:List*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws-cn:iam::*:role/aws-
service-role/ec2.application-autoscaling.amazonaws.com/
AWSServiceRoleForApplicationAutoScaling_EC2SpotFleetRequest",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName":"ec2.application-
autoscaling.amazonaws.com"
 }
 }
 }
]
}

This policy allows console users to view and modify scaling policies in the Amazon EC2 console,
and to create and manage CloudWatch alarms in the CloudWatch console.

You can adjust the API actions to limit user access. For example, replacing application-
autoscaling:* with application-autoscaling:Describe* means that the user has read-
only access.

You can also adjust the CloudWatch permissions as required to limit user access to CloudWatch
features. For more information, see Permissions needed for the CloudWatch console in the Amazon
CloudWatch User Guide.

Troubleshooting access to Application Auto Scaling

If you encounter AccessDeniedException or similar difficulties when working with Application
Auto Scaling, consult the information in this section.

I am not authorized to perform an action in Application Auto Scaling

If you receive an AccessDeniedException when calling an Amazon API operation, it means that
the Amazon Identity and Access Management (IAM) credentials that you are using do not have the
required permissions to make that call.

Troubleshooting 247

https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console

Application Auto Scaling User Guide

The following example error occurs when the mateojackson user tries to view details about a
scalable target, but does not have application-autoscaling:DescribeScalableTargets
permission.

An error occurred (AccessDeniedException) when calling the DescribeScalableTargets
 operation: User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to
 perform: application-autoscaling:DescribeScalableTargets

If you receive this or similar errors, then you must contact your administrator for assistance.

An administrator for your account will need to make sure that you have permissions to access
all of the API actions that Application Auto Scaling uses to access resources in the target service
and CloudWatch. There are different permissions required depending on which resources you are
working with. Application Auto Scaling also requires permission to create a service-linked role the
first time that a user configures scaling for a given resource.

I'm an administrator and my IAM policy returned an error or isn't working as
expected

In addition to Application Auto Scaling actions, your IAM policies must grant permissions to call the
target service and CloudWatch. If a user or application doesn't have these additional permissions,
their access might be unexpectedly denied. To write IAM policies for users and applications in your
accounts, consult the information in Application Auto Scaling identity-based policy examples.

For information about how validation is performed, see Permissions validation for Application Auto
Scaling API calls on target resources.

Note that some permission issues can also be due to an issue with creating the service-linked roles
used by Application Auto Scaling. For information about creating these service-linked roles, see
Service-linked roles for Application Auto Scaling.

Permissions validation for Application Auto Scaling API calls on target
resources

Making authorized requests to Application Auto Scaling API actions requires that the API caller has
permissions to access Amazon resources in the target service and in CloudWatch. Application Auto
Scaling validates permissions for requests associated with both the target service and CloudWatch
before proceeding with the request. To accomplish this, we issue a series of calls to validate the
IAM permissions on target resources. When a response is returned, it is read by Application Auto

Permissions validation 248

Application Auto Scaling User Guide

Scaling. If the IAM permissions do not allow a given action, Application Auto Scaling fails the
request and returns an error to the user containing information about the missing permission. This
ensures that the scaling configuration that the user wants to deploy functions as intended, and
that a useful error is returned if the request fails.

As an example of how this works, the following information provides details about how Application
Auto Scaling performs permissions validations with Aurora and CloudWatch.

When a user calls the RegisterScalableTarget API against an Aurora DB cluster, Application
Auto Scaling performs all of the following checks to verify that the user has the required
permissions (in bold).

• rds:CreateDBInstance: To determine whether the user has this permission, we send a request
to the CreateDBInstance API operation, attempting to create a DB instance with invalid
parameters (empty instance ID) in the Aurora DB cluster that the user specified. For an
authorized user, the API returns an InvalidParameterValue error code response after it
audits the request. However, for an unauthorized user, we get an AccessDenied error and fail
the Application Auto Scaling request with a ValidationException error to the user that lists
the missing permissions.

• rds:DeleteDBInstance: We send an empty instance ID to the DeleteDBInstance API operation.
For an authorized user, this request results in an InvalidParameterValue error. For an
unauthorized user, it results in AccessDenied and sends a validation exception to the user
(same treatment as described in the first bullet point).

• rds:AddTagsToResource: Because the AddTagsToResource API operation requires an Amazon
Resource Name (ARN), it is necessary to specify a "dummy" resource using an invalid account ID
(12345) and dummy instance ID (non-existing-db) to construct the ARN (arn:aws-cn:rds:us-
east-1:12345:db:non-existing-db). For an authorized user, this request results in an
InvalidParameterValue error. For an unauthorized user, it results in AccessDenied and
sends a validation exception to the user.

• rds:DescribeDBClusters: We describe the cluster name for the resource being registered for auto
scaling. For an authorized user, we get a valid describe result. For an unauthorized user, it results
in AccessDenied and sends a validation exception to the user.

• rds:DescribeDBInstances: We call the DescribeDBInstances API with a db-cluster-id
filter that filters on the cluster name that was provided by the user to register the scalable
target. For an authorized user, we are permitted to describe all of the DB instances in the DB
cluster. For an unauthorized user, this call results in AccessDenied and sends a validation
exception to the user.

Permissions validation 249

Application Auto Scaling User Guide

• cloudwatch:PutMetricAlarm: We call the PutMetricAlarm API without any parameters.
Because alarm name is missing, the request results in ValidationError for an authorized user.
For an unauthorized user, it results in AccessDenied and sends a validation exception to the
user.

• cloudwatch:DescribeAlarms: We call the DescribeAlarms API with the maximum number
of records value set to 1. For an authorized user, we expect information on one alarm in the
response. For an unauthorized user, this call results in AccessDenied and sends a validation
exception to the user.

• cloudwatch:DeleteAlarms: Similar to PutMetricAlarm above, we provide no parameters to
DeleteAlarms request. Because an alarm name is missing from the request, this call fails with
ValidationError for an authorized user. For an unauthorized user, it results in AccessDenied
and sends a validation exception to the user.

Whenever any one of these validation exceptions occur, it is logged. You can take steps to manually
identify which calls failed validation by using Amazon CloudTrail. For more information, see the
Amazon CloudTrail User Guide.

Note

If you receive alerts for Application Auto Scaling events using CloudTrail, these alerts
will include the Application Auto Scaling calls to validate user permissions by default.
To filter out these alerts, use the invokedBy field, which will contain application-
autoscaling.amazonaws.com for these validation checks.

Access Application Auto Scaling using interface VPC endpoints

You can use Amazon PrivateLink to create a private connection between your VPC and Application
Auto Scaling. You can access Application Auto Scaling as if it were in your VPC, without the use of
an internet gateway, NAT device, VPN connection, or Amazon Direct Connect connection. Instances
in your VPC don't need public IP addresses to access Application Auto Scaling.

You establish this private connection by creating an interface endpoint, powered by Amazon
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Application Auto Scaling.

Amazon PrivateLink 250

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Application Auto Scaling User Guide

For more information, see Access Amazon Web Services services through Amazon PrivateLink in the
Amazon PrivateLink Guide.

Contents

• Create an interface VPC endpoint

• Create a VPC endpoint policy

Create an interface VPC endpoint

Create an endpoint for Application Auto Scaling using the following service name:

com.amazonaws.region.application-autoscaling

For more information, see Access an Amazon service using an interface VPC endpoint in the
Amazon PrivateLink Guide.

You do not need to change any other settings. Application Auto Scaling calls other Amazon
services using either service endpoints or private interface VPC endpoints, whichever are in use.

Create a VPC endpoint policy

You can attach a policy to your VPC endpoint to control access to the Application Auto Scaling API.
The policy specifies:

• The principal that can perform actions.

• The actions that can be performed.

• The resource on which the actions can be performed.

The following example shows a VPC endpoint policy that denies everyone permission to delete
a scaling policy through the endpoint. The example policy also grants everyone permission to
perform all other actions.

{
 "Statement": [
 {
 "Action": "*",
 "Effect": "Allow",

Create an interface VPC endpoint 251

https://docs.amazonaws.cn/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.amazonaws.cn/vpc/latest/privatelink/create-interface-endpoint.html

Application Auto Scaling User Guide

 "Resource": "*",
 "Principal": "*"
 },
 {
 "Action": "application-autoscaling:DeleteScalingPolicy",
 "Effect": "Deny",
 "Resource": "*",
 "Principal": "*"
 }
]
}

For more information, see VPC endpoint policies in the Amazon PrivateLink Guide.

Resilience in Application Auto Scaling

The Amazon global infrastructure is built around Amazon Regions and Availability Zones.

Amazon Regions provide multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically
fail over between zones without interruption. Availability Zones are more highly available, fault
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about Amazon Regions and Availability Zones, see Amazon global
infrastructure.

Infrastructure security in Application Auto Scaling

As a managed service, Application Auto Scaling is protected by Amazon global network security.
For information about Amazon security services and how Amazon protects infrastructure,
see Amazon Cloud Security. To design your Amazon environment using the best practices for
infrastructure security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected
Framework.

You use Amazon published API calls to access Application Auto Scaling through the network.
Clients must support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Resilience 252

https://docs.amazonaws.cn/vpc/latest/privatelink/vpc-endpoints-access.html#vpc-endpoint-policies
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html

Application Auto Scaling User Guide

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Compliance validation for Application Auto Scaling

To learn whether an Amazon Web Services service is within the scope of specific compliance
programs, see Amazon Web Services services in Scope by Compliance Program and choose the
compliance program that you are interested in. For general information, see Amazon Web Services
Compliance Programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading Reports in Amazon Artifact.

Your compliance responsibility when using Amazon Web Services services is determined by
the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. Amazon provides the following resources to help with compliance:

• Security & Compliance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• Amazon Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the Amazon Config Developer Guide – The Amazon Config
service assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• Amazon Security Hub – This Amazon Web Services service provides a comprehensive view of
your security state within Amazon. Security Hub uses security controls to evaluate your Amazon
resources and to check your compliance against security industry standards and best practices.
For a list of supported services and controls, see Security Hub controls reference.

• Amazon GuardDuty – This Amazon Web Services service detects potential threats to your
Amazon Web Services accounts, workloads, containers, and data by monitoring your
environment for suspicious and malicious activities. GuardDuty can help you address various

Compliance validation 253

https://docs.amazonaws.cn/STS/latest/APIReference/welcome.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://www.amazonaws.cn/solutions/technology/security/
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html
https://docs.amazonaws.cn/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.amazonaws.cn/guardduty/latest/ug/what-is-guardduty.html

Application Auto Scaling User Guide

compliance requirements, like PCI DSS, by meeting intrusion detection requirements mandated
by certain compliance frameworks.

Compliance validation 254

Application Auto Scaling User Guide

Quotas for Application Auto Scaling

Your Amazon Web Services account has default quotas, formerly referred to as limits, for each
Amazon Web Services service. Unless otherwise noted, each quota is Region-specific. You can
request increases for some quotas, and other quotas cannot be increased.

To view the quotas for Application Auto Scaling, open the Service Quotas console. In the
navigation pane, choose Amazon services and select Application Auto Scaling.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide.

Your Amazon Web Services account has the following quotas related to Application Auto Scaling.

Name Default Adjustable

Scalable targets per resource type Amazon DynamoDB: 5,000 | Amazon
ECS: 3,000 | Amazon Keyspaces:
1,500 | Other resource types: 500

Yes

Scaling policies per scalable target
(both step scaling and target
tracking policies)

50 No

Scheduled actions per scalable
target

200 No

Step adjustments per step scaling
policy

20 Yes

Keep service quotas in mind as you scale out your workloads. For example, when you reach the
maximum number of capacity units allowed by a service, scaling out will stop. If demand drops and
the current capacity decreases, Application Auto Scaling can scale out again. To avoid reaching this
capacity limit again, you can request an increase. Each service has its own default quotas for the
maximum capacity of the resource. For information about the default quotas for other Amazon
Web Services, see Service endpoints and quotas in the Amazon Web Services General Reference.

255

https://console.amazonaws.cn/servicequotas/home
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://docs.amazonaws.cn/general/latest/gr/aws-service-information.html

Application Auto Scaling User Guide

Document history for Application Auto Scaling

The following table describes important additions to the Application Auto Scaling documentation,
beginning in January 2018. For notification about updates to this documentation, you can
subscribe to the RSS feed.

Change Description Date

Add support for ElastiCache
Memcached clusters

Use Application Auto Scaling
to horizontally scale the
number of nodes for a
Memcached cluster. For more
information, see ElastiCache
and Application Auto Scaling.

April 10, 2025

Amazon managed policy
updates

Application Auto Scaling
updated the AWSApplic
ationAutoscalingEl
astiCacheRGPolicy
policy.

April 10, 2025

Guide changes New topic in the Applicati
on Auto Scaling User Guide
helps you get started using
predictive scaling with
Application Auto Scaling.
See Application Auto Scaling
predictive scaling.

November 21, 2024

Amazon managed policy
updates

Application Auto Scaling
updated the AWSApplic
ationAutoscalingEC
SServicePolicy policy.

November 21, 2024

Add support for a pool of
WorkSpaces

Use Application Auto Scaling
to scale a pool of WorkSpace
s. For more information, see

June 27, 2024

256

https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-elasticache.html
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-elasticache.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-predictive-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-predictive-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates

Application Auto Scaling User Guide

Amazon WorkSpaces and
Application Auto Scaling. The
topic Application Auto Scaling
updates to Amazon managed
policies has been updated
to list a new managed policy
for the integration with
WorkSpaces.

Guide changes Updated the Maximum
number of scalable targets
per resource type entry in the
quotas documentation. See
Quotas for Application Auto
Scaling.

January 16, 2024

Support for SageMaker AI
inference components

Use Application Auto Scaling
to scale copies of an inference
component.

November 29, 2023

Amazon managed policy
updates

Application Auto Scaling
updated the AWSApplic
ationAutoscalingSa
geMakerEndpointPol
icy policy.

November 13, 2023

Support for SageMaker
AI Serverless provisioned
concurrency

Use Application Auto Scaling
to scale the provisioned
concurrency of a serverless
endpoint.

May 9, 2023

Categorize your scalable
targets using tags

You can now assign metadata
to your Application Auto
Scaling scalable targets in
the form of tags. See Tagging
support for Application Auto
Scaling.

March 20, 2023

257

https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-workspaces.html
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-workspaces.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-quotas.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-quotas.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/resource-tagging-support.html
https://docs.amazonaws.cn/autoscaling/application/userguide/resource-tagging-support.html
https://docs.amazonaws.cn/autoscaling/application/userguide/resource-tagging-support.html

Application Auto Scaling User Guide

Support for CloudWatch
metric math

You can now use metric
math when you create target
tracking scaling policies. With
metric math, you can query
multiple CloudWatch metrics
and use math expressions to
create new time series based
on these metrics. See Create a
target tracking scaling policy
for Application Auto Scaling
using metric math.

March 14, 2023

Reasons for not scaling You can now retrieve the
machine-readable reasons for
Application Auto Scaling not
scaling your resources using
the Application Auto Scaling
API. See Scaling activities for
Application Auto Scaling.

January 4, 2023

Guide changes Updated the Maximum
number of scalable targets
per resource type entry in the
quotas documentation. See
Quotas for Application Auto
Scaling.

May 6, 2022

258

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking-metric-math.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking-metric-math.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking-metric-math.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking-metric-math.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scaling-activities.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-quotas.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-quotas.html

Application Auto Scaling User Guide

Add support for Amazon
Neptune clusters

Use Application Auto Scaling
to scale the number of
replicas in an Amazon
Neptune DB cluster. For more
information, see Amazon
Neptune and Application Auto
Scaling. The topic Applicati
on Auto Scaling updates to
Amazon managed policies
has been updated to list a
new managed policy for the
integration with Neptune.

October 6, 2021

Application Auto Scaling
now reports changes to its
Amazon managed policies

Beginning August 19, 2021,
changes to managed policies
are reported in the topic
Application Auto Scaling
updates to Amazon managed
policies. The first change
listed is the addition of
permissions needed for
ElastiCache (Redis OSS).

August 19, 2021

Add support for ElastiCache
(Redis OSS) replication groups

Use Application Auto Scaling
to scale the number of node
groups and the number of
replicas per node group for
an ElastiCache (Redis OSS)
replication group (cluster)
. For more information, see
ElastiCache (Redis OSS) and
Application Auto Scaling.

August 19, 2021

259

https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-neptune.html
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-neptune.html
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-neptune.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/security-iam-awsmanpol.html#policy-updates
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-elasticache.html
https://docs.amazonaws.cn/autoscaling/application/userguide/services-that-can-integrate-elasticache.html

Application Auto Scaling User Guide

Guide changes New IAM topics in the
Application Auto Scaling User
Guide help you troubleshoot
access to Application Auto
Scaling. For more informati
on, see Identity and Access
Management for Applicati
on Auto Scaling. Also added
new example IAM permissio
ns policies for actions on
target services and Amazon
CloudWatch. For more
information, see Example
policies for working with the
Amazon CLI or an SDK.

February 23, 2021

Add support for local time
zones

You can now create scheduled
actions in the local time zone.
If your time zone observes
daylight saving time, it
automatically adjusts for
Daylight Saving Time (DST).
For more information, see
Scheduled scaling.

February 2, 2021

Guide changes A new tutorial in the Applicati
on Auto Scaling User Guide
helps you understand how
to use target tracking scaling
policies and scheduled scaling
to increase the availability of
your application when using
Application Auto Scaling.

October 15, 2020

260

https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html
https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html
https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security_iam_id-based-policy-examples.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security_iam_id-based-policy-examples.html
https://docs.amazonaws.cn/autoscaling/application/userguide/security_iam_id-based-policy-examples.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-tutorial.html

Application Auto Scaling User Guide

Add support for Amazon
Managed Streaming for
Apache Kafka cluster storage

Use a target tracking scaling
policy to scale out the
amount of broker storage
associated with an Amazon
MSK cluster.

September 30, 2020

Add support for Amazon
Comprehend entity recognize
r endpoints

Use Application Auto Scaling
to scale the number of
inference units provisioned
for your Amazon Comprehend
entity recognizer endpoints.

September 28, 2020

Add support for Amazon
Keyspaces (for Apache
Cassandra) tables

Use Application Auto Scaling
to scale the provisioned
throughput (read and write
capacity) of an Amazon
Keyspaces table.

April 23, 2020

New "Security" chapter A new Security chapter
in the Application Auto
Scaling User Guide helps you
understand how to apply
the shared responsibility
model when using Applicati
on Auto Scaling. As part of
this update, the user guide
chapter "Authentication and
Access Control" has been
replaced by a new, more
useful section, Identity and
Access Management for
Application Auto Scaling.

January 16, 2020

Minor updates Various improvements and
corrections.

January 15, 2020

261

https://docs.amazonaws.cn/autoscaling/application/userguide/security.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html
https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html
https://docs.amazonaws.cn/autoscaling/application/userguide/auth-and-access-control.html

Application Auto Scaling User Guide

Add notification functionality Application Auto Scaling
now sends events to Amazon
EventBridge and notificat
ions to your Amazon Health
Dashboard when certain
actions occur. For more
information, see Application
Auto Scaling monitoring.

December 20, 2019

Add support for Amazon
Lambda functions

Use Application Auto Scaling
to scale the provisioned
concurrency of a Lambda
function.

December 3, 2019

Add support for Amazon
Comprehend document
classification endpoints

Use Application Auto Scaling
to scale the throughpu
t capacity of an Amazon
Comprehend document
classification endpoint.

November 25, 2019

Add AppStream 2.0 support
for target tracking scaling
policies

Use target tracking scaling
policies to scale the size of an
AppStream 2.0 fleet.

November 25, 2019

Support for Amazon VPC
endpoints

You can now establish a
private connection between
your VPC and Application
Auto Scaling. For migration
considerations and instructi
ons, see Application Auto
Scaling and interface VPC
endpoints.

November 22, 2019

262

https://docs.amazonaws.cn/autoscaling/application/userguide/monitoring-overview.html
https://docs.amazonaws.cn/autoscaling/application/userguide/monitoring-overview.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-vpc-endpoints.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-vpc-endpoints.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-vpc-endpoints.html

Application Auto Scaling User Guide

Suspend and resume scaling Added support for suspendin
g and resuming scaling.
For more information, see
Suspending and resuming
scaling for Application Auto
Scaling.

August 29, 2019

Guide changes Improved Application Auto
Scaling documentation in
the Scheduled scaling, Step
scaling policies, and Target
tracking scaling policies
sections.

March 11, 2019

Add support for custom
resources

Use Application Auto Scaling
to scale custom resources
provided by your own
applications or services. For
more information, see our
GitHub repository.

July 9, 2018

Add support for SageMaker AI
endpoint variants

Use Application Auto Scaling
to scale the number of
endpoint instances provision
ed for a variant.

February 28, 2018

The following table describes important changes to the Application Auto Scaling documentation
before January 2018.

Change Description Date

Add support for Aurora
Replicas

Use Application Auto Scaling
to scale the desired count. For
more information, see Using
Amazon Aurora Auto Scaling

November 17, 2017

263

https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-suspend-resume-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-step-scaling-policies.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://github.com/aws/aws-auto-scaling-custom-resource
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html

Application Auto Scaling User Guide

Change Description Date

with Aurora replicas in the
Amazon RDS User Guide.

Add support for scheduled
scaling

Use scheduled scaling to scale
resources at specific preset
times or intervals. For more
information, see Scheduled
scaling for Application Auto
Scaling.

November 8, 2017

Add support for target
tracking scaling policies

Use target tracking scaling
policies to set up dynamic
scaling for your application
in just a few simple steps. For
more information, see Target
tracking scaling policies for
Application Auto Scaling.

July 12, 2017

Add support for provisioned
read and write capacity for
DynamoDB tables and global
secondary indexes

Use Application Auto
Scaling to scale provisioned
throughput (read and write
capacity). For more informati
on, see Managing throughpu
t capacity with DynamoDB
Auto Scaling in the Amazon
DynamoDB Developer Guide.

June 14, 2017

Add support for AppStream
2.0 fleets

Use Application Auto Scaling
to scale the size of the
fleet. For more information,
see Fleet Auto Scaling for
AppStream 2.0 in the Amazon
AppStream 2.0 Administration
Guide.

March 23, 2017

264

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Integrating.AutoScaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-scheduled-scaling.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/autoscaling/application/userguide/application-auto-scaling-target-tracking.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/AutoScaling.html
https://docs.amazonaws.cn/appstream2/latest/developerguide/autoscaling.html
https://docs.amazonaws.cn/appstream2/latest/developerguide/autoscaling.html

Application Auto Scaling User Guide

Change Description Date

Add support for Amazon EMR
clusters

Use Application Auto Scaling
to scale the core and task
nodes. For more information,
see Using automatic scaling in
Amazon EMR in the Amazon
EMR Management Guide.

November 18, 2016

Add support for Spot Fleets Use Application Auto Scaling
to scale the target capacity.
For more information, see
Automatic scaling for Spot
fleet in the Amazon EC2 User
Guide.

September 1, 2016

Add support for Amazon ECS
services

Use Application Auto Scaling
to scale the desired count.
For more information, see
Service Auto Scaling in the
Amazon Elastic Container
Service Developer Guide.

August 9, 2016

265

https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-automatic-scaling.html
https://docs.amazonaws.cn/emr/latest/ManagementGuide/emr-automatic-scaling.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/spot-fleet-automatic-scaling.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/spot-fleet-automatic-scaling.html
https://docs.amazonaws.cn/AmazonECS/latest/developerguide/service-auto-scaling.html

	Application Auto Scaling
	Table of Contents
	What is Application Auto Scaling?
	Features of Application Auto Scaling
	Work with Application Auto Scaling
	Application Auto Scaling concepts
	Learn more

	Amazon Web Services services that you can use with Application Auto Scaling
	Amazon AppStream 2.0 and Application Auto Scaling
	Service-linked role created for AppStream 2.0
	Service principal used by the service-linked role
	Registering AppStream 2.0 fleets as scalable targets with Application Auto Scaling
	Related resources

	Amazon Aurora and Application Auto Scaling
	Service-linked role created for Aurora
	Service principal used by the service-linked role
	Registering Aurora DB clusters as scalable targets with Application Auto Scaling
	Related resources

	Amazon Comprehend and Application Auto Scaling
	Service-linked role created for Amazon Comprehend
	Service principal used by the service-linked role
	Registering Amazon Comprehend resources as scalable targets with Application Auto Scaling
	Related resources

	Amazon DynamoDB and Application Auto Scaling
	Service-linked role created for DynamoDB
	Service principal used by the service-linked role
	Registering DynamoDB resources as scalable targets with Application Auto Scaling
	Related resources

	Amazon ECS and Application Auto Scaling
	Service-linked role created for Amazon ECS
	Service principal used by the service-linked role
	Registering ECS services as scalable targets with Application Auto Scaling
	Related resources

	ElastiCache and Application Auto Scaling
	Service-linked role created for ElastiCache
	Service principal used by the service-linked role
	Registering ElastiCache resources as scalable targets with Application Auto Scaling
	Related resources

	Amazon Keyspaces (for Apache Cassandra) and Application Auto Scaling
	Service-linked role created for Amazon Keyspaces
	Service principal used by the service-linked role
	Registering Amazon Keyspaces tables as scalable targets with Application Auto Scaling
	Related resources

	Amazon Lambda and Application Auto Scaling
	Service-linked role created for Lambda
	Service principal used by the service-linked role
	Registering Lambda functions as scalable targets with Application Auto Scaling
	Related resources

	Amazon Managed Streaming for Apache Kafka (MSK) and Application Auto Scaling
	Service-linked role created for Amazon MSK
	Service principal used by the service-linked role
	Registering Amazon MSK cluster storage as scalable targets with Application Auto Scaling
	Related resources

	Amazon Neptune and Application Auto Scaling
	Service-linked role created for Neptune
	Service principal used by the service-linked role
	Registering Neptune clusters as scalable targets with Application Auto Scaling
	Related resources

	Amazon SageMaker AI and Application Auto Scaling
	Service-linked role created for SageMaker AI
	Service principal used by the service-linked role
	Registering SageMaker AI endpoint variants as scalable targets with Application Auto Scaling
	Registering the provisioned concurrency of serverless endpoints as scalable targets with Application Auto Scaling
	Registering inference components as scalable targets with Application Auto Scaling
	Related resources

	Amazon EC2 Spot Fleet and Application Auto Scaling
	Service-linked role created for Spot Fleet
	Service principal used by the service-linked role
	Registering Spot Fleets as scalable targets with Application Auto Scaling
	Related resources

	Amazon WorkSpaces and Application Auto Scaling
	Service-linked role created for WorkSpaces
	Service principal used by the service-linked role
	Registering WorkSpaces pools as scalable targets with Application Auto Scaling
	Related resources

	Custom resources and Application Auto Scaling
	Service-linked role created for custom resources
	Service principal used by the service-linked role
	Registering custom resources as scalable targets with Application Auto Scaling
	Related resources

	Configure Application Auto Scaling resources using Amazon CloudFormation
	Application Auto Scaling and Amazon CloudFormation templates
	Example template snippets
	Learn more about Amazon CloudFormation

	Scheduled scaling for Application Auto Scaling
	How scheduled scaling for Application Auto Scaling works
	How it works
	Considerations
	Commonly used commands for scheduled action creation, management, and deletion
	Related resources
	Limitations

	Create scheduled actions for Application Auto Scaling using the Amazon CLI
	Create a scheduled action that occurs only once
	Create a scheduled action that runs on a recurring interval
	Create a scheduled action that runs on a recurring schedule
	Create a one-time scheduled action that specifies a time zone
	Create a recurring scheduled action that specifies a time zone

	Describe scheduled scaling for Application Auto Scaling using the Amazon CLI
	Describe scaling activities for a service
	Describe the scheduled actions for a service
	Describe the scheduled actions for a scalable target

	Schedule recurring scaling actions using Application Auto Scaling
	Turn off scheduled scaling for a scalable target
	Delete a scheduled action for Application Auto Scaling using the Amazon CLI

	Target tracking scaling policies for Application Auto Scaling
	How target tracking scaling for Application Auto Scaling works
	How it works
	Choose metrics
	Define target value
	Define cooldown periods
	Considerations
	Multiple scaling policies
	Commonly used commands for scaling policy creation, management, and deletion
	Related resources
	Limitations

	Create a target tracking scaling policy for Application Auto Scaling using the Amazon CLI
	Step 1: Register a scalable target
	Step 2: Create a target tracking scaling policy
	Step 3: Describe target tracking scaling policies

	Delete a target tracking scaling policy for Application Auto Scaling using the Amazon CLI
	Create a target tracking scaling policy for Application Auto Scaling using metric math
	Example: Amazon SQS queue backlog per task
	Limitations

	Step scaling policies for Application Auto Scaling
	How step scaling for Application Auto Scaling works
	How it works
	Step adjustments
	Scaling adjustment types
	Cooldown period
	Commonly used commands for scaling policy creation, management, and deletion
	Considerations
	Related resources
	Console access

	Create a step scaling policy for Application Auto Scaling using the Amazon CLI
	Step 1: Register a scalable target
	Step 2: Create a step scaling policy
	Step 3: Create an alarm that invokes a scaling policy

	Describe step scaling policies for Application Auto Scaling using the Amazon CLI
	Delete a step scaling policy for Application Auto Scaling using the Amazon CLI

	Predictive scaling for Application Auto Scaling
	How Application Auto Scaling predictive scaling works
	Maximum capacity limit
	Commonly used commands for scaling policy creation, management, and deletion
	Considerations

	Create a predictive scaling policy for Application Auto Scaling
	Override forecast values using scheduled actions
	Step 1: (Optional) Analyze time series data
	Step 2: Create two scheduled actions
	Scaling based on recurring schedules

	Advanced predictive scaling policy using custom metrics
	Best practices
	Prerequisites
	Constructing the JSON for custom metrics
	Example predictive scaling policy with custom load and scaling metrics (Amazon CLI)
	Use metric math expressions
	Understand metric math
	Example predictive scaling policy for Amazon EC2 Auto Scaling that combines metrics using metric math (Amazon CLI)
	Example predictive scaling policy to use in a blue/green deployment scenario (Amazon CLI)

	Considerations for custom metrics in a predictive scaling policy

	Tutorial: Configure auto scaling to handle a heavy workload
	Prerequisites
	Step 1: Register your scalable target
	Step 2: Set up scheduled actions according to your requirements
	Step 3: Add a target tracking scaling policy
	Step 4: Next steps
	Step 5: Clean up

	Suspend and resume scaling for Application Auto Scaling
	Scaling activities
	Suspend and resume scaling activities
	View suspended scaling activities
	Resume scaling activities

	Scaling activities for Application Auto Scaling
	Look up scaling activities by scalable target
	Include not scaled activities
	Reason codes

	Monitoring Application Auto Scaling
	Monitor usage of scalable resources using CloudWatch
	CloudWatch metrics for monitoring resource usage
	Predefined metrics for target tracking scaling policies

	Log Application Auto Scaling API calls using Amazon CloudTrail
	Application Auto Scaling management events in CloudTrail
	Application Auto Scaling event examples
	Application Auto Scaling RemoveAction calls on CloudWatch

	Monitor Application Auto Scaling events using Amazon EventBridge
	Application Auto Scaling events
	Event for state change: scaled to max
	Events for API calls via CloudTrail

	Using this service with an Amazon SDK
	Code examples for Application Auto Scaling using Amazon SDKs
	Basic examples for Application Auto Scaling using Amazon SDKs
	Actions for Application Auto Scaling using Amazon SDKs
	Use DeleteScalingPolicy with an Amazon SDK or CLI
	Use DeleteScheduledAction with a CLI
	Use DeregisterScalableTarget with a CLI
	Use DescribeScalableTargets with a CLI
	Use DescribeScalingActivities with a CLI
	Use DescribeScalingPolicies with an Amazon SDK or CLI
	Use DescribeScheduledActions with a CLI
	Use PutScalingPolicy with a CLI
	Use PutScheduledAction with a CLI
	Use RegisterScalableTarget with an Amazon SDK or CLI

	Tagging support for Application Auto Scaling
	Tagging example
	Tags for security
	Control access to tags

	Security in Application Auto Scaling
	Data protection in Application Auto Scaling
	Identity and Access Management for Application Auto Scaling
	Access control
	How Application Auto Scaling works with IAM
	Application Auto Scaling identity-based policies
	Identity-based policy examples for Application Auto Scaling
	Actions
	Resources
	Condition keys

	Resource-based policies
	Access Control Lists (ACLs)
	ABAC with Application Auto Scaling
	Using temporary credentials with Application Auto Scaling
	Service roles
	Service-linked roles

	Amazon managed policies for Application Auto Scaling
	Amazon managed policy: AppStream 2.0 and CloudWatch
	Amazon managed policy: Aurora and CloudWatch
	Amazon managed policy: Amazon Comprehend and CloudWatch
	Amazon managed policy: DynamoDB and CloudWatch
	Amazon managed policy: Amazon ECS and CloudWatch
	Amazon managed policy: ElastiCache and CloudWatch
	Amazon managed policy: Amazon Keyspaces and CloudWatch
	Amazon managed policy: Lambda and CloudWatch
	Amazon managed policy: Amazon MSK and CloudWatch
	Amazon managed policy: Neptune and CloudWatch
	Amazon managed policy: SageMaker AI and CloudWatch
	Amazon managed policy: EC2 Spot Fleet and CloudWatch
	Amazon managed policy: WorkSpaces and CloudWatch
	Amazon managed policy: custom resources and CloudWatch
	Application Auto Scaling updates to Amazon managed policies

	Service-linked roles for Application Auto Scaling
	Permissions required to create a service-linked role
	Create service-linked roles (automatic)
	Create service-linked roles (manual)
	Edit the service-linked roles
	Delete the service-linked roles
	Supported Regions for Application Auto Scaling service-linked roles
	Service-linked role ARN reference

	Application Auto Scaling identity-based policy examples
	Permissions required for Application Auto Scaling API actions
	Permissions required for API actions on target services and CloudWatch
	AppStream 2.0 fleets
	Aurora replicas
	Amazon Comprehend document classification and entity recognizer endpoints
	DynamoDB tables and global secondary indexes
	ECS services
	ElastiCache replication groups
	Amazon EMR clusters
	Amazon Keyspaces tables
	Lambda functions
	Amazon Managed Streaming for Apache Kafka (MSK) broker storage
	Neptune clusters
	SageMaker AI endpoints
	Spot Fleets (Amazon EC2)
	Custom resources

	Permissions for working in the Amazon Web Services Management Console

	Troubleshooting access to Application Auto Scaling
	I am not authorized to perform an action in Application Auto Scaling
	I'm an administrator and my IAM policy returned an error or isn't working as expected

	Permissions validation for Application Auto Scaling API calls on target resources

	Access Application Auto Scaling using interface VPC endpoints
	Create an interface VPC endpoint
	Create a VPC endpoint policy

	Resilience in Application Auto Scaling
	Infrastructure security in Application Auto Scaling
	Compliance validation for Application Auto Scaling

	Quotas for Application Auto Scaling
	Document history for Application Auto Scaling

