This documentation is for Version 1 of the Amazon CLI only. For documentation related to Version 2 of the Amazon CLI, see the Version 2 User Guide.
Amazon Glue examples using Amazon CLI
The following code examples show you how to perform actions and implement common scenarios by using the Amazon Command Line Interface with Amazon Glue.
Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.
Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.
Topics
Actions
The following code example shows how to use batch-stop-job-run
.
- Amazon CLI
-
To stop job runs
The following
batch-stop-job-run
example stops a job runs.aws glue batch-stop-job-run \ --job-name
"my-testing-job"
\ --job-run-idjr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f
Output:
{ "SuccessfulSubmissions": [ { "JobName": "my-testing-job", "JobRunId": "jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f" } ], "Errors": [], "ResponseMetadata": { "RequestId": "66bd6b90-01db-44ab-95b9-6aeff0e73d88", "HTTPStatusCode": 200, "HTTPHeaders": { "date": "Fri, 16 Oct 2020 20:54:51 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "148", "connection": "keep-alive", "x-amzn-requestid": "66bd6b90-01db-44ab-95b9-6aeff0e73d88" }, "RetryAttempts": 0 } }
For more information, see Job Runs
in the Amazon Glue Developer Guide. -
For API details, see BatchStopJobRun
in Amazon CLI Command Reference.
-
The following code example shows how to use create-connection
.
- Amazon CLI
-
To create a connection for Amazon Glue data stores
The following
create-connection
example creates a connection in the Amazon Glue Data Catalog that provides connection information for a Kafka data store.aws glue create-connection \ --connection-input '
{ \ "Name":"conn-kafka-custom", \ "Description":"kafka connection with ssl to custom kafka", \ "ConnectionType":"KAFKA", \ "ConnectionProperties":{ \ "KAFKA_BOOTSTRAP_SERVERS":"<Kafka-broker-server-url>:<SSL-Port>", \ "KAFKA_SSL_ENABLED":"true", \ "KAFKA_CUSTOM_CERT": "s3://bucket/prefix/cert-file.pem" \ }, \ "PhysicalConnectionRequirements":{ \ "SubnetId":"subnet-1234", \ "SecurityGroupIdList":["sg-1234"], \ "AvailabilityZone":"us-east-1a"} \ }
' \ --regionus-east-1
--endpointhttps://glue.us-east-1.amazonaws.com
This command produces no output.
For more information, see Defining Connections in the Amazon Glue Data Catalog
in the Amazon Glue Developer Guide. -
For API details, see CreateConnection
in Amazon CLI Command Reference.
-
The following code example shows how to use create-database
.
- Amazon CLI
-
To create a database
The following
create-database
example creates a database in the Amazon Glue Data Catalog.aws glue create-database \ --database-input "{\"Name\":\"tempdb\"}" \ --profile
my_profile
\ --endpointhttps://glue.us-east-1.amazonaws.com
This command produces no output.
For more information, see Defining a Database in Your Data Catalog
in the Amazon Glue Developer Guide. -
For API details, see CreateDatabase
in Amazon CLI Command Reference.
-
The following code example shows how to use create-job
.
- Amazon CLI
-
To create a job to transform data
The following
create-job
example creates a streaming job that runs a script stored in S3.aws glue create-job \ --name
my-testing-job
\ --roleAWSGlueServiceRoleDefault
\ --command '{ \ "Name": "gluestreaming", \ "ScriptLocation": "s3://DOC-EXAMPLE-BUCKET/folder/" \ }
' \ --regionus-east-1
\ --outputjson
\ --default-arguments '{ \ "--job-language":"scala", \ "--class":"GlueApp" \ }
' \ --profilemy-profile
\ --endpointhttps://glue.us-east-1.amazonaws.com
Contents of
test_script.scala
:import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }
Output:
{ "Name": "my-testing-job" }
For more information, see Authoring Jobs in Amazon Glue
in the Amazon Glue Developer Guide. -
For API details, see CreateJob
in Amazon CLI Command Reference.
-
The following code example shows how to use create-table
.
- Amazon CLI
-
Example 1: To create a table for a Kinesis data stream
The following
create-table
example creates a table in the Amazon Glue Data Catalog that describes a Kinesis data stream.aws glue create-table \ --database-name
tempdb
\ --table-input '{"Name":"test-kinesis-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"my-testing-stream", \ "Parameters":{ \ "typeOfData":"kinesis","streamName":"my-testing-stream", \ "kinesisUrl":"https://kinesis.us-east-1.amazonaws.com" \ }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }
' \ --profilemy-profile
\ --endpointhttps://glue.us-east-1.amazonaws.com
This command produces no output.
For more information, see Defining Tables in the Amazon Glue Data Catalog
in the Amazon Glue Developer Guide. Example 2: To create a table for a Kafka data store
The following
create-table
example creates a table in the Amazon Glue Data Catalog that describes a Kafka data store.aws glue create-table \ --database-name
tempdb
\ --table-input '{"Name":"test-kafka-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"glue-topic", \ "Parameters":{ \ "typeOfData":"kafka","topicName":"glue-topic", \ "connectionName":"my-kafka-connection" }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.apache.hadoop.hive.serde2.OpenCSVSerde"} \ }, \ "Parameters":{ \ "separatorChar":","} \ }
' \ --profilemy-profile
\ --endpointhttps://glue.us-east-1.amazonaws.com
This command produces no output.
For more information, see Defining Tables in the Amazon Glue Data Catalog
in the Amazon Glue Developer Guide. Example 3: To create a table for a Amazon S3 data store
The following
create-table
example creates a table in the Amazon Glue Data Catalog that describes a Amazon Simple Storage Service (Amazon S3) data store.aws glue create-table \ --database-name
tempdb
\ --table-input '{"Name":"s3-output", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"s1", "Type":"string"}, \ {"Name":"s2", "Type":"int"}, \ {"Name":"s3", "Type":"string"} ], \ "Location":"s3://bucket-path/", \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }
' \ --profilemy-profile
\ --endpointhttps://glue.us-east-1.amazonaws.com
This command produces no output.
For more information, see Defining Tables in the Amazon Glue Data Catalog
in the Amazon Glue Developer Guide. -
For API details, see CreateTable
in Amazon CLI Command Reference.
-
The following code example shows how to use delete-job
.
- Amazon CLI
-
To delete a job
The following
delete-job
example deletes a job that is no longer needed.aws glue delete-job \ --job-name
my-testing-job
Output:
{ "JobName": "my-testing-job" }
For more information, see Working with Jobs on the Amazon Glue Console
in the Amazon Glue Developer Guide. -
For API details, see DeleteJob
in Amazon CLI Command Reference.
-
The following code example shows how to use get-databases
.
- Amazon CLI
-
To list the definitions of some or all of the databases in the Amazon Glue Data Catalog
The following
get-databases
example returns information about the databases in the Data Catalog.aws glue get-databases
Output:
{ "DatabaseList": [ { "Name": "default", "Description": "Default Hive database", "LocationUri": "file:/spark-warehouse", "CreateTime": 1602084052.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "flights-db", "CreateTime": 1587072847.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "legislators", "CreateTime": 1601415625.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "tempdb", "CreateTime": 1601498566.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" } ] }
For more information, see Defining a Database in Your Data Catalog
in the Amazon Glue Developer Guide. -
For API details, see GetDatabases
in Amazon CLI Command Reference.
-
The following code example shows how to use get-job-run
.
- Amazon CLI
-
To get information about a job run
The following
get-job-run
example retrieves information about a job run.aws glue get-job-run \ --job-name
"Combine legistators data"
\ --run-idjr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e
Output:
{ "JobRun": { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "Combine legistators data", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } }
For more information, see Job Runs
in the Amazon Glue Developer Guide. -
For API details, see GetJobRun
in Amazon CLI Command Reference.
-
The following code example shows how to use get-job-runs
.
- Amazon CLI
-
To get information about all job runs for a job
The following
get-job-runs
example retrieves information about job runs for a job.aws glue get-job-runs \ --job-name
"my-testing-job"
Output:
{ "JobRuns": [ { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "my-testing-job", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2", "Attempt": 2, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "JobName": "my-testing-job", "StartedOn": 1602811168.496, "LastModifiedOn": 1602811282.39, "CompletedOn": 1602811282.39, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 021AAB703DB20A2D; S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 110, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "Attempt": 1, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f", "JobName": "my-testing-job", "StartedOn": 1602811020.518, "LastModifiedOn": 1602811138.364, "CompletedOn": 1602811138.364, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 2671D37856AE7ABB; S3 Extended Request ID: RLJCJw20brV+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 113, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } ] }
For more information, see Job Runs
in the Amazon Glue Developer Guide. -
For API details, see GetJobRuns
in Amazon CLI Command Reference.
-
The following code example shows how to use get-job
.
- Amazon CLI
-
To retrieve information about a job
The following
get-job
example retrieves information about a job.aws glue get-job \ --job-name
my-testing-job
Output:
{ "Job": { "Name": "my-testing-job", "Role": "Glue_DefaultRole", "CreatedOn": 1602805698.167, "LastModifiedOn": 1602805698.167, "ExecutionProperty": { "MaxConcurrentRuns": 1 }, "Command": { "Name": "gluestreaming", "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala", "PythonVersion": "2" }, "DefaultArguments": { "--class": "GlueApp", "--job-language": "scala" }, "MaxRetries": 0, "AllocatedCapacity": 10, "MaxCapacity": 10.0, "GlueVersion": "1.0" } }
For more information, see Jobs
in the Amazon Glue Developer Guide. -
For API details, see GetJob
in Amazon CLI Command Reference.
-
The following code example shows how to use get-plan
.
- Amazon CLI
-
To get the generated code for mapping data from source tables to target tables
The following
get-plan
retrieves the generated code for mapping columns from the data source to the data target.aws glue get-plan --mapping '
[ \ { \ "SourcePath":"sensorid", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"sensorid", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"currenttemperature", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"currenttemperature", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"status", \ "SourceTable":"anything", \ "SourceType":"string", \ "TargetPath":"status", \ "TargetTable":"anything", \ "TargetType":"string" \ }]
' \ --source '{ \ "DatabaseName":"tempdb", \ "TableName":"s3-source" \ }
' \ --sinks '[ \ { \ "DatabaseName":"tempdb", \ "TableName":"my-s3-sink" \ }]
' --language"scala"
--endpointhttps://glue.us-east-1.amazonaws.com
--output"text"
Output:
import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }
For more information, see Editing Scripts in Amazon Glue
in the Amazon Glue Developer Guide. -
For API details, see GetPlan
in Amazon CLI Command Reference.
-
The following code example shows how to use get-tables
.
- Amazon CLI
-
To list the definitions of some or all of the tables in the specified database
The following
get-tables
example returns information about the tables in the specified database.aws glue get-tables --database-name '
tempdb
'Output:
{ "TableList": [ { "Name": "my-s3-sink", "DatabaseName": "tempdb", "CreateTime": 1602730539.0, "UpdateTime": 1602730539.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/test-s3-output/", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "s3-source", "DatabaseName": "tempdb", "CreateTime": 1602730658.0, "UpdateTime": 1602730658.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/", "Compressed": false, "NumberOfBuckets": 0, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "test-kinesis-input", "DatabaseName": "tempdb", "CreateTime": 1601507001.0, "UpdateTime": 1601507001.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "my-testing-stream", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "Parameters": { "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com", "streamName": "my-testing-stream", "typeOfData": "kinesis" }, "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" } ] }
For more information, see Defining Tables in the Amazon Glue Data Catalog
in the Amazon Glue Developer Guide. -
For API details, see GetTables
in Amazon CLI Command Reference.
-
The following code example shows how to use start-crawler
.
- Amazon CLI
-
To start a crawler
The following
start-crawler
example starts a crawler.aws glue start-crawler --name
my-crawler
Output:
None
For more information, see Defining Crawlers
in the Amazon Glue Developer Guide. -
For API details, see StartCrawler
in Amazon CLI Command Reference.
-
The following code example shows how to use start-job-run
.
- Amazon CLI
-
To start running a job
The following
start-job-run
example starts a job.aws glue start-job-run \ --job-name
my-job
Output:
{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }
For more information, see Authoring Jobs
in the Amazon Glue Developer Guide. -
For API details, see StartJobRun
in Amazon CLI Command Reference.
-