
Hooks User Guide

Amazon CloudFormation

Amazon CloudFormation Hooks User Guide

Amazon CloudFormation: Hooks User Guide

Amazon CloudFormation Hooks User Guide

Table of Contents

What are Amazon CloudFormation Hooks? ... 1
Hook implementation options ... 1

Amazon Control Tower proactive controls .. 1
Guard rules ... 1
Lambda functions ... 2
Custom Hooks .. 2

Creating and managing Hooks ... 3
Concepts ... 5

Hook ... 5
Failure mode .. 6
Hook targets ... 6
Target actions .. 7
Annotations .. 7
Hook handler ... 7
Timeout and retry limits ... 8

Proactive controls as Hooks ... 8
Amazon CLI commands for working with Hooks ... 9
Activate a proactive control-based Hook ... 9
Delete proactive control-based Hooks ... 13

Guard Hooks .. 14
Amazon CLI commands for working with Guard Hooks ... 15
Write Guard rules for Hooks .. 15
Prepare to create a Guard Hook ... 29
Activate a Guard Hook .. 31
View logs for Guard Hooks ... 36
Delete Guard Hooks ... 37

Lambda Hooks .. 38
Amazon CLI commands for working with Lambda Hooks ... 38
Create Lambda functions for Hooks ... 39
Prepare to create a Lambda Hook .. 63
Activate a Lambda Hook ... 65
View logs for Lambda Hooks ... 69
Delete Lambda Hooks .. 70

Custom Hooks ... 71

iii

Amazon CloudFormation Hooks User Guide

Prerequisites ... 72
Initiating a Hooks project ... 74
Modeling Hooks .. 77
Registering Hooks ... 145
Testing Hooks .. 149
Updating Hooks .. 159
Deregistering Hooks ... 159
Publishing Hooks .. 160
Schema syntax .. 168

Disable-enable Hooks .. 177
Disable and enable a Hook (console) .. 177
Disable and enable a Hook (Amazon CLI) .. 178

View Hook invocation results ... 179
View invocation results (console) ... 179

View results for all Hooks .. 179
View invocation history for individual Hooks ... 180
View results for stack-specific invocations .. 180

View invocation results (Amazon CLI) ... 181
Configuration schema ... 186

Hook configuration schema properties ... 186
Hook configuration examples ... 188
Stack level filters ... 188

FilteringCriteria ... 189
StackNames .. 190
StackRoles .. 191
Include and Exclude ... 192
Examples of stack level filters ... 192

Target filters .. 196
Examples of target filters ... 198

Using wildcards .. 200
Create Hooks using CloudFormation templates .. 209
Grant IAM permissions .. 211

Allow a user to manage Hooks .. 212
Allow a user to publish custom Hooks publicly .. 213
Allow a user to view Hook invocation results .. 213

List Hook invocation results ... 214

iv

Amazon CloudFormation Hooks User Guide

Allow a user to view detailed Hook invocation results .. 216
Amazon KMS key policy and permissions .. 217

Overview ... 218
Encryption context ... 219
Customer managed KMS key policy ... 219
KMS permissions for SetTypeConfiguration API .. 222
KMS permissions for GetHookResult API .. 223

Document history .. 225

v

Amazon CloudFormation Hooks User Guide

What are Amazon CloudFormation Hooks?

Amazon CloudFormation Hooks is a feature that helps ensure that your CloudFormation
resources, stacks, and change sets comply with your organization's security, operational, and cost
optimization best practices. CloudFormation Hooks can also ensure this same level of compliance
for your Amazon Cloud Control API resources. With CloudFormation Hooks, you can provide code
that proactively inspects the configuration of your Amazon resources before provisioning. If non-
compliant resources are found, Amazon CloudFormation either fails the operation and prevents
the resources from being provisioned or emits a warning and allows the provisioning operation to
continue.

You can use Hooks to enforce a variety of requirements and guidelines. For example, a security-
related Hook can verify that security groups have appropriate inbound and outbound traffic rules
for your Amazon VPC. A cost-related Hook can restrict development environments to use only
smaller Amazon EC2 instance types. A Hook designed for data availability can enforce automatic
backups for Amazon RDS.

Hook implementation options

CloudFormation provides multiple options for implementing Hooks, giving you flexibility to choose
the approach that best suits your needs.

Amazon Control Tower proactive controls

The Amazon Control Tower Control Catalog offers standardized proactive controls that you
can implement as Hooks. This approach saves setup time and helps you validate resource
configurations against Amazon best practices across your organization without writing code.

Guard rules

Amazon CloudFormation Guard is a policy-as-code evaluation tool that provides a domain-specific
language for writing custom evaluation logic for Hooks. This approach allows you to define
compliance checks using Guard's declarative syntax, making it easy to create and maintain your
evaluation logic without extensive programming knowledge.

Hook implementation options 1

https://docs.amazonaws.cn/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/concepts.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/Welcome.html

Amazon CloudFormation Hooks User Guide

Lambda functions

You can also implement Hooks using Lambda functions, allowing you to leverage the full power
and flexibility of Lambda for your evaluation logic. You can use any Lambda-supported runtime
language and integrate with other Amazon services as needed.

Custom Hooks

For advanced use cases, you can write your own evaluation logic using programming languages
supported by the CloudFormation CLI. This approach provides maximum flexibility for
implementing organization-specific governance requirements. As a supported extension type in
the Amazon CloudFormation registry, your custom Hooks can be distributed and activated both
publicly and privately.

Lambda functions 2

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/registry.html

Amazon CloudFormation Hooks User Guide

Creating and managing Amazon CloudFormation Hooks

Amazon CloudFormation Hooks provide a mechanism to evaluate your CloudFormation resources
before allowing stack creation, modification, or deletion. This feature helps you ensure that
your CloudFormation resources comply with your organization's security, operational, and cost
optimization best practices.

To create a Hook, you have four options.

• Proactive controls as Hooks – Evaluates resources using proactive controls from the Amazon
Control Tower Control Catalog.

• Guard Hook – Evaluates resources using an Amazon CloudFormation Guard rule.

• Lambda Hook – Forwards requests for resource evaluation to an Amazon Lambda function.

• Custom Hook – Uses a custom Hook handler that you manually develop.

Proactive controls as Hooks

To create a Hook from proactive controls, follow these steps:

1. Navigate to the CloudFormation console and begin creating a Hook.

2. Choose specific controls from the Control Catalog that you want your Hook to evaluate
resources against.

These controls will automatically apply whenever specified resources are created or
updated. Your selection determines which resource types the Hook will evaluate.

3. Set the Hook mode to either warn users about non-compliance or prevent non-compliant
operations.

4. Configure optional filters to include or exclude stacks by stack name or stack role.

5. After completing the configuration, activate the Hook to begin enforcement.

Guard Hook

To create a Guard Hook, follow these steps:

1. Write your resource evaluation logic as a Guard policy rule using the Guard domain-specific
language (DSL).

3

Amazon CloudFormation Hooks User Guide

2. Store the Guard policy rule in an Amazon S3 bucket.

3. Navigate to the CloudFormation console and begin creating a Guard Hook.

4. Provide the Amazon S3 path to your Guard rule.

5. Choose the specific target types that the Hook will evaluate.

• CloudFormation resources (RESOURCE)

• Entire stack templates (STACK)

• Change sets (CHANGE_SET)

• Cloud Control API resources (CLOUD_CONTROL)

6. Choose the deployment actions (create, update, delete) that will invoke your Hook.

7. Choose how the Hook responds when it fails evaluation.

8. Configure optional filters to specify which resource types the Hook should evaluate

9. Configure optional filters to include or exclude stacks by stack name or stack role.

10. After completing the configuration, activate the Hook to begin enforcement.

Lambda Hook

To create a Lambda Hook, follow these steps:

1. Write your resource evaluation logic as a Lambda function.

2. Navigate to the CloudFormation console and begin creating a Lambda Hook.

3. Provide the Amazon Resource Name (ARN) for your Lambda function.

4. Choose the specific target types that the Hook will evaluate.

• CloudFormation resources (RESOURCE)

• Entire stack templates (STACK)

• Change sets (CHANGE_SET)

• Cloud Control API resources (CLOUD_CONTROL)

5. Choose the deployment actions (create, update, delete) that will invoke your Hook.

6. Choose how the Hook responds when it fails evaluation.

7. Configure optional filters to specify which resource types the Hook should evaluate

8. Configure optional filters to include or exclude stacks by stack name or stack role.

4

Amazon CloudFormation Hooks User Guide

9. After completing the configuration, activate the Hook to begin enforcement.

Custom Hook

Custom Hooks are extensions that you register in the CloudFormation registry using the
CloudFormation Command Line Interface (CFN-CLI).

To create a custom Hook, follow these main steps:

1. Initiate the project – Generate the files needed to develop a custom Hook.

2. Model the Hook – Write a schema that defines the Hook and the handlers that specify the
operations that can invoke the Hook.

3. Register and activate the Hook – After you have created a Hook, you need to register it in
the account and Region where you want to use it and this activates it.

The following topics provide more information for creating and managing Hooks.

Topics

• Amazon CloudFormation Hooks concepts

• Amazon Control Tower proactive controls as Hooks

• Guard Hooks

• Lambda Hooks

• Developing custom Hooks using the CloudFormation CLI

Amazon CloudFormation Hooks concepts

The following terminology and concepts are central to your understanding and use of Amazon
CloudFormation Hooks.

Hook

A Hook contains code that is invoked immediately before CloudFormation creates, updates, or
deletes stacks or specific resources. It can also be invoked during a create change set operation.
Hooks can inspect the template, resources, or change set that CloudFormation is about to
provision. Additionally, Hooks can be invoked immediately before the Cloud Control API creates,
update, or deletes specific resources.

Concepts 5

https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

Amazon CloudFormation Hooks User Guide

If a Hook identifies any configurations that don't comply with the organizational guidelines defined
in your Hook logic, then you may choose to either WARN users or FAIL, preventing CloudFormation
from provisioning the resource.

Hooks have the following characteristics:

• Proactive validation – Reduces risk, operational overhead, and cost by identifying non-
compliant resources before they're created, updated, or deleted.

• Automatic enforcement – Provides enforcement in your Amazon Web Services account to
prevent non-compliant resources from being provisioned by CloudFormation.

Failure mode

Your Hook logic can return success or failure. A success response will allow the operation to
continue. A failure for non-compliant resources can result in the following:

• FAIL – Stops provisioning operation.

• WARN – Allows provisioning to continue with a warning message.

Creating Hooks in WARN mode is an effective way to monitor Hook behavior without affecting stack
operations. First, activate Hooks in WARN mode to understand which operations will be impacted.
After you have assessed the potential effects, you can switch the Hook to FAIL mode to start
preventing non-compliant operations.

Hook targets

Hook targets specify the operations that a Hook will evaluate. These can be operations on:

• Resources supported by CloudFormation (RESOURCE)

• Stack templates (STACK)

• Change sets (CHANGE_SET)

• Resources supported by the Cloud Control API (CLOUD_CONTROL)

You define one or more targets that specify the broadest operations that the Hook will evaluate.
For example, you can author a Hook targeting RESOURCE to target all Amazon resources and
STACK to target all stack templates.

Failure mode 6

https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

Amazon CloudFormation Hooks User Guide

Target actions

Target actions define the specific actions (CREATE, UPDATE, or DELETE) that will invoke a Hook.
For RESOURCE, STACK, and CLOUD_CONTROL targets, all target actions are applicable. For
CHANGE_SET targets, only the CREATE action is applicable.

Annotations

GetHookResult responses can return annotations that provide detailed compliance check results
and remediation guidance for each evaluated resource. For details on the API's annotation
structure, see Annotation in the Amazon CloudFormation API Reference. For instructions on viewing
these validation results, see View invocation results for Amazon CloudFormation Hooks.

You can encrypt annotations as needed for sensitive compliance information by specifying your
own KMS key when configuring the Hook. For more information, see Hook configuration schema
syntax reference. For information about setting up the key policy that you need when you specify
your KMS key for Hooks, see Amazon KMS key policy and permissions for encrypting Amazon
CloudFormation Hooks results at rest.

Important

Note that the KmsKeyId option to specify a customer managed key is currently only
available when you use the Amazon CLI to configure your Hook.

Hook handler

For custom Hooks, this is the code that handles evaluation. It is associated with a target invocation
point and a target action that mark an exact point where a Hook runs. You write handlers that
host logic for these specific points. For example, a PRE target invocation point with CREATE target
action makes a preCreate Hook handler. Code within the Hook handler runs when a matching
target invocation point and service are performing an associated target action.

Valid values: (preCreate | preUpdate | preDelete)

Target actions 7

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_GetHookResult.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_Annotation.html

Amazon CloudFormation Hooks User Guide

Important

Stack operations that result in the status of UpdateCleanup do not invoke a Hook.
For example, during the following two scenarios, the Hook's preDelete handler is not
invoked:

• the stack is updated after removing one resource from the template.

• a resource with the update type of replacement is deleted.

Timeout and retry limits

Hooks have a 30-second timeout limit per invocation and are limited to 3 retry attempts. If an
invocation exceeds the timeout, we return an error message stating that the Hook execution timed
out. After the third retry, CloudFormation marks the Hook execution as failed.

Amazon Control Tower proactive controls as Hooks

The Amazon Control Tower Control Catalog provides pre-built compliance rules (proactive controls)
that you can implement as Hooks. This approach saves setup time and helps you validate resource
configurations against Amazon best practices across your organization without writing code.

Proactive controls evaluate Amazon resources before deployment, preventing non-compliant
resources from being created rather than detecting issues later. They check configurations against
established security, operational, and governance standards.

To get started, simply activate proactive control-based Hooks in your desired account and Region.
These Hooks will then evaluate specific target types to ensure compliance with your selected
controls.

For more information about available proactive controls, see the Amazon Control Tower Control
Catalog.

Topics

• Amazon CLI commands for working with Hooks

• Activate a proactive control-based Hook in your account

• Delete proactive control-based Hooks in your account

Timeout and retry limits 8

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement
https://docs.amazonaws.cn/controltower/latest/controlreference/controls-reference.html
https://docs.amazonaws.cn/controltower/latest/controlreference/controls-reference.html

Amazon CloudFormation Hooks User Guide

Amazon CLI commands for working with Hooks

The Amazon CLI commands for working with proactive control-based Hooks include:

• activate-type to start the activation process for a proactive control-based Hook.

• set-type-configuration to specify the controls to apply to a proactive control-based Hook in your
account.

• list-types to list the Hooks in your account.

• describe-type to return detailed information about a specific Hook or specific Hook version,
including current configuration data.

• deactivate-type to remove a previously activated Hook from your account.

Activate a proactive control-based Hook in your account

The following topic shows you how to activate a proactive control-based Hook in your account,
which makes it usable in the account and Region it was activated in.

Important

Before you continue, verify that you have the permissions required to work with Hooks and
view proactive controls from the CloudFormation console. For more information, see Grant
IAM permissions for CloudFormation Hooks.

Topics

• Activate a proactive control-based Hook (console)

• Activate a proactive control-based Hook (Amazon CLI)

Activate a proactive control-based Hook (console)

To activate a proactive control-based Hook for use in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
you want to create the Hook in.

Amazon CLI commands for working with Hooks 9

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-types.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/describe-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html
https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

3. In the navigation pane on the left, choose Hooks.

4. On the Hooks page, choose Create a Hook, and then choose With the Control Catalog.

5. On the Select controls page, for Proactive controls, select one or more proactive controls to
use.

These controls will automatically apply whenever specified resources are created or updated.
Your selection determines which resource types the Hook will evaluate.

6. Choose Next.

7. For Hook name, choose one of the following options:

• Provide a short, descriptive name that will be added after Private::Controls::.
For example, if you enter MyTestHook, the full Hook name becomes
Private::Controls::MyTestHook.

• Provide the full Hook name (also called an alias) using this format:
Provider::ServiceName::HookName.

8. For Hook mode, choose how the Hook responds when controls fail their evaluation:

• Warn — Issues warnings to users but allows actions to continue. This is useful for non-
critical validations or informational checks.

• Fail — Prevents the action from proceeding. This is helpful for enforcing strict compliance or
security policies.

9. Choose Next.

10. (Optional) For Hook filters, do the following:

a. For Filtering criteria, choose the logic for applying stack name and stack role filters:

• All stack names and stack roles – The Hook will only be invoked when all specified
filters match.

• Any stack names and stack roles – The Hook will be invoked if at least one of the
specified filters match.

b. For Stack names, include or exclude specific stacks from Hook invocations.

• For Include, specify the stack names to include. Use this when you have a small set of
specific stacks you want to target. Only the stacks specified in this list will invoke the
Hook.

Activate a proactive control-based Hook 10

Amazon CloudFormation Hooks User Guide

• For Exclude, specify the stack names to exclude. Use this when you want to invoke the
Hook on most stacks but exclude a few specific ones. All stacks except those listed here
will invoke the Hook.

c. For Stack roles, include or exclude specific stacks from Hook invocations based on their
associated IAM roles.

• For Include, specify one or more IAM role ARNs to target stacks associated with these
roles. Only stack operations initiated by these roles will invoke the Hook.

• For Exclude, specify one or more IAM role ARNs for stacks you want to exclude. The
Hook will be invoked on all stacks except those initiated by the specified roles.

11. Choose Next.

12. On the Review and activate page, review your choices. To make changes, choose Edit on the
related section.

13. When you're ready to proceed, choose Activate Hook.

Activate a proactive control-based Hook (Amazon CLI)

Before you continue, confirm that you have identified the proactive controls that you'll use with
this Hook. For more information, see the Amazon Control Tower Control Catalog.

To activate a proactive control-based Hook for use in your account (Amazon CLI)

1. To start activating a Hook, use the following activate-type command, replacing the
placeholders with your specific values.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::ControlTower::Hook \
 --publisher-id aws-hooks \
 --type-name-alias MyOrg::Security::ComplianceHook \
 --region us-west-2

2. To finish activating the Hook, you must configure it using a JSON configuration file.

Use the cat command to create a JSON file with the following structure. For more information,
see Hook configuration schema syntax reference.

This following example configures a Hook that invokes on specific IAM, Amazon EC2, and
Amazon S3 resources during CREATE and UPDATE operations. It applies three proactive

Activate a proactive control-based Hook 11

https://docs.amazonaws.cn/controltower/latest/controlreference/controls-reference.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html

Amazon CloudFormation Hooks User Guide

controls (CT.IAM.PR.5, CT.EC2.PR.17, CT.S3.PR.12) to validate these resources against
compliance standards. The hook operates in WARN mode, meaning it will flag non-compliant
resources with warnings but won't block deployments.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["RESOURCE"],
 "FailureMode": "WARN",
 "Properties": {
 "ControlsToApply": "CT.IAM.PR.5,CT.EC2.PR.17,CT.S3.PR.12"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE"
]
 }
 }
 }
}

• HookInvocationStatus: Set to ENABLED to enable the Hook.

• TargetOperations: Set to RESOURCE as this is the only supported value for a proactive
control-based Hook.

• FailureMode: Set to either FAIL or WARN.

• ControlsToApply: Specify the control IDs of the proactive controls to use. For more
information, see the Amazon Control Tower Control Catalog.

• (Optional) TargetFilters: For Actions, you can specify CREATE or UPDATE, or both
(default), to control when the Hook is invoked. Specifying CREATE alone limits the Hook to
CREATE operations only. Other TargetFilters properties have no effect.

3. Use the following set-type-configuration command, along with the JSON file you created, to
apply the configuration. Replace the placeholders with your specific values.

aws cloudformation set-type-configuration \
 --configuration file://config.json \

Activate a proactive control-based Hook 12

https://docs.amazonaws.cn/controltower/latest/controlreference/controls-reference.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html

Amazon CloudFormation Hooks User Guide

 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook" \
 --region us-west-2

Delete proactive control-based Hooks in your account

When you no longer need an activated proactive control-based Hook, use the following procedures
to delete it in your account.

To temporarily disable a Hook instead of deleting it, see Disable and enable Amazon
CloudFormation Hooks.

Topics

• Delete a proactive control-based Hook in your account (console)

• Delete a proactive control-based Hook in your account (Amazon CLI)

Delete a proactive control-based Hook in your account (console)

To delete a proactive control-based Hook in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the Hook is located.

3. From the navigation pane, choose Hooks.

4. On the Hooks page, find the proactive control-based Hook you want to delete.

5. Select the check box next to your Hook and choose Delete.

6. When prompted for confirmation, type out the Hook name to confirm deleting the specified
Hook and then choose Delete.

Delete proactive control-based Hooks 13

https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

Delete a proactive control-based Hook in your account (Amazon CLI)

Note

Before you can delete the Hook, you must first disable it. For more information, see Disable
and enable a Hook in your account (Amazon CLI).

Use the following deactivate-type command to deactivate a Hook, which removes it from your
account. Replace placeholders with your specific values.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook" \
 --region us-west-2

Guard Hooks

To use an Amazon CloudFormation Guard Hook in your account, you must activate the Hook for the
account and Region where you want to use it. Activating a Hook makes it usable in stack operations
in the account and Region where it's activated.

When you activate a Guard Hook, CloudFormation creates an entry in your account's registry for
the activated Hook as a private Hook. This allows you to set any configuration properties the Hook
includes. Configuration properties define how the Hook is configured for a given Amazon Web
Services account and Region.

Topics

• Amazon CLI commands for working with Guard Hooks

• Write Guard rules to evaluate resources for Guard Hooks

• Prepare to create a Guard Hook

• Activate a Guard Hook in your account

• View logs for the Guard Hooks in your account

• Delete Guard Hooks in your account

Guard Hooks 14

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html

Amazon CloudFormation Hooks User Guide

Amazon CLI commands for working with Guard Hooks

The Amazon CLI commands for working with Guard Hooks include:

• activate-type to start the activation process for a Guard Hook.

• set-type-configuration to specify the configuration data for a Hook in your account.

• list-types to list the Hooks in your account.

• describe-type to return detailed information about a specific Hook or specific Hook version,
including current configuration data.

• deactivate-type to remove a previously activated Hook from your account.

Write Guard rules to evaluate resources for Guard Hooks

Amazon CloudFormation Guard is an open-source and general purpose domain specific language
(DSL) you can use to author policy-as-code. This topic explains how to use Guard to author example
rules which can be run in the Guard Hook to automatically evaluate CloudFormation and Amazon
Cloud Control API operations. It will also focus on the different types of inputs available to your
Guard rules depending on when your Guard Hook runs. A Guard Hook can be configured to run
during the following types of operations:

• Resource operations

• Stack operations

• Change set operations

For more information on writing Guard rules, see Writing Amazon CloudFormation Guard rules

Topics

• Resource operation Guard rules

• Stack operation Guard rules

• Change set operation Guard rules

Resource operation Guard rules

Any time you create, update, or delete a resource, that's considered a resource operation. As
an example, if you run update a CloudFormation stack that creates a new resource, you have

Amazon CLI commands for working with Guard Hooks 15

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-types.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/describe-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html
https://docs.amazonaws.cn/cfn-guard/latest/ug/writing-rules.html

Amazon CloudFormation Hooks User Guide

completed a resource operation. When you create, update or delete a resource using Cloud Control
API, that is also considered a resource operation. You can configure your Guard Hook to target
RESOURCE and CLOUD_CONTROL operations in the TargetOperations configuration for your
Hook. When your Guard Hook evaluates a resource operation, the Guard engine evaluates a
resource input.

Topics

• Guard resource input syntax

• Example Guard resource operation input

• Guard rules for resource changes

Guard resource input syntax

The Guard resource input is the data that's made available to your Guard rules to evaluate.

The following is an example shape of a resource input:

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String
 TargetType: RESOURCE
 TargetLogicalId: String
 ChangeSetId: String
Resources:
 {ResourceLogicalID}:
 ResourceType: {ResourceType}
 ResourceProperties:
 {ResourceProperties}
Previous:
 ResourceLogicalID:
 ResourceType: {ResourceType}
 ResourceProperties:
 {PreviousResourceProperties}

Write Guard rules for Hooks 16

Amazon CloudFormation Hooks User Guide

HookContext

AWSAccountID

The ID of the Amazon Web Services account containing the resource being evaluated.

StackId

The stack ID of the CloudFormation stack that is part of the resource operation. This is
empty if the caller is Cloud Control API.

HookTypeName

The name of the Hook that's running.

HookTypeVersion

The version of the Hook that is running.

InvocationPoint

The exact point in the provisioning logic where the Hook runs.

Valid values: (CREATE_PRE_PROVISION | UPDATE_PRE_PROVISION |
DELETE_PRE_PROVISION)

TargetName

The target type being evaluated, for example, AWS::S3::Bucket.

TargetType

The target type being evaluated, for example AWS::S3::Bucket. For resources provisioned
with Cloud Control API, this value will be RESOURCE.

TargetLogicalId

The TargetLogicalId of the resource being evaluated. If the origin of the Hook is
CloudFormation, this will be the logical ID (also known as logical name) of the resource. If
the origin of the Hook is Cloud Control API, this will be a constructed value.

ChangeSetId

The change set ID that was executed to cause the Hook invocation. This value is empty if the
resource change was initiated by Cloud Control API, or the create-stack, update-stack,
or delete-stack operations.

Write Guard rules for Hooks 17

Amazon CloudFormation Hooks User Guide

Resources

ResourceLogicalID

When the operation is initiated by CloudFormation, the ResourceLogicalID is the logical
ID of the resource in the CloudFormation template.

When the operation's initiated by Cloud Control API, the ResourceLogicalID is a
combination of the resource type, name, operation ID, and request ID.

ResourceType

The type name of the resource (example: AWS::S3::Bucket).

ResourceProperties

The proposed properties of the resource being modified. When the Guard Hook is running
against the CloudFormation resource changes, any functions, parameters, and transforms
will be fully resolved. If the resource is being deleted, this value will be empty.

Previous

ResourceLogicalID

When the operation is initiated by CloudFormation, the ResourceLogicalID is the logical
ID of the resource in the CloudFormation template.

When the operation's initiated by Cloud Control API, the ResourceLogicalID is a
combination of the resource type, name, operation ID, and request ID.

ResourceType

The type name of the resource (example: AWS::S3::Bucket).

ResourceProperties

The current properties associated with the resource being modified. If the resource is being
deleted, this value will be empty.

Example Guard resource operation input

The following example input shows a Guard Hook that will receive the definition of the
AWS::S3::Bucket resource to update. This is the data available to Guard for evaluation.

Write Guard rules for Hooks 18

Amazon CloudFormation Hooks User Guide

HookContext:
 AwsAccountId: "123456789012"
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::s3policy::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: AWS::S3::Bucket
 TargetType: RESOURCE
 TargetLogicalId: MyS3Bucket
 ChangeSetId: ""
Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true
Previous:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

To see all of the properties available for the resource type, see AWS::S3::Bucket.

Guard rules for resource changes

When a Guard Hook evaluates resource changes, it starts by downloading all the rules configured
with the Hook. These rules are then evaluated against the resource input. The Hook will fail if any
rules fail their evaluation. If there are no failures, the Hook will pass.

The following example is a Guard rule that evaluates if the ObjectLockEnabled property is true
for any AWS::S3::Bucket resource types.

let s3_buckets_default_lock_enabled = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_BUCKET_DEFAULT_LOCK_ENABLED when %s3_buckets_default_lock_enabled !empty {
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled exists
 %s3_buckets_default_lock_enabled.Properties.ObjectLockEnabled == true
 <<
 Violation: S3 Bucket ObjectLockEnabled must be set to true.

Write Guard rules for Hooks 19

https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-s3-bucket.html

Amazon CloudFormation Hooks User Guide

 Fix: Set the S3 property ObjectLockEnabled parameter to true.
 >>
}

When this rule runs against the following input, it will fail since the ObjectLockEnabled property
isn't set to true.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: false

When this rule runs against the following input, it will pass since the ObjectLockEnabled is set
to true.

Resources:
 MyS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: amzn-s3-demo-bucket
 ObjectLockEnabled: true

When a Hook fails, the rules which failed will be propagated back to CloudFormation or Cloud
Control API. If a logging bucket has been configured for the Guard Hook, additional rule feedback
will be provided there. This additional feedback includes the Violation and Fix information.

Stack operation Guard rules

When a CloudFormation stack is created, updated, or deleted, you can configure your Guard Hook
to start by evaluating the new template and potentially block the stack operation from proceeding.
You can configure your Guard Hook to target STACK operations in the TargetOperations
configuration for your Hook.

Topics

• Guard stack input syntax

• Example Guard stack operation input

• Guard rules for stack changes

Write Guard rules for Hooks 20

Amazon CloudFormation Hooks User Guide

Guard stack input syntax

The input for Guard stack operations provides the whole CloudFormation template for your Guard
rules to evaluate.

The following is an example shape of a stack input:

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: String
 TargetType:STACK
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}

HookContext

AWSAccountID

The ID of the Amazon Web Services account containing the resource.

StackId

The stack ID of the CloudFormation stack that is part of the stack operation.

HookTypeName

The name of the Hook that's running.

HookTypeVersion

The version of the Hook that is running.

InvocationPoint

The exact point in the provisioning logic where the Hook runs.

Valid values: (CREATE_PRE_PROVISION | UPDATE_PRE_PROVISION |
DELETE_PRE_PROVISION)

Write Guard rules for Hooks 21

Amazon CloudFormation Hooks User Guide

TargetName

The name of the stack being evaluated.

TargetType

This value will be STACK when running as a stack-level Hook.

ChangeSetId

The change set ID that was executed to cause the Hook invocation. This value is empty if
the stack operation was initiated by a create-stack, update-stack, or delete-stack
operation.

Proposed CloudFormation Template

The full CloudFormation template value that was passed to CloudFormation create-
stack or update-stack operations. This includes things like the Resources, Outputs,
and Properties. It can be a JSON or YAML string depending on what was provided to
CloudFormation.

In delete-stack operations, this value will be empty.

Previous

The last successfully deployed CloudFormation template. This value is empty if the stack is
being created or deleted.

In delete-stack operations, this value will be empty.

Note

The templates provided are what is passed into create or update stack operations. When
deleting a stack, no template values are provided.

Example Guard stack operation input

The following example input shows a Guard Hook that will receive a full template and the
previously deployed template. The template in this example is using the JSON format.

HookContext:

Write Guard rules for Hooks 22

Amazon CloudFormation Hooks User Guide

 AwsAccountId: 123456789012
 StackId: "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000"
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: MyStack
 TargetType: CHANGE_SET
 TargetLogicalId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000
 ChangeSetId: arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000
Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {"ServerSideEncryptionByDefault":
 {"SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "KMS-KEY-ARN" },
 "BucketKeyEnabled": true }
]
 }
 }
}
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {}
 }
 }
}

Guard rules for stack changes

When a Guard Hook evaluates stack changes, it starts by downloading all the rules configured with
the Hook. These rules are then evaluated against the resource input. The Hook will fail if any rules
fail their evaluation. If there are no failures, the Hook will pass.

Write Guard rules for Hooks 23

Amazon CloudFormation Hooks User Guide

The following example is a Guard rule that evaluates if there are any AWS::S3::Bucket resource
types containing a property called BucketEncryption, with the SSEAlgorithm set to either
aws:kms or AES256.

let s3_buckets_s3_default_encryption = Resources.*[Type == 'AWS::S3::Bucket']

rule S3_DEFAULT_ENCRYPTION_KMS when %s3_buckets_s3_default_encryption !empty {
 %s3_buckets_s3_default_encryption.Properties.BucketEncryption exists

 %s3_buckets_s3_default_encryption.Properties.BucketEncryption.ServerSideEncryptionConfiguration[*].ServerSideEncryptionByDefault.SSEAlgorithm
 in ["aws:kms","AES256"]
 <<
 Violation: S3 Bucket default encryption must be set.
 Fix: Set the S3 Bucket property
 BucketEncryption.ServerSideEncryptionConfiguration.ServerSideEncryptionByDefault.SSEAlgorithm
 to either "aws:kms" or "AES256"
 >>
}

When the rule runs against the following template, it will fail.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket without default encryption
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:
 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'

When the rule runs against the following template, it will pass.

AWSTemplateFormatVersion: 2010-09-09
Description: S3 bucket with default encryption using SSE-KMS with an S3 Bucket Key
Resources:
 EncryptedS3Bucket:
 Type: 'AWS::S3::Bucket'
 Properties:
 BucketName: !Sub 'encryptedbucket-${AWS::Region}-${AWS::AccountId}'
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'

Write Guard rules for Hooks 24

Amazon CloudFormation Hooks User Guide

 KMSMasterKeyID: KMS-KEY-ARN
 BucketKeyEnabled: true

Change set operation Guard rules

When a CloudFormation change set is created, you can configure your Guard Hook to evaluate the
template and changes proposed in the change set to block the change set execution.

Topics

• Guard change set input syntax

• Example Guard change set operation input

• Guard rule for change set operations

Guard change set input syntax

The Guard change set input is the data that's made available to your Guard rules to evaluate.

The following is an example shape of a change set input:

HookContext:
 AWSAccountID: String
 StackId: String
 HookTypeName: String
 HookTypeVersion: String
 InvocationPoint: [CREATE_PRE_PROVISION, UPDATE_PRE_PROVISION, DELETE_PRE_PROVISION]
 TargetName: CHANGE_SET
 TargetType:CHANGE_SET
 TargetLogicalId:ChangeSet ID
 ChangeSetId: String
{Proposed CloudFormation Template}
Previous:
 {CloudFormation Template}
Changes: [{ResourceChange}]

The ResourceChange model syntax is:

logicalResourceId: String
resourceType: String
action: CREATE, UPDATE, DELETE

Write Guard rules for Hooks 25

Amazon CloudFormation Hooks User Guide

lineNumber: Number
beforeContext: JSON String
afterContext: JSON String

HookContext

AWSAccountID

The ID of the Amazon Web Services account containing the resource.

StackId

The stack ID of the CloudFormation stack that is part of the stack operation.

HookTypeName

The name of the Hook that's running.

HookTypeVersion

The version of the Hook that is running.

InvocationPoint

The exact point in the provisioning logic where the Hook runs.

Valid values: (CREATE_PRE_PROVISION | UPDATE_PRE_PROVISION |
DELETE_PRE_PROVISION)

TargetName

The name of the stack being evaluated.

TargetType

This value will be CHANGE_SET when running as a change set-level Hook.

TargetLogicalId

This value will be the ARN of the change set.

ChangeSetId

The change set ID that was executed to cause the Hook invocation. This value is empty if
the stack operation was initiated by a create-stack, update-stack, or delete-stack
operation.

Write Guard rules for Hooks 26

Amazon CloudFormation Hooks User Guide

Proposed CloudFormation Template

The full CloudFormation template that was provided to a create-change-set operation. It
can be a JSON or YAML string depending on what was provided to CloudFormation.

Previous

The last successfully deployed CloudFormation template. This value is empty if the stack is
being created or deleted.

Changes

The Changes model. This lists the resource changes.

Changes

logicalResourceId

The logical resource name of the changed resource.

resourceType

The resource type that will be changed.

action

The type of operation being performed on the resource.

Valid values: (CREATE | UPDATE | DELETE)

lineNumber

The line number in the template associated with the change.

beforeContext

A JSON string of properties of the resource before the change:

{"properties": {"property1": "value"}}

afterContext

A JSON string of properties of the resource after the change:

{"properties": {"property1": "new value"}}

Write Guard rules for Hooks 27

Amazon CloudFormation Hooks User Guide

Example Guard change set operation input

The following example input shows a Guard Hook that will receive a full template, the previously
deployed template, and a list of resource changes. The template in this example is using the JSON
format.

HookContext:
 AwsAccountId: "00000000"
 StackId: MyStack
 HookTypeName: org::templatechecker::hook
 HookTypeVersion: "00001"
 InvocationPoint: UPDATE_PRE_PROVISION
 TargetName: my-example-stack
 TargetType:STACK
 TargetLogicalId: arn...:changeSet/change-set
 ChangeSetId: ""
Resources: {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Enabled"
 }
 }
 }
Previous: {
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "S3Bucket": {
 "Type": "AWS::S3::Bucket",
 "Properties": {
 "BucketName": "amzn-s3-demo-bucket",
 "VersioningConfiguration":{
 "Status": "Suspended"
 }
 }
 }
 }
}
Changes: [
 {
 "logicalResourceId": "S3Bucket",

Write Guard rules for Hooks 28

Amazon CloudFormation Hooks User Guide

 "resourceType": "AWS::S3::Bucket",
 "action": "UPDATE",
 "lineNumber": 5,
 "beforeContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":
\"Suspended\"}}}",
 "afterContext": "{\"Properties\":{\"VersioningConfiguration\":{\"Status\":\"Enabled
\"}}}"
 }
]

Guard rule for change set operations

The following example is a Guard rule that evaluates changes to Amazon S3 buckets, and ensures
that VersionConfiguration is not disabled.

let s3_buckets_changing = Changes[resourceType == 'AWS::S3::Bucket']

rule S3_VERSIONING_STAY_ENABLED when %s3_buckets_changing !empty {
 let afterContext = json_parse(%s3_buckets_changing.afterContext)
 when %afterContext.Properties.VersioningConfiguration.Status !empty {
 %afterContext.Properties.VersioningConfiguration.Status == 'Enabled'
 }
}

Prepare to create a Guard Hook

Before you create a Guard Hook, you must complete the following prerequisites:

• You must have already created a Guard rule. For more information, see the Write Guard rules for
Hooks.

• The user or role that creates the Hook must have sufficient permissions to activate Hooks. For
more information, see Grant IAM permissions for CloudFormation Hooks.

• To use the Amazon CLI or an SDK to create a Guard Hook, you must manually create an execution
role with IAM permissions and a trust policy to allow CloudFormation to invoke a Guard Hook.

Create an execution role for a Guard Hook

A Hook uses an execution role for the permissions that it requires to invoke that Hook in your
Amazon Web Services account.

Prepare to create a Guard Hook 29

Amazon CloudFormation Hooks User Guide

This role can be created automatically if you create a Guard Hook from the Amazon Web Services
Management Console; otherwise, you must create this role yourself.

The following section shows you how to set up permissions to create your Guard Hook.

Required permissions

Follow the guidance at Create a role using custom trust policies in the IAM User Guide to create a
role with a custom trust policy.

Then, complete the following steps to set up your permissions:

1. Attach the following minimum privilege policy to the IAM role you want to use to create the
Guard Hook.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*",
 "arn:aws:s3:::my-guard-rules-bucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::my-guard-output-bucket/*"
]
 }
]

Prepare to create a Guard Hook 30

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon CloudFormation Hooks User Guide

}

2. Give your Hook permission to assume the role by adding a trust policy to the role. The
following shows an example trust policy you can use.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Activate a Guard Hook in your account

The following topic shows you how to activate a Guard Hook in your account, which makes it
usable in the account and Region it was activated in.

Topics

• Activate a Guard Hook (console)

• Activate a Guard Hook (Amazon CLI)

• Related resources

Activate a Guard Hook (console)

To activate a Guard Hook for use in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

Activate a Guard Hook 31

https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
you want to create the Hook in.

3. In the navigation pane on the left, choose Hooks.

4. On the Hooks page, choose Create a Hook, and then choose With Guard.

5. If you haven't created any Guard rules yet, create your Guard rule, store it in Amazon S3, and
then return to this procedure. Refer to the example rules in Write Guard rules to evaluate
resources for Guard Hooks to get started.

If you have already created your Guard rule and stored it in S3, proceed to the next step.

Note

The object stored in S3 must have one of the following file extensions: .guard, .zip,
or .tar.gz.

6. For Guard Hook source, Store your Guard rules in S3, do the following:

• For S3 URI, specify the S3 path to your rules file or use the Browse S3 button to open a
dialog box to browse for and select the S3 object.

• (Optional) For Object version, if your S3 bucket has versioning enabled, you can select a
specific version of the S3 object.

The Guard Hook downloads your rules from S3 every time the Hook is invoked. To prevent
accidental changes or deletions, we recommend using a version when configuring your
Guard Hook.

7. (Optional) For S3 bucket for Guard output report, specify an S3 bucket to store the Guard
output report. This report contains the results of your Guard rule validations.

To configure the output report destination, choose one of the following options:

• Select the Use the same bucket my Guard rules are stored in check box to use the same
bucket where your Guard rules are located.

• Choose a different S3 bucket name for storing the Guard output report.

8. (Optional) Expand Guard rule input parameters, and then provide the following information
under Store your Guard rule input parameters in S3:

• For S3 URI, specify the S3 path to a parameter file or use the Browse S3 button to open a
dialog box to browse for and select the S3 object.

Activate a Guard Hook 32

Amazon CloudFormation Hooks User Guide

• (Optional) For Object version, if your S3 bucket has versioning enabled, you can select a
specific version of the S3 object.

9. Choose Next.

10. For Hook name, choose one of the following options:

• Provide a short, descriptive name that will be added after Private::Guard::.
For example, if you enter MyTestHook, the full Hook name becomes
Private::Guard::MyTestHook.

• Provide the full Hook name (also called an alias) using this format:
Provider::ServiceName::HookName

11. For Hook targets, choose what to evaluate:

• Stacks — Evaluates stack templates when users create, update, or delete stacks.

• Resources — Evaluates individual resource changes when users update stacks.

• Change sets — Evaluates planned updates when users create change sets.

• Cloud Control API — Evaluates create, update or delete operations initiated by the Cloud
Control API.

12. For Actions, choose which actions (create, update, delete) will invoke your Hook.

13. For Hook mode, choose how the Hook responds when rules fail their evaluation:

• Warn — Issues warnings to users but allows actions to continue. This is useful for non-
critical validations or informational checks.

• Fail — Prevents the action from proceeding. This is helpful for enforcing strict compliance or
security policies.

14. For Execution role, choose the IAM role that the Hook assumes to retrieve your Guard rules
from S3 and optionally write a detailed Guard output report back. You can either allow
CloudFormation to automatically create an execution role for you or you can specify a role that
you've created.

15. Choose Next.

16. (Optional) For Hook filters, do the following:

a. For Resource filter, specify which resource types can invoke the Hook. This ensures that
the Hook is only invoked for relevant resources.

b. For Filtering criteria, choose the logic for applying stack name and stack role filters:

Activate a Guard Hook 33

https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

Amazon CloudFormation Hooks User Guide

• All stack names and stack roles – The Hook will only be invoked when all specified
filters match.

• Any stack names and stack roles – The Hook will be invoked if at least one of the
specified filters match.

Note

For Cloud Control API operations, all Stack names and Stack roles filters are
ignored.

c. For Stack names, include or exclude specific stacks from Hook invocations.

• For Include, specify the stack names to include. Use this when you have a small set of
specific stacks you want to target. Only the stacks specified in this list will invoke the
Hook.

• For Exclude, specify the stack names to exclude. Use this when you want to invoke the
Hook on most stacks but exclude a few specific ones. All stacks except those listed here
will invoke the Hook.

d. For Stack roles, include or exclude specific stacks from Hook invocations based on their
associated IAM roles.

• For Include, specify one or more IAM role ARNs to target stacks associated with these
roles. Only stack operations initiated by these roles will invoke the Hook.

• For Exclude, specify one or more IAM role ARNs for stacks you want to exclude. The
Hook will be invoked on all stacks except those initiated by the specified roles.

17. Choose Next.

18. On the Review and activate page, review your choices. To make changes, choose Edit on the
related section.

19. When you're ready to proceed, choose Activate Hook.

Activate a Guard Hook (Amazon CLI)

Before you continue, confirm that you have created the Guard rule and the execution role that
you'll use with this Hook. For more information, see Write Guard rules to evaluate resources for
Guard Hooks and Create an execution role for a Guard Hook.

Activate a Guard Hook 34

Amazon CloudFormation Hooks User Guide

To activate a Guard Hook for use in your account (Amazon CLI)

1. To start activating a Hook, use the following activate-type command, replacing the
placeholders with your specific values. This command authorizes the Hook to use a specified
execution role from your Amazon Web Services account.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::Hooks::GuardHook \
 --publisher-id aws-hooks \
 --type-name-alias Private::Guard::MyTestHook \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --region us-west-2

2. To finish activating the Hook, you must configure it using a JSON configuration file.

Use the cat command to create a JSON file with the following structure. For more information,
see Hook configuration schema syntax reference.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE",
 "CHANGE_SET"
],
 "FailureMode": "WARN",
 "Properties": {
 "ruleLocation": "s3://amzn-s3-demo-bucket/MyGuardRules.guard",
 "logBucket": "amzn-s3-demo-logging-bucket"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }

Activate a Guard Hook 35

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html

Amazon CloudFormation Hooks User Guide

}

• HookInvocationStatus: Set to ENABLED to enable the Hook.

• TargetOperations: Specify the operations that the Hook will evaluate.

• FailureMode: Set to either FAIL or WARN.

• ruleLocation: Replace with the S3 URI where your rule is stored. The object stored in S3
must have one of the following file extensions: .guard, .zip, and .tar.gz.

• logBucket: (Optional) Specify the name of an S3 bucket for Guard JSON reports.

• TargetFilters: Specify the types of actions that will invoke the Hook.

3. Use the following set-type-configuration command, along with the JSON file you created, to
apply the configuration. Replace the placeholders with your specific values.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Related resources

We provide template examples that you can use to understand how to declare a Guard Hook in a
CloudFormation stack template. For more information, see AWS::CloudFormation::GuardHook in
the Amazon CloudFormation User Guide.

View logs for the Guard Hooks in your account

When you activate a Guard Hook, you can specify an Amazon S3 bucket as the destination for the
Hook output report. Once activated, the Hook automatically stores the results of your Guard rule
validations in the specified bucket. You can then view these results in the Amazon S3 console.

View Guard Hook logs in the Amazon S3 console

To view the Guard Hook output log file

1. Sign-in to the https://console.amazonaws.cn/s3/.

2. On the navigation bar at the top of the screen, choose your Amazon Web Services Region.

3. Choose Buckets.

View logs for Guard Hooks 36

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html
https://console.amazonaws.cn/s3/

Amazon CloudFormation Hooks User Guide

4. Choose the bucket you selected for your Guard output report.

5. Choose the desired validation output report log file.

6. Choose whether you want to Download the file or Open it to view.

Delete Guard Hooks in your account

When you no longer need an activated Guard Hook, use the following procedures to delete it in
your account.

To temporarily disable a Hook instead of deleting it, see Disable and enable Amazon
CloudFormation Hooks.

Topics

• Delete a Guard Hook in your account (console)

• Delete a Guard Hook in your account (Amazon CLI)

Delete a Guard Hook in your account (console)

To delete a Guard Hook in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the Hook is located.

3. From the navigation pane, choose Hooks.

4. On the Hooks page, find the Guard Hook you want to delete.

5. Select the check box next to your Hook and choose Delete.

6. When prompted for confirmation, type out the Hook name to confirm deleting the specified
Hook and then choose Delete.

Delete Guard Hooks 37

https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

Delete a Guard Hook in your account (Amazon CLI)

Note

Before you can delete the Hook, you must first disable it. For more information, see Disable
and enable a Hook in your account (Amazon CLI).

Use the following deactivate-type command to deactivate a Hook, which removes it from your
account. Replace placeholders with your specific values.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Lambda Hooks

To use an Amazon Lambda Hook in your account, you must first activate the Hook for the account
and Region where you want to use it. Activating a Hook makes it usable in stack operations in the
account and Region where it's activated.

When you activate a Lambda Hook, CloudFormation creates an entry in your account's registry for
the activated Hook as a private Hook. This allows you to set any configuration properties the Hook
includes. Configuration properties define how the Hook is configured for a given Amazon Web
Services account and Region.

Topics

• Amazon CLI commands for working with Lambda Hooks

• Create Lambda functions to evaluate resources for Lambda Hooks

• Prepare to create a Lambda Hook

• Activate a Lambda Hook in your account

• View logs for the Lambda Hooks in your account

• Delete Lambda Hooks in your account

Amazon CLI commands for working with Lambda Hooks

The Amazon CLI commands for working with Lambda Hooks include:

Lambda Hooks 38

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html

Amazon CloudFormation Hooks User Guide

• activate-type to start the activation process for a Lambda Hook.

• set-type-configuration to specify the configuration data for a Hook in your account.

• list-types to list the Hooks in your account.

• describe-type to return detailed information about a specific Hook or specific Hook version,
including current configuration data.

• deactivate-type to remove a previously activated Hook from your account.

Create Lambda functions to evaluate resources for Lambda Hooks

Amazon CloudFormation Lambda Hooks allows you to evaluate CloudFormation and Amazon
Cloud Control API operations against your own custom code. Your Hook can block an operation
from proceeding, or issue a warning to the caller and allow the operation to proceed. When
you create a Lambda Hook, you can configure it to intercept and evaluate the following
CloudFormation operations:

• Resource operations

• Stack operations

• Change set operations

Topics

• Developing a Lambda Hook

• Evaluating resource operations with Lambda Hooks

• Evaluating stack operations with Lambda Hooks

• Evaluating change set operations with Lambda Hooks

Developing a Lambda Hook

When Hooks invoke your Lambda it will wait up to 30 seconds for the Lambda to evaluate the
input. The Lambda will return a JSON response that indicates whether the Hook succeeded or
failed.

Topics

• Request input

• Response input

Create Lambda functions for Hooks 39

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-types.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/describe-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html

Amazon CloudFormation Hooks User Guide

• Examples

Request input

The input passed to your Lambda function depends on the Hook target operation (examples: stack,
resource, or change set).

Response input

In order to communicate to Hooks if your request succeeded or failed, your Lambda function needs
to return a JSON response.

The following is an example shape of the response Hooks expects:

{
 "hookStatus": "SUCCESS" or "FAILED" or "IN_PROGRESS",
 "errorCode": "NonCompliant" or "InternalFailure"
 "message": String,
 "clientRequestToken": String,
 "callbackContext": None,
 "callbackDelaySeconds": Integer,
 "annotations": [
 {
 "annotationName": String,
 "status": "PASSED" or "FAILED" or "SKIPPED",
 "statusMessage": String,
 "remediationMessage": String,
 "remediationLink": String,
 "severityLevel": "INFORMATIONAL" or "LOW" or "MEDIUM" or "HIGH" or "CRITICAL"
 }
]
}

hookStatus

The status of the Hook. This is a required field.

Valid values: (SUCCESS | FAILED | IN_PROGRESS)

Create Lambda functions for Hooks 40

Amazon CloudFormation Hooks User Guide

Note

A Hook can return IN_PROGRESS 3 times. If no result is returned, the Hook will fail. For
a Lambda Hook, this means your Lambda function can be invoked up to 3 times.

errorCode

Shows whether the operation was evaluated and determined to be invalid, or if errors occurred
within the Hook, preventing the evaluation. This field is required if the Hook fails.

Valid values: (NonCompliant | InternalFailure)

message

The message to the caller that states why the Hook succeeded or failed.

Note

When evaluating CloudFormation operations, this field is truncated to 4096 characters.
When evaluating Cloud Control API operations, this field is truncated to 1024
characters.

clientRequestToken

The request token that was provided as an input to the Hook request. This is a required field.

callbackContext

If you indicate that the hookStatus is IN_PROGRESS you pass an additional context that's
provided as input when the Lambda function is reinvoked.

callbackDelaySeconds

How long Hooks should wait to invoke this Hook again.

annotations

An array of annotation objects that provide further details and remediation guidance.

annotationName

An identifier for the annotation.

Create Lambda functions for Hooks 41

Amazon CloudFormation Hooks User Guide

status

The Hook invocation status. This is helpful when annotations represent logic with pass/fail
evaluation similar to a Guard rule.

Valid values: (PASSED | FAILED | SKIPPED)

statusMessage

Explanation for the specific status.

remediationMessage

Suggestion for fixing a FAILED status. For example, if a resource is missing encryption, you
can state how to add encryption to the resource configuration.

remediationLink

An HTTP URL for additional remediation guidance.

severityLevel

Defines the relative risk associated with any violations of this type. When assigning severity
levels to your Hook invocation results, you can reference the Amazon Security Hub CSPM
severity framework as an example of how to structure meaningful severity categories.

Valid values: (INFORMATIONAL | LOW | MEDIUM | HIGH | CRITICAL)

Examples

The following is an example of a successful response:

{
 "hookStatus": "SUCCESS",
 "message": "compliant",
 "clientRequestToken": "123avjdjk31"
}

The following is an example of a failed response:

{
 "hookStatus": "FAILED",
 "errorCode": "NonCompliant",

Create Lambda functions for Hooks 42

https://docs.amazonaws.cn/securityhub/latest/userguide/asff-required-attributes.html#Severity

Amazon CloudFormation Hooks User Guide

 "message": "S3 Bucket Versioning must be enabled.",
 "clientRequestToken": "123avjdjk31"
 }

Evaluating resource operations with Lambda Hooks

Any time you create, update, or delete a resource, that's considered a resource operation. As
an example, if you run update a CloudFormation stack that creates a new resource, you have
completed a resource operation. When you create, update or delete a resource using Cloud Control
API, that is also considered a resource operation. You can configure your CloudFormation Lambda
Hook to target RESOURCE and CLOUD_CONTROL operations in the Hook TargetOperations
configuration.

Note

The delete Hook handler is only invoked when a resource is deleted using an operation
trigger from Cloud Control API delete-resource or CloudFormation delete-stack.

Topics

• Lambda Hook resource input syntax

• Example Lambda Hook resource change input

• Example Lambda function for resource operations

Lambda Hook resource input syntax

When your Lambda is invoked for a resource operation, you'll receive a JSON input containing the
resource properties, proposed properties, and the context around the Hook invocation.

The following is an example shape of the JSON input:

{
 "awsAccountId": String,
 "stackId": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction": String

Create Lambda functions for Hooks 43

Amazon CloudFormation Hooks User Guide

 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": String,
 "targetType": String,
 "targetLogicalId": String,
 "targetModel": {
 "resourceProperties": {...},
 "previousResourceProperties": {...}
 }
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

awsAccountId

The ID of the Amazon Web Services account containing the resource being evaluated.

stackId

The stack ID of the CloudFormation stack this operation is a part of. This field is empty if the
caller is Cloud Control API.

changeSetId

The ID of the change set that initiated the Hook invocation. This value is empty if the resource
change was initiated by Cloud Control API, or the create-stack, update-stack, or delete-
stack operations.

hookTypeName

The name of the Hook that's running.

hookTypeVersion

The version of the Hook that's running.

hookModel

LambdaFunction

The current Lambda ARN invoked by the Hook.

Create Lambda functions for Hooks 44

Amazon CloudFormation Hooks User Guide

actionInvocationPoint

The exact point in the provisioning logic where the Hook runs.

Valid values: (CREATE_PRE_PROVISION | UPDATE_PRE_PROVISION |
DELETE_PRE_PROVISION)

requestData

targetName

The target type being evaluated, for example, AWS::S3::Bucket.

targetType

The target type being evaluated, for example AWS::S3::Bucket. For resources provisioned
with Cloud Control API, this value will be RESOURCE.

targetLogicalId

The logical ID of the resource being evaluated. If the origin of the Hook invocation is
CloudFormation, this will be the logical resource ID defined in your CloudFormation
template. If the origin of this Hook invocation is Cloud Control API, this will be a constructed
value.

targetModel

resourceProperties

The proposed properties of the resource being modified. If the resource is being deleted,
this value will be empty.

previousResourceProperties

The properties that are currently associated with the resource being modified. If the
resource is being created, this value will be empty.

requestContext

invocation

The current attempt at executing the Hook.

callbackContext

If the Hookwas set to IN_PROGRESS, and callbackContext was returned, it will be here
after reinvocation.

Create Lambda functions for Hooks 45

Amazon CloudFormation Hooks User Guide

Example Lambda Hook resource change input

The following example input shows a Lambda Hook that will receive the definition of
the AWS::DynamoDB::Table resource to update, where the ReadCapacityUnits of
ProvisionedThroughput is changed from 3 to 10. This is the data available to Lambda for
evaluation.

{
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::resourcehookfunction",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "AWS::DynamoDB::Table",
 "targetType": "AWS::DynamoDB::Table",
 "targetLogicalId": "DDBTable",
 "targetModel": {
 "resourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 10
 },
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Album"
 },
 {

Create Lambda functions for Hooks 46

Amazon CloudFormation Hooks User Guide

 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 },
 "previousResourceProperties": {
 "AttributeDefinitions": [
 {
 "AttributeType": "S",
 "AttributeName": "Album"
 },
 {
 "AttributeType": "S",
 "AttributeName": "Artist"
 }
],
 "ProvisionedThroughput": {
 "WriteCapacityUnits": 5,
 "ReadCapacityUnits": 5
 },
 "KeySchema": [
 {
 "KeyType": "HASH",
 "AttributeName": "Album"
 },
 {
 "KeyType": "RANGE",
 "AttributeName": "Artist"
 }
]
 }
 }
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

To see all of the properties available for the resource type, see AWS::DynamoDB::Table.

Create Lambda functions for Hooks 47

https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-dynamodb-table.html

Amazon CloudFormation Hooks User Guide

Example Lambda function for resource operations

The following is a simple function that fails any resource update to DynamoDB, which tries to
set the ReadCapacity of ProvisionedThroughput to something larger than 10. If the Hook
succeeds, the message, "ReadCapacity is correctly configured," will display to the caller. If the
request fails validation, the Hook will fail with the status, "ReadCapacity cannot be more than 10."

Node.js

export const handler = async (event, context) => {
 var targetModel = event?.requestData?.targetModel;
 var targetName = event?.requestData?.targetName;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",
 "clientRequestToken": event.clientRequestToken
 };

 if (targetName == "AWS::DynamoDB::Table") {
 var readCapacity =
 targetModel?.resourceProperties?.ProvisionedThroughput?.ReadCapacityUnits;
 if (readCapacity > 10) {
 response.hookStatus = "FAILED";
 response.errorCode = "NonCompliant";
 response.message = "ReadCapacity must be cannot be more than 10.";
 }
 }
 return response;
};

Python

import json

def lambda_handler(event, context):
 # Using dict.get() for safe access to nested dictionary values
 request_data = event.get('requestData', {})
 target_model = request_data.get('targetModel', {})
 target_name = request_data.get('targetName', '')

 response = {
 "hookStatus": "SUCCESS",
 "message": "ReadCapacity is correctly configured.",

Create Lambda functions for Hooks 48

Amazon CloudFormation Hooks User Guide

 "clientRequestToken": event.get('clientRequestToken')
 }

 if target_name == "AWS::DynamoDB::Table":
 # Safely navigate nested dictionary
 resource_properties = target_model.get('resourceProperties', {})
 provisioned_throughput = resource_properties.get('ProvisionedThroughput',
 {})
 read_capacity = provisioned_throughput.get('ReadCapacityUnits')

 if read_capacity and read_capacity > 10:
 response['hookStatus'] = "FAILED"
 response['errorCode'] = "NonCompliant"
 response['message'] = "ReadCapacity must be cannot be more than 10."

 return response

Evaluating stack operations with Lambda Hooks

Any time you create, update, or delete a stack with a new template, you can configure your
CloudFormation Lambda Hook to start by evaluating the new template and potentially block the
stack operation from proceeding. You can configure your CloudFormation Lambda Hook to target
STACK operations in the Hook TargetOperations configuration.

Topics

• Lambda Hook stack input syntax

• Example Lambda Hook stack change input

• Example Lambda function for stack operations

Lambda Hook stack input syntax

When your Lambda is invoked for a stack operation, you'll receive a JSON request containing the
Hook invocation context, actionInvocationPoint, and request context. Due to the size of
CloudFormation templates, and the limited input size accepted by Lambda functions, the actual
templates are stored in an Amazon S3 object. The input of the requestData includes an Amazon
S3 resigned URL to another object, which contains the current and previous template version.

The following is an example shape of the JSON input:

Create Lambda functions for Hooks 49

Amazon CloudFormation Hooks User Guide

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,
 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION" or "UPDATE_PRE_PROVISION" or
 "DELETE_PRE_PROVISION"
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String
 }
}

clientRequesttoken

The request token that was provided as an input to the Hook request. This is a required field.

awsAccountId

The ID of the Amazon Web Services account containing the stack being evaluated.

stackID

The stack ID of the CloudFormation stack.

changeSetId

The ID of the change set that initiated the Hook invocation. This value is empty if the stack
change was initiated by Cloud Control API, or the create-stack, update-stack, or delete-
stack operations.

hookTypeName

The name of the Hook that's running.

Create Lambda functions for Hooks 50

Amazon CloudFormation Hooks User Guide

hookTypeVersion

The version of the Hook that's running.

hookModel

LambdaFunction

The current Lambda ARN invoked by the Hook.

actionInvocationPoint

The exact point in the provisioning logic where the Hook runs.

Valid values: (CREATE_PRE_PROVISION | UPDATE_PRE_PROVISION |
DELETE_PRE_PROVISION)

requestData

targetName

This value will be STACK.

targetType

This value will be STACK.

targetLogicalId

The stack name.

payload

The Amazon S3 presigned URL containing a JSON object with the current and previous
template definitions.

requestContext

If the Hook is being reinvoked, this object will be set.

invocation

The current attempt at executing the Hook.

callbackContext

If the Hook was set to IN_PROGRESS and callbackContext was returned, it will be here
upon reinvocation.

Create Lambda functions for Hooks 51

Amazon CloudFormation Hooks User Guide

The payload property in the request data is a URL that your code needs to fetch. Once it has
received the URL, you get an object with the following schema:

{
 "template": String,
 "previousTemplate": String
}

template

The full CloudFormation template that was provided to create-stack or update-stack. It
can be a JSON or YAML string depending on what was provided to CloudFormation.

In delete-stack operations, this value will be empty.

previousTemplate

The previous CloudFormation template. It can be a JSON or YAML string depending on what
was provided to CloudFormation.

In delete-stack operations, this value will be empty.

Example Lambda Hook stack change input

The following is an example stack change input. The Hook is evaluating a change which updates
the ObjectLockEnabled to true, and adds an Amazon SQS queue:

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": null,
 "hookTypeName": "my::lambda::stackhook",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "UPDATE_PRE_PROVISION",
 "requestData": {
 "targetName": "STACK",
 "targetType": "STACK",

Create Lambda functions for Hooks 52

Amazon CloudFormation Hooks User Guide

 "targetLogicalId": "my-cloudformation-stack",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

This is an example payload of the requestData:

{
 "template": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":true}},\"SQSQueue\":{\"Type\":\"AWS::SQS::Queue
\",\"Properties\":{\"QueueName\":\"NewQueue\"}}}}",
 "previousTemplate": "{\"Resources\":{\"S3Bucket\":{\"Type\":\"AWS::S3::Bucket\",
\"Properties\":{\"ObjectLockEnabled\":false}}}}"
}

Example Lambda function for stack operations

The following example is a simple function that downloads the stack operation payload, parses the
template JSON, and returns SUCCESS.

Node.js

export const handler = async (event, context) => {
 var targetType = event?.requestData?.targetType;
 var payloadUrl = event?.requestData?.payload;

 var response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.clientRequestToken
 };
 try {
 const templateHookPayloadRequest = await fetch(payloadUrl);
 const templateHookPayload = await templateHookPayloadRequest.json()
 if (templateHookPayload.template) {
 // Do something with the template templateHookPayload.template
 // JSON or YAML
 }
 if (templateHookPayload.previousTemplate) {

Create Lambda functions for Hooks 53

Amazon CloudFormation Hooks User Guide

 // Do something with the template templateHookPayload.previousTemplate
 // JSON or YAML
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate stack operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Python

To use Python, you'll need to import the requests library. To do this, you'll need to include
the library in your deployment package when creating your Lambda function. For more
information, see Creating a .zip deployment package with dependencies in the Amazon Lambda
Developer Guide.

import json
import requests

def lamnbda_handler(event, context):
 # Safely access nested dictionary values
 request_data = event.get('requestData', {})
 target_type = request_data.get('targetType')
 payload_url = request_data.get('payload')

 response = {
 "hookStatus": "SUCCESS",
 "message": "Stack update is compliant",
 "clientRequestToken": event.get('clientRequestToken')
 }

 try:
 # Fetch the payload
 template_hook_payload_request = requests.get(payload_url)
 template_hook_payload_request.raise_for_status() # Raise an exception for
 bad responses
 template_hook_payload = template_hook_payload_request.json()

 if 'template' in template_hook_payload:
 # Do something with the template template_hook_payload['template']

Create Lambda functions for Hooks 54

https://docs.amazonaws.cn/lambda/latest/dg/python-package.html#python-package-create-dependencies

Amazon CloudFormation Hooks User Guide

 # JSON or YAML
 pass

 if 'previousTemplate' in template_hook_payload:
 # Do something with the template
 template_hook_payload['previousTemplate']
 # JSON or YAML
 pass

 except Exception as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to evaluate stack operation."
 response['errorCode'] = "InternalFailure"

 return response

Evaluating change set operations with Lambda Hooks

Any time you create a change set, you can configure your CloudFormation Lambda Hook to
first evaluate the new change set and potentially block its execution. You can configure your
CloudFormation Lambda Hook to target CHANGE_SET operations in the Hook TargetOperations
configuration.

Topics

• Lambda Hook change set input syntax

• Example Lambda Hook change set change input

• Example Lambda function for change set operations

Lambda Hook change set input syntax

The input for change set operations is similar to stack operations, but the payload of the
requestData also includes a list of resource changes introduced by the change set.

The following is an example shape of the JSON input:

{
 "clientRequesttoken": String,
 "awsAccountId": String,
 "stackID": String,

Create Lambda functions for Hooks 55

Amazon CloudFormation Hooks User Guide

 "changeSetId": String,
 "hookTypeName": String,
 "hookTypeVersion": String,
 "hookModel": {
 "LambdaFunction":String
 },
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",
 "targetLogicalId": String,
 "payload": String (S3 Presigned URL)
 },
 "requestContext": {
 "invocation": Integer,
 "callbackContext": String
 }
}

clientRequesttoken

The request token that was provided as an input to the Hook request. This is a required field.

awsAccountId

The ID of the Amazon Web Services account containing the stack being evaluated.

stackID

The stack ID of the CloudFormation stack.

changeSetId

The ID of the change set that initiated the Hook invocation.

hookTypeName

The name of the Hook that's running.

hookTypeVersion

The version of the Hook that's running.

hookModel

LambdaFunction

The current Lambda ARN invoked by the Hook.

Create Lambda functions for Hooks 56

Amazon CloudFormation Hooks User Guide

requestData

targetName

This value will be CHANGE_SET.

targetType

This value will be CHANGE_SET.

targetLogicalId

The change set ARN..

payload

The Amazon S3 presigned URL containing a JSON object with the current template, as well
as a list of changes introduced by this change set.

requestContext

If the Hook is being reinvoked, this object will be set.

invocation

The current attempt at executing the Hook.

callbackContext

If the Hook was set to IN_PROGRESS and callbackContext was returned, it will be here
upon reinvocation.

The payload property in the request data is a URL that your code needs to fetch. Once it has
received the URL, you get an object with the following schema:

{
 "template": String,
 "changedResources": [
 {
 "action": String,
 "beforeContext": JSON String,
 "afterContext": JSON String,
 "lineNumber": Integer,
 "logicalResourceId": String,
 "resourceType": String
 }

Create Lambda functions for Hooks 57

Amazon CloudFormation Hooks User Guide

]
}

template

The full CloudFormation template that was provided to create-stack or update-stack. It
can be a JSON or YAML string depending on what was provided to CloudFormation.

changedResources

A list of changed resources.

action

The type of change applied to the resource.

Valid values: (CREATE | UPDATE | DELETE)

beforeContext

A JSON string of the resource properties before the change. This value is null when the
resource is being created. All boolean and number values in this JSON string are STRINGS.

afterContext

A JSON string of the resources properties if this change set is executed. This value is null
when the resource is being deleted. All boolean and number values in this JSON string are
STRINGS.

lineNumber

The line number in the template that caused this change. If the action is DELETE this value
will be null.

logicalResourceId

The logical resource ID of the resource being changed.

resourceType

The resource type that’s being changed.

Example Lambda Hook change set change input

The following is an example change set change input. In the following example, you can see the
changes introduced by the change set. The first change is deleting a queue called CoolQueue. The

Create Lambda functions for Hooks 58

Amazon CloudFormation Hooks User Guide

second change is adding a new queue called NewCoolQueue. The last change is an update to the
DynamoDBTable.

{
 "clientRequestToken": "f8da6d11-b23f-48f4-814c-0fb6a667f50e",
 "awsAccountId": "123456789012",
 "stackId": "arn:aws:cloudformation:us-west-2:123456789012:stack/
MyStack/1a2345b6-0000-00a0-a123-00abc0abc000",
 "changeSetId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "hookTypeName": "my::lambda::changesethook",
 "hookTypeVersion": "00000008",
 "hookModel": {
 "LambdaFunction": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 },
 "actionInvocationPoint": "CREATE_PRE_PROVISION",
 "requestData": {
 "targetName": "CHANGE_SET",
 "targetType": "CHANGE_SET",
 "targetLogicalId": "arn:aws:cloudformation:us-west-2:123456789012:changeSet/
SampleChangeSet/1a2345b6-0000-00a0-a123-00abc0abc000",
 "payload": "https://s3......"
 },
 "requestContext": {
 "invocation": 1,
 "callbackContext": null
 }
}

This is an example payload of the requestData.payload:

{
 template: 'Resources:\n' +
 ' DynamoDBTable:\n' +
 ' Type: AWS::DynamoDB::Table\n' +
 ' Properties:\n' +
 ' AttributeDefinitions:\n' +
 ' - AttributeName: "PK"\n' +
 ' AttributeType: "S"\n' +
 ' BillingMode: "PAY_PER_REQUEST"\n' +
 ' KeySchema:\n' +
 ' - AttributeName: "PK"\n' +
 ' KeyType: "HASH"\n' +

Create Lambda functions for Hooks 59

Amazon CloudFormation Hooks User Guide

 ' PointInTimeRecoverySpecification:\n' +
 ' PointInTimeRecoveryEnabled: false\n' +
 ' NewSQSQueue:\n' +
 ' Type: AWS::SQS::Queue\n' +
 ' Properties:\n' +
 ' QueueName: "NewCoolQueue"',
 changedResources: [
 {
 logicalResourceId: 'SQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'DELETE',
 lineNumber: null,
 beforeContext: '{"Properties":{"QueueName":"CoolQueue"}}',
 afterContext: null
 },
 {
 logicalResourceId: 'NewSQSQueue',
 resourceType: 'AWS::SQS::Queue',
 action: 'CREATE',
 lineNumber: 14,
 beforeContext: null,
 afterContext: '{"Properties":{"QueueName":"NewCoolQueue"}}'
 },
 {
 logicalResourceId: 'DynamoDBTable',
 resourceType: 'AWS::DynamoDB::Table',
 action: 'UPDATE',
 lineNumber: 2,
 beforeContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}',
 afterContext: '{"Properties":
{"BillingMode":"PAY_PER_REQUEST","PointInTimeRecoverySpecification":
{"PointInTimeRecoveryEnabled":"false"},"AttributeDefinitions":
[{"AttributeType":"S","AttributeName":"PK"}],"KeySchema":
[{"KeyType":"HASH","AttributeName":"PK"}]}}'
 }
]
}

Create Lambda functions for Hooks 60

Amazon CloudFormation Hooks User Guide

Example Lambda function for change set operations

The following example is a simple function that downloads the change set operation payload,
loops through each change, and then prints out the before and after properties before it returns a
SUCCESS.

Node.js

export const handler = async (event, context) => {
 var payloadUrl = event?.requestData?.payload;
 var response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.clientRequestToken
 };
 try {
 const changeSetHookPayloadRequest = await fetch(payloadUrl);
 const changeSetHookPayload = await changeSetHookPayloadRequest.json();
 const changes = changeSetHookPayload.changedResources || [];
 for(const change of changes) {
 var beforeContext = {};
 var afterContext = {};
 if(change.beforeContext) {
 beforeContext = JSON.parse(change.beforeContext);
 }
 if(change.afterContext) {
 afterContext = JSON.parse(change.afterContext);
 }
 console.log(beforeContext)
 console.log(afterContext)
 // Evaluate Change here
 }
 } catch (error) {
 console.log(error);
 response.hookStatus = "FAILED";
 response.message = "Failed to evaluate change set operation.";
 response.errorCode = "InternalFailure";
 }
 return response;
};

Create Lambda functions for Hooks 61

Amazon CloudFormation Hooks User Guide

Python

To use Python, you'll need to import the requests library. To do this, you'll need to include
the library in your deployment package when creating your Lambda function. For more
information, see Creating a .zip deployment package with dependencies in the Amazon Lambda
Developer Guide.

import json
import requests

def lambda_handler(event, context):
 payload_url = event.get('requestData', {}).get('payload')
 response = {
 "hookStatus": "SUCCESS",
 "message": "Change set changes are compliant",
 "clientRequestToken": event.get('clientRequestToken')
 }

 try:
 change_set_hook_payload_request = requests.get(payload_url)
 change_set_hook_payload_request.raise_for_status() # Raises an HTTPError
 for bad responses
 change_set_hook_payload = change_set_hook_payload_request.json()

 changes = change_set_hook_payload.get('changedResources', [])

 for change in changes:
 before_context = {}
 after_context = {}

 if change.get('beforeContext'):
 before_context = json.loads(change['beforeContext'])

 if change.get('afterContext'):
 after_context = json.loads(change['afterContext'])

 print(before_context)
 print(after_context)
 # Evaluate Change here

 except requests.RequestException as error:
 print(error)
 response['hookStatus'] = "FAILED"

Create Lambda functions for Hooks 62

https://docs.amazonaws.cn/lambda/latest/dg/python-package.html#python-package-create-dependencies

Amazon CloudFormation Hooks User Guide

 response['message'] = "Failed to evaluate change set operation."
 response['errorCode'] = "InternalFailure"
 except json.JSONDecodeError as error:
 print(error)
 response['hookStatus'] = "FAILED"
 response['message'] = "Failed to parse JSON payload."
 response['errorCode'] = "InternalFailure"

 return response

Prepare to create a Lambda Hook

Before you create a Lambda Hook, you must complete the following prerequisites:

• You must have already created a Lambda function. For more information, see the Create Lambda
functions for Hooks.

• The user or role that creates the Hook must have sufficient permissions to activate Hooks. For
more information, see Grant IAM permissions for CloudFormation Hooks.

• To use the Amazon CLI or an SDK to create a Lambda Hook, you must manually create an
execution role with IAM permissions and a trust policy to allow CloudFormation to invoke a
Lambda Hook.

Create an execution role for a Lambda Hook

A Hook uses an execution role for the permissions that it requires to invoke that Hook in your
Amazon Web Services account.

This role can be created automatically if you create a Lambda Hook from the Amazon Web Services
Management Console; otherwise, you must create this role yourself.

The following section shows you how to set up permissions to create your Lambda Hook.

Required permissions

Follow the guidance at Create a role using custom trust policies in the IAM User Guide to create a
role with a custom trust policy.

Then, complete the following steps to set up your permissions:

Prepare to create a Lambda Hook 63

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-custom.html

Amazon CloudFormation Hooks User Guide

1. Attach the following minimum privilege policy to the IAM role you want to use to create the
Lambda Hook.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
 }
]
}

2. Give your Hook permission to assume the role by adding a trust policy to the role. The
following shows an example trust policy you can use.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "hooks.cloudformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Prepare to create a Lambda Hook 64

Amazon CloudFormation Hooks User Guide

Activate a Lambda Hook in your account

The following topic shows you how to activate a Lambda Hook in your account, which makes it
usable in the account and Region it was activated in.

Topics

• Activate a Lambda Hook (console)

• Activate a Lambda Hook (Amazon CLI)

• Related resources

Activate a Lambda Hook (console)

To activate a Lambda Hook for use in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
you want to create the Hook in.

3. If you haven't created a Lambda function for the Hook, do the following:

• Open the Functions page on the Lambda console.

• Create the Lambda function that you'll use with this Hook, and then return to this
procedure. For more information, see Create Lambda functions to evaluate resources for
Lambda Hooks.

If you have already created your Lambda function, proceed to the next step.

4. In the navigation pane on the left, choose Hooks.

5. On the Hooks page, choose Create a Hook, and then choose With Lambda.

6. For Hook name, choose one of the following options:

• Provide a short, descriptive name that will be added after Private::Lambda::.
For example, if you enter MyTestHook, the full Hook name becomes
Private::Lambda::MyTestHook.

• Provide the full Hook name (also called an alias) using this format:
Provider::ServiceName::HookName

Activate a Lambda Hook 65

https://console.amazonaws.cn/cloudformation/
https://console.amazonaws.cn/lambda/home#/functions

Amazon CloudFormation Hooks User Guide

7. For Lambda function, provide the Lambda function to be used with this Hook. You can use:

• The full Amazon Resource Name (ARN) without a suffix.

• A qualified ARN with a version or alias suffix.

8. For Hook targets, choose what to evaluate:

• Stacks — Evaluates stack templates when users create, update, or delete stacks.

• Resources — Evaluates individual resource changes when users update stacks.

• Change sets — Evaluates planned updates when users create change sets.

• Cloud Control API — Evaluates create, update or delete operations initiated by the Cloud
Control API.

9. For Actions, choose which actions (create, update, delete) will invoke your Hook.

10. For Hook mode, choose how the Hook responds when the Lambda function invoked by the
Hook returns a FAILED response:

• Warn — Issues warnings to users but allows actions to continue. This is useful for non-
critical validations or informational checks.

• Fail — Prevents the action from proceeding. This is helpful for enforcing strict compliance or
security policies.

11. For Execution role, choose the IAM role that the Hook assumes to invoke your Lambda
function. You can either allow CloudFormation to automatically create an execution role for
you or you can specify a role that you've created.

12. Choose Next.

13. (Optional) For Hook filters, do the following:

a. For Resource filter, specify which resource types can invoke the Hook. This ensures that
the Hook is only invoked for relevant resources.

b. For Filtering criteria, choose the logic for applying stack name and stack role filters:

• All stack names and stack roles – The Hook will only be invoked when all specified
filters match.

• Any stack names and stack roles – The Hook will be invoked if at least one of the
specified filters match.

Activate a Lambda Hook 66

https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html
https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

Amazon CloudFormation Hooks User Guide

Note

For Cloud Control API operations, all Stack names and Stack roles filters are
ignored.

c. For Stack names, include or exclude specific stacks from Hook invocations.

• For Include, specify the stack names to include. Use this when you have a small set of
specific stacks you want to target. Only the stacks specified in this list will invoke the
Hook.

• For Exclude, specify the stack names to exclude. Use this when you want to invoke the
Hook on most stacks but exclude a few specific ones. All stacks except those listed here
will invoke the Hook.

d. For Stack roles, include or exclude specific stacks from Hook invocations based on their
associated IAM roles.

• For Include, specify one or more IAM role ARNs to target stacks associated with these
roles. Only stack operations initiated by these roles will invoke the Hook.

• For Exclude, specify one or more IAM role ARNs for stacks you want to exclude. The
Hook will be invoked on all stacks except those initiated by the specified roles.

14. Choose Next.

15. On the Review and activate page, review your choices. To make changes, choose Edit on the
related section.

16. When you're ready to proceed, choose Activate Hook.

Activate a Lambda Hook (Amazon CLI)

Before you continue, confirm that you have created the Lambda function and the execution role
that you'll use with this Hook. For more information, see Create Lambda functions to evaluate
resources for Lambda Hooks and Create an execution role for a Lambda Hook.

Activate a Lambda Hook 67

Amazon CloudFormation Hooks User Guide

To activate a Lambda Hook for use in your account (Amazon CLI)

1. To start activating a Hook, use the following activate-type command, replacing the
placeholders with your specific values. This command authorizes the Hook to use a specified
execution role from your Amazon Web Services account.

aws cloudformation activate-type --type HOOK \
 --type-name AWS::Hooks::LambdaHook \
 --publisher-id aws-hooks \
 --execution-role-arn arn:aws:iam::123456789012:role/my-execution-role \
 --type-name-alias Private::Lambda::MyTestHook \
 --region us-west-2

2. To finish activating the Hook, you must configure it using a JSON configuration file.

Use the cat command to create a JSON file with the following structure. For more information,
see Hook configuration schema syntax reference.

$ cat > config.json
{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "CLOUD_CONTROL"
],
 "FailureMode": "WARN",
 "Properties": {
 "LambdaFunction": "arn:aws:lambda:us-
west-2:123456789012:function:MyFunction"
 },
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

Activate a Lambda Hook 68

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/activate-type.html

Amazon CloudFormation Hooks User Guide

• HookInvocationStatus: Set to ENABLED to enable the Hook.

• TargetOperations: Specify the operations that the Hook will evaluate.

• FailureMode: Set to either FAIL or WARN.

• LambdaFunction: Specify the ARN of the Lambda function.

• TargetFilters: Specify the types of actions that will invoke the Hook.

3. Use the following set-type-configuration command, along with the JSON file you created, to
apply the configuration. Replace the placeholders with your specific values.

aws cloudformation set-type-configuration \
 --configuration file://config.json \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Related resources

We provide template examples that you can use to understand how to declare a Lambda Hook in a
CloudFormation stack template. For more information, see AWS::CloudFormation::LambdaHook in
the Amazon CloudFormation User Guide.

View logs for the Lambda Hooks in your account

When using a Lambda Hook, your validation output report log file can be found in the Lambda
console.

View Lambda Hook logs in the Lambda console

To view the Lambda Hook output log file

1. Sign-in to the Lambda console.

2. On the navigation bar at the top of the screen, choose your Amazon Web Services Region.

3. Choose Functions.

4. Choose desired Lambda function.

5. Choose the Test tab.

6. Choose CloudWatch Logs Live Trail

7. Choose the drop-down menu and select the log groups you want to view.

View logs for Lambda Hooks 69

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html

Amazon CloudFormation Hooks User Guide

8. Choose Start. The log will display in the CloudWatch Logs Live Trail window. Choose View in
columns or View in plain text depending on your preference.

• You can add more filters to the results by adding them in the Add filter pattern field. This
field allows you filter results to only include events that match the specified pattern.

For more information on viewing logs for Lambda functions, see Viewing CloudWatch Logs for
Lambda functions.

Delete Lambda Hooks in your account

When you no longer need an activated Lambda Hook, use the following procedures to delete it in
your account.

To temporarily disable a Hook instead of deleting it, see Disable and enable Amazon
CloudFormation Hooks.

Topics

• Delete a Lambda Hook in your account (console)

• Delete a Lambda Hook in your account (Amazon CLI)

Delete a Lambda Hook in your account (console)

To delete a Lambda Hook in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the Hook is located.

3. From the navigation pane, choose Hooks.

4. On the Hooks page, find the Lambda Hook you want to delete.

5. Select the check box next to your Hook and choose Delete.

6. When prompted for confirmation, type out the Hook name to confirm deleting the specified
Hook and then choose Delete.

Delete Lambda Hooks 70

https://docs.amazonaws.cn/lambda/latest/dg/monitoring-cloudwatchlogs-view.html
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-cloudwatchlogs-view.html
https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

Delete a Lambda Hook in your account (Amazon CLI)

Note

Before you can delete the Hook, you must first disable it. For more information, see Disable
and enable a Hook in your account (Amazon CLI).

Use the following deactivate-type command to deactivate a Hook, which removes it from your
account. Replace placeholders with your specific values.

aws cloudformation deactivate-type \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

Developing custom Hooks using the CloudFormation CLI

This section is for customers who want to develop custom Hooks and register them in the
CloudFormation registry. It provides an overview of the structure of Amazon CloudFormation
Hooks, and guides for developing, registering, testing, managing, and publishing your own Hooks
with Python or Java.

There are three major steps in developing a custom Hook:

1. Initiate

To develop custom Hooks, you must configure and use the CloudFormation CLI. To initiate a
Hook's project and its required files, use the CloudFormation CLI init command and specify
that you want to create a Hook. For more information, see Initiating a custom Amazon
CloudFormation Hooks project.

2. Model

To model, author, and validate your Hook schema, define the Hook, its properties, and their
attributes.

The CloudFormation CLI creates empty handler functions which correspond to a specific Hook
invocation point. Add your own logic to these handlers to control what happens during your
Hook invocation at each stage of its target lifecycle. For more information, see Modeling custom
Amazon CloudFormation Hooks.

Custom Hooks 71

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deactivate-type.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-init.html

Amazon CloudFormation Hooks User Guide

3. Register

To register a Hook, submit your Hook to be registered either as a private or a public third-party
extension. Register your Hook with the submit operation. For more information, see Registering
a custom Hook with Amazon CloudFormation.

The following tasks are associated with registering your Hook:

a. Publish – Hooks are published to the registry.

b. Configure – Hooks are configured when the type configuration invokes against stacks.

Note

Hooks will time out after 30 seconds and retry up to 3 times. For more information, see
Timeout and retry limits.

Topics

• Prerequisites for developing custom Amazon CloudFormation Hooks

• Initiating a custom Amazon CloudFormation Hooks project

• Modeling custom Amazon CloudFormation Hooks

• Registering a custom Hook with Amazon CloudFormation

• Testing a custom Hook in your Amazon Web Services account

• Updating a custom Hook

• Deregistering a custom Hook from the CloudFormation registry

• Publishing Hooks for public use

• Schema syntax reference for Amazon CloudFormation Hooks

Prerequisites for developing custom Amazon CloudFormation Hooks

You can develop a custom Hook with Java or Python. The following are the prerequisites for
developing custom Hooks:

Java prerequisites

• Apache Maven

Prerequisites 72

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://maven.apache.org/install.html

Amazon CloudFormation Hooks User Guide

• JDK 17

Note

If you intend to use the CloudFormation Command Line Interface (CLI) to initiate a Hooks
project for Java, you must install Python 3.8 or later as well. The Java plugin for the
CloudFormation CLI can be installed through pip (Python's package manager), which is
distrubted with Python.

To implement Hook handlers for your Java Hooks project, you can download the Java Hook handler
example files.

Python prerequisites

• Python version 3.8 or later.

To implement Hook handlers for your Python Hooks project, you can download the Python Hook
handler example files.

Permissions for developing Hooks

In addition to the CloudFormation Create, Update, and Delete stack permissions, you'll need
access to the following Amazon CloudFormation operations. Access to these operations is managed
through your IAM role's CloudFormation policy.

• register-type

• list-types

• deregister-type

• set-type-configuration

For more information, see Grant IAM permissions for CloudFormation Hooks.

Set up a development environment for Hooks

To develop Hooks, you should be familiar with CloudFormation templates, and either Python or
Java.

Prerequisites 73

https://www.oracle.com/java/technologies/downloads/#java17
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
samples/java-handlers.zip
samples/java-handlers.zip
https://www.python.org/downloads/
samples/python-handlers.zip
samples/python-handlers.zip
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/register-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-types.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deregister-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/template-guide.html

Amazon CloudFormation Hooks User Guide

To install the CloudFormation CLI, and the associated plugins:

1. Install the the CloudFormation CLI with pip, the Python package manager.

pip3 install cloudformation-cli

2. Install either the Python or Java plugin for the CloudFormation CLI.

Python

pip3 install cloudformation-cli-python-plugin

Java

pip3 install cloudformation-cli-java-plugin

To upgrade the CloudFormation CLI and the plugin, you can use the upgrade option.

Python

pip3 install --upgrade cloudformation-cli cloudformation-cli-python-plugin

Java

pip3 install --upgrade cloudformation-cli cloudformation-cli-java-plugin

Initiating a custom Amazon CloudFormation Hooks project

The first step in creating your custom Hooks project is to initiate the project. You can use the
CloudFormation CLI init command to initiate your custom Hooks project.

The init command launches a wizard that walks you through setting up the project, including a
Hooks schema file. Use this schema file as a starting point for defining the shape and semantics of
your Hooks. For more information, see Schema syntax.

To inititate a Hook project:

1. Create a directory for the project.

Initiating a Hooks project 74

Amazon CloudFormation Hooks User Guide

mkdir ~/mycompany-testing-mytesthook

2. Navigate to the new directory.

cd ~/mycompany-testing-mytesthook

3. Use the CloudFormation CLI init command to initiate the project.

cfn init

The command returns the following output.

Initializing new project

4. The init command launches a wizard that walks you through setting up the project. When
prompted, enter h to specify a Hooks project.

Do you want to develop a new resource(r) a module(m) or a hook(h)?

h

5. Enter a a name for your Hook type.

What's the name of your hook type?
(Organization::Service::Hook)

MyCompany::Testing::MyTestHook

6. If only one language plugin is installed, it is selected by default. If more than one language
plugin is installed, you can choose your desired language. Enter a number selection for the
language of your choice.

Select a language for code generation:
[1] java
[2] python38
[3] python39
(enter an integer):

7. Set up packaging based on chosen development lanaguage.

Initiating a Hooks project 75

Amazon CloudFormation Hooks User Guide

Python

(Optional) Choose Docker for platform-independent packaging. While Docker isn't required,
it's highly recommended to make packaging easier.

Use docker for platform-independent packaging (Y/n)?
This is highly recommended unless you are experienced with cross-platform Python
 packaging.

Java

Set Java package name and choose a codegen model. You can use the default package
name, or create a new one.

Enter a package name (empty for default 'com.mycompany.testing.mytesthook'):

Choose codegen model - 1 (default) or 2 (guided-aws):

Results: You have successfully initiated the project and have generated the files needed to develop
a Hook. The following is an example of the directories and files that make up a Hooks project for
Python 3.8.

mycompany-testing-mytesthook.json
rpdk.log
README.md
requirements.txt
hook-role.yaml
template.yml
docs
 README.md
src
 __init__.py
 handlers.py
 models.py
 target_models
 aws_s3_bucket.py

Initiating a Hooks project 76

Amazon CloudFormation Hooks User Guide

Note

The files in the src directory are created based on your language selection. There are some
useful comments and examples in the generated files. Some files, such as models.py,
are automatically updated in a later step when you run the generate command to add
runtime code for your handlers.

Modeling custom Amazon CloudFormation Hooks

Modeling custom Amazon CloudFormation Hooks involves creating a schema that defines the
Hook, its properties, and their attributes. When you create your custom Hook project using the
cfn init command, an example Hook schema is created as a JSON-formatted text file, hook-
name.json.

Target invocation points and target actions specify the exact point where the Hook is invoked. Hook
handlers host executable custom logic for these points. For example, a target action of the CREATE
operation uses a preCreate handler. Your code written in the handler will invoke when Hook
targets and services perform a matching action. Hook targets are the destination where hooks
are invoked. You can specify targets such as, Amazon CloudFormation public resources, private
resources, or custom resources. Hooks support an unlimited number of Hook targets.

The schema contains permissions required for the Hook. Authoring the Hook requires you to
specify permissions for each Hook handler. CloudFormation encourages authors to write policies
that follow the standard security advice of granting least privilege, or granting only the permissions
required to perform a task. Determine what users (and roles) need to do, and then craft policies
that allow them to perform only those tasks for Hook operations. CloudFormation uses these
permissions to scope-down Hook users provided permissions. These permissions are passed down
to the Hook. Hook handlers use these permissions to access Amazon resources.

You can use the following schema file as a starting point to define your Hook. Use the Hook
schema to specify which handlers you want to implement. If you choose not to implement a
specific handler, remove it from the handlers' section of the Hook schema. For more details on the
schema, see Schema syntax.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",

Modeling Hooks 77

Amazon CloudFormation Hooks User Guide

 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string"
 }
 },
 "required":[

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preDelete":{
 "targetNames":[

Modeling Hooks 78

Amazon CloudFormation Hooks User Guide

 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[
 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Topics

• Modeling custom Amazon CloudFormation Hooks using Java

• Modeling custom Amazon CloudFormation Hooks using Python

Modeling custom Amazon CloudFormation Hooks using Java

Modeling custom Amazon CloudFormation Hooks involves creating a schema that defines the
Hook, its properties, and their attributes. This tutorial walks you through modeling custom Hooks
using Java.

Step 1: Add project dependencies

Java based Hooks projects rely on Maven's pom.xml file as a dependency. Expand the following
section and copy the source code into the pom.xml file in the root of the project.

Hook project dependencies (pom.xml)

<?xml version="1.0" encoding="UTF-8"?>
<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/
maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

Modeling Hooks 79

Amazon CloudFormation Hooks User Guide

 <groupId>com.mycompany.testing.mytesthook</groupId>
 <artifactId>mycompany-testing-mytesthook-handler</artifactId>
 <name>mycompany-testing-mytesthook-handler</name>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <aws.java.sdk.version>2.16.1</aws.java.sdk.version>
 <checkstyle.version>8.36.2</checkstyle.version>
 <commons-io.version>2.8.0</commons-io.version>
 <jackson.version>2.11.3</jackson.version>
 <maven-checkstyle-plugin.version>3.1.1</maven-checkstyle-plugin.version>
 <mockito.version>3.6.0</mockito.version>
 <spotbugs.version>4.1.4</spotbugs.version>
 <spotless.version>2.5.0</spotless.version>
 <maven-javadoc-plugin.version>3.2.0</maven-javadoc-plugin.version>
 <maven-source-plugin.version>3.2.1</maven-source-plugin.version>
 <cfn.generate.args/>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>bom</artifactId>
 <version>2.16.1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-rpdk-java-plugin -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-rpdk-java-plugin</artifactId>
 <version>[2.0.0,3.0.0)</version>
 </dependency>

Modeling Hooks 80

Amazon CloudFormation Hooks User Guide

 <!-- AWS Java SDK v2 Dependencies -->
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sdk-core</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>cloudformation</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>utils</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>apache-client</artifactId>
 </dependency>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>sqs</artifactId>
 </dependency>

 <!-- Test dependency for Java Providers -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>cloudformation-cli-java-plugin-testing-support</artifactId>
 <version>1.0.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-s3 -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-s3</artifactId>
 <version>1.12.85</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-io/commons-io -->
 <dependency>
 <groupId>commons-io</groupId>

Modeling Hooks 81

Amazon CloudFormation Hooks User Guide

 <artifactId>commons-io</artifactId>
 <version>${commons-io.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-lang3 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-lang3</artifactId>
 <version>3.9</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.commons/commons-collections4
 -->
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-collections4</artifactId>
 <version>4.4</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.google.guava/guava -->
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>29.0-jre</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-
cloudformation -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-cloudformation</artifactId>
 <version>1.11.555</version>
 <scope>test</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/commons-codec/commons-codec -->
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.14</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/software.amazon.cloudformation/aws-
cloudformation-resource-schema -->
 <dependency>
 <groupId>software.amazon.cloudformation</groupId>
 <artifactId>aws-cloudformation-resource-schema</artifactId>
 <version>[2.0.5, 3.0.0)</version>
 </dependency>

Modeling Hooks 82

Amazon CloudFormation Hooks User Guide

 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-databind -->
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.dataformat/
jackson-dataformat-cbor -->
 <dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-cbor</artifactId>
 <version>${jackson.version}</version>
 </dependency>

 <dependency>
 <groupId>com.fasterxml.jackson.datatype</groupId>
 <artifactId>jackson-datatype-jsr310</artifactId>
 <version>${jackson.version}</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-
modules-java8 -->
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-modules-java8</artifactId>
 <version>${jackson.version}</version>
 <type>pom</type>
 <scope>runtime</scope>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.json/json -->
 <dependency>
 <groupId>org.json</groupId>
 <artifactId>json</artifactId>
 <version>20180813</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-core -->
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-core</artifactId>
 <version>1.11.1034</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-core -->

Modeling Hooks 83

Amazon CloudFormation Hooks User Guide

 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-core</artifactId>
 <version>1.2.0</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.amazonaws/aws-lambda-java-log4j2 --
>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-lambda-java-log4j2</artifactId>
 <version>1.2.0</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/com.google.code.gson/gson -->
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.8</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.4</version>
 <scope>provided</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api -->
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-api</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-core --
>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.17.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-slf4j-
impl -->
 <dependency>

Modeling Hooks 84

Amazon CloudFormation Hooks User Guide

 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-slf4j-impl</artifactId>
 <version>2.17.1</version>
 </dependency>

 <!-- https://mvnrepository.com/artifact/org.assertj/assertj-core -->
 <dependency>
 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>3.12.2</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter -->
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>5.5.0-M1</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-core -->
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 <!-- https://mvnrepository.com/artifact/org.mockito/mockito-junit-jupiter -->
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-junit-jupiter</artifactId>
 <version>3.6.0</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.8.1</version>
 <configuration>
 <compilerArgs>
 <arg>-Xlint:all,-options,-processing</arg>

Modeling Hooks 85

Amazon CloudFormation Hooks User Guide

 </compilerArgs>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>**/Log4j2Plugins.dat</exclude>
 </excludes>
 </filter>
 </filters>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId>
 <version>1.6.0</version>
 <executions>
 <execution>
 <id>generate</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>exec</goal>
 </goals>
 <configuration>
 <executable>cfn</executable>
 <commandlineArgs>generate ${cfn.generate.args}</
commandlineArgs>
 <workingDirectory>${project.basedir}</workingDirectory>
 </configuration>

Modeling Hooks 86

Amazon CloudFormation Hooks User Guide

 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>add-source</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>${project.basedir}/target/generated-sources/
rpdk</source>
 </sources>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.4</version>
 </plugin>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>3.0.0-M3</version>
 </plugin>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.4</version>
 <configuration>
 <excludes>
 <exclude>**/BaseHookConfiguration*</exclude>
 <exclude>**/BaseHookHandler*</exclude>
 <exclude>**/HookHandlerWrapper*</exclude>
 <exclude>**/ResourceModel*</exclude>
 <exclude>**/TypeConfigurationModel*</exclude>
 <exclude>**/model/**/*</exclude>

Modeling Hooks 87

Amazon CloudFormation Hooks User Guide

 </excludes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>jacoco-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>
 <rule>
 <element>PACKAGE</element>
 <limits>
 <limit>
 <counter>BRANCH</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 <limit>
 <counter>INSTRUCTION</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.8</minimum>
 </limit>
 </limits>
 </rule>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 <resources>

Modeling Hooks 88

Amazon CloudFormation Hooks User Guide

 <resource>
 <directory>${project.basedir}</directory>
 <includes>
 <include>mycompany-testing-mytesthook.json</include>
 </includes>
 </resource>
 <resource>
 <directory>${project.basedir}/target/loaded-target-schemas</directory>
 <includes>
 <include>**/*.json</include>
 </includes>
 </resource>
 </resources>
 </build>
</project>

Step 2: Generate the Hook project package

Generate your Hook project package. The CloudFormation CLI creates empty handler functions
that correspond to specific Hook actions in the target lifecycle as defined in the Hook specification.

cfn generate

The command returns the following output.

Generated files for MyCompany::Testing::MyTestHook

Note

Make sure your Lambda runtimes are up-to-date to avoid using a deprecated version. For
more information, see Updating Lambda runtimes for resource types and Hooks.

Step 3: Add Hook handlers

Add your own Hook handler runtime code to the handlers that you choose to implement. For
example, you can add the following code for logging.

logger.log("Internal testing Hook triggered for target: " +
 request.getHookContext().getTargetName());

Modeling Hooks 89

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/runtime-update.html

Amazon CloudFormation Hooks User Guide

The CloudFormation CLI generates a Plain Old Java Objects (Java POJO). The following are output
examples generated from AWS::S3::Bucket.

Example AwsS3BucketTargetModel.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import...

@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3BucketTargetModel extends ResourceHookTargetModel<AwsS3Bucket> {

 @JsonIgnore
 private static final TypeReference<AwsS3Bucket> TARGET_REFERENCE =
 new TypeReference<AwsS3Bucket>() {};

 @JsonIgnore
 private static final TypeReference<AwsS3BucketTargetModel> MODEL_REFERENCE =
 new TypeReference<AwsS3BucketTargetModel>() {};

 @JsonIgnore
 public static final String TARGET_TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public TypeReference<AwsS3Bucket> getHookTargetTypeReference() {
 return TARGET_REFERENCE;
 }

 @JsonIgnore
 public TypeReference<AwsS3BucketTargetModel> getTargetModelTypeReference() {
 return MODEL_REFERENCE;
 }
}

Modeling Hooks 90

Amazon CloudFormation Hooks User Guide

Example AwsS3Bucket.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
@ToString(callSuper = true)
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class AwsS3Bucket extends ResourceHookTarget {
 @JsonIgnore
 public static final String TYPE_NAME = "AWS::S3::Bucket";

 @JsonIgnore
 public static final String IDENTIFIER_KEY_ID = "/properties/Id";

 @JsonProperty("InventoryConfigurations")
 private List<InventoryConfiguration> inventoryConfigurations;

 @JsonProperty("WebsiteConfiguration")
 private WebsiteConfiguration websiteConfiguration;

 @JsonProperty("DualStackDomainName")
 private String dualStackDomainName;

 @JsonProperty("AccessControl")
 private String accessControl;

 @JsonProperty("AnalyticsConfigurations")
 private List<AnalyticsConfiguration> analyticsConfigurations;

 @JsonProperty("AccelerateConfiguration")
 private AccelerateConfiguration accelerateConfiguration;

 @JsonProperty("PublicAccessBlockConfiguration")
 private PublicAccessBlockConfiguration publicAccessBlockConfiguration;

 @JsonProperty("BucketName")

Modeling Hooks 91

Amazon CloudFormation Hooks User Guide

 private String bucketName;

 @JsonProperty("RegionalDomainName")
 private String regionalDomainName;

 @JsonProperty("OwnershipControls")
 private OwnershipControls ownershipControls;

 @JsonProperty("ObjectLockConfiguration")
 private ObjectLockConfiguration objectLockConfiguration;

 @JsonProperty("ObjectLockEnabled")
 private Boolean objectLockEnabled;

 @JsonProperty("LoggingConfiguration")
 private LoggingConfiguration loggingConfiguration;

 @JsonProperty("ReplicationConfiguration")
 private ReplicationConfiguration replicationConfiguration;

 @JsonProperty("Tags")
 private List<Tag> tags;

 @JsonProperty("DomainName")
 private String domainName;

 @JsonProperty("BucketEncryption")
 private BucketEncryption bucketEncryption;

 @JsonProperty("WebsiteURL")
 private String websiteURL;

 @JsonProperty("NotificationConfiguration")
 private NotificationConfiguration notificationConfiguration;

 @JsonProperty("LifecycleConfiguration")
 private LifecycleConfiguration lifecycleConfiguration;

 @JsonProperty("VersioningConfiguration")
 private VersioningConfiguration versioningConfiguration;

 @JsonProperty("MetricsConfigurations")
 private List<MetricsConfiguration> metricsConfigurations;

Modeling Hooks 92

Amazon CloudFormation Hooks User Guide

 @JsonProperty("IntelligentTieringConfigurations")
 private List<IntelligentTieringConfiguration> intelligentTieringConfigurations;

 @JsonProperty("CorsConfiguration")
 private CorsConfiguration corsConfiguration;

 @JsonProperty("Id")
 private String id;

 @JsonProperty("Arn")
 private String arn;

 @JsonIgnore
 public JSONObject getPrimaryIdentifier() {
 final JSONObject identifier = new JSONObject();
 if (this.getId() != null) {
 identifier.put(IDENTIFIER_KEY_ID, this.getId());
 }

 // only return the identifier if it can be used, i.e. if all components are
 present
 return identifier.length() == 1 ? identifier : null;
 }

 @JsonIgnore
 public List<JSONObject> getAdditionalIdentifiers() {
 final List<JSONObject> identifiers = new ArrayList<JSONObject>();
 // only return the identifiers if any can be used
 return identifiers.isEmpty() ? null : identifiers;
 }
}

Example BucketEncryption.java

package software.amazon.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor

Modeling Hooks 93

Amazon CloudFormation Hooks User Guide

@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class BucketEncryption {
 @JsonProperty("ServerSideEncryptionConfiguration")
 private List<ServerSideEncryptionRule> serverSideEncryptionConfiguration;

}

Example ServerSideEncryptionRule.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)
public class ServerSideEncryptionRule {
 @JsonProperty("BucketKeyEnabled")
 private Boolean bucketKeyEnabled;

 @JsonProperty("ServerSideEncryptionByDefault")
 private ServerSideEncryptionByDefault serverSideEncryptionByDefault;

}

Example ServerSideEncryptionByDefault.java

package com.mycompany.testing.mytesthook.model.aws.s3.bucket;

import ...

@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
@JsonAutoDetect(fieldVisibility = Visibility.ANY, getterVisibility = Visibility.NONE,
 setterVisibility = Visibility.NONE)

Modeling Hooks 94

Amazon CloudFormation Hooks User Guide

public class ServerSideEncryptionByDefault {
 @JsonProperty("SSEAlgorithm")
 private String sSEAlgorithm;

 @JsonProperty("KMSMasterKeyID")
 private String kMSMasterKeyID;

}

With the POJOs generated, you can now write the handlers that actually implement the Hook’s
functionality. For this example, implement the preCreate and preUpdate invocation point for
the handlers.

Step 4: Implement Hook handlers

Topics

• Coding the API client builder

• Coding the API request maker

• Implementing the helper code

• Implementing the base handler

• Implementing the preCreate handler

• Coding the preCreate handler

• Updating the preCreate test

• Implementing the preUpdate handler

• Coding the preUpdate handler

• Updating the preUpdate test

• Implementing the preDelete handler

• Coding the preDelete handler

• Updating the preDelete handler

Coding the API client builder

1. In your IDE, open the ClientBuilder.java file, located in the src/main/java/com/
mycompany/testing/mytesthook folder.

2. Replace the entire contents of the ClientBuilder.java file with the following code.

Modeling Hooks 95

Amazon CloudFormation Hooks User Guide

Example ClientBuilder.java

package com.awscommunity.kms.encryptionsettings;

import software.amazon.awssdk.services.ec2.Ec2Client;
import software.amazon.cloudformation.HookLambdaWrapper;

/**
 * Describes static HTTP clients (to consume less memory) for API calls that
 * this hook makes to a number of AWS services.
 */
public final class ClientBuilder {

 private ClientBuilder() {
 }

 /**
 * Create an HTTP client for Amazon EC2.
 *
 * @return Ec2Client An {@link Ec2Client} object.
 */
 public static Ec2Client getEc2Client() {
 return
 Ec2Client.builder().httpClient(HookLambdaWrapper.HTTP_CLIENT).build();
 }
}

Coding the API request maker

1. In your IDE, open the Translator.java file, located in the src/main/java/com/
mycompany/testing/mytesthook folder.

2. Replace the entire contents of the Translator.java file with the following code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;

Modeling Hooks 96

Amazon CloudFormation Hooks User Guide

import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

/**
 * This class is a centralized placeholder for
 * - api request construction
 * - object translation to/from aws sdk
 */

public class Translator {

 static ListBucketsRequest translateToListBucketsRequest(final HookTargetModel
 targetModel) {
 return ListBucketsRequest.builder().build();
 }

 static ListQueuesRequest translateToListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static ListBucketsRequest createListBucketsRequest() {
 return ListBucketsRequest.builder().build();
 }

 static ListQueuesRequest createListQueuesRequest() {
 return createListQueuesRequest(null);
 }

 static ListQueuesRequest createListQueuesRequest(final String nextToken) {
 return ListQueuesRequest.builder().nextToken(nextToken).build();
 }

 static GetBucketEncryptionRequest createGetBucketEncryptionRequest(final String
 bucket) {
 return GetBucketEncryptionRequest.builder().bucket(bucket).build();
 }
}

Implementing the helper code

1. In your IDE, open the AbstractTestBase.java file, located in the src/main/java/com/
mycompany/testing/mytesthook folder.

Modeling Hooks 97

Amazon CloudFormation Hooks User Guide

2. Replace the entire contents of the AbstractTestBase.java file with the following code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import org.mockito.Mockito;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.AwsSessionCredentials;
import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider;
import software.amazon.awssdk.awscore.AwsRequest;
import software.amazon.awssdk.awscore.AwsRequestOverrideConfiguration;
import software.amazon.awssdk.awscore.AwsResponse;
import software.amazon.awssdk.core.SdkClient;
import software.amazon.awssdk.core.pagination.sync.SdkIterable;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Credentials;
import software.amazon.cloudformation.proxy.LoggerProxy;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import javax.annotation.Nonnull;
import java.time.Duration;
import java.util.concurrent.CompletableFuture;
import java.util.function.Function;
import java.util.function.Supplier;

import static org.assertj.core.api.Assertions.assertThat;

@lombok.Getter
public class AbstractTestBase {
 protected final AwsSessionCredentials awsSessionCredential;
 protected final AwsCredentialsProvider v2CredentialsProvider;
 protected final AwsRequestOverrideConfiguration configuration;
 protected final LoggerProxy loggerProxy;
 protected final Supplier<Long> awsLambdaRuntime = () ->
 Duration.ofMinutes(15).toMillis();
 protected final AmazonWebServicesClientProxy proxy;
 protected final Credentials mockCredentials =
 new Credentials("mockAccessId", "mockSecretKey", "mockSessionToken");

Modeling Hooks 98

Amazon CloudFormation Hooks User Guide

 @lombok.Setter
 private SdkClient serviceClient;

 protected AbstractTestBase() {
 loggerProxy = Mockito.mock(LoggerProxy.class);
 awsSessionCredential =
 AwsSessionCredentials.create(mockCredentials.getAccessKeyId(),
 mockCredentials.getSecretAccessKey(),
 mockCredentials.getSessionToken());
 v2CredentialsProvider =
 StaticCredentialsProvider.create(awsSessionCredential);
 configuration = AwsRequestOverrideConfiguration.builder()
 .credentialsProvider(v2CredentialsProvider)
 .build();
 proxy = new AmazonWebServicesClientProxy(
 loggerProxy,
 mockCredentials,
 awsLambdaRuntime
) {
 @Override
 public <ClientT> ProxyClient<ClientT> newProxy(@Nonnull
 Supplier<ClientT> client) {
 return new ProxyClient<ClientT>() {
 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse>
 ResponseT injectCredentialsAndInvokeV2(RequestT request,
 Function<RequestT,
 ResponseT> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2(request,
 requestFunction);
 }

 @Override
 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse> CompletableFuture<ResponseT>
 injectCredentialsAndInvokeV2Async(RequestT request,
 Function<RequestT, CompletableFuture<ResponseT>> requestFunction) {
 return proxy.injectCredentialsAndInvokeV2Async(request,
 requestFunction);
 }

 @Override

Modeling Hooks 99

Amazon CloudFormation Hooks User Guide

 public <RequestT extends AwsRequest, ResponseT extends
 AwsResponse, IterableT extends SdkIterable<ResponseT>>
 IterableT
 injectCredentialsAndInvokeIterableV2(RequestT request,
 Function<RequestT, IterableT> requestFunction) {
 return proxy.injectCredentialsAndInvokeIterableV2(request,
 requestFunction);
 }

 @SuppressWarnings("unchecked")
 @Override
 public ClientT client() {
 return (ClientT) serviceClient;
 }
 };
 }
 };
 }

 protected void assertResponse(final ProgressEvent<HookTargetModel,
 CallbackContext> response, final OperationStatus expectedStatus, final String
 expectedMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedMsg);
 }

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties) {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

 protected HookTargetModel createHookTargetModel(final Object
 resourceProperties, final Object previousResourceProperties) {
 return HookTargetModel.of(
 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);

Modeling Hooks 100

Amazon CloudFormation Hooks User Guide

 }
}

Implementing the base handler

1. In your IDE, open the BaseHookHandlerStd.java file, located in the src/main/java/
com/mycompany/testing/mytesthook folder.

2. Replace the entire contents of the BaseHookHandlerStd.java file with the following code.

Example Translator.java

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

public abstract class BaseHookHandlerStd extends BaseHookHandler<CallbackContext,
 TypeConfigurationModel> {
 public static final String HOOK_TYPE_NAME = "MyCompany::Testing::MyTestHook";

 protected Logger logger;

 @Override
 public ProgressEvent<HookTargetModel, CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration
) {
 this.logger = logger;

Modeling Hooks 101

Amazon CloudFormation Hooks User Guide

 final String targetName = request.getHookContext().getTargetName();

 final ProgressEvent<HookTargetModel, CallbackContext> result;
 if (AwsS3Bucket.TYPE_NAME.equals(targetName)) {
 result = handleS3BucketRequest(
 proxy,
 request,
 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createS3Client),
 typeConfiguration
);
 } else if (AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 result = handleSqsQueueRequest(
 proxy,
 request,
 callbackContext != null ? callbackContext : new
 CallbackContext(),
 proxy.newProxy(ClientBuilder::createSqsClient),
 typeConfiguration
);
 } else {
 throw new UnsupportedTargetException(targetName);
 }

 log(
 String.format(
 "Result for [%s] invocation for target [%s] returned status [%s]
 with message [%s]",
 request.getHookContext().getInvocationPoint(),
 targetName,
 result.getStatus(),
 result.getMessage()
)
);

 return result;
 }

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,

Modeling Hooks 102

Amazon CloudFormation Hooks User Guide

 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected abstract ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
);

 protected void log(final String message) {
 if (logger != null) {
 logger.log(message);
 } else {
 System.out.println(message);
 }
 }
}

Implementing the preCreate handler

The preCreate handler verifies the server-side encryption settings for either an
AWS::S3::Bucket or AWS::SQS::Queue resource.

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true:

• The Amazon S3 bucket encryption is set.

• The Amazon S3 bucket key is enabled for the bucket.

• The encryption algorithm set for the Amazon S3 bucket is the correct algorithm required.

• The Amazon Key Management Service key ID is set.

• For an AWS::SQS::Queue resource, the Hook will only pass if the following is true:

• The Amazon Key Management Service key ID is set.

Coding the preCreate handler

1. In your IDE, open the PreCreateHookHandler.java file, located in the src/main/java/
software/mycompany/testing/mytesthook folder.

Modeling Hooks 103

Amazon CloudFormation Hooks User Guide

2. Replace the entire contents of the PreCreateHookHandler.java file with the following
code.

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.List;

public class PreCreateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

Modeling Hooks 104

Amazon CloudFormation Hooks User Guide

 final AwsS3Bucket bucket = targetModel.getResourceProperties();
 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();

 return validateS3BucketEncryption(bucket, encryptionAlgorithm);

 } else if ("AWS::SQS::Queue".equals(targetName)) {
 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 request.getHookContext().getTargetModel(AwsSqsQueueTargetModel.class);

 final AwsSqsQueue queue = targetModel.getResourceProperties();
 return validateSQSQueueEncryption(queue);
 } else {
 throw new UnsupportedTargetException(targetName);
 }
 }

 private HookProgressEvent<CallbackContext> validateS3BucketEncryption(final
 AwsS3Bucket bucket, final String requiredEncryptionAlgorithm) {
 HookStatus resultStatus = null;
 String resultMessage = null;

 if (bucket != null) {
 final BucketEncryption bucketEncryption = bucket.getBucketEncryption();
 if (bucketEncryption != null) {
 final List<ServerSideEncryptionRule> serverSideEncryptionRules =
 bucketEncryption.getServerSideEncryptionConfiguration();
 if (CollectionUtils.isNotEmpty(serverSideEncryptionRules)) {
 for (final ServerSideEncryptionRule rule :
 serverSideEncryptionRules) {
 final Boolean bucketKeyEnabled =
 rule.getBucketKeyEnabled();
 if (bucketKeyEnabled) {
 final ServerSideEncryptionByDefault
 serverSideEncryptionByDefault = rule.getServerSideEncryptionByDefault();

 final String encryptionAlgorithm =
 serverSideEncryptionByDefault.getSSEAlgorithm();
 final String kmsKeyId =
 serverSideEncryptionByDefault.getKMSMasterKeyID(); // "KMSMasterKeyID" is name of
 the property for an AWS::S3::Bucket;

Modeling Hooks 105

Amazon CloudFormation Hooks User Guide

 if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm) && StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "KMS Key ID not set
 and SSE Encryption Algorithm is incorrect for bucket with name: " +
 bucket.getBucketName();
 } else if (!StringUtils.equals(encryptionAlgorithm,
 requiredEncryptionAlgorithm)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "SSE Encryption Algorithm is
 incorrect for bucket with name: " + bucket.getBucketName();
 } else if (StringUtils.isBlank(kmsKeyId)) {
 resultStatus = HookStatus.FAILED;
 resultMessage = "KMS Key ID not set for bucket with
 name: " + bucket.getBucketName();
 } else {
 resultStatus = HookStatus.SUCCESS;
 resultMessage = "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket";
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket key not enabled for bucket with
 name: " + bucket.getBucketName();
 }

 if (resultStatus == HookStatus.FAILED) {
 break;
 }
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "No SSE Encryption configurations for bucket
 with name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Bucket Encryption not enabled for bucket with
 name: " + bucket.getBucketName();
 }
 } else {
 resultStatus = HookStatus.FAILED;
 resultMessage = "Resource properties for S3 Bucket target model are
 empty";

Modeling Hooks 106

Amazon CloudFormation Hooks User Guide

 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(resultStatus)
 .message(resultMessage)
 .errorCode(resultStatus == HookStatus.FAILED ?
 HandlerErrorCode.ResourceConflict : null)
 .build();
 }

 private HookProgressEvent<CallbackContext> validateSQSQueueEncryption(final
 AwsSqsQueue queue) {
 if (queue == null) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Resource properties for SQS Queue target model are
 empty")
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

 final String kmsKeyId = queue.getKmsMasterKeyId(); // "KmsMasterKeyId" is
 name of the property for an AWS::SQS::Queue
 if (StringUtils.isBlank(kmsKeyId)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .message("Server side encryption turned off for queue with
 name: " + queue.getQueueName())
 .errorCode(HandlerErrorCode.ResourceConflict)
 .build();
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreCreateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Modeling Hooks 107

Amazon CloudFormation Hooks User Guide

Updating the preCreate test

1. In your IDE, open the PreCreateHandlerTest.java file, located in the src/test/java/
software/mycompany/testing/mytesthook folder.

2. Replace the entire contents of PreCreateHandlerTest.java file with the following code.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Collections;
import java.util.Map;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreCreateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

Modeling Hooks 108

Amazon CloudFormation Hooks User Guide

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(queue);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

Modeling Hooks 109

Amazon CloudFormation Hooks User Guide

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreCreateHookHandler for target: AWS::S3::Bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketKeyNotEnabled() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", false,
 "AES256", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Bucket key not enabled for
 bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_incorrectSSEEncryptionAlgorithm() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "SHA512", "KmsKey");
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

Modeling Hooks 110

Amazon CloudFormation Hooks User Guide

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "SSE Encryption Algorithm is
 incorrect for bucket with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsS3BucketFail_kmsKeyIdNotSet() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsS3Bucket bucket = buildAwsS3Bucket("amzn-s3-demo-bucket", true,
 "AES256", null);
 final HookTargetModel targetModel = createHookTargetModel(bucket);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "KMS Key ID not set for bucket
 with name: amzn-s3-demo-bucket");
 }

 @Test
 public void handleRequest_awsSqsQueueFail_serverSideEncryptionOff() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final AwsSqsQueue queue = buildSqsQueue("MyQueue", null);
 final HookTargetModel targetModel = createHookTargetModel(queue);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::SQS::Queue").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

Modeling Hooks 111

Amazon CloudFormation Hooks User Guide

 assertResponse(response, HookStatus.FAILED, "Server side encryption turned
 off for queue with name: MyQueue");
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreCreateHookHandler handler = new PreCreateHookHandler();

 final Map<String, Object> unsupportedTarget =
 ImmutableMap.of("ResourceName", "MyUnsupportedTarget");
 final HookTargetModel targetModel =
 createHookTargetModel(unsupportedTarget);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties)
 {
 return HookTargetModel.of(ImmutableMap.of("ResourceProperties",
 resourceProperties));
 }

Modeling Hooks 112

Amazon CloudFormation Hooks User Guide

 @SuppressWarnings("SameParameterValue")
 private AwsSqsQueue buildSqsQueue(final String queueName, final String
 kmsKeyId) {
 return AwsSqsQueue.builder()
 .queueName(queueName)
 .kmsMasterKeyId(kmsKeyId) // "KmsMasterKeyId" is name of the
 property for an AWS::SQS::Queue
 .build();
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final Boolean bucketKeyEnabled,
 final String sseAlgorithm,
 final String kmsKeyId
) {
 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Collections.singletonList(
 ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(bucketKeyEnabled)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(sseAlgorithm)
 .kMSMasterKeyID(kmsKeyId) //
 "KMSMasterKeyID" is name of the property for an AWS::S3::Bucket
 .build()
).build()
)
).build()
).build();
 }
}

Modeling Hooks 113

Amazon CloudFormation Hooks User Guide

Implementing the preUpdate handler

Implement a preUpdate handler, which initiates before the update operations for all specified
targets in the handler. The preUpdate handler accomplishes the following:

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true:

• The bucket encryption algorithm for an Amazon S3 bucket hasn't been modified.

Coding the preUpdate handler

1. In your IDE, open the PreUpdateHookHandler.java file, located in the src/main/java/
software/mycompany/testing/mytesthook folder.

2. Replace the entire contents of the PreUpdateHookHandler.java file with the following
code.

package com.mycompany.testing.mytesthook;

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.apache.commons.lang3.StringUtils;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.List;

public class PreUpdateHookHandler extends BaseHookHandler<TypeConfigurationModel,
 CallbackContext> {

 @Override
 public HookProgressEvent<CallbackContext> handleRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,

Modeling Hooks 114

Amazon CloudFormation Hooks User Guide

 final CallbackContext callbackContext,
 final Logger logger,
 final TypeConfigurationModel typeConfiguration) {

 final String targetName = request.getHookContext().getTargetName();
 if ("AWS::S3::Bucket".equals(targetName)) {
 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 request.getHookContext().getTargetModel(AwsS3BucketTargetModel.class);

 final AwsS3Bucket bucketProperties =
 targetModel.getResourceProperties();
 final AwsS3Bucket previousBucketProperties =
 targetModel.getPreviousResourceProperties();

 return validateBucketEncryptionRulesNotUpdated(bucketProperties,
 previousBucketProperties);
 } else {
 throw new UnsupportedTargetException(targetName);
 }
 }

 private HookProgressEvent<CallbackContext>
 validateBucketEncryptionRulesNotUpdated(final AwsS3Bucket resourceProperties,
 final AwsS3Bucket previousResourceProperties) {
 final List<ServerSideEncryptionRule> bucketEncryptionConfigs =
 resourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();
 final List<ServerSideEncryptionRule> previousBucketEncryptionConfigs =
 previousResourceProperties.getBucketEncryption().getServerSideEncryptionConfiguration();

 if (bucketEncryptionConfigs.size() !=
 previousBucketEncryptionConfigs.size()) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)
 .message(
 String.format(
 "Current number of bucket encryption configs does not
 match previous. Current has %d configs while previously there were %d configs",
 bucketEncryptionConfigs.size(),
 previousBucketEncryptionConfigs.size()
)
).build();
 }

Modeling Hooks 115

Amazon CloudFormation Hooks User Guide

 for (int i = 0; i < bucketEncryptionConfigs.size(); ++i) {
 final String currentEncryptionAlgorithm =
 bucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();
 final String previousEncryptionAlgorithm =
 previousBucketEncryptionConfigs.get(i).getServerSideEncryptionByDefault().getSSEAlgorithm();

 if (!StringUtils.equals(currentEncryptionAlgorithm,
 previousEncryptionAlgorithm)) {
 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.FAILED)
 .errorCode(HandlerErrorCode.NotUpdatable)
 .message(
 String.format(
 "Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to '%s' from '%s'.",
 currentEncryptionAlgorithm,
 previousEncryptionAlgorithm
)
)
 .build();
 }
 }

 return HookProgressEvent.<CallbackContext>builder()
 .status(HookStatus.SUCCESS)
 .message("Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue")
 .build();
 }
}

Updating the preUpdate test

1. In your IDE, open the PreUpdateHandlerTest.java file in the src/main/java/com/
mycompany/testing/mytesthook folder.

2. Replace the entire contents of the PreUpdateHandlerTest.java file with the following
code.

package com.mycompany.testing.mytesthook;

import com.google.common.collect.ImmutableMap;

Modeling Hooks 116

Amazon CloudFormation Hooks User Guide

import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.BucketEncryption;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionByDefault;
import
 com.mycompany.testing.mytesthook.model.aws.s3.bucket.ServerSideEncryptionRule;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.cloudformation.exceptions.UnsupportedTargetException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.HookProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookStatus;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.stream.Stream;

import static org.assertj.core.api.Assertions.assertThat;
import static org.assertj.core.api.Assertions.assertThatExceptionOfType;
import static org.mockito.Mockito.mock;

@ExtendWith(MockitoExtension.class)
public class PreUpdateHookHandlerTest {

 @Mock
 private AmazonWebServicesClientProxy proxy;

 @Mock
 private Logger logger;

 @BeforeEach
 public void setup() {
 proxy = mock(AmazonWebServicesClientProxy.class);
 logger = mock(Logger.class);
 }

 @Test

Modeling Hooks 117

Amazon CloudFormation Hooks User Guide

 public void handleRequest_awsS3BucketSuccess() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule serverSideEncryptionRule =
 buildServerSideEncryptionRule("AES256");
 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRule);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRule);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.SUCCESS, "Successfully invoked
 PreUpdateHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFail_bucketEncryptionConfigsDontMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final ServerSideEncryptionRule[] serverSideEncryptionRules =
 Stream.of("AES256", "SHA512", "AES32")
 .map(this::buildServerSideEncryptionRule)
 .toArray(ServerSideEncryptionRule[]::new);

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", serverSideEncryptionRules[0]);
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", serverSideEncryptionRules);
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

Modeling Hooks 118

Amazon CloudFormation Hooks User Guide

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, "Current number of bucket
 encryption configs does not match previous. Current has 1 configs while previously
 there were 3 configs");
 }

 @Test
 public void
 handleRequest_awsS3BucketFail_bucketEncryptionAlgorithmDoesNotMatch() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final AwsS3Bucket resourceProperties = buildAwsS3Bucket("amzn-s3-demo-
bucket", buildServerSideEncryptionRule("SHA512"));
 final AwsS3Bucket previousResourceProperties = buildAwsS3Bucket("amzn-s3-
demo-bucket", buildServerSideEncryptionRule("AES256"));
 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::S3::Bucket").targetModel(targetModel).build())
 .build();

 final HookProgressEvent<CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);
 assertResponse(response, HookStatus.FAILED, String.format("Bucket
 Encryption algorithm can not be changed once set. The encryption algorithm was
 changed to '%s' from '%s'.", "SHA512", "AES256"));
 }

 @Test
 public void handleRequest_unsupportedTarget() {
 final PreUpdateHookHandler handler = new PreUpdateHookHandler();

 final Object resourceProperties = ImmutableMap.of("FileSizeLimit", 256);
 final Object previousResourceProperties = ImmutableMap.of("FileSizeLimit",
 512);

Modeling Hooks 119

Amazon CloudFormation Hooks User Guide

 final HookTargetModel targetModel =
 createHookTargetModel(resourceProperties, previousResourceProperties);
 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder().encryptionAlgorithm("AES256").build();

 final HookHandlerRequest request = HookHandlerRequest.builder()

 .hookContext(HookContext.builder().targetName("AWS::Unsupported::Target").targetModel(targetModel).build())
 .build();

 assertThatExceptionOfType(UnsupportedTargetException.class)
 .isThrownBy(() -> handler.handleRequest(proxy, request, null,
 logger, typeConfiguration))
 .withMessageContaining("Unsupported target")
 .withMessageContaining("AWS::Unsupported::Target")
 .satisfies(e ->
 assertThat(e.getErrorCode()).isEqualTo(HandlerErrorCode.InvalidRequest));
 }

 private void assertResponse(final HookProgressEvent<CallbackContext> response,
 final HookStatus expectedStatus, final String expectedErrorMsg) {
 assertThat(response).isNotNull();
 assertThat(response.getStatus()).isEqualTo(expectedStatus);
 assertThat(response.getCallbackContext()).isNull();
 assertThat(response.getCallbackDelaySeconds()).isEqualTo(0);
 assertThat(response.getMessage()).isNotNull();
 assertThat(response.getMessage()).isEqualTo(expectedErrorMsg);
 }

 private HookTargetModel createHookTargetModel(final Object resourceProperties,
 final Object previousResourceProperties) {
 return HookTargetModel.of(
 ImmutableMap.of(
 "ResourceProperties", resourceProperties,
 "PreviousResourceProperties", previousResourceProperties
)
);
 }

 @SuppressWarnings("SameParameterValue")
 private AwsS3Bucket buildAwsS3Bucket(
 final String bucketName,
 final ServerSideEncryptionRule ...serverSideEncryptionRules
) {

Modeling Hooks 120

Amazon CloudFormation Hooks User Guide

 return AwsS3Bucket.builder()
 .bucketName(bucketName)
 .bucketEncryption(
 BucketEncryption.builder()
 .serverSideEncryptionConfiguration(
 Arrays.asList(serverSideEncryptionRules)
).build()
).build();
 }

 private ServerSideEncryptionRule buildServerSideEncryptionRule(final String
 encryptionAlgorithm) {
 return ServerSideEncryptionRule.builder()
 .bucketKeyEnabled(true)
 .serverSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sSEAlgorithm(encryptionAlgorithm)
 .build()
).build();
 }
}

Implementing the preDelete handler

Implement a preDelete handler, which initiates before the delete operations for all specified
targets in the handler. The preDelete handler accomplishes the following:

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true:

• Verifies that the minimum required complaint resources will exist in the account after delete
the resource.

• The minimum required complaint resources amount is set in the Hook’s type configuration.

Coding the preDelete handler

1. In your IDE, open the PreDeleteHookHandler.java file in the src/main/java/com/
mycompany/testing/mytesthook folder.

2. Replace the entire contents of the PreDeleteHookHandler.java file with the following
code.

Modeling Hooks 121

Amazon CloudFormation Hooks User Guide

package com.mycompany.testing.mytesthook;

import com.google.common.annotations.VisibleForTesting;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3BucketTargetModel;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueue;
import com.mycompany.testing.mytesthook.model.aws.sqs.queue.AwsSqsQueueTargetModel;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.math.NumberUtils;
import software.amazon.awssdk.services.cloudformation.CloudFormationClient;
import
 software.amazon.awssdk.services.cloudformation.model.CloudFormationException;
import
 software.amazon.awssdk.services.cloudformation.model.DescribeStackResourceRequest;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;
import software.amazon.awssdk.services.s3.model.S3Exception;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.awssdk.services.sqs.model.SqsException;
import software.amazon.cloudformation.exceptions.CfnGeneralServiceException;
import software.amazon.cloudformation.proxy.AmazonWebServicesClientProxy;
import software.amazon.cloudformation.proxy.HandlerErrorCode;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.ProxyClient;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;
import
 software.amazon.cloudformation.proxy.hook.targetmodel.ResourceHookTargetModel;

import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.stream.Collectors;

Modeling Hooks 122

Amazon CloudFormation Hooks User Guide

public class PreDeleteHookHandler extends BaseHookHandlerStd {

 private ProxyClient<S3Client> s3Client;
 private ProxyClient<SqsClient> sqsClient;

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleS3BucketRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<S3Client> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsS3Bucket.TYPE_NAME.equals(targetName)) {
 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::S3::Bucket'", targetName));
 }
 this.s3Client = proxyClient;

 final String encryptionAlgorithm =
 typeConfiguration.getEncryptionAlgorithm();
 final int minBuckets =
 NumberUtils.toInt(typeConfiguration.getMinBuckets());

 final ResourceHookTargetModel<AwsS3Bucket> targetModel =
 hookContext.getTargetModel(AwsS3BucketTargetModel.class);
 final List<String> buckets = listBuckets().stream()
 .filter(b -> !StringUtils.equals(b,
 targetModel.getResourceProperties().getBucketName()))
 .collect(Collectors.toList());

 final List<String> compliantBuckets = new ArrayList<>();
 for (final String bucket : buckets) {
 if (getBucketSSEAlgorithm(bucket).contains(encryptionAlgorithm)) {
 compliantBuckets.add(bucket);
 }

 if (compliantBuckets.size() >= minBuckets) {
 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.SUCCESS)

Modeling Hooks 123

Amazon CloudFormation Hooks User Guide

 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::S3::Bucket")
 .build();
 }
 }

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)
 .message(String.format("Failed to meet minimum of [%d] encrypted
 buckets.", minBuckets))
 .build();
 }

 @Override
 protected ProgressEvent<HookTargetModel, CallbackContext>
 handleSqsQueueRequest(
 final AmazonWebServicesClientProxy proxy,
 final HookHandlerRequest request,
 final CallbackContext callbackContext,
 final ProxyClient<SqsClient> proxyClient,
 final TypeConfigurationModel typeConfiguration
) {
 final HookContext hookContext = request.getHookContext();
 final String targetName = hookContext.getTargetName();
 if (!AwsSqsQueue.TYPE_NAME.equals(targetName)) {
 throw new RuntimeException(String.format("Request target type [%s] is
 not 'AWS::SQS::Queue'", targetName));
 }
 this.sqsClient = proxyClient;
 final int minQueues = NumberUtils.toInt(typeConfiguration.getMinQueues());

 final ResourceHookTargetModel<AwsSqsQueue> targetModel =
 hookContext.getTargetModel(AwsSqsQueueTargetModel.class);

 final String queueName =
 Objects.toString(targetModel.getResourceProperties().get("QueueName"), null);

 String targetQueueUrl = null;
 if (queueName != null) {
 try {
 targetQueueUrl = sqsClient.injectCredentialsAndInvokeV2(
 GetQueueUrlRequest.builder().queueName(
 queueName

Modeling Hooks 124

Amazon CloudFormation Hooks User Guide

).build(),
 sqsClient.client()::getQueueUrl
).queueUrl();
 } catch (SqsException e) {
 log(String.format("Error while calling GetQueueUrl API for queue
 name [%s]: %s", queueName, e.getMessage()));
 }
 } else {
 log("Queue name is empty, attempting to get queue's physical ID");
 try {
 final ProxyClient<CloudFormationClient> cfnClient =
 proxy.newProxy(ClientBuilder::createCloudFormationClient);
 targetQueueUrl = cfnClient.injectCredentialsAndInvokeV2(
 DescribeStackResourceRequest.builder()
 .stackName(hookContext.getTargetLogicalId())

 .logicalResourceId(hookContext.getTargetLogicalId())
 .build(),
 cfnClient.client()::describeStackResource
).stackResourceDetail().physicalResourceId();
 } catch (CloudFormationException e) {
 log(String.format("Error while calling DescribeStackResource API
 for queue name: %s", e.getMessage()));
 }
 }

 // Creating final variable for the filter lambda
 final String finalTargetQueueUrl = targetQueueUrl;

 final List<String> compliantQueues = new ArrayList<>();

 String nextToken = null;
 do {
 final ListQueuesRequest req =
 Translator.createListQueuesRequest(nextToken);
 final ListQueuesResponse res =
 sqsClient.injectCredentialsAndInvokeV2(req, sqsClient.client()::listQueues);
 final List<String> queueUrls = res.queueUrls().stream()
 .filter(q -> !StringUtils.equals(q, finalTargetQueueUrl))
 .collect(Collectors.toList());

 for (final String queueUrl : queueUrls) {
 if (isQueueEncrypted(queueUrl)) {
 compliantQueues.add(queueUrl);

Modeling Hooks 125

Amazon CloudFormation Hooks User Guide

 }

 if (compliantQueues.size() >= minQueues) {
 return ProgressEvent.<HookTargetModel,
 CallbackContext>builder()
 .status(OperationStatus.SUCCESS)
 .message("Successfully invoked PreDeleteHookHandler for
 target: AWS::SQS::Queue")
 .build();
 }
 nextToken = res.nextToken();
 }
 } while (nextToken != null);

 return ProgressEvent.<HookTargetModel, CallbackContext>builder()
 .status(OperationStatus.FAILED)
 .errorCode(HandlerErrorCode.NonCompliant)
 .message(String.format("Failed to meet minimum of [%d] encrypted
 queues.", minQueues))
 .build();
 }

 private List<String> listBuckets() {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createListBucketsRequest(),
 s3Client.client()::listBuckets)
 .buckets()
 .stream()
 .map(Bucket::name)
 .collect(Collectors.toList());
 } catch (S3Exception e) {
 throw new CfnGeneralServiceException("Error while calling S3
 ListBuckets API", e);
 }
 }

 @VisibleForTesting
 Collection<String> getBucketSSEAlgorithm(final String bucket) {
 try {
 return
 s3Client.injectCredentialsAndInvokeV2(Translator.createGetBucketEncryptionRequest(bucket),
 s3Client.client()::getBucketEncryption)
 .serverSideEncryptionConfiguration()

Modeling Hooks 126

Amazon CloudFormation Hooks User Guide

 .rules()
 .stream()
 .filter(r ->
 Objects.nonNull(r.applyServerSideEncryptionByDefault()))
 .map(r ->
 r.applyServerSideEncryptionByDefault().sseAlgorithmAsString())
 .collect(Collectors.toSet());
 } catch (S3Exception e) {
 return new HashSet<>();
 }
 }

 @VisibleForTesting
 boolean isQueueEncrypted(final String queueUrl) {
 try {
 final GetQueueAttributesRequest request =
 GetQueueAttributesRequest.builder()
 .queueUrl(queueUrl)
 .attributeNames(QueueAttributeName.KMS_MASTER_KEY_ID)
 .build();
 final String kmsKeyId = sqsClient.injectCredentialsAndInvokeV2(request,
 sqsClient.client()::getQueueAttributes)
 .attributes()
 .get(QueueAttributeName.KMS_MASTER_KEY_ID);

 return StringUtils.isNotBlank(kmsKeyId);
 } catch (SqsException e) {
 throw new CfnGeneralServiceException("Error while calling SQS
 GetQueueAttributes API", e);
 }
 }
}

Updating the preDelete handler

1. In your IDE, open the PreDeleteHookHandler.java file in the src/main/java/com/
mycompany/testing/mytesthook folder.

2. Replace the entire contents of the PreDeleteHookHandler.java file with the following
code.

package com.mycompany.testing.mytesthook;

Modeling Hooks 127

Amazon CloudFormation Hooks User Guide

import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.mycompany.testing.mytesthook.model.aws.s3.bucket.AwsS3Bucket;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.Mock;
import org.mockito.Mockito;
import org.mockito.junit.jupiter.MockitoExtension;
import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.Bucket;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionRequest;
import software.amazon.awssdk.services.s3.model.GetBucketEncryptionResponse;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsResponse;
import software.amazon.awssdk.services.s3.model.S3Exception;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionByDefault;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionConfiguration;
import software.amazon.awssdk.services.s3.model.ServerSideEncryptionRule;
import software.amazon.awssdk.services.sqs.SqsClient;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueAttributesResponse;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlRequest;
import software.amazon.awssdk.services.sqs.model.GetQueueUrlResponse;
import software.amazon.awssdk.services.sqs.model.ListQueuesRequest;
import software.amazon.awssdk.services.sqs.model.ListQueuesResponse;
import software.amazon.awssdk.services.sqs.model.QueueAttributeName;
import software.amazon.cloudformation.proxy.Logger;
import software.amazon.cloudformation.proxy.OperationStatus;
import software.amazon.cloudformation.proxy.ProgressEvent;
import software.amazon.cloudformation.proxy.hook.HookContext;
import software.amazon.cloudformation.proxy.hook.HookHandlerRequest;
import software.amazon.cloudformation.proxy.hook.targetmodel.HookTargetModel;

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.stream.Collectors;

import static org.mockito.ArgumentMatchers.any;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.never;

Modeling Hooks 128

Amazon CloudFormation Hooks User Guide

import static org.mockito.Mockito.times;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;

@ExtendWith(MockitoExtension.class)
public class PreDeleteHookHandlerTest extends AbstractTestBase {

 @Mock private S3Client s3Client;
 @Mock private SqsClient sqsClient;
 @Mock private Logger logger;

 @BeforeEach
 public void setup() {
 s3Client = mock(S3Client.class);
 sqsClient = mock(SqsClient.class);
 logger = mock(Logger.class);
 }

 @Test
 public void handleRequest_awsS3BucketSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),
 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);
 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

Modeling Hooks 129

Amazon CloudFormation Hooks User Guide

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(
 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::S3::Bucket");
 }

 @Test
 public void handleRequest_awsSqsQueueSuccess() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",
 "https://queue5.queue"

Modeling Hooks 130

Amazon CloudFormation Hooks User Guide

);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("3")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

Modeling Hooks 131

Amazon CloudFormation Hooks User Guide

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.SUCCESS, "Successfully invoked
 PreDeleteHookHandler for target: AWS::SQS::Queue");
 }

 @Test
 public void handleRequest_awsS3BucketFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<Bucket> bucketList = ImmutableList.of(
 Bucket.builder().name("bucket1").build(),
 Bucket.builder().name("bucket2").build(),
 Bucket.builder().name("toBeDeletedBucket").build(),
 Bucket.builder().name("bucket3").build(),
 Bucket.builder().name("bucket4").build(),
 Bucket.builder().name("bucket5").build()
);
 final ListBucketsResponse mockResponse =
 ListBucketsResponse.builder().buckets(bucketList).build();

 when(s3Client.listBuckets(any(ListBucketsRequest.class))).thenReturn(mockResponse);
 when(s3Client.getBucketEncryption(any(GetBucketEncryptionRequest.class)))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256", "aws:kms"))
 .thenThrow(S3Exception.builder().message("No Encrypt").build())
 .thenReturn(buildGetBucketEncryptionResponse("aws:kms"))
 .thenReturn(buildGetBucketEncryptionResponse("AES256"));
 setServiceClient(s3Client);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .encryptionAlgorithm("AES256")
 .minBuckets("10")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::S3::Bucket")
 .targetModel(

Modeling Hooks 132

Amazon CloudFormation Hooks User Guide

 createHookTargetModel(
 AwsS3Bucket.builder()
 .bucketName("toBeDeletedBucket")
 .build()
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(s3Client,
 times(5)).getBucketEncryption(any(GetBucketEncryptionRequest.class));
 verify(handler, never()).getBucketSSEAlgorithm("toBeDeletedBucket");

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted buckets.");
 }

 @Test
 public void handleRequest_awsSqsQueueFailed() {
 final PreDeleteHookHandler handler = Mockito.spy(new
 PreDeleteHookHandler());

 final List<String> queueUrls = ImmutableList.of(
 "https://queue1.queue",
 "https://queue2.queue",
 "https://toBeDeletedQueue.queue",
 "https://queue3.queue",
 "https://queue4.queue",
 "https://queue5.queue"
);

 when(sqsClient.getQueueUrl(any(GetQueueUrlRequest.class)))
 .thenReturn(GetQueueUrlResponse.builder().queueUrl("https://
toBeDeletedQueue.queue").build());
 when(sqsClient.listQueues(any(ListQueuesRequest.class)))

 .thenReturn(ListQueuesResponse.builder().queueUrls(queueUrls).build());
 when(sqsClient.getQueueAttributes(any(GetQueueAttributesRequest.class)))

Modeling Hooks 133

Amazon CloudFormation Hooks User Guide

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build())
 .thenReturn(GetQueueAttributesResponse.builder().attributes(new
 HashMap<>()).build())

 .thenReturn(GetQueueAttributesResponse.builder().attributes(ImmutableMap.of(QueueAttributeName.KMS_MASTER_KEY_ID,
 "kmsKeyId")).build());
 setServiceClient(sqsClient);

 final TypeConfigurationModel typeConfiguration =
 TypeConfigurationModel.builder()
 .minQueues("10")
 .build();

 final HookHandlerRequest request = HookHandlerRequest.builder()
 .hookContext(
 HookContext.builder()
 .targetName("AWS::SQS::Queue")
 .targetModel(
 createHookTargetModel(
 ImmutableMap.of("QueueName", "toBeDeletedQueue")
)
)
 .build())
 .build();

 final ProgressEvent<HookTargetModel, CallbackContext> response =
 handler.handleRequest(proxy, request, null, logger, typeConfiguration);

 verify(sqsClient,
 times(5)).getQueueAttributes(any(GetQueueAttributesRequest.class));
 verify(handler, never()).isQueueEncrypted("toBeDeletedQueue");

 assertResponse(response, OperationStatus.FAILED, "Failed to meet minimum of
 [10] encrypted queues.");
 }

Modeling Hooks 134

Amazon CloudFormation Hooks User Guide

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 String ...sseAlgorithm) {
 return buildGetBucketEncryptionResponse(
 Arrays.stream(sseAlgorithm)
 .map(a ->
 ServerSideEncryptionRule.builder().applyServerSideEncryptionByDefault(
 ServerSideEncryptionByDefault.builder()
 .sseAlgorithm(a)
 .build()
).build()
)
 .collect(Collectors.toList())
);
 }

 private GetBucketEncryptionResponse buildGetBucketEncryptionResponse(final
 Collection<ServerSideEncryptionRule> rules) {
 return GetBucketEncryptionResponse.builder()
 .serverSideEncryptionConfiguration(
 ServerSideEncryptionConfiguration.builder().rules(
 rules
).build()
).build();
 }
}

Modeling custom Amazon CloudFormation Hooks using Python

Modeling custom Amazon CloudFormation Hooks involves creating a schema that defines the
Hook, its properties, and their attributes. This tutorial walks you through modeling custom Hooks
using Python.

Step 1: Generate the Hook project package

Generate your Hook project package. The CloudFormation CLI creates empty handler functions
that correspond to specific Hook actions in the target lifecycle as defined in the Hook specification.

cfn generate

The command returns the following output.

Modeling Hooks 135

Amazon CloudFormation Hooks User Guide

Generated files for MyCompany::Testing::MyTestHook

Note

Make sure your Lambda runtimes are up-to-date to avoid using a deprecated version. For
more information, see Updating Lambda runtimes for resource types and Hooks.

Step 2: Add Hook handlers

Add your own Hook handler runtime code to the handlers that you choose to implement. For
example, you can add the following code for logging.

LOG.setLevel(logging.INFO)
LOG.info("Internal testing Hook triggered for target: " +
 request.hookContext.targetName);

The CloudFormation CLI generates the src/models.py file from the Configuration schema.

Example models.py

import sys
from dataclasses import dataclass
from inspect import getmembers, isclass
from typing import (
 AbstractSet,
 Any,
 Generic,
 Mapping,
 MutableMapping,
 Optional,
 Sequence,
 Type,
 TypeVar,
)

from cloudformation_cli_python_lib.interface import (
 BaseModel,
 BaseHookHandlerRequest,
)
from cloudformation_cli_python_lib.recast import recast_object

Modeling Hooks 136

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/runtime-update.html

Amazon CloudFormation Hooks User Guide

from cloudformation_cli_python_lib.utils import deserialize_list

T = TypeVar("T")

def set_or_none(value: Optional[Sequence[T]]) -> Optional[AbstractSet[T]]:
 if value:
 return set(value)
 return None

@dataclass
class HookHandlerRequest(BaseHookHandlerRequest):
 pass

@dataclass
class TypeConfigurationModel(BaseModel):
 limitSize: Optional[str]
 cidr: Optional[str]
 encryptionAlgorithm: Optional[str]

 @classmethod
 def _deserialize(
 cls: Type["_TypeConfigurationModel"],
 json_data: Optional[Mapping[str, Any]],
) -> Optional["_TypeConfigurationModel"]:
 if not json_data:
 return None
 return cls(
 limitSize=json_data.get("limitSize"),
 cidr=json_data.get("cidr"),
 encryptionAlgorithm=json_data.get("encryptionAlgorithm"),
)

_TypeConfigurationModel = TypeConfigurationModel

Step 3: Implement Hook handlers

With the Python data classes generated, you can write the handlers that actually implement
the Hook’s functionality. In this example, you’ll implement the preCreate, preUpdate, and
preDelete invocation points for the handlers.

Modeling Hooks 137

Amazon CloudFormation Hooks User Guide

Topics

• Implement the preCreate handler

• Implement the preUpdate handler

• Implement the preDelete handler

• Implement a Hook handler

Implement the preCreate handler

The preCreate handler verifies the server-side encryption settings for either an
AWS::S3::Bucket or AWS::SQS::Queue resource.

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true.

• The Amazon S3 bucket encryption is set.

• The Amazon S3 bucket key is enabled for the bucket.

• The encryption algorithm set for the Amazon S3 bucket is the correct algorithm required.

• The Amazon Key Management Service key ID is set.

• For an AWS::SQS::Queue resource, the Hook will only pass if the following is true.

• The Amazon Key Management Service key ID is set.

Implement the preUpdate handler

Implement a preUpdate handler, which initiates before the update operations for all specified
targets in the handler. The preUpdate handler accomplishes the following:

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true:

• The bucket encryption algorithm for an Amazon S3 bucket hasn't been modified.

Implement the preDelete handler

Implement a preDelete handler, which initiates before the delete operations for all specified
targets in the handler. The preDelete handler accomplishes the following:

• For an AWS::S3::Bucket resource, the Hook will only pass if the following is true:

• Verifies that the minimum required compliant resources will exist in the account after delete
the resource.

Modeling Hooks 138

Amazon CloudFormation Hooks User Guide

• The minimum required compliant resources amount is set in the Hook’s configuration.

Implement a Hook handler

1. In your IDE, open the handlers.py file, located in the src folder.

2. Replace the entire contents of the handlers.py file with the following code.

Example handlers.py

import logging
from typing import Any, MutableMapping, Optional
import botocore

from cloudformation_cli_python_lib import (
 BaseHookHandlerRequest,
 HandlerErrorCode,
 Hook,
 HookInvocationPoint,
 OperationStatus,
 ProgressEvent,
 SessionProxy,
 exceptions,
)

from .models import HookHandlerRequest, TypeConfigurationModel

Use this logger to forward log messages to CloudWatch Logs.
LOG = logging.getLogger(__name__)
TYPE_NAME = "MyCompany::Testing::MyTestHook"

LOG.setLevel(logging.INFO)

hook = Hook(TYPE_NAME, TypeConfigurationModel)
test_entrypoint = hook.test_entrypoint

def _validate_s3_bucket_encryption(
 bucket: MutableMapping[str, Any], required_encryption_algorithm: str
) -> ProgressEvent:
 status = None
 message = ""
 error_code = None

Modeling Hooks 139

Amazon CloudFormation Hooks User Guide

 if bucket:
 bucket_name = bucket.get("BucketName")

 bucket_encryption = bucket.get("BucketEncryption")
 if bucket_encryption:
 server_side_encryption_rules = bucket_encryption.get(
 "ServerSideEncryptionConfiguration"
)
 if server_side_encryption_rules:
 for rule in server_side_encryption_rules:
 bucket_key_enabled = rule.get("BucketKeyEnabled")
 if bucket_key_enabled:
 server_side_encryption_by_default = rule.get(
 "ServerSideEncryptionByDefault"
)

 encryption_algorithm =
 server_side_encryption_by_default.get(
 "SSEAlgorithm"
)
 kms_key_id = server_side_encryption_by_default.get(
 "KMSMasterKeyID"
) # "KMSMasterKeyID" is name of the property for an
 AWS::S3::Bucket

 if encryption_algorithm == required_encryption_algorithm:
 if encryption_algorithm == "aws:kms" and not
 kms_key_id:
 status = OperationStatus.FAILED
 message = f"KMS Key ID not set for bucket with
 name: f{bucket_name}"
 else:
 status = OperationStatus.SUCCESS
 message = f"Successfully invoked
 PreCreateHookHandler for AWS::S3::Bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"SSE Encryption Algorithm is incorrect for
 bucket with name: {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = f"Bucket key not enabled for bucket with name:
 {bucket_name}"

Modeling Hooks 140

Amazon CloudFormation Hooks User Guide

 if status == OperationStatus.FAILED:
 break
 else:
 status = OperationStatus.FAILED
 message = f"No SSE Encryption configurations for bucket with name:
 {bucket_name}"
 else:
 status = OperationStatus.FAILED
 message = (
 f"Bucket Encryption not enabled for bucket with name:
 {bucket_name}"
)
 else:
 status = OperationStatus.FAILED
 message = "Resource properties for S3 Bucket target model are empty"

 if status == OperationStatus.FAILED:
 error_code = HandlerErrorCode.NonCompliant

 return ProgressEvent(status=status, message=message, errorCode=error_code)

def _validate_sqs_queue_encryption(queue: MutableMapping[str, Any]) ->
 ProgressEvent:
 if not queue:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message="Resource properties for SQS Queue target model are empty",
 errorCode=HandlerErrorCode.NonCompliant,
)
 queue_name = queue.get("QueueName")

 kms_key_id = queue.get(
 "KmsMasterKeyId"
) # "KmsMasterKeyId" is name of the property for an AWS::SQS::Queue
 if not kms_key_id:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Server side encryption turned off for queue with name:
 {queue_name}",
 errorCode=HandlerErrorCode.NonCompliant,
)

Modeling Hooks 141

Amazon CloudFormation Hooks User Guide

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message=f"Successfully invoked PreCreateHookHandler for
 targetAWS::SQS::Queue with name: {queue_name}",
)

@hook.handler(HookInvocationPoint.CREATE_PRE_PROVISION)
def pre_create_handler(
 session: Optional[SessionProxy],
 request: HookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: TypeConfigurationModel,
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:
 return _validate_s3_bucket_encryption(
 request.hookContext.targetModel.get("resourceProperties"),
 type_configuration.encryptionAlgorithm,
)
 elif "AWS::SQS::Queue" == target_name:
 return _validate_sqs_queue_encryption(
 request.hookContext.targetModel.get("resourceProperties")
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

def _validate_bucket_encryption_rules_not_updated(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 bucket_encryption_configs = resource_properties.get("BucketEncryption",
 {}).get(
 "ServerSideEncryptionConfiguration", []
)
 previous_bucket_encryption_configs = previous_resource_properties.get(
 "BucketEncryption", {}
).get("ServerSideEncryptionConfiguration", [])

 if len(bucket_encryption_configs) != len(previous_bucket_encryption_configs):
 return ProgressEvent(
 status=OperationStatus.FAILED,

Modeling Hooks 142

Amazon CloudFormation Hooks User Guide

 message=f"Current number of bucket encryption configs does not
 match previous. Current has {str(len(bucket_encryption_configs))} configs while
 previously there were {str(len(previous_bucket_encryption_configs))} configs",
 errorCode=HandlerErrorCode.NonCompliant,
)

 for i in range(len(bucket_encryption_configs)):
 current_encryption_algorithm = (
 bucket_encryption_configs[i]
 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)
 previous_encryption_algorithm = (
 previous_bucket_encryption_configs[i]
 .get("ServerSideEncryptionByDefault", {})
 .get("SSEAlgorithm")
)

 if current_encryption_algorithm != previous_encryption_algorithm:
 return ProgressEvent(
 status=OperationStatus.FAILED,
 message=f"Bucket Encryption algorithm can not be changed once
 set. The encryption algorithm was changed to {current_encryption_algorithm} from
 {previous_encryption_algorithm}.",
 errorCode=HandlerErrorCode.NonCompliant,
)

 return ProgressEvent(
 status=OperationStatus.SUCCESS,
 message="Successfully invoked PreUpdateHookHandler for target:
 AWS::SQS::Queue",
)

def _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
) -> ProgressEvent:
 if previous_resource_properties.get(
 "KmsMasterKeyId"
) and not resource_properties.get("KmsMasterKeyId"):
 return ProgressEvent(
 status=OperationStatus.FAILED,
 errorCode=HandlerErrorCode.NonCompliant,
 message="Queue encryption can not be disable",

Modeling Hooks 143

Amazon CloudFormation Hooks User Guide

)
 else:
 return ProgressEvent(status=OperationStatus.SUCCESS)

@hook.handler(HookInvocationPoint.UPDATE_PRE_PROVISION)
def pre_update_handler(
 session: Optional[SessionProxy],
 request: BaseHookHandlerRequest,
 callback_context: MutableMapping[str, Any],
 type_configuration: MutableMapping[str, Any],
) -> ProgressEvent:
 target_name = request.hookContext.targetName
 if "AWS::S3::Bucket" == target_name:
 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_bucket_encryption_rules_not_updated(
 resource_properties, previous_resource_properties
)
 elif "AWS::SQS::Queue" == target_name:
 resource_properties =
 request.hookContext.targetModel.get("resourceProperties")
 previous_resource_properties = request.hookContext.targetModel.get(
 "previousResourceProperties"
)

 return _validate_queue_encryption_not_disabled(
 resource_properties, previous_resource_properties
)
 else:
 raise exceptions.InvalidRequest(f"Unknown target type: {target_name}")

Continue to the next topic Registering a custom Hook with Amazon CloudFormation.

Modeling Hooks 144

Amazon CloudFormation Hooks User Guide

Registering a custom Hook with Amazon CloudFormation

Once you have created a custom Hook, you need to register it with Amazon CloudFormation so you
can use it. In this section, you'll learn to package and register your Hook for use in your Amazon
Web Services account.

Package a Hook (Java)

If you've developed your Hook with Java, use Maven to package it.

In the directory of your Hook project, run the following command to build your Hook, run
unit tests, and package your project as a JAR file that you can use to submit your Hook to the
CloudFormation registry.

mvn clean package

Register a custom Hook

To register a Hook

1. (Optional) Configure your default Amazon Web Services Region name to us-west-2, by
submitting the configure operation.

$ aws configure
AWS Access Key ID [None]: <Your Access Key ID>
AWS Secret Access Key [None]: <Your Secret Key>
Default region name [None]: us-west-2
Default output format [None]: json

2. (Optional) The following command builds and packages your Hook project without registering
it.

$ cfn submit --dry-run

3. Register your Hook by using the CloudFormation CLI submit operation.

$ cfn submit --set-default

The command returns the following command.

Registering Hooks 145

https://docs.amazonaws.cn/cli/latest/reference/configure/
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-submit.html

Amazon CloudFormation Hooks User Guide

{‘ProgressStatus’: ‘COMPLETE’}

Results: You've successfully registered your Hook.

Verifying Hooks are accessible in your account

Verify that your Hook is available in your Amazon Web Services account and in the Regions to
which you have submitted it.

1. To verify your Hook, use the list-types command to list your newly registered Hook and return
a summary description of it.

$ aws cloudformation list-types

The command returns the following output and will also show you publicly available Hooks
you can activate in your Amazon Web Services account and Regions.

{
 "TypeSummaries": [
 {
 "Type": "HOOK",
 "TypeName": "MyCompany::Testing::MyTestHook",
 "DefaultVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook",
 "LastUpdated": "2021-08-04T23:00:03.058000+00:00",
 "Description": "Verifies S3 bucket and SQS queues properties before
 creating or updating"
 }
]
}

2. Retrieve the TypeArn from the list-type output for your Hook and save it.

export HOOK_TYPE_ARN=arn:aws:cloudformation:us-west-2:ACCOUNT_ID/type/hook/
MyCompany-Testing-MyTestHook

To learn how to publish Hooks for public use, see Publishing Hooks for public use.

Registering Hooks 146

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-types.html

Amazon CloudFormation Hooks User Guide

Configure Hooks

After you've developed and registered your Hook, you can configure your Hook in your Amazon
Web Services account by publishing it to the registry.

• To configure a Hook in your account, use the SetTypeConfiguration operation. This operation
enables the Hook’s properties that are defined in the Hook’s schema properties section. In
the following example, the minBuckets property is set to 1 in the configuration.

Note

By enabling Hooks in your account, you are authorizing a Hook to use defined
permissions from your Amazon Web Services account. CloudFormation removes non-
required permissions before passing your permissions to the Hook. CloudFormation
recommends customers or Hook users to review the Hook permissions and be aware of
what permissions the Hooks are allowed to before enabling Hooks in your account.

Specify the configuration data for your registered Hook extension in the same account and
Amazon Web Services Region.

$ aws cloudformation set-type-configuration --region us-west-2
 --configuration '{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus":"ENABLED","FailureMode":"FAIL","Properties":{"minBuckets":
 "1","minQueues": "1", "encryptionAlgorithm": "aws:kms"}}}}'
 --type-arn $HOOK_TYPE_ARN

Important

To enable your Hook to proactively inspect the configuration of your stack, you must
set the HookInvocationStatus to ENABLED in the HookConfiguration section,
after the Hook has been registered and activated in your account.

Accessing Amazon APIs in handlers

If your Hooks uses an Amazon API in any of its handlers, the CFN-CLI automatically creates an
IAM execution role template, hook-role.yaml. The hook-role.yaml template is based on the
permissions specified for each handler in the handler's section of the Hook schema. If the --role-

Registering Hooks 147

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

Amazon CloudFormation Hooks User Guide

arn flag is not used during the generate operation, the role in this stack will be provisioned and
used as the execution role of the Hook.

For more information, see Accessing Amazon APIs from a resource type.

hook-role.yaml template

Note

If you choose to create your own execution role, we highly
recommend practicing the principle of least privilege by allow
listing only hooks.cloudformation.amazonaws.com and
resources.cloudformation.amazonaws.com.

The following template uses the IAM, Amazon S3, and Amazon SQS permissions.

AWSTemplateFormatVersion: 2010-09-09
Description: >
 This CloudFormation template creates a role assumed by CloudFormation during
 Hook operations on behalf of the customer.
Resources:
 ExecutionRole:
 Type: 'AWS::IAM::Role'
 Properties:
 MaxSessionDuration: 8400
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - resources.cloudformation.amazonaws.com
 - hooks.cloudformation.amazonaws.com
 Action: 'sts:AssumeRole'
 Condition:
 StringEquals:
 aws:SourceAccount: !Ref AWS::AccountId
 StringLike:
 aws:SourceArn: !Sub arn:${AWS::Partition}:cloudformation:
${AWS::Region}:${AWS::AccountId}:type/hook/MyCompany-Testing-MyTestHook/*
 Path: /

Registering Hooks 148

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-generate.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-develop.html#resource-type-develop-executionrole

Amazon CloudFormation Hooks User Guide

 Policies:
 - PolicyName: HookTypePolicy
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - 's3:GetEncryptionConfiguration'
 - 's3:ListBucket'
 - 's3:ListAllMyBuckets'
 - 'sqs:GetQueueAttributes'
 - 'sqs:GetQueueUrl'
 - 'sqs:ListQueues'
 Resource: '*'
Outputs:
 ExecutionRoleArn:
 Value: !GetAtt
 - ExecutionRole
 - Arn

Testing a custom Hook in your Amazon Web Services account

Now that you've coded your handler functions that correspond to an invocation point, it's time to
test your custom Hook on a CloudFormation stack.

The Hook failure mode is set to FAIL if the CloudFormation template didn't provision an S3 bucket
with the following:

• The Amazon S3 bucket encryption is set.

• The Amazon S3 bucket key is enabled for the bucket.

• The encryption algorithm set for the Amazon S3 bucket is the correct algorithm required.

• The Amazon Key Management Service key ID is set.

In the following example, create a template called my-failed-bucket-stack.yml with a
stack name of my-hook-stack that fails the stack configuration and stops before the resource
provisions.

Testing Hooks 149

Amazon CloudFormation Hooks User Guide

Testing Hooks by provisioning a stack

Example 1: To provision a stack

Provision a non-compliant stack

1. Author a template that specifies an S3 bucket. For example, my-failed-bucket-
stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Resources:
 S3Bucket:
 Type: AWS::S3::Bucket
 Properties: {}

2. Create a stack, and specify your template in the Amazon Command Line Interface (Amazon
CLI). In the following example, specify the stack name as my-hook-stack and the template
name as my-failed-bucket-stack.yml.

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://my-failed-bucket-stack.yml

3. (Optional) View your stack progress by specifying your stack name. In the following example,
specify the stack name my-hook-stack.

$ aws cloudformation describe-stack-events \
 --stack-name my-hook-stack

Use the describe-stack-events operation to see the Hook failure while creating the
bucket. The following is an example output of the command.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",

Testing Hooks 150

Amazon CloudFormation Hooks User Guide

 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"
 },
 ...
]
}

Results: The Hook invocation failed the stack configuration and stopped the resource from
provisioning.

Use a CloudFormation template to pass Hook validation

1. To create a stack and pass the Hook validation, update the template so that your resource
uses an encrypted S3 bucket. This example uses the template my-encrypted-bucket-
stack.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts

Testing Hooks 151

Amazon CloudFormation Hooks User Guide

 EnableKeyRotation: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

Note

Hooks won't be invoked for skipped resources.

2. Create a stack and specify your template. In this example, the stack name is my-encrypted-
bucket-stack.

$ aws cloudformation create-stack \
 --stack-name my-encrypted-bucket-stack \
 --template-body file://my-encrypted-bucket-stack.yml \

3. (Optional) View your stack progress by specifying the stack name.

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Use the describe-stack-events command to view the response. The following is an
example of the describe-stack-events command.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",

Testing Hooks 152

Amazon CloudFormation Hooks User Guide

 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",

Testing Hooks 153

Amazon CloudFormation Hooks User Guide

 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Results: CloudFormation successfully created the stack. The Hook's logic verified that the
AWS::S3::Bucket resource contained server-side encryption before provisioning the
resource.

Example 2: To provision a stack

Provision a non-compliant stack

1. Author a template that specifies an S3 bucket. For example aes256-bucket.yml.

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: AES256
 BucketKeyEnabled: true
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket

2. Create a stack, and specify your template in the Amazon CLI. In the following example, specify
the stack name as my-hook-stack and the template name as aes256-bucket.yml.

$ aws cloudformation create-stack \
 --stack-name my-hook-stack \
 --template-body file://aes256-bucket.yml

Testing Hooks 154

Amazon CloudFormation Hooks User Guide

3. (Optional) View your stack progress by specifying your stack name. In the following example,
specify the stack name my-hook-stack.

$ aws cloudformation describe-stack-events \
 --stack-name my-hook-stack

Use the describe-stack-events operation to see the Hook failure while creating the
bucket. The following is an example output of the command.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
hook-stack/2c693970-f57e-11eb-a0fb-061a2a83f0b9",
 "EventId": "S3Bucket-CREATE_FAILED-2021-08-04T23:47:03.305Z",
 "StackName": "my-hook-stack",
 "LogicalResourceId": "S3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:47:03.305000+00:00",
 "ResourceStatus": "CREATE_FAILED",
 "ResourceStatusReason": "The following hook(s) failed:
 [MyCompany::Testing::MyTestHook]",
 "ResourceProperties": "{}",
 "ClientRequestToken": "Console-CreateStack-abe71ac2-ade4-
a762-0499-8d34d91d6a92"
 },
 ...
]
}

Results: The Hook invocation failed the stack configuration and stopped the resource from
provisioning. The stack failed due to the S3 bucket encryption configured incorrectly. The Hook
type configuration requires aws:kms while this bucket uses AES256.

Use a CloudFormation template to pass Hook validation

1. To create a stack and pass the Hook validation, update the template so that your resource uses
an encrypted S3 bucket. This example uses the template kms-bucket-and-queue.yml.

Testing Hooks 155

Amazon CloudFormation Hooks User Guide

AWSTemplateFormatVersion: 2010-09-09
Description: |
 This CloudFormation template provisions an encrypted S3 Bucket
Resources:
 EncryptedS3Bucket:
 Type: AWS::S3::Bucket
 Properties:
 BucketName: !Sub encryptedbucket-${AWS::Region}-${AWS::AccountId}
 BucketEncryption:
 ServerSideEncryptionConfiguration:
 - ServerSideEncryptionByDefault:
 SSEAlgorithm: 'aws:kms'
 KMSMasterKeyID: !Ref EncryptionKey
 BucketKeyEnabled: true
 EncryptedQueue:
 Type: AWS::SQS::Queue
 Properties:
 QueueName: !Sub encryptedqueue-${AWS::Region}-${AWS::AccountId}
 KmsMasterKeyId: !Ref EncryptionKey
 EncryptionKey:
 Type: AWS::KMS::Key
 DeletionPolicy: Retain
 Properties:
 Description: KMS key used to encrypt the resource type artifacts
 EnableKeyRotation: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 - Sid: Enable full access for owning account
 Effect: Allow
 Principal:
 AWS: !Ref AWS::AccountId
 Action: 'kms:*'
 Resource: '*'
Outputs:
 EncryptedBucketName:
 Value: !Ref EncryptedS3Bucket
 EncryptedQueueName:
 Value: !Ref EncryptedQueue

Testing Hooks 156

Amazon CloudFormation Hooks User Guide

Note

Hooks won't be invoked for skipped resources.

2. Create a stack and specify your template. In this example, the stack name is my-encrypted-
bucket-stack.

$ aws cloudformation create-stack \
 --stack-name my-encrypted-bucket-stack \
 --template-body file://kms-bucket-and-queue.yml

3. (Optional) View your stack progress by specifying the stack name.

$ aws cloudformation describe-stack-events \
 --stack-name my-encrypted-bucket-stack

Use the describe-stack-events command to view the response. The following is an
example of the describe-stack-events command.

{
 "StackEvents": [
 ...
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_COMPLETE-2021-08-04T23:23:20.973Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:23:20.973000+00:00",
 "ResourceStatus": "CREATE_COMPLETE",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {

Testing Hooks 157

Amazon CloudFormation Hooks User Guide

 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-
CREATE_IN_PROGRESS-2021-08-04T23:22:59.410Z",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "encryptedbucket-us-west-2-123456789012",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:59.410000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Resource creation Initiated",
 "ResourceProperties": "{\"BucketName\":\"encryptedbucket-us-
west-2-123456789012\",\"BucketEncryption\":{\"ServerSideEncryptionConfiguration\":
[{\"BucketKeyEnabled\":\"true\",\"ServerSideEncryptionByDefault\":{\"SSEAlgorithm
\":\"aws:kms\",\"KMSMasterKeyID\":\"ENCRYPTION_KEY_ARN\"}}]}}",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 {
 "StackId": "arn:aws-cn:cloudformation:us-west-2:123456789012:stack/my-
encrypted-bucket-stack/82a97150-f57a-11eb-8eb2-06a6bdcc7779",
 "EventId": "EncryptedS3Bucket-6516081f-c1f2-4bfe-a0f0-cefa28679994",
 "StackName": "my-encrypted-bucket-stack",
 "LogicalResourceId": "EncryptedS3Bucket",
 "PhysicalResourceId": "",
 "ResourceType": "AWS::S3::Bucket",
 "Timestamp": "2021-08-04T23:22:58.349000+00:00",
 "ResourceStatus": "CREATE_IN_PROGRESS",
 "ResourceStatusReason": "Hook invocations complete. Resource creation
 initiated",
 "ClientRequestToken": "Console-CreateStack-39df35ac-ca00-
b7f6-5661-4e917478d075"
 },
 ...
]
}

Results: CloudFormation successfully created the stack. The Hook's logic verified that the
AWS::S3::Bucket resource contained server-side encryption before provisioning the
resource.

Testing Hooks 158

Amazon CloudFormation Hooks User Guide

Updating a custom Hook

Updating a custom Hook allows revisions in the Hook to be made available in the CloudFormation
registry.

To update a custom Hook, submit your revisions to the CloudFormation registry through the
CloudFormation CLI submit operation.

$ cfn submit

To specify the default version of your Hook in your account, use the set-type-default-version
command and specify the type, type name, and version ID.

$ aws cloudformation set-type-default-version \
 --type HOOK \
 --type-name MyCompany::Testing::MyTestHook \
 --version-id 00000003

To retrieve information about the versions of a Hook, use list-type-versions.

$ aws cloudformation list-type-versions \
 --type HOOK \
 --type-name "MyCompany::Testing::MyTestHook"

Deregistering a custom Hook from the CloudFormation registry

Deregistering a custom Hook marks the extension or extension version as DEPRECATED in the
CloudFormation registry, which removes it from active use. Once deprecated, the custom Hook
can't be used in a CloudFormation operation.

Note

Before deregistering the Hook, you must individually deregister all previous active versions
of that extension. For more information, see DeregisterType.

To deregister a Hook, use the deregister-type operation and specify your Hook ARN.

$ aws cloudformation deregister-type \

Updating Hooks 159

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-submit.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-default-version.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-type-versions.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_DeregisterType.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/deregister-type.html

Amazon CloudFormation Hooks User Guide

 --arn HOOK_TYPE_ARN

This command doesn't produce an output.

Publishing Hooks for public use

To develop a public third-party Hook, develop your Hook as a private extension. Then, in each
Amazon Web Services Region in which you want to make the extension publicly available:

1. Register your Hook as a private extension in the CloudFormation registry.

2. Test your Hook to make sure it meets all necessary requirements for being published in the
CloudFormation registry.

3. Publish your Hook to the CloudFormation registry.

Note

Before you publish any extension in a given Region, you must first register as an
extension publisher in that Region. To do this in multiple Regions simultaneously,
see Publishing extensions in multiple Regions using StackSets in the Amazon
CloudFormation CLI User Guide.

After you've developed and registered your Hook, you can make it publicly available to general
CloudFormation users by publishing it to the CloudFormation registry, as a third-party public
extension.

Public third-party Hooks enable you to offer CloudFormation users to proactively inspect the
configuration of Amazon resources before provisioning. As with private Hooks, public Hooks are
treated the same as any Hook published by Amazon within CloudFormation.

Hooks published to the registry are visible by all CloudFormation users in the Amazon Web Services
Regions in which they're published. Users can then activate your extension in their account, which
makes it available for use in their templates. For more information, see Use third-party public
extensions from the CloudFormation registry in the Amazon CloudFormation User Guide.

Publishing Hooks 160

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/publish-extension-stacksets.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/registry-public.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/registry-public.html

Amazon CloudFormation Hooks User Guide

Testing a custom Hook for public use

In order to publish your registered custom Hook, it must pass all test requirements defined for it.
The following is a list of requirements needed before publishing your custom Hook as a third-party
extension.

Each handler and target is tested twice. Once for SUCCESS and once for FAILED.

• For SUCCESS response case:

• Status must be SUCCESS.

• Must not return an error code.

• Callback delay should be set to 0 seconds, if specified.

• For FAILED response case:

• Status must be FAILED.

• Must return an error code.

• Must have a message in response.

• Callback delay should be set to 0 seconds, if specified.

• For IN_PROGRESS response case:

• Must not return an error code.

• Result field must not be set in response.

Specifying input data for use in contract tests

By default, the CloudFormation performs contract tests using input properties generated from
the patterns you define in your Hook schema. However, most Hooks are complex enough that the
input properties for precreating or preupdating provisioning stacks requires an understanding of
the resource being provisioned. To address this, you can specify the input the CloudFormation uses
when performing its contract tests.

CloudFormation offers two ways for you to specify the input data for it to use when performing
contract tests:

• Overrides file

Publishing Hooks 161

Amazon CloudFormation Hooks User Guide

Using an overrides file provides a light-weight way of specifying input data for certain specific
properties for the CloudFormation to use during preCreate, preUpdate and preDelete
operations testing.

• Input files

You can also use multiple input files to specify contract test input data if:

• You want or need to specify different input data for create, update, and delete operations, or
invalid data with which to test.

• You want to specify multiple different input data sets.

Specifying input data using an override file

The following is an example of Amazon S3 Hook's input data using the overrides file.

{
 "CREATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "hellocontract"
 }
 }
 },
 "UPDATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {

Publishing Hooks 162

Amazon CloudFormation Hooks User Guide

 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID_UPDATE_PRE_PROVISION": {
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "previousResourceProperties": {
 "/BucketName": "encryptedbucket-us-west-2-contractor",
 "/BucketEncryption/ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,

Publishing Hooks 163

Amazon CloudFormation Hooks User Guide

 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 }
 }
 },
 "INVALID": {
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "/QueueName": "MyQueueContract",
 "/KmsMasterKeyId": "KMS-KEY-ARN"
 }
 }
 }
}

Specifying input data using input files

Use input files to specify different kinds of input data for the CloudFormation to use: preCreate
input, preUpdate input, and invalid input. Each kind of data is specified in a separate file. You can
also specify multiple sets of input data for contract tests.

To specify input files for the CloudFormation to use in contract testing, add an inputs folder to
the root directory of your Hooks project. Then add your input files.

Specify which kind of input data a file contains by using the following naming conventions, where
n is an integer:

• inputs_n_pre_create.json: Use files with preCreate handlers for specifying inputs for
creating the resource.

• inputs_n_pre_update.json: Use files with preUpdate handlers for specifying inputs for
updating the resource.

• inputs_n_pre_delete.json: Use files with preDelete handlers for specifying inputs for
deleting the resource.

• inputs_n_invalid.json: For specifying invalid inputs to test.

Publishing Hooks 164

Amazon CloudFormation Hooks User Guide

To specify multiple sets of input data for contract tests, increment the integer in the
file names to order your input data sets. For example, your first set of input files should
be named inputs_1_pre_create.json, inputs_1_pre_update.json, and
inputs_1_pre_invalid.json. Your next set would be named inputs_2_pre_create.json,
inputs_2_pre_update.json, and inputs_2_pre_invalid.json, and so on.

Each input file is a JSON file containing only the resource properties to be used in testing.

The following is an example directory for inputs for Amazon S3 specifying input data using input
files.

inputs_1_pre_create.json

The following is an example of the inputs_1_pre_create.json contract test.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "QueueName": "MyQueue",
 "KmsMasterKeyId": "KMS-KEY-ARN"
 }
 }
}

Publishing Hooks 165

Amazon CloudFormation Hooks User Guide

inputs_1_pre_update.json

The following is an example of the inputs_1_pre_update.json contract test.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

inputs_1_invalid.json

The following is an example of the inputs_1_invalid.json contract test.

{
 "AWS::S3::Bucket": {

Publishing Hooks 166

Amazon CloudFormation Hooks User Guide

 "resourceProperties": {
 "AccessControl": "BucketOwnerFullControl",
 "AnalyticsConfigurations": [],
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "ServerSideEncryptionByDefault": {
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 },
 "AWS::SQS::Queue": {
 "resourceProperties": {
 "NotValid": "The property of this resource is not valid."
 }
 }
}

inputs_1_invalid_pre_update.json

The following is an example of the inputs_1_invalid_pre_update.json contract test.

{
 "AWS::S3::Bucket": {
 "resourceProperties": {
 "BucketEncryption": {
 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "AES256"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 },
 "previousResourceProperties": {
 "BucketEncryption": {

Publishing Hooks 167

Amazon CloudFormation Hooks User Guide

 "ServerSideEncryptionConfiguration": [
 {
 "BucketKeyEnabled": true,
 "ServerSideEncryptionByDefault": {
 "KMSMasterKeyID": "KMS-KEY-ARN",
 "SSEAlgorithm": "aws:kms"
 }
 }
]
 },
 "BucketName": "encryptedbucket-us-west-2"
 }
 }
}

For more information, see Publishing extensions to make them available for public use in the
Amazon CloudFormation CLI User Guide.

Schema syntax reference for Amazon CloudFormation Hooks

This section describes the syntax of the schema that you use to develop Amazon CloudFormation
Hooks.

A Hook includes a Hook specification represented by a JSON schema and Hook handlers. The
first step in creating a custom Hook is modeling a schema that defines the Hook, its properties,
and their attributes. When you initialize a custom Hook project using the CloudFormation CLI
init command, a Hook schema file is created for you. Use this schema file as a starting point for
defining the shape and semantics of your custom Hook.

Schema syntax

The following schema is the structure for a Hook.

{
"typeName": "string",
 "description": "string",
 "sourceUrl": "string",
 "documentationUrl": "string",
 "definitions": {
 "definitionName": {
 . . .

Schema syntax 168

https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/publish-extension.html
https://docs.amazonaws.cn/cloudformation-cli/latest/userguide/resource-type-cli-init.html

Amazon CloudFormation Hooks User Guide

 }
 },
 "typeConfiguration": {
 "properties": {
 "propertyName": {
 "description": "string",
 "type": "string",
 . . .
 },
 },
 "required": [
 "propertyName"
 . . .
],
 "additionalProperties": false
 },
 "handlers": {
 "preCreate": {
 "targetNames": [
],
 "permissions": [
]
 },
 "preUpdate": {
 "targetNames": [
],
 "permissions": [
]
 },
 "preDelete": {
 "targetNames": [
],
 "permissions": [
]
 }
 },
 "additionalProperties": false
}

typeName

The unique name for your Hook. Specifies a three-part namespace for your Hook, with a
recommended pattern of Organization::Service::Hook.

Schema syntax 169

Amazon CloudFormation Hooks User Guide

Note

The following organization namespaces are reserved and can't be used in your Hook
type names:

• Alexa

• AMZN

• Amazon

• ASK

• AWS

• Custom

• Dev

Required: Yes

Pattern: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum: 10

Maximum: 196

description

A short description of the Hook that's displayed in the CloudFormation console.

Required: Yes

sourceUrl

The URL of the source code for the Hook, if public.

Required: No

Maximum: 4096

documentationUrl

The URL of a page providing detailed documentation for the Hook.

Required: Yes

Pattern: ^https\:\/\/[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])(\:[0-9]*)*([\?/#].*)?$

Schema syntax 170

Amazon CloudFormation Hooks User Guide

Maximum: 4096

Note

Although the Hook schema should include complete and accurate property descriptions,
you can use the documentationURL property to provide users with more details,
including examples, use cases, and other detailed information.

definitions

Use the definitions block to provide shared Hook property schemas.

It's considered a best practice to use the definitions section to define schema elements that
can be used at multiple points in your Hook type schema. You can then use a JSON pointer to
reference that element at the appropriate places in your Hook type schema.

Required: No

typeConfiguration

The definition of a Hook’s configuration data.

Required: Yes

properties

The properties of the Hook. All properties of a Hook must be expressed in the schema. Align the
Hook schema properties with the Hook type configuration properties.

Note

Nested properties aren't allowed. Instead, define any nested properties in the
definitions element, and use a $ref pointer to reference them in the desired
property.

The following properties are currently supported:

• default – The default value of the property.

• description – A description of the property.

• pattern – A regex pattern used for validating the input.

Schema syntax 171

Amazon CloudFormation Hooks User Guide

• type – The accepted type of the property.

additionalProperties

additionalProperties must be set to false. All properties of a Hook must be expressed in
the schema: arbitrary inputs aren't allowed.

Required: Yes

Valid values: false

handlers

Handlers specify the operations which can initiate the Hook defined in the schema, such as
Hook invocation points. For example, a preUpdate handler is invoked before the update
operations for all specified targets in the handler.

Valid values: preCreate | preUpdate | preDelete

Note

At least one value must be specified for the handler.

Important

Stack operations that result in the status of UpdateCleanup do not invoke a Hook.
For example, during the following two scenarios, the Hook's preDelete handler is not
invoked:

• the stack is updated after removing one resource from the template.

• a resource with the update type of replacement is deleted.

targetNames

A string array of type names that Hook targets. For example, if a preCreate handler has an
AWS::S3::Bucket target, the Hook runs for Amazon S3 buckets during the preprovisioning
phase.

• TargetName

Specify at least one target name for each implemented handler.

Schema syntax 172

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-update-behaviors.html#update-replacement

Amazon CloudFormation Hooks User Guide

Pattern: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Minimum: 1

Required: Yes

Warning

SSM SecureString and Secrets Manager dynamic references are not resolved before
they are passed to Hooks.

permissions

A string array that specifies the Amazon permissions needed to invoke the handler.

Required: Yes

additionalProperties

additionalProperties must be set to false. All properties of a Hook must be expressed in
the schema: arbitrary inputs aren't allowed.

Required: Yes

Valid values: false

Example Hooks schemas

Example 1

The Java and the Python walkthroughs use the following code example. The following is an
example structure for a Hook called mycompany-testing-mytesthook.json.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies S3 bucket and SQS queues properties before create and
 update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{

Schema syntax 173

Amazon CloudFormation Hooks User Guide

 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[

],
 "additionalProperties":false
 },
 "handlers":{
 "preCreate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preUpdate":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

]
 },
 "preDelete":{
 "targetNames":[
 "AWS::S3::Bucket",
 "AWS::SQS::Queue"
],
 "permissions":[

Schema syntax 174

Amazon CloudFormation Hooks User Guide

 "s3:ListBucket",
 "s3:ListAllMyBuckets",
 "s3:GetEncryptionConfiguration",
 "sqs:ListQueues",
 "sqs:GetQueueAttributes",
 "sqs:GetQueueUrl"
]
 }
 },
 "additionalProperties":false
}

Example 2

The following example is a schema that uses the STACK and CHANGE_SET for targetNames to
target a stack template and a change set operation.

{
 "typeName":"MyCompany::Testing::MyTestHook",
 "description":"Verifies Stack and Change Set properties before create and update",
 "sourceUrl":"https://mycorp.com/my-repo.git",
 "documentationUrl":"https://mycorp.com/documentation",
 "typeConfiguration":{
 "properties":{
 "minBuckets":{
 "description":"Minimum number of compliant buckets",
 "type":"string"
 },
 "minQueues":{
 "description":"Minimum number of compliant queues",
 "type":"string"
 },
 "encryptionAlgorithm":{
 "description":"Encryption algorithm for SSE",
 "default":"AES256",
 "type":"string",
 "pattern": "[a-zA-Z]*[1-9]"
 }
 },
 "required":[
],
 "additionalProperties":false
 },

Schema syntax 175

Amazon CloudFormation Hooks User Guide

 "handlers":{
 "preCreate":{
 "targetNames":[
 "STACK",
 "CHANGE_SET"
],
 "permissions":[
]
 },
 "preUpdate":{
 "targetNames":[
 "STACK"
],
 "permissions":[
]
 },
 "preDelete":{
 "targetNames":[
 "STACK"
],
 "permissions":[

]
 }
 },
 "additionalProperties":false
}

Schema syntax 176

Amazon CloudFormation Hooks User Guide

Disable and enable Amazon CloudFormation Hooks

This topic describes how to disable and then re-enable a Hook to temporarily prevent it from
being active in your account. Disabling Hooks can be useful when you need to investigate an issue
without interference from Hooks.

Disable and enable a Hook in your account (console)

To disable a Hook in your account

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the Hook is located.

3. From the navigation pane, choose Hooks.

4. Choose the name of the Hook you want to disable.

5. On the Hook details page, to the right of the Hook's name, choose the Disable button.

6. When prompted for confirmation, choose Disable Hook.

To re-enable a previously disabled Hook

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the Hook is located.

3. From the navigation pane, choose Hooks.

4. Choose the name of the Hook you want to enable.

5. On the Hook details page, to the right of the Hook's name, choose the Enable button.

6. When prompted for confirmation, choose Enable Hook.

Disable and enable a Hook (console) 177

https://console.amazonaws.cn/cloudformation/
https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

Disable and enable a Hook in your account (Amazon CLI)

Important

The Amazon CLI commands for disabling and enabling Hooks replace the entire Hook
configuration with the values specified in the --configuration option. To avoid
unintended changes, you must include all existing settings you wish to keep when running
these commands. To view the current configuration data, use the describe-type command.

To disable a Hook

Use the following set-type-configuration command and specify HookInvocationStatus as
DISABLED to disable the Hook. Replace the placeholders with your specific values.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "DISABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

To re-enable a previously disabled Hook

Use the following set-type-configuration command and specify HookInvocationStatus as
ENABLED to re-enable the Hook. Replace the placeholders with your specific values.

aws cloudformation set-type-configuration \
 --configuration "{"CloudFormationConfiguration":{"HookConfiguration":
{"HookInvocationStatus": "ENABLED", "FailureMode": "FAIL",
 "TargetOperations": ["STACK","RESOURCE","CHANGE_SET"], "Properties":{}}}}" \
 --type-arn "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyTestHook" \
 --region us-west-2

For more information, see Hook configuration schema syntax reference.

Disable and enable a Hook (Amazon CLI) 178

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/describe-type.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/set-type-configuration.html

Amazon CloudFormation Hooks User Guide

View invocation results for Amazon CloudFormation
Hooks

This topic describes how to view invocation results for Amazon CloudFormation Hooks. Viewing
invocation results can help you understand how Hooks are evaluating your resources and resolve
any issues that are detected when Hooks verify a resource.

Invocations are specific instances when your validation logic (whether it's a Amazon Control Tower
proactive control, Guard rule, or Lambda function) runs during a resource's lifecycle.

View invocation results in the console

You can view invocation results in the console in three ways: through the Invocation summary
page, through the invocation histories for individual Hooks, or through individual stack events for
stack-specific invocations.

View results for all Hooks

The Invocation summary page provides a comprehensive view of all Hook invocations across your
account and Region for the past 90 days.

To view results for all Hooks

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
you want to view Hook invocations.

3. From the navigation pane, choose Invocation summary.

4. The page displays a list of all Hook invocations from the past 90 days, including:

• Invocation ID

• Hook

• Target

• Mode (Warn or Fail)

• Result (Warning, Pass, Failed, In progress)

View invocation results (console) 179

https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

• Invocation time

• Result message

5. You can filter the list using the search bar at the top of the table to find specific invocations.

6. Select a specific invocation to view more addition details about the invocation result, including
remediation guidance for failed Hook invocations.

View invocation history for individual Hooks

You can also view invocation results through the invocation histories for individual Hooks.

To view Hook invocations for a specific Hook

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
you want to view Hook invocations.

3. From the navigation pane, choose Hooks.

4. Choose the Hook you want to view Hook invocations for.

5. Select a specific invocation to view more addition details about the invocation result, including
remediation guidance for failed Hook invocations.

View results for stack-specific invocations

You can also view invocation results for a specific stack through the stack Events page.

To view Hook invocations for a specific stack

1. Sign in to the Amazon Web Services Management Console and open the Amazon
CloudFormation console at https://console.amazonaws.cn/cloudformation.

2. On the navigation bar at the top of the screen, choose the Amazon Web Services Region where
the stack operation occurred.

3. From the navigation pane, choose Stacks.

4. Select the stack you want to view Hook invocations for.

5. Choose the Stack events tab.

View invocation history for individual Hooks 180

https://console.amazonaws.cn/cloudformation/
https://console.amazonaws.cn/cloudformation/

Amazon CloudFormation Hooks User Guide

6. In the events list, look for events with Hook invocations complete in the Status reason
column.

7. To view specific Hook invocation details, review the Hook invocations column, and choose the
underlined text to open a pop-up window with more detailed information.

Note

To display hidden columns, choose the gear icon on the top right corner of the section
to open the Preferences modal, update the settings as needed, and choose Confirm.

View invocation results using the Amazon CLI

Use the list-hook-results command to retrieve information about Hook invocations. This command
supports the following filtering options:

• Get all Hook invocation results (no parameters required)

• Filter by Hook ARN (use --type-arn)

• Filter by Hook ARN and status (use --type-arn and --status)

• Search for specific targets (use --target-type and --target-id)

Filter results by Hook ARN

The following command lists all Hook invocation results for a specific Hook.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --region us-west-2

Example output:

{
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",

View invocation results (Amazon CLI) 181

https://docs.amazonaws.cn/cli/latest/reference/cloudformation/list-hook-results.html

Amazon CloudFormation Hooks User Guide

 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

For a description of the fields in the response, see HookResultSummary in the Amazon
CloudFormation API Reference.

Filter results by Hook ARN and status

To filter for a common status among the results, specify the --status option in the command.
Valid values are:

• HOOK_IN_PROGRESS: The Hook is currently running.

• HOOK_COMPLETE_SUCCEEDED: The Hook completed successfully.

• HOOK_COMPLETE_FAILED: The Hook completed but failed validation.

• HOOK_FAILED: The Hook encountered an error during execution.

aws cloudformation list-hook-results \
 --type-arn arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook \
 --status HOOK_COMPLETE_FAILED \
 --region us-west-2

Example output:

{
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",

View invocation results (Amazon CLI) 182

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

Amazon CloudFormation Hooks User Guide

 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "HookExecutionTarget": "arn:aws:cloudformation:us-west-2:123456789012:stack/my-
stack/39f29d10-73ed-11f0-abc1-0affdfe4aebb",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "FailureMode": "WARN",
 "HookStatusReason": "...",
 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
}

For a description of the fields in the response, see HookResultSummary in the Amazon
CloudFormation API Reference.

Filter results by target type and target ID

The following command lists all Hook invocation results for a specific Cloud Control API request.

aws cloudformation list-hook-results \
 --target-type CLOUD_CONTROL \
 --target-id d417b05b-9eff-46ef-b164-08c76aec1801 \
 --region us-west-2

Example output:

{
 "HookResults": [
 {
 "TargetType": "CLOUD_CONTROL",
 "TargetId": "d417b05b-9eff-46ef-b164-08c76aec1801",
 "HookResults": [
 {
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-
Security-ComplianceHook",
 "HookResultId": "4e7f4766-d8fe-44e5-8587-5b327a148abe",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "FailureMode": "WARN",
 "HookStatusReason": "...",

View invocation results (Amazon CLI) 183

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html

Amazon CloudFormation Hooks User Guide

 "InvocationPoint": "PRE_PROVISION",
 "Status": "HOOK_COMPLETE_FAILED"
 },
 ...
]
 }
]
}

For a description of the fields in the response, see HookResultSummary in the Amazon
CloudFormation API Reference.

Get detailed results for a specific invocation

Use the get-hook-result command to retrieve detailed information about a specific Hook
invocation, including annotations with compliance check results and remediation guidance.

aws cloudformation get-hook-result \
 --hook-result-id 59ef501c-0ac4-47c0-a193-e071cabf748d \
 --region us-west-2

Example output:

{
 "HookResultId": "59ef501c-0ac4-47c0-a193-e071cabf748d",
 "InvocationPoint": "PRE_PROVISION",
 "FailureMode": "WARN",
 "TypeName": "MyOrg::Security::ComplianceHook",
 "TypeVersionId": "00000001",
 "TypeArn": "arn:aws:cloudformation:us-west-2:123456789012:type/hook/MyOrg-Security-
ComplianceHook",
 "Status": "HOOK_COMPLETE_FAILED",
 "HookStatusReason": "Hook completed with failed validations",
 "InvokedAt": "2025-08-08T00:18:39.651Z",
 "Target": {
 "TargetType": "RESOURCE",
 "TargetTypeName": "AWS::S3::Bucket",
 "TargetId": "my-s3-bucket",
 "Action": "CREATE"
 },
 "Annotations": [
 {

View invocation results (Amazon CLI) 184

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_HookResultSummary.html
https://docs.amazonaws.cn/cli/latest/reference/cloudformation/get-hook-result.html

Amazon CloudFormation Hooks User Guide

 "AnnotationName": "BlockPublicAccessCheck",
 "Status": "FAILED",
 "StatusMessage": "Bucket does not block public access",
 "RemediationMessage": "Enable block public access settings on the S3 bucket",
 "SeverityLevel": "HIGH"
 },
 {
 "AnnotationName": "BucketEncryptionCheck",
 "Status": "PASSED",
 "StatusMessage": "Bucket has encryption configured correctly"
 }
]
}

For a description of the fields in the response, see GetHookResult in the Amazon CloudFormation
API Reference.

View invocation results (Amazon CLI) 185

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

Amazon CloudFormation Hooks User Guide

Hook configuration schema syntax reference

This section outlines the schema syntax used to configure Hooks. CloudFormation uses this
configuration schema at runtime when invoking a Hook in an Amazon Web Services account.

To enable your Hook to proactively inspect the configuration of your stack, set the
HookInvocationStatus to ENABLED after the Hook has been registered and activated in your
account.

Topics

• Hook configuration schema properties

• Hook configuration examples

• Amazon CloudFormation Hooks stack level filters

• Amazon CloudFormation Hooks target filters

• Using wildcards with Hook target names

Note

The maximum amount of data that a Hook’s configuration can store is 300 KB. This is
in addition to all the constraints imposed on Configuration request parameter of
SetTypeConfiguration operation.

Hook configuration schema properties

The following schema is the structure for a Hook configuration schema.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": ["STACK"],
 "FailureMode": "FAIL",
 "EncryptionConfiguration": {
 "KmsKeyId": "arn:aws:kms:us-east-1:123456789012:key/abc-123"
 },
 "Properties": {

Hook configuration schema properties 186

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

Amazon CloudFormation Hooks User Guide

 ...
 }
 }
 }
}

HookConfiguration

Hook configuration supports activating or deactivating Hooks at stack level, failure modes, and
Hook properties values.

The Hook configuration supports the following properties.

HookInvocationStatus

Specifies if the Hook is ENABLED or DISABLED.

Valid values: ENABLED | DISABLED

TargetOperations

Specifies the list of operations the Hook is run against. For more information, see Hook
targets.

Valid values: STACK | RESOURCE | CHANGE_SET | CLOUD_CONTROL

TargetStacks

Available for backward compatibility. Use HookInvocationStatus instead.

If the mode is set to ALL, the Hook applies to all stacks in your account during a CREATE,
UPDATE, or DELETE resource operation.

If the mode is set to NONE, the Hook won't apply to stacks in your account.

Valid values: ALL | NONE

FailureMode

This field tells the service how to treat Hook failures.

• If the mode is set to FAIL, and the Hook fails, then the fail configuration stops
provisioning resources and rolls back the stack.

• If the mode is set to WARN and the Hook fails, then the warn configuration allows
provisioning to continue with a warning message.

Hook configuration schema properties 187

Amazon CloudFormation Hooks User Guide

Valid values: FAIL | WARN

EncryptionConfiguration

Specifies encryption settings for Hook annotations data.

KmsKeyId

The alias, alias ARN, key ID, or key ARN of the symmetric encryption Amazon KMS key
used to encrypt Hook annotations data. For more information, see KeyId in the Amazon
KMS docs.

Before you can create Hooks with customer managed Amazon KMS keys, your user or
role must have Amazon KMS permissions to DescribeKey and GenerateDataKey. For
more information, see Amazon KMS key policy and permissions for encrypting Amazon
CloudFormation Hooks results at rest.

Properties

Specifies Hook runtime properties. These should match the shape of the properties
supported by Hooks schema.

Hook configuration examples

For examples of configuring Hooks from the Amazon CLI, see the following sections:

• Activate a proactive control-based Hook (Amazon CLI)

• Activate a Guard Hook (Amazon CLI)

• Activate a Lambda Hook (Amazon CLI)

Amazon CloudFormation Hooks stack level filters

You can add stack level filters to your CloudFormation Hooks to target specific stacks based
on stack names and roles. This is useful in cases where you have multiple stacks with the same
resource types, but the Hook is intended for specific stacks.

This section explains how these filters work and provides examples you can follow.

The basic structure of a Hook configuration without stack level filtering looks like this:

Hook configuration examples 188

https://docs.amazonaws.cn/kms/latest/APIReference/API_DescribeKey.html#API_DescribeKey_RequestParameters

Amazon CloudFormation Hooks User Guide

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "CREATE",
 "UPDATE",
 "DELETE"
]
 }
 }
 }
}

For more information about the HookConfiguration syntax, see Hook configuration schema
syntax reference.

To use stack level filters, add a StackFilters key under HookConfiguration.

The StackFilters key has one required member and has two optional members.

• FilteringCriteria (required)

• StackNames (optional)

• StackRoles (optional)

The StackNames or StackRoles properties are optional. However, you must specify at least one
of these properties.

If you create a Hook that targets Cloud Control API operations, all stack level filters will be ignored.

FilteringCriteria

FilteringCriteria is a required parameter that specifies the filtering behavior. It can be set to
either ALL or ANY.

FilteringCriteria 189

https://docs.amazonaws.cn/cloudcontrolapi/latest/userguide/what-is-cloudcontrolapi.html

Amazon CloudFormation Hooks User Guide

• ALL invokes the Hook if all the filters are matched.

• ANY invokes the Hook if any one filter is matched.

StackNames

To specify one or more stack names as filters in your Hooks configuration, use the following JSON
structure:

"StackNames": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

You must specify one of the following:

• Include: List of stack names to include. Only the stacks specified in this list will invoke the
Hook.

• Type: Array of strings

• Max items: 50

• Min items: 1

• Exclude: List of stack names to exclude. All stacks except those listed here will invoke the Hook.

• Type: Array of strings

• Max items: 50

• Min items: 1

Each stack name in the Include and Exclude arrays must adhere to the following pattern and
length requirements:

• Pattern: ^[a-zA-Z][-a-zA-Z0-9]*$

• Max length: 128

StackNames 190

Amazon CloudFormation Hooks User Guide

StackNames support concrete stack names and full wildcard matching. To see examples using
wildcards, see Using wildcards with Hook target names.

StackRoles

To specify one or more IAM roles as filters in your Hook configuration, use the following JSON
structure:

"StackRoles": {
 "Include": [
 "string"
],
 "Exclude": [
 "string"
]
}

You must specify one of the following:

• Include: List of IAM role ARNs to target stacks associated with these roles. Only stack
operations initiated by these roles will invoke the Hook.

• Type: Array of strings

• Max items: 50

• Min items: 1

• Exclude: List of IAM role ARNs for stacks you want to exclude. The Hook will be invoked on all
stacks except those initiated by the specified roles.

• Type: Array of strings

• Max items: 50

• Min items: 1

Each stack role in the Include and Exclude arrays must adhere to the following pattern and
length requirements:

• Pattern: arn:.+:iam::[0-9]{12}:role/.+

• Max length: 256

StackRoles allow wildcard characters in the following ARN syntax sections:

StackRoles 191

https://docs.amazonaws.cn/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html#arns-syntax

Amazon CloudFormation Hooks User Guide

• partition

• account-id

• resource-id

To see examples using wildcards in the ARN syntax sections, see Using wildcards with Hook target
names.

Include and Exclude

Each filter (StackNames and StackRoles) has an Include list and Exclude list. Using
StackNames as an example, the Hook is only invoked on the stacks that are specified in Include
list. If stack names are only specified in the Exclude list, the hook is only invoked on stacks that
are not in the Exclude list. If both Include and Exclude are specified, the Hook targets what's in
the Include list and not what's in the Exclude list.

For example, suppose you have four stacks: A, B, C, and D.

• "Include": ["A","B"] The Hook is invoked on A and B.

• "Exclude": ["B"] The Hook is invoked on A, C, and D.

• "Include": ["A","B","C"], "Exclude": ["A","D"] The Hook is invoked on B and C.

• "Include": ["A","B","C"], "Exclude": ["A”,"B","C"] The Hook is not invoked on
any stack.

Examples of stack level filters

This section provides examples you can follow to create stack level filters for Amazon
CloudFormation Hooks.

Example 1: Include specific stacks

The following example specifies an Include list. The Hook is only invoked on stacks named
stack-test-1, stack-test-2 and stack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [

Include and Exclude 192

Amazon CloudFormation Hooks User Guide

 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Example 2: Exclude specific stacks

If the stack names are instead added to the Exclude list, the Hook is invoked on any stack that is
not named stack-test-1, stack-test-2 or stack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }

Examples of stack level filters 193

Amazon CloudFormation Hooks User Guide

 }
 }
 }
}

Example 3: Combining include and exclude

If Include and Exclude lists aren't specified, the Hook is only invoked on the stacks in the
Include that aren't in the Exclude list. In the following example, the Hook is only invoked on
stack-test-3.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2"
]
 }
 }
 }
 }
}

Examples of stack level filters 194

Amazon CloudFormation Hooks User Guide

Example 4: Combining stack names and roles with ALL criteria

The following Hook includes three stack names, and one stack role. Because the
FilteringCriteria is specified as ALL, the Hook is only invoked for stack that have both a
matching stack name and the matching stack role.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }
 }
}

Example 5: Combining stack names and roles with ANY criteria

The following Hook includes three stack names, and one stack role. Because the
FilteringCriteria is specified as ANY, the Hook is invoked for stack that have either a matching
stack name or the matching stack role.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {

Examples of stack level filters 195

Amazon CloudFormation Hooks User Guide

 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 },
 "StackRoles": {
 "Include": ["arn:aws:iam::123456789012:role/hook-role"]
 }
 }
 }
 }
}

Amazon CloudFormation Hooks target filters

This topic provides guidance on configuring target filters for Amazon CloudFormation Hooks. You
can use target filters for more granular control over when and on which resources your Hook is
invoked. You can configure filters ranging from simple resource type targeting to more complex
combinations of resource types, actions, and invocation points.

To specify one or more stack names as filters in your Hooks configuration, add a TargetFilters
key under HookConfiguration.

TargetFilters supports the following properties.

Actions

A string array that specifies the actions to target. For an example, see Example 1: Basic target
filter.

Valid values: CREATE | UPDATE | DELETE

Target filters 196

Amazon CloudFormation Hooks User Guide

Note

For RESOURCE, STACK, and CLOUD_CONTROL targets, all target actions are applicable.
For CHANGE_SET targets, only the CREATE action is applicable. For more information,
see Hook targets.

InvocationPoints

A string array that specifies the invocation points to target.

Valid values: PRE_PROVISION

TargetNames

A string array that specifies the resource type names to target, for example,
AWS::S3::Bucket.

Target names support concrete target names and full wildcard matching. For more information,
see Using wildcards with Hook target names.

Pattern: ^[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}::[a-zA-Z0-9]{2,64}$

Maximum: 50

Targets

An object array that specifies the list of targets to use for target filtering.

Each target in the targets array has the following properties.

Actions

The action for the specified target.

Valid values: CREATE | UPDATE | DELETE

InvocationPoints

The invocation point for the specified target.

Valid values: PRE_PROVISION

TargetNames

The resource type name to target.

Target filters 197

Amazon CloudFormation Hooks User Guide

Note

You can't include both the Targets object array and the TargetNames, Actions, or
InvocationPoints arrays at the same time. If you want to use these three items and
Targets, you must include them within the Targets object array. For an example, see
Example 2: Using the Targets object array.

Examples of target filters

This section provides examples you can follow to create target filters for Amazon CloudFormation
Hooks.

Example 1: Basic target filter

To create a basic target filter that focuses on specific resource types, use the TargetFilters
object with the Actions array. The following target filter configuration will invoke the Hook on
all Create, Update, and Delete actions for the specified target operations (in this case, both
RESOURCE and STACK operations).

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Actions": [
 "Create",
 "Update",
 "Delete"
]
 }
 }
 }
}

Examples of target filters 198

Amazon CloudFormation Hooks User Guide

Example 2: Using the Targets object array

For more advanced filters, you can use the Targets object array to list specific target, action,
and invocation point combinations. This following target filter configuration will invoke the Hook
before CREATE and UPDATE actions on S3 buckets and DynamoDB tables. It applies to both STACK
and RESOURCE operations.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "TargetFilters": {
 "Targets": [
 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::S3::Bucket",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::DynamoDB::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }

Examples of target filters 199

Amazon CloudFormation Hooks User Guide

}

Using wildcards with Hook target names

You can use wildcards as part of the target name. You can use wildcard characters (* and ?) within
your Hook target names. The asterisk (*) represents any combination of characters. The question
mark (?) represents any single character. You can use multiple * and ? characters in a target name.

Example : Examples of target name wildcards in Hook schemas

The following example targets all resource types supported by Amazon S3.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::S3::*"
],
 "permissions": []
 }
 }
...
}

The following example matches all resource types that have "Bucket" in the name.

{
...
 "handlers": {
 "preCreate": {
 "targetNames": [
 "AWS::*::Bucket*"
],
 "permissions": []
 }
 }
...
}

The AWS::*::Bucket* might resolve to any of the following concrete resource types:

Using wildcards 200

Amazon CloudFormation Hooks User Guide

• AWS::Lightsail::Bucket

• AWS::S3::Bucket

• AWS::S3::BucketPolicy

• AWS::S3Outpost::Bucket

• AWS::S3Outpost::BucketPolicy

Example : Examples of target name wildcards in Hook configuration schemas

The following example configuration invokes the Hook for CREATE operations on all Amazon
S3 resource types, and for UPDATE operations on all named table resource types, such as
AWS::DynamobDB::Table or AWS::Glue::Table.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},
 "TargetFilters":{
 "Targets": [
 {
 "TargetName": "AWS::S3::*",
 "Action": "CREATE",
 "InvocationPoint": "PRE_PROVISION"
 },
 {
 "TargetName": "AWS::*::Table",
 "Action": "UPDATE",
 "InvocationPoint": "PRE_PROVISION"
 }
]
 }
 }
 }
}

The following example configuration invokes the Hook for CREATE and UPDATE operations on
all Amazon S3 resource types, and also for CREATE and UPDATE operations on all named table
resource types, such as AWS::DynamobDB::Table or AWS::Glue::Table.

Using wildcards 201

Amazon CloudFormation Hooks User Guide

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "TargetStacks": "ALL",
 "FailureMode": "FAIL",
 "Properties": {},
 "TargetFilters":{
 "TargetNames": [
 "AWS::S3::*",
 "AWS::*::Table"
],
 "Actions": [
 "CREATE",
 "UPDATE"
],
 "InvocationPoints": [
 "PRE_PROVISION"
]
 }
 }
 }
}

Example : Include specific stacks

The following examples specifies an Include list. The Hook is only invoked if the stack names
begins with stack-test-.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"

Using wildcards 202

Amazon CloudFormation Hooks User Guide

]
 }
 }
 }
 }
}

Example : Exclude specific stacks

The following examples specifies an Exclude list. The Hook is invoked on any stack that does not
begin with stack-test-.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Exclude": [
 "stack-test-*"
]
 }
 }
 }
 }
}

Example : Combining Include and Exclude for specific stacks

If Include and Exclude lists are specified, the Hook is only invoked on stacks matching in the
Include that do not match in the Exclude list. In the following example, the Hook is invoked on
all stacks that begin with stack-test- except for stacks named stack-test-1, stack-test-2,
and stack-test-3.

{

Using wildcards 203

Amazon CloudFormation Hooks User Guide

 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
],
 "Exclude": [
 "stack-test-1",
 "stack-test-2",
 "stack-test-3"
]
 }
 }
 }
 }
}

Example : Include specific roles

The following example specifies an Include list with two wildcard patterns. The first entry
will run the Hook for any role that begins with hook-role in any partition and account-
id. The second entry will run any for any role in any partition that belongs to account-id
123456789012.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},

Using wildcards 204

Amazon CloudFormation Hooks User Guide

 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/hook-role*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Example : Exclude specific roles

The following examples specifies an Exclude list with two wildcard patterns. The first entry will
skip Hook execution when a role has exempt in its name in any partition and any account-id.
The second entry will skip Hook execution when a role belonging to account-id 123456789012
is used with the stack operation.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Exclude": [
 "arn:*:iam::*:role/*exempt*",
 "arn:*:iam::123456789012:role/*
]
 }
 }
 }
 }
}

Using wildcards 205

Amazon CloudFormation Hooks User Guide

Example : Combining Include and Exclude for specific role ARN patterns

If Include and Exclude lists are specified, the Hook is only invoked on stacks used with roles
that match those in Include that do not match in the Exclude list. In the following example, the
Hook is invoked on stack operations with any partition, account-id, and role name, except if
the role belongs to account-id 123456789012.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackRoles": {
 "Include": [
 "arn:*:iam::*:role/*"
],
 "Exclude": [
 "arn:*:iam::123456789012:role/*"
]
 }
 }
 }
 }
}

Example : Combining stack names and roles with all criteria

The following Hook includes one stack name wildcard and one stack role wildcard. Because the
FilteringCriteria is specified as ALL, the Hook is only invoked for stacks that have both, the
matching StackName and matching StackRoles.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",

Using wildcards 206

Amazon CloudFormation Hooks User Guide

 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ALL",
 "StackNames": {
 "Include": [
 "stack-test-*"
]
 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }
}

Example : Combining StackNames and StackRoles with any criteria

The following Hook includes one stack name wildcard and one stack role wildcard. Because the
FilteringCriteria is specified as ANY, the Hook is invoked for the stack that have either
matching StackNames or matching StackRoles.

{
 "CloudFormationConfiguration": {
 "HookConfiguration": {
 "HookInvocationStatus": "ENABLED",
 "TargetOperations": [
 "STACK",
 "RESOURCE"
],
 "FailureMode": "WARN",
 "Properties": {},
 "StackFilters": {
 "FilteringCriteria": "ANY",
 "StackNames": {
 "Include": [
 "stack-test-*"
]

Using wildcards 207

Amazon CloudFormation Hooks User Guide

 },
 "StackRoles": {
 "Include": ["arn:*:iam::*:role/hook-role*"]
 }
 }
 }
 }
}

Using wildcards 208

Amazon CloudFormation Hooks User Guide

Create Hooks using CloudFormation templates
This page provides links to sample CloudFormation templates and technical reference topics for
Hooks.

By using CloudFormation templates to create Hooks, you can reuse your template to set up your
Hooks consistently and repeatedly. This approach allows you to define your Hooks once, and then
provision the same Hooks over and over in multiple Amazon Web Services accounts and Regions.

CloudFormation offers the following specialized resource types for Guard and Lambda Hook
creation.

Task Solution Links

Create a Guard
Hook

Use the AWS::CloudFormatio
n::GuardHook resource type to
create and activate a Guard Hook.

Sample template

Technical reference

Create a Lambda
Hook

Use the AWS::CloudFormatio
n::LambdaHook resource type to
create and activate a Lambda Hook.

Sample template

Technical reference

CloudFormation also offers the following resource types that you can use in your stack templates
for custom Hook creation.

Task Solution Links

Register a Hook Use the AWS::CloudFormatio
n::HookVersion resource type
to publish a new or first version of a
custom Hook to the CloudFormation
registry.

Sample templates

Technical reference

Set the Hook's
configuration

Use the AWS::CloudFormatio
n::HookTypeConfig resource
type to specify the configuration of
a custom Hook.

Sample templates

Technical reference

209

https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html#aws-resource-cloudformation-guardhook--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-guardhook.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html#aws-resource-cloudformation-lambdahook--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-lambdahook.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html#aws-resource-cloudformation-hookversion--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookversion.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html#aws-resource-cloudformation-hooktypeconfig--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hooktypeconfig.html

Amazon CloudFormation Hooks User Guide

Task Solution Links

Set the Hook's
default version

Use the AWS::CloudFormatio
n::HookDefaultVersion
resource type to specify the default
version of a custom Hook.

Sample templates

Technical reference

Register your
account as a
publisher

Use the AWS::CloudFormatio
n::Publisher resource type to
register your account as a publisher
of public extensions (Hooks,
modules, and resource types) in the
CloudFormation registry.

Technical reference

Publish a Hook
publicly

Use the AWS::CloudFormatio
n::PublicTypeVersion
resource type to test and publish a
registered custom Hook as a public,
third-party Hook.

Technical reference

Activate public,
third-party
Hooks

The AWS::CloudFormatio
n::TypeActivation resource
type works together with
the AWS::CloudFormatio
n::HookTypeConfig resource
type to activate a public, third-party
custom Hook in your account.

Technical reference

210

https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html#aws-resource-cloudformation-hookdefaultversion--examples
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-hookdefaultversion.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publisher.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-publictypeversion.html
https://docs.amazonaws.cn/AWSCloudFormation/latest/TemplateReference/aws-resource-cloudformation-typeactivation.html

Amazon CloudFormation Hooks User Guide

Grant IAM permissions for CloudFormation Hooks

By default, a brand new user in your Amazon Web Services account doesn't have permission to
manage Hooks using the Amazon Web Services Management Console, Amazon Command Line
Interface (Amazon CLI), or Amazon API. To grant users permission, an IAM administrator can create
IAM policies. The administrator can then add the IAM policies to roles, and users can assume the
roles.

Use the policy examples in this topic to create your own custom IAM policies to give users
permissions to work with Hooks.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Define custom IAM permissions with customer managed policies in the IAM User Guide.

This topic covers the permissions that are needed to do the following:

• Manage Hooks – Create, modify, and disable Hooks in your account.

• Publish Hooks publicly – Register, test, and publish your custom Hooks to make them available
publicly in the CloudFormation registry.

• View invocation results – Access and query the results of Hook invocations in your account.

• View details for an invocation result – Access detailed information and remediation guidance
for a specific Hook invocation result in your account.

As you create your IAM policies, you can find documentation for all of the actions, resources, and
condition keys associated with the cloudformation service prefix in the Actions, resources, and
condition keys for Amazon CloudFormation section of the Service Authorization Reference.

Topics

• Allow a user to manage Hooks

• Allow a user to publish custom Hooks publicly

• Allow a user to view Hook invocation results

• Allow a user to view detailed Hook invocation results

• Amazon KMS key policy and permissions for encrypting Amazon CloudFormation Hooks results
at rest

211

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awscloudformation.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awscloudformation.html

Amazon CloudFormation Hooks User Guide

Allow a user to manage Hooks

If you need to allow users to manage extensions, including Hooks, without the ability to make
them public in the CloudFormation registry, you can use the following example IAM policy.

Important

The ActivateType and SetTypeConfiguration API calls work together to create Hooks
in your account. When you grant a user permission to call the SetTypeConfiguration
API, you automatically grant them the ability to modify and disable existing Hooks. You
can't use resource-level permissions to restrict access to this API call. Therefore, ensure that
you grant this permission only to authorized users in your account.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ActivateType",
 "cloudformation:DescribeType",
 "cloudformation:ListTypes",
 "cloudformation:SetTypeConfiguration"
],
 "Resource": "*"
 }
]
}

Users who manage Hooks might need some related permissions, for example:

• To view proactive controls from the Control Catalog in the CloudFormation console, the user
must have the controlcatalog:ListControls permission in an IAM policy.

• To register custom Hooks as private extensions in the CloudFormation registry, the user must
have the cloudformation:RegisterType permission in an IAM policy.

Allow a user to manage Hooks 212

Amazon CloudFormation Hooks User Guide

Allow a user to publish custom Hooks publicly

The following example IAM policy focuses specifically on publishing capabilities. Use this
policy if you need to allow users to make extensions, including Hooks, available publicly in the
CloudFormation registry.

Important

Publishing Hooks publicly makes them available to other Amazon Web Services accounts.
Ensure that only authorized users have these permissions and that published extensions
meet your organization's quality and security standards.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribePublisher",
 "cloudformation:DescribeTypeRegistration",
 "cloudformation:ListTypes",
 "cloudformation:ListTypeVersions",
 "cloudformation:PublishType",
 "cloudformation:RegisterPublisher",
 "cloudformation:RegisterType",
 "cloudformation:TestType"
],
 "Resource": "*"
 }
]
}

Allow a user to view Hook invocation results

The IAM permissions needed to view Hook invocation results change depending on the type of
information being requested.

Allow a user to publish custom Hooks publicly 213

Amazon CloudFormation Hooks User Guide

List Hook invocation results

To list Hook invocation results, users need different permissions depending on the API request
being made.

• To grant permissions to request all Hook results, results for a specific Hook, or
results for a specific Hook and invocation status, you must grant access to the
cloudformation:ListAllHookResults action.

• To grant permissions to request results by specifying a Hook target, you must grant access to the
cloudformation:ListHookResults action. This permission allows the API caller to specify
the TargetType and TargetId parameters when calling ListHookResults.

The following shows an example of a basic permissions policy for listing Hook invocation results.
IAM identities (users or roles) with this policy have permission to request all invocation results using
all available parameter combinations.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListAllHookResults",
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 }
]
}

Control which change sets can be specified

The following example IAM policy grants permissions to the
cloudformation:ListHookResults action to request results by specifying the target of the
Hook. However, it also denies the action if the target is a change set named example-changeset.

List Hook invocation results 214

Amazon CloudFormation Hooks User Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:ListHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListHookResults"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "cloudformation:ChangeSetName": "example-changeset"
 }
 }
 }
]
}

Control which Hooks can be specified

The following example IAM policy grants permissions to the
cloudformation:ListAllHookResults action to request invocation results only when the
Hook's ARN is provided in the request. It denies the action for a specified Hook ARN.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

List Hook invocation results 215

Amazon CloudFormation Hooks User Guide

 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "cloudformation:TypeArn": "true"
 }
 }
 },
 {
 "Effect": "Deny",
 "Action": [
 "cloudformation:ListAllHookResults"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "cloudformation:TypeArn": "arn:aws-cn:cloudformation:us-
east-1:123456789012:type/hook/MyCompany-MyHook"
 }
 }
 }
]
}

Allow a user to view detailed Hook invocation results

To grant permissions to view the detailed results of a specific Hook invocation, you must grant
access to the cloudformation:GetHookResult action. This permission allows users to retrieve
detailed information and remediation guidance for a specific Hook invocation result. For more
information, see GetHookResult in the Amazon CloudFormation API Reference.

Allow a user to view detailed Hook invocation results 216

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

Amazon CloudFormation Hooks User Guide

The following example IAM policy grants permissions to the cloudformation:GetHookResult
action.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:GetHookResult"
],
 "Resource": "*"
 }
]
}

Note

You can configure Hooks to encrypt detailed invocation results stored in the cloud with
your own Amazon KMS keys. For information about how to set up the key policy and IAM
permissions that you need when you use a customer managed key for encryption, see
Amazon KMS key policy and permissions for encrypting Amazon CloudFormation Hooks
results at rest.

Amazon KMS key policy and permissions for encrypting
Amazon CloudFormation Hooks results at rest

This topic describes how to set up the Amazon KMS key policy and permissions that you need when
you specify a customer managed key for encrypting Hooks annotations data that's available from
the GetHookResult API.

Amazon KMS key policy and permissions 217

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

Amazon CloudFormation Hooks User Guide

Note

Amazon CloudFormation Hooks doesn't need additional authorization to use the default
Amazon owned key to encrypt annotations data in your account.

Topics

• Overview

• Using encryption context to control access to your customer managed key

• Customer managed KMS key policy

• KMS permissions for SetTypeConfiguration API

• KMS permissions for GetHookResult API

Overview

The following Amazon KMS keys can be used for encrypting Hook annotations data:

• Amazon owned key – By default, CloudFormation uses an Amazon owned key to encrypt data.
You can't view, manage, or use Amazon owned keys, or audit their use. However, you don't have
to perform explicit configuration to protect the key that's used to encrypt your data. Amazon
owned keys are provided free of charge (no monthly fees or usage fees). Unless you are required
to audit or control the encryption key that protects your annotations data, an Amazon owned
key is a good choice.

• Customer managed key – CloudFormation supports the use of a symmetric customer managed
key that you create, own, and manage to add a second layer of encryption over the existing
Amazon owned key. Amazon KMS charges apply. For more information, see Creating keys in
the Amazon Key Management Service Developer Guide. To manage your key, use the Amazon
Key Management Service (Amazon KMS) in the Amazon KMS console, the Amazon CLI, or the
Amazon KMS API. For more information, see the Amazon Key Management Service Developer
Guide.

You can configure customer managed keys when creating and updating Hooks. When you provide
your customer managed key, CloudFormation uses this key to encrypt the annotations data before
storing it. When the annotations data is later accessed during the GetHookResult API operation,

Overview 218

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.amazonaws.cn/kms/latest/developerguide/create-keys.html
https://console.amazonaws.cn/kms
https://docs.amazonaws.cn/kms/latest/developerguide/
https://docs.amazonaws.cn/kms/latest/developerguide/

Amazon CloudFormation Hooks User Guide

CloudFormation automatically decrypts it. For information about configuring your encryption key
for Hooks, see Hook configuration schema syntax reference.

Important

Note that the KmsKeyId option to specify a customer managed key is currently only
available when you use the Amazon CLI to configure your Hook.

Using encryption context to control access to your customer managed
key

CloudFormation Hooks automatically includes encryption context with every annotation storage
and retrieval operation. This allows you to set encryption context conditions in your key policy to
ensure the key can only be used for specific Hooks:

• kms:EncryptionContext:aws:cloudformation:hooks:service – Ensures the key is only
used by the CloudFormation Hooks service.

• kms:EncryptionContext:aws:cloudformation:account-id – Prevents cross-account key
usage by matching your Amazon Web Services account ID.

• kms:EncryptionContext:aws:cloudformation:arn – Restrict usage to specific Hooks
using ARN patterns.

These conditions provide additional protection against confused deputy attacks by
cryptographically binding the encrypted data to the specific Hook context.

Customer managed KMS key policy

When creating your customer managed key, you must define its key policy to allow the
CloudFormation Hooks service to perform Amazon KMS operations. To use the following key
policy, replace the placeholder values with your own information.

JSON

{
 "Version":"2012-10-17",
 "Statement": [

Encryption context 219

Amazon CloudFormation Hooks User Guide

 {
 "Sid": "EnableIAMUserDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "EnableIAMUserGenerateDataKey",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "kms:EncryptionContext:aws:cloudformation:arn": "arn:aws-
cn:cloudformation:*:123456789012:hook/*"
 }
 }
 },
 {
 "Sid": "EnableIAMUserDecrypt",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws-cn:iam::123456789012:role/ExampleRole"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {

Customer managed KMS key policy 220

Amazon CloudFormation Hooks User Guide

 "StringEquals": {
 "kms:ViaService": "cloudformation.us-east-1.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowHooksServiceDescribeKey",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },
 "Action": "kms:DescribeKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:cloudformation:*:123456789012:hook/*"
 }
 }
 },
 {
 "Sid": "AllowHooksService",
 "Effect": "Allow",
 "Principal": {
 "Service": "hooks.cloudformation.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012",
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws-cn:cloudformation:*:123456789012:hook/*",
 "kms:EncryptionContext:aws:cloudformation:arn": "arn:aws-
cn:cloudformation:*:123456789012:hook/*"

Customer managed KMS key policy 221

Amazon CloudFormation Hooks User Guide

 }
 }
 }
]
}

This policy grants permissions to both IAM roles (first three statements) and the CloudFormation
Hooks service (last two statements). The kms:ViaService condition key ensures the KMS key can
only be used through CloudFormation, preventing direct KMS API calls. The key operations are:

• kms:DescribeKey – Validates key properties and metadata. This operation is in separate
statements because it cannot be used with encryption context conditions.

• kms:GenerateDataKey – Generates data encryption keys for encrypting annotations before
storage. This operation includes encryption context conditions for scoped access control.

• kms:Decrypt – Decrypts previously encrypted annotations data. For IAM roles, this includes
the kms:ViaService condition. For the service principal, this includes encryption context
conditions.

The aws:SourceAccount and aws:SourceArn condition keys provide the primary protection
against confused deputy attacks. The encryption context conditions provide additional validation
layers. For more information, see Using aws:SourceArn or aws:SourceAccount condition keys in the
Amazon Key Management Service Developer Guide.

Important

Hook execution roles do not need Amazon KMS permissions. The CloudFormation Hooks
service principal performs all Amazon KMS operations.

KMS permissions for SetTypeConfiguration API

During the SetTypeConfiguration API call, CloudFormation validates user permissions to encrypt
annotations data with the specified Amazon KMS key. Add the following IAM policy to the user
or role that will configure encryption using the SetTypeConfiguration API. Replace the
placeholder values with your own information.

KMS permissions for SetTypeConfiguration API 222

https://docs.amazonaws.cn/kms/latest/developerguide/least-privilege.html#least-privilege-source-arn
https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_SetTypeConfiguration.html

Amazon CloudFormation Hooks User Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudformation:SetTypeConfiguration",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:DescribeKey",
 "Resource": "arn:aws-cn:kms:us-east-1:123456789012:key/abc-123"
 },
 {
 "Effect": "Allow",
 "Action": "kms:GenerateDataKey",
 "Resource": "arn:aws-cn:kms:us-east-1:123456789012:key/abc-123",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:cloudformation:hooks:service":
 "hooks.cloudformation.amazonaws.com",
 "kms:EncryptionContext:aws:cloudformation:account-id": "123456789012"
 },
 "ArnLike": {
 "kms:EncryptionContext:aws:cloudformation:arn": "arn:aws-
cn:cloudformation:*:123456789012:hook/*"
 }
 }
 }
]
}

KMS permissions for GetHookResult API

To call GetHookResult for Hooks that use your customer managed key, users must have
kms:Decrypt permission for that key. Add the following IAM policy to the user or role that will
call GetHookResult. Replace arn:aws-cn:kms:us-east-1:123456789012:key/abc-123
with the ARN of your customer managed key.

KMS permissions for GetHookResult API 223

https://docs.amazonaws.cn/AWSCloudFormation/latest/APIReference/API_GetHookResult.html

Amazon CloudFormation Hooks User Guide

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudformation:GetHookResult",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws-cn:kms:us-east-1:123456789012:key/abc-123"
 }
]
}

KMS permissions for GetHookResult API 224

Amazon CloudFormation Hooks User Guide

Document history for the Amazon CloudFormation
Hooks user guide

The following table describes the important changes to the documentation since the last release
of Amazon CloudFormation Hooks. For notification about updates to this documentation, you can
subscribe to an RSS feed.

• Latest documentation update: September 4, 2025.

Change Description Date

Detailed compliance check
results

Hooks now support annotatio
ns that provide detailed
compliance check results
and remediation guidance
for each evaluated resource.
View these detailed validatio
n results through the
CloudFormation console or
get-hook-result CLI
command.

November 13, 2025

Proactive controls as Hooks You can now activate
proactive control-b
ased Hooks through the
CloudFormation console or
CLI using the activate-
type and set-type-
configuration
commands. You can configure
these Hooks to apply specific
Amazon Control Tower
Control Catalog proactive
controls to evaluate resources

September 4, 2025

225

Amazon CloudFormation Hooks User Guide

during CREATE and UPDATE
operations.

Hooks invocation summary You can now retrieve
information about Hook
invocations through the
CloudFormation console,
or use the list-hook-
results CLI command to
programmatically retrieve
invocation details. You can
also now filter list-hook-
results results by Hook or
invocation status to focus on
relevant invocations.

September 4, 2025

Stack-level Hooks Hooks are now supported
at the stack-level, allowing
customers to use CloudForm
ation Hooks to evaluate new
templates and potentially
block stack operations from
proceeding.

November 13, 2024

226

Amazon CloudFormation Hooks User Guide

Amazon Cloud Control API
Hooks integration

Hooks are now integrate
d with Cloud Control API,
allowing customers to use
CloudFormation Hooks
to proactively inspect the
configuration of resources
before provisioning. If non-
compliant resources are
found, the Hook either fails
the operation and prevents
the resources from being
provisioned, or emits a
warning and allows the
provisioning operation to
continue.

November 13, 2024

Amazon CloudFormation
Guard Hooks

Amazon CloudFormation
Guard is an open-source and
general purpose domain
specific language (DSL) you
can use to author policy-
as-code. Guard Hooks can
evaluate Cloud Control
API and CloudFormation
operations to inspect the
configuration of resources
before provisioning. If non-
compliant resources are
found, the Hook either fails
the operation and prevents
the resources from being
provisioned, or emits a
warning and allows the
provisioning operation to
continue.

November 13, 2024

227

Amazon CloudFormation Hooks User Guide

Amazon Lambda Hooks Amazon CloudFormation
Lambda Hooks allow you to
evaluate CloudFormation and
Cloud Control API operation
s against custom your own
custom code. Your Hook
can block an operation from
proceeding, or issue a warning
to the caller and allow the
operation to proceed.

November 13, 2024

Hooks User Guide Initial version of the Amazon
CloudFormation Hooks User
Guide. Updates include a new
introduction, getting started
walkthrough, concepts and
terminology, stack level
filtering, and updated topics
on prerequisites, setup,
and CloudFormation Hooks
development.

December 8, 2023

228

	Amazon CloudFormation
	Table of Contents
	What are Amazon CloudFormation Hooks?
	Hook implementation options
	Amazon Control Tower proactive controls
	Guard rules
	Lambda functions
	Custom Hooks

	Creating and managing Amazon CloudFormation Hooks
	Amazon CloudFormation Hooks concepts
	Hook
	Failure mode
	Hook targets
	Target actions
	Annotations
	Hook handler
	Timeout and retry limits

	Amazon Control Tower proactive controls as Hooks
	Amazon CLI commands for working with Hooks
	Activate a proactive control-based Hook in your account
	Activate a proactive control-based Hook (console)
	Activate a proactive control-based Hook (Amazon CLI)

	Delete proactive control-based Hooks in your account
	Delete a proactive control-based Hook in your account (console)
	Delete a proactive control-based Hook in your account (Amazon CLI)

	Guard Hooks
	Amazon CLI commands for working with Guard Hooks
	Write Guard rules to evaluate resources for Guard Hooks
	Resource operation Guard rules
	Guard resource input syntax
	Example Guard resource operation input
	Guard rules for resource changes

	Stack operation Guard rules
	Guard stack input syntax
	Example Guard stack operation input
	Guard rules for stack changes

	Change set operation Guard rules
	Guard change set input syntax
	Example Guard change set operation input
	Guard rule for change set operations

	Prepare to create a Guard Hook
	Create an execution role for a Guard Hook
	Required permissions

	Activate a Guard Hook in your account
	Activate a Guard Hook (console)
	Activate a Guard Hook (Amazon CLI)
	Related resources

	View logs for the Guard Hooks in your account
	View Guard Hook logs in the Amazon S3 console

	Delete Guard Hooks in your account
	Delete a Guard Hook in your account (console)
	Delete a Guard Hook in your account (Amazon CLI)

	Lambda Hooks
	Amazon CLI commands for working with Lambda Hooks
	Create Lambda functions to evaluate resources for Lambda Hooks
	Developing a Lambda Hook
	Request input
	Response input
	Examples

	Evaluating resource operations with Lambda Hooks
	Lambda Hook resource input syntax
	Example Lambda Hook resource change input
	Example Lambda function for resource operations

	Evaluating stack operations with Lambda Hooks
	Lambda Hook stack input syntax
	Example Lambda Hook stack change input
	Example Lambda function for stack operations

	Evaluating change set operations with Lambda Hooks
	Lambda Hook change set input syntax
	Example Lambda Hook change set change input
	Example Lambda function for change set operations

	Prepare to create a Lambda Hook
	Create an execution role for a Lambda Hook
	Required permissions

	Activate a Lambda Hook in your account
	Activate a Lambda Hook (console)
	Activate a Lambda Hook (Amazon CLI)
	Related resources

	View logs for the Lambda Hooks in your account
	View Lambda Hook logs in the Lambda console

	Delete Lambda Hooks in your account
	Delete a Lambda Hook in your account (console)
	Delete a Lambda Hook in your account (Amazon CLI)

	Developing custom Hooks using the CloudFormation CLI
	Prerequisites for developing custom Amazon CloudFormation Hooks
	Permissions for developing Hooks
	Set up a development environment for Hooks

	Initiating a custom Amazon CloudFormation Hooks project
	Modeling custom Amazon CloudFormation Hooks
	Modeling custom Amazon CloudFormation Hooks using Java
	Step 1: Add project dependencies
	Hook project dependencies (pom.xml)

	Step 2: Generate the Hook project package
	Step 3: Add Hook handlers
	Step 4: Implement Hook handlers
	Coding the API client builder
	Coding the API request maker
	Implementing the helper code
	Implementing the base handler
	Implementing the preCreate handler
	Coding the preCreate handler
	Updating the preCreate test
	Implementing the preUpdate handler
	Coding the preUpdate handler
	Updating the preUpdate test
	Implementing the preDelete handler
	Coding the preDelete handler
	Updating the preDelete handler

	Modeling custom Amazon CloudFormation Hooks using Python
	Step 1: Generate the Hook project package
	Step 2: Add Hook handlers
	Step 3: Implement Hook handlers
	Implement the preCreate handler
	Implement the preUpdate handler
	Implement the preDelete handler
	Implement a Hook handler

	Registering a custom Hook with Amazon CloudFormation
	Package a Hook (Java)
	Register a custom Hook
	Verifying Hooks are accessible in your account
	Configure Hooks

	Accessing Amazon APIs in handlers
	hook-role.yaml template

	Testing a custom Hook in your Amazon Web Services account
	Testing Hooks by provisioning a stack
	Example 1: To provision a stack
	Example 2: To provision a stack

	Updating a custom Hook
	Deregistering a custom Hook from the CloudFormation registry
	Publishing Hooks for public use
	Testing a custom Hook for public use
	Specifying input data for use in contract tests
	Specifying input data using an override file
	Specifying input data using input files

	Schema syntax reference for Amazon CloudFormation Hooks
	Schema syntax
	Example Hooks schemas

	Disable and enable Amazon CloudFormation Hooks
	Disable and enable a Hook in your account (console)
	Disable and enable a Hook in your account (Amazon CLI)

	View invocation results for Amazon CloudFormation Hooks
	View invocation results in the console
	View results for all Hooks
	View invocation history for individual Hooks
	View results for stack-specific invocations

	View invocation results using the Amazon CLI

	Hook configuration schema syntax reference
	Hook configuration schema properties
	Hook configuration examples
	Amazon CloudFormation Hooks stack level filters
	FilteringCriteria
	StackNames
	StackRoles
	Include and Exclude
	Examples of stack level filters
	Example 1: Include specific stacks
	Example 2: Exclude specific stacks
	Example 3: Combining include and exclude
	Example 4: Combining stack names and roles with ALL criteria
	Example 5: Combining stack names and roles with ANY criteria

	Amazon CloudFormation Hooks target filters
	Examples of target filters
	Example 1: Basic target filter
	Example 2: Using the Targets object array

	Using wildcards with Hook target names

	Create Hooks using CloudFormation templates
	Grant IAM permissions for CloudFormation Hooks
	Allow a user to manage Hooks
	Allow a user to publish custom Hooks publicly
	Allow a user to view Hook invocation results
	List Hook invocation results
	Control which change sets can be specified
	Control which Hooks can be specified

	Allow a user to view detailed Hook invocation results
	Amazon KMS key policy and permissions for encrypting Amazon CloudFormation Hooks results at rest
	Overview
	Using encryption context to control access to your customer managed key
	Customer managed KMS key policy
	KMS permissions for SetTypeConfiguration API
	KMS permissions for GetHookResult API

	Document history for the Amazon CloudFormation Hooks user guide

