
Developer Guide

Amazon Cognito

Amazon Cognito Developer Guide

Amazon Cognito: Developer Guide

Amazon Cognito Developer Guide

Table of Contents

What is Amazon Cognito? ... 1
User pools .. 2
Identity pools .. 3
Features of Amazon Cognito ... 4

User pools ... 4
Identity pools ... 6

Amazon Cognito user pools and identity pools comparison ... 8
Getting started with Amazon Cognito .. 13
Regional availability ... 13
Pricing for Amazon Cognito .. 13
Terms and concepts ... 14

General .. 14
User pools ... 17
Identity pools ... 21

Getting started with Amazon .. 22
Sign up for an Amazon Web Services account ... 22
Secure IAM users ... 23

Getting started with user pools ... 24
Your first app and user pool ... 24
Other application options .. 27

React SPA example ... 28
Flutter mobile app example ... 31

Next steps .. 34
Add a social provider ... 35
Add a SAML IdP .. 43

Getting started with identity pools ... 46
Create an identity pool in Amazon Cognito ... 46
Set up an SDK .. 48
Integrate the identity providers .. 49
Get credentials .. 49

Additional getting started options .. 50
Integrating with apps .. 52

Authentication with Amazon Amplify ... 53
Creating a user interface (UI) with Amplify .. 54

iii

Amazon Cognito Developer Guide

Authentication with Amazon SDKs .. 55
How authentication works ... 56

Managed login authentication ... 57
SDK authentication ... 60
Third-party identity provider authentication .. 63
Identity pool authentication ... 66

Working with Amazon SDKs .. 69
Authorization with Amazon Verified Permissions ... 70

API authorization with Verified Permissions ... 71
Example policy for an Amazon Cognito user .. 74

Code examples ... 77
Amazon Cognito Identity ... 79

Basics ... 79
Scenarios ... 105

Amazon Cognito Identity Provider ... 107
Basics ... 118
Scenarios ... 272

Amazon Cognito Sync ... 438
Basics ... 438

Multi-tenancy best practices .. 441
Per-tenant user pools ... 443
Per-tenant app clients .. 445
Per-tenant user pool groups ... 447
Per-tenant custom attributes .. 449
Per-tenant custom scopes ... 451

Example resource .. 454
Multi-tenancy security recommendations .. 455

Common Amazon Cognito scenarios .. 456
Authenticate with a user pool .. 456
Access server-side resources .. 457
Access resources with API Gateway and Lambda .. 458
Access Amazon services with a user pool and an identity pool ... 459
Authenticate with a third party and access Amazon services with an identity pool 459
Access Amazon AppSync resources with Amazon Cognito ... 460

Amazon Cognito user pools .. 462
Features .. 463

iv

Amazon Cognito Developer Guide

Sign-up .. 463
Sign-in ... 464
Managed login .. 465
Security ... 465
Custom user experience .. 466
Monitoring and analytics .. 466
Amazon Cognito identity pools integration ... 467

User pool feature plans .. 467
Select a feature plan ... 469
Features by plan ... 470
Essentials plan features .. 473
Plus plan features ... 477
Turn off ineligible features ... 480

Security best practices .. 481
Protect your user pool at the network level .. 481
Protect against SMS message abuse .. 481
Understand public authentication .. 482
Protect confidential clients with client secrets .. 485
Protect other secrets ... 486
User pool administration least privilege ... 487
Secure and verify tokens .. 489
Determine the identity providers that you want to trust .. 490
Understand the effect of scopes on access to user profiles .. 490
Sanitize inputs for user attributes .. 490

Authentication .. 491
Implement authentication flows ... 492
Things to know ... 494
Authentication flow example ... 497
Managed login authentication ... 500
SDK authentication .. 503
Authentication flows .. 507
SDK authorization models .. 533

Third-party IdP sign-in ... 548
How federated sign-in works in Amazon Cognito user pools ... 548
The responsibilities of an app as a service provider with Amazon Cognito 549
Things to know about Amazon Cognito user pools third-party sign-in 550

v

Amazon Cognito Developer Guide

Identity providers ... 551
Social identity providers ... 557
SAML providers ... 565
OIDC providers .. 596
Mapping IdP attributes ... 607
Linking federated users ... 613

Managed login .. 616
Managed login localization .. 618
Setting up managed login with Amazon Amplify ... 619
Setting up managed login with the Amazon Cognito console ... 620
Viewing your sign-in page .. 620
Customizing your authentication pages .. 622
Things to know about managed login and the hosted UI ... 622
Configuring a domain .. 625
Branding and customization .. 638

Using Lambda triggers ... 658
Things to know ... 660
Set up triggers .. 663
User pool Lambda trigger event ... 663
User pool Lambda trigger common parameters .. 664
Client metadata .. 665
Trigger sources by operation ... 668
Trigger sources by function .. 674
Pre sign-up ... 679
Post confirmation ... 686
Pre authentication .. 689
Post authentication .. 693
Custom challenge ... 697
Pre token generation ... 714
Migrate user ... 736
Custom message ... 742
Custom senders ... 750

Managing users .. 770
Allowing user sign-up .. 771
Signing up and confirming user accounts ... 774
Creating users as administrator ... 801

vi

Amazon Cognito Developer Guide

Adding groups to a user pool .. 808
Managing and searching for users .. 811
Passwords ... 818
Importing users into a user pool .. 824
Attributes .. 842

User pool tokens .. 858
ID tokens .. 860
Access tokens ... 864
Refresh tokens ... 868
Revoking tokens .. 874
Verifying a JSON Web Token ... 876
Managing user pool token expiration and caching ... 882

Accessing resources after sign-in ... 886
Accessing resources with Verified Permissions ... 457
Accessing API Gateway resources .. 889
Accessing Amazon resources using an identity pool ... 890

M2M and scopes .. 895
API authorization .. 896
Machine-to-machine (M2M) authorization .. 896
About scopes ... 898
About resource servers .. 899

Additional features .. 904
Updating a user pool and app client ... 905
App clients ... 909
Working with devices ... 918
Using Amazon Pinpoint analytics ... 924
Email settings .. 930
SMS message settings ... 944

Using security features ... 953
Adding MFA .. 955
Threat protection .. 974
Amazon WAF Web ACLs ... 1002
Case sensitivity ... 1006
Deletion protection .. 1008
Managing user disclosure ... 1009

User pool endpoints reference ... 1016

vii

Amazon Cognito Developer Guide

Managed login endpoints ... 1017
Federation endpoints .. 1025
OAuth 2.0 grants .. 1056
Using PKCE .. 1058
Managed login and federation error responses ... 1060

Amazon Cognito identity pools .. 1063
Configuring identity pools ... 1065

Create an identity pool ... 1066
User IAM roles ... 1067
Authenticated and unauthenticated identities .. 1068
Activate or deactivate guest access ... 1068
Change the role associated with an identity type .. 1069
Edit identity providers ... 1070
Delete an identity pool ... 1071
Delete an identity from an identity pool .. 1072
Using Amazon Cognito Sync with identity pools .. 1072

Identity pools authentication flow .. 1075
IAM roles ... 1085

Set up a trust policy .. 1086
Access policies ... 1089
Role trust and permissions .. 1100

Security best practices ... 1101
IAM configuration best practices .. 1102
Identity pool configuration best practices .. 1104

Using attributes for access control .. 1105
Using attributes for access control with Amazon Cognito identity pools 1107
Using attributes for access control policy example .. 1108
Turn off attributes for access control .. 1110
Default provider mappings .. 1110

Using role-based access control ... 1113
Creating roles for role mapping ... 1113
Granting pass-role permission ... 1114
Using tokens to assign roles to users .. 1115
Using rule-based mapping to assign roles to users .. 1115
Token claims to use in rule-based mapping ... 1117
Best practices for role-based access control .. 1119

viii

Amazon Cognito Developer Guide

Getting credentials .. 1119
Using credentials ... 1126
Third-party identity providers .. 1129

Facebook .. 1130
Login with Amazon .. 1138
Google .. 1141
Sign in with Apple ... 1150
Open ID Connect providers .. 1156
SAML identity providers ... 1159

Developer-authenticated identities ... 1161
Understanding the authentication flow .. 1162
Define a developer provider name and associate it with an identity pool 1162
Implement an identity provider .. 1163
Updating the logins map (Android and iOS only) ... 1171
Getting a token (server side) ... 1172
Connect to an existing social identity ... 1174
Supporting transition between providers ... 1174

Switching identities ... 1178
Android ... 1178
iOS - objective-C .. 1179
iOS - swift .. 1179
JavaScript ... 1180
Unity .. 1181
Xamarin .. 1181

Amazon Cognito Sync ... 1182
Getting started with Amazon Cognito Sync .. 1182

Set up an identity pool in Amazon Cognito ... 1183
Store and sync data ... 1183

Synchronizing data across clients .. 1183
Initializing the Amazon Cognito Sync client ... 1184
Understanding datasets .. 1186
Reading and writing data in datasets .. 1188
Synchronizing local data with the sync store .. 1190

Handling event callbacks ... 1193
Android ... 1194
iOS - Objective-C ... 1196

ix

Amazon Cognito Developer Guide

iOS - Swift ... 1199
JavaScript ... 1203
Unity .. 1205
Xamarin .. 1208

Implementing push synchronization ... 1211
Create an Amazon Simple Notification Service (Amazon SNS) app 1211
Enable push sync in the Amazon Cognito console ... 1211
Use push sync in your app: Android .. 1213
Use push sync in your app: iOS - Objective-C ... 1215
Use push sync in your app: iOS - Swift ... 1217

Implementing Amazon Cognito Sync streams .. 1220
Customizing workflows with Amazon Cognito Events .. 1223

Security .. 1228
Data protection .. 1229

Data encryption .. 1229
Identity and access management .. 1230

Audience ... 1231
Authenticating with identities ... 1231
Managing access using policies ... 1234
How Amazon Cognito works with IAM .. 1237
Identity-based policy examples ... 1246
Troubleshooting .. 1250
Using service-linked roles ... 1253

Logging and monitoring .. 1257
Monitoring costs ... 1258
Exporting user pool logs .. 1261
Monitoring quotas and usage ... 1271
CloudTrail logs .. 1290

Compliance validation .. 1318
Resilience ... 1318

Regional data considerations ... 1319
Infrastructure security .. 1320
Configuration and vulnerability analysis .. 1320
Amazon managed policies ... 1320

Policy updates ... 1322
Tagging resources .. 1325

x

Amazon Cognito Developer Guide

Supported resources ... 1325
Tag restrictions ... 1326
Managing tags with the console .. 1326
Amazon CLI examples .. 1327

Assigning tags ... 1327
Viewing tags .. 1328
Removing tags .. 1328
Applying tags when you create resources .. 1329

API actions .. 1330
API actions for user pool tags ... 1330
API actions for identity pool tags .. 1330

Quotas .. 1331
Understanding API request rate quotas ... 1331

Quota categorization ... 1331
Amazon Cognito user pools API operations with special request rate handling 1332
Monthly active users ... 1333

Managing API request rate quotas .. 1334
Identify quota requirements .. 1334
Optimize request rates ... 1335
Track quota usage .. 1336
Track monthly active users (MAUs) .. 1337
Requesting a quota increase .. 1338

User pools request rate quotas .. 1338
Identity pools request rate quotas .. 1349
Quotas on resource number and size ... 1350

Document history .. 1358

xi

Amazon Cognito Developer Guide

What is Amazon Cognito?

Amazon Cognito is an identity platform for web and mobile apps. It’s a user directory, an
authentication server, and an authorization service for OAuth 2.0 access tokens and Amazon
credentials. With Amazon Cognito, you can authenticate and authorize users from the built-in user
directory, from your enterprise directory, and from consumer identity providers like Google and
Facebook.

Topics

• User pools

• Identity pools

• Features of Amazon Cognito

• Amazon Cognito user pools and identity pools comparison

• Getting started with Amazon Cognito

• Regional availability

• Pricing for Amazon Cognito

• Common Amazon Cognito terms and concepts

• Getting started with Amazon

The two components that follow make up Amazon Cognito. They operate independently or in
tandem, based on your access needs for your users.

1

Amazon Cognito Developer Guide

User pools

Create a user pool when you want to authenticate and authorize users to your app or API.
User pools are a user directory with both self-service and administrator-driven user creation,
management, and authentication. Your user pool can be an independent directory and OIDC
identity provider (IdP), and an intermediate service provider (SP) to third-party providers of
workforce and customer identities. You can provide single sign-on (SSO) in your app for your
organization's workforce identities in SAML 2.0 and OIDC IdPs with user pools. You can also provide
SSO in your app for your organization's customer identities in the public OAuth 2.0 identity stores
Amazon, Google, Apple and Facebook. For more information about customer identity and access
management (CIAM), see What is CIAM?.

User pools don’t require integration with an identity pool. From a user pool, you can issue
authenticated JSON web tokens (JWTs) directly to an app, a web server, or an API.

User pools 2

https://aws.amazon.com/what-is/ciam/

Amazon Cognito Developer Guide

Identity pools

Set up an Amazon Cognito identity pool when you want to authorize authenticated or anonymous
users to access your Amazon resources. An identity pool issues Amazon credentials for your app
to serve resources to users. You can authenticate users with a trusted identity provider, like a user
pool or a SAML 2.0 service. It can also optionally issue credentials for guest users. Identity pools
use both role-based and attribute-based access control to manage your users’ authorization to
access your Amazon resources.

Identity pools don’t require integration with a user pool. An identity pool can accept authenticated
claims directly from both workforce and consumer identity providers.

An Amazon Cognito user pool and identity pool used together

In the diagram that begins this topic, you use Amazon Cognito to authenticate your user and then
grant them access to an Amazon Web Services service.

1. Your app user signs in through a user pool and receives OAuth 2.0 tokens.

Identity pools 3

Amazon Cognito Developer Guide

2. Your app exchanges a user pool token with an identity pool for temporary Amazon credentials
that you can use with Amazon APIs and the Amazon Command Line Interface (Amazon CLI).

3. Your app assigns the credentials session to your user, and delivers authorized access to Amazon
Web Services services like Amazon S3 and Amazon DynamoDB.

For more examples that use identity pools and user pools, see Common Amazon Cognito scenarios.

In Amazon Cognito, the security of the cloud obligation of the shared responsibility model is
compliant with SOC 1-3, PCI DSS, ISO 27001, and is HIPAA-BAA eligible. You can design your
security in the cloud in Amazon Cognito to be compliant with SOC1-3, ISO 27001, and HIPAA-
BAA, but not PCI DSS. For more information, see Amazon services in scope. See also Regional data
considerations.

Features of Amazon Cognito

User pools

An Amazon Cognito user pool is a user directory. With a user pool, your users can sign in to your
web or mobile app through Amazon Cognito, or federate through a third-party IdP. Federated and
local users have a user profile in your user pool.

Local users are those who signed up or you created directly in your user pool. You can manage and
customize these user profiles in the Amazon Web Services Management Console, an Amazon SDK,
or the Amazon Command Line Interface (Amazon CLI).

Amazon Cognito user pools accept tokens and assertions from third-party IdPs, and collect the user
attributes into a JWT that it issues to your app. You can standardize your app on one set of JWTs
while Amazon Cognito handles the interactions with IdPs, mapping their claims to a central token
format.

An Amazon Cognito user pool can be a standalone IdP. Amazon Cognito draws from the OpenID
Connect (OIDC) standard to generate JWTs for authentication and authorization. When you sign in
local users, your user pool is authoritative for those users. You have access to the following features
when you authenticate local users.

• Implement your own web front-end that calls the Amazon Cognito user pools API to
authenticate, authorize, and manage your users.

Features of Amazon Cognito 4

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-scenarios.html
https://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/cognito/latest/developerguide/security-cognito-regional-data-considerations.html
https://docs.aws.amazon.com/cognito/latest/developerguide/security-cognito-regional-data-considerations.html

Amazon Cognito Developer Guide

• Set up multi-factor authentication (MFA) for your users. Amazon Cognito supports time-based
one-time password (TOTP) and SMS message MFA.

• Secure against access from user accounts that are under malicious control.

• Create your own custom multi-step authentication flows.

• Look up users in another directory and migrate them to Amazon Cognito.

An Amazon Cognito user pool can also fulfill a dual role as a service provider (SP) to your IdPs, and
an IdP to your app. Amazon Cognito user pools can connect to consumer IdPs like Facebook and
Google, or workforce IdPs like Okta and Active Directory Federation Services (ADFS).

With the OAuth 2.0 and OpenID Connect (OIDC) tokens that an Amazon Cognito user pool issues,
you can

• Accept an ID token in your app that authenticates a user, and provides the information that you
need to set up the user’s profile

• Accept an access token in your API with the OIDC scopes that authorize your users’ API calls.

• Retrieve Amazon credentials from an Amazon Cognito identity pool.

Features of Amazon Cognito user pools

Feature Description

OIDC identity provider Issue ID tokens to authenticate users

Authorization server Issue access tokens to authorize user access to
APIs

SAML 2.0 service provider Transform SAML assertions into ID and access
tokens

OIDC relying party Transform OIDC tokens into ID and access
tokens

Social provider relying party Transform ID tokens from Apple, Facebook,
Amazon, or Google to your own ID and access
tokens

User pools 5

Amazon Cognito Developer Guide

Authentication frontend service Sign up, manage, and authenticate users with
managed login

API support for your own UI Create, manage and authenticate users
through authentication API requests in
supported Amazon SDKs¹

Multi-factor authentication Use SMS messages, TOTPs, or your user's
device as an additional authentication factor¹

Security monitoring & response Secure against malicious activity and insecure
passwords¹

Customize authentication flows Build your own authentication mechanism, or
add custom steps to existing flows²

Groups Create logical groupings of users, and a
hierarchy of IAM role claims when you pass
tokens to identity pools

Customize tokens Customize your ID and access tokens with new,
modified, and suppressed claims

Customize user attributes Assign values to user attributes and add your
own custom attributes

¹ Feature is unavailable to federated users.

² Feature is unavailable to federated and managed login users.

For more information about user pools, see Getting started with user pools and the Amazon
Cognito user pools API reference.

Identity pools

An identity pool is a collection of unique identifiers, or identities, that you assign to your users
or guests and authorize to receive temporary Amazon credentials. When you present proof of
authentication to an identity pool in the form of the trusted claims from a SAML 2.0, OpenID
Connect (OIDC), or OAuth 2.0 social identity provider (IdP), you associate your user with an

Identity pools 6

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/

Amazon Cognito Developer Guide

identity in the identity pool. The token that your identity pool creates for the identity can retrieve
temporary session credentials from Amazon Security Token Service (Amazon STS).

To complement authenticated identities, you can also configure an identity pool to authorize
Amazon access without IdP authentication. You can offer custom proof of authentication with
Developer-authenticated identities. You can also grant temporary Amazon credentials to guest
users, with unauthenticated identities.

With identity pools, you have two ways to integrate with IAM policies in your Amazon Web Services
account. You can use these two features together or individually.

Role-based access control

When your user passes claims to your identity pool, Amazon Cognito chooses the IAM role that it
requests. To customize the role’s permissions to your needs, you apply IAM policies to each role.
For example, if your user demonstrates that they are in the marketing department, they receive
credentials for a role with policies tailored to marketing department access needs. Amazon Cognito
can request a default role, a role based on rules that query your user’s claims, or a role based on
your user’s group membership in a user pool. You can also configure the role trust policy so that
IAM trusts only your identity pool to generate temporary sessions.

Attributes for access control

Your identity pool reads attributes from your user’s claims, and maps them to principal tags in your
user’s temporary session. You can then configure your IAM resource-based policies to allow or deny
access to resources based on IAM principals that carry the session tags from your identity pool. For
example, if your user demonstrates that they are in the marketing department, Amazon STS tags
their session Department: marketing. Your Amazon S3 bucket permits read operations based
on an aws:PrincipalTag condition that requires a value of marketing for the Department tag.

Features of Amazon Cognito identity pools

Feature Description

Amazon Cognito user pool relying party Exchange an ID token from your user pool for
web identity credentials from Amazon STS

SAML 2.0 service provider Exchange SAML assertions for web identity
credentials from Amazon STS

Identity pools 7

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principaltag

Amazon Cognito Developer Guide

OIDC relying party Exchange OIDC tokens for web identity
credentials from Amazon STS

Social provider relying party Exchange OAuth tokens from Amazon,
Facebook, Google, Apple, and Twitter for web
identity credentials from Amazon STS

Custom relying party With Amazon credentials, exchange claims in
any format for web identity credentials from
Amazon STS

Unauthenticated access Issue limited-access web identity credentials
from Amazon STS without authentication

Role-based access control Choose an IAM role for your authenticated
user based on their claims, and configure your
roles to only be assumed in the context of
your identity pool

Attribute-based access control Convert claims into principal tags for your
Amazon STS temporary session, and use IAM
policies to filter resource access based on
principal tags

For more information about identity pools, see Getting started with Amazon Cognito identity pools
and the Amazon Cognito identity pools API reference.

Amazon Cognito user pools and identity pools comparison

Feature Description User pools Identity pools

OIDC identity
provider

Issue OIDC ID tokens
to authenticate app
users

✓

Amazon Cognito user pools and identity pools comparison 8

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/

Amazon Cognito Developer Guide

User directory Store user profiles for
authentication

✓

Authorize API access Issue access tokens to
authorize user access
to APIs (including
user profile self-serv
ice API operations),
databases, and other
resources that accept
OAuth scopes

✓

IAM web identity
authorization

Generate tokens that
you can exchange
with Amazon STS for
temporary Amazon
credentials

✓

SAML 2.0 service
provider & OIDC
identity provider

Issue customized
OIDC tokens based on
claims from a SAML
2.0 identity provider

✓

OIDC relying party
& OIDC identity
provider

Issue customized
OIDC tokens based on
claims from an OIDC
identity provider

✓

OAuth 2.0 relying
party & OIDC identity
provider

Issue customized
OIDC tokens based on
scopes from OAuth
2.0 social providers
like Apple and Google

✓

Amazon Cognito user pools and identity pools comparison 9

Amazon Cognito Developer Guide

SAML 2.0 service
provider & credentia
ls broker

Issue temporary
Amazon credentials
based on claims from
a SAML 2.0 identity
provider

✓

OIDC relying party &
credentials broker

Issue temporary
Amazon credentia
ls based on claims
from an OIDC identity
provider

✓

Social provider
relying party &
credentials broker

Issue temporary
Amazon credentia
ls based on JSON
web tokens from
developer applicati
ons with social
providers like Apple
and Google

✓

Amazon Cognito user
pool relying party &
credentials broker

Issue temporary
Amazon credentials
based on JSON web
tokens from Amazon
Cognito user pools

✓

Custom relying party
& credentials broker

Issue temporary
Amazon credentials
to arbitrary identitie
s, authorized by
developer IAM
credentials

✓

Authentication
frontend service

Sign up, manage, and
authenticate users
with managed login

✓

Amazon Cognito user pools and identity pools comparison 10

Amazon Cognito Developer Guide

API support for your
own authentication
UI

Create, manage and
authenticate users
through API requests
in supported Amazon
SDKs¹

✓

MFA Use SMS messages,
TOTPs, or your
user's device as an
additional authentic
ation factor¹

✓

Security monitoring
& response

Protect against
malicious activity and
insecure passwords¹

✓

Customize authentic
ation flows

Build your own
authentication
mechanism, or add
custom steps to
existing flows¹

✓

User groups Create logical
groupings of users,
and a hierarchy of
IAM role claims when
you pass tokens to
identity pools

✓

Customize tokens Customize your ID
and access tokens
with new, modified,
and suppressed
claims and scopes

✓

Amazon Cognito user pools and identity pools comparison 11

Amazon Cognito Developer Guide

Amazon WAF web
ACLs

Monitor and control
requests to your
authentication front
end with Amazon
WAF

✓

Customize user
attributes

Assign values to user
attributes and add
your own custom
attributes

✓

Unauthenticated
access

Issue limited-a
ccess web identity
credentials from
Amazon STS without
authentication

✓

Role-based access
control

Choose an IAM role
for your authentic
ated user based on
their claims, and
configure your role
trust to limit access
to web identity users

✓

Attribute-based
access control

Transform user claims
into principal tags
for your Amazon STS
temporary session,
and use IAM policies
to filter resource
access based on
principal tags

✓

¹ Feature is not available to federated users.

Amazon Cognito user pools and identity pools comparison 12

Amazon Cognito Developer Guide

Getting started with Amazon Cognito

For example user pool applications, see Getting started with user pools.

For an introduction to identity pools, see Getting started with Amazon Cognito identity pools.

For links to guided setup experiences with user pools and identity pools, see Guided setup options
for Amazon Cognito.

To get started with an Amazon SDK, see Amazon Developer Tools. For developer resources specific
to Amazon Cognito, see Amazon Cognito developer resources.

To use Amazon Cognito, you need an Amazon Web Services account. For more information, see
Getting started with Amazon.

Regional availability

Amazon Cognito is available in multiple Amazon Regions worldwide. In each Region, Amazon
Cognito is distributed across multiple Availability Zones. These Availability Zones are physically
isolated from each other, but are united by private, low-latency, high-throughput, and highly
redundant network connections. These Availability Zones enable Amazon to provide services,
including Amazon Cognito, with very high levels of availability and redundancy, while also
minimizing latency.

To see if Amazon Cognito is currently available in any Amazon Web Services Region, see Amazon
Services by Region.

To learn about regional API service endpoints, see Amazon regions and endpoints in the Amazon
Web Services General Reference.

To learn more about the number of Availability Zones that are available in each Region, see
Amazon global infrastructure.

Pricing for Amazon Cognito

For information about Amazon Cognito pricing, see Amazon Cognito pricing.

Getting started with Amazon Cognito 13

https://www.amazonaws.cn/products/developer-tools
https://www.amazonaws.cn/cognito/dev-resources/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://docs.amazonaws.cn/general/latest/gr/rande.html%23%23cognito_identity_region
http://www.amazonaws.cn/about-aws/global-infrastructure/
http://www.amazonaws.cn/cognito/pricing/

Amazon Cognito Developer Guide

Common Amazon Cognito terms and concepts

Amazon Cognito provides credentials for web and mobile apps. It draws from and builds on terms
that are common in identity and access management. Many guides to universal identity and access
terms are available. Some examples are:

• Terminology in the IDPro Body of Knowledge

• Amazon Identity Services

• Glossary from NIST CSRC

The following lists describe terms that are unique to Amazon Cognito or have a specific context in
Amazon Cognito.

Topics

• General

• User pools

• Identity pools

General

The terms in this list aren't specific to Amazon Cognito and are widely recognized among identity
and access management practitioners. The following isn't an exhaustive list of terms, but a guide to
their specific Amazon Cognito context in this guide.

Access token

A JSON web token (JWT) that contains information about an entity's authorization to access
information systems.

App, application

Typically, a mobile application. In this guide, app is often a shorthand for a web application or
mobile app that connects to Amazon Cognito.

Attribute-based access control (ABAC)

A model where an app determines access to resources based on the properties of a user, like
their job title or department. Amazon Cognito tools to enforce ABAC include ID tokens in user
pools and principal tags in identity pools.

Terms and concepts 14

https://bok.idpro.org/article/id/41/
https://www.amazonaws.cn/identity/
https://csrc.nist.gov/glossary

Amazon Cognito Developer Guide

Authentication

The process of establishing an authentic identity for the purpose of access to an information
system. Amazon Cognito accepts proof of authentication from third-party identity providers,
and also serves as a provider of authentication to software applications.

Authorization

The process of granting permissions to a resource. User pool access tokens contain information
that applications can use to permit users and systems to access resources.

Authorization server

An OAuth or OpenID Connect (OIDC) system that generates JSON web tokens. The Amazon
Cognito user pools managed authorization server is the authorization-server component of
the two authentication and authorization methods in user pools. User pools also support API
challenge-response flows in SDK authentication.

Confidential app, server-side app

An application that users connect to remotely, with code on an application server and access to
secrets. This is typically a web application.

Identity provider (IdP)

A service that stores and verifies user identities. Amazon Cognito can request authentication
from external providers and be an IdP to apps.

JSON web token (JWT)

A JSON-formatted document that contains claims about an authenticated user. ID tokens
authenticate users, access tokens authorize users, and refresh tokens update credentials.
Amazon Cognito receives tokens from external providers and issues tokens to apps or Amazon
STS.

Machine-to-machine (M2M) authorization

The process of authorizing requests to API endpoints for non-user-interactive machine entities,
like a webserver application tier. User pools serve M2M authorization in client-credentials grants
with OAuth 2.0 scopes in access tokens.

Multi-factor authentication (MFA)

The requirement that users provide additional authentication after providing their username
and password. Amazon Cognito user pools have MFA features for local users.

General 15

Amazon Cognito Developer Guide

OAuth 2.0 (social) provider

An IdP to a user pool or identity pool that provides JWT access and refresh tokens. Amazon
Cognito user pools automate interactions with social providers after users authenticate.

OpenID Connect (OIDC) provider

An IdP to a user pool or identity pool that extends the OAuth specification to provide ID tokens.
Amazon Cognito user pools automate interactions with OIDC providers after users authenticate.

Passkey, WebAuthn

A form of authentication where cryptographic keys, or passkeys, on a user's device provides
their proof of authentication. Users verify that they are present with biometric or PIN code
mechanisms in a hardware or software authenticator. Passkeys are phishing-resistent and
bound to specific websites/apps, offering a secure passwordless experience. Amazon Cognito
user pools support sign-in with passkeys.

Passwordless

A form of authentication where a user doesn't have to enter a password. Methods of
passwordless sign-in include one-time passwords (OTPs) sent to email addresses and phone
numbers, and passkeys. Amazon Cognito user pools support sign-in with OTPs and passkeys.

Public app

An application that is self-contained on a device, with code stored locally and no access to
secrets. This is typically a mobile app.

Resource server

An API with access control. Amazon Cognito user pools also use resource server to describe the
component that defines the configuration for interacting with an API.

Role-based access control (RBAC)

A model that grants access based on a user's functional designation. Amazon Cognito identity
pools implement RBAC with differentiation between IAM roles.

Service provider (SP), relying party (RP)

An application that relies on an IdP to assert that users are trustworthy. Amazon Cognito acts as
an SP to external IdPs, and as an IdP to app-based SPs.

General 16

Amazon Cognito Developer Guide

SAML provider

An IdP to a user pool or identity pool that generates digitally signed assertion documents that
your user passes to Amazon Cognito.

Universally Unique Identifier (UUID)

A 128-bit label that is applied to an object. Amazon Cognito UUIDs are unique per user pool or
identity pool, but don't conform to a specific UUID format.

User directory

A collection of users and their attributes that serves that information to other systems. Amazon
Cognito user pools are user directories, and also tools for consolidation of users from external
user directories.

User pools

When you see the terms in the following list in this guide, they refer to a specific feature or
configuration of user pools.

Adaptive authentication

A feature of advanced security that detects potential malicious activity and applies additional
security to user profiles.

Advanced security features

An optional component that adds tools for user security.

App client

A component that defines the settings for a user pool as an IdP to one app.

Callback URL, redirect URI, return URL

A setting in an app client and a parameter in requests to the user pool's authorization server.
The callback URL is the initial destination for authenticated users in your app.

Choice-based authentication

A form of API authentication with users pools where each user has a set of choices for sign-in
available to them. Their choices might include username and password with or without MFA,
passkey sign-in, or passwordless sign-in with email or SMS message one-time passwords. You

User pools 17

Amazon Cognito Developer Guide

application can shape the choice process for users by requesting a list of authentication options
or by declaring a preferred option.

Compare with client-based authentication.

Client-based authentication

A form of authentication with the user pools API and application back ends built with Amazon
SDKs. In declarative authentication, your application determines independently the login type
that a user should perform and requests that type up front.

Compare with choice-based authentication.

Compromised credentials

A feature of advanced security that detects user passwords that attackers might know, and
applies additional security to user profiles.

Confirmation

The process that determines that the prerequisites have been met to permit a new user to sign
in. Confirmation is typically done through email address or phone number verification.

Custom authentication

An extension of authentication processes with Lambda triggers that define additional user
challenges and responses.

Device authentication

An authentication process that replaces MFA with sign-in that uses the ID of a trusted device.

Domain, user pool domain

A web domain that hosts your managed login pages in Amazon. You can set up DNS in a
domain that you own or use an identifying subdomain prefix in a domain that Amazon owns.

Essentials plan

The feature plan with the latest developments in user pools. The Essentials plan doesn't include
the automated-learning security features in the Plus plan.

External provider, third-party provider

An IdP that has a trust relationship with a user pool. User pools serve as an intermediate entity
between external providers and your application, managing authentication processes with

User pools 18

Amazon Cognito Developer Guide

SAML 2.0, OIDC, and social providers. User pools consolidate external-provider authentication
outcomes into a single IdP so that your applications can process many users with a single OIDC
relying-party library.

Feature plan

The group of features that you can select for a user pool. Feature plans have differing costs in
your Amazon bill. New user pools default to the Essentials plan.

Current plans

• Lite plan

• Essentials plan

• Plus plan

Federated user, external user

A user in a user pool who was authenticated by an external provider.

Hosted UI (classic), hosted UI pages

The early version of the authentication front end, relying party, and identity provider services
on your user pool domain. The hosted UI has a basic set of features and a simplified look and
feel. You can apply Hosted UI branding with the upload of a logo-image file and a file with a
predetermined set of CSS styles. Compare to managed login.

Lambda trigger

A function in Amazon Lambda that a user pool can automatically invoke at key points in user
authentication processes. You can use Lambda triggers to customize authentication outcomes.

Local user

A user profile in the user pool user directory that wasn't created by authentication with an
external provider.

Linked user

A user from an external provider whose identity is merged with a local user.

Lite plan

The feature plan with the features that originally launched with user pools. The Lite plan
doesn't include the new features in the Essentials plan or the automated-learning security
features in the Plus plan.

User pools 19

Amazon Cognito Developer Guide

Managed authorization server, hosted UI authorization server, authorization server

A component of managed login that hosts services for interaction with IdPs and apps on your
user pool domain. The hosted UI differs from managed login in the user-interactive features it
offers, but has the same authorization-server capabilities.

Managed login, managed login pages

A set of webpages on your user pool domain that host services for user authentication. These
services include functions for operating as an IdP, a relying party for third-party IdPs, and a
server of a user-interactive authentication UI. When you set up a domain for your user pool,
Amazon Cognito brings all managed login pages online.

Your application import OIDC libraries that invoke users' browsers and direct them to the
managed login UI for sign-up, sign-in, password management, and other authentication
operations. After authentication, the OIDC libraries can process the outcome of the
authentication request.

Managed login authentication

Sign-in with the services on your user pool domain, done with user-interactive browser pages or
HTTPS API requests. Applications handle managed login authentication with OpenID Connect
(OIDC) libraries. This process includes sign-in with external providers, local-user sign-in with
interactive managed login pages, and M2M authorization. Authentication with the classic
hosted UI also fall under this term.

Compare to Amazon SDK authentication.

Plus plan

The feature plan with the latest developments and advanced security features in user pools.

SDK authentication, Amazon SDK authentication

A set of authentication and authorization API operations that you can add to your application
back end with an Amazon SDK. This authentication model requires your own custom-built login
mechanism. The API can sign in local users and linked users.

Compare to managed login authentication.

Threat protection

In user pools, threat protection refers to technologies that are designed to mitigate threats to
your authentication and authorization mechanisms. Adaptive authentication, compromised-
credentials detection, and IP address blocklists are under the category of threat protection.

User pools 20

Amazon Cognito Developer Guide

Token customization

The outcome of a pre token generation Lambda trigger that modifies a user's ID or access token
at runtime.

User pool, Amazon Cognito identity provider, cognito-idp, Amazon Cognito user pools

An Amazon resource with authentication and authorization services for applications that work
with OIDC IdPs.

Verification

The process of confirming that a user owns an email address or phone number. A user pool
sends a code to a user who has entered a new email address or phone number. When they
submit the code to Amazon Cognito, they verify their ownership of the message destination
and can receive additional messages from the user pool. Also, see confirmation.

User profile, user account

An entry for a user in the user directory. All users, including those from third-party IdPs, have a
profile in their user pool.

Identity pools

When you see the terms in the following list in this guide, they refer to a specific feature or
configuration of identity pools.

Attributes for access control

An implementation of attribute-based access control in identity pools. Identity pools apply user
attributes as tags to user credentials.

Basic (classic) authentication

An authentication process where you can customize the request for user credentials.

Developer authenticated identities

An authentication process that authorizes identity pool user credentials with developer
credentials.

Developer credentials

The IAM API keys of an identity pool administrator.

Identity pools 21

Amazon Cognito Developer Guide

Enhanced authentication

An authentication flow that selects an IAM role and applies principal tags according to the logic
that you define in your identity pool.

Identity

A UUID that links an app user and their user credentials to their profile in an external user
directory that has a trust relationship with an identity pool.

Identity pool, Amazon Cognito federated identities, Amazon Cognito identity, cognito-
identity

An Amazon resource with authentication and authorization services for applications that use
temporary Amazon credentials.

Unauthenticated identity

A user who has not signed in with an identity pool IdP. You can permit users to generate limited
user credentials for a single IAM role before they authentication.

User credentials

Temporary Amazon API keys that users receive after identity pool authentication.

Getting started with Amazon

Before you start working with Amazon Cognito, set yourself up with some required Amazon
resources. If you can already sign in to an Amazon Web Services account, you can skip this section.
Continue reading if you are looking for information about signing up and signing in with Amazon
credentials. After you have credentials with sufficient Amazon Identity and Access Management
(IAM) permissions, you can get started with user pools and identity pools.

Sign up for an Amazon Web Services account

If you do not have an Amazon Web Services account, use the following procedure to create one.

To sign up for Amazon Web Services

1. Open http://www.amazonaws.cn/ and choose Sign Up.

2. Follow the on-screen instructions.

Getting started with Amazon 22

http://www.amazonaws.cn/

Amazon Cognito Developer Guide

Amazon sends you a confirmation email after the sign-up process is complete. At any time,
you can view your current account activity and manage your account by going to http://
www.amazonaws.cn/ and choosing My Account.

Secure IAM users

After you sign up for an Amazon Web Services account, safeguard your administrative user by
turning on multi-factor authentication (MFA). For instructions, see Enable a virtual MFA device for
an IAM user (console) in the IAM User Guide.

To give other users access to your Amazon Web Services account resources, create IAM users. To
secure your IAM users, turn on MFA and only give the IAM users the permissions needed to perform
their tasks.

For more information about creating and securing IAM users, see the following topics in the IAM
User Guide:

• Creating an IAM user in your Amazon Web Services account

• Access management for Amazon resources

• Example IAM identity-based policies

Secure IAM users 23

http://www.amazonaws.cn/
http://www.amazonaws.cn/
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_enable_virtual.html#enable-virt-mfa-for-iam-user
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_examples.html

Amazon Cognito Developer Guide

Getting started with user pools

You have an application that requires authentication and access control. You can work within
the OpenID Connect (OIDC) framework for single sign-on (SSO). Amazon Cognito has tools for
handling the logic of authentication in the application back end with an Amazon SDK, and for
invoking a browser in your client to access a managed authorization server.

The Amazon Cognito console guides you through the creation of a user pool from the view of your
preferred application framework. From there, you can continue on to add features like federated
sign-in with external social or SAML 2.0 identity providers (IdPs). The application models in the
Amazon Cognito console lean on the addition of OIDC libraries to your project and invoking a
browser.

As you work to expand your feature set and incorporate more components of Amazon Cognito,
read the Amazon Cognito user pools chapter for full descriptions of everything you can do with
user pools.

The examples in this chapter and in the Amazon Cognito console demonstrate a basic integration
of application resources with Amazon Cognito user pools. Later, you can adjust your user pool to
use more of the options that are available to you. Then you can update your application to adopt
new features and interact with IdPs.

If you don't want to use the managed login pages, you can create an application with custom-built
authentication interfaces using an Amazon SDK or Amazon Amplify. Applications that you build
in this way interact with the user pools API and are suitable only for authenticating local users.
Continue learning about this authentication model at Other application options.

Topics

• Create a new application in the Amazon Cognito console

• Other application options

• Add more features and security options to your user pool

Create a new application in the Amazon Cognito console

User pools add authentication options to software applications. For the easiest getting-started
experience, step into the Amazon Cognito console and follow the instructions there. The creation

Your first app and user pool 24

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

process there guides you not only through setup of user pool resources, but through setting up the
initial pieces of your application.

When you're ready to begin, navigate to the Amazon Cognito console and select the button
to create a new user pool. The setup process will guide you through your configuration and
programming-language options.

Additional resources for authentication concepts

• Authentication with Amazon Cognito user pools

• Understanding API, OIDC, and managed login pages authentication

• How authentication works with Amazon Cognito

• Integrating Amazon Cognito authentication and authorization with web and mobile apps

To create Amazon Cognito resources for your application

1. Navigate to the Amazon Cognito console. To assign permissions to your IAM principal so that
they can create and manage Amazon Cognito resources, refer to Amazon managed policies for
Amazon Cognito. The AmazonCognitoPowerUser policy is sufficient for the creation of user
pools.

2. Select Create user pool from the User pools menu, or select Get started for free in less than
five minutes.

3. Under Define your application, choose the Application type that best fits the application
scenario that you want to create authentication and authorization services for.

4. In Name your application, enter a descriptive name or proceed with the default name.

5. You must make some basic choices under Configure options that support settings that you
can't change after you create your user pool.

a. Under Options for sign-in identifiers, tell us how you want to identify users when they
sign in. You can prefer user-generated usernames, email addresses, or phone numbers.
You can also allow a combination of multiple options. Amazon Cognito accepts the
options that you configure here in the username field of managed login sign-in forms.

b. Under Required attributes for sign-up, tell us what user information you want to collect
when users register for a new account. In managed login pages, Amazon Cognito presents
prompts for all required attributes.

Your first app and user pool 25

https://console.amazonaws.cn/cognito/v2/idp/user-pools
https://console.amazonaws.cn/cognito/

Amazon Cognito Developer Guide

Options for sign-in identifiers influences your required attributes. Username requires
email or phone attributes for each user so that they can receive a password-reset code in
an email or SMS message. Email requires the email attribute, and Phone number requires
the phone number attribute.

6. Under Add a return URL, enter a redirect path to your application for after users complete
authentication. This location should be a route in your application that uses OpenID Connect
(OIDC) libraries to process user-authentication outcomes. An example of a return URL for a test
application is https://localhost:3000/callback. In the example NodeJS application
in the Amazon Cognito console, this route employs openid-client to collect the access token
and redeem it for user information. You'll be able to browse examples for your development
platform after you create your resources.

7. Choose Create your application. Amazon Cognito creates a user pool and app client with
default settings for your application type. You can configure additional options like external
identity providers and multi-factor authentication (MFA) after you create your initial resources.

8. On the Set up your application page, you can immediately get code examples for your
application. To explore your new user pool, scroll down and select Go to overview.

9. To add more applications in the same user pool, navigate to the App clients menu and add
a new app client. This will repeat the process of application-focused creation, but only add a
new app client to the existing user pool.

After you create a user pool and one or more app clients with this process, you can start testing
authentication operations with managed login. These quick-start options are open to public self
sign-up. We recommend that you create a testing environment with the console process, then
move your finalized design to production. Spend time familiarizing yourself with the capabilities of
Amazon Cognito. Then, to move to production workloads, craft custom configurations and deploy
them with automation tools like Amazon CloudFormation and the Amazon Cloud Development Kit
(Amazon CDK).

Amazon Cognito makes some default configurations in this process that you can't reverse. For more
information about user pool settings that you can't change and those options that you can choose
in the console, see Updating user pool and app client configuration.

Your first app and user pool 26

https://www.npmjs.com/package/openid-client

Amazon Cognito Developer Guide

Setting Effect How to change More information

Client secret Requires a client
secret hash in
authentication
requests.

Create a new
app client with a
Traditional web
application or
Machine-to-machine
application profile.

Application-specif
ic settings with app
clients

Preferred username User pool doesn't
accept the
preferred
_username
attribute as an alias.

Create a user pool
programmatically
with an Amazon SDK.

Customizing sign-in
attributes

Case sensitivity User pool usernames
are case insensitive,
for example JohnD is
considered to be the
same user as johnd.

Create a user pool
programmatically
with an Amazon SDK.

User pool case
sensitivity

Other application options

You might have an existing application UI that you want to integrate with Amazon Cognito
authentication. You might even have your own existing authentication pages with a less-functional
directory setup than Amazon Cognito user pools. You can add or replace an authentication
component to an application of this type with Amazon Cognito integrations in Amazon SDKs for a
variety of programming languages. Some examples follow.

If you create a user pool for this purpose in the Amazon Cognito console, it might not be necessary
to have a user pool domain that hosts interactive sign-in pages and OpenID Connect (OIDC)
services. The process of user pool creation in the console automatically generates a domain for
you. You can delete this domain from the Domain tab of your user pool. Other options include
programmatic creation of Amazon Cognito resources for you application with API requests in
Amazon SDKs and with the automated-setup options in the Amazon Amplify CLI. For more

Other application options 27

Amazon Cognito Developer Guide

information, see Integrating Amazon Cognito authentication and authorization with web and
mobile apps.

Topics

• Set up an example React single page application

• Set up an example Android app with Flutter

Set up an example React single page application

In this tutorial, you'll create a React single page application where you can test user sign-up,
confirmation, and sign-in. React is a JavaScript-based library for web and mobile apps, with a focus
on the user interface (UI). This example application demonstrates some basic functions of Amazon
Cognito user pools. If you're already experienced in web app development with React, download
the example app from GitHub.

The following screenshot is of the initial authentication page in the application that you'll create.

To set up this application, your user pool must meet the following requirements:

• Users can sign in with their email address. Cognito user pool sign-in options: Email.

• Usernames are case insensitive. User name requirements: Make user name case sensitive is not
selected.

React SPA example 28

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/scenarios/cognito-developer-guide-react-example
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/scenarios/cognito-developer-guide-react-example

Amazon Cognito Developer Guide

• Multi-factor authentication (MFA) isn't required. MFA enforcement: Optional MFA.

• Your user pool verifies attributes for user-profile confirmation with an email message. Attributes
to verify: Send email message, verify email address.

• Email is the only required attribute. Required attributes: email.

• Users can sign themselves up in your user pool. Self-registration: Enable self-registration is
selected.

• Your initial app client is a public client that permits sign-in with username and password. App
type: Public client, Authentication flows: ALLOW_USER_PASSWORD_AUTH.

Create an application

To build this application, you must set up a developer environment. The developer environment
requirements are:

1. Node.js is installed and updated.

2. Node package manager (npm) is installed and updated to at least version 10.2.3.

3. The environment is accessible on TCP port 5173 in a web browser.

To create an example React web application

1. Sign in to your developer environment and navigate to the parent directory for your
application.

cd ~/path/to/project/folder/

2. Create a new React service.

npm create vite@latest frontend-client -- --template react-ts

3. Clone the cognito-developer-guide-react-example project folder from the Amazon
code examples repository on GitHub.

cd ~/some/other/path

git clone https://github.com/awsdocs/aws-doc-sdk-examples.git

React SPA example 29

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/scenarios/cognito-developer-guide-react-example

Amazon Cognito Developer Guide

cp -r ./aws-doc-sdk-examples/javascriptv3/example_code/cognito-identity-provider/
scenarios/cognito-developer-guide-react-example/frontend-client ~/path/to/project/
folder/

4. Navigate to the src directory in your project.

cd ~/path/to/project/folder/frontend-client/src

5. Edit config.json and replace the following values:

a. Replace YOUR_AWS_REGION with an Amazon Web Services Region code. For example: us-
east-1.

b. Replace YOUR_COGNITO_USER_POOL_ID with the ID of the user pool that you have
designated for testing. For example: us-east-1_EXAMPLE. The user pool must be in the
Amazon Web Services Region that you entered in the previous step.

c. Replace YOUR_COGNITO_APP_CLIENT_ID with the ID of the app client that you have
designated for testing. For example: 1example23456789. The app client must be in the
user pool from the previous step.

6. If you want to access your example application from an IP other than localhost, edit
package.json and change the line "dev": "vite", to "dev": "vite --host
0.0.0.0",.

7. Install your application.

npm install

8. Launch the application.

npm run dev

9. Access the application in a web browser at http://localhost:5173 or http://[IP
address]:5173.

10. Sign up a new user with a valid email address.

11. Retrieve the confirmation code from your email message. Enter the confirmation code into the
application.

12. Sign in with your username and password.

React SPA example 30

Amazon Cognito Developer Guide

Creating a React developer environment with Amazon Lightsail

A quick way to get started with this application is to create a virtual cloud server with Amazon
Lightsail.

With Lightsail, you can quickly create a small server instance that comes preconfigured with the
prerequisites for this example application. You can SSH to your instance with a browser-based
client, and connect to the web server at a public or private IP address.

To create a Lightsail instance for this example application

1. Go to the Lightsail console. If prompted, enter your Amazon credentials.

2. Choose Create instance.

3. For Select a platform, choose Linux/Unix.

4. For Select a blueprint, choose Node.js.

5. Under Identify your instance, give your development environment a friendly name.

6. Choose Create instance.

7. After Lightsail has created your instance, select it and from the Connect tab, choose Connect
using SSH.

8. An SSH session opens in a browser window. Run node -v and npm -v to confirm that your
instance was provisioned with Node.js and the minimum npm version of 10.2.3.

9. Proceed to configure your React application.

Set up an example Android app with Flutter

In this tutorial, you'll create a mobile application in Android Studio where you can emulate a device
and test user sign-up, confirmation, and sign-in. This example application creates a basic Amazon
Cognito user pools mobile client for Android in Flutter. If you're already experienced in mobile app
development with Flutter, download the example app from GitHub.

The following screenshot shows the app running on a virtual Android device.

Flutter mobile app example 31

https://lightsail.aws.amazon.com/ls/webapp/
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/cognito_flutter_mobile_app

Amazon Cognito Developer Guide

Flutter mobile app example 32

Amazon Cognito Developer Guide

To set up this application, you user pool must meet the following requirements:

• Users can sign in with their email address. Cognito user pool sign-in options: Email.

• Usernames are case insensitive. User name requirements: Make user name case sensitive is not
selected.

• Multi-factor authentication (MFA) isn't required. MFA enforcement: Optional MFA.

• Your user pool verifies attributes for user-profile confirmation with an email message. Attributes
to verify: Send email message, verify email address.

• Email is the only required attribute. Required attributes: email.

• Users can sign themselves up in your user pool. Self-registration: Enable self-registration is
selected.

• Your initial app client is a public client that permits sign-in with username and password. App
type: Public client, Authentication flows: ALLOW_USER_PASSWORD_AUTH.

Create an application

To create an example Android app

1. Install Android studio and command-line tools.

2. In Android Studio, install the Flutter plugin.

3. Create a new Android Studio project from the contents of the
cognito_flutter_mobile_app directory in this example app.

• Edit assets/config.json and replace <<YOUR USER POOL ID>> and << YOUR
CLIENT ID>> with the IDs of your user pool and app client.

4. Install Flutter.

a. Add Flutter to your PATH variable.

b. Accept licenses with the following command.

flutter doctor --android-licenses

c. Verify your Flutter environment and install any missing components.

flutter doctor

Flutter mobile app example 33

https://developer.android.com/studio
https://developer.android.com/tools
https://docs.flutter.dev/get-started/editor?tab=androidstudio
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/usecases/cognito_flutter_mobile_app
https://docs.flutter.dev/get-started/install

Amazon Cognito Developer Guide

• If any components are missing, run flutter doctor -v to learn how to fix the
issue.

d. Change to the directory of your new Flutter project and install dependencies.

• Run flutter pub add amazon_cognito_identity_dart_2.

e. Run flutter pub add flutter_secure_storage.

5. Create a virtual Android device.

1. In the Android studio GUI, create a new device with the device manager.

2. In the CLI, run flutter emulators --create --name android-device.

6. Launch your virtual Android device.

1. In the Android Studio GUI, select the start

icon next to your virtual device.

2. In the CLI, run flutter emulators --launch android-device.

7. Launch your app on your virtual device.

1. In the Android Studio GUI, select the deploy

icon.

2. In the CLI, run flutter run.

8. Navigate to your running virtual device in Android Studio.

9. Sign up a new user with a valid email address.

10. Retrieve the confirmation code from your email message. Enter the confirmation code into the
application.

11. Sign in with your username and password.

Add more features and security options to your user pool

After you have followed the tutorials to complete example applications, you can broaden the scope
of your user pool implementation. Or, if you didn't create a test application, create a new user pool
according to your preferences. You can customize user pool features for other applications or add

Next steps 34

https://developer.android.com/studio/run/managing-avds

Amazon Cognito Developer Guide

external identity providers. As you plan your move to put Amazon Cognito user pools in production
applications, you can evaluate additional examples and tutorials.

If your next priority is to examine and apply application security options in your user pools, see
Security best practices for Amazon Cognito user pools.

Amazon Cognito has feature plans that add functional and security options when you opt in to
higher tiers. You can start with the Lite plan, add advanced authentication and authorization
options with the Essentials plan, and add automated-reasoning security guardrails with the Plus
plan. For more information, see User pool feature plans.

The following are some additional Amazon Cognito user pools features:

• Apply branding to managed login pages

• Adding MFA to a user pool

• Advanced security with threat protection

• Customizing user pool workflows with Lambda triggers

• Using Amazon Pinpoint for user pool analytics

For an overview of Amazon Cognito authentication and authorization models, see How
authentication works with Amazon Cognito.

To access other Amazon Web Services services after a successful user pool authentication, see
Accessing Amazon Web Services services using an identity pool after sign-in.

In addition to using the Amazon Web Services Management Console and the user pool SDKs, you
can also manage your user pools by using the Amazon Command Line Interface.

Topics

• Add social sign-in to your user pool

• Add a SAML 2.0 identity provider

Add social sign-in to your user pool

Providing users with the ability to sign in to your application through their existing public, or
social, identity providers can improve their authentication experience. Amazon Cognito user pools
integrate with popular social identity providers (IdPs) like Facebook, Google, Amazon, and Apple,
giving your users convenient sign-in options that they are already familiar with.

Add a social provider 35

https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/index.html

Amazon Cognito Developer Guide

When you set up social sign-in, you are giving your users an alternative to creating a dedicated
account just for your application. This can improve conversion rates and make the sign-up process
more seamless. From the user's perspective, they can apply their existing social credentials to
quickly authenticate, without the friction of remembering another username and password.

Configuring a social IdP in your user pool involves a few key steps. You must register your
application with the social provider to obtain a client ID and secret. Then you can add the social
IdP configuration to your user pool, specifying the scopes that you want to request and the user
pool attributes that you want to map from IdP attributes. At runtime, Amazon Cognito handles the
token exchange with the provider, maps user attributes, and issues tokens to your application in
the shared user pool format.

Register with a social IdP

Before you create a social IdP with Amazon Cognito, you must register your application with the
social IdP to receive a client ID and client secret.

To register an app with Facebook

1. Create a developer account with Facebook.

2. Sign in with your Facebook credentials.

3. From the My Apps menu, choose Create New App.

If you don't have an existing Facebook app, you will see a different option. Choose Create App.

4. On the Create an app page, choose a use case for your app, and then choose Next.

5. Enter a name for your Facebook app and choose Create App.

6. On the left navigation bar, choose App Settings, and then choose Basic.

7. Note the App ID and the App Secret. You will use them in the next section.

8. Choose + Add platform from the bottom of the page.

9. On the Select Platform screen, select your platforms, and then choose Next.

10. Choose Save changes.

11. For App Domains, enter your user pool domain.

https://your_user_pool_domain

12. Choose Save changes.

Add a social provider 36

https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/

Amazon Cognito Developer Guide

13. From the navigation bar, choose Products, and then choose Configure from Facebook Login.

14. From the Facebook Login Configure menu, choose Settings.

Enter your redirect URL into Valid OAuth Redirect URIs. The redirect URL consists of your user
pool domain with the /oauth2/idpresponse endpoint.

https://your_user_pool_domain/oauth2/idpresponse

15. Choose Save changes.

To register an app with Amazon

1. Create a developer account with Amazon.

2. Sign in with your Amazon credentials.

3. You need to create an Amazon security profile to receive the Amazon client ID and client
secret.

Choose Apps and Services from the navigation bar at the top of the page, and then choose
Login with Amazon.

4. Choose Create a Security Profile.

5. Enter a Security Profile Name, a Security Profile Description, and a Consent Privacy Notice
URL.

6. Choose Save.

7. Choose Client ID and Client Secret to show the client ID and secret. You will use them in the
next section.

8. Hover over the gear icon and choose Web Settings, and then choose Edit.

9. Enter your user pool domain into Allowed Origins.

https://<your-user-pool-domain>

10. Enter your user pool domain with the /oauth2/idpresponse endpoint into Allowed Return
URLs.

https://<your-user-pool-domain>/oauth2/idpresponse

11. Choose Save.

Add a social provider 37

https://developer.amazon.com/login-with-amazon
https://developer.amazon.com/lwa/sp/overview.html

Amazon Cognito Developer Guide

To register an app with Google

For more information about OAuth 2.0 in the Google Cloud platform, see Learn about
authentication & authorization in the Google Workspace for Developers documentation.

1. Create a developer account with Google.

2. Sign in to the Google Cloud Platform console.

3. From the top navigation bar, choose Select a project. If you already have a project in the
Google platform, this menu displays your default project instead.

4. Select NEW PROJECT.

5. Enter a name for your product and then choose CREATE.

6. On the left navigation bar, choose APIs and Services, and then choose Oauth consent screen.

7. Enter the app information, an App domain, Authorized domains, and Developer contact
information. Your Authorized domains must include amazoncognito.com and the root of
your custom domain. For example: example.com. Choose SAVE AND CONTINUE.

8. 1. Under Scopes, choose Add or remove scopes, and then choose, at a minimum, the following
OAuth scopes.

1. .../auth/userinfo.email

2. .../auth/userinfo.profile

3. openid

9. Under Test users, choose Add users. Enter your email address and any other authorized test
users, and then choose SAVE AND CONTINUE.

10. Expand the left navigation bar again, choose APIs and Services, and then choose Credentials.

11. Choose CREATE CREDENTIALS, and then choose OAuth client ID.

12. Choose an Application type and give your client a Name.

13. Under Authorized JavaScript origins, choose ADD URI. Enter your user pool domain.

https://<your-user-pool-domain>

14. Under Authorized redirect URIs, choose ADD URI. Enter the path to the /oauth2/
idpresponse endpoint of your user pool domain.

https://<your-user-pool-domain>/oauth2/idpresponse

15. Choose CREATE.

Add a social provider 38

https://developers.google.com/workspace/guides/auth-overview
https://developers.google.com/workspace/guides/auth-overview
https://developers.google.com/identity
https://console.cloud.google.com/home/dashboard

Amazon Cognito Developer Guide

16. Securely store the values that Google displays under Your client ID and Your client secret.
Provide these values to Amazon Cognito when you add a Google IdP.

To register an app with Apple

For more information about setting up Sign in with Apple, see Configuring Your Environment for
Sign in with Apple in the Apple Developer documentation.

1. Create a developer account with Apple.

2. Sign in with your Apple credentials.

3. On the left navigation bar, choose Certificates, Identifiers & Profiles.

4. On the left navigation bar, choose Identifiers.

5. On the Identifiers page, choose the + icon.

6. On the Register a New Identifier page, choose App IDs, and then choose Continue.

7. On the Select a type page, choose App, and then choose Continue.

8. On the Register an App ID page, do the following:

1. Under Description, enter a description.

2. Under App ID Prefix, enter a Bundle ID. Make a note of the value under App ID Prefix. You
will use this value after you choose Apple as your identity provider in Configure your user
pool with a social IdP.

3. Under Capabilities, choose Sign In with Apple, and then choose Edit.

4. On the Sign in with Apple: App ID Configuration page, choose to set up the app as either
primary or grouped with other App IDs, and then choose Save.

5. Choose Continue.

9. On the Confirm your App ID page, choose Register.

10. On the Identifiers page, choose the + icon.

11. On the Register a New Identifier page, choose Services IDs, and then choose Continue.

12. On the Register a Services ID page, do the following:

1. Under Description, enter a description.

2. Under Identifier, enter an identifier. Make a note of this Services ID because you'll need this
value after you choose Apple as your identity provider in Configure your user pool with a
social IdP.

Add a social provider 39

https://developer.apple.com/documentation/signinwithapple/configuring-your-environment-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/configuring-your-environment-for-sign-in-with-apple
https://developer.apple.com/programs/enroll/
https://developer.apple.com/account/#/welcome

Amazon Cognito Developer Guide

3. Choose Continue and then choose Register.

13. Choose the Services ID that you just created from the Identifiers page.

1. Select Sign In with Apple, and then choose Configure.

2. On the Web Authentication Configuration page, select the app ID that you created earlier
as the Primary App ID.

3. Choose the + icon next to Website URLs.

4. Under Domains and subdomains, enter your user pool domain without an https://
prefix.

<your-user-pool-domain>

5. Under Return URLs, enter the path to the /oauth2/idpresponse endpoint of your user
pool domain.

https://<your-user-pool-domain>/oauth2/idpresponse

6. Choose Next, and then choose Done. You don't need to verify the domain.

7. Choose Continue, and then choose Save.

14. On the left navigation bar, choose Keys.

15. On the Keys page, choose the + icon.

16. On the Register a New Key page, do the following:

1. Under Key Name, enter a key name.

2. Choose Sign In with Apple, and then choose Configure.

3. On the Configure Key page, select the app ID that you created earlier as the Primary App
ID. Choose Save.

4. Choose Continue, and then choose Register.

17. On the Download Your Key page, choose Download to download the private key, note the
Key ID shown, and then choose Done. You will need this private key and the Key ID value
shown on this page after you choose Apple as your identity provider in Configure your user
pool with a social IdP.

Add a social provider 40

Amazon Cognito Developer Guide

Add a social IdP to your user pool

In this section, you configure a social IdP in your user pool using the client ID and client secret from
the previous section.

To configure a user pool social identity provider with the Amazon Web Services Management
Console

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Social and external providers menu. Locate Federated sign-in and select Add an
identity provider.

5. Choose a social identity provider: Facebook, Google, Login with Amazon, or Sign in with
Apple.

6. Choose from the following steps, based on your choice of social identity provider:

• Google and Login with Amazon – Enter the app client ID and app client secret that was
generated in the previous section.

• Facebook – Enter the app client ID and app client secret that was generated in the previous
section, and then choose an API version (for example, version 2.12). We recommend
choosing the latest possible version—each Facebook API has a lifecycle and deprecation
date. Facebook scopes and attributes can vary between API versions. We recommend testing
your social identity log in with Facebook to ensure that federation works as intended.

• Sign in with Apple – Enter the Services ID, Team ID, Key ID, and private key that was
generated in the previous section.

7. Enter the names of the Authorized scopes that you want to use. Scopes define which user
attributes (such as name and email) you want to access with your app. For Facebook, these
should be separated by commas. For Google and Login with Amazon, they should be separated
by spaces. For Sign in with Apple, select the check boxes for the scopes you want access to.

Social identity provider Example scopes

Facebook public_profile, email

Google profile email openid

Add a social provider 41

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Social identity provider Example scopes

Login with Amazon profile postal_code

Sign in with Apple email name

Your app user is prompted to consent to providing these attributes to your app. For more
information about social provider scopes, see the documentation from Google, Facebook,
Login with Amazon, or Sign in with Apple.

With Sign in with Apple, the following are user scenarios where scopes might not be returned:

• An end user encounters failures after leaving Apple’s sign in page (these can be from
internal failures within Amazon Cognito or anything written by the developer).

• The service ID identifier is used across user pools and/or other authentication services.

• A developer adds additional scopes after the user signs in. Users only retrieve new
information when they authenticate and when they refresh their tokens.

• A developer deletes the user and then the user signs in again without removing the app
from their Apple ID profile.

8. Map attributes from your identity provider to your user pool. For more information, see Things
to know about mappings.

9. Choose Create.

10. From the App clients menu, choose one of the app clients in the list and Edit hosted UI
settings. Add the new social identity provider to the app client under Identity providers.

11. Choose Save changes.

Test your social IdP configuration

You can create a login URL by using the elements from the previous two sections. Use it to test
your social IdP configuration.

https://mydomain.auth.us-east-1.amazoncognito.com/login?
response_type=code&client_id=1example23456789&redirect_uri=https://www.example.com

Add a social provider 42

Amazon Cognito Developer Guide

You can find your domain on the user pool Domain name console page. The client_id is on the App
client settings page. Use your callback URL for the redirect_uri parameter. This is the URL of the
page where your user will be redirected after a successful authentication.

Note

Amazon Cognito cancels authentication requests that do not complete within 5 minutes,
and redirects the user to managed login. The page displays a Something went wrong
error message.

Add a SAML 2.0 identity provider

Your app users can sign in with a SAML 2.0 identity provider (IdP). You might choose SAML 2.0
IdPs over social IdPs when your customers are the internal customers or linked businesses of your
organization. Where a social IdP permits all users to register for an account, a SAML IdP is more
likely to pair with a user directory that your organization controls. Whether your users sign in
directly or through a third party, all users have a profile in the user pool. Skip this step if you don't
want to add sign in through a SAML identity provider.

For more information, see Using SAML identity providers with a user pool.

You must update your SAML identity provider and configure your user pool. For information about
how to add your user pool as a relying party or application for your SAML 2.0 identity provider, see
the documentation for your SAML identity provider.

You must also provide an assertion consumer service (ACS) endpoint to your SAML identity
provider. Configure the following endpoint in your user pool domain for SAML 2.0 POST binding in
your SAML identity provider. For more information about user pool domains, see Configuring a user
pool domain.

https://Your user pool domain/saml2/idpresponse
With an Amazon Cognito domain:
https://<yourDomainPrefix>.auth.<region>.amazoncognito.com/saml2/idpresponse
With a custom domain:
https://Your custom domain/saml2/idpresponse

You can find your domain prefix and the Region value for your user pool in the Domain menu in
the Amazon Cognito console.

Add a SAML IdP 43

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

For some SAML identity providers, you also need to provide the service provider (SP) urn, also
called the audience URI or SP entity ID, in the format:

urn:amazon:cognito:sp:<yourUserPoolID>

You can find your user pool ID in the Overview dashboard for your user pool in the Amazon
Cognito console.

You should also configure your SAML identity provider to provide attribute values for any
attributes that are required in your user pool. Typically, email is a required attribute for user
pools. In that case, the SAML identity provider should provide an email value (claim) in the SAML
assertion.

Amazon Cognito user pools support SAML 2.0 federation with post-binding endpoints. This
eliminates the need for your app to retrieve or parse SAML assertion responses because the user
pool directly receives the SAML response from your identity provider through a user agent.

To configure a SAML 2.0 identity provider in your user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Social and external providers menu. Locate Federated sign-in and select Add an
identity provider.

5. Choose a SAML social identity provider.

6. Enter Identifiers separated by commas. An identifier tells Amazon Cognito it should check the
email address that a user enters when they sign in. Then it directs them to the provider that
corresponds to their domain.

7. Choose Add sign-out flow if you want Amazon Cognito to send signed sign-out requests
to your provider when a user logs out. You must configure your SAML 2.0 identity provider
to send sign-out responses to the https://<your Amazon Cognito domain>/saml2/
logout endpoint that is created when you configure managed login. The saml2/logout
endpoint uses the POST binding.

Add a SAML IdP 44

https://console.amazonaws.cn/cognito/home
https://console.amazonaws.cn/cognito/home
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Note

If this option is selected and your SAML identity provider expects a signed logout
request, you will also need to configure the signing certificate that is provided by
Amazon Cognito with your SAML IdP.
The SAML IdP will process the signed logout request and will log out your user from
the Amazon Cognito session.

8. Choose a Metadata document source. If your identity provider offers SAML metadata at a
public URL, you can choose Metadata document URL and enter that public URL. Otherwise,
choose Upload metadata document and select a metadata file you downloaded from your
provider earlier.

Note

We recommend that you enter a metadata document URL if your provider has a public
endpoint, rather than uploading a file. This allows Amazon Cognito to refresh the
metadata automatically. Typically, metadata refresh happens every 6 hours or before
the metadata expires, whichever is earlier.

9. Select Map attributes between your SAML provider and your app to map SAML provider
attributes to the user profile in your user pool. Include your user pool required attributes in
your attribute map.

For example, when you choose the User pool attribute email, enter the SAML attribute name
as it appears in the SAML assertion from your identity provider. Your identity provider might
offer sample SAML assertions for reference. Some identity providers use simple names, such as
email, while others use URL-formatted attribute names, such as the following example:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

10. Choose Create.

Add a SAML IdP 45

Amazon Cognito Developer Guide

Getting started with Amazon Cognito identity pools

With Amazon Cognito identity pools, you can create unique identities and assign permissions for
users. Your identity pool can bring in identities from the following types of authentication services:

• Users in an Amazon Cognito user pool

• Users who authenticate with external identity providers such as Facebook, Google, Apple, or an
OIDC or SAML identity provider.

• Users authenticated via your own existing authentication process

After users authenticate with their provider and present authorization to an identity pool, they get
temporary Amazon credentials. Users' credentials have permissions that you define for access to
other Amazon Web Services services.

Topics

• Create an identity pool in Amazon Cognito

• Set up an SDK

• Integrate the identity providers

• Get credentials

Create an identity pool in Amazon Cognito

You can create an identity pool through the Amazon Cognito console, or you can use the Amazon
Command Line Interface (CLI) or the Amazon Cognito APIs. The following procedure is a general
guide to create a new identity pool in the console. You can also skip straight to the console and
follow the guided experience and inline help content.

To create a new identity pool in the console

1. Sign in to the Amazon Cognito console and select Identity pools. To assign permissions to
your IAM principal so that they can create and manage Amazon Cognito resources, refer to
Amazon managed policies for Amazon Cognito. The AmazonCognitoPowerUser policy is
sufficient for the creation of identity pools.

2. Choose Create identity pool.

Create an identity pool in Amazon Cognito 46

https://console.amazonaws.cn/cognito/v2/identity/identity-pools
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

3. In Configure identity pool trust, choose to set up your identity pool for Authenticated access,
Guest access, or both.

• If you chose Authenticated access, select one or more Identity types that you want to set
as the source of authenticated identities in your identity pool. If you configure a Custom
developer provider, you can't modify or delete it after you create your identity pool.

4. In Configure permissions, choose a default IAM role for authenticated or guest users in your
identity pool.

a. Choose to Create a new IAM role if you want Amazon Cognito to create a new role for you
with basic permissions and a trust relationship with your identity pool. Enter an IAM role
name to identify your new role, for example myidentitypool_authenticatedrole.
Select View policy document to review the permissions that Amazon Cognito will assign
to your new IAM role.

b. You can choose to Use an existing IAM role if you already have a role in your Amazon Web
Services account that you want to use. You must configure your IAM role trust policy to
include cognito-identity.amazonaws.com. Configure your role trust policy to only
allow Amazon Cognito to assume the role when it presents evidence that the request
originated from an authenticated user in your specific identity pool. For more information,
see Role trust and permissions.

5. In Connect identity providers, enter the details of the identity providers (IdPs) that you chose
in Configure identity pool trust. You might be asked to provide OAuth app client information,
choose an Amazon Cognito user pool, choose an IAM IdP, or enter a custom identifier for a
developer provider.

a. Choose the Role settings for each IdP. You can assign users from that IdP the Default
role that you set up when you configured your Authenticated role, or you can Choose
role with rules. With an Amazon Cognito user pool IdP, you can also Choose role with
preferred_role in tokens. For more information about the cognito:preferred_role
claim, see Assigning precedence values to groups.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

Create an identity pool in Amazon Cognito 47

Amazon Cognito Developer Guide

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

b. Configure Attributes for access control for each IdP. Attributes for access control maps
user claims to principal tags that Amazon Cognito applies to their temporary session.
You can build IAM policies to filter user access based on the tags that you apply to their
session.

i. To apply no principal tags, choose Inactive.

ii. To apply principal tags based on sub and aud claims, choose Use default mappings.

iii. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you
want to represent in a tag.

6. In Configure properties, enter a Name under Identity pool name.

7. Under Basic (classic) authentication, choose whether you want to Activate basic flow. With
the basic flow active, you can bypass the role selections you made for your IdPs and call
AssumeRoleWithWebIdentity directly. For more information, see Identity pools authentication
flow.

8. Under Tags, choose Add tag if you want to apply tags to your identity pool.

9. In Review and create, confirm the selections that you made for your new identity pool. Select
Edit to return to the wizard and change any settings. When you're done, select Create identity
pool.

Set up an SDK

To use Amazon Cognito identity pools, set up Amazon Amplify, the Amazon SDK for Java, or the
Amazon SDK for .NET. For more information, see the following topics.

• Setting up the SDK for JavaScript in the Amazon SDK for JavaScript Developer Guide

• Amplify Documentation in the Amplify Dev Center

• Amazon Cognito credentials provider in the Amazon SDK for .NET Developer Guide

Set up an SDK 48

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html
https://docs.amazonaws.cn/sdk-for-javascript/v2/developer-guide/setting-up.html
https://docs.amplify.aws/
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html

Amazon Cognito Developer Guide

Integrate the identity providers

Amazon Cognito identity pools (federated identities) support user authentication through Amazon
Cognito user pools, federated identity providers—including Amazon, Facebook, Google, Apple, and
SAML identity providers—and unauthenticated identities. This feature also supports Developer-
authenticated identities, which lets you register and authenticate users via your own backend
authentication process.

To learn more about using an Amazon Cognito user pool to create your own user directory, see
Amazon Cognito user pools and Accessing Amazon Web Services services using an identity pool
after sign-in.

To learn more about using external identity providers, see Identity pools third-party identity
providers.

To learn more about integrating your own backend authentication process, see Developer-
authenticated identities.

Get credentials

Amazon Cognito identity pools provide temporary Amazon credentials for users who are guests
(unauthenticated) and for users who have authenticated and received a token. With those Amazon
credentials, your app can securely access a backend in Amazon or outside Amazon through Amazon
API Gateway. See Getting credentials.

Integrate the identity providers 49

Amazon Cognito Developer Guide

Guided setup options for Amazon Cognito

You might want to evaluate the features of Amazon Cognito in a structured, guided experience.
Here are some external resources that provide tailored experiences with user pools and identity
pools.

Complete a workshop

Amazon workshop studio hosts a workshop that walks you through the setup of the majority of
Amazon Cognito features. These features include the user pools API, the user pools hosted UI,
identity pools, and security configuration.

Add application code from examples

The code examples chapter in this guide has application code that you can use with user pools
and identity pools. The user pools section of the code examples chapter has short snippets
that cover individual operations, and longer examples for end-to-end example applications in a
variety of programming languages.

Create a fullstack application with Amazon Amplify

Amazon Amplify is an Amazon Web Services service for developers who want to develop and
host an application and user interface. Amazon Cognito is the authentication component
of Amplify. When you add authentication to your application, Amplify can automate the
deployment of Amazon Cognito user pool and identity pool resources. Also, see Integrating
Amazon Cognito authentication and authorization with web and mobile apps.

More Amazon Cognito application resources on GitHub

• Authentication flow examples with .NET for Amazon Cognito

• Amazon Cognito Passwordless Auth

• PetStore example with Amazon Verified Permissions

• Sample React App Using ABAC + Identity Pools to Access Amazon Resources

• Amazon Cognito and API Gateway based machine to machine authorization using Amazon CDK

• Building fine-grained authorization using Amazon Cognito, API Gateway, and IAM

• CloudFront authorization@edge

50

https://catalog.workshops.aws/wyld-pets-cognito/en-US
https://docs.amazonaws.cn/cognito/latest/developerguide/service_code_examples.html
https://www.amazonaws.cn/amplify/
https://github.com/aws-samples/authentication-flow-examples-with-dotnet-for-amazon-cognito
https://github.com/aws-samples/amazon-cognito-passwordless-auth
https://github.com/aws-samples/avp-petstore-sample
https://github.com/aws-samples/amazon-cognito-abac-authorization-with-react-example
https://github.com/aws-samples/amazon-cognito-and-api-gateway-based-machine-to-machine-authorization-using-aws-cdk
https://github.com/aws-samples/amazon-cognito-api-gateway
https://github.com/aws-samples/cloudfront-authorization-at-edge

Amazon Cognito Developer Guide

More workshops

• Implement Passwordless authentication with Amazon Cognito and WebAuthn

• Amazon Cognito Workshop

• Amazon Cognito Troubleshooting Workshop

• Authentication and authorization with Amazon Cognito and Verified Permissions

• Amazon Cognito JWT Deep Dive

Blogposts

• Protect public clients for Amazon Cognito by using an Amazon CloudFront proxy

• How to set up Amazon Cognito for federated authentication using Azure AD

• Simplify web app authentication: A guide to AD FS federation with Amazon Cognito user pools

51

https://catalog.workshops.aws/cognito-webauthn-passwordless
https://catalog.workshops.aws/wyld-pets-cognito
https://catalog.workshops.aws/workshops/0c09992f-9f51-4ed3-b683-c60458730c80
https://catalog.workshops.aws/app-auth
https://catalog.workshops.aws/cognito-jwt-deep-dive
https://www.amazonaws.cn/blogs/security/protect-public-clients-for-amazon-cognito-by-using-an-amazon-cloudfront-proxy/
https://www.amazonaws.cn/blogs/security/how-to-set-up-amazon-cognito-for-federated-authentication-using-azure-ad/
https://www.amazonaws.cn/blogs/security/simplify-web-app-authentication-a-guide-to-ad-fs-federation-with-amazon-cognito-user-pools/

Amazon Cognito Developer Guide

Integrating Amazon Cognito authentication and
authorization with web and mobile apps

Implementation of Amazon Cognito is a mix of Amazon Web Services Management Console or
Amazon SDK administrative tools, and SDK libraries in applications. The Amazon Cognito console
is the visual interface for setup and management of your Amazon Cognito user pools and identity
pools.

The lowest-effort integration you can create with Amazon Cognito user pools is with managed
login. Managed login is a ready-to-use web-based sign-in application for quick testing and
deployment of Amazon Cognito user pools. User pool authentication with managed login requires
OpenID Connect (OIDC) libraries that direct users to hosted sign-in pages. In this series of user-
interactive and redirect web endpoints, Amazon Cognito handles the flow of authentication,
including third-party sign-in, multi-factor authentication (MFA), and choosing an authentication
flow. Your application only has to process the authentication outcome that Amazon Cognito
returns in the response.

You can also add an Amazon SDK to your application, custom-build authentication interfaces,
and invoke API operations for authentication and authorization of your users. Amazon Amplify
is an Amazon Web Services service for building full-stack applications, with Amazon Cognito
authentication in the back end.

For example, your app might invoke managed login for user sign-in, then call the token endpoint
from your app code to exchange your user's authorization code for tokens. Then your app
must interpret and store your user's tokens, and present them in the appropriate context for
authentication and authorization. Amplify adds guided integration tools with built-in functions for
these processes.

You can also build your Amazon Cognito resources entirely in code. Identity pools don't have the
same managed authentication options as user pools—for access to Amazon credentials in your
applications, implement identity pools operations in imported SDK modules. To get started with
your own custom-built application code, visit the Amazon Cognito code examples for Amazon
SDKs. For integration with the Amazon Cognito as an OpenID Connect identity provider, use
OpenID Connect developer tools.

Before you use Amazon Cognito authentication and authorization, choose an app platform and
prepare your code to integrate with the service. For available platforms for Amazon SDKs, see

52

https://docs.amplify.aws/
https://docs.amazonaws.cn/cognito/latest/developerguide/service_code_examples.html
https://www.amazonaws.cn/developer/tools/
https://www.amazonaws.cn/developer/tools/
https://openid.net/certified-open-id-developer-tools/

Amazon Cognito Developer Guide

Authentication with Amazon SDKs. The Amazon CLI is a command-line SDK for Amazon Cognito
and other Amazon Web Services services, and is a valuable place to begin to familiarize yourself
with Amazon Cognito API operations and their syntax.

Note

Some components of Amazon Cognito can be configured only with the API. For example,
you can only set a user pool custom SMS or email sender Lambda trigger with a request
that updates the LambdaConfig property of the UserPool class in a CreateUserPool or
UpdateUserPool API request.

The Amazon Cognito user pools API shares its namespace with several classes of API operations.
One class configures user pools and their processes, identity providers and users. Another includes
unauthenticated operations for your users in a public client to sign in, sign out, and manage their
profiles. The final class of API operations performs user operations that you authorize with your
own Amazon credentials in a confidential server-side client. You must know your intended app
architecture before you begin to implement app code. For more information, see Understanding
API, OIDC, and managed login pages authentication.

Topics

• Authentication with Amazon Amplify

• Authentication with Amazon SDKs

• How authentication works with Amazon Cognito

• Using this service with an Amazon SDK

• Authorization with Amazon Verified Permissions

Authentication with Amazon Amplify

Amazon Amplify is a complete solution for building web and mobile applications. With Amplify,
you can connect to existing resources with the Amplify libraries, or you can create and configure
new resources with the Amplify command line interface (CLI). Amplify also has connected UI
components like Authenticator for setup and customization of the sign-in and sign-up experience
in your app.

Authentication with Amazon Amplify 53

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-sender-triggers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserPoolType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://ui.docs.amplify.aws/react/connected-components/authenticator

Amazon Cognito Developer Guide

To use Amplify authentication features in your front-end app, see the following documentation by
platform.

• Amplify authentication for React

• Amplify authentication for React Native

• Amplify authentication for Swift (iOS)

• Amplify authentication for Android

• Amplify authentication for Flutter

The Amplify libraries are open source and are available on GitHub. To learn more about how
Amplify Auth implements Amazon Cognito authentication, visit the following libraries.

• amplify-js

• amplify-swift

• amplify-flutter

• amplify-android

Creating a user interface (UI) with Amplify

User pool managed login can fulfill the essential needs of an authentication front-end for a web
or mobile app. To customize your user interface (UI) beyond the parameters that managed login
accommodates, custom-build an application. Amplify UI is a customizable collection of front-end
components in a variety of languages.

Creating a user interface (UI) with Amplify 54

https://docs.amplify.aws/react/start/
https://docs.amplify.aws/react-native/start/
https://docs.amplify.aws/swift/start/
https://docs.amplify.aws/android/start/
https://docs.amplify.aws/flutter/start/
https://github.com/aws-amplify
https://github.com/aws-amplify/amplify-js/tree/main/packages/auth
https://github.com/aws-amplify/amplify-swift/tree/main/Amplify/Categories/Auth
https://github.com/aws-amplify/amplify-flutter/tree/main/packages/auth
https://github.com/aws-amplify/amplify-android/tree/main/aws-auth-cognito
https://ui.docs.amplify.aws/

Amazon Cognito Developer Guide

To get started with your custom authentication component, visit the following documentation for
the Authenticator component.

• Authenticator for Android

• Authenticator for Angular

• Authenticator for Flutter

• Authenticator for React

• Authenticator for React Native

• Authenticator for Swift

• Authenticator for Vue

Authentication with Amazon SDKs

To use a secure backend to build your own identity microservice that interacts with Amazon
Cognito, connect to the Amazon Cognito user pools and Amazon Cognito identity pools API with
an Amazon SDK in the language of your choice.

Authentication with Amazon SDKs 55

https://ui.docs.amplify.aws/android/connected-components/authenticator
https://ui.docs.amplify.aws/angular/connected-components/authenticator
https://ui.docs.amplify.aws/flutter/connected-components/authenticator
https://ui.docs.amplify.aws/react/connected-components/authenticator
https://ui.docs.amplify.aws/react-native/connected-components/authenticator
https://ui.docs.amplify.aws/swift/connected-components/authenticator
https://ui.docs.amplify.aws/vue/connected-components/authenticator

Amazon Cognito Developer Guide

For details on each API operation, see the Amazon Cognito user pools API Reference and the
Amazon Cognito API Reference. These documents contain See also sections with resources for
using a variety of SDKs in supported platforms.

• Amazon Command Line Interface

• Amazon SDK for .NET

• Amazon SDK for C++

• Amazon SDK for Go

• Amazon SDK for Java V2

• Amazon SDK for JavaScript

• Amazon SDK for PHP V3

• Amazon SDK for Python

• Amazon SDK for Ruby V3

How authentication works with Amazon Cognito

When your customer signs in to an Amazon Cognito user pool, your application receives JSON web
tokens (JWTs).

When your customer signs in to an identity pool, either with a user pool token or another provider,
your application receives temporary Amazon credentials.

With user pool sign-in, you can implement authentication and authorization entirely with an
Amazon SDK. If you don't want to build your own user interface (UI) components, you can invoke a
prebuilt web UI (managed login) or the sign-in page for your third-party identity provider (IdP).

This topic is an overview of some of the ways that your application can interact with Amazon
Cognito to authenticate with ID tokens, authorize with access tokens, and access Amazon Web
Services services with identity pool credentials.

Topics

• User pool authentication with managed login

• User pool API authentication and authorization with an Amazon SDK

• User pool authentication with a third-party identity provider

• Identity pool authentication

How authentication works 56

https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/cognitoidentity/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#API_InitiateAuth_SeeAlso
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/index.html#cli-aws-cognito-idp
https://docs.amazonaws.cn/sdkfornet/v3/apidocs/items/CognitoIdentityProvider/TCognitoIdentityProviderClient.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-cognito-idp/html/class_aws_1_1_cognito_identity_provider_1_1_cognito_identity_provider_client.html
https://docs.amazonaws.cn/sdk-for-go/api/service/cognitoidentityprovider/#CognitoIdentityProvider
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/cognitoidentityprovider/CognitoIdentityProviderClient.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityServiceProvider.html
https://docs.amazonaws.cn/aws-sdk-php/v3/api/class-Aws.CognitoIdentityProvider.CognitoIdentityProviderClient.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/cognito-idp.html
https://docs.amazonaws.cn/sdk-for-ruby/v3/api/Aws/CognitoIdentityProvider/Client.html

Amazon Cognito Developer Guide

User pool authentication with managed login

Managed login is a website that is linked to your user pool and app client. It can perform sign-
in, sign-up, and password-reset operations for your users. An application with a managed login
component for authentication can require less developer effort to implement. An application can
skip UI components for authentication and invoke managed login webpages in the user's browser.

Applications collect users' JWTs with a web or app redirect location. Applications that implement
managed login can connect to user pools for authentication as if they were an OpenID Connect
(OIDC) IdP.

Managed login fits the model where applications require the authentication services of an OIDC
authorization server, but don't immediately require features like custom authentication, identity
pools integration, or user attribute self-service. When you want to use some of these advanced
options, you can implement them with a user pools component for an SDK.

Managed login and third-party IdP authentication models, with a primary reliance on OIDC
implementation, are best for advanced authorization models with OAuth 2.0 scopes.

The following diagram illustrates a typical sign-in session for managed login authentication.

Managed login authentication 57

Amazon Cognito Developer Guide

Managed login authentication 58

Amazon Cognito Developer Guide

Managed login authentication flow

1. A user accesses your application.

2. They select a "Sign in" link.

3. The application directs the user to a sign-in prompt in the managed login pages of your user
pool domain.

4. They enter their username and password.

5. The user pool validates the user's credentials and determines that the user has activated multi-
factor authentication (MFA).

6. The managed login page prompts the user to enter an MFA code.

7. The user enters their MFA code.

8. Your user pool redirects the user to the application URL.

9. The application collects the authorization code from the URL request parameter that managed
login appended to the callback URL.

10.The application requests tokens with the authorization code.

11.The token endpoint returns JWTs to the application.

12.The application decodes, validates, and stores or caches the user's JWTs.

13.The application displays the requested access-controlled component.

14.The user views their content.

15.Later, the user's access token has expired, and they request to view an access-controlled
component.

16.The application determines that the user's session should persist. It requests new tokens from
the token endpoint with the refresh token.

Variants and customization

You can customize the look and feel of your managed login pages with the branding editor for
your entire user pool, or at the level of any app client. You can also configure app clients with their
own identity providers, scopes, access to user attributes, and advanced security configuration.

Related resources

• User pool managed login

• Scopes, M2M, and APIs with resource servers

Managed login authentication 59

Amazon Cognito Developer Guide

• User pool endpoints and managed login reference

User pool API authentication and authorization with an Amazon SDK

Amazon has developed components for Amazon Cognito user pools, or Amazon Cognito identity
provider, in a variety of developer frameworks. The methods built into these SDKs call the Amazon
Cognito user pools API. The same user pools API namespace has operations for configuration of
user pools and for user authentication. For a more thorough overview, see Understanding API,
OIDC, and managed login pages authentication.

API authentication fits the model where your applications have existing UI components and
primarily rely on the user pool as a user directory. This design adds Amazon Cognito as a
component within a larger application. It requires programmatic logic to handle complex chains of
challenge and response.

This application doesn't need to implement a full OpenID Connect (OIDC) relying party
implementation. Instead, it has the ability to decode and use JWTs. When you want access to the
full set of user pool features for local users, build your authentication with the Amazon Cognito
SDK in your development environment.

API authentication with custom OAuth scopes is less oriented toward external API authorization. To
add custom scopes to an access token from API authentication, modify the token at runtime with a
Pre token generation Lambda trigger.

The following diagram illustrates a typical sign-in session for API authentication.

SDK authentication 60

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

SDK authentication 61

Amazon Cognito Developer Guide

API authentication flow

1. A user accesses your application.

2. They select a "Sign in" link.

3. They enter their username and password.

4. The application invokes the method that makes an InitiateAuth API request. The request passes
the user's credentials to a user pool.

5. The user pool validates the user's credentials and determines that the user has activated multi-
factor authentication (MFA).

6. The user pool responds with a challenge that requests an MFA code.

7. The application generates a prompt that collects the MFA code from the user.

8. The application invokes the method that makes a RespondToAuthChallenge API request. The
request passes the user's MFA code.

9. The user pool validates the user's MFA code.

10.The user pool responds with the user's JWTs.

11.The application decodes, validates, and stores or caches the user's JWTs.

12.The application displays the requested access-controlled component.

13.The user views their content.

14.Later, the user's access token has expired, and they request to view an access-controlled
component.

15.The application determines that the user's session should persist. It invokes the InitiateAuth
method again with the refresh token and retrieves new tokens.

Variants and customization

You can augment this flow with additional challenges—for example, your own custom
authentication challenges. You can automatically restrict access for users whose passwords have
been compromised, or whose unexpected sign-in characteristics might indicate a malicious sign-in
attempt. This flow looks much the same for operations to sign up, update user attributes, and reset
passwords. Most of these flows have duplicate public (client-side) and confidential (server-side) API
operations.

Related resources

• Amazon Cognito user pools API

SDK authentication 62

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

• Getting started with user pools

• Integrating Amazon Cognito authentication and authorization with web and mobile apps

• Understanding API, OIDC, and managed login pages authentication

User pool authentication with a third-party identity provider

Sign-in with an external identity provider (IdP), or federated authentication, is a similar model
to managed login. Your application is an OIDC relying party to your user pool, while your user
pool serves as a passthrough to an IdP. The IdP can be a consumer user directory like Facebook or
Google, or it can be a SAML 2.0 or OIDC enterprise directory like Azure.

Instead of managed login in the user's browser, your application invokes a redirect endpoint on
the user pool authorization server. From the user's view, they choose the sign-in button in your
application. Then their IdP prompts them to sign in. Like with managed login authentication, an
application collects JWTs at a redirect location in the app.

Authentication with a third-party IdP fits a model where users might not want to come up with a
new password when they sign up for your application. Third-party authentication can be added
with low effort to an application that's implemented managed login authentication. In effect,
managed login and third-party IdPs produce a consistent authentication outcome from minor
variations in what you invoke in users' browsers.

Like managed login authentication, federated authentication is best for advanced authorization
models with OAuth 2.0 scopes.

The following diagram illustrates a typical sign-in session for federated authentication.

Third-party identity provider authentication 63

Amazon Cognito Developer Guide

Federated authentication flow

1. A user accesses your application.

2. They select a "Sign in" link.

Third-party identity provider authentication 64

Amazon Cognito Developer Guide

3. The application directs the user to a sign-in prompt with their IdP.

4. They enter their username and password.

5. The IdP validates the user's credentials and determines that the user has activated multi-factor
authentication (MFA).

6. The IdP prompts the user to enter an MFA code.

7. The user enters their MFA code.

8. The IdP redirects the user to the user pool with a SAML response or an authorization code.

9. If the user passed an authorization code, the user pool silently exchanges the code for IdP
tokens. The user pool validates the IdP tokens and redirects the user to the application with a
new authorization code.

10.The application collects the authorization code from the URL request parameter that the user
pool appended to the callback URL.

11.The application requests tokens with the authorization code.

12.The token endpoint returns JWTs to the application.

13.The application decodes, validates, and stores or caches the user's JWTs.

14.The application displays the requested access-controlled component.

15.The user views their content.

16.Later, the user's access token has expired, and they request to view an access-controlled
component.

17.The application determines that the user's session should persist. It requests new tokens from
the token endpoint with the refresh token.

Variants and customization

You can initiate federated authentication in managed login, where users can choose from a list of
IdPs that you assigned to your app client. Managed login can also prompt for an email address and
automatically route a user's request to the corresponding SAML IdP. Authentication with a third-
party identity provider doesn't require user interaction with managed login. Your application can
add a request parameter to a user's authorization server request and cause the user to silently
redirect to their IdP sign-in page.

Related resources

• User pool sign-in with third party identity providers

Third-party identity provider authentication 65

Amazon Cognito Developer Guide

• Scopes, M2M, and APIs with resource servers

• User pool endpoints and managed login reference

Identity pool authentication

An identity pool is a component for your application that is distinct from a user pool in function,
API namespace, and SDK model. Where user pools offer token-based authentication and
authorization, identity pools offer authorization for Amazon Identity and Access Management
(IAM).

You can assign a set of IdPs to identity pools and sign in users with them. User pools are closely
integrated as identity pool IdPs and give identity pools the most options for access control. At
the same time, there is a wide selection of authentication options for identity pools. User pools
join SAML, OIDC, social, developer, and guest identity sources as routes to temporary Amazon
credentials from identity pools.

Authentication with an identity pool is external—it follows one of the previously illustrated user
pool flows, or a flow that you develop independently with another IdP. After your application
performs initial authentication, it passes the proof to an identity pool and receives a temporary
session in return.

Authentication with an identity pool fits a model where you enforce the access control for
application assets and data in Amazon Web Services services with IAM authorization. Like with
API authentication in user pools, a successful application includes Amazon SDKs for each of the
services that you want to access for your users' benefit. Amazon SDKs apply the credentials from
identity pool authentication as signatures to API requests.

The following diagram illustrates a typical sign-in session for identity pool authentication with an
IdP.

Identity pool authentication 66

Amazon Cognito Developer Guide

Identity pool authentication 67

Amazon Cognito Developer Guide

Identity pool authentication flow

1. A user accesses your application.

2. They select a "Sign in" link.

3. The application directs the user to a sign-in prompt with their IdP.

4. They enter their username and password.

5. The IdP validates the user's credentials.

6. The IdP redirects the user to the application with a SAML response or an authorization code.

7. If the user passed an authorization code, the application exchanges the code for IdP tokens.

8. The application decodes, validates, and stores or caches the user's JWTs or assertion.

9. The application invokes the method that makes a GetId API request. It passes the user's token or
assertion and requests an identity ID.

10.The identity pool validates the token or assertion against configured identity providers.

11.The identity pool returns an identity ID.

12.The application invokes the method that makes a GetCredentialsForIdentity API request. It
passes the user's token or assertions and requests an IAM role.

13.The identity pool generates a new JWT. The new JWT contains claims that request an IAM role.
The identity pool determines the role based on the user's request and the role-selection criteria
in the identity pool configuration for the IdP.

14.Amazon Security Token Service (Amazon STS) responds to the AssumeRoleWithWebIdentity
request from the identity pool. The response contains API credentials for a temporary session
with an IAM role.

15.The application stores the session credentials.

16.The user takes an action in the app that requires access-protected resources in Amazon.

17.The application applies the temporary credentials as signatures to API requests for the required
Amazon Web Services services.

18.IAM evaluates the policies attached to the role in the credentials. It compares them to the
request.

19.The Amazon Web Services service returns the requested data.

20.The application renders the data in the user's interface.

21.The user views the data.

Identity pool authentication 68

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-signing.html

Amazon Cognito Developer Guide

Variants and customization

To visualize authentication with a user pool, insert one of the previous user-pool overviews after
the Issue token/assertion step. Developer authentication replaces all steps before Request
identity with a request signed by developer credentials. Guest authentication also skips straight to
Request identity, doesn't validate authentication, and returns credentials for a limited-access IAM
role.

Related resources

• Amazon Cognito identity pools

• User IAM roles

• Identity pools authentication flow

Using this service with an Amazon SDK

Amazon software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation

Amazon CLI

Amazon SDK for Java

Amazon SDK for JavaScript

Amazon SDK for .NET

Amazon SDK for PHP

Amazon Tools for PowerShell

Amazon SDK for Python (Boto3)

Amazon SDK for Ruby

Amazon SDK for SAP ABAP

Working with Amazon SDKs 69

https://docs.amazonaws.cn/cli
https://docs.amazonaws.cn/sdk-for-java
https://docs.amazonaws.cn/sdk-for-javascript
https://docs.amazonaws.cn/sdk-for-net
https://docs.amazonaws.cn/sdk-for-php
https://docs.amazonaws.cn/powershell
https://docs.amazonaws.cn/pythonsdk
https://docs.amazonaws.cn/sdk-for-ruby
https://docs.amazonaws.cn/sdk-for-sapabap

Amazon Cognito Developer Guide

Authorization with Amazon Verified Permissions

Amazon Verified Permissions is an authorization service for the applications that you build. When
you add an Amazon Cognito user pool as an identity source, your app can pass user pool access
or identity (ID) tokens to Verified Permissions for an allow or deny decision. Verified Permissions
considers your user's properties and request context based on policies that you write in Cedar
Policy Language. The request context can include an identifier for the document, image, or other
resource they requested, and the action that your user wants to take on the resource.

Your app can provide your user's identity or access tokens to Verified Permissions in
IsAuthorizedWithToken or BatchIsAuthorizedWithToken API requests. These API operations accept
your users as a Principal and make authorization decisions for the Action on the Resource
that they want to access. Additional custom Context can contribute to a detailed access decision.

When your app presents a token in an IsAuthorizedWithToken API request, Verified
Permissions performs the following validations.

1. Your user pool is a configured Verified Permissions identity source for the requested policy store.

2. The client_id or aud claim, in your access or identity token respectively, matches a user pool
app client ID that you provided to Verified Permissions. To verify this claim, you must configure
client ID validation in your Verified Permissions identity source.

3. Your token isn't expired.

4. The value of the token_use claim in your token matches the parameters that you passed to
IsAuthorizedWithToken. The token_use claim must be access if you passed it to the
accessToken parameter, and id if you passed it to the identityToken parameter.

5. The signature in your token comes from the published JSON web keys (JWKs) of your user pool.
You can view your JWKs at https://cognito-idp.Region.amazonaws.com/your user
pool ID/.well-known/jwks.json.

Revoked tokens and deleted users

Verified Permissions only validates the information it knows from your identity source and from
the expiration time of your user's token. Verified Permissions doesn't check for token revocation or
user existence. If you revoked your user's token or deleted your user's profile from your user pool,
Verified Permissions still considers the token valid until it expires.

Policy evaluation

Authorization with Amazon Verified Permissions 70

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/what-is-avp.html
https://docs.cedarpolicy.com/
https://docs.cedarpolicy.com/
https://docs.amazonaws.cn/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.amazonaws.cn/verifiedpermissions/latest/apireference/API_BatchIsAuthorizedWithToken.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-providers.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-sources_create.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-sources_create.html

Amazon Cognito Developer Guide

Configure your user pool as an identity source for your policy store. Configure your app to submit
your users' tokens in requests to Verified Permissions. For each request, Verified Permissions
compares the claims in the token to a policy. A Verified Permissions policy is like an IAM policy in
Amazon. It declares a principal, resource, and action. Verified Permissions responds to your request
with Allow if it matches an allowed action and doesn't match an explicit Deny action; otherwise,
it responds with Deny. For more information, see Amazon Verified Permissions policies in the
Amazon Verified Permissions User Guide.

Customizing tokens

To change, add, and remove the user claims that you want to present to Verified Permissions,
customize the content in your access and identity tokens with a Pre token generation Lambda
trigger. With a pre token generation trigger, you can add and modify claims in your tokens. For
example, you can query a database for additional user attributes and encode them into your ID
token.

Note

Because of the way that Verified Permissions processes claims, don't add claims named
cognito, dev, or custom in your pre token generation function. When you present these
reserved claim prefixes not in colon-delimited format like cognito:username but as full
claim names, your authorization requests fail.

Additional resources

• Mapping Amazon Cognito tokens to Verified Permissions schema

• Authorize API Gateway APIs using Amazon Verified Permissions and Amazon Cognito

• Workshop: Authentication and authorization with Amazon Cognito and Verified Permissions

API authorization with Verified Permissions

Your ID or access tokens can authorize requests to back-end Amazon API Gateway REST APIs with
Verified Permissions. You can create a policy store with immediate links to your user pool and API.
With the Set up with API Gateway and an identity source starting option, Verified Permissions adds
a user pool identity source to the policy store, and a Lambda authorizer to the API. When your
application passes a user pool bearer token to the API, the Lambda authorizer invokes Verified

API authorization with Verified Permissions 71

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-providers.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/terminology.html#term-policy-store
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policies.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-sources_map-token-to-schema.html
https://www.amazonaws.cn/blogs/security/authorize-api-gateway-apis-using-amazon-verified-permissions-and-amazon-cognito/
https://catalog.workshops.aws/app-auth
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_create.html

Amazon Cognito Developer Guide

Permissions. The authorizer passes the token as a principal and the request path and method as an
action.

The following diagram illustrates the authorization flow for an API Gateway API with Verified
Permissions. For a detailed breakdown, see API-linked policy stores in the Amazon Verified
Permissions User Guide.

API authorization with Verified Permissions 72

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_api-userpool.html

Amazon Cognito Developer Guide

Verified Permissions structures API authorization around user pool groups. Because both ID and
access tokens include a cognito:groups claim, your policy store can manage role-based access
control (RBAC) for your APIs in a variety of application contexts.

Choosing policy store settings

When you configure an identity source on a policy store, you must choose whether you want to
process access or ID tokens. This decision is significant to the way that your policy engine operates.
ID tokens contain user attributes. Access tokens contain user access-control information: OAuth
scopes. Although both token types have group-membership information, we generally recommend
the access token for RBAC with a Verified Permissions policy store. The access token adds to group
membership with scopes that can contribute to the authorization decision. The claims in an access
token become context in the authorization request.

You must also configure the user and group entity types when you configure a user pool as an
identity source. Entity types are principal, action, and resource identifiers that you can reference in
Verified Permissions policies. Entities in policy stores can have a membership relationship, where
one entity can be a member of a parent entity. With membership, you can reference principal
groups, action groups, and resource groups. In the case of user pool groups, the user entity type
that you specify must be a member of the group entity type. When you set up an API-linked policy
store or follow Guided setup in the Verified Permissions console, your policy store automatically
has this parent-member relationship.

The ID token can combine RBAC with attribute-based access control (ABAC). After you create an
API-linked policy store, you can enhance your policies with user attributes and group membership.
The attribute claims in an ID token become principal attributes in the authorization request. Your
policies can make authorization decisions based on principal attributes.

You can also configure a policy store to accept tokens with an aud or client_id claim that
matches a list of acceptable app clients that you provide.

Example policy for role-based API authorization

The following example policy was created by the setup of a Verified Permissions policy store for a
PetStore example REST API.

permit(
 principal in PetStore::UserGroup::"us-east-1_EXAMPLE|MyGroup",
 action in [PetStore::Action::"get /pets", PetStore::Action::"get /pets/{petId}"],
 resource

API authorization with Verified Permissions 73

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/context.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_api-userpool.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_api-userpool.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_api-userpool.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policies_examples-abac.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/api-gateway-create-api-from-example.html

Amazon Cognito Developer Guide

);

Verified Permissions returns an Allow decision to the authorization request from your application
when:

1. Your application passed an ID or access token in an Authorization header as a bearer token.

2. Your application passed a token with a cognito:groups claim that contains the string
MyGroup.

3. Your application made an HTTP GET request to, for example, https://myapi.example.com/
pets or https://myapi.example.com/pets/scrappy.

Example policy for an Amazon Cognito user

Your user pool can also generate authorization requests to Verified Permissions in conditions other
than API requests. You can submit any access control decisions in your application to your policy
store. For example, you can supplement Amazon DynamoDB or Amazon S3 security with attribute-
based access control before any requests transit the network, reducing quota use.

The following example uses the Cedar Policy Language to permit Finance users who authenticate
with one user pool app client to read and write example_image.png. John, a user in your app,
receives an ID token from your app client and passes it in a GET request to a URL that requires
authorization, https://example.com/images/example_image.png. John's ID token has
an aud claim of your user pool app client ID 1234567890example. Your pre token generation
Lambda function also inserted a new claim costCenter with a value, for John, of Finance1234.

permit (
 principal,
 actions in [ExampleCorp::Action::"readFile", "writeFile"],
 resource == ExampleCorp::Photo::"example_image.png"
)
when {
 principal.aud == "1234567890example" &&
 principal.custom.costCenter like "Finance*"
};

The following request body results in an Allow response.

{

Example policy for an Amazon Cognito user 74

https://docs.cedarpolicy.com/

Amazon Cognito Developer Guide

 "accesstoken": "[John's ID token]",
 "action": {
 "actionId": "readFile",
 "actionType": "Action"
 },
 "resource": {
 "entityId": "example_image.png",
 "entityType": "Photo"
 }
}

When you want to specify a principal in a Verified Permissions policy, use the following format:

permit (
 principal == [Namespace]::[Entity]::"[user pool ID]|[user sub]",
 action,
 resource
);

The following is an example principal for a user in a user pool with ID us-east-1_Example with
sub, or user ID, 973db890-092c-49e4-a9d0-912a4c0a20c7.

principal == ExampleCorp::User::"us-east-1_Example|973db890-092c-49e4-
a9d0-912a4c0a20c7",

When you want to specify a user group in a Verified Permissions policy, use the following format:

permit (
 principal in [Namespace]::[Group Entity]::"[Group name]",
 action,
 resource
);

Attribute-based access control

Authorization with Verified Permissions for your apps, and the attributes for access control feature
of Amazon Cognito identity pools for Amazon credentials, are both forms of attribute-based access
control (ABAC). The following is a comparison of the features of Verified Permissions and Amazon
Cognito ABAC. In ABAC, a system examines the attributes of an entity and makes an authorization
decision from conditions that you define.

Example policy for an Amazon Cognito user 75

https://docs.amazonaws.cn/cognito/latest/developerguide/attributes-for-access-control.html

Amazon Cognito Developer Guide

Service Process Result

Amazon
Verified
Permissions

Returns an Allow or Deny decision
from analysis of a user pool JWT.

Access to application resources
succeeds or fails based on Cedar policy
evaluation.

Amazon
Cognito
identity pools
(attributes for
access control)

Assigns session tags to your user
based on their attributes. IAM
policy conditions can check tags
Allow or Deny user access to
Amazon Web Services services.

A tagged session with temporary
Amazon credentials for an IAM role.

Example policy for an Amazon Cognito user 76

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_session-tags.html

Amazon Cognito Developer Guide

Code examples for Amazon Cognito using Amazon SDKs

The following code examples show how to use Amazon Cognito with an Amazon software
development kit (SDK).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Code examples for Amazon Cognito Identity using Amazon SDKs

• Basic examples for Amazon Cognito Identity using Amazon SDKs

• Actions for Amazon Cognito Identity using Amazon SDKs

• Use CreateIdentityPool with an Amazon SDK or CLI

• Use DeleteIdentityPool with an Amazon SDK or CLI

• Use DescribeIdentityPool with a CLI

• Use GetCredentialsForIdentity with an Amazon SDK

• Use GetIdentityPoolRoles with a CLI

• Use ListIdentityPools with an Amazon SDK or CLI

• Use SetIdentityPoolRoles with a CLI

• Use UpdateIdentityPool with a CLI

• Scenarios for Amazon Cognito Identity using Amazon SDKs

• Create an Amazon Textract explorer application

• Code examples for Amazon Cognito Identity Provider using Amazon SDKs

• Basic examples for Amazon Cognito Identity Provider using Amazon SDKs

• Hello Amazon Cognito

• Actions for Amazon Cognito Identity Provider using Amazon SDKs

• Use AdminCreateUser with an Amazon SDK or CLI

• Use AdminGetUser with an Amazon SDK or CLI

• Use AdminInitiateAuth with an Amazon SDK or CLI

• Use AdminRespondToAuthChallenge with an Amazon SDK or CLI

• Use AdminSetUserPassword with an Amazon SDK or CLI
77

Amazon Cognito Developer Guide

• Use AssociateSoftwareToken with an Amazon SDK or CLI

• Use ConfirmDevice with an Amazon SDK or CLI

• Use ConfirmForgotPassword with an Amazon SDK or CLI

• Use ConfirmSignUp with an Amazon SDK or CLI

• Use CreateUserPool with an Amazon SDK or CLI

• Use CreateUserPoolClient with an Amazon SDK or CLI

• Use DeleteUser with an Amazon SDK or CLI

• Use ForgotPassword with an Amazon SDK or CLI

• Use InitiateAuth with an Amazon SDK or CLI

• Use ListUserPools with an Amazon SDK or CLI

• Use ListUsers with an Amazon SDK or CLI

• Use ResendConfirmationCode with an Amazon SDK or CLI

• Use RespondToAuthChallenge with an Amazon SDK or CLI

• Use SignUp with an Amazon SDK or CLI

• Use UpdateUserPool with an Amazon SDK or CLI

• Use VerifySoftwareToken with an Amazon SDK or CLI

• Scenarios for Amazon Cognito Identity Provider using Amazon SDKs

• Automatically confirm known Amazon Cognito users with a Lambda function using an
Amazon SDK

• Automatically migrate known Amazon Cognito users with a Lambda function using an
Amazon SDK

• Sign up a user with an Amazon Cognito user pool that requires MFA using an Amazon SDK

• Write custom activity data with a Lambda function after Amazon Cognito user
authentication using an Amazon SDK

• Code examples for Amazon Cognito Sync using Amazon SDKs

• Basic examples for Amazon Cognito Sync using Amazon SDKs

• Actions for Amazon Cognito Sync using Amazon SDKs

• Use ListIdentityPoolUsage with an Amazon SDK

78

Amazon Cognito Developer Guide

Code examples for Amazon Cognito Identity using Amazon
SDKs

The following code examples show how to use Amazon Cognito Identity with an Amazon software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Basic examples for Amazon Cognito Identity using Amazon SDKs

• Actions for Amazon Cognito Identity using Amazon SDKs

• Use CreateIdentityPool with an Amazon SDK or CLI

• Use DeleteIdentityPool with an Amazon SDK or CLI

• Use DescribeIdentityPool with a CLI

• Use GetCredentialsForIdentity with an Amazon SDK

• Use GetIdentityPoolRoles with a CLI

• Use ListIdentityPools with an Amazon SDK or CLI

• Use SetIdentityPoolRoles with a CLI

• Use UpdateIdentityPool with a CLI

• Scenarios for Amazon Cognito Identity using Amazon SDKs

• Create an Amazon Textract explorer application

Basic examples for Amazon Cognito Identity using Amazon SDKs

The following code examples show how to use the basics of Amazon Cognito Identity with Amazon
SDKs.
Amazon Cognito Identity 79

Amazon Cognito Developer Guide

Examples

• Actions for Amazon Cognito Identity using Amazon SDKs

• Use CreateIdentityPool with an Amazon SDK or CLI

• Use DeleteIdentityPool with an Amazon SDK or CLI

• Use DescribeIdentityPool with a CLI

• Use GetCredentialsForIdentity with an Amazon SDK

• Use GetIdentityPoolRoles with a CLI

• Use ListIdentityPools with an Amazon SDK or CLI

• Use SetIdentityPoolRoles with a CLI

• Use UpdateIdentityPool with a CLI

Actions for Amazon Cognito Identity using Amazon SDKs

The following code examples demonstrate how to perform individual Amazon Cognito Identity
actions with Amazon SDKs. Each example includes a link to GitHub, where you can find instructions
for setting up and running the code.

These excerpts call the Amazon Cognito Identity API and are code excerpts from larger programs
that must be run in context. You can see actions in context in Scenarios for Amazon Cognito
Identity using Amazon SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Cognito Identity API Reference.

Examples

• Use CreateIdentityPool with an Amazon SDK or CLI

• Use DeleteIdentityPool with an Amazon SDK or CLI

• Use DescribeIdentityPool with a CLI

• Use GetCredentialsForIdentity with an Amazon SDK

• Use GetIdentityPoolRoles with a CLI

• Use ListIdentityPools with an Amazon SDK or CLI

• Use SetIdentityPoolRoles with a CLI

• Use UpdateIdentityPool with a CLI
Basics 80

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

Use CreateIdentityPool with an Amazon SDK or CLI

The following code examples show how to use CreateIdentityPool.

CLI

Amazon CLI

To create an identity pool with Cognito identity pool provider

This example creates an identity pool named MyIdentityPool. It has a Cognito identity pool
provider. Unauthenticated identities are not allowed.

Command:

aws cognito-identity create-identity-pool --identity-pool-
name MyIdentityPool --no-allow-unauthenticated-identities --cognito-
identity-providers ProviderName="cognito-idp.us-west-2.amazonaws.com/us-
west-2_aaaaaaaaa",ClientId="3n4b5urk1ft4fl3mg5e62d9ado",ServerSideTokenCheck=false

Output:

{
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "MyIdentityPool",
 "AllowUnauthenticatedIdentities": false,
 "CognitoIdentityProviders": [
 {
 "ProviderName": "cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111111",
 "ClientId": "3n4b5urk1ft4fl3mg5e62d9ado",
 "ServerSideTokenCheck": false
 }
]
}

• For API details, see CreateIdentityPool in Amazon CLI Command Reference.

Basics 81

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/create-identity-pool.html

Amazon Cognito Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cognitoidentity.CognitoIdentityClient;
import
 software.amazon.awssdk.services.cognitoidentity.model.CreateIdentityPoolRequest;
import
 software.amazon.awssdk.services.cognitoidentity.model.CreateIdentityPoolResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateIdentityPool {
 public static void main(String[] args) {
 final String usage = """
 Usage:
 <identityPoolName>\s

 Where:
 identityPoolName - The name to give your identity pool.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

Basics 82

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 String identityPoolName = args[0];
 CognitoIdentityClient cognitoClient = CognitoIdentityClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String identityPoolId = createIdPool(cognitoClient, identityPoolName);
 System.out.println("Unity pool ID " + identityPoolId);
 cognitoClient.close();
 }

 public static String createIdPool(CognitoIdentityClient cognitoClient, String
 identityPoolName) {
 try {
 CreateIdentityPoolRequest poolRequest =
 CreateIdentityPoolRequest.builder()
 .allowUnauthenticatedIdentities(false)
 .identityPoolName(identityPoolName)
 .build();

 CreateIdentityPoolResponse response =
 cognitoClient.createIdentityPool(poolRequest);
 return response.identityPoolId();

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateIdentityPool in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Creates a new Identity Pool which allows unauthenticated identities.

Basics 83

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-identity-2014-06-30/CreateIdentityPool

Amazon Cognito Developer Guide

New-CGIIdentityPool -AllowUnauthenticatedIdentities $true -IdentityPoolName
 CommonTests13

Output:

LoggedAt : 8/12/2015 4:56:07 PM
AllowUnauthenticatedIdentities : True
DeveloperProviderName :
IdentityPoolId : us-east-1:15d49393-ab16-431a-b26e-EXAMPLEGUID3
IdentityPoolName : CommonTests13
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 136
HttpStatusCode : OK

• For API details, see CreateIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Creates a new Identity Pool which allows unauthenticated identities.

New-CGIIdentityPool -AllowUnauthenticatedIdentities $true -IdentityPoolName
 CommonTests13

Output:

LoggedAt : 8/12/2015 4:56:07 PM
AllowUnauthenticatedIdentities : True
DeveloperProviderName :
IdentityPoolId : us-east-1:15d49393-ab16-431a-b26e-EXAMPLEGUID3
IdentityPoolName : CommonTests13
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 136
HttpStatusCode : OK

• For API details, see CreateIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V5).

Basics 84

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSCognitoIdentity

 /// Create a new identity pool and return its ID.
 ///
 /// - Parameters:
 /// - name: The name to give the new identity pool.
 ///
 /// - Returns: A string containing the newly created pool's ID, or `nil`
 /// if an error occurred.
 ///
 func createIdentityPool(name: String) async throws -> String? {
 do {
 let cognitoInputCall = CreateIdentityPoolInput(developerProviderName:
 "com.exampleco.CognitoIdentityDemo",
 identityPoolName:
 name)

 let result = try await
 cognitoIdentityClient.createIdentityPool(input: cognitoInputCall)
 guard let poolId = result.identityPoolId else {
 return nil
 }

 return poolId
 } catch {
 print("ERROR: createIdentityPool:", dump(error))
 throw error
 }
 }

Basics 85

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity/FindOrCreateIdentityPool#code-examples

Amazon Cognito Developer Guide

• For more information, see Amazon SDK for Swift developer guide.

• For API details, see CreateIdentityPool in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteIdentityPool with an Amazon SDK or CLI

The following code examples show how to use DeleteIdentityPool.

CLI

Amazon CLI

To delete identity pool

The following delete-identity-pool example deletes the specified identity pool.

Command:

aws cognito-identity delete-identity-pool \
 --identity-pool-id "us-west-2:11111111-1111-1111-1111-111111111111"

This command produces no output.

• For API details, see DeleteIdentityPool in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.awscore.exception.AwsServiceException;
import software.amazon.awssdk.regions.Region;

Basics 86

https://docs.amazonaws.cn/sdk-for-swift/latest/developer-guide/getting-started.html
https://sdk.amazonaws.com/swift/api/awscognitoidentity/latest/documentation/awscognitoidentity/cognitoidentityclient/createidentitypool(input:)
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/delete-identity-pool.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

import software.amazon.awssdk.services.cognitoidentity.CognitoIdentityClient;
import
 software.amazon.awssdk.services.cognitoidentity.model.DeleteIdentityPoolRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class DeleteIdentityPool {

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <identityPoolId>\s

 Where:
 identityPoolId - The Id value of your identity pool.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String identityPoold = args[0];
 CognitoIdentityClient cognitoIdClient = CognitoIdentityClient.builder()
 .region(Region.US_EAST_1)
 .credentialsProvider(ProfileCredentialsProvider.create())
 .build();

 deleteIdPool(cognitoIdClient, identityPoold);
 cognitoIdClient.close();
 }

 public static void deleteIdPool(CognitoIdentityClient cognitoIdClient, String
 identityPoold) {
 try {

Basics 87

Amazon Cognito Developer Guide

 DeleteIdentityPoolRequest identityPoolRequest =
 DeleteIdentityPoolRequest.builder()
 .identityPoolId(identityPoold)
 .build();

 cognitoIdClient.deleteIdentityPool(identityPoolRequest);
 System.out.println("Done");

 } catch (AwsServiceException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see DeleteIdentityPool in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Deletes a specific Identity Pool.

Remove-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

• For API details, see DeleteIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Deletes a specific Identity Pool.

Remove-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

• For API details, see DeleteIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V5).

Basics 88

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-identity-2014-06-30/DeleteIdentityPool
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSCognitoIdentity

 /// Delete the specified identity pool.
 ///
 /// - Parameters:
 /// - id: The ID of the identity pool to delete.
 ///
 func deleteIdentityPool(id: String) async throws {
 do {
 let input = DeleteIdentityPoolInput(
 identityPoolId: id
)

 _ = try await cognitoIdentityClient.deleteIdentityPool(input: input)
 } catch {
 print("ERROR: deleteIdentityPool:", dump(error))
 throw error
 }
 }

• For more information, see Amazon SDK for Swift developer guide.

• For API details, see DeleteIdentityPool in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 89

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity/FindOrCreateIdentityPool#code-examples
https://docs.amazonaws.cn/sdk-for-swift/latest/developer-guide/getting-started.html
https://sdk.amazonaws.com/swift/api/awscognitoidentity/latest/documentation/awscognitoidentity/cognitoidentityclient/deleteidentitypool(input:)

Amazon Cognito Developer Guide

Use DescribeIdentityPool with a CLI

The following code examples show how to use DescribeIdentityPool.

CLI

Amazon CLI

To describe an identity pool

This example describes an identity pool.

Command:

aws cognito-identity describe-identity-pool --identity-pool-id "us-
west-2:11111111-1111-1111-1111-111111111111"

Output:

{
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "MyIdentityPool",
 "AllowUnauthenticatedIdentities": false,
 "CognitoIdentityProviders": [
 {
 "ProviderName": "cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111111",
 "ClientId": "3n4b5urk1ft4fl3mg5e62d9ado",
 "ServerSideTokenCheck": false
 }
]
}

• For API details, see DescribeIdentityPool in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Retrieves information about a specific Identity Pool by its id.

Basics 90

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/describe-identity-pool.html

Amazon Cognito Developer Guide

Get-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

Output:

LoggedAt : 8/12/2015 4:29:40 PM
AllowUnauthenticatedIdentities : True
DeveloperProviderName :
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
IdentityPoolName : CommonTests1
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 142
HttpStatusCode : OK

• For API details, see DescribeIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Retrieves information about a specific Identity Pool by its id.

Get-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

Output:

LoggedAt : 8/12/2015 4:29:40 PM
AllowUnauthenticatedIdentities : True
DeveloperProviderName :
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
IdentityPoolName : CommonTests1
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 142
HttpStatusCode : OK

• For API details, see DescribeIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V5).

Basics 91

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GetCredentialsForIdentity with an Amazon SDK

The following code example shows how to use GetCredentialsForIdentity.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cognitoidentity.CognitoIdentityClient;
import
 software.amazon.awssdk.services.cognitoidentity.model.GetCredentialsForIdentityRequest;
import
 software.amazon.awssdk.services.cognitoidentity.model.GetCredentialsForIdentityResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class GetIdentityCredentials {
 public static void main(String[] args) {

 final String usage = """

 Usage:

Basics 92

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 <identityId>\s

 Where:
 identityId - The Id of an existing identity in the format
 REGION:GUID.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String identityId = args[0];
 CognitoIdentityClient cognitoClient = CognitoIdentityClient.builder()
 .region(Region.US_EAST_1)
 .build();

 getCredsForIdentity(cognitoClient, identityId);
 cognitoClient.close();
 }

 public static void getCredsForIdentity(CognitoIdentityClient cognitoClient,
 String identityId) {
 try {
 GetCredentialsForIdentityRequest getCredentialsForIdentityRequest =
 GetCredentialsForIdentityRequest
 .builder()
 .identityId(identityId)
 .build();

 GetCredentialsForIdentityResponse response = cognitoClient
 .getCredentialsForIdentity(getCredentialsForIdentityRequest);
 System.out.println(
 "Identity ID " + response.identityId() + ", Access key ID " +
 response.credentials().accessKeyId());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

Basics 93

Amazon Cognito Developer Guide

• For API details, see GetCredentialsForIdentity in Amazon SDK for Java 2.x API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use GetIdentityPoolRoles with a CLI

The following code examples show how to use GetIdentityPoolRoles.

CLI

Amazon CLI

To get identity pool roles

This example gets identity pool roles.

Command:

aws cognito-identity get-identity-pool-roles --identity-pool-id "us-
west-2:11111111-1111-1111-1111-111111111111"

Output:

{
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "Roles": {
 "authenticated": "arn:aws:iam::111111111111:role/
Cognito_MyIdentityPoolAuth_Role",
 "unauthenticated": "arn:aws:iam::111111111111:role/
Cognito_MyIdentityPoolUnauth_Role"
 }
}

• For API details, see GetIdentityPoolRoles in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Gets the information about roles for a specific Identity Pool.

Basics 94

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-identity-2014-06-30/GetCredentialsForIdentity
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/get-identity-pool-roles.html

Amazon Cognito Developer Guide

Get-CGIIdentityPoolRole -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

Output:

LoggedAt : 8/12/2015 4:33:51 PM
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
Roles : {[unauthenticated, arn:aws:iam::123456789012:role/
CommonTests1Role]}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 165
HttpStatusCode : OK

• For API details, see GetIdentityPoolRoles in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Gets the information about roles for a specific Identity Pool.

Get-CGIIdentityPoolRole -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1

Output:

LoggedAt : 8/12/2015 4:33:51 PM
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
Roles : {[unauthenticated, arn:aws:iam::123456789012:role/
CommonTests1Role]}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 165
HttpStatusCode : OK

• For API details, see GetIdentityPoolRoles in Amazon Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 95

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

Use ListIdentityPools with an Amazon SDK or CLI

The following code examples show how to use ListIdentityPools.

CLI

Amazon CLI

To list identity pools

This example lists identity pools. There s a maximum of 20 identities listed.

Command:

aws cognito-identity list-identity-pools --max-results 20

Output:

{
 "IdentityPools": [
 {
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "MyIdentityPool"
 },
 {
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "AnotherIdentityPool"
 },
 {
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "IdentityPoolRegionA"
 }
]
}

• For API details, see ListIdentityPools in Amazon CLI Command Reference.

Basics 96

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/list-identity-pools.html

Amazon Cognito Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.cognitoidentity.CognitoIdentityClient;
import
 software.amazon.awssdk.services.cognitoidentity.model.ListIdentityPoolsRequest;
import
 software.amazon.awssdk.services.cognitoidentity.model.ListIdentityPoolsResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListIdentityPools {
 public static void main(String[] args) {
 CognitoIdentityClient cognitoClient = CognitoIdentityClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listIdPools(cognitoClient);
 cognitoClient.close();
 }

 public static void listIdPools(CognitoIdentityClient cognitoClient) {
 try {
 ListIdentityPoolsRequest poolsRequest =
 ListIdentityPoolsRequest.builder()

Basics 97

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 .maxResults(15)
 .build();

 ListIdentityPoolsResponse response =
 cognitoClient.listIdentityPools(poolsRequest);
 response.identityPools().forEach(pool -> {
 System.out.println("Pool ID: " + pool.identityPoolId());
 System.out.println("Pool name: " + pool.identityPoolName());
 });

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListIdentityPools in Amazon SDK for Java 2.x API Reference.

PowerShell

Tools for PowerShell V4

Example 1: Retrieves a list of existing Identity Pools.

Get-CGIIdentityPoolList

Output:

IdentityPoolId
 IdentityPoolName

us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1 CommonTests1
us-east-1:118d242d-204e-4b88-b803-EXAMPLEGUID2 Tests2
us-east-1:15d49393-ab16-431a-b26e-EXAMPLEGUID3 CommonTests13

• For API details, see ListIdentityPools in Amazon Tools for PowerShell Cmdlet Reference (V4).

Tools for PowerShell V5

Example 1: Retrieves a list of existing Identity Pools.

Basics 98

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-identity-2014-06-30/ListIdentityPools
https://docs.aws.amazon.com/powershell/v4/reference

Amazon Cognito Developer Guide

Get-CGIIdentityPoolList

Output:

IdentityPoolId
 IdentityPoolName

us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1 CommonTests1
us-east-1:118d242d-204e-4b88-b803-EXAMPLEGUID2 Tests2
us-east-1:15d49393-ab16-431a-b26e-EXAMPLEGUID3 CommonTests13

• For API details, see ListIdentityPools in Amazon Tools for PowerShell Cmdlet Reference (V5).

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSCognitoIdentity

 /// Return the ID of the identity pool with the specified name.
 ///
 /// - Parameters:
 /// - name: The name of the identity pool whose ID should be returned.
 ///
 /// - Returns: A string containing the ID of the specified identity pool
 /// or `nil` on error or if not found.
 ///
 func getIdentityPoolID(name: String) async throws -> String? {
 let listPoolsInput = ListIdentityPoolsInput(maxResults: 25)
 // Use "Paginated" to get all the objects.
 // This lets the SDK handle the 'nextToken' field in
 "ListIdentityPoolsOutput".

Basics 99

https://docs.aws.amazon.com/powershell/v5/reference
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity/FindOrCreateIdentityPool#code-examples

Amazon Cognito Developer Guide

 let pages = cognitoIdentityClient.listIdentityPoolsPaginated(input:
 listPoolsInput)

 do {
 for try await page in pages {
 guard let identityPools = page.identityPools else {
 print("ERROR: listIdentityPoolsPaginated returned nil
 contents.")
 continue
 }

 /// Read pages of identity pools from Cognito until one is found
 /// whose name matches the one specified in the `name` parameter.
 /// Return the matching pool's ID.

 for pool in identityPools {
 if pool.identityPoolName == name {
 return pool.identityPoolId!
 }
 }
 }
 } catch {
 print("ERROR: getIdentityPoolID:", dump(error))
 throw error
 }

 return nil
 }

Get the ID of an existing identity pool or create it if it doesn't already exist.

import AWSCognitoIdentity

 /// Return the ID of the identity pool with the specified name.
 ///
 /// - Parameters:
 /// - name: The name of the identity pool whose ID should be returned
 ///
 /// - Returns: A string containing the ID of the specified identity pool.
 /// Returns `nil` if there's an error or if the pool isn't found.

Basics 100

Amazon Cognito Developer Guide

 ///
 public func getOrCreateIdentityPoolID(name: String) async throws -> String? {
 // See if the pool already exists. If it doesn't, create it.

 do {
 guard let poolId = try await getIdentityPoolID(name: name) else {
 return try await createIdentityPool(name: name)
 }

 return poolId
 } catch {
 print("ERROR: getOrCreateIdentityPoolID:", dump(error))
 throw error
 }
 }

• For more information, see Amazon SDK for Swift developer guide.

• For API details, see ListIdentityPools in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use SetIdentityPoolRoles with a CLI

The following code examples show how to use SetIdentityPoolRoles.

CLI

Amazon CLI

To set identity pool roles

The following set-identity-pool-roles example sets an identity pool role.

aws cognito-identity set-identity-pool-roles \
 --identity-pool-id "us-west-2:11111111-1111-1111-1111-111111111111" \
 --roles authenticated="arn:aws:iam::111111111111:role/
Cognito_MyIdentityPoolAuth_Role"

Basics 101

https://docs.amazonaws.cn/sdk-for-swift/latest/developer-guide/getting-started.html
https://sdk.amazonaws.com/swift/api/awscognitoidentity/latest/documentation/awscognitoidentity/cognitoidentityclient/listidentitypools(input:)

Amazon Cognito Developer Guide

• For API details, see SetIdentityPoolRoles in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Configures the specific Identity Pool to have an unauthenticated IAM role.

Set-CGIIdentityPoolRole -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1 -Role @{ "unauthenticated" = "arn:aws:iam::123456789012:role/
CommonTests1Role" }

• For API details, see SetIdentityPoolRoles in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Configures the specific Identity Pool to have an unauthenticated IAM role.

Set-CGIIdentityPoolRole -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1 -Role @{ "unauthenticated" = "arn:aws:iam::123456789012:role/
CommonTests1Role" }

• For API details, see SetIdentityPoolRoles in Amazon Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateIdentityPool with a CLI

The following code examples show how to use UpdateIdentityPool.

CLI

Amazon CLI

To update an identity pool

This example updates an identity pool. It sets the name to MyIdentityPool. It adds Cognito
as an identity provider. It disallows unauthenticated identities.

Basics 102

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/set-identity-pool-roles.html
https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

Command:

aws cognito-identity update-identity-pool --identity-pool-id "us-
west-2:11111111-1111-1111-1111-111111111111" --identity-pool-
name "MyIdentityPool" --no-allow-unauthenticated-identities --cognito-
identity-providers ProviderName="cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111111",ClientId="3n4b5urk1ft4fl3mg5e62d9ado",ServerSideTokenCheck=false

Output:

{
 "IdentityPoolId": "us-west-2:11111111-1111-1111-1111-111111111111",
 "IdentityPoolName": "MyIdentityPool",
 "AllowUnauthenticatedIdentities": false,
 "CognitoIdentityProviders": [
 {
 "ProviderName": "cognito-idp.us-west-2.amazonaws.com/us-
west-2_111111111",
 "ClientId": "3n4b5urk1ft4fl3mg5e62d9ado",
 "ServerSideTokenCheck": false
 }
]
}

• For API details, see UpdateIdentityPool in Amazon CLI Command Reference.

PowerShell

Tools for PowerShell V4

Example 1: Updates some of the Identity Pool properties, in this case the name of the
Identity Pool.

Update-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1 -IdentityPoolName NewPoolName

Output:

LoggedAt : 8/12/2015 4:53:33 PM
AllowUnauthenticatedIdentities : False

Basics 103

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-identity/update-identity-pool.html

Amazon Cognito Developer Guide

DeveloperProviderName :
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
IdentityPoolName : NewPoolName
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 135
HttpStatusCode : OK

• For API details, see UpdateIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V4).

Tools for PowerShell V5

Example 1: Updates some of the Identity Pool properties, in this case the name of the
Identity Pool.

Update-CGIIdentityPool -IdentityPoolId us-east-1:0de2af35-2988-4d0b-b22d-
EXAMPLEGUID1 -IdentityPoolName NewPoolName

Output:

LoggedAt : 8/12/2015 4:53:33 PM
AllowUnauthenticatedIdentities : False
DeveloperProviderName :
IdentityPoolId : us-east-1:0de2af35-2988-4d0b-b22d-EXAMPLEGUID1
IdentityPoolName : NewPoolName
OpenIdConnectProviderARNs : {}
SupportedLoginProviders : {}
ResponseMetadata : Amazon.Runtime.ResponseMetadata
ContentLength : 135
HttpStatusCode : OK

• For API details, see UpdateIdentityPool in Amazon Tools for PowerShell Cmdlet Reference
(V5).

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 104

https://docs.aws.amazon.com/powershell/v4/reference
https://docs.aws.amazon.com/powershell/v5/reference

Amazon Cognito Developer Guide

Scenarios for Amazon Cognito Identity using Amazon SDKs

The following code examples show you how to implement common scenarios in Amazon Cognito
Identity with Amazon SDKs. These scenarios show you how to accomplish specific tasks by calling
multiple functions within Amazon Cognito Identity or combined with other Amazon Web Services
services. Each scenario includes a link to the complete source code, where you can find instructions
on how to set up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Create an Amazon Textract explorer application

Create an Amazon Textract explorer application

The following code examples show how to explore Amazon Textract output through an interactive
application.

JavaScript

SDK for JavaScript (v3)

Shows how to use the Amazon SDK for JavaScript to build a React application that uses
Amazon Textract to extract data from a document image and display it in an interactive web
page. This example runs in a web browser and requires an authenticated Amazon Cognito
identity for credentials. It uses Amazon Simple Storage Service (Amazon S3) for storage,
and for notifications it polls an Amazon Simple Queue Service (Amazon SQS) queue that is
subscribed to an Amazon Simple Notification Service (Amazon SNS) topic.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

Scenarios 105

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/textract-react

Amazon Cognito Developer Guide

• Amazon SQS

• Amazon Textract

Python

SDK for Python (Boto3)

Shows how to use the Amazon SDK for Python (Boto3) with Amazon Textract to detect
text, form, and table elements in a document image. The input image and Amazon Textract
output are shown in a Tkinter application that lets you explore the detected elements.

• Submit a document image to Amazon Textract and explore the output of detected
elements.

• Submit images directly to Amazon Textract or through an Amazon Simple Storage Service
(Amazon S3) bucket.

• Use asynchronous APIs to start a job that publishes a notification to an Amazon Simple
Notification Service (Amazon SNS) topic when the job completes.

• Poll an Amazon Simple Queue Service (Amazon SQS) queue for a job completion message
and display the results.

For complete source code and instructions on how to set up and run, see the full example on
GitHub.

Services used in this example

• Amazon Cognito Identity

• Amazon S3

• Amazon SNS

• Amazon SQS

• Amazon Textract

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios 106

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/cross_service/textract_explorer

Amazon Cognito Developer Guide

Code examples for Amazon Cognito Identity Provider using
Amazon SDKs

The following code examples show how to use Amazon Cognito Identity Provider with an Amazon
software development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

Scenarios are code examples that show you how to accomplish specific tasks by calling multiple
functions within a service or combined with other Amazon Web Services services.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Get started

Hello Amazon Cognito

The following code examples show how to get started using Amazon Cognito.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS cognito-idp)

Amazon Cognito Identity Provider 107

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito/hello_cognito#code-examples

Amazon Cognito Developer Guide

Set this project's name.
project("hello_cognito")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)
 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_cognito.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_cognito.cpp source file.

#include <aws/core/Aws.h>

Amazon Cognito Identity Provider 108

Amazon Cognito Developer Guide

#include <aws/cognito-idp/CognitoIdentityProviderClient.h>
#include <aws/cognito-idp/model/ListUserPoolsRequest.h>
#include <iostream>

/*
 * A "Hello Cognito" starter application which initializes an Amazon Cognito
 client and lists the Amazon Cognito
 * user pools.
 *
 * main function
 *
 * Usage: 'hello_cognito'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;
 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 cognitoClient(clientConfig);

 Aws::String nextToken; // Used for pagination.
 std::vector<Aws::String> userPools;

 do {
 Aws::CognitoIdentityProvider::Model::ListUserPoolsRequest
 listUserPoolsRequest;
 if (!nextToken.empty()) {
 listUserPoolsRequest.SetNextToken(nextToken);
 }

 Aws::CognitoIdentityProvider::Model::ListUserPoolsOutcome
 listUserPoolsOutcome =
 cognitoClient.ListUserPools(listUserPoolsRequest);

 if (listUserPoolsOutcome.IsSuccess()) {

Amazon Cognito Identity Provider 109

Amazon Cognito Developer Guide

 for (auto &userPool:
 listUserPoolsOutcome.GetResult().GetUserPools()) {

 userPools.push_back(userPool.GetName());
 }

 nextToken = listUserPoolsOutcome.GetResult().GetNextToken();
 } else {
 std::cerr << "ListUserPools error: " <<
 listUserPoolsOutcome.GetError().GetMessage() << std::endl;
 result = 1;
 break;
 }

 } while (!nextToken.empty());
 std::cout << userPools.size() << " user pools found." << std::endl;
 for (auto &userPool: userPools) {
 std::cout << " user pool: " << userPool << std::endl;
 }
 }

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListUserPools in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

package main

Amazon Cognito Identity Provider 110

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 cognitoClient := cognitoidentityprovider.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the user pools for your account.")
 var pools []types.UserPoolDescriptionType
 paginator := cognitoidentityprovider.NewListUserPoolsPaginator(
 cognitoClient, &cognitoidentityprovider.ListUserPoolsInput{MaxResults:
 aws.Int32(10)})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get user pools. Here's why: %v\n", err)
 } else {
 pools = append(pools, output.UserPools...)
 }
 }
 if len(pools) == 0 {
 fmt.Println("You don't have any user pools!")
 } else {
 for _, pool := range pools {
 fmt.Printf("\t%v: %v\n", *pool.Name, *pool.Id)

Amazon Cognito Identity Provider 111

Amazon Cognito Developer Guide

 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListUserPools {
 public static void main(String[] args) {
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)

Amazon Cognito Identity Provider 112

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 .build();

 listAllUserPools(cognitoClient);
 cognitoClient.close();
 }

 public static void listAllUserPools(CognitoIdentityProviderClient
 cognitoClient) {
 try {
 ListUserPoolsRequest request = ListUserPoolsRequest.builder()
 .maxResults(10)
 .build();

 ListUserPoolsResponse response =
 cognitoClient.listUserPools(request);
 response.userPools().forEach(userpool -> {
 System.out.println("User pool " + userpool.name() + ", User ID "
 + userpool.id());
 });

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import {
 paginateListUserPools,

Amazon Cognito Identity Provider 113

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 CognitoIdentityProviderClient,
} from "@aws-sdk/client-cognito-identity-provider";

const client = new CognitoIdentityProviderClient({});

export const helloCognito = async () => {
 const paginator = paginateListUserPools({ client }, {});

 const userPoolNames = [];

 for await (const page of paginator) {
 const names = page.UserPools.map((pool) => pool.Name);
 userPoolNames.push(...names);
 }

 console.log("User pool names: ");
 console.log(userPoolNames.join("\n"));
 return userPoolNames;
};

• For API details, see ListUserPools in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import boto3

Create a Cognito Identity Provider client
cognitoidp = boto3.client("cognito-idp")

Initialize a paginator for the list_user_pools operation
paginator = cognitoidp.get_paginator("list_user_pools")

Amazon Cognito Identity Provider 114

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUserPoolsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

Create a PageIterator from the paginator
page_iterator = paginator.paginate(MaxResults=10)

Initialize variables for pagination
user_pools = []

Handle pagination
for page in page_iterator:
 user_pools.extend(page.get("UserPools", []))

Print the list of user pools
print("User Pools for the account:")
if user_pools:
 for pool in user_pools:
 print(f"Name: {pool['Name']}, ID: {pool['Id']}")
else:
 print("No user pools found.")

• For API details, see ListUserPools in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-cognitoidentityprovider'
require 'logger'

CognitoManager is a class responsible for managing AWS Cognito operations
such as listing all user pools in the current AWS account.
class CognitoManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)

Amazon Cognito Identity Provider 115

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 end

 # Lists and prints all user pools associated with the AWS account.
 def list_user_pools
 paginator = @client.list_user_pools(max_results: 10)
 user_pools = []
 paginator.each_page do |page|
 user_pools.concat(page.user_pools)
 end

 if user_pools.empty?
 @logger.info('No Cognito user pools found.')
 else
 user_pools.each do |user_pool|
 @logger.info("User pool ID: #{user_pool.id}")
 @logger.info("User pool name: #{user_pool.name}")
 @logger.info("User pool status: #{user_pool.status}")
 @logger.info('---')
 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 cognito_client = Aws::CognitoIdentityProvider::Client.new
 manager = CognitoManager.new(cognito_client)
 manager.list_user_pools
end

• For API details, see ListUserPools in Amazon SDK for Ruby API Reference.

Code examples

• Basic examples for Amazon Cognito Identity Provider using Amazon SDKs

• Hello Amazon Cognito

• Actions for Amazon Cognito Identity Provider using Amazon SDKs

• Use AdminCreateUser with an Amazon SDK or CLI

• Use AdminGetUser with an Amazon SDK or CLI

• Use AdminInitiateAuth with an Amazon SDK or CLI

Amazon Cognito Identity Provider 116

https://docs.amazonaws.cn/goto/SdkForRubyV3/cognito-idp-2016-04-18/ListUserPools

Amazon Cognito Developer Guide

• Use AdminRespondToAuthChallenge with an Amazon SDK or CLI

• Use AdminSetUserPassword with an Amazon SDK or CLI

• Use AssociateSoftwareToken with an Amazon SDK or CLI

• Use ConfirmDevice with an Amazon SDK or CLI

• Use ConfirmForgotPassword with an Amazon SDK or CLI

• Use ConfirmSignUp with an Amazon SDK or CLI

• Use CreateUserPool with an Amazon SDK or CLI

• Use CreateUserPoolClient with an Amazon SDK or CLI

• Use DeleteUser with an Amazon SDK or CLI

• Use ForgotPassword with an Amazon SDK or CLI

• Use InitiateAuth with an Amazon SDK or CLI

• Use ListUserPools with an Amazon SDK or CLI

• Use ListUsers with an Amazon SDK or CLI

• Use ResendConfirmationCode with an Amazon SDK or CLI

• Use RespondToAuthChallenge with an Amazon SDK or CLI

• Use SignUp with an Amazon SDK or CLI

• Use UpdateUserPool with an Amazon SDK or CLI

• Use VerifySoftwareToken with an Amazon SDK or CLI

• Scenarios for Amazon Cognito Identity Provider using Amazon SDKs

• Automatically confirm known Amazon Cognito users with a Lambda function using an Amazon
SDK

• Automatically migrate known Amazon Cognito users with a Lambda function using an Amazon
SDK

• Sign up a user with an Amazon Cognito user pool that requires MFA using an Amazon SDK

• Write custom activity data with a Lambda function after Amazon Cognito user authentication
using an Amazon SDK

Amazon Cognito Identity Provider 117

Amazon Cognito Developer Guide

Basic examples for Amazon Cognito Identity Provider using Amazon
SDKs

The following code examples show how to use the basics of Amazon Cognito Identity Provider with
Amazon SDKs.

Examples

• Hello Amazon Cognito

• Actions for Amazon Cognito Identity Provider using Amazon SDKs

• Use AdminCreateUser with an Amazon SDK or CLI

• Use AdminGetUser with an Amazon SDK or CLI

• Use AdminInitiateAuth with an Amazon SDK or CLI

• Use AdminRespondToAuthChallenge with an Amazon SDK or CLI

• Use AdminSetUserPassword with an Amazon SDK or CLI

• Use AssociateSoftwareToken with an Amazon SDK or CLI

• Use ConfirmDevice with an Amazon SDK or CLI

• Use ConfirmForgotPassword with an Amazon SDK or CLI

• Use ConfirmSignUp with an Amazon SDK or CLI

• Use CreateUserPool with an Amazon SDK or CLI

• Use CreateUserPoolClient with an Amazon SDK or CLI

• Use DeleteUser with an Amazon SDK or CLI

• Use ForgotPassword with an Amazon SDK or CLI

• Use InitiateAuth with an Amazon SDK or CLI

• Use ListUserPools with an Amazon SDK or CLI

• Use ListUsers with an Amazon SDK or CLI

• Use ResendConfirmationCode with an Amazon SDK or CLI

• Use RespondToAuthChallenge with an Amazon SDK or CLI

• Use SignUp with an Amazon SDK or CLI

• Use UpdateUserPool with an Amazon SDK or CLI

• Use VerifySoftwareToken with an Amazon SDK or CLI
Basics 118

Amazon Cognito Developer Guide

Hello Amazon Cognito

The following code examples show how to get started using Amazon Cognito.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Code for the CMakeLists.txt CMake file.

Set the minimum required version of CMake for this project.
cmake_minimum_required(VERSION 3.13)

Set the AWS service components used by this project.
set(SERVICE_COMPONENTS cognito-idp)

Set this project's name.
project("hello_cognito")

Set the C++ standard to use to build this target.
At least C++ 11 is required for the AWS SDK for C++.
set(CMAKE_CXX_STANDARD 11)

Use the MSVC variable to determine if this is a Windows build.
set(WINDOWS_BUILD ${MSVC})

if (WINDOWS_BUILD) # Set the location where CMake can find the installed
 libraries for the AWS SDK.
 string(REPLACE ";" "/aws-cpp-sdk-all;" SYSTEM_MODULE_PATH
 "${CMAKE_SYSTEM_PREFIX_PATH}/aws-cpp-sdk-all")
 list(APPEND CMAKE_PREFIX_PATH ${SYSTEM_MODULE_PATH})
endif ()

Find the AWS SDK for C++ package.
find_package(AWSSDK REQUIRED COMPONENTS ${SERVICE_COMPONENTS})

if (WINDOWS_BUILD AND AWSSDK_INSTALL_AS_SHARED_LIBS)

Basics 119

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito/hello_cognito#code-examples

Amazon Cognito Developer Guide

 # Copy relevant AWS SDK for C++ libraries into the current binary directory
 for running and debugging.

 # set(BIN_SUB_DIR "/Debug") # If you are building from the command line, you
 may need to uncomment this
 # and set the proper subdirectory to the
 executables' location.

 AWSSDK_CPY_DYN_LIBS(SERVICE_COMPONENTS ""
 ${CMAKE_CURRENT_BINARY_DIR}${BIN_SUB_DIR})
endif ()

add_executable(${PROJECT_NAME}
 hello_cognito.cpp)

target_link_libraries(${PROJECT_NAME}
 ${AWSSDK_LINK_LIBRARIES})

Code for the hello_cognito.cpp source file.

#include <aws/core/Aws.h>
#include <aws/cognito-idp/CognitoIdentityProviderClient.h>
#include <aws/cognito-idp/model/ListUserPoolsRequest.h>
#include <iostream>

/*
 * A "Hello Cognito" starter application which initializes an Amazon Cognito
 client and lists the Amazon Cognito
 * user pools.
 *
 * main function
 *
 * Usage: 'hello_cognito'
 *
 */

int main(int argc, char **argv) {
 Aws::SDKOptions options;
 // Optionally change the log level for debugging.
// options.loggingOptions.logLevel = Utils::Logging::LogLevel::Debug;
 Aws::InitAPI(options); // Should only be called once.
 int result = 0;

Basics 120

Amazon Cognito Developer Guide

 {
 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 cognitoClient(clientConfig);

 Aws::String nextToken; // Used for pagination.
 std::vector<Aws::String> userPools;

 do {
 Aws::CognitoIdentityProvider::Model::ListUserPoolsRequest
 listUserPoolsRequest;
 if (!nextToken.empty()) {
 listUserPoolsRequest.SetNextToken(nextToken);
 }

 Aws::CognitoIdentityProvider::Model::ListUserPoolsOutcome
 listUserPoolsOutcome =
 cognitoClient.ListUserPools(listUserPoolsRequest);

 if (listUserPoolsOutcome.IsSuccess()) {
 for (auto &userPool:
 listUserPoolsOutcome.GetResult().GetUserPools()) {

 userPools.push_back(userPool.GetName());
 }

 nextToken = listUserPoolsOutcome.GetResult().GetNextToken();
 } else {
 std::cerr << "ListUserPools error: " <<
 listUserPoolsOutcome.GetError().GetMessage() << std::endl;
 result = 1;
 break;
 }

 } while (!nextToken.empty());
 std::cout << userPools.size() << " user pools found." << std::endl;
 for (auto &userPool: userPools) {
 std::cout << " user pool: " << userPool << std::endl;
 }
 }

Basics 121

Amazon Cognito Developer Guide

 Aws::ShutdownAPI(options); // Should only be called once.
 return result;
}

• For API details, see ListUserPools in Amazon SDK for C++ API Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {

Basics 122

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 cognitoClient := cognitoidentityprovider.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the user pools for your account.")
 var pools []types.UserPoolDescriptionType
 paginator := cognitoidentityprovider.NewListUserPoolsPaginator(
 cognitoClient, &cognitoidentityprovider.ListUserPoolsInput{MaxResults:
 aws.Int32(10)})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get user pools. Here's why: %v\n", err)
 } else {
 pools = append(pools, output.UserPools...)
 }
 }
 if len(pools) == 0 {
 fmt.Println("You don't have any user pools!")
 } else {
 for _, pool := range pools {
 fmt.Printf("\t%v: %v\n", *pool.Name, *pool.Id)
 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 123

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsRequest;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListUserPools {
 public static void main(String[] args) {
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listAllUserPools(cognitoClient);
 cognitoClient.close();
 }

 public static void listAllUserPools(CognitoIdentityProviderClient
 cognitoClient) {
 try {
 ListUserPoolsRequest request = ListUserPoolsRequest.builder()
 .maxResults(10)
 .build();

 ListUserPoolsResponse response =
 cognitoClient.listUserPools(request);
 response.userPools().forEach(userpool -> {
 System.out.println("User pool " + userpool.name() + ", User ID "
 + userpool.id());
 });

Basics 124

Amazon Cognito Developer Guide

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import {
 paginateListUserPools,
 CognitoIdentityProviderClient,
} from "@aws-sdk/client-cognito-identity-provider";

const client = new CognitoIdentityProviderClient({});

export const helloCognito = async () => {
 const paginator = paginateListUserPools({ client }, {});

 const userPoolNames = [];

 for await (const page of paginator) {
 const names = page.UserPools.map((pool) => pool.Name);
 userPoolNames.push(...names);
 }

 console.log("User pool names: ");
 console.log(userPoolNames.join("\n"));
 return userPoolNames;
};

Basics 125

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

• For API details, see ListUserPools in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import boto3

Create a Cognito Identity Provider client
cognitoidp = boto3.client("cognito-idp")

Initialize a paginator for the list_user_pools operation
paginator = cognitoidp.get_paginator("list_user_pools")

Create a PageIterator from the paginator
page_iterator = paginator.paginate(MaxResults=10)

Initialize variables for pagination
user_pools = []

Handle pagination
for page in page_iterator:
 user_pools.extend(page.get("UserPools", []))

Print the list of user pools
print("User Pools for the account:")
if user_pools:
 for pool in user_pools:
 print(f"Name: {pool['Name']}, ID: {pool['Id']}")
else:
 print("No user pools found.")

Basics 126

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUserPoolsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see ListUserPools in Amazon SDK for Python (Boto3) API Reference.

Ruby

SDK for Ruby

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

require 'aws-sdk-cognitoidentityprovider'
require 'logger'

CognitoManager is a class responsible for managing AWS Cognito operations
such as listing all user pools in the current AWS account.
class CognitoManager
 def initialize(client)
 @client = client
 @logger = Logger.new($stdout)
 end

 # Lists and prints all user pools associated with the AWS account.
 def list_user_pools
 paginator = @client.list_user_pools(max_results: 10)
 user_pools = []
 paginator.each_page do |page|
 user_pools.concat(page.user_pools)
 end

 if user_pools.empty?
 @logger.info('No Cognito user pools found.')
 else
 user_pools.each do |user_pool|
 @logger.info("User pool ID: #{user_pool.id}")
 @logger.info("User pool name: #{user_pool.name}")
 @logger.info("User pool status: #{user_pool.status}")
 @logger.info('---')

Basics 127

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 end
 end
 end
end

if $PROGRAM_NAME == __FILE__
 cognito_client = Aws::CognitoIdentityProvider::Client.new
 manager = CognitoManager.new(cognito_client)
 manager.list_user_pools
end

• For API details, see ListUserPools in Amazon SDK for Ruby API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Actions for Amazon Cognito Identity Provider using Amazon SDKs

The following code examples demonstrate how to perform individual Amazon Cognito Identity
Provider actions with Amazon SDKs. Each example includes a link to GitHub, where you can find
instructions for setting up and running the code.

These excerpts call the Amazon Cognito Identity Provider API and are code excerpts from larger
programs that must be run in context. You can see actions in context in Scenarios for Amazon
Cognito Identity Provider using Amazon SDKs .

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Cognito Identity Provider API Reference.

Examples

• Use AdminCreateUser with an Amazon SDK or CLI

• Use AdminGetUser with an Amazon SDK or CLI

• Use AdminInitiateAuth with an Amazon SDK or CLI

• Use AdminRespondToAuthChallenge with an Amazon SDK or CLI

• Use AdminSetUserPassword with an Amazon SDK or CLI

• Use AssociateSoftwareToken with an Amazon SDK or CLI

Basics 128

https://docs.amazonaws.cn/goto/SdkForRubyV3/cognito-idp-2016-04-18/ListUserPools
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

• Use ConfirmDevice with an Amazon SDK or CLI

• Use ConfirmForgotPassword with an Amazon SDK or CLI

• Use ConfirmSignUp with an Amazon SDK or CLI

• Use CreateUserPool with an Amazon SDK or CLI

• Use CreateUserPoolClient with an Amazon SDK or CLI

• Use DeleteUser with an Amazon SDK or CLI

• Use ForgotPassword with an Amazon SDK or CLI

• Use InitiateAuth with an Amazon SDK or CLI

• Use ListUserPools with an Amazon SDK or CLI

• Use ListUsers with an Amazon SDK or CLI

• Use ResendConfirmationCode with an Amazon SDK or CLI

• Use RespondToAuthChallenge with an Amazon SDK or CLI

• Use SignUp with an Amazon SDK or CLI

• Use UpdateUserPool with an Amazon SDK or CLI

• Use VerifySoftwareToken with an Amazon SDK or CLI

Use AdminCreateUser with an Amazon SDK or CLI

The following code examples show how to use AdminCreateUser.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Write custom activity data with a Lambda function after Amazon Cognito user authentication

CLI

Amazon CLI

To create a user

The following admin-create-user example creates a user with the specified settings
email address and phone number.

aws cognito-idp admin-create-user \
 --user-pool-id us-west-2_aaaaaaaaa \

Basics 129

Amazon Cognito Developer Guide

 --username diego \
 --user-attributes Name=email,Value=diego@example.com
 Name=phone_number,Value="+15555551212" \
 --message-action SUPPRESS

Output:

{
 "User": {
 "Username": "diego",
 "Attributes": [
 {
 "Name": "sub",
 "Value": "7325c1de-b05b-4f84-b321-9adc6e61f4a2"
 },
 {
 "Name": "phone_number",
 "Value": "+15555551212"
 },
 {
 "Name": "email",
 "Value": "diego@example.com"
 }
],
 "UserCreateDate": 1548099495.428,
 "UserLastModifiedDate": 1548099495.428,
 "Enabled": true,
 "UserStatus": "FORCE_CHANGE_PASSWORD"
 }
}

• For API details, see AdminCreateUser in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 130

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/admin-create-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {
 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

Basics 131

Amazon Cognito Developer Guide

• For API details, see AdminCreateUser in Amazon SDK for Go API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use AdminGetUser with an Amazon SDK or CLI

The following code examples show how to use AdminGetUser.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Get the specified user from an Amazon Cognito user pool with
 administrator access.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="poolId">The Id of the Amazon Cognito user pool.</param>
 /// <returns>Async task.</returns>
 public async Task<UserStatusType> GetAdminUserAsync(string userName, string
 poolId)
 {
 AdminGetUserRequest userRequest = new AdminGetUserRequest
 {
 Username = userName,
 UserPoolId = poolId,
 };

Basics 132

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminCreateUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 var response = await _cognitoService.AdminGetUserAsync(userRequest);

 Console.WriteLine($"User status {response.UserStatus}");
 return response.UserStatus;
 }

• For API details, see AdminGetUser in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::AdminGetUserRequest request;
 request.SetUsername(userName);
 request.SetUserPoolId(userPoolID);

 Aws::CognitoIdentityProvider::Model::AdminGetUserOutcome outcome =
 client.AdminGetUser(request);

 if (outcome.IsSuccess()) {
 std::cout << "The status for " << userName << " is " <<

 Aws::CognitoIdentityProvider::Model::UserStatusTypeMapper::GetNameForUserStatusType(
 outcome.GetResult().GetUserStatus()) << std::endl;
 std::cout << "Enabled is " << outcome.GetResult().GetEnabled() <<
 std::endl;
 }

Basics 133

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminGetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 else {
 std::cerr << "Error with CognitoIdentityProvider::AdminGetUser. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see AdminGetUser in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To get a user

This example gets information about username jane@example.com.

Command:

aws cognito-idp admin-get-user --user-pool-id us-west-2_aaaaaaaaa --
username jane@example.com

Output:

{
 "Username": "4320de44-2322-4620-999b-5e2e1c8df013",
 "Enabled": true,
 "UserStatus": "FORCE_CHANGE_PASSWORD",
 "UserCreateDate": 1548108509.537,
 "UserAttributes": [
 {
 "Name": "sub",
 "Value": "4320de44-2322-4620-999b-5e2e1c8df013"
 },
 {
 "Name": "email_verified",
 "Value": "true"
 },
 {
 "Name": "phone_number_verified",
 "Value": "true"
 },

Basics 134

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminGetUser

Amazon Cognito Developer Guide

 {
 "Name": "phone_number",
 "Value": "+01115551212"
 },
 {
 "Name": "email",
 "Value": "jane@example.com"
 }
],
 "UserLastModifiedDate": 1548108509.537
}

• For API details, see AdminGetUser in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static void getAdminUser(CognitoIdentityProviderClient
 identityProviderClient, String userName,
 String poolId) {
 try {
 AdminGetUserRequest userRequest = AdminGetUserRequest.builder()
 .username(userName)
 .userPoolId(poolId)
 .build();

 AdminGetUserResponse response =
 identityProviderClient.adminGetUser(userRequest);
 System.out.println("User status " + response.userStatusAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Basics 135

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/admin-get-user.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see AdminGetUser in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const adminGetUser = ({ userPoolId, username }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 });

 return client.send(command);
};

• For API details, see AdminGetUser in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun getAdminUser(

Basics 136

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminGetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminGetUserCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 userNameVal: String?,
 poolIdVal: String?,
) {
 val userRequest =
 AdminGetUserRequest {
 username = userNameVal
 userPoolId = poolIdVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.adminGetUser(userRequest)
 println("User status ${response.userStatus}")
 }
}

• For API details, see AdminGetUser in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """

Basics 137

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def sign_up_user(self, user_name, password, user_email):
 """
 Signs up a new user with Amazon Cognito. This action prompts Amazon
 Cognito
 to send an email to the specified email address. The email contains a
 code that
 can be used to confirm the user.

 When the user already exists, the user status is checked to determine
 whether
 the user has been confirmed.

 :param user_name: The user name that identifies the new user.
 :param password: The password for the new user.
 :param user_email: The email address for the new user.
 :return: True when the user is already confirmed with Amazon Cognito.
 Otherwise, false.
 """
 try:
 kwargs = {
 "ClientId": self.client_id,
 "Username": user_name,
 "Password": password,
 "UserAttributes": [{"Name": "email", "Value": user_email}],
 }
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 response = self.cognito_idp_client.sign_up(**kwargs)
 confirmed = response["UserConfirmed"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "UsernameExistsException":
 response = self.cognito_idp_client.admin_get_user(
 UserPoolId=self.user_pool_id, Username=user_name
)
 logger.warning(
 "User %s exists and is %s.", user_name,
 response["UserStatus"]
)

Basics 138

Amazon Cognito Developer Guide

 confirmed = response["UserStatus"] == "CONFIRMED"
 else:
 logger.error(
 "Couldn't sign up %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return confirmed

• For API details, see AdminGetUser in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Get information about a specific user in a user pool.
 ///
 /// - Parameters:
 /// - cipClient: The Amazon Cognito Identity Provider client to use.
 /// - userName: The user to retrieve information about.
 /// - userPoolId: The user pool to search for the specified user.
 ///
 /// - Returns: `true` if the user's information was successfully
 /// retrieved. Otherwise returns `false`.
 func adminGetUser(cipClient: CognitoIdentityProviderClient, userName: String,
 userPoolId: String) async -> Bool {
 do {
 let output = try await cipClient.adminGetUser(
 input: AdminGetUserInput(

Basics 139

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminGetUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 userPoolId: userPoolId,
 username: userName
)
)

 guard let userStatus = output.userStatus else {
 print("*** Unable to get the user's status.")
 return false
 }

 print("User status: \(userStatus)")
 return true
 } catch {
 return false
 }
 }

• For API details, see AdminGetUser in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use AdminInitiateAuth with an Amazon SDK or CLI

The following code examples show how to use AdminInitiateAuth.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 140

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/admingetuser(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 /// <summary>
 /// Initiate an admin auth request.
 /// </summary>
 /// <param name="clientId">The client ID to use.</param>
 /// <param name="userPoolId">The ID of the user pool.</param>
 /// <param name="userName">The username to authenticate.</param>
 /// <param name="password">The user's password.</param>
 /// <returns>The session to use in challenge-response.</returns>
 public async Task<string> AdminInitiateAuthAsync(string clientId, string
 userPoolId, string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var request = new AdminInitiateAuthRequest
 {
 ClientId = clientId,
 UserPoolId = userPoolId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.AdminInitiateAuthAsync(request);
 return response.Session;
 }

• For API details, see AdminInitiateAuth in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;

Basics 141

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminInitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::AdminInitiateAuthRequest request;
 request.SetClientId(clientID);
 request.SetUserPoolId(userPoolID);
 request.AddAuthParameters("USERNAME", userName);
 request.AddAuthParameters("PASSWORD", password);
 request.SetAuthFlow(

 Aws::CognitoIdentityProvider::Model::AuthFlowType::ADMIN_USER_PASSWORD_AUTH);

 Aws::CognitoIdentityProvider::Model::AdminInitiateAuthOutcome outcome =
 client.AdminInitiateAuth(request);

 if (outcome.IsSuccess()) {
 std::cout << "Call to AdminInitiateAuth was successful." << std::endl;
 sessionResult = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::AdminInitiateAuth. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see AdminInitiateAuth in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To sign in a user as an admin

The following admin-initiate-auth example signs in the user diego@example.com.
This example also includes metadata for threat protection and ClientMetadata for Lambda
triggers. The user is configured for TOTP MFA and receives a challenge to provide a code
from their authenticator app before they can complete authentication.

Basics 142

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminInitiateAuth

Amazon Cognito Developer Guide

aws cognito-idp admin-initiate-auth \
 --user-pool-id us-west-2_EXAMPLE \
 --client-id 1example23456789 \
 --auth-flow ADMIN_USER_PASSWORD_AUTH \
 --auth-parameters USERNAME=diego@example.com,PASSWORD="My@Example
$Password3!",SECRET_HASH=ExampleEncodedClientIdSecretAndUsername= \
 --context-data="{\"EncodedData\":\"abc123example\",\"HttpHeaders\":
[{\"headerName\":\"UserAgent\",\"headerValue\":\"Mozilla/5.0 (Windows NT
 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0\"}],\"IpAddress\":
\"192.0.2.1\",\"ServerName\":\"example.com\",\"ServerPath\":\"/login\"}" \
 --client-metadata="{\"MyExampleKey\": \"MyExampleValue\"}"

Output:

{
 "ChallengeName": "SOFTWARE_TOKEN_MFA",
 "Session": "AYABeExample...",
 "ChallengeParameters": {
 "FRIENDLY_DEVICE_NAME": "MyAuthenticatorApp",
 "USER_ID_FOR_SRP": "diego@example.com"
 }
}

For more information, see Admin authentication flow in the Amazon Cognito Developer
Guide.

• For API details, see AdminInitiateAuth in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static AdminInitiateAuthResponse
 initiateAuth(CognitoIdentityProviderClient identityProviderClient,

Basics 143

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-admin-authentication-flow
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/admin-initiate-auth.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 String clientId, String userName, String password, String userPoolId)
 {
 try {
 Map<String, String> authParameters = new HashMap<>();
 authParameters.put("USERNAME", userName);
 authParameters.put("PASSWORD", password);

 AdminInitiateAuthRequest authRequest =
 AdminInitiateAuthRequest.builder()
 .clientId(clientId)
 .userPoolId(userPoolId)
 .authParameters(authParameters)
 .authFlow(AuthFlowType.ADMIN_USER_PASSWORD_AUTH)
 .build();

 AdminInitiateAuthResponse response =
 identityProviderClient.adminInitiateAuth(authRequest);
 System.out.println("Result Challenge is : " +
 response.challengeName());
 return response;

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

 return null;
 }

• For API details, see AdminInitiateAuth in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 144

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminInitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/#code-examples

Amazon Cognito Developer Guide

const adminInitiateAuth = ({ clientId, userPoolId, username, password }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminInitiateAuthCommand({
 ClientId: clientId,
 UserPoolId: userPoolId,
 AuthFlow: AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 });

 return client.send(command);
};

• For API details, see AdminInitiateAuth in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun checkAuthMethod(
 clientIdVal: String,
 userNameVal: String,
 passwordVal: String,
 userPoolIdVal: String,
): AdminInitiateAuthResponse {
 val authParas = mutableMapOf<String, String>()
 authParas["USERNAME"] = userNameVal
 authParas["PASSWORD"] = passwordVal

 val authRequest =
 AdminInitiateAuthRequest {
 clientId = clientIdVal
 userPoolId = userPoolIdVal
 authParameters = authParas

Basics 145

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminInitiateAuthCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 authFlow = AuthFlowType.AdminUserPasswordAuth
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.adminInitiateAuth(authRequest)
 println("Result Challenge is ${response.challengeName}")
 return response
 }
}

• For API details, see AdminInitiateAuth in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

Basics 146

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 def start_sign_in(self, user_name, password):
 """
 Starts the sign-in process for a user by using administrator credentials.
 This method of signing in is appropriate for code running on a secure
 server.

 If the user pool is configured to require MFA and this is the first sign-
in
 for the user, Amazon Cognito returns a challenge response to set up an
 MFA application. When this occurs, this function gets an MFA secret from
 Amazon Cognito and returns it to the caller.

 :param user_name: The name of the user to sign in.
 :param password: The user's password.
 :return: The result of the sign-in attempt. When sign-in is successful,
 this
 returns an access token that can be used to get AWS credentials.
 Otherwise,
 Amazon Cognito returns a challenge to set up an MFA application,
 or a challenge to enter an MFA code from a registered MFA
 application.
 """
 try:
 kwargs = {
 "UserPoolId": self.user_pool_id,
 "ClientId": self.client_id,
 "AuthFlow": "ADMIN_USER_PASSWORD_AUTH",
 "AuthParameters": {"USERNAME": user_name, "PASSWORD": password},
 }
 if self.client_secret is not None:
 kwargs["AuthParameters"]["SECRET_HASH"] =
 self._secret_hash(user_name)
 response = self.cognito_idp_client.admin_initiate_auth(**kwargs)
 challenge_name = response.get("ChallengeName", None)
 if challenge_name == "MFA_SETUP":
 if (
 "SOFTWARE_TOKEN_MFA"
 in response["ChallengeParameters"]["MFAS_CAN_SETUP"]
):
 response.update(self.get_mfa_secret(response["Session"]))
 else:
 raise RuntimeError(

Basics 147

Amazon Cognito Developer Guide

 "The user pool requires MFA setup, but the user pool is
 not "
 "configured for TOTP MFA. This example requires TOTP
 MFA."
)
 except ClientError as err:
 logger.error(
 "Couldn't start sign in for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

• For API details, see AdminInitiateAuth in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Begin an authentication session.
 ///
 /// - Parameters:
 /// - cipClient: The `CongitoIdentityProviderClient` to use.
 /// - clientId: The app client ID to use.
 /// - userName: The username to check.
 /// - password: The user's password.
 /// - userPoolId: The user pool to use.

Basics 148

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminInitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 ///
 /// - Returns: The session token associated with this authentication
 /// session.
 func initiateAuth(cipClient: CognitoIdentityProviderClient, clientId: String,
 userName: String, password: String,
 userPoolId: String) async -> String? {
 var authParams: [String: String] = [:]

 authParams["USERNAME"] = userName
 authParams["PASSWORD"] = password

 do {
 let output = try await cipClient.adminInitiateAuth(
 input: AdminInitiateAuthInput(
 authFlow:
 CognitoIdentityProviderClientTypes.AuthFlowType.adminUserPasswordAuth,
 authParameters: authParams,
 clientId: clientId,
 userPoolId: userPoolId
)
)

 guard let challengeName = output.challengeName else {
 print("*** Invalid response from the auth service.")
 return nil
 }

 print("=====> Response challenge is \(challengeName)")

 return output.session
 } catch _ as UserNotFoundException {
 print("*** The specified username, \(userName), doesn't exist.")
 return nil
 } catch _ as UserNotConfirmedException {
 print("*** The user \(userName) has not been confirmed.")
 return nil
 } catch {
 print("*** An unexpected error occurred.")
 return nil
 }
 }

• For API details, see AdminInitiateAuth in Amazon SDK for Swift API reference.

Basics 149

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/admininitiateauth(input:)

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use AdminRespondToAuthChallenge with an Amazon SDK or CLI

The following code examples show how to use AdminRespondToAuthChallenge.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Respond to an admin authentication challenge.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="clientId">The client ID.</param>
 /// <param name="mfaCode">The multi-factor authentication code.</param>
 /// <param name="session">The current application session.</param>
 /// <param name="clientId">The user pool ID.</param>
 /// <returns>The result of the authentication response.</returns>
 public async Task<AuthenticationResultType> AdminRespondToAuthChallengeAsync(
 string userName,
 string clientId,
 string mfaCode,
 string session,
 string userPoolId)
 {
 Console.WriteLine("SOFTWARE_TOKEN_MFA challenge is generated");

Basics 150

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 var challengeResponses = new Dictionary<string, string>();
 challengeResponses.Add("USERNAME", userName);
 challengeResponses.Add("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

 var respondToAuthChallengeRequest = new
 AdminRespondToAuthChallengeRequest
 {
 ChallengeName = ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ClientId = clientId,
 ChallengeResponses = challengeResponses,
 Session = session,
 UserPoolId = userPoolId,
 };

 var response = await
 _cognitoService.AdminRespondToAuthChallengeAsync(respondToAuthChallengeRequest);
 Console.WriteLine($"Response to Authentication
 {response.AuthenticationResult.TokenType}");
 return response.AuthenticationResult;
 }

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

Basics 151

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 Aws::CognitoIdentityProvider::Model::AdminRespondToAuthChallengeRequest
 request;
 request.AddChallengeResponses("USERNAME", userName);
 request.AddChallengeResponses("SOFTWARE_TOKEN_MFA_CODE", mfaCode);
 request.SetChallengeName(

 Aws::CognitoIdentityProvider::Model::ChallengeNameType::SOFTWARE_TOKEN_MFA);
 request.SetClientId(clientID);
 request.SetUserPoolId(userPoolID);
 request.SetSession(session);

 Aws::CognitoIdentityProvider::Model::AdminRespondToAuthChallengeOutcome
 outcome =
 client.AdminRespondToAuthChallenge(request);

 if (outcome.IsSuccess()) {
 std::cout << "Here is the response to the challenge.\n" <<

 outcome.GetResult().GetAuthenticationResult().Jsonize().View().WriteReadable()
 << std::endl;

 accessToken =
 outcome.GetResult().GetAuthenticationResult().GetAccessToken();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::AdminRespondToAuthChallenge. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To respond to an authentication challenge

There are many ways to respond to different authentication challenges, depending
on your authentication flow, user pool configuration, and user settings. The following

Basics 152

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminRespondToAuthChallenge

Amazon Cognito Developer Guide

admin-respond-to-auth-challenge example provides a TOTP MFA code for
diego@example.com and completes sign-in. This user pool has device remembering turned
on, so the authentication result also returns a new device key.

aws cognito-idp admin-respond-to-auth-challenge \
 --user-pool-id us-west-2_EXAMPLE \
 --client-id 1example23456789 \
 --challenge-name SOFTWARE_TOKEN_MFA \
 --challenge-
responses USERNAME=diego@example.com,SOFTWARE_TOKEN_MFA_CODE=000000 \
 --session AYABeExample...

Output:

{
 "ChallengeParameters": {},
 "AuthenticationResult": {
 "AccessToken": "eyJra456defEXAMPLE",
 "ExpiresIn": 3600,
 "TokenType": "Bearer",
 "RefreshToken": "eyJra123abcEXAMPLE",
 "IdToken": "eyJra789ghiEXAMPLE",
 "NewDeviceMetadata": {
 "DeviceKey": "us-west-2_a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeviceGroupKey": "-ExAmPlE1"
 }
 }
}

For more information, see Admin authentication flow in the Amazon Cognito Developer
Guide.

• For API details, see AdminRespondToAuthChallenge in Amazon CLI Command Reference.

Basics 153

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-admin-authentication-flow
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/admin-respond-to-auth-challenge.html

Amazon Cognito Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 // Respond to an authentication challenge.
 public static void adminRespondToAuthChallenge(CognitoIdentityProviderClient
 identityProviderClient,
 String userName, String clientId, String mfaCode, String session) {
 System.out.println("SOFTWARE_TOKEN_MFA challenge is generated");
 Map<String, String> challengeResponses = new HashMap<>();

 challengeResponses.put("USERNAME", userName);
 challengeResponses.put("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

 AdminRespondToAuthChallengeRequest respondToAuthChallengeRequest =
 AdminRespondToAuthChallengeRequest.builder()
 .challengeName(ChallengeNameType.SOFTWARE_TOKEN_MFA)
 .clientId(clientId)
 .challengeResponses(challengeResponses)
 .session(session)
 .build();

 AdminRespondToAuthChallengeResponse respondToAuthChallengeResult =
 identityProviderClient
 .adminRespondToAuthChallenge(respondToAuthChallengeRequest);

 System.out.println("respondToAuthChallengeResult.getAuthenticationResult()"
 + respondToAuthChallengeResult.authenticationResult());
 }

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for Java 2.x API
Reference.

Basics 154

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminRespondToAuthChallenge

Amazon Cognito Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const adminRespondToAuthChallenge = ({
 userPoolId,
 clientId,
 username,
 totp,
 session,
}) => {
 const client = new CognitoIdentityProviderClient({});
 const command = new AdminRespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: totp,
 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for JavaScript API
Reference.

Basics 155

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminRespondToAuthChallengeCommand

Amazon Cognito Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Respond to an authentication challenge.
suspend fun adminRespondToAuthChallenge(
 userName: String,
 clientIdVal: String?,
 mfaCode: String,
 sessionVal: String?,
) {
 println("SOFTWARE_TOKEN_MFA challenge is generated")
 val challengeResponsesOb = mutableMapOf<String, String>()
 challengeResponsesOb["USERNAME"] = userName
 challengeResponsesOb["SOFTWARE_TOKEN_MFA_CODE"] = mfaCode

 val adminRespondToAuthChallengeRequest =
 AdminRespondToAuthChallengeRequest {
 challengeName = ChallengeNameType.SoftwareTokenMfa
 clientId = clientIdVal
 challengeResponses = challengeResponsesOb
 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val respondToAuthChallengeResult =
 identityProviderClient.adminRespondToAuthChallenge(adminRespondToAuthChallengeRequest)
 println("respondToAuthChallengeResult.getAuthenticationResult()
 ${respondToAuthChallengeResult.authenticationResult}")
 }
}

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for Kotlin API
reference.

Basics 156

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Cognito Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Respond to an MFA challenge by providing a code generated by an associated MFA
application.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def respond_to_mfa_challenge(self, user_name, session, mfa_code):
 """
 Responds to a challenge for an MFA code. This completes the second step
 of
 a two-factor sign-in. When sign-in is successful, it returns an access
 token
 that can be used to get AWS credentials from Amazon Cognito.

 :param user_name: The name of the user who is signing in.

Basics 157

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :param mfa_code: A code generated by the associated MFA application.
 :return: The result of the authentication. When successful, this contains
 an
 access token for the user.
 """
 try:
 kwargs = {
 "UserPoolId": self.user_pool_id,
 "ClientId": self.client_id,
 "ChallengeName": "SOFTWARE_TOKEN_MFA",
 "Session": session,
 "ChallengeResponses": {
 "USERNAME": user_name,
 "SOFTWARE_TOKEN_MFA_CODE": mfa_code,
 },
 }
 if self.client_secret is not None:
 kwargs["ChallengeResponses"]["SECRET_HASH"] = self._secret_hash(
 user_name
)
 response =
 self.cognito_idp_client.admin_respond_to_auth_challenge(**kwargs)
 auth_result = response["AuthenticationResult"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "ExpiredCodeException":
 logger.warning(
 "Your MFA code has expired or has been used already. You
 might have "
 "to wait a few seconds until your app shows you a new code."
)
 else:
 logger.error(
 "Couldn't respond to mfa challenge for %s. Here's why: %s:
 %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return auth_result

Basics 158

Amazon Cognito Developer Guide

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for Python (Boto3) API
Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Respond to the authentication challenge received from Cognito after
 /// initiating an authentication session. This involves sending a current
 /// MFA code to the service.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - userName: The user's username.
 /// - clientId: The app client ID.
 /// - userPoolId: The user pool to sign into.
 /// - mfaCode: The 6-digit MFA code currently displayed by the user's
 /// authenticator.
 /// - session: The authentication session to continue processing.
 func adminRespondToAuthChallenge(cipClient: CognitoIdentityProviderClient,
 userName: String,
 clientId: String, userPoolId: String,
 mfaCode: String,
 session: String) async {
 print("=====> SOFTWARE_TOKEN_MFA challenge is generated...")

 var challengeResponsesOb: [String: String] = [:]
 challengeResponsesOb["USERNAME"] = userName
 challengeResponsesOb["SOFTWARE_TOKEN_MFA_CODE"] = mfaCode

Basics 159

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 do {
 let output = try await cipClient.adminRespondToAuthChallenge(
 input: AdminRespondToAuthChallengeInput(
 challengeName:
 CognitoIdentityProviderClientTypes.ChallengeNameType.softwareTokenMfa,
 challengeResponses: challengeResponsesOb,
 clientId: clientId,
 session: session,
 userPoolId: userPoolId
)
)

 guard let authenticationResult = output.authenticationResult else {
 print("*** Unable to get authentication result.")
 return
 }

 print("=====> Authentication result (JWTs are redacted):")
 print(authenticationResult)
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return
 } catch _ as CodeMismatchException {
 print("*** The specified MFA code doesn't match the expected value.")
 return
 } catch _ as UserNotFoundException {
 print("*** The specified username, \(userName), doesn't exist.")
 return
 } catch _ as UserNotConfirmedException {
 print("*** The user \(userName) has not been confirmed.")
 return
 } catch let error as NotAuthorizedException {
 print("*** Unauthorized access. Reason: \(error.properties.message ??
 "<unknown>")")
 } catch {
 print("*** Error responding to the MFA challenge.")
 return
 }
 }

• For API details, see AdminRespondToAuthChallenge in Amazon SDK for Swift API reference.

Basics 160

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/adminrespondtoauthchallenge(input:)

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use AdminSetUserPassword with an Amazon SDK or CLI

The following code examples show how to use AdminSetUserPassword.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Write custom activity data with a Lambda function after Amazon Cognito user authentication

CLI

Amazon CLI

To set a user password as an admin

The following admin-set-user-password example permanently sets the password for
diego@example.com.

aws cognito-idp admin-set-user-password \
 --user-pool-id us-west-2_EXAMPLE \
 --username diego@example.com \
 --password MyExamplePassword1! \
 --permanent

This command produces no output.

For more information, see Passwords, password recovery, and password policies in the
Amazon Cognito Developer Guide.

• For API details, see AdminSetUserPassword in Amazon CLI Command Reference.

Basics 161

https://docs.aws.amazon.com/cognito/latest/developerguide/managing-users-passwords.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/admin-set-user-password.html

Amazon Cognito Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {

Basics 162

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err
}

• For API details, see AdminSetUserPassword in Amazon SDK for Go API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use AssociateSoftwareToken with an Amazon SDK or CLI

The following code examples show how to use AssociateSoftwareToken.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Get an MFA token to authenticate the user with the authenticator.
 /// </summary>
 /// <param name="session">The session name.</param>

Basics 163

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminSetUserPassword
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 /// <returns>The session name.</returns>
 public async Task<string> AssociateSoftwareTokenAsync(string session)
 {
 var softwareTokenRequest = new AssociateSoftwareTokenRequest
 {
 Session = session,
 };

 var tokenResponse = await
 _cognitoService.AssociateSoftwareTokenAsync(softwareTokenRequest);
 var secretCode = tokenResponse.SecretCode;

 Console.WriteLine($"Use the following secret code to set up the
 authenticator: {secretCode}");

 return tokenResponse.Session;
 }

• For API details, see AssociateSoftwareToken in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::AssociateSoftwareTokenRequest
 request;
 request.SetSession(session);

Basics 164

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 Aws::CognitoIdentityProvider::Model::AssociateSoftwareTokenOutcome
 outcome =
 client.AssociateSoftwareToken(request);

 if (outcome.IsSuccess()) {
 std::cout
 << "Enter this setup key into an authenticator app, for
 example Google Authenticator."
 << std::endl;
 std::cout << "Setup key: " << outcome.GetResult().GetSecretCode()
 << std::endl;
#ifdef USING_QR
 printAsterisksLine();
 std::cout << "\nOr scan the QR code in the file '" << QR_CODE_PATH <<
 "."
 << std::endl;

 saveQRCode(std::string("otpauth://totp/") + userName + "?secret=" +
 outcome.GetResult().GetSecretCode());
#endif // USING_QR
 session = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::AssociateSoftwareToken. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see AssociateSoftwareToken in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To generate a secret key for an MFA authenticator app

The following associate-software-token example generates a TOTP private key for
a user who has signed in and received an access token. The resulting private key can be

Basics 165

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AssociateSoftwareToken

Amazon Cognito Developer Guide

manually entered into an authenticator app, or applications can render it as a QR code that
the user can scan.

aws cognito-idp associate-software-token \
 --access-token eyJra456defEXAMPLE

Output:

{
 "SecretCode": "QWERTYUIOP123456EXAMPLE"
}

For more information, see TOTP software token MFA in the Amazon Cognito Developer Guide.

• For API details, see AssociateSoftwareToken in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static String getSecretForAppMFA(CognitoIdentityProviderClient
 identityProviderClient, String session) {
 AssociateSoftwareTokenRequest softwareTokenRequest =
 AssociateSoftwareTokenRequest.builder()
 .session(session)
 .build();

 AssociateSoftwareTokenResponse tokenResponse = identityProviderClient
 .associateSoftwareToken(softwareTokenRequest);
 String secretCode = tokenResponse.secretCode();
 System.out.println("Enter this token into Google Authenticator");
 System.out.println(secretCode);
 return tokenResponse.session();
 }

Basics 166

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa-totp.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/associate-software-token.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see AssociateSoftwareToken in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const associateSoftwareToken = (session) => {
 const client = new CognitoIdentityProviderClient({});
 const command = new AssociateSoftwareTokenCommand({
 Session: session,
 });

 return client.send(command);
};

• For API details, see AssociateSoftwareToken in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun getSecretForAppMFA(sessionVal: String?): String? {
 val softwareTokenRequest =
 AssociateSoftwareTokenRequest {

Basics 167

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AssociateSoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AssociateSoftwareTokenCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val tokenResponse =
 identityProviderClient.associateSoftwareToken(softwareTokenRequest)
 val secretCode = tokenResponse.secretCode
 println("Enter this token into Google Authenticator")
 println(secretCode)
 return tokenResponse.session
 }
}

• For API details, see AssociateSoftwareToken in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id

Basics 168

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 self.client_id = client_id
 self.client_secret = client_secret

 def get_mfa_secret(self, session):
 """
 Gets a token that can be used to associate an MFA application with the
 user.

 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :return: An MFA token that can be used to set up an MFA application.
 """
 try:
 response =
 self.cognito_idp_client.associate_software_token(Session=session)
 except ClientError as err:
 logger.error(
 "Couldn't get MFA secret. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

• For API details, see AssociateSoftwareToken in Amazon SDK for Python (Boto3) API
Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 169

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Request and display an MFA secret token that the user should enter
 /// into their authenticator to set it up for the user account.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - authSession: The authentication session to request an MFA secret
 /// for.
 ///
 /// - Returns: A string containing the MFA secret token that should be
 /// entered into the authenticator software.
 func getSecretForAppMFA(cipClient: CognitoIdentityProviderClient,
 authSession: String?) async -> String? {
 do {
 let output = try await cipClient.associateSoftwareToken(
 input: AssociateSoftwareTokenInput(
 session: authSession
)
)

 guard let secretCode = output.secretCode else {
 print("*** Unable to get the secret code")
 return nil
 }

 print("=====> Enter this token into Google Authenticator:
 \(secretCode)")
 return output.session
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return nil
 } catch {
 print("*** An unexpected error occurred getting the secret for the
 app's MFA.")
 return nil
 }
 }

• For API details, see AssociateSoftwareToken in Amazon SDK for Swift API reference.

Basics 170

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/associatesoftwaretoken(input:)

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ConfirmDevice with an Amazon SDK or CLI

The following code examples show how to use ConfirmDevice.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Initiates and confirms tracking of the device.
 /// </summary>
 /// <param name="accessToken">The user's access token.</param>
 /// <param name="deviceKey">The key of the device from Amazon Cognito.</
param>
 /// <param name="deviceName">The device name.</param>
 /// <returns></returns>
 public async Task<bool> ConfirmDeviceAsync(string accessToken, string
 deviceKey, string deviceName)
 {
 var request = new ConfirmDeviceRequest
 {
 AccessToken = accessToken,
 DeviceKey = deviceKey,
 DeviceName = deviceName
 };

Basics 171

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 var response = await _cognitoService.ConfirmDeviceAsync(request);
 return response.UserConfirmationNecessary;
 }

• For API details, see ConfirmDevice in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To confirm a user device

The following confirm-device example adds a new remembered device for the current
user.

aws cognito-idp confirm-device \
 --access-token eyJra456defEXAMPLE \
 --device-key us-west-2_a1b2c3d4-5678-90ab-cdef-EXAMPLE11111 \
 --device-secret-verifier-
config PasswordVerifier=TXlWZXJpZmllclN0cmluZw,Salt=TXlTUlBTYWx0

Output:

{
 "UserConfirmationNecessary": false
}

For more information, see Working with user devices in your user pool in the Amazon
Cognito Developer Guide.

• For API details, see ConfirmDevice in Amazon CLI Command Reference.

Basics 172

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmDevice
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-device-tracking.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/confirm-device.html

Amazon Cognito Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const confirmDevice = ({ deviceKey, accessToken, passwordVerifier, salt }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmDeviceCommand({
 DeviceKey: deviceKey,
 AccessToken: accessToken,
 DeviceSecretVerifierConfig: {
 PasswordVerifier: passwordVerifier,
 Salt: salt,
 },
 });

 return client.send(command);
};

• For API details, see ConfirmDevice in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

Basics 173

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmDeviceCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def confirm_mfa_device(
 self,
 user_name,
 device_key,
 device_group_key,
 device_password,
 access_token,
 aws_srp,
):
 """
 Confirms an MFA device to be tracked by Amazon Cognito. When a device is
 tracked, its key and password can be used to sign in without requiring a
 new
 MFA code from the MFA application.

 :param user_name: The user that is associated with the device.
 :param device_key: The key of the device, returned by Amazon Cognito.
 :param device_group_key: The group key of the device, returned by Amazon
 Cognito.
 :param device_password: The password that is associated with the device.
 :param access_token: The user's access token.
 :param aws_srp: A class that helps with Secure Remote Password (SRP)
 calculations. The scenario associated with this example
 uses
 the warrant package.
 :return: True when the user must confirm the device. Otherwise, False.
 When

Basics 174

Amazon Cognito Developer Guide

 False, the device is automatically confirmed and tracked.
 """
 srp_helper = aws_srp.AWSSRP(
 username=user_name,
 password=device_password,
 pool_id="_",
 client_id=self.client_id,
 client_secret=None,
 client=self.cognito_idp_client,
)
 device_and_pw = f"{device_group_key}{device_key}:{device_password}"
 device_and_pw_hash = aws_srp.hash_sha256(device_and_pw.encode("utf-8"))
 salt = aws_srp.pad_hex(aws_srp.get_random(16))
 x_value = aws_srp.hex_to_long(aws_srp.hex_hash(salt +
 device_and_pw_hash))
 verifier = aws_srp.pad_hex(pow(srp_helper.val_g, x_value,
 srp_helper.big_n))
 device_secret_verifier_config = {
 "PasswordVerifier": base64.standard_b64encode(
 bytearray.fromhex(verifier)
).decode("utf-8"),
 "Salt":
 base64.standard_b64encode(bytearray.fromhex(salt)).decode("utf-8"),
 }
 try:
 response = self.cognito_idp_client.confirm_device(
 AccessToken=access_token,
 DeviceKey=device_key,
 DeviceSecretVerifierConfig=device_secret_verifier_config,
)
 user_confirm = response["UserConfirmationNecessary"]
 except ClientError as err:
 logger.error(
 "Couldn't confirm mfa device %s. Here's why: %s: %s",
 device_key,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return user_confirm

Basics 175

Amazon Cognito Developer Guide

• For API details, see ConfirmDevice in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ConfirmForgotPassword with an Amazon SDK or CLI

The following code examples show how to use ConfirmForgotPassword.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Automatically migrate known users with a Lambda function

CLI

Amazon CLI

To confirm a forgotten password

This example confirms a forgotten password for username diego@example.com.

Command:

aws cognito-idp confirm-forgot-password --client-id 3n4b5urk1ft4fl3mg5e62d9ado --
username=diego@example.com --password PASSWORD --confirmation-code CONF_CODE

• For API details, see ConfirmForgotPassword in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 176

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ConfirmDevice
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/confirm-forgot-password.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

• For API details, see ConfirmForgotPassword in Amazon SDK for Go API Reference.

Basics 177

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ConfirmForgotPassword

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ConfirmSignUp with an Amazon SDK or CLI

The following code examples show how to use ConfirmSignUp.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Confirm that the user has signed up.
 /// </summary>
 /// <param name="clientId">The Id of this application.</param>
 /// <param name="code">The confirmation code sent to the user.</param>
 /// <param name="userName">The username.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ConfirmSignupAsync(string clientId, string code,
 string userName)
 {
 var signUpRequest = new ConfirmSignUpRequest
 {
 ClientId = clientId,
 ConfirmationCode = code,
 Username = userName,
 };

 var response = await _cognitoService.ConfirmSignUpAsync(signUpRequest);

Basics 178

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 if (response.HttpStatusCode == HttpStatusCode.OK)
 {
 Console.WriteLine($"{userName} was confirmed");
 return true;
 }
 return false;
 }

• For API details, see ConfirmSignUp in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::ConfirmSignUpRequest request;
 request.SetClientId(clientID);
 request.SetConfirmationCode(confirmationCode);
 request.SetUsername(userName);

 Aws::CognitoIdentityProvider::Model::ConfirmSignUpOutcome outcome =
 client.ConfirmSignUp(request);

 if (outcome.IsSuccess()) {
 std::cout << "ConfirmSignup was Successful."
 << std::endl;
 }
 else {

Basics 179

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmSignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 std::cerr << "Error with CognitoIdentityProvider::ConfirmSignUp. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see ConfirmSignUp in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To confirm sign-up

This example confirms sign-up for username diego@example.com.

Command:

aws cognito-idp confirm-sign-up --client-id 3n4b5urk1ft4fl3mg5e62d9ado --
username=diego@example.com --confirmation-code CONF_CODE

• For API details, see ConfirmSignUp in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static void confirmSignUp(CognitoIdentityProviderClient
 identityProviderClient, String clientId, String code,
 String userName) {
 try {
 ConfirmSignUpRequest signUpRequest = ConfirmSignUpRequest.builder()

Basics 180

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ConfirmSignUp
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/confirm-sign-up.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 .clientId(clientId)
 .confirmationCode(code)
 .username(userName)
 .build();

 identityProviderClient.confirmSignUp(signUpRequest);
 System.out.println(userName + " was confirmed");

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see ConfirmSignUp in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const confirmSignUp = ({ clientId, username, code }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmSignUpCommand({
 ClientId: clientId,
 Username: username,
 ConfirmationCode: code,
 });

 return client.send(command);
};

• For API details, see ConfirmSignUp in Amazon SDK for JavaScript API Reference.

Basics 181

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ConfirmSignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmSignUpCommand

Amazon Cognito Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun confirmSignUp(
 clientIdVal: String?,
 codeVal: String?,
 userNameVal: String?,
) {
 val signUpRequest =
 ConfirmSignUpRequest {
 clientId = clientIdVal
 confirmationCode = codeVal
 username = userNameVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 identityProviderClient.confirmSignUp(signUpRequest)
 println("$userNameVal was confirmed")
 }
}

• For API details, see ConfirmSignUp in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 182

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def confirm_user_sign_up(self, user_name, confirmation_code):
 """
 Confirms a previously created user. A user must be confirmed before they
 can sign in to Amazon Cognito.

 :param user_name: The name of the user to confirm.
 :param confirmation_code: The confirmation code sent to the user's
 registered
 email address.
 :return: True when the confirmation succeeds.
 """
 try:
 kwargs = {
 "ClientId": self.client_id,
 "Username": user_name,
 "ConfirmationCode": confirmation_code,
 }
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 self.cognito_idp_client.confirm_sign_up(**kwargs)
 except ClientError as err:
 logger.error(
 "Couldn't confirm sign up for %s. Here's why: %s: %s",
 user_name,

Basics 183

Amazon Cognito Developer Guide

 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return True

• For API details, see ConfirmSignUp in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Submit a confirmation code for the specified user. This is the code as
 /// entered by the user after they've received it by email or text
 /// message.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The app client ID the user is signing up for.
 /// - userName: The username of the user whose code is being sent.
 /// - code: The user's confirmation code.
 ///
 /// - Returns: `true` if the code was successfully confirmed; otherwise
 `false`.
 func confirmSignUp(cipClient: CognitoIdentityProviderClient, clientId:
 String,
 userName: String, code: String) async -> Bool {
 do {
 _ = try await cipClient.confirmSignUp(
 input: ConfirmSignUpInput(

Basics 184

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ConfirmSignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 clientId: clientId,
 confirmationCode: code,
 username: userName
)
)

 print("=====> \(userName) has been confirmed.")
 return true
 } catch {
 print("=====> \(userName)'s code was entered incorrectly.")
 return false
 }
 }

• For API details, see ConfirmSignUp in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateUserPool with an Amazon SDK or CLI

The following code examples show how to use CreateUserPool.

CLI

Amazon CLI

To create a minimally configured user pool

This example creates a user pool named MyUserPool using default values. There are no
required attributes and no application clients. MFA and advanced security is disabled.

Command:

aws cognito-idp create-user-pool --pool-name MyUserPool

Output:

{
 "UserPool": {

Basics 185

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/confirmsignup(input:)

Amazon Cognito Developer Guide

 "SchemaAttributes": [
 {
 "Name": "sub",
 "StringAttributeConstraints": {
 "MinLength": "1",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": true,
 "AttributeDataType": "String",
 "Mutable": false
 },
 {
 "Name": "name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "given_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "family_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true

Basics 186

Amazon Cognito Developer Guide

 },
 {
 "Name": "middle_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "nickname",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "preferred_username",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "profile",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true

Basics 187

Amazon Cognito Developer Guide

 },
 {
 "Name": "picture",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "website",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "email",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "AttributeDataType": "Boolean",
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "Name": "email_verified",
 "Mutable": true
 },
 {
 "Name": "gender",
 "StringAttributeConstraints": {

Basics 188

Amazon Cognito Developer Guide

 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "birthdate",
 "StringAttributeConstraints": {
 "MinLength": "10",
 "MaxLength": "10"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "zoneinfo",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "locale",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "phone_number",
 "StringAttributeConstraints": {

Basics 189

Amazon Cognito Developer Guide

 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "AttributeDataType": "Boolean",
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "Name": "phone_number_verified",
 "Mutable": true
 },
 {
 "Name": "address",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "updated_at",
 "NumberAttributeConstraints": {
 "MinValue": "0"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "Number",
 "Mutable": true
 }
],
 "MfaConfiguration": "OFF",
 "Name": "MyUserPool",
 "LastModifiedDate": 1547833345.777,
 "AdminCreateUserConfig": {
 "UnusedAccountValidityDays": 7,
 "AllowAdminCreateUserOnly": false
 },

Basics 190

Amazon Cognito Developer Guide

 "EmailConfiguration": {},
 "Policies": {
 "PasswordPolicy": {
 "RequireLowercase": true,
 "RequireSymbols": true,
 "RequireNumbers": true,
 "MinimumLength": 8,
 "RequireUppercase": true
 }
 },
 "CreationDate": 1547833345.777,
 "EstimatedNumberOfUsers": 0,
 "Id": "us-west-2_aaaaaaaaa",
 "LambdaConfig": {}
 }
}

To create a user pool with two required attributes

This example creates a user pool MyUserPool. The pool is configured to accept email as
a username attribute. It also sets the email source address to a validated address using
Amazon Simple Email Service.

Command:

aws cognito-idp create-user-pool --pool-name MyUserPool --username-
attributes "email" --email-configuration=SourceArn="arn:aws:ses:us-
east-1:111111111111:identity/
jane@example.com",ReplyToEmailAddress="jane@example.com"

Output:

{
 "UserPool": {
 "SchemaAttributes": [
 {
 "Name": "sub",
 "StringAttributeConstraints": {
 "MinLength": "1",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": true,

Basics 191

Amazon Cognito Developer Guide

 "AttributeDataType": "String",
 "Mutable": false
 },
 {
 "Name": "name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "given_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "family_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "middle_name",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,

Basics 192

Amazon Cognito Developer Guide

 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "nickname",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "preferred_username",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "profile",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "picture",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,

Basics 193

Amazon Cognito Developer Guide

 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "website",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "email",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "AttributeDataType": "Boolean",
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "Name": "email_verified",
 "Mutable": true
 },
 {
 "Name": "gender",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {

Basics 194

Amazon Cognito Developer Guide

 "Name": "birthdate",
 "StringAttributeConstraints": {
 "MinLength": "10",
 "MaxLength": "10"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "zoneinfo",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "locale",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "phone_number",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {

Basics 195

Amazon Cognito Developer Guide

 "AttributeDataType": "Boolean",
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "Name": "phone_number_verified",
 "Mutable": true
 },
 {
 "Name": "address",
 "StringAttributeConstraints": {
 "MinLength": "0",
 "MaxLength": "2048"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "String",
 "Mutable": true
 },
 {
 "Name": "updated_at",
 "NumberAttributeConstraints": {
 "MinValue": "0"
 },
 "DeveloperOnlyAttribute": false,
 "Required": false,
 "AttributeDataType": "Number",
 "Mutable": true
 }
],
 "MfaConfiguration": "OFF",
 "Name": "MyUserPool",
 "LastModifiedDate": 1547837788.189,
 "AdminCreateUserConfig": {
 "UnusedAccountValidityDays": 7,
 "AllowAdminCreateUserOnly": false
 },
 "EmailConfiguration": {
 "ReplyToEmailAddress": "jane@example.com",
 "SourceArn": "arn:aws:ses:us-east-1:111111111111:identity/
jane@example.com"
 },
 "Policies": {
 "PasswordPolicy": {
 "RequireLowercase": true,
 "RequireSymbols": true,

Basics 196

Amazon Cognito Developer Guide

 "RequireNumbers": true,
 "MinimumLength": 8,
 "RequireUppercase": true
 }
 },
 "UsernameAttributes": [
 "email"
],
 "CreationDate": 1547837788.189,
 "EstimatedNumberOfUsers": 0,
 "Id": "us-west-2_aaaaaaaaa",
 "LambdaConfig": {}
 }
}

• For API details, see CreateUserPool in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CreateUserPoolRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CreateUserPoolResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:

Basics 197

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/create-user-pool.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateUserPool {
 public static void main(String[] args) {

 final String usage = """

 Usage:
 <userPoolName>\s

 Where:
 userPoolName - The name to give your user pool when it's
 created.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String userPoolName = args[0];
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

 String id = createPool(cognitoClient, userPoolName);
 System.out.println("User pool ID: " + id);
 cognitoClient.close();
 }

 public static String createPool(CognitoIdentityProviderClient cognitoClient,
 String userPoolName) {
 try {
 CreateUserPoolRequest request = CreateUserPoolRequest.builder()
 .poolName(userPoolName)
 .build();

 CreateUserPoolResponse response =
 cognitoClient.createUserPool(request);
 return response.userPool().id();

Basics 198

Amazon Cognito Developer Guide

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 return "";
 }
}

• For API details, see CreateUserPool in Amazon SDK for Java 2.x API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use CreateUserPoolClient with an Amazon SDK or CLI

The following code examples show how to use CreateUserPoolClient.

CLI

Amazon CLI

To create a user pool client

The following create-user-pool-client example creates a new user pool client with
a client secret, explicit read and write attributes, sign in with username-password and SRP
flows, sign-in with three IdPs, access to a subset of OAuth scopes, PinPoint analytics, and an
extended authentication session validity.

aws cognito-idp create-user-pool-client \
 --user-pool-id us-west-2_EXAMPLE \
 --client-name MyTestClient \
 --generate-secret \
 --refresh-token-validity 10 \
 --access-token-validity 60 \
 --id-token-validity 60 \
 --token-validity-units AccessToken=minutes,IdToken=minutes,RefreshToken=days
 \
 --read-attributes email phone_number email_verified phone_number_verified \
 --write-attributes email phone_number \

Basics 199

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/CreateUserPool

Amazon Cognito Developer Guide

 --explicit-auth-
flows ALLOW_USER_PASSWORD_AUTH ALLOW_USER_SRP_AUTH ALLOW_REFRESH_TOKEN_AUTH \
 --supported-identity-providers Google Facebook MyOIDC \
 --callback-urls https://www.amazon.com https://example.com http://
localhost:8001 myapp://example \
 --allowed-o-auth-flows code implicit \
 --allowed-o-auth-scopes openid profile aws.cognito.signin.user.admin solar-
system-data/asteroids.add \
 --allowed-o-auth-flows-user-pool-client \
 --analytics-configuration ApplicationArn=arn:aws:mobiletargeting:us-
west-2:767671399759:apps/thisisanexamplepinpointapplicationid,UserDataShared=TRUE
 \
 --prevent-user-existence-errors ENABLED \
 --enable-token-revocation \
 --enable-propagate-additional-user-context-data \
 --auth-session-validity 4

Output:

{
 "UserPoolClient": {
 "UserPoolId": "us-west-2_EXAMPLE",
 "ClientName": "MyTestClient",
 "ClientId": "123abc456defEXAMPLE",
 "ClientSecret": "this1234is5678my91011example1213client1415secret",
 "LastModifiedDate": 1726788459.464,
 "CreationDate": 1726788459.464,
 "RefreshTokenValidity": 10,
 "AccessTokenValidity": 60,
 "IdTokenValidity": 60,
 "TokenValidityUnits": {
 "AccessToken": "minutes",
 "IdToken": "minutes",
 "RefreshToken": "days"
 },
 "ReadAttributes": [
 "email_verified",
 "phone_number_verified",
 "phone_number",
 "email"
],
 "WriteAttributes": [
 "phone_number",

Basics 200

Amazon Cognito Developer Guide

 "email"
],
 "ExplicitAuthFlows": [
 "ALLOW_USER_PASSWORD_AUTH",
 "ALLOW_USER_SRP_AUTH",
 "ALLOW_REFRESH_TOKEN_AUTH"
],
 "SupportedIdentityProviders": [
 "Google",
 "MyOIDC",
 "Facebook"
],
 "CallbackURLs": [
 "https://example.com",
 "https://www.amazon.com",
 "myapp://example",
 "http://localhost:8001"
],
 "AllowedOAuthFlows": [
 "implicit",
 "code"
],
 "AllowedOAuthScopes": [
 "aws.cognito.signin.user.admin",
 "openid",
 "profile",
 "solar-system-data/asteroids.add"
],
 "AllowedOAuthFlowsUserPoolClient": true,
 "AnalyticsConfiguration": {
 "ApplicationArn": "arn:aws:mobiletargeting:us-
west-2:123456789012:apps/thisisanexamplepinpointapplicationid",
 "RoleArn": "arn:aws:iam::123456789012:role/aws-service-role/cognito-
idp.amazonaws.com/AWSServiceRoleForAmazonCognitoIdp",
 "UserDataShared": true
 },
 "PreventUserExistenceErrors": "ENABLED",
 "EnableTokenRevocation": true,
 "EnablePropagateAdditionalUserContextData": true,
 "AuthSessionValidity": 4
 }
}

Basics 201

Amazon Cognito Developer Guide

For more information, see Application-specific settings with app clients in the Amazon
Cognito Developer Guide.

• For API details, see CreateUserPoolClient in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CreateUserPoolClientRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CreateUserPoolClientResponse;

/**
 * A user pool client app is an application that authenticates with Amazon
 * Cognito user pools.
 * When you create a user pool, you can configure app clients that allow mobile
 * or web applications
 * to call API operations to authenticate users, manage user attributes and
 * profiles,
 * and implement sign-up and sign-in flows.
 *
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class CreateUserPoolClient {

Basics 202

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/create-user-pool-client.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 public static void main(String[] args) {
 final String usage = """

 Usage:
 <clientName> <userPoolId>\s

 Where:
 clientName - The name for the user pool client to create.
 userPoolId - The ID for the user pool.
 """;

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String clientName = args[0];
 String userPoolId = args[1];
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

 createPoolClient(cognitoClient, clientName, userPoolId);
 cognitoClient.close();
 }

 public static void createPoolClient(CognitoIdentityProviderClient
 cognitoClient, String clientName,
 String userPoolId) {
 try {
 CreateUserPoolClientRequest request =
 CreateUserPoolClientRequest.builder()
 .clientName(clientName)
 .userPoolId(userPoolId)
 .build();

 CreateUserPoolClientResponse response =
 cognitoClient.createUserPoolClient(request);
 System.out.println("User pool " +
 response.userPoolClient().clientName() + " created. ID: "
 + response.userPoolClient().clientId());

 } catch (CognitoIdentityProviderException e) {

Basics 203

Amazon Cognito Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see CreateUserPoolClient in Amazon SDK for Java 2.x API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use DeleteUser with an Amazon SDK or CLI

The following code examples show how to use DeleteUser.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Automatically confirm known users with a Lambda function

• Automatically migrate known users with a Lambda function

• Write custom activity data with a Lambda function after Amazon Cognito user authentication

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

Basics 204

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/CreateUserPoolClient
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 Aws::CognitoIdentityProvider::Model::DeleteUserRequest request;
 request.SetAccessToken(accessToken);

 Aws::CognitoIdentityProvider::Model::DeleteUserOutcome outcome =
 client.DeleteUser(request);

 if (outcome.IsSuccess()) {
 std::cout << "The user " << userName << " was deleted."
 << std::endl;
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::DeleteUser. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

• For API details, see DeleteUser in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To delete a user

This example deletes a user.

Command:

aws cognito-idp delete-user --access-token ACCESS_TOKEN

• For API details, see DeleteUser in Amazon CLI Command Reference.

Basics 205

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/DeleteUser
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/delete-user.html

Amazon Cognito Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

Basics 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see DeleteUser in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• For API details, see DeleteUser in Amazon SDK for JavaScript API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 207

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand

Amazon Cognito Developer Guide

Use ForgotPassword with an Amazon SDK or CLI

The following code examples show how to use ForgotPassword.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Automatically migrate known users with a Lambda function

CLI

Amazon CLI

To force a password change

The following forgot-password example sends a message to jane@example.com to
change their password.

aws cognito-idp forgot-password --client-id 38fjsnc484p94kpqsnet7mpld0 --
username jane@example.com

Output:

{
 "CodeDeliveryDetails": {
 "Destination": "j***@e***.com",
 "DeliveryMedium": "EMAIL",
 "AttributeName": "email"
 }
}

• For API details, see ForgotPassword in Amazon CLI Command Reference.

Basics 208

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/forgot-password.html

Amazon Cognito Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err

Basics 209

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

}

• For API details, see ForgotPassword in Amazon SDK for Go API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use InitiateAuth with an Amazon SDK or CLI

The following code examples show how to use InitiateAuth.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Automatically confirm known users with a Lambda function

• Automatically migrate known users with a Lambda function

• Sign up a user with a user pool that requires MFA

• Write custom activity data with a Lambda function after Amazon Cognito user authentication

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Initiate authorization.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The name of the user who is authenticating.</
param>

Basics 210

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ForgotPassword
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 /// <param name="password">The password for the user who is authenticating.</
param>
 /// <returns>The response from the initiate auth request.</returns>
 public async Task<InitiateAuthResponse> InitiateAuthAsync(string clientId,
 string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var authRequest = new InitiateAuthRequest

 {
 ClientId = clientId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.InitiateAuthAsync(authRequest);
 Console.WriteLine($"Result Challenge is : {response.ChallengeName}");

 return response;
 }

• For API details, see InitiateAuth in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To sign in a user

The following initiate-auth example signs in a user with the basic username-password
flow and no additional challenges.

aws cognito-idp initiate-auth \
 --auth-flow USER_PASSWORD_AUTH \
 --client-id 1example23456789 \
 --analytics-metadata AnalyticsEndpointId=d70b2ba36a8c4dc5a04a0451aEXAMPLE \
 --auth-parameters USERNAME=testuser,PASSWORD=[Password] --user-context-
data EncodedData=mycontextdata --client-metadata MyTestKey=MyTestValue

Basics 211

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/InitiateAuth

Amazon Cognito Developer Guide

Output:

{
 "AuthenticationResult": {
 "AccessToken": "eyJra456defEXAMPLE",
 "ExpiresIn": 3600,
 "TokenType": "Bearer",
 "RefreshToken": "eyJra123abcEXAMPLE",
 "IdToken": "eyJra789ghiEXAMPLE",
 "NewDeviceMetadata": {
 "DeviceKey": "us-west-2_a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeviceGroupKey": "-v7w9UcY6"
 }
 }
}

For more information, see Authentication in the Amazon Cognito Developer Guide.

• For API details, see InitiateAuth in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

Basics 212

https://docs.aws.amazon.com/cognito/latest/developerguide/authentication.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/initiate-auth.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.
func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err
}

• For API details, see InitiateAuth in Amazon SDK for Go API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 213

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

const initiateAuth = ({ username, password, clientId }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new InitiateAuthCommand({
 AuthFlow: AuthFlowType.USER_PASSWORD_AUTH,
 AuthParameters: {
 USERNAME: username,
 PASSWORD: password,
 },
 ClientId: clientId,
 });

 return client.send(command);
};

• For API details, see InitiateAuth in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

This example shows you how to start authentication with a tracked device. To complete
sign-in, the client must respond correctly to Secure Remote Password (SRP) challenges.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.

Basics 214

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def sign_in_with_tracked_device(
 self,
 user_name,
 password,
 device_key,
 device_group_key,
 device_password,
 aws_srp,
):
 """
 Signs in to Amazon Cognito as a user who has a tracked device. Signing in
 with a tracked device lets a user sign in without entering a new MFA
 code.

 Signing in with a tracked device requires that the client respond to the
 SRP
 protocol. The scenario associated with this example uses the warrant
 package
 to help with SRP calculations.

 For more information on SRP, see https://en.wikipedia.org/wiki/
Secure_Remote_Password_protocol.

 :param user_name: The user that is associated with the device.
 :param password: The user's password.
 :param device_key: The key of a tracked device.
 :param device_group_key: The group key of a tracked device.
 :param device_password: The password that is associated with the device.
 :param aws_srp: A class that helps with SRP calculations. The scenario
 associated with this example uses the warrant package.
 :return: The result of the authentication. When successful, this contains
 an
 access token for the user.
 """

Basics 215

Amazon Cognito Developer Guide

 try:
 srp_helper = aws_srp.AWSSRP(
 username=user_name,
 password=device_password,
 pool_id="_",
 client_id=self.client_id,
 client_secret=None,
 client=self.cognito_idp_client,
)

 response_init = self.cognito_idp_client.initiate_auth(
 ClientId=self.client_id,
 AuthFlow="USER_PASSWORD_AUTH",
 AuthParameters={
 "USERNAME": user_name,
 "PASSWORD": password,
 "DEVICE_KEY": device_key,
 },
)
 if response_init["ChallengeName"] != "DEVICE_SRP_AUTH":
 raise RuntimeError(
 f"Expected DEVICE_SRP_AUTH challenge but got
 {response_init['ChallengeName']}."
)

 auth_params = srp_helper.get_auth_params()
 auth_params["DEVICE_KEY"] = device_key
 response_auth = self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_SRP_AUTH",
 ChallengeResponses=auth_params,
)
 if response_auth["ChallengeName"] != "DEVICE_PASSWORD_VERIFIER":
 raise RuntimeError(
 f"Expected DEVICE_PASSWORD_VERIFIER challenge but got "
 f"{response_init['ChallengeName']}."
)

 challenge_params = response_auth["ChallengeParameters"]
 challenge_params["USER_ID_FOR_SRP"] = device_group_key + device_key
 cr = srp_helper.process_challenge(challenge_params, {"USERNAME":
 user_name})
 cr["USERNAME"] = user_name
 cr["DEVICE_KEY"] = device_key

Basics 216

Amazon Cognito Developer Guide

 response_verifier =
 self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_PASSWORD_VERIFIER",
 ChallengeResponses=cr,
)
 auth_tokens = response_verifier["AuthenticationResult"]
 except ClientError as err:
 logger.error(
 "Couldn't start client sign in for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return auth_tokens

• For API details, see InitiateAuth in Amazon SDK for Python (Boto3) API Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ListUserPools with an Amazon SDK or CLI

The following code examples show how to use ListUserPools.

.NET

Amazon SDK for .NET (v4)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>

Basics 217

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/InitiateAuth
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv4/Cognito#code-examples

Amazon Cognito Developer Guide

 /// List the Amazon Cognito user pools for an account.
 /// </summary>
 /// <returns>A list of UserPoolDescriptionType objects.</returns>
 public async Task<List<UserPoolDescriptionType>> ListUserPoolsAsync()
 {
 var userPools = new List<UserPoolDescriptionType>();

 var userPoolsPaginator = _cognitoService.Paginators.ListUserPools(new
 ListUserPoolsRequest());

 await foreach (var response in userPoolsPaginator.Responses)
 {
 userPools.AddRange(response.UserPools);
 }

 return userPools;
 }

• For API details, see ListUserPools in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

To list user pools

The following list-user-pools example lists 3 of the available user pools in the Amazon
account of the current CLI credentials.

aws cognito-idp list-user-pools \
 --max-results 3

Output:

{
 "NextToken": "[Pagination token]",
 "UserPools": [
 {
 "CreationDate": 1681502497.741,
 "Id": "us-west-2_EXAMPLE1",

Basics 218

https://docs.amazonaws.cn/goto/DotNetSDKV4/cognito-idp-2016-04-18/ListUserPools

Amazon Cognito Developer Guide

 "LambdaConfig": {
 "CustomMessage": "arn:aws:lambda:us-
east-1:123456789012:function:MyFunction",
 "PreSignUp": "arn:aws:lambda:us-
east-1:123456789012:function:MyFunction",
 "PreTokenGeneration": "arn:aws:lambda:us-
east-1:123456789012:function:MyFunction",
 "PreTokenGenerationConfig": {
 "LambdaArn": "arn:aws:lambda:us-
east-1:123456789012:function:MyFunction",
 "LambdaVersion": "V1_0"
 }
 },
 "LastModifiedDate": 1681502497.741,
 "Name": "user pool 1"
 },
 {
 "CreationDate": 1686064178.717,
 "Id": "us-west-2_EXAMPLE2",
 "LambdaConfig": {
 },
 "LastModifiedDate": 1686064178.873,
 "Name": "user pool 2"
 },
 {
 "CreationDate": 1627681712.237,
 "Id": "us-west-2_EXAMPLE3",
 "LambdaConfig": {
 "UserMigration": "arn:aws:lambda:us-
east-1:123456789012:function:MyFunction"
 },
 "LastModifiedDate": 1678486942.479,
 "Name": "user pool 3"
 }
]
}

For more information, see Amazon Cognito user pools in the Amazon Cognito Developer
Guide.

• For API details, see ListUserPools in Amazon CLI Command Reference.

Basics 219

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/list-user-pools.html

Amazon Cognito Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

package main

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

// main uses the AWS SDK for Go V2 to create an Amazon Simple Notification
 Service
// (Amazon SNS) client and list the topics in your account.
// This example uses the default settings specified in your shared credentials
// and config files.
func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 fmt.Println("Couldn't load default configuration. Have you set up your AWS
 account?")
 fmt.Println(err)
 return
 }
 cognitoClient := cognitoidentityprovider.NewFromConfig(sdkConfig)
 fmt.Println("Let's list the user pools for your account.")
 var pools []types.UserPoolDescriptionType
 paginator := cognitoidentityprovider.NewListUserPoolsPaginator(

Basics 220

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

 cognitoClient, &cognitoidentityprovider.ListUserPoolsInput{MaxResults:
 aws.Int32(10)})
 for paginator.HasMorePages() {
 output, err := paginator.NextPage(ctx)
 if err != nil {
 log.Printf("Couldn't get user pools. Here's why: %v\n", err)
 } else {
 pools = append(pools, output.UserPools...)
 }
 }
 if len(pools) == 0 {
 fmt.Println("You don't have any user pools!")
 } else {
 for _, pool := range pools {
 fmt.Printf("\t%v: %v\n", *pool.Name, *pool.Id)
 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUserPoolsRequest;

Basics 221

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ListUserPools
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListUserPools {
 public static void main(String[] args) {
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

 listAllUserPools(cognitoClient);
 cognitoClient.close();
 }

 public static void listAllUserPools(CognitoIdentityProviderClient
 cognitoClient) {
 try {
 ListUserPoolsRequest request = ListUserPoolsRequest.builder()
 .maxResults(10)
 .build();

 ListUserPoolsResponse response =
 cognitoClient.listUserPools(request);
 response.userPools().forEach(userpool -> {
 System.out.println("User pool " + userpool.name() + ", User ID "
 + userpool.id());
 });

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListUserPools in Amazon SDK for Java 2.x API Reference.

Basics 222

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ListUserPools

Amazon Cognito Developer Guide

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn show_pools(client: &Client) -> Result<(), Error> {
 let response = client.list_user_pools().max_results(10).send().await?;
 let pools = response.user_pools();
 println!("User pools:");
 for pool in pools {
 println!(" ID: {}", pool.id().unwrap_or_default());
 println!(" Name: {}", pool.name().unwrap_or_default());
 println!(" Lambda Config: {:?}", pool.lambda_config().unwrap());
 println!(
 " Last modified: {}",
 pool.last_modified_date().unwrap().to_chrono_utc()?
);
 println!(
 " Creation date: {:?}",
 pool.creation_date().unwrap().to_chrono_utc()
);
 println!();
 }
 println!("Next token: {}", response.next_token().unwrap_or_default());

 Ok(())
}

• For API details, see ListUserPools in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 223

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/cognitoidentityprovider#code-examples
https://docs.rs/aws-sdk-cognitoidentityprovider/latest/aws_sdk_cognitoidentityprovider/client/struct.Client.html#method.list_user_pools

Amazon Cognito Developer Guide

Use ListUsers with an Amazon SDK or CLI

The following code examples show how to use ListUsers.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Get a list of users for the Amazon Cognito user pool.
 /// </summary>
 /// <param name="userPoolId">The user pool ID.</param>
 /// <returns>A list of users.</returns>
 public async Task<List<UserType>> ListUsersAsync(string userPoolId)
 {
 var request = new ListUsersRequest
 {
 UserPoolId = userPoolId
 };

 var users = new List<UserType>();

 var usersPaginator = _cognitoService.Paginators.ListUsers(request);
 await foreach (var response in usersPaginator.Responses)
 {
 users.AddRange(response.Users);
 }

 return users;
 }

Basics 224

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see ListUsers in Amazon SDK for .NET API Reference.

CLI

Amazon CLI

Example 1: To list users with a server-side filter

The following list-users example lists 3 users in the requested user pool whose email
addresses begin with testuser.

aws cognito-idp list-users \
 --user-pool-id us-west-2_EXAMPLE \
 --filter email^=\"testuser\" \
 --max-items 3

Output:

{
 "PaginationToken": "efgh5678EXAMPLE",
 "Users": [
 {
 "Attributes": [
 {
 "Name": "sub",
 "Value": "eaad0219-2117-439f-8d46-4db20e59268f"
 },
 {
 "Name": "email",
 "Value": "testuser@example.com"
 }
],
 "Enabled": true,
 "UserCreateDate": 1682955829.578,
 "UserLastModifiedDate": 1689030181.63,
 "UserStatus": "CONFIRMED",
 "Username": "testuser"
 },
 {

Basics 225

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ListUsers

Amazon Cognito Developer Guide

 "Attributes": [
 {
 "Name": "sub",
 "Value": "3b994cfd-0b07-4581-be46-3c82f9a70c90"
 },
 {
 "Name": "email",
 "Value": "testuser2@example.com"
 }
],
 "Enabled": true,
 "UserCreateDate": 1684427979.201,
 "UserLastModifiedDate": 1684427979.201,
 "UserStatus": "UNCONFIRMED",
 "Username": "testuser2"
 },
 {
 "Attributes": [
 {
 "Name": "sub",
 "Value": "5929e0d1-4c34-42d1-9b79-a5ecacfe66f7"
 },
 {
 "Name": "email",
 "Value": "testuser3@example.com"
 }
],
 "Enabled": true,
 "UserCreateDate": 1684427823.641,
 "UserLastModifiedDate": 1684427823.641,
 "UserStatus": "UNCONFIRMED",
 "Username": "testuser3@example.com"
 }
]
}

For more information, see Managing and searching for users in the Amazon Cognito
Developer Guide.

Example 2: To list users with a client-side filter

The following list-users example lists the attributes of three users who have an
attribute, in this case their email address, that contains the email domain "@example.com".

Basics 226

https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html

Amazon Cognito Developer Guide

If other attributes contained this string, they would also be displayed. The second user has
no attributes that match the query and is excluded from the displayed output, but not from
the server response.

aws cognito-idp list-users \
 --user-pool-id us-west-2_EXAMPLE \
 --max-items 3
 --query Users\[*\].Attributes\[\?Value\.contains\(\@\,\'@example.com\'\)\]

Output:

[
 [
 {
 "Name": "email",
 "Value": "admin@example.com"
 }
],
 [],
 [
 {
 "Name": "email",
 "Value": "operator@example.com"
 }
]
]

For more information, see Managing and searching for users in the Amazon Cognito
Developer Guide.

• For API details, see ListUsers in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 227

https://docs.aws.amazon.com/cognito/latest/developerguide/how-to-manage-user-accounts.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/list-users.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUsersRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ListUsersResponse;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation topic:
 *
 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 */
public class ListUsers {
 public static void main(String[] args) {

 final String usage = """

 Usage:
 <userPoolId>\s

 Where:
 userPoolId - The ID given to your user pool when it's
 created.
 """;

 if (args.length != 1) {
 System.out.println(usage);
 System.exit(1);
 }

 String userPoolId = args[0];
 CognitoIdentityProviderClient cognitoClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

Basics 228

Amazon Cognito Developer Guide

 listAllUsers(cognitoClient, userPoolId);
 listUsersFilter(cognitoClient, userPoolId);
 cognitoClient.close();
 }

 public static void listAllUsers(CognitoIdentityProviderClient cognitoClient,
 String userPoolId) {
 try {
 ListUsersRequest usersRequest = ListUsersRequest.builder()
 .userPoolId(userPoolId)
 .build();

 ListUsersResponse response = cognitoClient.listUsers(usersRequest);
 response.users().forEach(user -> {
 System.out.println("User " + user.username() + " Status " +
 user.userStatus() + " Created "
 + user.userCreateDate());
 });

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 // Shows how to list users by using a filter.
 public static void listUsersFilter(CognitoIdentityProviderClient
 cognitoClient, String userPoolId) {

 try {
 String filter = "email = \"tblue@noserver.com\"";
 ListUsersRequest usersRequest = ListUsersRequest.builder()
 .userPoolId(userPoolId)
 .filter(filter)
 .build();

 ListUsersResponse response = cognitoClient.listUsers(usersRequest);
 response.users().forEach(user -> {
 System.out.println("User with filter applied " + user.username()
 + " Status " + user.userStatus()
 + " Created " + user.userCreateDate());
 });

 } catch (CognitoIdentityProviderException e) {

Basics 229

Amazon Cognito Developer Guide

 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see ListUsers in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const listUsers = ({ userPoolId }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ListUsersCommand({
 UserPoolId: userPoolId,
 });

 return client.send(command);
};

• For API details, see ListUsers in Amazon SDK for JavaScript API Reference.

Basics 230

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ListUsers
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUsersCommand

Amazon Cognito Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun listAllUsers(userPoolId: String) {
 val request =
 ListUsersRequest {
 this.userPoolId = userPoolId
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use { cognitoClient ->
 val response = cognitoClient.listUsers(request)
 response.users?.forEach { user ->
 println("The user name is ${user.username}")
 }
 }
}

• For API details, see ListUsers in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

Basics 231

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def list_users(self):
 """
 Returns a list of the users in the current user pool.

 :return: The list of users.
 """
 try:
 response =
 self.cognito_idp_client.list_users(UserPoolId=self.user_pool_id)
 users = response["Users"]
 except ClientError as err:
 logger.error(
 "Couldn't list users for %s. Here's why: %s: %s",
 self.user_pool_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return users

• For API details, see ListUsers in Amazon SDK for Python (Boto3) API Reference.

Basics 232

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ListUsers

Amazon Cognito Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 do {
 let output = try await cognitoClient.listUsers(
 input: ListUsersInput(
 userPoolId: poolId
)
)

 guard let users = output.users else {
 print("No users found.")
 return
 }

 print("\(users.count) user(s) found.")
 for user in users {
 print(" \(user.username ?? "<unknown>")")
 }
 } catch _ as NotAuthorizedException {
 print("*** Please authenticate with AWS before using this command.")
 return
 } catch _ as ResourceNotFoundException {
 print("*** The specified User Pool was not found.")
 return
 } catch {
 print("*** An unexpected type of error occurred.")
 return
 }

• For API details, see ListUsers in Amazon SDK for Swift API reference.

Basics 233

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/listusers(input:)

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use ResendConfirmationCode with an Amazon SDK or CLI

The following code examples show how to use ResendConfirmationCode.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Send a new confirmation code to a user.
 /// </summary>
 /// <param name="clientId">The Id of the client application.</param>
 /// <param name="userName">The username of user who will receive the code.</
param>
 /// <returns>The delivery details.</returns>
 public async Task<CodeDeliveryDetailsType> ResendConfirmationCodeAsync(string
 clientId, string userName)
 {
 var codeRequest = new ResendConfirmationCodeRequest
 {
 ClientId = clientId,
 Username = userName,
 };

 var response = await
 _cognitoService.ResendConfirmationCodeAsync(codeRequest);

Basics 234

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 Console.WriteLine($"Method of delivery is
 {response.CodeDeliveryDetails.DeliveryMedium}");

 return response.CodeDeliveryDetails;
 }

• For API details, see ResendConfirmationCode in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::ResendConfirmationCodeRequest
 request;
 request.SetUsername(userName);
 request.SetClientId(clientID);

 Aws::CognitoIdentityProvider::Model::ResendConfirmationCodeOutcome
 outcome =
 client.ResendConfirmationCode(request);

 if (outcome.IsSuccess()) {
 std::cout
 << "CognitoIdentityProvider::ResendConfirmationCode was
 successful."
 << std::endl;

Basics 235

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ResendConfirmationCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::ResendConfirmationCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see ResendConfirmationCode in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To resend a confirmation code

The following resend-confirmation-code example sends a confirmation code to the
user jane.

aws cognito-idp resend-confirmation-code \
 --client-id 12a3b456c7de890f11g123hijk \
 --username jane

Output:

{
 "CodeDeliveryDetails": {
 "Destination": "j***@e***.com",
 "DeliveryMedium": "EMAIL",
 "AttributeName": "email"
 }
}

For more information, see Signing up and confirming user accounts in the Amazon Cognito
Developer Guide.

• For API details, see ResendConfirmationCode in Amazon CLI Command Reference.

Basics 236

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.aws.amazon.com/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/resend-confirmation-code.html

Amazon Cognito Developer Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static void resendConfirmationCode(CognitoIdentityProviderClient
 identityProviderClient, String clientId,
 String userName) {
 try {
 ResendConfirmationCodeRequest codeRequest =
 ResendConfirmationCodeRequest.builder()
 .clientId(clientId)
 .username(userName)
 .build();

 ResendConfirmationCodeResponse response =
 identityProviderClient.resendConfirmationCode(codeRequest);
 System.out.println("Method of delivery is " +
 response.codeDeliveryDetails().deliveryMediumAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see ResendConfirmationCode in Amazon SDK for Java 2.x API Reference.

Basics 237

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ResendConfirmationCode

Amazon Cognito Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const resendConfirmationCode = ({ clientId, username }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ResendConfirmationCodeCommand({
 ClientId: clientId,
 Username: username,
 });

 return client.send(command);
};

• For API details, see ResendConfirmationCode in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun resendConfirmationCode(
 clientIdVal: String?,
 userNameVal: String?,
) {
 val codeRequest =
 ResendConfirmationCodeRequest {

Basics 238

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ResendConfirmationCodeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 clientId = clientIdVal
 username = userNameVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.resendConfirmationCode(codeRequest)
 println("Method of delivery is " +
 (response.codeDeliveryDetails?.deliveryMedium))
 }
}

• For API details, see ResendConfirmationCode in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

Basics 239

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 def resend_confirmation(self, user_name):
 """
 Prompts Amazon Cognito to resend an email with a new confirmation code.

 :param user_name: The name of the user who will receive the email.
 :return: Delivery information about where the email is sent.
 """
 try:
 kwargs = {"ClientId": self.client_id, "Username": user_name}
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 response = self.cognito_idp_client.resend_confirmation_code(**kwargs)
 delivery = response["CodeDeliveryDetails"]
 except ClientError as err:
 logger.error(
 "Couldn't resend confirmation to %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return delivery

• For API details, see ResendConfirmationCode in Amazon SDK for Python (Boto3) API
Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 240

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ResendConfirmationCode
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Requests a new confirmation code be sent to the given user's contact
 /// method.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The application client ID.
 /// - userName: The user to resend a code for.
 ///
 /// - Returns: `true` if a new code was sent successfully, otherwise
 /// `false`.
 func resendConfirmationCode(cipClient: CognitoIdentityProviderClient,
 clientId: String,
 userName: String) async -> Bool {
 do {
 let output = try await cipClient.resendConfirmationCode(
 input: ResendConfirmationCodeInput(
 clientId: clientId,
 username: userName
)
)

 guard let deliveryMedium = output.codeDeliveryDetails?.deliveryMedium
 else {
 print("*** Unable to get the delivery method for the resent
 code.")
 return false
 }

 print("=====> A new code has been sent by \(deliveryMedium)")
 return true
 } catch {
 print("*** Unable to resend the confirmation code to user
 \(userName).")
 return false
 }
 }

• For API details, see ResendConfirmationCode in Amazon SDK for Swift API reference.

Basics 241

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/resendconfirmationcode(input:)

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use RespondToAuthChallenge with an Amazon SDK or CLI

The following code examples show how to use RespondToAuthChallenge.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

CLI

Amazon CLI

Example 1: To respond to a NEW_PASSWORD_REQUIRED challenge

The following respond-to-auth-challenge example responds to a
NEW_PASSWORD_REQUIRED challenge that initiate-auth returned. It sets a password for
the user jane@example.com.

aws cognito-idp respond-to-auth-challenge \
 --client-id 1example23456789 \
 --challenge-name NEW_PASSWORD_REQUIRED \
 --challenge-responses USERNAME=jane@example.com,NEW_PASSWORD=[Password] \
 --session AYABeEv5HklEXAMPLE

Output:

{
 "ChallengeParameters": {},
 "AuthenticationResult": {
 "AccessToken": "ACCESS_TOKEN",
 "ExpiresIn": 3600,
 "TokenType": "Bearer",
 "RefreshToken": "REFRESH_TOKEN",
 "IdToken": "ID_TOKEN",
 "NewDeviceMetadata": {
 "DeviceKey": "us-west-2_a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeviceGroupKey": "-wt2ha1Zd"

Basics 242

Amazon Cognito Developer Guide

 }
 }
}

For more information, see Authentication in the Amazon Cognito Developer Guide.

Example 2: To respond to a SELECT_MFA_TYPE challenge

The following respond-to-auth-challenge example chooses TOTP MFA as the MFA
option for the current user. The user was prompted to select an MFA type and will next be
prompted to enter their MFA code.

aws cognito-idp respond-to-auth-challenge \
 --client-id 1example23456789
 --session AYABeEv5HklEXAMPLE
 --challenge-name SELECT_MFA_TYPE
 --challenge-responses USERNAME=testuser,ANSWER=SOFTWARE_TOKEN_MFA

Output:

{
 "ChallengeName": "SOFTWARE_TOKEN_MFA",
 "Session": "AYABeEv5HklEXAMPLE",
 "ChallengeParameters": {
 "FRIENDLY_DEVICE_NAME": "transparent"
 }
}

For more information, see Adding MFA in the Amazon Cognito Developer Guide.

Example 3: To respond to a SOFTWARE_TOKEN_MFA challenge

The following respond-to-auth-challenge example provides a TOTP MFA code and
completes sign-in.

aws cognito-idp respond-to-auth-challenge \
 --client-id 1example23456789 \
 --session AYABeEv5HklEXAMPLE \
 --challenge-name SOFTWARE_TOKEN_MFA \
 --challenge-responses USERNAME=testuser,SOFTWARE_TOKEN_MFA_CODE=123456

Output:

Basics 243

https://docs.aws.amazon.com/cognito/latest/developerguide/authentication.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html

Amazon Cognito Developer Guide

{
 "AuthenticationResult": {
 "AccessToken": "eyJra456defEXAMPLE",
 "ExpiresIn": 3600,
 "TokenType": "Bearer",
 "RefreshToken": "eyJra123abcEXAMPLE",
 "IdToken": "eyJra789ghiEXAMPLE",
 "NewDeviceMetadata": {
 "DeviceKey": "us-west-2_a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "DeviceGroupKey": "-v7w9UcY6"
 }
 }
}

For more information, see Adding MFA in the Amazon Cognito Developer Guide.

• For API details, see RespondToAuthChallenge in Amazon CLI Command Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const respondToAuthChallenge = ({
 clientId,
 username,
 session,
 userPoolId,
 code,
}) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new RespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: code,

Basics 244

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/respond-to-auth-challenge.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

• For API details, see RespondToAuthChallenge in Amazon SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Sign in with a tracked device. To complete sign-in, the client must respond correctly to
Secure Remote Password (SRP) challenges.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id

Basics 245

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/RespondToAuthChallengeCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 self.client_secret = client_secret

 def sign_in_with_tracked_device(
 self,
 user_name,
 password,
 device_key,
 device_group_key,
 device_password,
 aws_srp,
):
 """
 Signs in to Amazon Cognito as a user who has a tracked device. Signing in
 with a tracked device lets a user sign in without entering a new MFA
 code.

 Signing in with a tracked device requires that the client respond to the
 SRP
 protocol. The scenario associated with this example uses the warrant
 package
 to help with SRP calculations.

 For more information on SRP, see https://en.wikipedia.org/wiki/
Secure_Remote_Password_protocol.

 :param user_name: The user that is associated with the device.
 :param password: The user's password.
 :param device_key: The key of a tracked device.
 :param device_group_key: The group key of a tracked device.
 :param device_password: The password that is associated with the device.
 :param aws_srp: A class that helps with SRP calculations. The scenario
 associated with this example uses the warrant package.
 :return: The result of the authentication. When successful, this contains
 an
 access token for the user.
 """
 try:
 srp_helper = aws_srp.AWSSRP(
 username=user_name,
 password=device_password,
 pool_id="_",
 client_id=self.client_id,
 client_secret=None,

Basics 246

Amazon Cognito Developer Guide

 client=self.cognito_idp_client,
)

 response_init = self.cognito_idp_client.initiate_auth(
 ClientId=self.client_id,
 AuthFlow="USER_PASSWORD_AUTH",
 AuthParameters={
 "USERNAME": user_name,
 "PASSWORD": password,
 "DEVICE_KEY": device_key,
 },
)
 if response_init["ChallengeName"] != "DEVICE_SRP_AUTH":
 raise RuntimeError(
 f"Expected DEVICE_SRP_AUTH challenge but got
 {response_init['ChallengeName']}."
)

 auth_params = srp_helper.get_auth_params()
 auth_params["DEVICE_KEY"] = device_key
 response_auth = self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_SRP_AUTH",
 ChallengeResponses=auth_params,
)
 if response_auth["ChallengeName"] != "DEVICE_PASSWORD_VERIFIER":
 raise RuntimeError(
 f"Expected DEVICE_PASSWORD_VERIFIER challenge but got "
 f"{response_init['ChallengeName']}."
)

 challenge_params = response_auth["ChallengeParameters"]
 challenge_params["USER_ID_FOR_SRP"] = device_group_key + device_key
 cr = srp_helper.process_challenge(challenge_params, {"USERNAME":
 user_name})
 cr["USERNAME"] = user_name
 cr["DEVICE_KEY"] = device_key
 response_verifier =
 self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_PASSWORD_VERIFIER",
 ChallengeResponses=cr,
)
 auth_tokens = response_verifier["AuthenticationResult"]

Basics 247

Amazon Cognito Developer Guide

 except ClientError as err:
 logger.error(
 "Couldn't start client sign in for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return auth_tokens

• For API details, see RespondToAuthChallenge in Amazon SDK for Python (Boto3) API
Reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use SignUp with an Amazon SDK or CLI

The following code examples show how to use SignUp.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Automatically confirm known users with a Lambda function

• Automatically migrate known users with a Lambda function

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 248

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/RespondToAuthChallenge
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 /// <summary>
 /// Sign up a new user.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The username to use.</param>
 /// <param name="password">The user's password.</param>
 /// <param name="email">The email address of the user.</param>
 /// <returns>A Boolean value indicating whether the user was confirmed.</
returns>
 public async Task<bool> SignUpAsync(string clientId, string userName, string
 password, string email)
 {
 var userAttrs = new AttributeType
 {
 Name = "email",
 Value = email,
 };

 var userAttrsList = new List<AttributeType>();

 userAttrsList.Add(userAttrs);

 var signUpRequest = new SignUpRequest
 {
 UserAttributes = userAttrsList,
 Username = userName,
 ClientId = clientId,
 Password = password
 };

 var response = await _cognitoService.SignUpAsync(signUpRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

• For API details, see SignUp in Amazon SDK for .NET API Reference.

Basics 249

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/SignUp

Amazon Cognito Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::SignUpRequest request;
 request.AddUserAttributes(
 Aws::CognitoIdentityProvider::Model::AttributeType().WithName(
 "email").WithValue(email));
 request.SetUsername(userName);
 request.SetPassword(password);
 request.SetClientId(clientID);
 Aws::CognitoIdentityProvider::Model::SignUpOutcome outcome =
 client.SignUp(request);

 if (outcome.IsSuccess()) {
 std::cout << "The signup request for " << userName << " was
 successful."
 << std::endl;
 }
 else if (outcome.GetError().GetErrorType() ==

 Aws::CognitoIdentityProvider::CognitoIdentityProviderErrors::USERNAME_EXISTS) {
 std::cout
 << "The username already exists. Please enter a different
 username."
 << std::endl;
 userExists = true;
 }
 else {

Basics 250

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 std::cerr << "Error with CognitoIdentityProvider::SignUpRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

• For API details, see SignUp in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To sign up a user

This example signs up jane@example.com.

Command:

aws cognito-idp sign-up --client-id 3n4b5urk1ft4fl3mg5e62d9ado --
username jane@example.com --password PASSWORD --user-attributes
 Name="email",Value="jane@example.com" Name="name",Value="Jane"

Output:

{
 "UserConfirmed": false,
 "UserSub": "e04d60a6-45dc-441c-a40b-e25a787d4862"
}

• For API details, see SignUp in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Basics 251

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/SignUp
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/sign-up.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

Basics 252

Amazon Cognito Developer Guide

• For API details, see SignUp in Amazon SDK for Go API Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 public static void signUp(CognitoIdentityProviderClient
 identityProviderClient, String clientId, String userName,
 String password, String email) {
 AttributeType userAttrs = AttributeType.builder()
 .name("email")
 .value(email)
 .build();

 List<AttributeType> userAttrsList = new ArrayList<>();
 userAttrsList.add(userAttrs);
 try {
 SignUpRequest signUpRequest = SignUpRequest.builder()
 .userAttributes(userAttrsList)
 .username(userName)
 .clientId(clientId)
 .password(password)
 .build();

 identityProviderClient.signUp(signUpRequest);
 System.out.println("User has been signed up ");

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

Basics 253

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.SignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see SignUp in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const signUp = ({ clientId, username, password, email }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new SignUpCommand({
 ClientId: clientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 });

 return client.send(command);
};

• For API details, see SignUp in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

suspend fun signUp(

Basics 254

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/SignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 clientIdVal: String?,
 userNameVal: String?,
 passwordVal: String?,
 emailVal: String?,
) {
 val userAttrs =
 AttributeType {
 name = "email"
 value = emailVal
 }

 val userAttrsList = mutableListOf<AttributeType>()
 userAttrsList.add(userAttrs)
 val signUpRequest =
 SignUpRequest {
 userAttributes = userAttrsList
 username = userNameVal
 clientId = clientIdVal
 password = passwordVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 identityProviderClient.signUp(signUpRequest)
 println("User has been signed up")
 }
}

• For API details, see SignUp in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:

Basics 255

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def sign_up_user(self, user_name, password, user_email):
 """
 Signs up a new user with Amazon Cognito. This action prompts Amazon
 Cognito
 to send an email to the specified email address. The email contains a
 code that
 can be used to confirm the user.

 When the user already exists, the user status is checked to determine
 whether
 the user has been confirmed.

 :param user_name: The user name that identifies the new user.
 :param password: The password for the new user.
 :param user_email: The email address for the new user.
 :return: True when the user is already confirmed with Amazon Cognito.
 Otherwise, false.
 """
 try:
 kwargs = {
 "ClientId": self.client_id,
 "Username": user_name,
 "Password": password,
 "UserAttributes": [{"Name": "email", "Value": user_email}],
 }
 if self.client_secret is not None:

Basics 256

Amazon Cognito Developer Guide

 kwargs["SecretHash"] = self._secret_hash(user_name)
 response = self.cognito_idp_client.sign_up(**kwargs)
 confirmed = response["UserConfirmed"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "UsernameExistsException":
 response = self.cognito_idp_client.admin_get_user(
 UserPoolId=self.user_pool_id, Username=user_name
)
 logger.warning(
 "User %s exists and is %s.", user_name,
 response["UserStatus"]
)
 confirmed = response["UserStatus"] == "CONFIRMED"
 else:
 logger.error(
 "Couldn't sign up %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return confirmed

• For API details, see SignUp in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Create a new user in a user pool.
 ///

Basics 257

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/SignUp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The ID of the app client to create a user for.
 /// - userName: The username for the new user.
 /// - password: The new user's password.
 /// - email: The new user's email address.
 ///
 /// - Returns: `true` if successful; otherwise `false`.
 func signUp(cipClient: CognitoIdentityProviderClient, clientId: String,
 userName: String, password: String, email: String) async -> Bool {
 let emailAttr = CognitoIdentityProviderClientTypes.AttributeType(
 name: "email",
 value: email
)

 let userAttrsList = [emailAttr]

 do {
 _ = try await cipClient.signUp(
 input: SignUpInput(
 clientId: clientId,
 password: password,
 userAttributes: userAttrsList,
 username: userName
)

)

 print("=====> User \(userName) signed up.")
 } catch _ as AWSCognitoIdentityProvider.UsernameExistsException {
 print("*** The username \(userName) already exists. Please use a
 different one.")
 return false
 } catch let error as AWSCognitoIdentityProvider.InvalidPasswordException
 {
 print("*** Error: The specified password is invalid. Reason:
 \(error.properties.message ?? "<none available>").")
 return false
 } catch _ as AWSCognitoIdentityProvider.ResourceNotFoundException {
 print("*** Error: The specified client ID (\(clientId)) doesn't
 exist.")
 return false
 } catch {
 print("*** Unexpected error: \(error)")

Basics 258

Amazon Cognito Developer Guide

 return false
 }

 return true
 }

• For API details, see SignUp in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use UpdateUserPool with an Amazon SDK or CLI

The following code examples show how to use UpdateUserPool.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code examples:

• Automatically confirm known users with a Lambda function

• Automatically migrate known users with a Lambda function

• Write custom activity data with a Lambda function after Amazon Cognito user authentication

CLI

Amazon CLI

To update a user pool

The following update-user-pool example modifies a user pool with example syntax for
each of the available configuration options. To update a user pool, you must specify all
previously-configured options or they will reset to a default value.

aws cognito-idp update-user-pool --user-pool-id us-west-2_EXAMPLE \
 --policies PasswordPolicy=
\{MinimumLength=6,RequireUppercase=true,RequireLowercase=true,RequireNumbers=true,RequireSymbols=true,TemporaryPasswordValidityDays=7\}
 \
 --deletion-protection ACTIVE \

Basics 259

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/signup(input:)

Amazon Cognito Developer Guide

 --lambda-config PreSignUp="arn:aws:lambda:us-
west-2:123456789012:function:cognito-test-presignup-
function",PreTokenGeneration="arn:aws:lambda:us-
west-2:123456789012:function:cognito-test-pretoken-function" \
 --auto-verified-attributes "phone_number" "email" \
 --verification-message-template \{\"SmsMessage\":\""Your code is
 {####}"\",\"EmailMessage\":\""Your code is {####}"\",\"EmailSubject\":\""Your
 verification code"\",\"EmailMessageByLink\":\""Click {##here##} to verify
 your email address."\",\"EmailSubjectByLink\":\""Your verification link"\",
\"DefaultEmailOption\":\"CONFIRM_WITH_LINK\"\} \
 --sms-authentication-message "Your code is {####}" \
 --user-attribute-update-settings
 AttributesRequireVerificationBeforeUpdate="email","phone_number" \
 --mfa-configuration "OPTIONAL" \
 --device-
configuration ChallengeRequiredOnNewDevice=true,DeviceOnlyRememberedOnUserPrompt=true
 \
 --email-configuration SourceArn="arn:aws:ses:us-
west-2:123456789012:identity/admin@example.com",ReplyToEmailAddress="amdin
+noreply@example.com",EmailSendingAccount=DEVELOPER,From="admin@amazon.com",ConfigurationSet="test-
configuration-set" \
 --sms-configuration SnsCallerArn="arn:aws:iam::123456789012:role/service-
role/SNS-SMS-Role",ExternalId="12345",SnsRegion="us-west-2" \
 --admin-create-user-config
 AllowAdminCreateUserOnly=false,InviteMessageTemplate=\{SMSMessage=\""Welcome
 {username}. Your confirmation code is {####}"\",EmailMessage=\""Welcome
 {username}. Your confirmation code is {####}"\",EmailSubject=\""Welcome to
 MyMobileGame"\"\} \
 --user-pool-tags "Function"="MyMobileGame","Developers"="Berlin" \
 --admin-create-user-config
 AllowAdminCreateUserOnly=false,InviteMessageTemplate=\{SMSMessage=\""Welcome
 {username}. Your confirmation code is {####}"\",EmailMessage=\""Welcome
 {username}. Your confirmation code is {####}"\",EmailSubject=\""Welcome to
 MyMobileGame"\"\} \
 --user-pool-add-ons AdvancedSecurityMode="AUDIT" \
 --account-recovery-setting RecoveryMechanisms=
\[\{Priority=1,Name="verified_email"\},
\{Priority=2,Name="verified_phone_number"\}\]

This command produces no output.

For more information, see Updating user pool configuration in the Amazon Cognito
Developer Guide.

Basics 260

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pool-updating.html

Amazon Cognito Developer Guide

• For API details, see UpdateUserPool in Amazon CLI Command Reference.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string

Basics 261

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/update-user-pool.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/cognito#code-examples

Amazon Cognito Developer Guide

}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }
 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

• For API details, see UpdateUserPool in Amazon SDK for Go API Reference.

Basics 262

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

Amazon Cognito Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool
 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {
 PreSignUp: handlerArn,
 },
 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

• For API details, see UpdateUserPool in Amazon SDK for JavaScript API Reference.

Basics 263

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand

Amazon Cognito Developer Guide

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Use VerifySoftwareToken with an Amazon SDK or CLI

The following code examples show how to use VerifySoftwareToken.

Action examples are code excerpts from larger programs and must be run in context. You can see
this action in context in the following code example:

• Sign up a user with a user pool that requires MFA

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 /// <summary>
 /// Verify the TOTP and register for MFA.
 /// </summary>
 /// <param name="session">The name of the session.</param>
 /// <param name="code">The MFA code.</param>
 /// <returns>The status of the software token.</returns>
 public async Task<VerifySoftwareTokenResponseType>
 VerifySoftwareTokenAsync(string session, string code)
 {
 var tokenRequest = new VerifySoftwareTokenRequest
 {
 UserCode = code,
 Session = session,
 };

 var verifyResponse = await
 _cognitoService.VerifySoftwareTokenAsync(tokenRequest);

Basics 264

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 return verifyResponse.Status;
 }

• For API details, see VerifySoftwareToken in Amazon SDK for .NET API Reference.

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);

 Aws::CognitoIdentityProvider::Model::VerifySoftwareTokenRequest request;
 request.SetUserCode(userCode);
 request.SetSession(session);

 Aws::CognitoIdentityProvider::Model::VerifySoftwareTokenOutcome outcome =
 client.VerifySoftwareToken(request);

 if (outcome.IsSuccess()) {
 std::cout << "Verification of the code was successful."
 << std::endl;
 session = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::VerifySoftwareToken. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;

Basics 265

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 }

• For API details, see VerifySoftwareToken in Amazon SDK for C++ API Reference.

CLI

Amazon CLI

To confirm registration of a TOTP authenticator

The following verify-software-token example completes TOTP registration for the
current user.

aws cognito-idp verify-software-token \
 --access-token eyJra456defEXAMPLE \
 --user-code 123456

Output:

{
 "Status": "SUCCESS"
}

For more information, see Adding MFA to a user pool in the Amazon Cognito Developer
Guide.

• For API details, see VerifySoftwareToken in Amazon CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 // Verify the TOTP and register for MFA.

Basics 266

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/VerifySoftwareToken
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-mfa.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cognito-idp/verify-software-token.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 public static void verifyTOTP(CognitoIdentityProviderClient
 identityProviderClient, String session, String code) {
 try {
 VerifySoftwareTokenRequest tokenRequest =
 VerifySoftwareTokenRequest.builder()
 .userCode(code)
 .session(session)
 .build();

 VerifySoftwareTokenResponse verifyResponse =
 identityProviderClient.verifySoftwareToken(tokenRequest);
 System.out.println("The status of the token is " +
 verifyResponse.statusAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

• For API details, see VerifySoftwareToken in Amazon SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

const verifySoftwareToken = (totp) => {
 const client = new CognitoIdentityProviderClient({});

 // The 'Session' is provided in the response to 'AssociateSoftwareToken'.
 const session = process.env.SESSION;

 if (!session) {
 throw new Error(
 "Missing a valid Session. Did you run 'admin-initiate-auth'?",

Basics 267

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

);
 }

 const command = new VerifySoftwareTokenCommand({
 Session: session,
 UserCode: totp,
 });

 return client.send(command);
};

• For API details, see VerifySoftwareToken in Amazon SDK for JavaScript API Reference.

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

// Verify the TOTP and register for MFA.
suspend fun verifyTOTP(
 sessionVal: String?,
 codeVal: String?,
) {
 val tokenRequest =
 VerifySoftwareTokenRequest {
 userCode = codeVal
 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val verifyResponse =
 identityProviderClient.verifySoftwareToken(tokenRequest)
 println("The status of the token is ${verifyResponse.status}")
 }
}

Basics 268

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/VerifySoftwareTokenCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

• For API details, see VerifySoftwareToken in Amazon SDK for Kotlin API reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def verify_mfa(self, session, user_code):
 """
 Verify a new MFA application that is associated with a user.

 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :param user_code: A code generated by the associated MFA application.
 :return: Status that indicates whether the MFA application is verified.

Basics 269

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 """
 try:
 response = self.cognito_idp_client.verify_software_token(
 Session=session, UserCode=user_code
)
 except ClientError as err:
 logger.error(
 "Couldn't verify MFA. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

• For API details, see VerifySoftwareToken in Amazon SDK for Python (Boto3) API Reference.

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import AWSClientRuntime
import AWSCognitoIdentityProvider

 /// Confirm that the user's TOTP authenticator is configured correctly by
 /// sending a code to it to check that it matches successfully.
 ///
 /// - Parameters:
 /// - cipClient: The `CongnitoIdentityProviderClient` to use.
 /// - session: An authentication session previously returned by an
 /// `associateSoftwareToken()` call.
 /// - mfaCode: The 6-digit code currently displayed by the user's
 /// authenticator, as provided by the user.

Basics 270

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 func verifyTOTP(cipClient: CognitoIdentityProviderClient, session: String?,
 mfaCode: String?) async {
 do {
 let output = try await cipClient.verifySoftwareToken(
 input: VerifySoftwareTokenInput(
 session: session,
 userCode: mfaCode
)
)

 guard let tokenStatus = output.status else {
 print("*** Unable to get the token's status.")
 return
 }
 print("=====> The token's status is: \(tokenStatus)")
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return
 } catch _ as CodeMismatchException {
 print("*** The specified MFA code doesn't match the expected value.")
 return
 } catch _ as UserNotFoundException {
 print("*** The specified username doesn't exist.")
 return
 } catch _ as UserNotConfirmedException {
 print("*** The user has not been confirmed.")
 return
 } catch {
 print("*** Error verifying the MFA token!")
 return
 }
 }

• For API details, see VerifySoftwareToken in Amazon SDK for Swift API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 271

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/verifysoftwaretoken(input:)

Amazon Cognito Developer Guide

Scenarios for Amazon Cognito Identity Provider using Amazon SDKs

The following code examples show you how to implement common scenarios in Amazon Cognito
Identity Provider with Amazon SDKs. These scenarios show you how to accomplish specific tasks
by calling multiple functions within Amazon Cognito Identity Provider or combined with other
Amazon Web Services services. Each scenario includes a link to the complete source code, where
you can find instructions on how to set up and run the code.

Scenarios target an intermediate level of experience to help you understand service actions in
context.

Examples

• Automatically confirm known Amazon Cognito users with a Lambda function using an Amazon
SDK

• Automatically migrate known Amazon Cognito users with a Lambda function using an Amazon
SDK

• Sign up a user with an Amazon Cognito user pool that requires MFA using an Amazon SDK

• Write custom activity data with a Lambda function after Amazon Cognito user authentication
using an Amazon SDK

Automatically confirm known Amazon Cognito users with a Lambda function
using an Amazon SDK

The following code examples show how to automatically confirm known Amazon Cognito users
with a Lambda function.

• Configure a user pool to call a Lambda function for the PreSignUp trigger.

• Sign up a user with Amazon Cognito.

• The Lambda function scans a DynamoDB table and automatically confirms known users.

• Sign in as the new user, then clean up resources.

Scenarios 272

Amazon Cognito Developer Guide

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// AutoConfirm separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.
type AutoConfirm struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

// NewAutoConfirm constructs a new auto confirm runner.
func NewAutoConfirm(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) AutoConfirm {
 scenario := AutoConfirm{
 helper: helper,
 questioner: questioner,
 resources: Resources{},

Scenarios 273

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

Amazon Cognito Developer Guide

 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddPreSignUpTrigger adds a Lambda handler as an invocation target for the
 PreSignUp trigger.
func (runner *AutoConfirm) AddPreSignUpTrigger(ctx context.Context, userPoolId
 string, functionArn string) {
 log.Printf("Let's add a Lambda function to handle the PreSignUp trigger from
 Cognito.\n" +
 "This trigger happens when a user signs up, and lets your function take action
 before the main Cognito\n" +
 "sign up processing occurs.\n")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.PreSignUp, HandlerArn:
 aws.String(functionArn)})
 if err != nil {
 panic(err)
 }
 log.Printf("Lambda function %v added to user pool %v to handle the PreSignUp
 trigger.\n",
 functionArn, userPoolId)
}

// SignUpUser signs up a user from the known user table with a password you
 specify.
func (runner *AutoConfirm) SignUpUser(ctx context.Context, clientId string,
 usersTable string) (string, string) {
 log.Println("Let's sign up a user to your Cognito user pool. When the user's
 email matches an email in the\n" +
 "DynamoDB known users table, it is automatically verified and the user is
 confirmed.")

 knownUsers, err := runner.helper.GetKnownUsers(ctx, usersTable)
 if err != nil {
 panic(err)
 }
 userChoice := runner.questioner.AskChoice("Which user do you want to use?\n",
 knownUsers.UserNameList())
 user := knownUsers.Users[userChoice]

Scenarios 274

Amazon Cognito Developer Guide

 var signedUp bool
 var userConfirmed bool
 password := runner.questioner.AskPassword("Enter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+
 "(the password will not display as you type):", 8)
 for !signedUp {
 log.Printf("Signing up user '%v' with email '%v' to Cognito.\n", user.UserName,
 user.UserEmail)
 userConfirmed, err = runner.cognitoActor.SignUp(ctx, clientId, user.UserName,
 password, user.UserEmail)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("Enter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 signedUp = true
 }
 }
 log.Printf("User %v signed up, confirmed = %v.\n", user.UserName, userConfirmed)

 log.Println(strings.Repeat("-", 88))

 return user.UserName, password
}

// SignInUser signs in a user.
func (runner *AutoConfirm) SignInUser(ctx context.Context, clientId string,
 userName string, password string) string {
 runner.questioner.Ask("Press Enter when you're ready to continue.")
 log.Printf("Let's sign in as %v...\n", userName)
 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, userName, password)
 if err != nil {
 panic(err)
 }
 log.Printf("Successfully signed in. Your access token starts with: %v...\n",
 (*authResult.AccessToken)[:10])
 log.Println(strings.Repeat("-", 88))
 return *authResult.AccessToken
}

Scenarios 275

Amazon Cognito Developer Guide

// Run runs the scenario.
func (runner *AutoConfirm) Run(ctx context.Context, stackName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]
 runner.helper.PopulateUserTable(ctx, stackOutputs["TableName"])

 runner.AddPreSignUpTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["AutoConfirmFunctionArn"])
 runner.resources.triggers = append(runner.resources.triggers, actions.PreSignUp)
 userName, password := runner.SignUpUser(ctx, stackOutputs["UserPoolClientId"],
 stackOutputs["TableName"])
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["AutoConfirmFunction"])
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 runner.SignInUser(ctx, stackOutputs["UserPoolClientId"], userName, password))

 runner.resources.Cleanup(ctx)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the PreSignUp trigger with a Lambda function.

import (

Scenarios 276

Amazon Cognito Developer Guide

 "context"
 "log"
 "os"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 dynamodbtypes "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

const TABLE_NAME = "TABLE_NAME"

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
}

// GetKey marshals the user email value to a DynamoDB key format.
func (user UserInfo) GetKey() map[string]dynamodbtypes.AttributeValue {
 userEmail, err := attributevalue.Marshal(user.UserEmail)
 if err != nil {
 panic(err)
 }
 return map[string]dynamodbtypes.AttributeValue{"UserEmail": userEmail}
}

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the PreSignUp event by looking up a user in an Amazon
 DynamoDB table and
// specifying whether they should be confirmed and verified.
func (h *handler) HandleRequest(ctx context.Context, event
 events.CognitoEventUserPoolsPreSignup) (events.CognitoEventUserPoolsPreSignup,
 error) {
 log.Printf("Received presignup from %v for user '%v'", event.TriggerSource,
 event.UserName)
 if event.TriggerSource != "PreSignUp_SignUp" {

Scenarios 277

Amazon Cognito Developer Guide

 // Other trigger sources, such as PreSignUp_AdminInitiateAuth, ignore the
 response from this handler.
 return event, nil
 }
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserEmail: event.Request.UserAttributes["email"],
 }
 log.Printf("Looking up email %v in table %v.\n", user.UserEmail, tableName)
 output, err := h.dynamoClient.GetItem(ctx, &dynamodb.GetItemInput{
 Key: user.GetKey(),
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Error looking up email %v.\n", user.UserEmail)
 return event, err
 }
 if output.Item == nil {
 log.Printf("Email %v not found. Email verification is required.\n",
 user.UserEmail)
 return event, err
 }

 err = attributevalue.UnmarshalMap(output.Item, &user)
 if err != nil {
 log.Printf("Couldn't unmarshal DynamoDB item. Here's why: %v\n", err)
 return event, err
 }

 if user.UserName != event.UserName {
 log.Printf("UserEmail %v found, but stored UserName '%v' does not match
 supplied UserName '%v'. Verification is required.\n",
 user.UserEmail, user.UserName, event.UserName)
 } else {
 log.Printf("UserEmail %v found with matching UserName %v. User is confirmed.
\n", user.UserEmail, user.UserName)
 event.Response.AutoConfirmUser = true
 event.Response.AutoVerifyEmail = true
 }

 return event, err
}

func main() {

Scenarios 278

Amazon Cognito Developer Guide

 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

Scenarios 279

Amazon Cognito Developer Guide

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.
type ScenarioHelper struct {
 questioner demotools.IQuestioner
 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)
 }
}

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)

Scenarios 280

Amazon Cognito Developer Guide

 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {
 panic(err)
 }
}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.
func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)

Scenarios 281

Amazon Cognito Developer Guide

 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)
 if err != nil {
 panic(err)
 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {

Scenarios 282

Amazon Cognito Developer Guide

 Trigger Trigger
 HandlerArn *string
}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }
 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.

Scenarios 283

Amazon Cognito Developer Guide

func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.
func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)

Scenarios 284

Amazon Cognito Developer Guide

 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {

Scenarios 285

Amazon Cognito Developer Guide

 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {
 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }

Scenarios 286

Amazon Cognito Developer Guide

 }
 return err
}

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err
}

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"

Scenarios 287

Amazon Cognito Developer Guide

 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))
 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue

Scenarios 288

Amazon Cognito Developer Guide

 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {
 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {
 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {
 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {

Scenarios 289

Amazon Cognito Developer Guide

 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"
)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),

Scenarios 290

Amazon Cognito Developer Guide

 OrderBy: types.OrderByLastEventTime,
 })
 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)
 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {
 events = output.Events
 }
 return events, err
}

Create a struct that wraps Amazon CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"

Scenarios 291

Amazon Cognito Developer Guide

 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Clean up resources.

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles

Scenarios 292

Amazon Cognito Developer Guide

// cleanup when the example finishes.
type Resources struct {
 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {
 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {

Scenarios 293

Amazon Cognito Developer Guide

 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }
 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {
 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in Amazon SDK for Go API Reference.

• DeleteUser

• InitiateAuth

• SignUp

• UpdateUserPool

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Configure an interactive "Scenario" run. The JavaScript (v3) examples share a Scenario
runner to streamline complex examples. The complete source code is on GitHub.

import { AutoConfirm } from "./scenario-auto-confirm.js";

/**

Scenarios 294

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.SignUp
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cross-services/wkflw-pools-triggers#code-examples

Amazon Cognito Developer Guide

 * The context is passed to every scenario. Scenario steps
 * will modify the context.
 */
const context = {
 errors: [],
 users: [
 {
 UserName: "test_user_1",
 UserEmail: "test_email_1@example.com",
 },
 {
 UserName: "test_user_2",
 UserEmail: "test_email_2@example.com",
 },
 {
 UserName: "test_user_3",
 UserEmail: "test_email_3@example.com",
 },
],
};

/**
 * Three Scenarios are created for the workflow. A Scenario is an orchestration
 class
 * that simplifies running a series of steps.
 */
export const scenarios = {
 // Demonstrate automatically confirming known users in a database.
 "auto-confirm": AutoConfirm(context),
};

// Call function if run directly
import { fileURLToPath } from "node:url";
import { parseScenarioArgs } from "@aws-doc-sdk-examples/lib/scenario/index.js";

if (process.argv[1] === fileURLToPath(import.meta.url)) {
 parseScenarioArgs(scenarios, {
 name: "Cognito user pools and triggers",
 description:
 "Demonstrate how to use the AWS SDKs to customize Amazon Cognito
 authentication behavior.",
 });
}

Scenarios 295

Amazon Cognito Developer Guide

This Scenario demonstrates auto-confirming a known user. It orchestrates the example
steps.

import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import {
 Scenario,
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";

import {
 getStackOutputs,
 logCleanUpReminder,
 promptForStackName,
 promptForStackRegion,
 skipWhenErrors,
} from "./steps-common.js";
import { populateTable } from "./actions/dynamodb-actions.js";
import {
 addPreSignUpHandler,
 deleteUser,
 getUser,
 signIn,
 signUpUser,
} from "./actions/cognito-actions.js";
import {
 getLatestLogStreamForLambda,
 getLogEvents,
} from "./actions/cloudwatch-logs-actions.js";

/**
 * @typedef {{
 * errors: Error[],
 * password: string,
 * users: { UserName: string, UserEmail: string }[],
 * selectedUser?: string,
 * stackName?: string,
 * stackRegion?: string,
 * token?: string,
 * confirmDeleteSignedInUser?: boolean,

Scenarios 296

Amazon Cognito Developer Guide

 * TableName?: string,
 * UserPoolClientId?: string,
 * UserPoolId?: string,
 * UserPoolArn?: string,
 * AutoConfirmHandlerArn?: string,
 * AutoConfirmHandlerName?: string
 * }} State
 */

const greeting = new ScenarioOutput(
 "greeting",
 (/** @type {State} */ state) => `This demo will populate some users into the \
database created as part of the "${state.stackName}" stack. \
Then the AutoConfirmHandler will be linked to the PreSignUp \
trigger from Cognito. Finally, you will choose a user to sign up.`,
 { skipWhen: skipWhenErrors },
);

const logPopulatingUsers = new ScenarioOutput(
 "logPopulatingUsers",
 "Populating the DynamoDB table with some users.",
 { skipWhenErrors: skipWhenErrors },
);

const logPopulatingUsersComplete = new ScenarioOutput(
 "logPopulatingUsersComplete",
 "Done populating users.",
 { skipWhen: skipWhenErrors },
);

const populateUsers = new ScenarioAction(
 "populateUsers",
 async (/** @type {State} */ state) => {
 const [_, err] = await populateTable({
 region: state.stackRegion,
 tableName: state.TableName,
 items: state.users,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,

Scenarios 297

Amazon Cognito Developer Guide

 },
);

const logSetupSignUpTrigger = new ScenarioOutput(
 "logSetupSignUpTrigger",
 "Setting up the PreSignUp trigger for the Cognito User Pool.",
 { skipWhen: skipWhenErrors },
);

const setupSignUpTrigger = new ScenarioAction(
 "setupSignUpTrigger",
 async (/** @type {State} */ state) => {
 const [_, err] = await addPreSignUpHandler({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 handlerArn: state.AutoConfirmHandlerArn,
 });
 if (err) {
 state.errors.push(err);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const logSetupSignUpTriggerComplete = new ScenarioOutput(
 "logSetupSignUpTriggerComplete",
 (
 /** @type {State} */ state,
) => `The lambda function "${state.AutoConfirmHandlerName}" \
has been configured as the PreSignUp trigger handler for the user pool
 "${state.UserPoolId}".`,
 { skipWhen: skipWhenErrors },
);

const selectUser = new ScenarioInput(
 "selectedUser",
 "Select a user to sign up.",
 {
 type: "select",
 choices: (/** @type {State} */ state) => state.users.map((u) => u.UserName),
 skipWhen: skipWhenErrors,
 default: (/** @type {State} */ state) => state.users[0].UserName,

Scenarios 298

Amazon Cognito Developer Guide

 },
);

const checkIfUserAlreadyExists = new ScenarioAction(
 "checkIfUserAlreadyExists",
 async (/** @type {State} */ state) => {
 const [user, err] = await getUser({
 region: state.stackRegion,
 userPoolId: state.UserPoolId,
 username: state.selectedUser,
 });

 if (err?.name === "UserNotFoundException") {
 // Do nothing. We're not expecting the user to exist before
 // sign up is complete.
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 if (user) {
 state.errors.push(
 new Error(
 `The user "${state.selectedUser}" already exists in the user pool
 "${state.UserPoolId}".`,
),
);
 }
 },
 {
 skipWhen: skipWhenErrors,
 },
);

const createPassword = new ScenarioInput(
 "password",
 "Enter a password that has at least eight characters, uppercase, lowercase,
 numbers and symbols.",
 { type: "password", skipWhen: skipWhenErrors, default: "Abcd1234!" },
);

Scenarios 299

Amazon Cognito Developer Guide

const logSignUpExistingUser = new ScenarioOutput(
 "logSignUpExistingUser",
 (/** @type {State} */ state) => `Signing up user "${state.selectedUser}".`,
 { skipWhen: skipWhenErrors },
);

const signUpExistingUser = new ScenarioAction(
 "signUpExistingUser",
 async (/** @type {State} */ state) => {
 const signUp = (password) =>
 signUpUser({
 region: state.stackRegion,
 userPoolClientId: state.UserPoolClientId,
 username: state.selectedUser,
 email: state.users.find((u) => u.UserName === state.selectedUser)
 .UserEmail,
 password,
 });

 let [_, err] = await signUp(state.password);

 while (err?.name === "InvalidPasswordException") {
 console.warn("The password you entered was invalid.");
 await createPassword.handle(state);
 [_, err] = await signUp(state.password);
 }

 if (err) {
 state.errors.push(err);
 }
 },
 { skipWhen: skipWhenErrors },
);

const logSignUpExistingUserComplete = new ScenarioOutput(
 "logSignUpExistingUserComplete",
 (/** @type {State} */ state) =>
 `"${state.selectedUser} was signed up successfully.`,
 { skipWhen: skipWhenErrors },
);

const logLambdaLogs = new ScenarioAction(
 "logLambdaLogs",
 async (/** @type {State} */ state) => {

Scenarios 300

Amazon Cognito Developer Guide

 console.log(
 "Waiting a few seconds to let Lambda write to CloudWatch Logs...\n",
);
 await wait(10);

 const [logStream, logStreamErr] = await getLatestLogStreamForLambda({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 });
 if (logStreamErr) {
 state.errors.push(logStreamErr);
 return;
 }

 console.log(
 `Getting some recent events from log stream "${logStream.logStreamName}"`,
);
 const [logEvents, logEventsErr] = await getLogEvents({
 functionName: state.AutoConfirmHandlerName,
 region: state.stackRegion,
 eventCount: 10,
 logStreamName: logStream.logStreamName,
 });
 if (logEventsErr) {
 state.errors.push(logEventsErr);
 return;
 }

 console.log(logEvents.map((ev) => `\t${ev.message}`).join(""));
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUser = new ScenarioOutput(
 "logSignInUser",
 (/** @type {State} */ state) => `Let's sign in as ${state.selectedUser}`,
 { skipWhen: skipWhenErrors },
);

const signInUser = new ScenarioAction(
 "signInUser",
 async (/** @type {State} */ state) => {
 const [response, err] = await signIn({
 region: state.stackRegion,

Scenarios 301

Amazon Cognito Developer Guide

 clientId: state.UserPoolClientId,
 username: state.selectedUser,
 password: state.password,
 });

 if (err?.name === "PasswordResetRequiredException") {
 state.errors.push(new Error("Please reset your password."));
 return;
 }

 if (err) {
 state.errors.push(err);
 return;
 }

 state.token = response?.AuthenticationResult?.AccessToken;
 },
 { skipWhen: skipWhenErrors },
);

const logSignInUserComplete = new ScenarioOutput(
 "logSignInUserComplete",
 (/** @type {State} */ state) =>
 `Successfully signed in. Your access token starts with:
 ${state.token.slice(0, 11)}`,
 { skipWhen: skipWhenErrors },
);

const confirmDeleteSignedInUser = new ScenarioInput(
 "confirmDeleteSignedInUser",
 "Do you want to delete the currently signed in user?",
 { type: "confirm", skipWhen: skipWhenErrors },
);

const deleteSignedInUser = new ScenarioAction(
 "deleteSignedInUser",
 async (/** @type {State} */ state) => {
 const [_, err] = await deleteUser({
 region: state.stackRegion,
 accessToken: state.token,
 });

 if (err) {
 state.errors.push(err);

Scenarios 302

Amazon Cognito Developer Guide

 }
 },
 {
 skipWhen: (/** @type {State} */ state) =>
 skipWhenErrors(state) || !state.confirmDeleteSignedInUser,
 },
);

const logErrors = new ScenarioOutput(
 "logErrors",
 (/** @type {State}*/ state) => {
 const errorList = state.errors
 .map((err) => ` - ${err.name}: ${err.message}`)
 .join("\n");
 return `Scenario errors found:\n${errorList}`;
 },
 {
 // Don't log errors when there aren't any!
 skipWhen: (/** @type {State} */ state) => state.errors.length === 0,
 },
);

export const AutoConfirm = (context) =>
 new Scenario(
 "AutoConfirm",
 [
 promptForStackName,
 promptForStackRegion,
 getStackOutputs,
 greeting,
 logPopulatingUsers,
 populateUsers,
 logPopulatingUsersComplete,
 logSetupSignUpTrigger,
 setupSignUpTrigger,
 logSetupSignUpTriggerComplete,
 selectUser,
 checkIfUserAlreadyExists,
 createPassword,
 logSignUpExistingUser,
 signUpExistingUser,
 logSignUpExistingUserComplete,
 logLambdaLogs,
 logSignInUser,

Scenarios 303

Amazon Cognito Developer Guide

 signInUser,
 logSignInUserComplete,
 confirmDeleteSignedInUser,
 deleteSignedInUser,
 logCleanUpReminder,
 logErrors,
],
 context,
);

These are steps that are shared with other Scenarios.

import {
 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
} from "@aws-doc-sdk-examples/lib/scenario/scenario.js";
import { getCfnOutputs } from "@aws-doc-sdk-examples/lib/sdk/cfn-outputs.js";

export const skipWhenErrors = (state) => state.errors.length > 0;

export const getStackOutputs = new ScenarioAction(
 "getStackOutputs",
 async (state) => {
 if (!state.stackName || !state.stackRegion) {
 state.errors.push(
 new Error(
 "No stack name or region provided. The stack name and \
region are required to fetch CFN outputs relevant to this example.",
),
);
 return;
 }

 const outputs = await getCfnOutputs(state.stackName, state.stackRegion);
 Object.assign(state, outputs);
 },
);

export const promptForStackName = new ScenarioInput(
 "stackName",
 "Enter the name of the stack you deployed earlier.",

Scenarios 304

Amazon Cognito Developer Guide

 { type: "input", default: "PoolsAndTriggersStack" },
);

export const promptForStackRegion = new ScenarioInput(
 "stackRegion",
 "Enter the region of the stack you deployed earlier.",
 { type: "input", default: "us-east-1" },
);

export const logCleanUpReminder = new ScenarioOutput(
 "logCleanUpReminder",
 "All done. Remember to run 'cdk destroy' to teardown the stack.",
 { skipWhen: skipWhenErrors },
);

A handler for the PreSignUp trigger with a Lambda function.

import type { PreSignUpTriggerEvent, Handler } from "aws-lambda";
import type { UserRepository } from "./user-repository";
import { DynamoDBUserRepository } from "./user-repository";

export class PreSignUpHandler {
 private userRepository: UserRepository;

 constructor(userRepository: UserRepository) {
 this.userRepository = userRepository;
 }

 private isPreSignUpTriggerSource(event: PreSignUpTriggerEvent): boolean {
 return event.triggerSource === "PreSignUp_SignUp";
 }

 private getEventUserEmail(event: PreSignUpTriggerEvent): string {
 return event.request.userAttributes.email;
 }

 async handlePreSignUpTriggerEvent(
 event: PreSignUpTriggerEvent,
): Promise<PreSignUpTriggerEvent> {
 console.log(
 `Received presignup from ${event.triggerSource} for user
 '${event.userName}'`,

Scenarios 305

Amazon Cognito Developer Guide

);

 if (!this.isPreSignUpTriggerSource(event)) {
 return event;
 }

 const eventEmail = this.getEventUserEmail(event);
 console.log(`Looking up email ${eventEmail}.`);
 const storedUserInfo =
 await this.userRepository.getUserInfoByEmail(eventEmail);

 if (!storedUserInfo) {
 console.log(
 `Email ${eventEmail} not found. Email verification is required.`,
);
 return event;
 }

 if (storedUserInfo.UserName !== event.userName) {
 console.log(
 `UserEmail ${eventEmail} found, but stored UserName
 '${storedUserInfo.UserName}' does not match supplied UserName
 '${event.userName}'. Verification is required.`,
);
 } else {
 console.log(
 `UserEmail ${eventEmail} found with matching UserName
 ${storedUserInfo.UserName}. User is confirmed.`,
);
 event.response.autoConfirmUser = true;
 event.response.autoVerifyEmail = true;
 }
 return event;
 }
}

const createPreSignUpHandler = (): PreSignUpHandler => {
 const tableName = process.env.TABLE_NAME;
 if (!tableName) {
 throw new Error("TABLE_NAME environment variable is not set");
 }

 const userRepository = new DynamoDBUserRepository(tableName);
 return new PreSignUpHandler(userRepository);

Scenarios 306

Amazon Cognito Developer Guide

};

export const handler: Handler = async (event: PreSignUpTriggerEvent) => {
 const preSignUpHandler = createPreSignUpHandler();
 return preSignUpHandler.handlePreSignUpTriggerEvent(event);
};

Module of CloudWatch Logs actions.

import {
 CloudWatchLogsClient,
 GetLogEventsCommand,
 OrderBy,
 paginateDescribeLogStreams,
} from "@aws-sdk/client-cloudwatch-logs";

/**
 * Get the latest log stream for a Lambda function.
 * @param {{ functionName: string, region: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").LogStream | null,
 unknown]>}
 */
export const getLatestLogStreamForLambda = async ({ functionName, region }) => {
 try {
 const logGroupName = `/aws/lambda/${functionName}`;
 const cwlClient = new CloudWatchLogsClient({ region });
 const paginator = paginateDescribeLogStreams(
 { client: cwlClient },
 {
 descending: true,
 limit: 1,
 orderBy: OrderBy.LastEventTime,
 logGroupName,
 },
);

 for await (const page of paginator) {
 return [page.logStreams[0], null];
 }
 } catch (err) {
 return [null, err];

Scenarios 307

Amazon Cognito Developer Guide

 }
};

/**
 * Get the log events for a Lambda function's log stream.
 * @param {{
 * functionName: string,
 * logStreamName: string,
 * eventCount: number,
 * region: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cloudwatch-logs").OutputLogEvent[]
 | null, unknown]>}
 */
export const getLogEvents = async ({
 functionName,
 logStreamName,
 eventCount,
 region,
}) => {
 try {
 const cwlClient = new CloudWatchLogsClient({ region });
 const logGroupName = `/aws/lambda/${functionName}`;
 const response = await cwlClient.send(
 new GetLogEventsCommand({
 logStreamName: logStreamName,
 limit: eventCount,
 logGroupName: logGroupName,
 }),
);

 return [response.events, null];
 } catch (err) {
 return [null, err];
 }
};

Module of Amazon Cognito actions.

import {
 AdminGetUserCommand,

Scenarios 308

Amazon Cognito Developer Guide

 CognitoIdentityProviderClient,
 DeleteUserCommand,
 InitiateAuthCommand,
 SignUpCommand,
 UpdateUserPoolCommand,
} from "@aws-sdk/client-cognito-identity-provider";

/**
 * Connect a Lambda function to the PreSignUp trigger for a Cognito user pool
 * @param {{ region: string, userPoolId: string, handlerArn: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").UpdateUserPoolCommandOutput | null, unknown]>}
 */
export const addPreSignUpHandler = async ({
 region,
 userPoolId,
 handlerArn,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const command = new UpdateUserPoolCommand({
 UserPoolId: userPoolId,
 LambdaConfig: {
 PreSignUp: handlerArn,
 },
 });

 const response = await cognitoClient.send(command);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Attempt to register a user to a user pool with a given username and password.
 * @param {{
 * region: string,
 * userPoolClientId: string,
 * username: string,
 * email: string,

Scenarios 309

Amazon Cognito Developer Guide

 * password: string
 * }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").SignUpCommandOutput | null, unknown]>}
 */
export const signUpUser = async ({
 region,
 userPoolClientId,
 username,
 email,
 password,
}) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({
 region,
 });

 const response = await cognitoClient.send(
 new SignUpCommand({
 ClientId: userPoolClientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Sign in a user to Amazon Cognito using a username and password authentication
 flow.
 * @param {{ region: string, clientId: string, username: string, password:
 string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").InitiateAuthCommandOutput | null, unknown]>}
 */
export const signIn = async ({ region, clientId, username, password }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new InitiateAuthCommand({

Scenarios 310

Amazon Cognito Developer Guide

 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: clientId,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Retrieve an existing user from a user pool.
 * @param {{ region: string, userPoolId: string, username: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").AdminGetUserCommandOutput | null, unknown]>}
 */
export const getUser = async ({ region, userPoolId, username }) => {
 try {
 const cognitoClient = new CognitoIdentityProviderClient({ region });
 const response = await cognitoClient.send(
 new AdminGetUserCommand({
 UserPoolId: userPoolId,
 Username: username,
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

/**
 * Delete the signed-in user. Useful for allowing a user to delete their
 * own profile.
 * @param {{ region: string, accessToken: string }} config
 * @returns {Promise<[import("@aws-sdk/client-cognito-identity-
provider").DeleteUserCommandOutput | null, unknown]>}
 */
export const deleteUser = async ({ region, accessToken }) => {
 try {
 const client = new CognitoIdentityProviderClient({ region });
 const response = await client.send(
 new DeleteUserCommand({ AccessToken: accessToken }),

Scenarios 311

Amazon Cognito Developer Guide

);
 return [response, null];
 } catch (err) {
 return [null, err];
 }
};

Module of DynamoDB actions.

import { DynamoDBClient } from "@aws-sdk/client-dynamodb";
import {
 BatchWriteCommand,
 DynamoDBDocumentClient,
} from "@aws-sdk/lib-dynamodb";

/**
 * Populate a DynamoDB table with provide items.
 * @param {{ region: string, tableName: string, items: Record<string,
 unknown>[] }} config
 * @returns {Promise<[import("@aws-sdk/lib-dynamodb").BatchWriteCommandOutput |
 null, unknown]>}
 */
export const populateTable = async ({ region, tableName, items }) => {
 try {
 const ddbClient = new DynamoDBClient({ region });
 const docClient = DynamoDBDocumentClient.from(ddbClient);
 const response = await docClient.send(
 new BatchWriteCommand({
 RequestItems: {
 [tableName]: items.map((item) => ({
 PutRequest: {
 Item: item,
 },
 })),
 },
 }),
);
 return [response, null];
 } catch (err) {
 return [null, err];
 }

Scenarios 312

Amazon Cognito Developer Guide

};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• DeleteUser

• InitiateAuth

• SignUp

• UpdateUserPool

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Automatically migrate known Amazon Cognito users with a Lambda function
using an Amazon SDK

The following code example shows how to automatically migrate known Amazon Cognito users
with a Lambda function.

• Configure a user pool to call a Lambda function for the MigrateUser trigger.

• Sign in to Amazon Cognito with a username and email that is not in the user pool.

• The Lambda function scans a DynamoDB table and automatically migrates known users to the
user pool.

• Perform the forgot password flow to reset the password for the migrated user.

• Sign in as the new user, then clean up resources.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Scenarios 313

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/DeleteUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/UpdateUserPoolCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

Amazon Cognito Developer Guide

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "fmt"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// MigrateUser separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.
type MigrateUser struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

// NewMigrateUser constructs a new migrate user runner.
func NewMigrateUser(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) MigrateUser {
 scenario := MigrateUser{
 helper: helper,
 questioner: questioner,
 resources: Resources{},
 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddMigrateUserTrigger adds a Lambda handler as an invocation target for the
 MigrateUser trigger.

Scenarios 314

Amazon Cognito Developer Guide

func (runner *MigrateUser) AddMigrateUserTrigger(ctx context.Context, userPoolId
 string, functionArn string) {
 log.Printf("Let's add a Lambda function to handle the MigrateUser trigger from
 Cognito.\n" +
 "This trigger happens when an unknown user signs in, and lets your function
 take action before Cognito\n" +
 "rejects the user.\n\n")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.UserMigration, HandlerArn:
 aws.String(functionArn)})
 if err != nil {
 panic(err)
 }
 log.Printf("Lambda function %v added to user pool %v to handle the MigrateUser
 trigger.\n",
 functionArn, userPoolId)

 log.Println(strings.Repeat("-", 88))
}

// SignInUser adds a new user to the known users table and signs that user in to
 Amazon Cognito.
func (runner *MigrateUser) SignInUser(ctx context.Context, usersTable string,
 clientId string) (bool, actions.User) {
 log.Println("Let's sign in a user to your Cognito user pool. When the username
 and email matches an entry in the\n" +
 "DynamoDB known users table, the email is automatically verified and the user
 is migrated to the Cognito user pool.")

 user := actions.User{}
 user.UserName = runner.questioner.Ask("\nEnter a username:")
 user.UserEmail = runner.questioner.Ask("\nEnter an email that you own. This
 email will be used to confirm user migration\n" +
 "during this example:")

 runner.helper.AddKnownUser(ctx, usersTable, user)

 var err error
 var resetRequired *types.PasswordResetRequiredException
 var authResult *types.AuthenticationResultType
 signedIn := false
 for !signedIn && resetRequired == nil {

Scenarios 315

Amazon Cognito Developer Guide

 log.Printf("Signing in to Cognito as user '%v'. The expected result is a
 PasswordResetRequiredException.\n\n", user.UserName)
 authResult, err = runner.cognitoActor.SignIn(ctx, clientId, user.UserName, "_")
 if err != nil {
 if errors.As(err, &resetRequired) {
 log.Printf("\nUser '%v' is not in the Cognito user pool but was found in the
 DynamoDB known users table.\n"+
 "User migration is started and a password reset is required.",
 user.UserName)
 } else {
 panic(err)
 }
 } else {
 log.Printf("User '%v' successfully signed in. This is unexpected and probably
 means you have not\n"+
 "cleaned up a previous run of this scenario, so the user exist in the Cognito
 user pool.\n"+
 "You can continue this example and select to clean up resources, or manually
 remove\n"+
 "the user from your user pool and try again.", user.UserName)
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)
 signedIn = true
 }
 }

 log.Println(strings.Repeat("-", 88))
 return resetRequired != nil, user
}

// ResetPassword starts a password recovery flow.
func (runner *MigrateUser) ResetPassword(ctx context.Context, clientId string,
 user actions.User) {
 wantCode := runner.questioner.AskBool(fmt.Sprintf("In order to migrate the user
 to Cognito, you must be able to receive a confirmation\n"+
 "code by email at %v. Do you want to send a code (y/n)?", user.UserEmail), "y")
 if !wantCode {
 log.Println("To complete this example and successfully migrate a user to
 Cognito, you must enter an email\n" +
 "you own that can receive a confirmation code.")
 return
 }
 codeDelivery, err := runner.cognitoActor.ForgotPassword(ctx, clientId,
 user.UserName)

Scenarios 316

Amazon Cognito Developer Guide

 if err != nil {
 panic(err)
 }
 log.Printf("\nA confirmation code has been sent to %v.",
 *codeDelivery.Destination)
 code := runner.questioner.Ask("Check your email and enter it here:")

 confirmed := false
 password := runner.questioner.AskPassword("\nEnter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+
 "(the password will not display as you type):", 8)
 for !confirmed {
 log.Printf("\nConfirming password reset for user '%v'.\n", user.UserName)
 err = runner.cognitoActor.ConfirmForgotPassword(ctx, clientId, code,
 user.UserName, password)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("\nEnter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 confirmed = true
 }
 }
 log.Printf("User '%v' successfully confirmed and migrated.\n", user.UserName)
 log.Println("Signing in with your username and password...")
 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, user.UserName,
 password)
 if err != nil {
 panic(err)
 }
 log.Printf("Successfully signed in. Your access token starts with: %v...\n",
 (*authResult.AccessToken)[:10])
 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)

 log.Println(strings.Repeat("-", 88))
}

// Run runs the scenario.
func (runner *MigrateUser) Run(ctx context.Context, stackName string) {
 defer func() {

Scenarios 317

Amazon Cognito Developer Guide

 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]

 runner.AddMigrateUserTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["MigrateUserFunctionArn"])
 runner.resources.triggers = append(runner.resources.triggers,
 actions.UserMigration)
 resetNeeded, user := runner.SignInUser(ctx, stackOutputs["TableName"],
 stackOutputs["UserPoolClientId"])
 if resetNeeded {
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["MigrateUserFunction"])
 runner.ResetPassword(ctx, stackOutputs["UserPoolClientId"], user)
 }

 runner.resources.Cleanup(ctx)

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the MigrateUser trigger with a Lambda function.

import (
 "context"
 "log"

Scenarios 318

Amazon Cognito Developer Guide

 "os"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/expression"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
)

const TABLE_NAME = "TABLE_NAME"

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
}

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the MigrateUser event by looking up a user in an Amazon
 DynamoDB table and
// specifying whether they should be migrated to the user pool.
func (h *handler) HandleRequest(ctx context.Context, event
 events.CognitoEventUserPoolsMigrateUser)
 (events.CognitoEventUserPoolsMigrateUser, error) {
 log.Printf("Received migrate trigger from %v for user '%v'",
 event.TriggerSource, event.UserName)
 if event.TriggerSource != "UserMigration_Authentication" {
 return event, nil
 }
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserName: event.UserName,
 }
 log.Printf("Looking up user '%v' in table %v.\n", user.UserName, tableName)
 filterEx := expression.Name("UserName").Equal(expression.Value(user.UserName))
 expr, err := expression.NewBuilder().WithFilter(filterEx).Build()
 if err != nil {

Scenarios 319

Amazon Cognito Developer Guide

 log.Printf("Error building expression to query for user '%v'.\n",
 user.UserName)
 return event, err
 }
 output, err := h.dynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 FilterExpression: expr.Filter(),
 ExpressionAttributeNames: expr.Names(),
 ExpressionAttributeValues: expr.Values(),
 })
 if err != nil {
 log.Printf("Error looking up user '%v'.\n", user.UserName)
 return event, err
 }
 if len(output.Items) == 0 {
 log.Printf("User '%v' not found, not migrating user.\n", user.UserName)
 return event, err
 }

 var users []UserInfo
 err = attributevalue.UnmarshalListOfMaps(output.Items, &users)
 if err != nil {
 log.Printf("Couldn't unmarshal DynamoDB items. Here's why: %v\n", err)
 return event, err
 }

 user = users[0]
 log.Printf("UserName '%v' found with email %v. User is migrated and must reset
 password.\n", user.UserName, user.UserEmail)
 event.CognitoEventUserPoolsMigrateUserResponse.UserAttributes =
 map[string]string{
 "email": user.UserEmail,
 "email_verified": "true", // email_verified is required for the forgot password
 flow.
 }
 event.CognitoEventUserPoolsMigrateUserResponse.FinalUserStatus =
 "RESET_REQUIRED"
 event.CognitoEventUserPoolsMigrateUserResponse.MessageAction = "SUPPRESS"

 return event, err
}

func main() {
 ctx := context.Background()

Scenarios 320

Amazon Cognito Developer Guide

 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.

Scenarios 321

Amazon Cognito Developer Guide

type ScenarioHelper struct {
 questioner demotools.IQuestioner
 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)
 }
}

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)
 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {

Scenarios 322

Amazon Cognito Developer Guide

 panic(err)
 }
}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.
func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)
 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)

Scenarios 323

Amazon Cognito Developer Guide

 if err != nil {
 panic(err)
 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string

Scenarios 324

Amazon Cognito Developer Guide

}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }
 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false

Scenarios 325

Amazon Cognito Developer Guide

 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.
func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType
 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult

Scenarios 326

Amazon Cognito Developer Guide

 }
 return authResult, err
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {
 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }

Scenarios 327

Amazon Cognito Developer Guide

 return err
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {
 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

Scenarios 328

Amazon Cognito Developer Guide

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err
}

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

Scenarios 329

Amazon Cognito Developer Guide

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))
 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue
 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {

Scenarios 330

Amazon Cognito Developer Guide

 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {
 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {
 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {
 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {

Scenarios 331

Amazon Cognito Developer Guide

 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"
)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),
 OrderBy: types.OrderByLastEventTime,
 })

Scenarios 332

Amazon Cognito Developer Guide

 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)
 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {
 events = output.Events
 }
 return events, err
}

Create a struct that wraps Amazon CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

Scenarios 333

Amazon Cognito Developer Guide

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Clean up resources.

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {

Scenarios 334

Amazon Cognito Developer Guide

 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {
 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {
 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }

Scenarios 335

Amazon Cognito Developer Guide

 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {
 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in Amazon SDK for Go API Reference.

• ConfirmForgotPassword

• DeleteUser

• ForgotPassword

• InitiateAuth

• SignUp

• UpdateUserPool

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Sign up a user with an Amazon Cognito user pool that requires MFA using an
Amazon SDK

The following code examples show how to:

• Sign up and confirm a user with a username, password, and email address.

• Set up multi-factor authentication by associating an MFA application with the user.

• Sign in by using a password and an MFA code.

Scenarios 336

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ConfirmForgotPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.ForgotPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.SignUp
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

Amazon Cognito Developer Guide

.NET

Amazon SDK for .NET

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

namespace CognitoBasics;

public class CognitoBasics
{
 private static ILogger logger = null!;

 static async Task Main(string[] args)
 {
 // Set up dependency injection for Amazon Cognito.
 using var host = Host.CreateDefaultBuilder(args)
 .ConfigureLogging(logging =>
 logging.AddFilter("System", LogLevel.Debug)
 .AddFilter<DebugLoggerProvider>("Microsoft",
 LogLevel.Information)
 .AddFilter<ConsoleLoggerProvider>("Microsoft",
 LogLevel.Trace))
 .ConfigureServices((_, services) =>
 services.AddAWSService<IAmazonCognitoIdentityProvider>()
 .AddTransient<CognitoWrapper>()
)
 .Build();

 logger = LoggerFactory.Create(builder => { builder.AddConsole(); })
 .CreateLogger<CognitoBasics>();

 var configuration = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("settings.json") // Load settings from .json file.
 .AddJsonFile("settings.local.json",
 true) // Optionally load local settings.
 .Build();

Scenarios 337

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3/Cognito#code-examples

Amazon Cognito Developer Guide

 var cognitoWrapper = host.Services.GetRequiredService<CognitoWrapper>();

 Console.WriteLine(new string('-', 80));
 UiMethods.DisplayOverview();
 Console.WriteLine(new string('-', 80));

 // clientId - The app client Id value that you get from the AWS CDK
 script.
 var clientId = configuration["ClientId"]; // "*** REPLACE WITH CLIENT ID
 VALUE FROM CDK SCRIPT";

 // poolId - The pool Id that you get from the AWS CDK script.
 var poolId = configuration["PoolId"]!; // "*** REPLACE WITH POOL ID VALUE
 FROM CDK SCRIPT";
 var userName = configuration["UserName"];
 var password = configuration["Password"];
 var email = configuration["Email"];

 // If the username wasn't set in the configuration file,
 // get it from the user now.
 if (userName is null)
 {
 do
 {
 Console.Write("Username: ");
 userName = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(userName));
 }
 Console.WriteLine($"\nUsername: {userName}");

 // If the password wasn't set in the configuration file,
 // get it from the user now.
 if (password is null)
 {
 do
 {
 Console.Write("Password: ");
 password = Console.ReadLine();
 }
 while (string.IsNullOrEmpty(password));
 }

 // If the email address wasn't set in the configuration file,

Scenarios 338

Amazon Cognito Developer Guide

 // get it from the user now.
 if (email is null)
 {
 do
 {
 Console.Write("Email: ");
 email = Console.ReadLine();
 } while (string.IsNullOrEmpty(email));
 }

 // Now sign up the user.
 Console.WriteLine($"\nSigning up {userName} with email address:
 {email}");
 await cognitoWrapper.SignUpAsync(clientId, userName, password, email);

 // Add the user to the user pool.
 Console.WriteLine($"Adding {userName} to the user pool");
 await cognitoWrapper.GetAdminUserAsync(userName, poolId);

 UiMethods.DisplayTitle("Get confirmation code");
 Console.WriteLine($"Conformation code sent to {userName}.");
 Console.Write("Would you like to send a new code? (Y/N) ");
 var answer = Console.ReadLine();

 if (answer!.ToLower() == "y")
 {
 await cognitoWrapper.ResendConfirmationCodeAsync(clientId, userName);
 Console.WriteLine("Sending a new confirmation code");
 }

 Console.Write("Enter confirmation code (from Email): ");
 var code = Console.ReadLine();

 await cognitoWrapper.ConfirmSignupAsync(clientId, code, userName);

 UiMethods.DisplayTitle("Checking status");
 Console.WriteLine($"Rechecking the status of {userName} in the user
 pool");
 await cognitoWrapper.GetAdminUserAsync(userName, poolId);

 Console.WriteLine($"Setting up authenticator for {userName} in the user
 pool");
 var setupResponse = await cognitoWrapper.InitiateAuthAsync(clientId,
 userName, password);

Scenarios 339

Amazon Cognito Developer Guide

 var setupSession = await
 cognitoWrapper.AssociateSoftwareTokenAsync(setupResponse.Session);
 Console.Write("Enter the 6-digit code displayed in Google Authenticator:
 ");
 var setupCode = Console.ReadLine();

 var setupResult = await
 cognitoWrapper.VerifySoftwareTokenAsync(setupSession, setupCode);
 Console.WriteLine($"Setup status: {setupResult}");

 Console.WriteLine($"Now logging in {userName} in the user pool");
 var authSession = await cognitoWrapper.AdminInitiateAuthAsync(clientId,
 poolId, userName, password);

 Console.Write("Enter a new 6-digit code displayed in Google
 Authenticator: ");
 var authCode = Console.ReadLine();

 var authResult = await
 cognitoWrapper.AdminRespondToAuthChallengeAsync(userName, clientId, authCode,
 authSession, poolId);
 Console.WriteLine($"Authenticated and received access token:
 {authResult.AccessToken}");

 Console.WriteLine(new string('-', 80));
 Console.WriteLine("Cognito scenario is complete.");
 Console.WriteLine(new string('-', 80));
 }
}

using System.Net;

namespace CognitoActions;

/// <summary>
/// Methods to perform Amazon Cognito Identity Provider actions.
/// </summary>
public class CognitoWrapper
{
 private readonly IAmazonCognitoIdentityProvider _cognitoService;

 /// <summary>

Scenarios 340

Amazon Cognito Developer Guide

 /// Constructor for the wrapper class containing Amazon Cognito actions.
 /// </summary>
 /// <param name="cognitoService">The Amazon Cognito client object.</param>
 public CognitoWrapper(IAmazonCognitoIdentityProvider cognitoService)
 {
 _cognitoService = cognitoService;
 }

 /// <summary>
 /// List the Amazon Cognito user pools for an account.
 /// </summary>
 /// <returns>A list of UserPoolDescriptionType objects.</returns>
 public async Task<List<UserPoolDescriptionType>> ListUserPoolsAsync()
 {
 var userPools = new List<UserPoolDescriptionType>();

 var userPoolsPaginator = _cognitoService.Paginators.ListUserPools(new
 ListUserPoolsRequest());

 await foreach (var response in userPoolsPaginator.Responses)
 {
 userPools.AddRange(response.UserPools);
 }

 return userPools;
 }

 /// <summary>
 /// Get a list of users for the Amazon Cognito user pool.
 /// </summary>
 /// <param name="userPoolId">The user pool ID.</param>
 /// <returns>A list of users.</returns>
 public async Task<List<UserType>> ListUsersAsync(string userPoolId)
 {
 var request = new ListUsersRequest
 {
 UserPoolId = userPoolId
 };

 var users = new List<UserType>();

 var usersPaginator = _cognitoService.Paginators.ListUsers(request);
 await foreach (var response in usersPaginator.Responses)

Scenarios 341

Amazon Cognito Developer Guide

 {
 users.AddRange(response.Users);
 }

 return users;
 }

 /// <summary>
 /// Respond to an admin authentication challenge.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="clientId">The client ID.</param>
 /// <param name="mfaCode">The multi-factor authentication code.</param>
 /// <param name="session">The current application session.</param>
 /// <param name="clientId">The user pool ID.</param>
 /// <returns>The result of the authentication response.</returns>
 public async Task<AuthenticationResultType> AdminRespondToAuthChallengeAsync(
 string userName,
 string clientId,
 string mfaCode,
 string session,
 string userPoolId)
 {
 Console.WriteLine("SOFTWARE_TOKEN_MFA challenge is generated");

 var challengeResponses = new Dictionary<string, string>();
 challengeResponses.Add("USERNAME", userName);
 challengeResponses.Add("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

 var respondToAuthChallengeRequest = new
 AdminRespondToAuthChallengeRequest
 {
 ChallengeName = ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ClientId = clientId,
 ChallengeResponses = challengeResponses,
 Session = session,
 UserPoolId = userPoolId,
 };

 var response = await
 _cognitoService.AdminRespondToAuthChallengeAsync(respondToAuthChallengeRequest);
 Console.WriteLine($"Response to Authentication
 {response.AuthenticationResult.TokenType}");

Scenarios 342

Amazon Cognito Developer Guide

 return response.AuthenticationResult;
 }

 /// <summary>
 /// Verify the TOTP and register for MFA.
 /// </summary>
 /// <param name="session">The name of the session.</param>
 /// <param name="code">The MFA code.</param>
 /// <returns>The status of the software token.</returns>
 public async Task<VerifySoftwareTokenResponseType>
 VerifySoftwareTokenAsync(string session, string code)
 {
 var tokenRequest = new VerifySoftwareTokenRequest
 {
 UserCode = code,
 Session = session,
 };

 var verifyResponse = await
 _cognitoService.VerifySoftwareTokenAsync(tokenRequest);

 return verifyResponse.Status;
 }

 /// <summary>
 /// Get an MFA token to authenticate the user with the authenticator.
 /// </summary>
 /// <param name="session">The session name.</param>
 /// <returns>The session name.</returns>
 public async Task<string> AssociateSoftwareTokenAsync(string session)
 {
 var softwareTokenRequest = new AssociateSoftwareTokenRequest
 {
 Session = session,
 };

 var tokenResponse = await
 _cognitoService.AssociateSoftwareTokenAsync(softwareTokenRequest);
 var secretCode = tokenResponse.SecretCode;

 Console.WriteLine($"Use the following secret code to set up the
 authenticator: {secretCode}");

Scenarios 343

Amazon Cognito Developer Guide

 return tokenResponse.Session;
 }

 /// <summary>
 /// Initiate an admin auth request.
 /// </summary>
 /// <param name="clientId">The client ID to use.</param>
 /// <param name="userPoolId">The ID of the user pool.</param>
 /// <param name="userName">The username to authenticate.</param>
 /// <param name="password">The user's password.</param>
 /// <returns>The session to use in challenge-response.</returns>
 public async Task<string> AdminInitiateAuthAsync(string clientId, string
 userPoolId, string userName, string password)
 {
 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var request = new AdminInitiateAuthRequest
 {
 ClientId = clientId,
 UserPoolId = userPoolId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.AdminInitiateAuthAsync(request);
 return response.Session;
 }

 /// <summary>
 /// Initiate authorization.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The name of the user who is authenticating.</
param>
 /// <param name="password">The password for the user who is authenticating.</
param>
 /// <returns>The response from the initiate auth request.</returns>
 public async Task<InitiateAuthResponse> InitiateAuthAsync(string clientId,
 string userName, string password)
 {

Scenarios 344

Amazon Cognito Developer Guide

 var authParameters = new Dictionary<string, string>();
 authParameters.Add("USERNAME", userName);
 authParameters.Add("PASSWORD", password);

 var authRequest = new InitiateAuthRequest

 {
 ClientId = clientId,
 AuthParameters = authParameters,
 AuthFlow = AuthFlowType.USER_PASSWORD_AUTH,
 };

 var response = await _cognitoService.InitiateAuthAsync(authRequest);
 Console.WriteLine($"Result Challenge is : {response.ChallengeName}");

 return response;
 }

 /// <summary>
 /// Confirm that the user has signed up.
 /// </summary>
 /// <param name="clientId">The Id of this application.</param>
 /// <param name="code">The confirmation code sent to the user.</param>
 /// <param name="userName">The username.</param>
 /// <returns>True if successful.</returns>
 public async Task<bool> ConfirmSignupAsync(string clientId, string code,
 string userName)
 {
 var signUpRequest = new ConfirmSignUpRequest
 {
 ClientId = clientId,
 ConfirmationCode = code,
 Username = userName,
 };

 var response = await _cognitoService.ConfirmSignUpAsync(signUpRequest);
 if (response.HttpStatusCode == HttpStatusCode.OK)
 {
 Console.WriteLine($"{userName} was confirmed");
 return true;
 }
 return false;
 }

Scenarios 345

Amazon Cognito Developer Guide

 /// <summary>
 /// Initiates and confirms tracking of the device.
 /// </summary>
 /// <param name="accessToken">The user's access token.</param>
 /// <param name="deviceKey">The key of the device from Amazon Cognito.</
param>
 /// <param name="deviceName">The device name.</param>
 /// <returns></returns>
 public async Task<bool> ConfirmDeviceAsync(string accessToken, string
 deviceKey, string deviceName)
 {
 var request = new ConfirmDeviceRequest
 {
 AccessToken = accessToken,
 DeviceKey = deviceKey,
 DeviceName = deviceName
 };

 var response = await _cognitoService.ConfirmDeviceAsync(request);
 return response.UserConfirmationNecessary;
 }

 /// <summary>
 /// Send a new confirmation code to a user.
 /// </summary>
 /// <param name="clientId">The Id of the client application.</param>
 /// <param name="userName">The username of user who will receive the code.</
param>
 /// <returns>The delivery details.</returns>
 public async Task<CodeDeliveryDetailsType> ResendConfirmationCodeAsync(string
 clientId, string userName)
 {
 var codeRequest = new ResendConfirmationCodeRequest
 {
 ClientId = clientId,
 Username = userName,
 };

 var response = await
 _cognitoService.ResendConfirmationCodeAsync(codeRequest);

Scenarios 346

Amazon Cognito Developer Guide

 Console.WriteLine($"Method of delivery is
 {response.CodeDeliveryDetails.DeliveryMedium}");

 return response.CodeDeliveryDetails;
 }

 /// <summary>
 /// Get the specified user from an Amazon Cognito user pool with
 administrator access.
 /// </summary>
 /// <param name="userName">The name of the user.</param>
 /// <param name="poolId">The Id of the Amazon Cognito user pool.</param>
 /// <returns>Async task.</returns>
 public async Task<UserStatusType> GetAdminUserAsync(string userName, string
 poolId)
 {
 AdminGetUserRequest userRequest = new AdminGetUserRequest
 {
 Username = userName,
 UserPoolId = poolId,
 };

 var response = await _cognitoService.AdminGetUserAsync(userRequest);

 Console.WriteLine($"User status {response.UserStatus}");
 return response.UserStatus;
 }

 /// <summary>
 /// Sign up a new user.
 /// </summary>
 /// <param name="clientId">The client Id of the application.</param>
 /// <param name="userName">The username to use.</param>
 /// <param name="password">The user's password.</param>
 /// <param name="email">The email address of the user.</param>
 /// <returns>A Boolean value indicating whether the user was confirmed.</
returns>
 public async Task<bool> SignUpAsync(string clientId, string userName, string
 password, string email)
 {
 var userAttrs = new AttributeType
 {

Scenarios 347

Amazon Cognito Developer Guide

 Name = "email",
 Value = email,
 };

 var userAttrsList = new List<AttributeType>();

 userAttrsList.Add(userAttrs);

 var signUpRequest = new SignUpRequest
 {
 UserAttributes = userAttrsList,
 Username = userName,
 ClientId = clientId,
 Password = password
 };

 var response = await _cognitoService.SignUpAsync(signUpRequest);
 return response.HttpStatusCode == HttpStatusCode.OK;
 }

}

• For API details, see the following topics in Amazon SDK for .NET API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Scenarios 348

https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminGetUser
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminInitiateAuth
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmDevice
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ConfirmSignUp
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/InitiateAuth
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ListUsers
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/RespondToAuthChallenge
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/SignUp
https://docs.amazonaws.cn/goto/DotNetSDKV3/cognito-idp-2016-04-18/VerifySoftwareToken

Amazon Cognito Developer Guide

C++

SDK for C++

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

 Aws::Client::ClientConfiguration clientConfig;
 // Optional: Set to the AWS Region (overrides config file).
 // clientConfig.region = "us-east-1";

//! Scenario that adds a user to an Amazon Cognito user pool.
/*!
 \sa gettingStartedWithUserPools()
 \param clientID: Client ID associated with an Amazon Cognito user pool.
 \param userPoolID: An Amazon Cognito user pool ID.
 \param clientConfig: Aws client configuration.
 \return bool: Successful completion.
 */
bool AwsDoc::Cognito::gettingStartedWithUserPools(const Aws::String &clientID,
 const Aws::String &userPoolID,
 const
 Aws::Client::ClientConfiguration &clientConfig) {
 printAsterisksLine();
 std::cout
 << "Welcome to the Amazon Cognito example scenario."
 << std::endl;
 printAsterisksLine();

 std::cout
 << "This scenario will add a user to an Amazon Cognito user pool."
 << std::endl;
 const Aws::String userName = askQuestion("Enter a new username: ");
 const Aws::String password = askQuestion("Enter a new password: ");
 const Aws::String email = askQuestion("Enter a valid email for the user: ");

 std::cout << "Signing up " << userName << std::endl;

Scenarios 349

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient
 client(clientConfig);
 bool userExists = false;
 do {
 // 1. Add a user with a username, password, and email address.
 Aws::CognitoIdentityProvider::Model::SignUpRequest request;
 request.AddUserAttributes(
 Aws::CognitoIdentityProvider::Model::AttributeType().WithName(
 "email").WithValue(email));
 request.SetUsername(userName);
 request.SetPassword(password);
 request.SetClientId(clientID);
 Aws::CognitoIdentityProvider::Model::SignUpOutcome outcome =
 client.SignUp(request);

 if (outcome.IsSuccess()) {
 std::cout << "The signup request for " << userName << " was
 successful."
 << std::endl;
 }
 else if (outcome.GetError().GetErrorType() ==

 Aws::CognitoIdentityProvider::CognitoIdentityProviderErrors::USERNAME_EXISTS) {
 std::cout
 << "The username already exists. Please enter a different
 username."
 << std::endl;
 userExists = true;
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::SignUpRequest. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 } while (userExists);

 printAsterisksLine();
 std::cout << "Retrieving status of " << userName << " in the user pool."
 << std::endl;
 // 2. Confirm that the user was added to the user pool.
 if (!checkAdminUserStatus(userName, userPoolID, client)) {
 return false;
 }

Scenarios 350

Amazon Cognito Developer Guide

 std::cout << "A confirmation code was sent to " << email << "." << std::endl;

 bool resend = askYesNoQuestion("Would you like to send a new code? (y/n) ");
 if (resend) {
 // Request a resend of the confirmation code to the email address.
 (ResendConfirmationCode)
 Aws::CognitoIdentityProvider::Model::ResendConfirmationCodeRequest
 request;
 request.SetUsername(userName);
 request.SetClientId(clientID);

 Aws::CognitoIdentityProvider::Model::ResendConfirmationCodeOutcome
 outcome =
 client.ResendConfirmationCode(request);

 if (outcome.IsSuccess()) {
 std::cout
 << "CognitoIdentityProvider::ResendConfirmationCode was
 successful."
 << std::endl;
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::ResendConfirmationCode. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 printAsterisksLine();

 {
 // 4. Send the confirmation code that's received in the email.
 (ConfirmSignUp)
 const Aws::String confirmationCode = askQuestion(
 "Enter the confirmation code that was emailed: ");
 Aws::CognitoIdentityProvider::Model::ConfirmSignUpRequest request;
 request.SetClientId(clientID);
 request.SetConfirmationCode(confirmationCode);
 request.SetUsername(userName);

 Aws::CognitoIdentityProvider::Model::ConfirmSignUpOutcome outcome =

Scenarios 351

Amazon Cognito Developer Guide

 client.ConfirmSignUp(request);

 if (outcome.IsSuccess()) {
 std::cout << "ConfirmSignup was Successful."
 << std::endl;
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::ConfirmSignUp. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 std::cout << "Rechecking the status of " << userName << " in the user pool."
 << std::endl;
 if (!checkAdminUserStatus(userName, userPoolID, client)) {
 return false;
 }

 printAsterisksLine();

 std::cout << "Initiating authorization using the username and password."
 << std::endl;

 Aws::String session;
 // 5. Initiate authorization with username and password. (AdminInitiateAuth)
 if (!adminInitiateAuthorization(clientID, userPoolID, userName, password,
 session, client)) {
 return false;
 }

 printAsterisksLine();

 std::cout
 << "Starting setup of time-based one-time password (TOTP) multi-
factor authentication (MFA)."
 << std::endl;

 {
 // 6. Request a setup key for one-time password (TOTP)
 // multi-factor authentication (MFA). (AssociateSoftwareToken)
 Aws::CognitoIdentityProvider::Model::AssociateSoftwareTokenRequest
 request;

Scenarios 352

Amazon Cognito Developer Guide

 request.SetSession(session);

 Aws::CognitoIdentityProvider::Model::AssociateSoftwareTokenOutcome
 outcome =
 client.AssociateSoftwareToken(request);

 if (outcome.IsSuccess()) {
 std::cout
 << "Enter this setup key into an authenticator app, for
 example Google Authenticator."
 << std::endl;
 std::cout << "Setup key: " << outcome.GetResult().GetSecretCode()
 << std::endl;
#ifdef USING_QR
 printAsterisksLine();
 std::cout << "\nOr scan the QR code in the file '" << QR_CODE_PATH <<
 "."
 << std::endl;

 saveQRCode(std::string("otpauth://totp/") + userName + "?secret=" +
 outcome.GetResult().GetSecretCode());
#endif // USING_QR
 session = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::AssociateSoftwareToken. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }
 askQuestion("Type enter to continue...", alwaysTrueTest);

 printAsterisksLine();

 {
 Aws::String userCode = askQuestion(
 "Enter the 6 digit code displayed in the authenticator app: ");

 // 7. Send the MFA code copied from an authenticator app.
 (VerifySoftwareToken)
 Aws::CognitoIdentityProvider::Model::VerifySoftwareTokenRequest request;
 request.SetUserCode(userCode);

Scenarios 353

Amazon Cognito Developer Guide

 request.SetSession(session);

 Aws::CognitoIdentityProvider::Model::VerifySoftwareTokenOutcome outcome =
 client.VerifySoftwareToken(request);

 if (outcome.IsSuccess()) {
 std::cout << "Verification of the code was successful."
 << std::endl;
 session = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::VerifySoftwareToken. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }
 }

 printAsterisksLine();
 std::cout << "You have completed the MFA authentication setup." << std::endl;
 std::cout << "Now, sign in." << std::endl;

 // 8. Initiate authorization again with username and password.
 (AdminInitiateAuth)
 if (!adminInitiateAuthorization(clientID, userPoolID, userName, password,
 session, client)) {
 return false;
 }

 Aws::String accessToken;
 {
 Aws::String mfaCode = askQuestion(
 "Re-enter the 6 digit code displayed in the authenticator app:
 ");

 // 9. Send a new MFA code copied from an authenticator app.
 (AdminRespondToAuthChallenge)
 Aws::CognitoIdentityProvider::Model::AdminRespondToAuthChallengeRequest
 request;
 request.AddChallengeResponses("USERNAME", userName);
 request.AddChallengeResponses("SOFTWARE_TOKEN_MFA_CODE", mfaCode);
 request.SetChallengeName(

Scenarios 354

Amazon Cognito Developer Guide

 Aws::CognitoIdentityProvider::Model::ChallengeNameType::SOFTWARE_TOKEN_MFA);
 request.SetClientId(clientID);
 request.SetUserPoolId(userPoolID);
 request.SetSession(session);

 Aws::CognitoIdentityProvider::Model::AdminRespondToAuthChallengeOutcome
 outcome =
 client.AdminRespondToAuthChallenge(request);

 if (outcome.IsSuccess()) {
 std::cout << "Here is the response to the challenge.\n" <<

 outcome.GetResult().GetAuthenticationResult().Jsonize().View().WriteReadable()
 << std::endl;

 accessToken =
 outcome.GetResult().GetAuthenticationResult().GetAccessToken();
 }
 else {
 std::cerr << "Error with
 CognitoIdentityProvider::AdminRespondToAuthChallenge. "
 << outcome.GetError().GetMessage()
 << std::endl;
 return false;
 }

 std::cout << "You have successfully added a user to Amazon Cognito."
 << std::endl;
 }

 if (askYesNoQuestion("Would you like to delete the user that you just added?
 (y/n) ")) {
 // 10. Delete the user that you just added. (DeleteUser)
 Aws::CognitoIdentityProvider::Model::DeleteUserRequest request;
 request.SetAccessToken(accessToken);

 Aws::CognitoIdentityProvider::Model::DeleteUserOutcome outcome =
 client.DeleteUser(request);

 if (outcome.IsSuccess()) {
 std::cout << "The user " << userName << " was deleted."
 << std::endl;
 }

Scenarios 355

Amazon Cognito Developer Guide

 else {
 std::cerr << "Error with CognitoIdentityProvider::DeleteUser. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }
 }

 return true;
}

//! Routine which checks the user status in an Amazon Cognito user pool.
/*!
 \sa checkAdminUserStatus()
 \param userName: A username.
 \param userPoolID: An Amazon Cognito user pool ID.
 \return bool: Successful completion.
 */
bool AwsDoc::Cognito::checkAdminUserStatus(const Aws::String &userName,
 const Aws::String &userPoolID,
 const
 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient &client) {
 Aws::CognitoIdentityProvider::Model::AdminGetUserRequest request;
 request.SetUsername(userName);
 request.SetUserPoolId(userPoolID);

 Aws::CognitoIdentityProvider::Model::AdminGetUserOutcome outcome =
 client.AdminGetUser(request);

 if (outcome.IsSuccess()) {
 std::cout << "The status for " << userName << " is " <<

 Aws::CognitoIdentityProvider::Model::UserStatusTypeMapper::GetNameForUserStatusType(
 outcome.GetResult().GetUserStatus()) << std::endl;
 std::cout << "Enabled is " << outcome.GetResult().GetEnabled() <<
 std::endl;
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::AdminGetUser. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Scenarios 356

Amazon Cognito Developer Guide

//! Routine which starts authorization of an Amazon Cognito user.
//! This routine requires administrator credentials.
/*!
 \sa adminInitiateAuthorization()
 \param clientID: Client ID of tracked device.
 \param userPoolID: An Amazon Cognito user pool ID.
 \param userName: A username.
 \param password: A password.
 \param sessionResult: String to receive a session token.
 \return bool: Successful completion.
 */
bool AwsDoc::Cognito::adminInitiateAuthorization(const Aws::String &clientID,
 const Aws::String &userPoolID,
 const Aws::String &userName,
 const Aws::String &password,
 Aws::String &sessionResult,
 const
 Aws::CognitoIdentityProvider::CognitoIdentityProviderClient &client) {
 Aws::CognitoIdentityProvider::Model::AdminInitiateAuthRequest request;
 request.SetClientId(clientID);
 request.SetUserPoolId(userPoolID);
 request.AddAuthParameters("USERNAME", userName);
 request.AddAuthParameters("PASSWORD", password);
 request.SetAuthFlow(

 Aws::CognitoIdentityProvider::Model::AuthFlowType::ADMIN_USER_PASSWORD_AUTH);

 Aws::CognitoIdentityProvider::Model::AdminInitiateAuthOutcome outcome =
 client.AdminInitiateAuth(request);

 if (outcome.IsSuccess()) {
 std::cout << "Call to AdminInitiateAuth was successful." << std::endl;
 sessionResult = outcome.GetResult().GetSession();
 }
 else {
 std::cerr << "Error with CognitoIdentityProvider::AdminInitiateAuth. "
 << outcome.GetError().GetMessage()
 << std::endl;
 }

 return outcome.IsSuccess();
}

Scenarios 357

Amazon Cognito Developer Guide

• For API details, see the following topics in Amazon SDK for C++ API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

import software.amazon.awssdk.regions.Region;
import
 software.amazon.awssdk.services.cognitoidentityprovider.CognitoIdentityProviderClient;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminGetUserRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminGetUserResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminInitiateAuthRequest;

Scenarios 358

https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminGetUser
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminInitiateAuth
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/AssociateSoftwareToken
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ConfirmDevice
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ConfirmSignUp
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/InitiateAuth
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ListUsers
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/RespondToAuthChallenge
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/SignUp
https://docs.amazonaws.cn/goto/SdkForCpp/cognito-idp-2016-04-18/VerifySoftwareToken
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/cognito#code-examples

Amazon Cognito Developer Guide

import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminInitiateAuthResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminRespondToAuthChallengeRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AdminRespondToAuthChallengeResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AssociateSoftwareTokenRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AssociateSoftwareTokenResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AttributeType;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.AuthFlowType;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ChallengeNameType;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.CognitoIdentityProviderException;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ConfirmSignUpRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ResendConfirmationCodeRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.ResendConfirmationCodeResponse;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.SignUpRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.VerifySoftwareTokenRequest;
import
 software.amazon.awssdk.services.cognitoidentityprovider.model.VerifySoftwareTokenResponse;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;

/**
 * Before running this Java V2 code example, set up your development
 * environment, including your credentials.
 *
 * For more information, see the following documentation:
 *

Scenarios 359

Amazon Cognito Developer Guide

 * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-
started.html
 *
 * TIP: To set up the required user pool, run the AWS Cloud Development Kit (AWS
 * CDK) script provided in this GitHub repo at
 * resources/cdk/cognito_scenario_user_pool_with_mfa.
 *
 * This code example performs the following operations:
 *
 * 1. Invokes the signUp method to sign up a user.
 * 2. Invokes the adminGetUser method to get the user's confirmation status.
 * 3. Invokes the ResendConfirmationCode method if the user requested another
 * code.
 * 4. Invokes the confirmSignUp method.
 * 5. Invokes the AdminInitiateAuth to sign in. This results in being prompted
 * to set up TOTP (time-based one-time password). (The response is
 * “ChallengeName”: “MFA_SETUP”).
 * 6. Invokes the AssociateSoftwareToken method to generate a TOTP MFA private
 * key. This can be used with Google Authenticator.
 * 7. Invokes the VerifySoftwareToken method to verify the TOTP and register for
 * MFA.
 * 8. Invokes the AdminInitiateAuth to sign in again. This results in being
 * prompted to submit a TOTP (Response: “ChallengeName”: “SOFTWARE_TOKEN_MFA”).
 * 9. Invokes the AdminRespondToAuthChallenge to get back a token.
 */

public class CognitoMVP {
 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 public static void main(String[] args) throws NoSuchAlgorithmException,
 InvalidKeyException {
 final String usage = """

 Usage:
 <clientId> <poolId>

 Where:
 clientId - The app client Id value that you can get from the
 AWS CDK script.
 poolId - The pool Id that you can get from the AWS CDK
 script.\s
 """;

Scenarios 360

Amazon Cognito Developer Guide

 if (args.length != 2) {
 System.out.println(usage);
 System.exit(1);
 }

 String clientId = args[0];
 String poolId = args[1];
 CognitoIdentityProviderClient identityProviderClient =
 CognitoIdentityProviderClient.builder()
 .region(Region.US_EAST_1)
 .build();

 System.out.println(DASHES);
 System.out.println("Welcome to the Amazon Cognito example scenario.");
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("*** Enter your user name");
 Scanner in = new Scanner(System.in);
 String userName = in.nextLine();

 System.out.println("*** Enter your password");
 String password = in.nextLine();

 System.out.println("*** Enter your email");
 String email = in.nextLine();

 System.out.println("1. Signing up " + userName);
 signUp(identityProviderClient, clientId, userName, password, email);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("2. Getting " + userName + " in the user pool");
 getAdminUser(identityProviderClient, userName, poolId);

 System.out
 .println("*** Conformation code sent to " + userName + ". Would
 you like to send a new code? (Yes/No)");
 System.out.println(DASHES);

 System.out.println(DASHES);
 String ans = in.nextLine();

 if (ans.compareTo("Yes") == 0) {

Scenarios 361

Amazon Cognito Developer Guide

 resendConfirmationCode(identityProviderClient, clientId, userName);
 System.out.println("3. Sending a new confirmation code");
 }
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("4. Enter confirmation code that was emailed");
 String code = in.nextLine();
 confirmSignUp(identityProviderClient, clientId, code, userName);
 System.out.println("Rechecking the status of " + userName + " in the user
 pool");
 getAdminUser(identityProviderClient, userName, poolId);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("5. Invokes the initiateAuth to sign in");
 AdminInitiateAuthResponse authResponse =
 initiateAuth(identityProviderClient, clientId, userName, password,
 poolId);
 String mySession = authResponse.session();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("6. Invokes the AssociateSoftwareToken method to
 generate a TOTP key");
 String newSession = getSecretForAppMFA(identityProviderClient,
 mySession);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("*** Enter the 6-digit code displayed in Google
 Authenticator");
 String myCode = in.nextLine();
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("7. Verify the TOTP and register for MFA");
 verifyTOTP(identityProviderClient, newSession, myCode);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("8. Re-enter a 6-digit code displayed in Google
 Authenticator");
 String mfaCode = in.nextLine();

Scenarios 362

Amazon Cognito Developer Guide

 AdminInitiateAuthResponse authResponse1 =
 initiateAuth(identityProviderClient, clientId, userName, password,
 poolId);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("9. Invokes the AdminRespondToAuthChallenge");
 String session2 = authResponse1.session();
 adminRespondToAuthChallenge(identityProviderClient, userName, clientId,
 mfaCode, session2);
 System.out.println(DASHES);

 System.out.println(DASHES);
 System.out.println("All Amazon Cognito operations were successfully
 performed");
 System.out.println(DASHES);
 }

 // Respond to an authentication challenge.
 public static void adminRespondToAuthChallenge(CognitoIdentityProviderClient
 identityProviderClient,
 String userName, String clientId, String mfaCode, String session) {
 System.out.println("SOFTWARE_TOKEN_MFA challenge is generated");
 Map<String, String> challengeResponses = new HashMap<>();

 challengeResponses.put("USERNAME", userName);
 challengeResponses.put("SOFTWARE_TOKEN_MFA_CODE", mfaCode);

 AdminRespondToAuthChallengeRequest respondToAuthChallengeRequest =
 AdminRespondToAuthChallengeRequest.builder()
 .challengeName(ChallengeNameType.SOFTWARE_TOKEN_MFA)
 .clientId(clientId)
 .challengeResponses(challengeResponses)
 .session(session)
 .build();

 AdminRespondToAuthChallengeResponse respondToAuthChallengeResult =
 identityProviderClient
 .adminRespondToAuthChallenge(respondToAuthChallengeRequest);

 System.out.println("respondToAuthChallengeResult.getAuthenticationResult()"
 + respondToAuthChallengeResult.authenticationResult());
 }

Scenarios 363

Amazon Cognito Developer Guide

 // Verify the TOTP and register for MFA.
 public static void verifyTOTP(CognitoIdentityProviderClient
 identityProviderClient, String session, String code) {
 try {
 VerifySoftwareTokenRequest tokenRequest =
 VerifySoftwareTokenRequest.builder()
 .userCode(code)
 .session(session)
 .build();

 VerifySoftwareTokenResponse verifyResponse =
 identityProviderClient.verifySoftwareToken(tokenRequest);
 System.out.println("The status of the token is " +
 verifyResponse.statusAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static AdminInitiateAuthResponse
 initiateAuth(CognitoIdentityProviderClient identityProviderClient,
 String clientId, String userName, String password, String userPoolId)
 {
 try {
 Map<String, String> authParameters = new HashMap<>();
 authParameters.put("USERNAME", userName);
 authParameters.put("PASSWORD", password);

 AdminInitiateAuthRequest authRequest =
 AdminInitiateAuthRequest.builder()
 .clientId(clientId)
 .userPoolId(userPoolId)
 .authParameters(authParameters)
 .authFlow(AuthFlowType.ADMIN_USER_PASSWORD_AUTH)
 .build();

 AdminInitiateAuthResponse response =
 identityProviderClient.adminInitiateAuth(authRequest);
 System.out.println("Result Challenge is : " +
 response.challengeName());
 return response;

Scenarios 364

Amazon Cognito Developer Guide

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

 return null;
 }

 public static String getSecretForAppMFA(CognitoIdentityProviderClient
 identityProviderClient, String session) {
 AssociateSoftwareTokenRequest softwareTokenRequest =
 AssociateSoftwareTokenRequest.builder()
 .session(session)
 .build();

 AssociateSoftwareTokenResponse tokenResponse = identityProviderClient
 .associateSoftwareToken(softwareTokenRequest);
 String secretCode = tokenResponse.secretCode();
 System.out.println("Enter this token into Google Authenticator");
 System.out.println(secretCode);
 return tokenResponse.session();
 }

 public static void confirmSignUp(CognitoIdentityProviderClient
 identityProviderClient, String clientId, String code,
 String userName) {
 try {
 ConfirmSignUpRequest signUpRequest = ConfirmSignUpRequest.builder()
 .clientId(clientId)
 .confirmationCode(code)
 .username(userName)
 .build();

 identityProviderClient.confirmSignUp(signUpRequest);
 System.out.println(userName + " was confirmed");

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void resendConfirmationCode(CognitoIdentityProviderClient
 identityProviderClient, String clientId,

Scenarios 365

Amazon Cognito Developer Guide

 String userName) {
 try {
 ResendConfirmationCodeRequest codeRequest =
 ResendConfirmationCodeRequest.builder()
 .clientId(clientId)
 .username(userName)
 .build();

 ResendConfirmationCodeResponse response =
 identityProviderClient.resendConfirmationCode(codeRequest);
 System.out.println("Method of delivery is " +
 response.codeDeliveryDetails().deliveryMediumAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }

 public static void signUp(CognitoIdentityProviderClient
 identityProviderClient, String clientId, String userName,
 String password, String email) {
 AttributeType userAttrs = AttributeType.builder()
 .name("email")
 .value(email)
 .build();

 List<AttributeType> userAttrsList = new ArrayList<>();
 userAttrsList.add(userAttrs);
 try {
 SignUpRequest signUpRequest = SignUpRequest.builder()
 .userAttributes(userAttrsList)
 .username(userName)
 .clientId(clientId)
 .password(password)
 .build();

 identityProviderClient.signUp(signUpRequest);
 System.out.println("User has been signed up ");

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }

Scenarios 366

Amazon Cognito Developer Guide

 }

 public static void getAdminUser(CognitoIdentityProviderClient
 identityProviderClient, String userName,
 String poolId) {
 try {
 AdminGetUserRequest userRequest = AdminGetUserRequest.builder()
 .username(userName)
 .userPoolId(poolId)
 .build();

 AdminGetUserResponse response =
 identityProviderClient.adminGetUser(userRequest);
 System.out.println("User status " + response.userStatusAsString());

 } catch (CognitoIdentityProviderException e) {
 System.err.println(e.awsErrorDetails().errorMessage());
 System.exit(1);
 }
 }
}

• For API details, see the following topics in Amazon SDK for Java 2.x API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Scenarios 367

https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminGetUser
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminInitiateAuth
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/AssociateSoftwareToken
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ConfirmDevice
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ConfirmSignUp
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/InitiateAuth
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ListUsers
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/RespondToAuthChallenge
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/SignUp
https://docs.amazonaws.cn/goto/SdkForJavaV2/cognito-idp-2016-04-18/VerifySoftwareToken

Amazon Cognito Developer Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

For the best experience, clone the GitHub repository and run this example. The following
code represents a sample of the full example application.

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { signUp } from "../../../actions/sign-up.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getSecondValuesFromEntries } from "@aws-doc-sdk-examples/lib/utils/util-
csv.js";

const validateClient = (clientId) => {
 if (!clientId) {
 throw new Error(
 `App client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

const validateUser = (username, password, email) => {
 if (!(username && password && email)) {
 throw new Error(
 `Username, password, and email must be provided as arguments to the 'sign-
up' command.`,
);
 }
};

const signUpHandler = async (commands) => {
 const [_, username, password, email] = commands;

 try {
 validateUser(username, password, email);
 /**

Scenarios 368

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/cognito-identity-provider/scenarios/basic#code-examples

Amazon Cognito Developer Guide

 * @type {string[]}
 */
 const values = getSecondValuesFromEntries(FILE_USER_POOLS);
 const clientId = values[0];
 validateClient(clientId);
 logger.log("Signing up.");
 await signUp({ clientId, username, password, email });
 logger.log(`Signed up. A confirmation email has been sent to: ${email}.`);
 logger.log(
 `Run 'confirm-sign-up ${username} <code>' to confirm your account.`,
);
 } catch (err) {
 logger.error(err);
 }
};

export { signUpHandler };

const signUp = ({ clientId, username, password, email }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new SignUpCommand({
 ClientId: clientId,
 Username: username,
 Password: password,
 UserAttributes: [{ Name: "email", Value: email }],
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { confirmSignUp } from "../../../actions/confirm-sign-up.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getSecondValuesFromEntries } from "@aws-doc-sdk-examples/lib/utils/util-
csv.js";

const validateClient = (clientId) => {
 if (!clientId) {
 throw new Error(
 `App client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

Scenarios 369

Amazon Cognito Developer Guide

const validateUser = (username) => {
 if (!username) {
 throw new Error(
 `Username name is missing. It must be provided as an argument to the
 'confirm-sign-up' command.`,
);
 }
};

const validateCode = (code) => {
 if (!code) {
 throw new Error(
 `Verification code is missing. It must be provided as an argument to the
 'confirm-sign-up' command.`,
);
 }
};

const confirmSignUpHandler = async (commands) => {
 const [_, username, code] = commands;

 try {
 validateUser(username);
 validateCode(code);
 /**
 * @type {string[]}
 */
 const values = getSecondValuesFromEntries(FILE_USER_POOLS);
 const clientId = values[0];
 validateClient(clientId);
 logger.log("Confirming user.");
 await confirmSignUp({ clientId, username, code });
 logger.log(
 `User confirmed. Run 'admin-initiate-auth ${username} <password>' to sign
 in.`,
);
 } catch (err) {
 logger.error(err);
 }
};

export { confirmSignUpHandler };

Scenarios 370

Amazon Cognito Developer Guide

const confirmSignUp = ({ clientId, username, code }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new ConfirmSignUpCommand({
 ClientId: clientId,
 Username: username,
 ConfirmationCode: code,
 });

 return client.send(command);
};

import qrcode from "qrcode-terminal";
import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { adminInitiateAuth } from "../../../actions/admin-initiate-auth.js";
import { associateSoftwareToken } from "../../../actions/associate-software-
token.js";
import { FILE_USER_POOLS } from "./constants.js";
import { getFirstEntry } from "@aws-doc-sdk-examples/lib/utils/util-csv.js";

const handleMfaSetup = async (session, username) => {
 const { SecretCode, Session } = await associateSoftwareToken(session);

 // Store the Session for use with 'VerifySoftwareToken'.
 process.env.SESSION = Session;

 console.log(
 "Scan this code in your preferred authenticator app, then run 'verify-
software-token' to finish the setup.",
);
 qrcode.generate(
 `otpauth://totp/${username}?secret=${SecretCode}`,
 { small: true },
 console.log,
);
};

const handleSoftwareTokenMfa = (session) => {
 // Store the Session for use with 'AdminRespondToAuthChallenge'.
 process.env.SESSION = session;
};

const validateClient = (id) => {
 if (!id) {

Scenarios 371

Amazon Cognito Developer Guide

 throw new Error(
 `User pool client id is missing. Did you run 'create-user-pool'?`,
);
 }
};

const validateId = (id) => {
 if (!id) {
 throw new Error(`User pool id is missing. Did you run 'create-user-pool'?`);
 }
};

const validateUser = (username, password) => {
 if (!(username && password)) {
 throw new Error(
 `Username and password must be provided as arguments to the 'admin-
initiate-auth' command.`,
);
 }
};

const adminInitiateAuthHandler = async (commands) => {
 const [_, username, password] = commands;

 try {
 validateUser(username, password);

 const [userPoolId, clientId] = getFirstEntry(FILE_USER_POOLS);
 validateId(userPoolId);
 validateClient(clientId);

 logger.log("Signing in.");
 const { ChallengeName, Session } = await adminInitiateAuth({
 clientId,
 userPoolId,
 username,
 password,
 });

 if (ChallengeName === "MFA_SETUP") {
 logger.log("MFA setup is required.");
 return handleMfaSetup(Session, username);
 }

Scenarios 372

Amazon Cognito Developer Guide

 if (ChallengeName === "SOFTWARE_TOKEN_MFA") {
 handleSoftwareTokenMfa(Session);
 logger.log(`Run 'admin-respond-to-auth-challenge ${username} <totp>'`);
 }
 } catch (err) {
 logger.error(err);
 }
};

export { adminInitiateAuthHandler };

const adminInitiateAuth = ({ clientId, userPoolId, username, password }) => {
 const client = new CognitoIdentityProviderClient({});

 const command = new AdminInitiateAuthCommand({
 ClientId: clientId,
 UserPoolId: userPoolId,
 AuthFlow: AuthFlowType.ADMIN_USER_PASSWORD_AUTH,
 AuthParameters: { USERNAME: username, PASSWORD: password },
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { adminRespondToAuthChallenge } from "../../../actions/admin-respond-to-
auth-challenge.js";
import { getFirstEntry } from "@aws-doc-sdk-examples/lib/utils/util-csv.js";
import { FILE_USER_POOLS } from "./constants.js";

const verifyUsername = (username) => {
 if (!username) {
 throw new Error(
 `Username is missing. It must be provided as an argument to the 'admin-
respond-to-auth-challenge' command.`,
);
 }
};

const verifyTotp = (totp) => {
 if (!totp) {
 throw new Error(
 `Time-based one-time password (TOTP) is missing. It must be provided as an
 argument to the 'admin-respond-to-auth-challenge' command.`,

Scenarios 373

Amazon Cognito Developer Guide

);
 }
};

const storeAccessToken = (token) => {
 process.env.AccessToken = token;
};

const adminRespondToAuthChallengeHandler = async (commands) => {
 const [_, username, totp] = commands;

 try {
 verifyUsername(username);
 verifyTotp(totp);

 const [userPoolId, clientId] = getFirstEntry(FILE_USER_POOLS);
 const session = process.env.SESSION;

 const { AuthenticationResult } = await adminRespondToAuthChallenge({
 clientId,
 userPoolId,
 username,
 totp,
 session,
 });

 storeAccessToken(AuthenticationResult.AccessToken);

 logger.log("Successfully authenticated.");
 } catch (err) {
 logger.error(err);
 }
};

export { adminRespondToAuthChallengeHandler };

const respondToAuthChallenge = ({
 clientId,
 username,
 session,
 userPoolId,
 code,
}) => {
 const client = new CognitoIdentityProviderClient({});

Scenarios 374

Amazon Cognito Developer Guide

 const command = new RespondToAuthChallengeCommand({
 ChallengeName: ChallengeNameType.SOFTWARE_TOKEN_MFA,
 ChallengeResponses: {
 SOFTWARE_TOKEN_MFA_CODE: code,
 USERNAME: username,
 },
 ClientId: clientId,
 UserPoolId: userPoolId,
 Session: session,
 });

 return client.send(command);
};

import { logger } from "@aws-doc-sdk-examples/lib/utils/util-log.js";
import { verifySoftwareToken } from "../../../actions/verify-software-token.js";

const validateTotp = (totp) => {
 if (!totp) {
 throw new Error(
 `Time-based one-time password (TOTP) must be provided to the 'validate-
software-token' command.`,
);
 }
};
const verifySoftwareTokenHandler = async (commands) => {
 const [_, totp] = commands;

 try {
 validateTotp(totp);

 logger.log("Verifying TOTP.");
 await verifySoftwareToken(totp);
 logger.log("TOTP Verified. Run 'admin-initiate-auth' again to sign-in.");
 } catch (err) {
 logger.error(err);
 }
};

export { verifySoftwareTokenHandler };

const verifySoftwareToken = (totp) => {
 const client = new CognitoIdentityProviderClient({});

Scenarios 375

Amazon Cognito Developer Guide

 // The 'Session' is provided in the response to 'AssociateSoftwareToken'.
 const session = process.env.SESSION;

 if (!session) {
 throw new Error(
 "Missing a valid Session. Did you run 'admin-initiate-auth'?",
);
 }

 const command = new VerifySoftwareTokenCommand({
 Session: session,
 UserCode: totp,
 });

 return client.send(command);
};

• For API details, see the following topics in Amazon SDK for JavaScript API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Scenarios 376

https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminGetUserCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminInitiateAuthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AdminRespondToAuthChallengeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/AssociateSoftwareTokenCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmDeviceCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ConfirmSignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/InitiateAuthCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ListUsersCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/ResendConfirmationCodeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/RespondToAuthChallengeCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/SignUpCommand
https://docs.amazonaws.cn/AWSJavaScriptSDK/v3/latest/client/cognito-identity-provider/command/VerifySoftwareTokenCommand

Amazon Cognito Developer Guide

Kotlin

SDK for Kotlin

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

/**
 Before running this Kotlin code example, set up your development environment,
 including your credentials.

 For more information, see the following documentation:
 https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html

 TIP: To set up the required user pool, run the AWS Cloud Development
 Kit (AWS CDK) script provided in this GitHub repo at resources/cdk/
cognito_scenario_user_pool_with_mfa.

 This code example performs the following operations:

 1. Invokes the signUp method to sign up a user.
 2. Invokes the adminGetUser method to get the user's confirmation status.
 3. Invokes the ResendConfirmationCode method if the user requested another code.
 4. Invokes the confirmSignUp method.
 5. Invokes the initiateAuth to sign in. This results in being prompted to
 set up TOTP (time-based one-time password). (The response is “ChallengeName”:
 “MFA_SETUP”).
 6. Invokes the AssociateSoftwareToken method to generate a TOTP MFA private key.
 This can be used with Google Authenticator.
 7. Invokes the VerifySoftwareToken method to verify the TOTP and register for
 MFA.
 8. Invokes the AdminInitiateAuth to sign in again. This results in being
 prompted to submit a TOTP (Response: “ChallengeName”: “SOFTWARE_TOKEN_MFA”).
 9. Invokes the AdminRespondToAuthChallenge to get back a token.
 */

suspend fun main(args: Array<String>) {
 val usage = """

Scenarios 377

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin/services/cognito#code-examples

Amazon Cognito Developer Guide

 Usage:
 <clientId> <poolId>
 Where:
 clientId - The app client Id value that you can get from the AWS CDK
 script.
 poolId - The pool Id that you can get from the AWS CDK script.
 """

 if (args.size != 2) {
 println(usage)
 exitProcess(1)
 }

 val clientId = args[0]
 val poolId = args[1]

 // Use the console to get data from the user.
 println("*** Enter your use name")
 val inOb = Scanner(System.`in`)
 val userName = inOb.nextLine()
 println(userName)

 println("*** Enter your password")
 val password: String = inOb.nextLine()

 println("*** Enter your email")
 val email = inOb.nextLine()

 println("*** Signing up $userName")
 signUp(clientId, userName, password, email)

 println("*** Getting $userName in the user pool")
 getAdminUser(userName, poolId)

 println("*** Conformation code sent to $userName. Would you like to send a
 new code? (Yes/No)")
 val ans = inOb.nextLine()

 if (ans.compareTo("Yes") == 0) {
 println("*** Sending a new confirmation code")
 resendConfirmationCode(clientId, userName)
 }
 println("*** Enter the confirmation code that was emailed")
 val code = inOb.nextLine()

Scenarios 378

Amazon Cognito Developer Guide

 confirmSignUp(clientId, code, userName)

 println("*** Rechecking the status of $userName in the user pool")
 getAdminUser(userName, poolId)

 val authResponse = checkAuthMethod(clientId, userName, password, poolId)
 val mySession = authResponse.session
 val newSession = getSecretForAppMFA(mySession)
 println("*** Enter the 6-digit code displayed in Google Authenticator")
 val myCode = inOb.nextLine()

 // Verify the TOTP and register for MFA.
 verifyTOTP(newSession, myCode)
 println("*** Re-enter a 6-digit code displayed in Google Authenticator")
 val mfaCode: String = inOb.nextLine()
 val authResponse1 = checkAuthMethod(clientId, userName, password, poolId)
 val session2 = authResponse1.session
 adminRespondToAuthChallenge(userName, clientId, mfaCode, session2)
}

suspend fun checkAuthMethod(
 clientIdVal: String,
 userNameVal: String,
 passwordVal: String,
 userPoolIdVal: String,
): AdminInitiateAuthResponse {
 val authParas = mutableMapOf<String, String>()
 authParas["USERNAME"] = userNameVal
 authParas["PASSWORD"] = passwordVal

 val authRequest =
 AdminInitiateAuthRequest {
 clientId = clientIdVal
 userPoolId = userPoolIdVal
 authParameters = authParas
 authFlow = AuthFlowType.AdminUserPasswordAuth
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.adminInitiateAuth(authRequest)
 println("Result Challenge is ${response.challengeName}")
 return response
 }

Scenarios 379

Amazon Cognito Developer Guide

}

suspend fun resendConfirmationCode(
 clientIdVal: String?,
 userNameVal: String?,
) {
 val codeRequest =
 ResendConfirmationCodeRequest {
 clientId = clientIdVal
 username = userNameVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.resendConfirmationCode(codeRequest)
 println("Method of delivery is " +
 (response.codeDeliveryDetails?.deliveryMedium))
 }
}

// Respond to an authentication challenge.
suspend fun adminRespondToAuthChallenge(
 userName: String,
 clientIdVal: String?,
 mfaCode: String,
 sessionVal: String?,
) {
 println("SOFTWARE_TOKEN_MFA challenge is generated")
 val challengeResponsesOb = mutableMapOf<String, String>()
 challengeResponsesOb["USERNAME"] = userName
 challengeResponsesOb["SOFTWARE_TOKEN_MFA_CODE"] = mfaCode

 val adminRespondToAuthChallengeRequest =
 AdminRespondToAuthChallengeRequest {
 challengeName = ChallengeNameType.SoftwareTokenMfa
 clientId = clientIdVal
 challengeResponses = challengeResponsesOb
 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val respondToAuthChallengeResult =
 identityProviderClient.adminRespondToAuthChallenge(adminRespondToAuthChallengeRequest)

Scenarios 380

Amazon Cognito Developer Guide

 println("respondToAuthChallengeResult.getAuthenticationResult()
 ${respondToAuthChallengeResult.authenticationResult}")
 }
}

// Verify the TOTP and register for MFA.
suspend fun verifyTOTP(
 sessionVal: String?,
 codeVal: String?,
) {
 val tokenRequest =
 VerifySoftwareTokenRequest {
 userCode = codeVal
 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val verifyResponse =
 identityProviderClient.verifySoftwareToken(tokenRequest)
 println("The status of the token is ${verifyResponse.status}")
 }
}

suspend fun getSecretForAppMFA(sessionVal: String?): String? {
 val softwareTokenRequest =
 AssociateSoftwareTokenRequest {
 session = sessionVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val tokenResponse =
 identityProviderClient.associateSoftwareToken(softwareTokenRequest)
 val secretCode = tokenResponse.secretCode
 println("Enter this token into Google Authenticator")
 println(secretCode)
 return tokenResponse.session
 }
}

suspend fun confirmSignUp(
 clientIdVal: String?,
 codeVal: String?,

Scenarios 381

Amazon Cognito Developer Guide

 userNameVal: String?,
) {
 val signUpRequest =
 ConfirmSignUpRequest {
 clientId = clientIdVal
 confirmationCode = codeVal
 username = userNameVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 identityProviderClient.confirmSignUp(signUpRequest)
 println("$userNameVal was confirmed")
 }
}

suspend fun getAdminUser(
 userNameVal: String?,
 poolIdVal: String?,
) {
 val userRequest =
 AdminGetUserRequest {
 username = userNameVal
 userPoolId = poolIdVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 val response = identityProviderClient.adminGetUser(userRequest)
 println("User status ${response.userStatus}")
 }
}

suspend fun signUp(
 clientIdVal: String?,
 userNameVal: String?,
 passwordVal: String?,
 emailVal: String?,
) {
 val userAttrs =
 AttributeType {
 name = "email"
 value = emailVal
 }

Scenarios 382

Amazon Cognito Developer Guide

 val userAttrsList = mutableListOf<AttributeType>()
 userAttrsList.add(userAttrs)
 val signUpRequest =
 SignUpRequest {
 userAttributes = userAttrsList
 username = userNameVal
 clientId = clientIdVal
 password = passwordVal
 }

 CognitoIdentityProviderClient { region = "us-east-1" }.use
 { identityProviderClient ->
 identityProviderClient.signUp(signUpRequest)
 println("User has been signed up")
 }
}

• For API details, see the following topics in Amazon SDK for Kotlin API reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Scenarios 383

https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html
https://sdk.amazonaws.com/kotlin/api/latest/index.html

Amazon Cognito Developer Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Create a class that wraps Amazon Cognito functions used in the scenario.

class CognitoIdentityProviderWrapper:
 """Encapsulates Amazon Cognito actions"""

 def __init__(self, cognito_idp_client, user_pool_id, client_id,
 client_secret=None):
 """
 :param cognito_idp_client: A Boto3 Amazon Cognito Identity Provider
 client.
 :param user_pool_id: The ID of an existing Amazon Cognito user pool.
 :param client_id: The ID of a client application registered with the user
 pool.
 :param client_secret: The client secret, if the client has a secret.
 """
 self.cognito_idp_client = cognito_idp_client
 self.user_pool_id = user_pool_id
 self.client_id = client_id
 self.client_secret = client_secret

 def _secret_hash(self, user_name):
 """
 Calculates a secret hash from a user name and a client secret.

 :param user_name: The user name to use when calculating the hash.
 :return: The secret hash.
 """
 key = self.client_secret.encode()
 msg = bytes(user_name + self.client_id, "utf-8")
 secret_hash = base64.b64encode(
 hmac.new(key, msg, digestmod=hashlib.sha256).digest()
).decode()

Scenarios 384

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/cognito#code-examples

Amazon Cognito Developer Guide

 logger.info("Made secret hash for %s: %s.", user_name, secret_hash)
 return secret_hash

 def sign_up_user(self, user_name, password, user_email):
 """
 Signs up a new user with Amazon Cognito. This action prompts Amazon
 Cognito
 to send an email to the specified email address. The email contains a
 code that
 can be used to confirm the user.

 When the user already exists, the user status is checked to determine
 whether
 the user has been confirmed.

 :param user_name: The user name that identifies the new user.
 :param password: The password for the new user.
 :param user_email: The email address for the new user.
 :return: True when the user is already confirmed with Amazon Cognito.
 Otherwise, false.
 """
 try:
 kwargs = {
 "ClientId": self.client_id,
 "Username": user_name,
 "Password": password,
 "UserAttributes": [{"Name": "email", "Value": user_email}],
 }
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 response = self.cognito_idp_client.sign_up(**kwargs)
 confirmed = response["UserConfirmed"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "UsernameExistsException":
 response = self.cognito_idp_client.admin_get_user(
 UserPoolId=self.user_pool_id, Username=user_name
)
 logger.warning(
 "User %s exists and is %s.", user_name,
 response["UserStatus"]
)
 confirmed = response["UserStatus"] == "CONFIRMED"
 else:
 logger.error(

Scenarios 385

Amazon Cognito Developer Guide

 "Couldn't sign up %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 return confirmed

 def resend_confirmation(self, user_name):
 """
 Prompts Amazon Cognito to resend an email with a new confirmation code.

 :param user_name: The name of the user who will receive the email.
 :return: Delivery information about where the email is sent.
 """
 try:
 kwargs = {"ClientId": self.client_id, "Username": user_name}
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 response = self.cognito_idp_client.resend_confirmation_code(**kwargs)
 delivery = response["CodeDeliveryDetails"]
 except ClientError as err:
 logger.error(
 "Couldn't resend confirmation to %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return delivery

 def confirm_user_sign_up(self, user_name, confirmation_code):
 """
 Confirms a previously created user. A user must be confirmed before they
 can sign in to Amazon Cognito.

 :param user_name: The name of the user to confirm.
 :param confirmation_code: The confirmation code sent to the user's
 registered
 email address.
 :return: True when the confirmation succeeds.

Scenarios 386

Amazon Cognito Developer Guide

 """
 try:
 kwargs = {
 "ClientId": self.client_id,
 "Username": user_name,
 "ConfirmationCode": confirmation_code,
 }
 if self.client_secret is not None:
 kwargs["SecretHash"] = self._secret_hash(user_name)
 self.cognito_idp_client.confirm_sign_up(**kwargs)
 except ClientError as err:
 logger.error(
 "Couldn't confirm sign up for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return True

 def list_users(self):
 """
 Returns a list of the users in the current user pool.

 :return: The list of users.
 """
 try:
 response =
 self.cognito_idp_client.list_users(UserPoolId=self.user_pool_id)
 users = response["Users"]
 except ClientError as err:
 logger.error(
 "Couldn't list users for %s. Here's why: %s: %s",
 self.user_pool_id,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return users

Scenarios 387

Amazon Cognito Developer Guide

 def start_sign_in(self, user_name, password):
 """
 Starts the sign-in process for a user by using administrator credentials.
 This method of signing in is appropriate for code running on a secure
 server.

 If the user pool is configured to require MFA and this is the first sign-
in
 for the user, Amazon Cognito returns a challenge response to set up an
 MFA application. When this occurs, this function gets an MFA secret from
 Amazon Cognito and returns it to the caller.

 :param user_name: The name of the user to sign in.
 :param password: The user's password.
 :return: The result of the sign-in attempt. When sign-in is successful,
 this
 returns an access token that can be used to get AWS credentials.
 Otherwise,
 Amazon Cognito returns a challenge to set up an MFA application,
 or a challenge to enter an MFA code from a registered MFA
 application.
 """
 try:
 kwargs = {
 "UserPoolId": self.user_pool_id,
 "ClientId": self.client_id,
 "AuthFlow": "ADMIN_USER_PASSWORD_AUTH",
 "AuthParameters": {"USERNAME": user_name, "PASSWORD": password},
 }
 if self.client_secret is not None:
 kwargs["AuthParameters"]["SECRET_HASH"] =
 self._secret_hash(user_name)
 response = self.cognito_idp_client.admin_initiate_auth(**kwargs)
 challenge_name = response.get("ChallengeName", None)
 if challenge_name == "MFA_SETUP":
 if (
 "SOFTWARE_TOKEN_MFA"
 in response["ChallengeParameters"]["MFAS_CAN_SETUP"]
):
 response.update(self.get_mfa_secret(response["Session"]))
 else:
 raise RuntimeError(
 "The user pool requires MFA setup, but the user pool is
 not "

Scenarios 388

Amazon Cognito Developer Guide

 "configured for TOTP MFA. This example requires TOTP
 MFA."
)
 except ClientError as err:
 logger.error(
 "Couldn't start sign in for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

 def get_mfa_secret(self, session):
 """
 Gets a token that can be used to associate an MFA application with the
 user.

 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :return: An MFA token that can be used to set up an MFA application.
 """
 try:
 response =
 self.cognito_idp_client.associate_software_token(Session=session)
 except ClientError as err:
 logger.error(
 "Couldn't get MFA secret. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

 def verify_mfa(self, session, user_code):
 """
 Verify a new MFA application that is associated with a user.

Scenarios 389

Amazon Cognito Developer Guide

 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :param user_code: A code generated by the associated MFA application.
 :return: Status that indicates whether the MFA application is verified.
 """
 try:
 response = self.cognito_idp_client.verify_software_token(
 Session=session, UserCode=user_code
)
 except ClientError as err:
 logger.error(
 "Couldn't verify MFA. Here's why: %s: %s",
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 response.pop("ResponseMetadata", None)
 return response

 def respond_to_mfa_challenge(self, user_name, session, mfa_code):
 """
 Responds to a challenge for an MFA code. This completes the second step
 of
 a two-factor sign-in. When sign-in is successful, it returns an access
 token
 that can be used to get AWS credentials from Amazon Cognito.

 :param user_name: The name of the user who is signing in.
 :param session: Session information returned from a previous call to
 initiate
 authentication.
 :param mfa_code: A code generated by the associated MFA application.
 :return: The result of the authentication. When successful, this contains
 an
 access token for the user.
 """
 try:
 kwargs = {
 "UserPoolId": self.user_pool_id,
 "ClientId": self.client_id,

Scenarios 390

Amazon Cognito Developer Guide

 "ChallengeName": "SOFTWARE_TOKEN_MFA",
 "Session": session,
 "ChallengeResponses": {
 "USERNAME": user_name,
 "SOFTWARE_TOKEN_MFA_CODE": mfa_code,
 },
 }
 if self.client_secret is not None:
 kwargs["ChallengeResponses"]["SECRET_HASH"] = self._secret_hash(
 user_name
)
 response =
 self.cognito_idp_client.admin_respond_to_auth_challenge(**kwargs)
 auth_result = response["AuthenticationResult"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "ExpiredCodeException":
 logger.warning(
 "Your MFA code has expired or has been used already. You
 might have "
 "to wait a few seconds until your app shows you a new code."
)
 else:
 logger.error(
 "Couldn't respond to mfa challenge for %s. Here's why: %s:
 %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return auth_result

 def confirm_mfa_device(
 self,
 user_name,
 device_key,
 device_group_key,
 device_password,
 access_token,
 aws_srp,
):
 """

Scenarios 391

Amazon Cognito Developer Guide

 Confirms an MFA device to be tracked by Amazon Cognito. When a device is
 tracked, its key and password can be used to sign in without requiring a
 new
 MFA code from the MFA application.

 :param user_name: The user that is associated with the device.
 :param device_key: The key of the device, returned by Amazon Cognito.
 :param device_group_key: The group key of the device, returned by Amazon
 Cognito.
 :param device_password: The password that is associated with the device.
 :param access_token: The user's access token.
 :param aws_srp: A class that helps with Secure Remote Password (SRP)
 calculations. The scenario associated with this example
 uses
 the warrant package.
 :return: True when the user must confirm the device. Otherwise, False.
 When
 False, the device is automatically confirmed and tracked.
 """
 srp_helper = aws_srp.AWSSRP(
 username=user_name,
 password=device_password,
 pool_id="_",
 client_id=self.client_id,
 client_secret=None,
 client=self.cognito_idp_client,
)
 device_and_pw = f"{device_group_key}{device_key}:{device_password}"
 device_and_pw_hash = aws_srp.hash_sha256(device_and_pw.encode("utf-8"))
 salt = aws_srp.pad_hex(aws_srp.get_random(16))
 x_value = aws_srp.hex_to_long(aws_srp.hex_hash(salt +
 device_and_pw_hash))
 verifier = aws_srp.pad_hex(pow(srp_helper.val_g, x_value,
 srp_helper.big_n))
 device_secret_verifier_config = {
 "PasswordVerifier": base64.standard_b64encode(
 bytearray.fromhex(verifier)
).decode("utf-8"),
 "Salt":
 base64.standard_b64encode(bytearray.fromhex(salt)).decode("utf-8"),
 }
 try:
 response = self.cognito_idp_client.confirm_device(
 AccessToken=access_token,

Scenarios 392

Amazon Cognito Developer Guide

 DeviceKey=device_key,
 DeviceSecretVerifierConfig=device_secret_verifier_config,
)
 user_confirm = response["UserConfirmationNecessary"]
 except ClientError as err:
 logger.error(
 "Couldn't confirm mfa device %s. Here's why: %s: %s",
 device_key,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return user_confirm

 def sign_in_with_tracked_device(
 self,
 user_name,
 password,
 device_key,
 device_group_key,
 device_password,
 aws_srp,
):
 """
 Signs in to Amazon Cognito as a user who has a tracked device. Signing in
 with a tracked device lets a user sign in without entering a new MFA
 code.

 Signing in with a tracked device requires that the client respond to the
 SRP
 protocol. The scenario associated with this example uses the warrant
 package
 to help with SRP calculations.

 For more information on SRP, see https://en.wikipedia.org/wiki/
Secure_Remote_Password_protocol.

 :param user_name: The user that is associated with the device.
 :param password: The user's password.
 :param device_key: The key of a tracked device.
 :param device_group_key: The group key of a tracked device.
 :param device_password: The password that is associated with the device.

Scenarios 393

Amazon Cognito Developer Guide

 :param aws_srp: A class that helps with SRP calculations. The scenario
 associated with this example uses the warrant package.
 :return: The result of the authentication. When successful, this contains
 an
 access token for the user.
 """
 try:
 srp_helper = aws_srp.AWSSRP(
 username=user_name,
 password=device_password,
 pool_id="_",
 client_id=self.client_id,
 client_secret=None,
 client=self.cognito_idp_client,
)

 response_init = self.cognito_idp_client.initiate_auth(
 ClientId=self.client_id,
 AuthFlow="USER_PASSWORD_AUTH",
 AuthParameters={
 "USERNAME": user_name,
 "PASSWORD": password,
 "DEVICE_KEY": device_key,
 },
)
 if response_init["ChallengeName"] != "DEVICE_SRP_AUTH":
 raise RuntimeError(
 f"Expected DEVICE_SRP_AUTH challenge but got
 {response_init['ChallengeName']}."
)

 auth_params = srp_helper.get_auth_params()
 auth_params["DEVICE_KEY"] = device_key
 response_auth = self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_SRP_AUTH",
 ChallengeResponses=auth_params,
)
 if response_auth["ChallengeName"] != "DEVICE_PASSWORD_VERIFIER":
 raise RuntimeError(
 f"Expected DEVICE_PASSWORD_VERIFIER challenge but got "
 f"{response_init['ChallengeName']}."
)

Scenarios 394

Amazon Cognito Developer Guide

 challenge_params = response_auth["ChallengeParameters"]
 challenge_params["USER_ID_FOR_SRP"] = device_group_key + device_key
 cr = srp_helper.process_challenge(challenge_params, {"USERNAME":
 user_name})
 cr["USERNAME"] = user_name
 cr["DEVICE_KEY"] = device_key
 response_verifier =
 self.cognito_idp_client.respond_to_auth_challenge(
 ClientId=self.client_id,
 ChallengeName="DEVICE_PASSWORD_VERIFIER",
 ChallengeResponses=cr,
)
 auth_tokens = response_verifier["AuthenticationResult"]
 except ClientError as err:
 logger.error(
 "Couldn't start client sign in for %s. Here's why: %s: %s",
 user_name,
 err.response["Error"]["Code"],
 err.response["Error"]["Message"],
)
 raise
 else:
 return auth_tokens

Create a class that runs the scenario. This example also registers an MFA device to be tracked
by Amazon Cognito and shows you how to sign in by using a password and information from
the tracked device. This avoids the need to enter a new MFA code.

def run_scenario(cognito_idp_client, user_pool_id, client_id):
 logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")

 print("-" * 88)
 print("Welcome to the Amazon Cognito user signup with MFA demo.")
 print("-" * 88)

 cog_wrapper = CognitoIdentityProviderWrapper(
 cognito_idp_client, user_pool_id, client_id
)

Scenarios 395

Amazon Cognito Developer Guide

 user_name = q.ask("Let's sign up a new user. Enter a user name: ",
 q.non_empty)
 password = q.ask("Enter a password for the user: ", q.non_empty)
 email = q.ask("Enter a valid email address that you own: ", q.non_empty)
 confirmed = cog_wrapper.sign_up_user(user_name, password, email)
 while not confirmed:
 print(
 f"User {user_name} requires confirmation. Check {email} for "
 f"a verification code."
)
 confirmation_code = q.ask("Enter the confirmation code from the email: ")
 if not confirmation_code:
 if q.ask("Do you need another confirmation code (y/n)? ",
 q.is_yesno):
 delivery = cog_wrapper.resend_confirmation(user_name)
 print(
 f"Confirmation code sent by {delivery['DeliveryMedium']} "
 f"to {delivery['Destination']}."
)
 else:
 confirmed = cog_wrapper.confirm_user_sign_up(user_name,
 confirmation_code)
 print(f"User {user_name} is confirmed and ready to use.")
 print("-" * 88)

 print("Let's get a list of users in the user pool.")
 q.ask("Press Enter when you're ready.")
 users = cog_wrapper.list_users()
 if users:
 print(f"Found {len(users)} users:")
 pp(users)
 else:
 print("No users found.")
 print("-" * 88)

 print("Let's sign in and get an access token.")
 auth_tokens = None
 challenge = "ADMIN_USER_PASSWORD_AUTH"
 response = {}
 while challenge is not None:
 if challenge == "ADMIN_USER_PASSWORD_AUTH":
 response = cog_wrapper.start_sign_in(user_name, password)
 challenge = response["ChallengeName"]
 elif response["ChallengeName"] == "MFA_SETUP":

Scenarios 396

Amazon Cognito Developer Guide

 print("First, we need to set up an MFA application.")
 qr_img = qrcode.make(
 f"otpauth://totp/{user_name}?secret={response['SecretCode']}"
)
 qr_img.save("qr.png")
 q.ask(
 "Press Enter to see a QR code on your screen. Scan it into an MFA
 "
 "application, such as Google Authenticator."
)
 webbrowser.open("qr.png")
 mfa_code = q.ask(
 "Enter the verification code from your MFA application: ",
 q.non_empty
)
 response = cog_wrapper.verify_mfa(response["Session"], mfa_code)
 print(f"MFA device setup {response['Status']}")
 print("Now that an MFA application is set up, let's sign in again.")
 print(
 "You might have to wait a few seconds for a new MFA code to
 appear in "
 "your MFA application."
)
 challenge = "ADMIN_USER_PASSWORD_AUTH"
 elif response["ChallengeName"] == "SOFTWARE_TOKEN_MFA":
 auth_tokens = None
 while auth_tokens is None:
 mfa_code = q.ask(
 "Enter a verification code from your MFA application: ",
 q.non_empty
)
 auth_tokens = cog_wrapper.respond_to_mfa_challenge(
 user_name, response["Session"], mfa_code
)
 print(f"You're signed in as {user_name}.")
 print("Here's your access token:")
 pp(auth_tokens["AccessToken"])
 print("And your device information:")
 pp(auth_tokens["NewDeviceMetadata"])
 challenge = None
 else:
 raise Exception(f"Got unexpected challenge
 {response['ChallengeName']}")
 print("-" * 88)

Scenarios 397

Amazon Cognito Developer Guide

 device_group_key = auth_tokens["NewDeviceMetadata"]["DeviceGroupKey"]
 device_key = auth_tokens["NewDeviceMetadata"]["DeviceKey"]
 device_password = base64.standard_b64encode(os.urandom(40)).decode("utf-8")

 print("Let's confirm your MFA device so you don't have re-enter MFA tokens
 for it.")
 q.ask("Press Enter when you're ready.")
 cog_wrapper.confirm_mfa_device(
 user_name,
 device_key,
 device_group_key,
 device_password,
 auth_tokens["AccessToken"],
 aws_srp,
)
 print(f"Your device {device_key} is confirmed.")
 print("-" * 88)

 print(
 f"Now let's sign in as {user_name} from your confirmed device
 {device_key}.\n"
 f"Because this device is tracked by Amazon Cognito, you won't have to re-
enter an MFA code."
)
 q.ask("Press Enter when ready.")
 auth_tokens = cog_wrapper.sign_in_with_tracked_device(
 user_name, password, device_key, device_group_key, device_password,
 aws_srp
)
 print("You're signed in. Your access token is:")
 pp(auth_tokens["AccessToken"])
 print("-" * 88)

 print("Don't forget to delete your user pool when you're done with this
 example.")
 print("\nThanks for watching!")
 print("-" * 88)

def main():
 parser = argparse.ArgumentParser(
 description="Shows how to sign up a new user with Amazon Cognito and
 associate "

Scenarios 398

Amazon Cognito Developer Guide

 "the user with an MFA application for multi-factor authentication."
)
 parser.add_argument(
 "user_pool_id", help="The ID of the user pool to use for the example."
)
 parser.add_argument(
 "client_id", help="The ID of the client application to use for the
 example."
)
 args = parser.parse_args()
 try:
 run_scenario(boto3.client("cognito-idp"), args.user_pool_id,
 args.client_id)
 except Exception:
 logging.exception("Something went wrong with the demo.")

if __name__ == "__main__":
 main()

• For API details, see the following topics in Amazon SDK for Python (Boto3) API Reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

Scenarios 399

https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminGetUser
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminInitiateAuth
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AdminRespondToAuthChallenge
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/AssociateSoftwareToken
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ConfirmDevice
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ConfirmSignUp
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/InitiateAuth
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ListUsers
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/ResendConfirmationCode
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/RespondToAuthChallenge
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/SignUp
https://docs.amazonaws.cn/goto/boto3/cognito-idp-2016-04-18/VerifySoftwareToken

Amazon Cognito Developer Guide

Swift

SDK for Swift

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

The Package.swift file.

// swift-tools-version: 5.9
//
// The swift-tools-version declares the minimum version of Swift required to
// build this package.

import PackageDescription

let package = Package(
 name: "listusers",
 // Let Xcode know the minimum Apple platforms supported.
 platforms: [
 .macOS(.v13),
 .iOS(.v15)
],
 dependencies: [
 // Dependencies declare other packages that this package depends on.
 .package(
 url: "https://github.com/awslabs/aws-sdk-swift",
 from: "1.0.0"),
 .package(
 url: "https://github.com/apple/swift-argument-parser.git",
 branch: "main"
)
],
 targets: [
 // Targets are the basic building blocks of a package, defining a module
 or a test suite.
 // Targets can depend on other targets in this package and products
 // from dependencies.
 .executableTarget(
 name: "listusers",

Scenarios 400

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift/example_code/cognito-identity-provider#code-examples

Amazon Cognito Developer Guide

 dependencies: [
 .product(name: "AWSCognitoIdentityProvider", package: "aws-sdk-
swift"),
 .product(name: "ArgumentParser", package: "swift-argument-
parser")
],
 path: "Sources")

]
)

The Swift code file.

// An example demonstrating various features of Amazon Cognito. Before running
// this Swift code example, set up your development environment, including
// your credentials.
//
// For more information, see the following documentation:
// https://docs.aws.amazon.com/sdk-for-kotlin/latest/developer-guide/setup.html
//
// TIP: To set up the required user pool, run the AWS Cloud Development Kit
// (AWS CDK) script provided in this GitHub repo at
// resources/cdk/cognito_scenario_user_pool_with_mfa.
//
// This example performs the following functions:
//
// 1. Invokes the signUp method to sign up a user.
// 2. Invokes the adminGetUser method to get the user's confirmation status.
// 3. Invokes the ResendConfirmationCode method if the user requested another
// code.
// 4. Invokes the confirmSignUp method.
// 5. Invokes the initiateAuth to sign in. This results in being prompted to
// set up TOTP (time-based one-time password). (The response is
// “ChallengeName”: “MFA_SETUP”).
// 6. Invokes the AssociateSoftwareToken method to generate a TOTP MFA private
// key. This can be used with Google Authenticator.
// 7. Invokes the VerifySoftwareToken method to verify the TOTP and register
// for MFA.
// 8. Invokes the AdminInitiateAuth to sign in again. This results in being
// prompted to submit a TOTP (Response: “ChallengeName”:
// “SOFTWARE_TOKEN_MFA”).
// 9. Invokes the AdminRespondToAuthChallenge to get back a token.

Scenarios 401

Amazon Cognito Developer Guide

import ArgumentParser
import Foundation

import AWSClientRuntime
import AWSCognitoIdentityProvider

struct ExampleCommand: ParsableCommand {
 @Argument(help: "The application clientId.")
 var clientId: String
 @Argument(help: "The user pool ID to use.")
 var poolId: String
 @Option(help: "Name of the Amazon Region to use")
 var region = "us-east-1"

 static var configuration = CommandConfiguration(
 commandName: "cognito-scenario",
 abstract: """
 Demonstrates various features of Amazon Cognito.
 """,
 discussion: """
 """
)

 /// Prompt for an input string of at least a minimum length.
 ///
 /// - Parameters:
 /// - prompt: The prompt string to display.
 /// - minLength: The minimum number of characters to allow in the
 /// response. Default value is 0.
 ///
 /// - Returns: The entered string.
 func stringRequest(_ prompt: String, minLength: Int = 1) -> String {
 while true {
 print(prompt, terminator: "")
 let str = readLine()

 guard let str else {
 continue
 }
 if str.count >= minLength {
 return str
 } else {

Scenarios 402

Amazon Cognito Developer Guide

 print("*** Response must be at least \(minLength) character(s)
 long.")
 }
 }
 }

 /// Ask a yes/no question.
 ///
 /// - Parameter prompt: A prompt string to print.
 ///
 /// - Returns: `true` if the user answered "Y", otherwise `false`.
 func yesNoRequest(_ prompt: String) -> Bool {
 while true {
 let answer = stringRequest(prompt).lowercased()
 if answer == "y" || answer == "n" {
 return answer == "y"
 }
 }
 }

 /// Get information about a specific user in a user pool.
 ///
 /// - Parameters:
 /// - cipClient: The Amazon Cognito Identity Provider client to use.
 /// - userName: The user to retrieve information about.
 /// - userPoolId: The user pool to search for the specified user.
 ///
 /// - Returns: `true` if the user's information was successfully
 /// retrieved. Otherwise returns `false`.
 func adminGetUser(cipClient: CognitoIdentityProviderClient, userName: String,
 userPoolId: String) async -> Bool {
 do {
 let output = try await cipClient.adminGetUser(
 input: AdminGetUserInput(
 userPoolId: userPoolId,
 username: userName
)
)

 guard let userStatus = output.userStatus else {
 print("*** Unable to get the user's status.")
 return false
 }

Scenarios 403

Amazon Cognito Developer Guide

 print("User status: \(userStatus)")
 return true
 } catch {
 return false
 }
 }

 /// Create a new user in a user pool.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The ID of the app client to create a user for.
 /// - userName: The username for the new user.
 /// - password: The new user's password.
 /// - email: The new user's email address.
 ///
 /// - Returns: `true` if successful; otherwise `false`.
 func signUp(cipClient: CognitoIdentityProviderClient, clientId: String,
 userName: String, password: String, email: String) async -> Bool {
 let emailAttr = CognitoIdentityProviderClientTypes.AttributeType(
 name: "email",
 value: email
)

 let userAttrsList = [emailAttr]

 do {
 _ = try await cipClient.signUp(
 input: SignUpInput(
 clientId: clientId,
 password: password,
 userAttributes: userAttrsList,
 username: userName
)

)

 print("=====> User \(userName) signed up.")
 } catch _ as AWSCognitoIdentityProvider.UsernameExistsException {
 print("*** The username \(userName) already exists. Please use a
 different one.")
 return false
 } catch let error as AWSCognitoIdentityProvider.InvalidPasswordException
 {

Scenarios 404

Amazon Cognito Developer Guide

 print("*** Error: The specified password is invalid. Reason:
 \(error.properties.message ?? "<none available>").")
 return false
 } catch _ as AWSCognitoIdentityProvider.ResourceNotFoundException {
 print("*** Error: The specified client ID (\(clientId)) doesn't
 exist.")
 return false
 } catch {
 print("*** Unexpected error: \(error)")
 return false
 }

 return true
 }

 /// Requests a new confirmation code be sent to the given user's contact
 /// method.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The application client ID.
 /// - userName: The user to resend a code for.
 ///
 /// - Returns: `true` if a new code was sent successfully, otherwise
 /// `false`.
 func resendConfirmationCode(cipClient: CognitoIdentityProviderClient,
 clientId: String,
 userName: String) async -> Bool {
 do {
 let output = try await cipClient.resendConfirmationCode(
 input: ResendConfirmationCodeInput(
 clientId: clientId,
 username: userName
)
)

 guard let deliveryMedium = output.codeDeliveryDetails?.deliveryMedium
 else {
 print("*** Unable to get the delivery method for the resent
 code.")
 return false
 }

 print("=====> A new code has been sent by \(deliveryMedium)")

Scenarios 405

Amazon Cognito Developer Guide

 return true
 } catch {
 print("*** Unable to resend the confirmation code to user
 \(userName).")
 return false
 }
 }

 /// Submit a confirmation code for the specified user. This is the code as
 /// entered by the user after they've received it by email or text
 /// message.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - clientId: The app client ID the user is signing up for.
 /// - userName: The username of the user whose code is being sent.
 /// - code: The user's confirmation code.
 ///
 /// - Returns: `true` if the code was successfully confirmed; otherwise
 `false`.
 func confirmSignUp(cipClient: CognitoIdentityProviderClient, clientId:
 String,
 userName: String, code: String) async -> Bool {
 do {
 _ = try await cipClient.confirmSignUp(
 input: ConfirmSignUpInput(
 clientId: clientId,
 confirmationCode: code,
 username: userName
)
)

 print("=====> \(userName) has been confirmed.")
 return true
 } catch {
 print("=====> \(userName)'s code was entered incorrectly.")
 return false
 }
 }

 /// Begin an authentication session.
 ///
 /// - Parameters:
 /// - cipClient: The `CongitoIdentityProviderClient` to use.

Scenarios 406

Amazon Cognito Developer Guide

 /// - clientId: The app client ID to use.
 /// - userName: The username to check.
 /// - password: The user's password.
 /// - userPoolId: The user pool to use.
 ///
 /// - Returns: The session token associated with this authentication
 /// session.
 func initiateAuth(cipClient: CognitoIdentityProviderClient, clientId: String,
 userName: String, password: String,
 userPoolId: String) async -> String? {
 var authParams: [String: String] = [:]

 authParams["USERNAME"] = userName
 authParams["PASSWORD"] = password

 do {
 let output = try await cipClient.adminInitiateAuth(
 input: AdminInitiateAuthInput(
 authFlow:
 CognitoIdentityProviderClientTypes.AuthFlowType.adminUserPasswordAuth,
 authParameters: authParams,
 clientId: clientId,
 userPoolId: userPoolId
)
)

 guard let challengeName = output.challengeName else {
 print("*** Invalid response from the auth service.")
 return nil
 }

 print("=====> Response challenge is \(challengeName)")

 return output.session
 } catch _ as UserNotFoundException {
 print("*** The specified username, \(userName), doesn't exist.")
 return nil
 } catch _ as UserNotConfirmedException {
 print("*** The user \(userName) has not been confirmed.")
 return nil
 } catch {
 print("*** An unexpected error occurred.")
 return nil
 }

Scenarios 407

Amazon Cognito Developer Guide

 }

 /// Request and display an MFA secret token that the user should enter
 /// into their authenticator to set it up for the user account.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - authSession: The authentication session to request an MFA secret
 /// for.
 ///
 /// - Returns: A string containing the MFA secret token that should be
 /// entered into the authenticator software.
 func getSecretForAppMFA(cipClient: CognitoIdentityProviderClient,
 authSession: String?) async -> String? {
 do {
 let output = try await cipClient.associateSoftwareToken(
 input: AssociateSoftwareTokenInput(
 session: authSession
)
)

 guard let secretCode = output.secretCode else {
 print("*** Unable to get the secret code")
 return nil
 }

 print("=====> Enter this token into Google Authenticator:
 \(secretCode)")
 return output.session
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return nil
 } catch {
 print("*** An unexpected error occurred getting the secret for the
 app's MFA.")
 return nil
 }
 }

 /// Confirm that the user's TOTP authenticator is configured correctly by
 /// sending a code to it to check that it matches successfully.
 ///
 /// - Parameters:
 /// - cipClient: The `CongnitoIdentityProviderClient` to use.

Scenarios 408

Amazon Cognito Developer Guide

 /// - session: An authentication session previously returned by an
 /// `associateSoftwareToken()` call.
 /// - mfaCode: The 6-digit code currently displayed by the user's
 /// authenticator, as provided by the user.
 func verifyTOTP(cipClient: CognitoIdentityProviderClient, session: String?,
 mfaCode: String?) async {
 do {
 let output = try await cipClient.verifySoftwareToken(
 input: VerifySoftwareTokenInput(
 session: session,
 userCode: mfaCode
)
)

 guard let tokenStatus = output.status else {
 print("*** Unable to get the token's status.")
 return
 }
 print("=====> The token's status is: \(tokenStatus)")
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return
 } catch _ as CodeMismatchException {
 print("*** The specified MFA code doesn't match the expected value.")
 return
 } catch _ as UserNotFoundException {
 print("*** The specified username doesn't exist.")
 return
 } catch _ as UserNotConfirmedException {
 print("*** The user has not been confirmed.")
 return
 } catch {
 print("*** Error verifying the MFA token!")
 return
 }
 }

 /// Respond to the authentication challenge received from Cognito after
 /// initiating an authentication session. This involves sending a current
 /// MFA code to the service.
 ///
 /// - Parameters:
 /// - cipClient: The `CognitoIdentityProviderClient` to use.
 /// - userName: The user's username.

Scenarios 409

Amazon Cognito Developer Guide

 /// - clientId: The app client ID.
 /// - userPoolId: The user pool to sign into.
 /// - mfaCode: The 6-digit MFA code currently displayed by the user's
 /// authenticator.
 /// - session: The authentication session to continue processing.
 func adminRespondToAuthChallenge(cipClient: CognitoIdentityProviderClient,
 userName: String,
 clientId: String, userPoolId: String,
 mfaCode: String,
 session: String) async {
 print("=====> SOFTWARE_TOKEN_MFA challenge is generated...")

 var challengeResponsesOb: [String: String] = [:]
 challengeResponsesOb["USERNAME"] = userName
 challengeResponsesOb["SOFTWARE_TOKEN_MFA_CODE"] = mfaCode

 do {
 let output = try await cipClient.adminRespondToAuthChallenge(
 input: AdminRespondToAuthChallengeInput(
 challengeName:
 CognitoIdentityProviderClientTypes.ChallengeNameType.softwareTokenMfa,
 challengeResponses: challengeResponsesOb,
 clientId: clientId,
 session: session,
 userPoolId: userPoolId
)
)

 guard let authenticationResult = output.authenticationResult else {
 print("*** Unable to get authentication result.")
 return
 }

 print("=====> Authentication result (JWTs are redacted):")
 print(authenticationResult)
 } catch _ as SoftwareTokenMFANotFoundException {
 print("*** The specified user pool isn't configured for MFA.")
 return
 } catch _ as CodeMismatchException {
 print("*** The specified MFA code doesn't match the expected value.")
 return
 } catch _ as UserNotFoundException {
 print("*** The specified username, \(userName), doesn't exist.")
 return

Scenarios 410

Amazon Cognito Developer Guide

 } catch _ as UserNotConfirmedException {
 print("*** The user \(userName) has not been confirmed.")
 return
 } catch let error as NotAuthorizedException {
 print("*** Unauthorized access. Reason: \(error.properties.message ??
 "<unknown>")")
 } catch {
 print("*** Error responding to the MFA challenge.")
 return
 }
 }

 /// Called by ``main()`` to run the bulk of the example.
 func runAsync() async throws {
 let config = try await
 CognitoIdentityProviderClient.CognitoIdentityProviderClientConfiguration(region:
 region)
 let cipClient = CognitoIdentityProviderClient(config: config)

 print("""
 This example collects information about a user, then creates that
 user in the
 specified user pool. Then, it enables Multi-Factor Authentication
 (MFA) for that
 user by associating an authenticator application (such as Google
 Authenticator
 or a password manager that supports TOTP). Then, the user uses a
 code from their
 authenticator application to sign in.

 """)

 let userName = stringRequest("Please enter a new username: ")
 let password = stringRequest("Enter a password: ")
 let email = stringRequest("Enter your email address: ", minLength: 5)

 // Submit the sign-up request to AWS.

 print("==> Signing up user \(userName)...")
 if await signUp(cipClient: cipClient, clientId: clientId,
 userName: userName, password: password,
 email: email) == false {
 return
 }

Scenarios 411

Amazon Cognito Developer Guide

 // Check the user's status. This time, it should come back "unconfirmed".

 print("==> Getting the status of user \(userName) from the user pool
 (should be 'unconfirmed')...")
 if await adminGetUser(cipClient: cipClient, userName: userName,
 userPoolId: poolId) == false {
 return
 }

 // Ask the user if they want a replacement code sent, such as if the
 // code hasn't arrived yet. If the user responds with a "yes," send a
 // new code.

 if yesNoRequest("==> A confirmation code was sent to \(userName). Would
 you like to send a new code (Y/N)? ") {
 print("==> Sending a new confirmation code...")
 if await resendConfirmationCode(cipClient: cipClient, clientId:
 clientId, userName: userName) == false {
 return
 }
 }

 // Ask the user to enter the confirmation code, then send it to Amazon
 // Cognito to verify it.

 let code = stringRequest("==> Enter the confirmation code sent to
 \(userName): ")
 if await confirmSignUp(cipClient: cipClient, clientId: clientId,
 userName: userName, code: code) == false {
 // The code didn't match. Your application may wish to offer to
 // re-send the confirmation code here and try again.
 return
 }

 // Check the user's status again. This time it should come back
 // "confirmed".

 print("==> Rechecking status of user \(userName) in the user pool (should
 be 'confirmed')...")
 if await adminGetUser(cipClient: cipClient, userName: userName,
 userPoolId: poolId) == false {
 return
 }

Scenarios 412

Amazon Cognito Developer Guide

 // Check the challenge mode. Here, it should be "mfaSetup", indicating
 // that the user needs to add MFA before using it. This returns a
 // session that can be used to register MFA, or nil if an error occurs.

 let authSession = await initiateAuth(cipClient: cipClient, clientId:
 clientId,
 userName: userName, password:
 password,
 userPoolId: poolId)
 if authSession == nil {
 return
 }

 // Ask Cognito for an MFA secret token that the user should enter into
 // their authenticator software (such as Google Authenticator) or
 // password manager to configure it for this user account. This
 // returns a new session that should be used for the new stage of the
 // authentication process.

 let newSession = await getSecretForAppMFA(cipClient: cipClient,
 authSession: authSession)
 if newSession == nil {
 return
 }

 // Ask the user to enter the current 6-digit code displayed by their
 // authenticator. Then verify that it matches the value expected for
 // the session.

 let mfaCode1 = stringRequest("==> Enter the 6-digit code displayed in
 your authenticator: ",
 minLength: 6)
 await verifyTOTP(cipClient: cipClient, session: newSession, mfaCode:
 mfaCode1)

 // Ask the user to authenticate now that the authenticator has been
 // configured. This creates a new session using the user's username
 // and password as already entered.

 print("\nNow starting the sign-in process for user \(userName)...\n")

 let session2 = await initiateAuth(cipClient: cipClient, clientId:
 clientId,

Scenarios 413

Amazon Cognito Developer Guide

 userName: userName, password: password,
 userPoolId: poolId)
 guard let session2 else {
 return
 }

 // Now that we have a new auth session, `session2`, ask the user for a
 // new 6-digit code from their authenticator, and send it to the auth
 // session.

 let mfaCode2 = stringRequest("==> Wait for your authenticator to show a
 new 6-digit code, then enter it: ",
 minLength: 6)
 await adminRespondToAuthChallenge(cipClient: cipClient, userName:
 userName,
 clientId: clientId, userPoolId: poolId,
 mfaCode: mfaCode2, session: session2)
 }
}

/// The program's asynchronous entry point.
@main
struct Main {
 static func main() async {
 let args = Array(CommandLine.arguments.dropFirst())

 do {
 let command = try ExampleCommand.parse(args)
 try await command.runAsync()
 } catch {
 ExampleCommand.exit(withError: error)
 }
 }
}

• For API details, see the following topics in Amazon SDK for Swift API reference.

• AdminGetUser

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• AssociateSoftwareToken

Scenarios 414

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/admingetuser(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/admininitiateauth(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/adminrespondtoauthchallenge(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/associatesoftwaretoken(input:)

Amazon Cognito Developer Guide

• ConfirmDevice

• ConfirmSignUp

• InitiateAuth

• ListUsers

• ResendConfirmationCode

• RespondToAuthChallenge

• SignUp

• VerifySoftwareToken

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Write custom activity data with a Lambda function after Amazon Cognito user
authentication using an Amazon SDK

The following code example shows how to write custom activity data with a Lambda function after
Amazon Cognito user authentication.

• Use administrator functions to add a user to a user pool.

• Configure a user pool to call a Lambda function for the PostAuthentication trigger.

• Sign the new user in to Amazon Cognito.

• The Lambda function writes custom information to CloudWatch Logs and to an DynamoDB
table.

• Get and display custom data from the DynamoDB table, then clean up resources.

Go

SDK for Go V2

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

Scenarios 415

https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/confirmdevice(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/confirmsignup(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/initiateauth(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/listusers(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/resendconfirmationcode(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/respondtoauthchallenge(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/signup(input:)
https://sdk.amazonaws.com/swift/api/awscognitoidentityprovider/latest/documentation/awscognitoidentityprovider/cognitoidentityproviderclient/verifysoftwaretoken(input:)
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2/workflows/user_pools_and_lambda_triggers#code-examples

Amazon Cognito Developer Guide

Run an interactive scenario at a command prompt.

import (
 "context"
 "errors"
 "log"
 "strings"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// ActivityLog separates the steps of this scenario into individual functions so
 that
// they are simpler to read and understand.
type ActivityLog struct {
 helper IScenarioHelper
 questioner demotools.IQuestioner
 resources Resources
 cognitoActor *actions.CognitoActions
}

// NewActivityLog constructs a new activity log runner.
func NewActivityLog(sdkConfig aws.Config, questioner demotools.IQuestioner,
 helper IScenarioHelper) ActivityLog {
 scenario := ActivityLog{
 helper: helper,
 questioner: questioner,
 resources: Resources{},
 cognitoActor: &actions.CognitoActions{CognitoClient:
 cognitoidentityprovider.NewFromConfig(sdkConfig)},
 }
 scenario.resources.init(scenario.cognitoActor, questioner)
 return scenario
}

// AddUserToPool selects a user from the known users table and uses administrator
 credentials to add the user to the user pool.
func (runner *ActivityLog) AddUserToPool(ctx context.Context, userPoolId string,
 tableName string) (string, string) {

Scenarios 416

Amazon Cognito Developer Guide

 log.Println("To facilitate this example, let's add a user to the user pool using
 administrator privileges.")
 users, err := runner.helper.GetKnownUsers(ctx, tableName)
 if err != nil {
 panic(err)
 }
 user := users.Users[0]
 log.Printf("Adding known user %v to the user pool.\n", user.UserName)
 err = runner.cognitoActor.AdminCreateUser(ctx, userPoolId, user.UserName,
 user.UserEmail)
 if err != nil {
 panic(err)
 }
 pwSet := false
 password := runner.questioner.AskPassword("\nEnter a password that has at least
 eight characters, uppercase, lowercase, numbers and symbols.\n"+
 "(the password will not display as you type):", 8)
 for !pwSet {
 log.Printf("\nSetting password for user '%v'.\n", user.UserName)
 err = runner.cognitoActor.AdminSetUserPassword(ctx, userPoolId, user.UserName,
 password)
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 password = runner.questioner.AskPassword("\nEnter another password:", 8)
 } else {
 panic(err)
 }
 } else {
 pwSet = true
 }
 }

 log.Println(strings.Repeat("-", 88))

 return user.UserName, password
}

// AddActivityLogTrigger adds a Lambda handler as an invocation target for the
 PostAuthentication trigger.
func (runner *ActivityLog) AddActivityLogTrigger(ctx context.Context, userPoolId
 string, activityLogArn string) {
 log.Println("Let's add a Lambda function to handle the PostAuthentication
 trigger from Cognito.\n" +

Scenarios 417

Amazon Cognito Developer Guide

 "This trigger happens after a user is authenticated, and lets your function
 take action, such as logging\n" +
 "the outcome.")
 err := runner.cognitoActor.UpdateTriggers(
 ctx, userPoolId,
 actions.TriggerInfo{Trigger: actions.PostAuthentication, HandlerArn:
 aws.String(activityLogArn)})
 if err != nil {
 panic(err)
 }
 runner.resources.triggers = append(runner.resources.triggers,
 actions.PostAuthentication)
 log.Printf("Lambda function %v added to user pool %v to handle
 PostAuthentication Cognito trigger.\n",
 activityLogArn, userPoolId)

 log.Println(strings.Repeat("-", 88))
}

// SignInUser signs in as the specified user.
func (runner *ActivityLog) SignInUser(ctx context.Context, clientId string,
 userName string, password string) {
 log.Printf("Now we'll sign in user %v and check the results in the logs and the
 DynamoDB table.", userName)
 runner.questioner.Ask("Press Enter when you're ready.")
 authResult, err := runner.cognitoActor.SignIn(ctx, clientId, userName, password)
 if err != nil {
 panic(err)
 }
 log.Println("Sign in successful.",
 "The PostAuthentication Lambda handler writes custom information to CloudWatch
 Logs.")

 runner.resources.userAccessTokens = append(runner.resources.userAccessTokens,
 *authResult.AccessToken)
}

// GetKnownUserLastLogin gets the login info for a user from the Amazon DynamoDB
 table and displays it.
func (runner *ActivityLog) GetKnownUserLastLogin(ctx context.Context, tableName
 string, userName string) {
 log.Println("The PostAuthentication handler also writes login data to the
 DynamoDB table.")
 runner.questioner.Ask("Press Enter when you're ready to continue.")

Scenarios 418

Amazon Cognito Developer Guide

 users, err := runner.helper.GetKnownUsers(ctx, tableName)
 if err != nil {
 panic(err)
 }
 for _, user := range users.Users {
 if user.UserName == userName {
 log.Println("The last login info for the user in the known users table is:")
 log.Printf("\t%+v", *user.LastLogin)
 }
 }
 log.Println(strings.Repeat("-", 88))
}

// Run runs the scenario.
func (runner *ActivityLog) Run(ctx context.Context, stackName string) {
 defer func() {
 if r := recover(); r != nil {
 log.Println("Something went wrong with the demo.")
 runner.resources.Cleanup(ctx)
 }
 }()

 log.Println(strings.Repeat("-", 88))
 log.Printf("Welcome\n")

 log.Println(strings.Repeat("-", 88))

 stackOutputs, err := runner.helper.GetStackOutputs(ctx, stackName)
 if err != nil {
 panic(err)
 }
 runner.resources.userPoolId = stackOutputs["UserPoolId"]
 runner.helper.PopulateUserTable(ctx, stackOutputs["TableName"])
 userName, password := runner.AddUserToPool(ctx, stackOutputs["UserPoolId"],
 stackOutputs["TableName"])

 runner.AddActivityLogTrigger(ctx, stackOutputs["UserPoolId"],
 stackOutputs["ActivityLogFunctionArn"])
 runner.SignInUser(ctx, stackOutputs["UserPoolClientId"], userName, password)
 runner.helper.ListRecentLogEvents(ctx, stackOutputs["ActivityLogFunction"])
 runner.GetKnownUserLastLogin(ctx, stackOutputs["TableName"], userName)

 runner.resources.Cleanup(ctx)

Scenarios 419

Amazon Cognito Developer Guide

 log.Println(strings.Repeat("-", 88))
 log.Println("Thanks for watching!")
 log.Println(strings.Repeat("-", 88))
}

Handle the PostAuthentication trigger with a Lambda function.

import (
 "context"
 "fmt"
 "log"
 "os"
 "time"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 dynamodbtypes "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

const TABLE_NAME = "TABLE_NAME"

// LoginInfo defines structured login data that can be marshalled to a DynamoDB
 format.
type LoginInfo struct {
 UserPoolId string `dynamodbav:"UserPoolId"`
 ClientId string `dynamodbav:"ClientId"`
 Time string `dynamodbav:"Time"`
}

// UserInfo defines structured user data that can be marshalled to a DynamoDB
 format.
type UserInfo struct {
 UserName string `dynamodbav:"UserName"`
 UserEmail string `dynamodbav:"UserEmail"`
 LastLogin LoginInfo `dynamodbav:"LastLogin"`
}

Scenarios 420

Amazon Cognito Developer Guide

// GetKey marshals the user email value to a DynamoDB key format.
func (user UserInfo) GetKey() map[string]dynamodbtypes.AttributeValue {
 userEmail, err := attributevalue.Marshal(user.UserEmail)
 if err != nil {
 panic(err)
 }
 return map[string]dynamodbtypes.AttributeValue{"UserEmail": userEmail}
}

type handler struct {
 dynamoClient *dynamodb.Client
}

// HandleRequest handles the PostAuthentication event by writing custom data to
 the logs and
// to an Amazon DynamoDB table.
func (h *handler) HandleRequest(ctx context.Context,
 event events.CognitoEventUserPoolsPostAuthentication)
 (events.CognitoEventUserPoolsPostAuthentication, error) {
 log.Printf("Received post authentication trigger from %v for user '%v'",
 event.TriggerSource, event.UserName)
 tableName := os.Getenv(TABLE_NAME)
 user := UserInfo{
 UserName: event.UserName,
 UserEmail: event.Request.UserAttributes["email"],
 LastLogin: LoginInfo{
 UserPoolId: event.UserPoolID,
 ClientId: event.CallerContext.ClientID,
 Time: time.Now().Format(time.UnixDate),
 },
 }
 // Write to CloudWatch Logs.
 fmt.Printf("%#v", user)

 // Also write to an external system. This examples uses DynamoDB to demonstrate.
 userMap, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshal to DynamoDB map. Here's why: %v\n", err)
 } else if len(userMap) == 0 {
 log.Printf("User info marshaled to an empty map.")
 } else {
 _, err := h.dynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userMap,

Scenarios 421

Amazon Cognito Developer Guide

 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't write to DynamoDB. Here's why: %v\n", err)
 } else {
 log.Printf("Wrote user info to DynamoDB table %v.\n", tableName)
 }
 }

 return event, nil
}

func main() {
 ctx := context.Background()
 sdkConfig, err := config.LoadDefaultConfig(ctx)
 if err != nil {
 log.Panicln(err)
 }
 h := handler{
 dynamoClient: dynamodb.NewFromConfig(sdkConfig),
 }
 lambda.Start(h.HandleRequest)
}

Create a struct that performs common tasks.

import (
 "context"
 "log"
 "strings"
 "time"
 "user_pools_and_lambda_triggers/actions"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

Scenarios 422

Amazon Cognito Developer Guide

// IScenarioHelper defines common functions used by the workflows in this
 example.
type IScenarioHelper interface {
 Pause(secs int)
 GetStackOutputs(ctx context.Context, stackName string) (actions.StackOutputs,
 error)
 PopulateUserTable(ctx context.Context, tableName string)
 GetKnownUsers(ctx context.Context, tableName string) (actions.UserList, error)
 AddKnownUser(ctx context.Context, tableName string, user actions.User)
 ListRecentLogEvents(ctx context.Context, functionName string)
}

// ScenarioHelper contains AWS wrapper structs used by the workflows in this
 example.
type ScenarioHelper struct {
 questioner demotools.IQuestioner
 dynamoActor *actions.DynamoActions
 cfnActor *actions.CloudFormationActions
 cwlActor *actions.CloudWatchLogsActions
 isTestRun bool
}

// NewScenarioHelper constructs a new scenario helper.
func NewScenarioHelper(sdkConfig aws.Config, questioner demotools.IQuestioner)
 ScenarioHelper {
 scenario := ScenarioHelper{
 questioner: questioner,
 dynamoActor: &actions.DynamoActions{DynamoClient:
 dynamodb.NewFromConfig(sdkConfig)},
 cfnActor: &actions.CloudFormationActions{CfnClient:
 cloudformation.NewFromConfig(sdkConfig)},
 cwlActor: &actions.CloudWatchLogsActions{CwlClient:
 cloudwatchlogs.NewFromConfig(sdkConfig)},
 }
 return scenario
}

// Pause waits for the specified number of seconds.
func (helper ScenarioHelper) Pause(secs int) {
 if !helper.isTestRun {
 time.Sleep(time.Duration(secs) * time.Second)
 }
}

Scenarios 423

Amazon Cognito Developer Guide

// GetStackOutputs gets the outputs from the specified CloudFormation stack in a
 structured format.
func (helper ScenarioHelper) GetStackOutputs(ctx context.Context, stackName
 string) (actions.StackOutputs, error) {
 return helper.cfnActor.GetOutputs(ctx, stackName), nil
}

// PopulateUserTable fills the known user table with example data.
func (helper ScenarioHelper) PopulateUserTable(ctx context.Context, tableName
 string) {
 log.Printf("First, let's add some users to the DynamoDB %v table we'll use for
 this example.\n", tableName)
 err := helper.dynamoActor.PopulateTable(ctx, tableName)
 if err != nil {
 panic(err)
 }
}

// GetKnownUsers gets the users from the known users table in a structured
 format.
func (helper ScenarioHelper) GetKnownUsers(ctx context.Context, tableName string)
 (actions.UserList, error) {
 knownUsers, err := helper.dynamoActor.Scan(ctx, tableName)
 if err != nil {
 log.Printf("Couldn't get known users from table %v. Here's why: %v\n",
 tableName, err)
 }
 return knownUsers, err
}

// AddKnownUser adds a user to the known users table.
func (helper ScenarioHelper) AddKnownUser(ctx context.Context, tableName string,
 user actions.User) {
 log.Printf("Adding user '%v' with email '%v' to the DynamoDB known users
 table...\n",
 user.UserName, user.UserEmail)
 err := helper.dynamoActor.AddUser(ctx, tableName, user)
 if err != nil {
 panic(err)
 }
}

// ListRecentLogEvents gets the most recent log stream and events for the
 specified Lambda function and displays them.

Scenarios 424

Amazon Cognito Developer Guide

func (helper ScenarioHelper) ListRecentLogEvents(ctx context.Context,
 functionName string) {
 log.Println("Waiting a few seconds to let Lambda write to CloudWatch Logs...")
 helper.Pause(10)
 log.Println("Okay, let's check the logs to find what's happened recently with
 your Lambda function.")
 logStream, err := helper.cwlActor.GetLatestLogStream(ctx, functionName)
 if err != nil {
 panic(err)
 }
 log.Printf("Getting some recent events from log stream %v\n",
 *logStream.LogStreamName)
 events, err := helper.cwlActor.GetLogEvents(ctx, functionName,
 *logStream.LogStreamName, 10)
 if err != nil {
 panic(err)
 }
 for _, event := range events {
 log.Printf("\t%v", *event.Message)
 }
 log.Println(strings.Repeat("-", 88))
}

Create a struct that wraps Amazon Cognito actions.

import (
 "context"
 "errors"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider"
 "github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider/types"
)

type CognitoActions struct {
 CognitoClient *cognitoidentityprovider.Client
}

Scenarios 425

Amazon Cognito Developer Guide

// Trigger and TriggerInfo define typed data for updating an Amazon Cognito
 trigger.
type Trigger int

const (
 PreSignUp Trigger = iota
 UserMigration
 PostAuthentication
)

type TriggerInfo struct {
 Trigger Trigger
 HandlerArn *string
}

// UpdateTriggers adds or removes Lambda triggers for a user pool. When a trigger
 is specified with a `nil` value,
// it is removed from the user pool.
func (actor CognitoActions) UpdateTriggers(ctx context.Context, userPoolId
 string, triggers ...TriggerInfo) error {
 output, err := actor.CognitoClient.DescribeUserPool(ctx,
 &cognitoidentityprovider.DescribeUserPoolInput{
 UserPoolId: aws.String(userPoolId),
 })
 if err != nil {
 log.Printf("Couldn't get info about user pool %v. Here's why: %v\n",
 userPoolId, err)
 return err
 }
 lambdaConfig := output.UserPool.LambdaConfig
 for _, trigger := range triggers {
 switch trigger.Trigger {
 case PreSignUp:
 lambdaConfig.PreSignUp = trigger.HandlerArn
 case UserMigration:
 lambdaConfig.UserMigration = trigger.HandlerArn
 case PostAuthentication:
 lambdaConfig.PostAuthentication = trigger.HandlerArn
 }
 }
 _, err = actor.CognitoClient.UpdateUserPool(ctx,
 &cognitoidentityprovider.UpdateUserPoolInput{
 UserPoolId: aws.String(userPoolId),

Scenarios 426

Amazon Cognito Developer Guide

 LambdaConfig: lambdaConfig,
 })
 if err != nil {
 log.Printf("Couldn't update user pool %v. Here's why: %v\n", userPoolId, err)
 }
 return err
}

// SignUp signs up a user with Amazon Cognito.
func (actor CognitoActions) SignUp(ctx context.Context, clientId string, userName
 string, password string, userEmail string) (bool, error) {
 confirmed := false
 output, err := actor.CognitoClient.SignUp(ctx,
 &cognitoidentityprovider.SignUpInput{
 ClientId: aws.String(clientId),
 Password: aws.String(password),
 Username: aws.String(userName),
 UserAttributes: []types.AttributeType{
 {Name: aws.String("email"), Value: aws.String(userEmail)},
 },
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't sign up user %v. Here's why: %v\n", userName, err)
 }
 } else {
 confirmed = output.UserConfirmed
 }
 return confirmed, err
}

// SignIn signs in a user to Amazon Cognito using a username and password
 authentication flow.
func (actor CognitoActions) SignIn(ctx context.Context, clientId string, userName
 string, password string) (*types.AuthenticationResultType, error) {
 var authResult *types.AuthenticationResultType

Scenarios 427

Amazon Cognito Developer Guide

 output, err := actor.CognitoClient.InitiateAuth(ctx,
 &cognitoidentityprovider.InitiateAuthInput{
 AuthFlow: "USER_PASSWORD_AUTH",
 ClientId: aws.String(clientId),
 AuthParameters: map[string]string{"USERNAME": userName, "PASSWORD": password},
 })
 if err != nil {
 var resetRequired *types.PasswordResetRequiredException
 if errors.As(err, &resetRequired) {
 log.Println(*resetRequired.Message)
 } else {
 log.Printf("Couldn't sign in user %v. Here's why: %v\n", userName, err)
 }
 } else {
 authResult = output.AuthenticationResult
 }
 return authResult, err
}

// ForgotPassword starts a password recovery flow for a user. This flow typically
 sends a confirmation code
// to the user's configured notification destination, such as email.
func (actor CognitoActions) ForgotPassword(ctx context.Context, clientId string,
 userName string) (*types.CodeDeliveryDetailsType, error) {
 output, err := actor.CognitoClient.ForgotPassword(ctx,
 &cognitoidentityprovider.ForgotPasswordInput{
 ClientId: aws.String(clientId),
 Username: aws.String(userName),
 })
 if err != nil {
 log.Printf("Couldn't start password reset for user '%v'. Here;s why: %v\n",
 userName, err)
 }
 return output.CodeDeliveryDetails, err
}

// ConfirmForgotPassword confirms a user with a confirmation code and a new
 password.
func (actor CognitoActions) ConfirmForgotPassword(ctx context.Context, clientId
 string, code string, userName string, password string) error {

Scenarios 428

Amazon Cognito Developer Guide

 _, err := actor.CognitoClient.ConfirmForgotPassword(ctx,
 &cognitoidentityprovider.ConfirmForgotPasswordInput{
 ClientId: aws.String(clientId),
 ConfirmationCode: aws.String(code),
 Password: aws.String(password),
 Username: aws.String(userName),
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't confirm user %v. Here's why: %v", userName, err)
 }
 }
 return err
}

// DeleteUser removes a user from the user pool.
func (actor CognitoActions) DeleteUser(ctx context.Context, userAccessToken
 string) error {
 _, err := actor.CognitoClient.DeleteUser(ctx,
 &cognitoidentityprovider.DeleteUserInput{
 AccessToken: aws.String(userAccessToken),
 })
 if err != nil {
 log.Printf("Couldn't delete user. Here's why: %v\n", err)
 }
 return err
}

// AdminCreateUser uses administrator credentials to add a user to a user pool.
 This method leaves the user
// in a state that requires they enter a new password next time they sign in.
func (actor CognitoActions) AdminCreateUser(ctx context.Context, userPoolId
 string, userName string, userEmail string) error {
 _, err := actor.CognitoClient.AdminCreateUser(ctx,
 &cognitoidentityprovider.AdminCreateUserInput{
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),

Scenarios 429

Amazon Cognito Developer Guide

 MessageAction: types.MessageActionTypeSuppress,
 UserAttributes: []types.AttributeType{{Name: aws.String("email"), Value:
 aws.String(userEmail)}},
 })
 if err != nil {
 var userExists *types.UsernameExistsException
 if errors.As(err, &userExists) {
 log.Printf("User %v already exists in the user pool.", userName)
 err = nil
 } else {
 log.Printf("Couldn't create user %v. Here's why: %v\n", userName, err)
 }
 }
 return err
}

// AdminSetUserPassword uses administrator credentials to set a password for a
 user without requiring a
// temporary password.
func (actor CognitoActions) AdminSetUserPassword(ctx context.Context, userPoolId
 string, userName string, password string) error {
 _, err := actor.CognitoClient.AdminSetUserPassword(ctx,
 &cognitoidentityprovider.AdminSetUserPasswordInput{
 Password: aws.String(password),
 UserPoolId: aws.String(userPoolId),
 Username: aws.String(userName),
 Permanent: true,
 })
 if err != nil {
 var invalidPassword *types.InvalidPasswordException
 if errors.As(err, &invalidPassword) {
 log.Println(*invalidPassword.Message)
 } else {
 log.Printf("Couldn't set password for user %v. Here's why: %v\n", userName,
 err)
 }
 }
 return err
}

Scenarios 430

Amazon Cognito Developer Guide

Create a struct that wraps DynamoDB actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/feature/dynamodb/attributevalue"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb"
 "github.com/aws/aws-sdk-go-v2/service/dynamodb/types"
)

// DynamoActions encapsulates the Amazon Simple Notification Service (Amazon SNS)
 actions
// used in the examples.
type DynamoActions struct {
 DynamoClient *dynamodb.Client
}

// User defines structured user data.
type User struct {
 UserName string
 UserEmail string
 LastLogin *LoginInfo `dynamodbav:",omitempty"`
}

// LoginInfo defines structured custom login data.
type LoginInfo struct {
 UserPoolId string
 ClientId string
 Time string
}

// UserList defines a list of users.
type UserList struct {
 Users []User
}

// UserNameList returns the usernames contained in a UserList as a list of
 strings.
func (users *UserList) UserNameList() []string {
 names := make([]string, len(users.Users))

Scenarios 431

Amazon Cognito Developer Guide

 for i := 0; i < len(users.Users); i++ {
 names[i] = users.Users[i].UserName
 }
 return names
}

// PopulateTable adds a set of test users to the table.
func (actor DynamoActions) PopulateTable(ctx context.Context, tableName string)
 error {
 var err error
 var item map[string]types.AttributeValue
 var writeReqs []types.WriteRequest
 for i := 1; i < 4; i++ {
 item, err = attributevalue.MarshalMap(User{UserName: fmt.Sprintf("test_user_
%v", i), UserEmail: fmt.Sprintf("test_email_%v@example.com", i)})
 if err != nil {
 log.Printf("Couldn't marshall user into DynamoDB format. Here's why: %v\n",
 err)
 return err
 }
 writeReqs = append(writeReqs, types.WriteRequest{PutRequest:
 &types.PutRequest{Item: item}})
 }
 _, err = actor.DynamoClient.BatchWriteItem(ctx, &dynamodb.BatchWriteItemInput{
 RequestItems: map[string][]types.WriteRequest{tableName: writeReqs},
 })
 if err != nil {
 log.Printf("Couldn't populate table %v with users. Here's why: %v\n",
 tableName, err)
 }
 return err
}

// Scan scans the table for all items.
func (actor DynamoActions) Scan(ctx context.Context, tableName string) (UserList,
 error) {
 var userList UserList
 output, err := actor.DynamoClient.Scan(ctx, &dynamodb.ScanInput{
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't scan table %v for items. Here's why: %v\n", tableName,
 err)
 } else {

Scenarios 432

Amazon Cognito Developer Guide

 err = attributevalue.UnmarshalListOfMaps(output.Items, &userList.Users)
 if err != nil {
 log.Printf("Couldn't unmarshal items into users. Here's why: %v\n", err)
 }
 }
 return userList, err
}

// AddUser adds a user item to a table.
func (actor DynamoActions) AddUser(ctx context.Context, tableName string, user
 User) error {
 userItem, err := attributevalue.MarshalMap(user)
 if err != nil {
 log.Printf("Couldn't marshall user to item. Here's why: %v\n", err)
 }
 _, err = actor.DynamoClient.PutItem(ctx, &dynamodb.PutItemInput{
 Item: userItem,
 TableName: aws.String(tableName),
 })
 if err != nil {
 log.Printf("Couldn't put item in table %v. Here's why: %v", tableName, err)
 }
 return err
}

Create a struct that wraps CloudWatch Logs actions.

import (
 "context"
 "fmt"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs"
 "github.com/aws/aws-sdk-go-v2/service/cloudwatchlogs/types"
)

type CloudWatchLogsActions struct {
 CwlClient *cloudwatchlogs.Client
}

Scenarios 433

Amazon Cognito Developer Guide

// GetLatestLogStream gets the most recent log stream for a Lambda function.
func (actor CloudWatchLogsActions) GetLatestLogStream(ctx context.Context,
 functionName string) (types.LogStream, error) {
 var logStream types.LogStream
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.DescribeLogStreams(ctx,
 &cloudwatchlogs.DescribeLogStreamsInput{
 Descending: aws.Bool(true),
 Limit: aws.Int32(1),
 LogGroupName: aws.String(logGroupName),
 OrderBy: types.OrderByLastEventTime,
 })
 if err != nil {
 log.Printf("Couldn't get log streams for log group %v. Here's why: %v\n",
 logGroupName, err)
 } else {
 logStream = output.LogStreams[0]
 }
 return logStream, err
}

// GetLogEvents gets the most recent eventCount events from the specified log
 stream.
func (actor CloudWatchLogsActions) GetLogEvents(ctx context.Context, functionName
 string, logStreamName string, eventCount int32) (
 []types.OutputLogEvent, error) {
 var events []types.OutputLogEvent
 logGroupName := fmt.Sprintf("/aws/lambda/%s", functionName)
 output, err := actor.CwlClient.GetLogEvents(ctx,
 &cloudwatchlogs.GetLogEventsInput{
 LogStreamName: aws.String(logStreamName),
 Limit: aws.Int32(eventCount),
 LogGroupName: aws.String(logGroupName),
 })
 if err != nil {
 log.Printf("Couldn't get log event for log stream %v. Here's why: %v\n",
 logStreamName, err)
 } else {
 events = output.Events
 }
 return events, err
}

Scenarios 434

Amazon Cognito Developer Guide

Create a struct that wraps Amazon CloudFormation actions.

import (
 "context"
 "log"

 "github.com/aws/aws-sdk-go-v2/aws"
 "github.com/aws/aws-sdk-go-v2/service/cloudformation"
)

// StackOutputs defines a map of outputs from a specific stack.
type StackOutputs map[string]string

type CloudFormationActions struct {
 CfnClient *cloudformation.Client
}

// GetOutputs gets the outputs from a CloudFormation stack and puts them into a
 structured format.
func (actor CloudFormationActions) GetOutputs(ctx context.Context, stackName
 string) StackOutputs {
 output, err := actor.CfnClient.DescribeStacks(ctx,
 &cloudformation.DescribeStacksInput{
 StackName: aws.String(stackName),
 })
 if err != nil || len(output.Stacks) == 0 {
 log.Panicf("Couldn't find a CloudFormation stack named %v. Here's why: %v\n",
 stackName, err)
 }
 stackOutputs := StackOutputs{}
 for _, out := range output.Stacks[0].Outputs {
 stackOutputs[*out.OutputKey] = *out.OutputValue
 }
 return stackOutputs
}

Clean up resources.

Scenarios 435

Amazon Cognito Developer Guide

import (
 "context"
 "log"
 "user_pools_and_lambda_triggers/actions"

 "github.com/awsdocs/aws-doc-sdk-examples/gov2/demotools"
)

// Resources keeps track of AWS resources created during an example and handles
// cleanup when the example finishes.
type Resources struct {
 userPoolId string
 userAccessTokens []string
 triggers []actions.Trigger

 cognitoActor *actions.CognitoActions
 questioner demotools.IQuestioner
}

func (resources *Resources) init(cognitoActor *actions.CognitoActions, questioner
 demotools.IQuestioner) {
 resources.userAccessTokens = []string{}
 resources.triggers = []actions.Trigger{}
 resources.cognitoActor = cognitoActor
 resources.questioner = questioner
}

// Cleanup deletes all AWS resources created during an example.
func (resources *Resources) Cleanup(ctx context.Context) {
 defer func() {
 if r := recover(); r != nil {
 log.Printf("Something went wrong during cleanup.\n%v\n", r)
 log.Println("Use the AWS Management Console to remove any remaining resources
 \n" +
 "that were created for this scenario.")
 }
 }()

 wantDelete := resources.questioner.AskBool("Do you want to remove all of the AWS
 resources that were created "+
 "during this demo (y/n)?", "y")
 if wantDelete {

Scenarios 436

Amazon Cognito Developer Guide

 for _, accessToken := range resources.userAccessTokens {
 err := resources.cognitoActor.DeleteUser(ctx, accessToken)
 if err != nil {
 log.Println("Couldn't delete user during cleanup.")
 panic(err)
 }
 log.Println("Deleted user.")
 }
 triggerList := make([]actions.TriggerInfo, len(resources.triggers))
 for i := 0; i < len(resources.triggers); i++ {
 triggerList[i] = actions.TriggerInfo{Trigger: resources.triggers[i],
 HandlerArn: nil}
 }
 err := resources.cognitoActor.UpdateTriggers(ctx, resources.userPoolId,
 triggerList...)
 if err != nil {
 log.Println("Couldn't update Cognito triggers during cleanup.")
 panic(err)
 }
 log.Println("Removed Cognito triggers from user pool.")
 } else {
 log.Println("Be sure to remove resources when you're done with them to avoid
 unexpected charges!")
 }
}

• For API details, see the following topics in Amazon SDK for Go API Reference.

• AdminCreateUser

• AdminSetUserPassword

• DeleteUser

• InitiateAuth

• UpdateUserPool

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Scenarios 437

https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminCreateUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.AdminSetUserPassword
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.DeleteUser
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.InitiateAuth
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/service/cognitoidentityprovider#Client.UpdateUserPool

Amazon Cognito Developer Guide

Code examples for Amazon Cognito Sync using Amazon SDKs

The following code examples show how to use Amazon Cognito Sync with an Amazon software
development kit (SDK).

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Code examples

• Basic examples for Amazon Cognito Sync using Amazon SDKs

• Actions for Amazon Cognito Sync using Amazon SDKs

• Use ListIdentityPoolUsage with an Amazon SDK

Basic examples for Amazon Cognito Sync using Amazon SDKs

The following code examples show how to use the basics of Amazon Cognito Sync with Amazon
SDKs.

Examples

• Actions for Amazon Cognito Sync using Amazon SDKs

• Use ListIdentityPoolUsage with an Amazon SDK

Actions for Amazon Cognito Sync using Amazon SDKs

The following code examples demonstrate how to perform individual Amazon Cognito Sync
actions with Amazon SDKs. Each example includes a link to GitHub, where you can find instructions
for setting up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
Amazon Cognito Sync API Reference.

Examples

• Use ListIdentityPoolUsage with an Amazon SDK

Amazon Cognito Sync 438

https://docs.amazonaws.cn/cognitosync/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

Use ListIdentityPoolUsage with an Amazon SDK

The following code example shows how to use ListIdentityPoolUsage.

Rust

SDK for Rust

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the Amazon Code Examples Repository.

async fn show_pools(client: &Client) -> Result<(), Error> {
 let response = client
 .list_identity_pool_usage()
 .max_results(10)
 .send()
 .await?;

 let pools = response.identity_pool_usages();
 println!("Identity pools:");

 for pool in pools {
 println!(
 " Identity pool ID: {}",
 pool.identity_pool_id().unwrap_or_default()
);
 println!(
 " Data storage: {}",
 pool.data_storage().unwrap_or_default()
);
 println!(
 " Sync sessions count: {}",
 pool.sync_sessions_count().unwrap_or_default()
);
 println!(
 " Last modified: {}",
 pool.last_modified_date().unwrap().to_chrono_utc()?
);
 println!();
 }

Basics 439

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1/examples/cognitosync#code-examples

Amazon Cognito Developer Guide

 println!("Next token: {}", response.next_token().unwrap_or_default());

 Ok(())
}

• For API details, see ListIdentityPoolUsage in Amazon SDK for Rust API reference.

For a complete list of Amazon SDK developer guides and code examples, see Using this service
with an Amazon SDK. This topic also includes information about getting started and details about
previous SDK versions.

Basics 440

https://docs.rs/aws-sdk-cognitosync/latest/aws_sdk_cognitosync/client/struct.Client.html#method.list_identity_pool_usage

Amazon Cognito Developer Guide

Multi-tenant application best practices

Amazon Cognito user pools operate with multi-tenant applications that generate a volume of
requests that must remain within Amazon Cognito quotas. To scale up this capacity when your
customer base grows, you can purchase additional quota capacity.

Note

Amazon Cognito quotas are applied per Amazon Web Services account and Amazon Web
Services Region. These quotas are shared across all tenants in your application. Review the
Amazon Cognito service quotas, and make sure that the quota meets the expected volume
and the expected number of tenants in your application.

This section describes methods that you can implement to separate tenants between Amazon
Cognito resources within the same Region and Amazon Web Services account. You can also split
your tenants across more than one Amazon Web Services account or Region, and give each of them
their own quota. Other advantages of multi-Region multi-tenancy include the highest possible
level of isolation, shortest network-transit time for globally distributed users, and adherence to
existing distribution models in your organization.

Single-Region multi-tenancy can also have advantages for your customers and administrators.

The following list covers some of the advantages of multi-tenancy with shared resources.

Advantages of multi-tenancy

Common user directory

Multi-tenancy supports models where customers have accounts in more than one application.
You can link identities from third-party providers into a single consistent user pool profile. In
cases where user profiles are unique to their tenant, any multi-tenancy strategy with a single
user pool has one point of entry to user administration.

Common security

In a shared user pool, you can create a single standard for security and apply the same threat
protection, multi-factor authentication (MFA), and Amazon WAF standards to all tenants.
Because an Amazon WAF web ACL must be in the same Amazon Web Services Region as the
resource that you associate it with, multi-tenancy offers shared access to a complex resource.

441

https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html

Amazon Cognito Developer Guide

When you want to maintain consistent security configuration in multi-Region Amazon Cognito
applications, you must apply operational standards that replicate your configuration between
resources.

Common customization

You can customize user pools and identity pools with Amazon Lambda. Configuration of
Lambda triggers in user pools and Amazon Cognito events in identity pools can become
complex. Lambda functions must be in the same Amazon Web Services Region as your user pool
or identity pool. Shared Lambda functions can enforce standards for custom authentication
flows, user migration, token generation, and other functions within a Region.

Common messaging

Amazon Simple Notification Service (Amazon SNS) requires additional configuration in a Region
before you can send SMS messages to your users. You can send email messages with Amazon
Simple Email Service (Amazon SES) verified identities and domains that are contained within a
Region.

With multi-tenancy, you can share this configuration and maintenance overhead between all
of your tenants. Because Amazon SNS and Amazon SES aren't available in all Amazon Web
Services Regions, splitting your resources between Regions requires additional consideration.

When you use custom messaging providers, you gain the common customization of a single
Lambda function to manage your message delivery.

Managed login sets a session cookie in the browser so that it recognizes a user who has already
authenticated. When you authenticate local users in a user pool, their session cookie authenticates
them for all app clients in the same user pool. A local user exists exclusively in your user pool
directory without federation through an external IdP. The session cookie is valid for one hour. You
can't change the session cookie duration.

There are two ways to prevent sign-in across app clients with a hosted UI session cookie.

• Separate your users into per-tenant user pools.

• Replace hosted UI sign-in with Amazon Cognito user pools API sign-in.

Topics

• User-pool multi-tenancy best practices

442

Amazon Cognito Developer Guide

• App-client multi-tenancy best practices

• User group multi-tenancy best practices

• Custom-attribute multi-tenancy best practices

• Custom scope multi-tenancy best practices

• Multi-tenancy security recommendations

User-pool multi-tenancy best practices

Create a user pool for each tenant in your app. This approach provides maximum isolation for each
tenant. You can implement different configurations for each tenant. Tenant isolation by user pool
gives you flexibility in user-to-tenant mapping. You can create multiple profiles for the same user.
However, each user must sign up individually for each tenant they can access.

Using this approach, you can set up a hosted UI for each tenant independently and redirect users to
their tenant-specific instance of your application. You can also use this approach to integrate with
backend services like Amazon API Gateway.

The following diagram shows each tenant with a dedicated user pool.

Per-tenant user pools 443

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

Amazon Cognito Developer Guide

When to implement user-pool multi-tenancy

When isolation and customization are your primary concerns. The relationship between users and
tenants might be complex in an architecture with multiple user pools. Consider an example where
you have two educational tenants. The same user might be a limited-access student in one app,
and a teacher with a high level of permissions in another. You might require MFA in one app but
not another, or have a different password policy. Because local users can sign in to multiple app

Per-tenant user pools 444

Amazon Cognito Developer Guide

clients in user pools with managed login, user-pool multi-tenancy is also ideal when you want
more than one of your tenants to sign in with managed login.

Level of effort

The development and operation effort to use this approach is high. To ensure consistent and
predictable outcomes for your family of apps, you must integrate Amazon Cognito resources with
your automation tools and maintain your baselines as your authentication architecture grows more
complex. When you want to create a single starting place for your apps, you have to build the user-
interface (UI) elements to capture the initial decision that routes users to the correct resource.

App-client multi-tenancy best practices

Create an app client for each tenant in your app. With app-client multi-tenancy, you can assign any
user to tenant-linked app clients and retain a single user profile. Because you can assign any or all
of the identity providers (IdPs) in your user pool to an app client, a tenant app client can permit
sign-in with a tenant-specific IdP. When users exist in multiple tenants, you can link their profiles
with multiple IdPs for a consistent user experience.

The following diagram shows each tenant with a dedicated app client in a shared user pool.

Per-tenant app clients 445

Amazon Cognito Developer Guide

When to implement app-client multi-tenancy

When you can choose a universal configuration for settings at the user-pool level, like Lambda
triggers, password policy, and the content and delivery methods of email and SMS messages.

Per-tenant app clients 446

Amazon Cognito Developer Guide

Because users in a shared user pool can sign in to any app client, app-client multi-tenancy is ideal
for sign-in with app-client-specific IdPs or the Amazon Cognito user pools API. App-client multi-
tenancy is also well-suited for one-to-many environments where you want to permit users to
transition between multiple applications.

Level of effort

App-client multi-tenancy requires moderate effort. A major challenge of app-client multi-tenancy
is the ability for tenants to present a hosted UI cookie and switch between apps. In an app-client
multi-tenancy architecture, avoid hosted UI sign-in where isolation is necessary. You can distribute
your mobile app or links to your web app with app client logic built in, or you can build initial UI
elements that determine users' tenancy. The level of effort is lower because you don't need to
standardize and maintain configuration across multiple user pools and identity pools.

User group multi-tenancy best practices

Group-based multi-tenancy works best when your architecture requires Amazon Cognito user pools
with identity pools.

User pool ID and access tokens contain a cognito:groups claim. Additionally, ID tokens contain
cognito:roles and cognito:preferred_role claims. When the primary outcome of
authentication in your app is temporary Amazon credentials from an identity pool, your users'
group memberships can determine the IAM role and permissions that they receive.

As an example, consider three tenants that each store application assets in their own Amazon S3
bucket. Assign the users of each tenant to an associated group, configure a preferred role for the
group, and grant that role read access to their bucket.

The following diagram shows tenants sharing an app client and a user pool, with dedicated groups
in the user pool that determine their eligibility for an IAM role.

Per-tenant user pool groups 447

Amazon Cognito Developer Guide

Per-tenant user pool groups 448

Amazon Cognito Developer Guide

When to implement group multi-tenancy

When access to Amazon resources is your primary concern. Groups in Amazon Cognito user pools
are a mechanism for role-based access control (RBAC). You can configure many groups in a user
pool and make complex RBAC decisions with group priority. Identity pools can assign credentials
for the role with the highest priority, any role in the groups claim, or from other claims in a user's
tokens.

Level of effort

The level of effort to maintain multi-tenancy with group membership alone is low. However, to
expand the role of user pool groups beyond the built-in capacity for IAM role selection, you must
build application logic that processes group membership in users' tokens, and determine what to
do in the client. You can integrate Amazon Verified Permissions with your apps to make client-
side authorization decisions. Group identifiers aren't currently processed in Verified Permissions
IsAuthorizedWithToken API operations, but you can develop custom code that parses the contents
of tokens, including group-membership claims.

Custom-attribute multi-tenancy best practices

Amazon Cognito supports custom attributes with names that you choose. One scenario where
custom attributes are useful is when they distinguish the tenancy of users in a shared user pool.
When you assign users a value for an attribute like custom:tenantID, your app can assign access
to tenant-specific resources accordingly. A custom attribute that defines a tenant ID should be
immutable or read-only to the app client.

The following diagram shows tenants sharing an app client and a user pool, with a custom
attributes in the user pool that indicates the tenant that they belong to.

Per-tenant custom attributes 449

https://docs.amazonaws.cn/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-providers.html#identity-providers_other-idp

Amazon Cognito Developer Guide

When custom attributes determine tenancy, you can distribute a single application or sign-in URL.
After your user signs in, your app can process the custom:tenantID claim determine which assets

Per-tenant custom attributes 450

Amazon Cognito Developer Guide

to load, the branding to apply, and features to display. For advanced access-control decisions from
user attributes, set up your user pool as an identity provider in Amazon Verified Permissions, and
generate access decisions from the contents of ID or access tokens.

When to implement custom-attribute multi-tenancy

When tenancy is surface-level. A tenant attribute can contribute to branding and layout outcomes.
When you want to achieve significant isolation between tenants, custom attributes aren't the best
choice. Any difference between tenants that must be configured at the user-pool or app-client
level, like MFA or hosted UI branding, requires that you create distinctions between tenants in a
way that custom attributes don't offer. With identity pools, you can even choose the IAM role from
your users from the custom-attribute claim in their ID token.

Level of effort

Because custom-attribute multi-tenancy transfers the duty of tenant-based authorization
decisions on your app, the level of effort tends to be high. If you're already well-versed in a client
configuration that parses OIDC claims, or in Amazon Verified Permissions, this approach might
require the lowest level of effort.

Custom scope multi-tenancy best practices

Amazon Cognito supports custom OAuth 2.0 scopes for resource servers. You can implement app
client multi-tenancy in users pools for machine-to-machine (M2M) authorization models with
custom scopes. Scope-based multi-tenancy reduces the effort required to implement M2M multi-
tenancy by defining access in your app client or application configuration.

The following diagram illustrates one option for custom scope multi-tenancy. It shows each tenant
with a dedicated app client that has access to relevant scopes in a user pool.

Per-tenant custom scopes 451

Amazon Cognito Developer Guide

Per-tenant custom scopes 452

Amazon Cognito Developer Guide

When to implement custom-scope multi-tenancy

When your usage is M2M authorization with client credentials in a confidential client. As a best
practice, create resource servers that are exclusive to an app client. Custom scope multi-tenancy
can be request-dependent or client-dependent.

Request-dependent

Implement application logic to request only the scopes that match the requirements of your
tenant. For example, an app client might be able to issue read and write access to API A and API
B, but tenant application A requests only the read scope for API A and the scope that indicates
tenancy. This model allows for more complex combinations of shared scopes between tenants.

Client-dependent

Request all scopes assigned to an app client in your authorization requests. To do this, omit the
scope request parameter in your request to the Token endpoint. This model allows for app
clients to store the access indicators that you want to add to your custom scopes.

In either case, your applications receive access tokens with scopes that indicate their privileges for
data sources that they depend on. Scopes can also present other information to your application:

• Designate tenancy

• Contribute to request logging

• Indicate the APIs that the application is authorized to query

• Inform initial checks for active customers.

Level of effort

Custom-scope multi-tenancy requires a varying level of effort relative to the scale of your
application. You must devise application logic that allows your applications to parse access tokens
and make the appropriate API requests.

For example, a resource server scope comes in the format [resource server identifier]/
[name]. The resource server identifier is unlikely to be relevant to the authorization decision from
the tenant scope, requiring the scope name to be consistently parsed.

Per-tenant custom scopes 453

Amazon Cognito Developer Guide

Example resource

The following Amazon CloudFormation template creates a user pool for custom-scope multi-
tenancy with one resource server and app client.

AWSTemplateFormatVersion: "2010-09-09"
Description: A sample template illustrating scope-based multi-tenancy
Resources:
 MyUserPool:
 Type: "AWS::Cognito::UserPool"
 MyUserPoolDomain:
 Type: AWS::Cognito::UserPoolDomain
 Properties:
 UserPoolId: !Ref MyUserPool
 # Note that the value for "Domain" must be unique across all of AWS.
 # In production, you may want to consider using a custom domain.
 # See: https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-
pools-add-custom-domain.html#cognito-user-pools-add-custom-domain-adding
 Domain: !Sub "example-userpool-domain-${AWS::AccountId}"
 MyUserPoolResourceServer:
 Type: "AWS::Cognito::UserPoolResourceServer"
 Properties:
 Identifier: resource1
 Name: resource1
 Scopes:
 - ScopeDescription: Read-only access
 ScopeName: readScope
 UserPoolId: !Ref MyUserPool
 MyUserPoolTenantBatch1ResourceServer:
 Type: "AWS::Cognito::UserPoolResourceServer"
 Properties:
 Identifier: TenantBatch1
 Name: TenantBatch1
 Scopes:
 - ScopeDescription: tenant1 identifier
 ScopeName: tenant1
 - ScopeDescription: tenant2 identifier
 ScopeName: tenant2
 UserPoolId: !Ref MyUserPool
 MyUserPoolClientTenant1:
 Type: "AWS::Cognito::UserPoolClient"
 Properties:
 AllowedOAuthFlows:

Example resource 454

Amazon Cognito Developer Guide

 - client_credentials
 AllowedOAuthFlowsUserPoolClient: true
 AllowedOAuthScopes:
 - !Sub "${MyUserPoolTenantBatch1ResourceServer}/tenant1"
 - !Sub "${MyUserPoolResourceServer}/readScope"
 GenerateSecret: true
 UserPoolId: !Ref MyUserPool
Outputs:
 UserPoolClientId:
 Description: User pool client ID
 Value: !Ref MyUserPoolClientTenant1
 UserPoolDomain:
 Description: User pool domain
 Value: !Sub "https://${MyUserPoolDomain}.auth.${AWS::Region}.amazoncognito.com"

Multi-tenancy security recommendations

To help make your application more secure, we recommend the following:

• Validate tenancy in your app with Amazon Verified Permissions. Build policies that examine user
pool, app client, group, or custom-attribute entitlement before you permit a user's request in
your application. Amazon created Verified Permissions identity sources with Amazon Cognito
user pools in mind. Verified Permissions has additional guidance for multi-tenancy management.

• Use only a verified email address to authorize user access to a tenant based on domain match.
Do not trust email addresses and phone numbers unless your app verifies them, or the external
IdP gives a proof of verification. For more details on setting these permissions, see Attribute
Permissions and Scopes.

• Use immutable, or read-only, custom attributes for the user profile attributes that identify
tenants. You can only set the value of immutable attributes when you create a user or a user
signs up in your user pool. Also, give app clients read-only access to the attributes.

• Use 1:1 mapping between a tenant's external IdP and application client to prevent unauthorized
cross-tenant access. A user who has been authenticated by an external IdP, and who has a valid
Amazon Cognito session cookie, can access other tenant apps that trust the same IdP.

• When you implement tenant-matching and authorization logic in your application, restrict
users so that they can't modify the criteria that authorize user access to the tenants. Also, if an
external IdP is being used for federation, restrict tenant identity provider administrators so that
they can't modify user access.

Multi-tenancy security recommendations 455

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/identity-providers.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/design-multi-tenancy-considerations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html%23user-pool-settings-attribute-%20permissions-and-scopes.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html%23user-pool-settings-attribute-%20permissions-and-scopes.html

Amazon Cognito Developer Guide

Common Amazon Cognito scenarios

This topic describes six common scenarios for using Amazon Cognito.

The two main components of Amazon Cognito are user pools and identity pools. User pools are
user directories that provide sign-up and sign-in options for your web and mobile app users.
Identity pools provide temporary Amazon credentials to grant your users access to other Amazon
Web Services services.

A user pool is a user directory in Amazon Cognito. Your app users can either sign in directly
through a user pool, or they can federate through a third-party identity provider (IdP). The user
pool manages the overhead of handling the tokens that are returned from social sign-in through
Facebook, Google, Amazon, and Apple, and from OpenID Connect (OIDC) and SAML IdPs. Whether
your users sign in directly or through a third party, all members of the user pool have a directory
profile that you can access through an SDK.

With an identity pool, your users can obtain temporary Amazon credentials to access Amazon
services, such as Amazon S3 and DynamoDB. Identity pools support anonymous guest users, as
well as federation through third-party IdPs.

Topics

• Authenticate with a user pool

• Access back-end resources with user pool tokens

• Access resources with API Gateway and Lambda with a user pool

• Access Amazon services with a user pool and an identity pool

• Authenticate with a third party and access Amazon services with an identity pool

• Access Amazon AppSync resources with Amazon Cognito

Authenticate with a user pool

You can enable your users to authenticate with a user pool. Your app users can either sign in
directly through a user pool, or they can federate through a third-party identity provider (IdP).
The user pool manages the overhead of handling the tokens that are returned from social sign-in
through Facebook, Google, Amazon, and Apple, and from OpenID Connect (OIDC) and SAML IdPs.

Authenticate with a user pool 456

Amazon Cognito Developer Guide

After a successful authentication, your web or mobile app will receive user pool tokens from
Amazon Cognito. You can use those tokens to retrieve Amazon credentials that allow your app to
access other Amazon services, or you might choose to use them to control access to your server-
side resources, or to the Amazon API Gateway.

For more information, see An example authentication session and Understanding user pool JSON
web tokens (JWTs).

Access back-end resources with user pool tokens

After a successful user pool sign-in, your web or mobile app will receive user pool tokens from
Amazon Cognito. You can use those tokens to control access to your server-side resources. You can
also create user pool groups to manage permissions, and to represent different types of users. For
more information on using groups to control access to your resources, see Adding groups to a user
pool.

After you configure a domain for your user pool, Amazon Cognito provisions a hosted web UI that
allows you to add sign-up and sign-in pages to your app. Using this OAuth 2.0 foundation, you

Access server-side resources 457

Amazon Cognito Developer Guide

can create your own resource server to enable your users to access protected resources. For more
information, see Scopes, M2M, and APIs with resource servers.

For more information about user pool authentication, see An example authentication session and
Understanding user pool JSON web tokens (JWTs).

Access resources with API Gateway and Lambda with a user
pool

You can enable your users to access your API through API Gateway. API Gateway validates the
tokens from a successful user pool authentication, and uses them to grant your users access to
resources including Lambda functions, or your own API.

You can use groups in a user pool to control permissions with API Gateway by mapping group
membership to IAM roles. The groups that a user is a member of are included in the ID token
provided by a user pool when your app user signs in. For more information on user pool groups See
Adding groups to a user pool.

You can submit your user pool tokens with a request to API Gateway for verification by an Amazon
Cognito authorizer Lambda function. For more information on API Gateway, see Using API Gateway
with Amazon Cognito user pools.

Access resources with API Gateway and Lambda 458

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

Amazon Cognito Developer Guide

Access Amazon services with a user pool and an identity pool

After a successful user pool authentication, your app will receive user pool tokens from Amazon
Cognito. You can exchange them for temporary access to other Amazon services with an identity
pool. For more information, see Accessing Amazon Web Services services using an identity pool
after sign-in and Getting started with Amazon Cognito identity pools.

Authenticate with a third party and access Amazon services
with an identity pool

You can enable your users access to Amazon services through an identity pool. An identity pool
requires an IdP token from a user that's authenticated by a third-party identity provider (or nothing
if it's an anonymous guest). In exchange, the identity pool grants temporary Amazon credentials
that you can use to access other Amazon services. For more information, see Getting started with
Amazon Cognito identity pools.

Access Amazon services with a user pool and an identity pool 459

Amazon Cognito Developer Guide

Access Amazon AppSync resources with Amazon Cognito

You can grant your users access to Amazon AppSync resources with tokens from
a successful Amazon Cognito user pool authentication. For more information, see
AMAZON_COGNITO_USER_POOLS authorization in the Amazon AppSync Developer Guide.

You can also sign requests to the Amazon AppSync GraphQL API with the IAM credentials that you
receive from an identity pool. See AWS_IAM authorization.

Access Amazon AppSync resources with Amazon Cognito 460

https://docs.amazonaws.cn/appsync/latest/devguide/security-authz.html#amazon-cognito-user-pools-authorization
https://docs.amazonaws.cn/appsync/latest/devguide/security-authz.html#aws-iam-authorization

Amazon Cognito Developer Guide

Access Amazon AppSync resources with Amazon Cognito 461

Amazon Cognito Developer Guide

Amazon Cognito user pools

An Amazon Cognito user pool is a user directory for web and mobile app authentication and
authorization. From the perspective of your app, an Amazon Cognito user pool is an OpenID
Connect (OIDC) identity provider (IdP). A user pool adds layers of additional features for security,
identity federation, app integration, and customization of the user experience.

You can, for example, verify that your users’ sessions are from trusted sources. You can combine
the Amazon Cognito directory with an external identity provider. With your preferred Amazon
SDK, you can choose the API authorization model that works best for your app. And you can add
Amazon Lambda functions that modify or overhaul the default behavior of Amazon Cognito.

Topics

• Features

• User pool feature plans

• Security best practices for Amazon Cognito user pools

• Authentication with Amazon Cognito user pools

• User pool sign-in with third party identity providers

• User pool managed login

• Customizing user pool workflows with Lambda triggers

• Managing users in your user pool

• Understanding user pool JSON web tokens (JWTs)

• Accessing resources after successful sign-in

• Scopes, M2M, and APIs with resource servers

• Configure user pool features

462

Amazon Cognito Developer Guide

• Using Amazon Cognito user pools security features

• User pool endpoints and managed login reference

Features

Amazon Cognito user pools have the following features.

Sign-up

Amazon Cognito user pools have user-driven, administrator-driven, and programmatic methods
to add user profiles to your user pool. Amazon Cognito user pools supports the following sign-up
models. You can use any combination of these models in your app.

Important

If you activate user sign-up in your user pool, anyone on the internet can sign up for an
account and sign into your apps. Don't enable self-registration in your user pool unless
you want to open your app to public sign-up. To change this setting, update Self-service
sign-up in the Sign-up menu under Authentication in the user pool console, or update the
value of AllowAdminCreateUserOnly in a CreateUserPool or UpdateUserPool API request.
For information about security features that you can set up in your user pools, see Using
Amazon Cognito user pools security features.

1. Your users can enter their information in your app and create a user profile that’s native to your
user pool. You can call API sign-up operations to register users in your user pool. You can open
these sign-up operations to anyone, or you can authorize them with a client secret or Amazon
credentials.

2. You can redirect users to a third-party IdP that they can authorize to pass their information to
Amazon Cognito. Amazon Cognito processes OIDC id tokens, OAuth 2.0 userInfo data, and
SAML 2.0 assertions into user profiles in your user pool. You control the attributes that you want
Amazon Cognito to receive based on attribute-mapping rules.

3. You can skip public or federated sign-up, and create users based on your own data source and
schema. Add users directly in the Amazon Cognito console or API. Import users from a CSV file.
Run a just-in-time Amazon Lambda function that looks up your new user in an existing directory,
and populates their user profile from existing data.

Features 463

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUserConfigType.html#CognitoUserPools-Type-AdminCreateUserConfigType-AllowAdminCreateUserOnly
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

After your users sign up, you can add them to groups that Amazon Cognito lists in the access and
ID tokens. You can also link user pool groups to IAM roles when you pass the ID token to an identity
pool.

Related topics

• Managing users in your user pool

• Understanding API, OIDC, and managed login pages authentication

• Code examples for Amazon Cognito Identity Provider using Amazon SDKs

Sign-in

Amazon Cognito can be a standalone user directory and identity provider (IdP) to your app. Your
users can sign in with managed login pages that are hosted by Amazon Cognito, or with a custom-
built user authentication service through the Amazon Cognito user pools API. The application tier
behind your custom-built front end can authorize requests on the back end with any of several
methods to confirm legitimate requests.

Users can set up and sign with usernames and passwords, passkeys, and email and SMS message
one-time passwords. You can offer consolidate sign in with external user directories, multi-factor
authentication (MFA) after sign-in, trust remembered devices, and custom authentication flows
that you design.

To sign in users with an external directory, optionally combined with the user directory built in to
Amazon Cognito, you can add the following integrations.

1. Sign in and import customer user data with OAuth 2.0 social sign-in. Amazon Cognito supports
sign-in with Google, Facebook, Amazon, and Apple through OAuth 2.0.

2. Sign in and import work and school user data with SAML and OIDC sign-in. You can also
configure Amazon Cognito to accept claims from any SAML or OpenID Connect (OIDC) identity
provider (IdP).

3. Link external user profiles to native user profiles. A linked user can sign in with a third-party user
identity and receive access that you assign to a user in the built-in directory.

Related topics

• User pool sign-in with third party identity providers

Sign-in 464

Amazon Cognito Developer Guide

• Linking federated users to an existing user profile

Machine-to-machine authorization

Some sessions aren’t a human-to-machine interaction. You might need a service account that can
authorize a request to an API by an automated process. To generate access tokens for machine-
to-machine authorization with OAuth 2.0 scopes, you can add an app client that generates client-
credentials grants.

Related topics

• Scopes, M2M, and APIs with resource servers

Managed login

When you don’t want to build a user interface, you can present your users with a customized
managed login pages. Managed login is a set of web pages for sign-up, sign-in, multi-factor
authentication (MFA), and password reset. You can add managed login to your existing domain, or
use a prefix identifier in an Amazon subdomain.

Related topics

• User pool managed login

• Configuring a user pool domain

Security

Your local users can provide an additional authentication factor with a code from an SMS or
email message, or an app that generates multi-factor authentication (MFA) codes. You can build
mechanisms to set up and process MFA in your application, or you can let managed login manage
it. Amazon Cognito user pools can bypass MFA when your users sign in from trusted devices.

If you don’t want to initially require MFA from your users, you can require it conditionally. With
advanced security features, Amazon Cognito can detect potential malicious activity and require
your user to set up MFA, or block sign-in.

If network traffic to your user pool might be malicious, you can monitor it and take action with
Amazon WAF web ACLs.

Managed login 465

https://www.rfc-editor.org/rfc/rfc6749#section-4.4
https://www.rfc-editor.org/rfc/rfc6749#section-4.4

Amazon Cognito Developer Guide

Related topics

• Adding MFA to a user pool

• Advanced security with threat protection

• Associate an Amazon WAF web ACL with a user pool

Custom user experience

At most stages of a user’s sign-up, sign-in, or profile update, you can customize how Amazon
Cognito handles the request. With Lambda triggers, you can modify an ID token or reject a sign-up
request based on custom conditions. You can create your own custom authentication flow.

You can upload custom CSS and logos to give managed login a familiar look and feel to your users.

Related topics

• Customizing user pool workflows with Lambda triggers

• Custom authentication challenge Lambda triggers

• Apply branding to managed login pages

Monitoring and analytics

Amazon Cognito user pools log API requests, including requests to managed login, to Amazon
CloudTrail. You can review performance metrics in Amazon CloudWatch Logs, push custom logs
to CloudWatch with Lambda triggers, monitor email and SMS message delivery, and monitor API
request volume in the Service Quotas console.

With the Plus feature plan, you can monitor user authentication attempts for indicators of
compromise with automated-learning technology and immediately remediate risks. These
advanced security features also log user activity to your user pool and optionally, to Amazon S3,
CloudWatch Logs, or Amazon Data Firehose.

You can also log device and session data from your API requests to an Amazon Pinpoint campaign.
With Amazon Pinpoint, you can send push notifications from your app based on your analysis of
user activity.

Related topics

• Amazon Cognito logging in Amazon CloudTrail

Custom user experience 466

Amazon Cognito Developer Guide

• Tracking quotas and usage in CloudWatch and Service Quotas

• Exporting logs from Amazon Cognito user pools

• Using Amazon Pinpoint for user pool analytics

Amazon Cognito identity pools integration

The other half of Amazon Cognito is identity pools. Identity pools provide credentials that
authorize and monitor API requests to Amazon Web Services services, for example Amazon
DynamoDB or Amazon S3, from your users. You can build identity-based access policies that
protect your data based on how you classify the users in your user pool. Identity pools can also
accept tokens and SAML 2.0 assertions from a variety of identity providers, independently of user
pool authentication.

Related topics

• Accessing Amazon Web Services services using an identity pool after sign-in

• Amazon Cognito identity pools

User pool feature plans

Understanding the cost is a crucial step in preparing to implement Amazon Cognito user pools
authentication. Amazon Cognito has feature plans for user pools. Each plan has a set of features
and a monthly cost per active user. Each feature plan unlocks access to more features than the one
before it.

User pools have a variety of features that you can turn on and off. For example, you can turn on
multi-factor authentication (MFA) and turn off sign-in with third-party identity providers (IdPs).
Some changes require you to switch your feature plan. The following characteristics of your user
pool determine the cost that Amazon bills you monthly for usage.

• The features that you choose

• The requests per second that your application makes to the user pools API

• The number of users with authentication, update, or query activity in a month, also called
monthly active users or MAUs

• The number of monthly active users from third-party SAML 2.0 or OpenID Connect (OIDC) IdPs

Amazon Cognito identity pools integration 467

Amazon Cognito Developer Guide

• The number of app clients and user pools that do client-credentials grants for machine-to-
machine authorization

For the most current information about user pool pricing, see Amazon Cognito pricing.

Feature-plan selections apply to one user pool. Different user pools in the same Amazon Web
Services account can have different plan selections. You can't apply separate feature plans to app
clients within a user pool. The default plan selection for new user pools is Essentials.

You can switch between feature plans at any time to fit the requirements of your applications.
Some changes between plans require that you turn off active features. For more information, see
Turning off features to change feature plans.

User pool feature plans

Lite

Lite is a low-cost feature plan for user pools with lower numbers of monthly active users.
This plan is sufficient for user directories with basic authentication features. It includes sign-
in features and the classic hosted UI, a slimmer, less-customizable predecessor to managed
login. Many newer features, like access-token customization and passkey authentication, aren't
included in the Lite plan.

Essentials

Essentials has all of the latest user pool authentication features. This plan adds new options to
your applications, whether your login pages are managed login or custom-built. Essentials has
advanced authentication features like choice-based sign-in and email MFA.

Plus

Plus includes everything in the Essentials plan and adds advanced security features that protect
your users. Monitor user sign-in, sign-up, and password-management requests for indicators
of compromise. For example, user pools can detect whether users are signing in from an
unexpected location or using a password that's been part of a public breach.

User pools with the Plus plan generate logs of user activity details and risk evaluations. You
can apply your own usage and security analysis to these logs when you export them to external
services.

User pool feature plans 468

https://www.amazonaws.cn/cognito/pricing

Amazon Cognito Developer Guide

Note

Previously, some user pool features were included in an advanced security features pricing
structure. The features that were included in this structure are now under either the
Essentials or Plus plan.

Topics

• Select a feature plan

• Features by plan

• Essentials plan features

• Plus plan features

• Turning off features to change feature plans

Select a feature plan

Amazon Web Services Management Console

To choose a feature plan

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Select the Settings menu and review the Feature plans tab.

5. Review the features available to you in the Lite, Esssentials, and Plus plans.

6. To change your plan, select Switch to Essentials, or Switch to Plus. To switch to the Lite
plan, choose Other plans, then Compare with Lite.

7. On the next screen, review your choice and select Confirm.

CLI/API/SDK

The CreateUserPool and UpdateUserPool operations set your feature plan in the
UserPoolTier parameter. When you don't specify a value for UserPoolTier, your user pool
defaults to Essentials. If you set AdvancedSecurityMode to AUDIT or ENFORCED, your
user pool tier must be PLUS and default to PLUS when not specified.

Select a feature plan 469

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

See Examples in CreateUserPool for syntax. See See Also in CreateUserPool for links to this
function in of Amazon SDKs for a variety of programming languages.

"UserPoolTier": "PLUS"

In the Amazon CLI, this option is --user-pool-tier argument.

--user-pool-tier PLUS

See create-user-pool and update-user-pool in the Amazon CLI command reference for more
information.

Features by plan

Features and plans in user pools

Feature Description Feature plan

Protect against unsafe
passwords

Check plaintext passwords for
indicators of compromise at
runtime

Plus

Protect against malicious
sign-in attempts

Check session properties for
indicators of compromise at
runtime

Plus

Log and analyze user activity Generate logs of user
authentication session
properties and risk scores

Plus

Export user activity logs Push user session and risk
logs to an external Amazon
Web Services service

Plus

Customize managed login
pages with a visual editor

Use a visual editor in the
Amazon Cognito console to
apply branding and style to
your managed login pages

Essentials + Plus

Features by plan 470

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#API_CreateUserPool_Examples
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#API_CreateUserPool_SeeAlso
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/create-user-pool.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/update-user-pool.html

Amazon Cognito Developer Guide

Feature Description Feature plan

MFA with email one-time
codes

Request or require local users
to provide an additional email
message sign-in factor after
username authentication

Essentials + Plus

Customize access token
scopes and claims at runtime

Use a Lambda trigger to
extend the authorization
capabilities of user pool
access tokens

Essentials + Plus

Passwordless sign-in with
one-time codes

Permit users to receive a one-
time password by email or
SMS as their first authentic
ation factor

Essentials + Plus

Passkey sign-in with hardware
or software FIDO2 authentic
ators

Permit users to use a
cryptographic key stored on a
FIDO2 authenticator as their
first authentication factor

Essentials + Plus

Sign-up and sign-in Perform authentication
operations and let new users
register for an account in your
application.

Lite + Essentials + Plus

User groups Create logical groupings
of users and assign default
IAM roles for identity pool
operations.

Lite + Essentials + Plus

Sign-in with social, SAML, and
OIDC providers

Provide users with the
options to sign in directly or
with their preferred provider.

Lite + Essentials + Plus

OAuth 2.0/OIDC authoriza
tion server

Act as a OIDC issuer. Lite + Essentials + Plus

Features by plan 471

Amazon Cognito Developer Guide

Feature Description Feature plan

Login pages A hosted collection of
webpages for authentication.
Managed login is available
 in the Essentials and Plus
tiers. The classic hosted UI is
available in all feature tiers.

Lite + Essentials + Plus

Password, custom, refresh-t
oken, and SRP authentication

Prompt users for a username
and password in your
application.

Lite + Essentials + Plus

Machine-to-machine (M2M)
with client credentials

Issue access tokens for
authorization of non-human
entities.

Lite + Essentials + Plus

API authorization with
resource servers

Issue access tokens with
custom scopes that authorize
access to external systems.

Lite + Essentials + Plus

User import Set up import jobs from CSV
files and perform just-in-time
migration of users as they
sign in.

Lite + Essentials + Plus

MFA with authenticator apps
and SMS one-time codes

Request or require local users
to provide an additional SMS
message or authenticator app
sign-in factor after username
authentication

Lite + Essentials + Plus

Customize ID token scopes
and claims at runtime

Use a Lambda trigger to
extend the authentication
capabilities of user pool
identity (ID) tokens

Lite + Essentials + Plus

Features by plan 472

Amazon Cognito Developer Guide

Feature Description Feature plan

Custom runtime actions with
Lambda triggers

Customize the sign-in process
at runtime with Lambda
functions that perform
external actions and influence
authentication

Lite + Essentials + Plus

Customize managed login
pages with CSS

Download a CSS template
and change some styles in
your managed login pages

Lite + Essentials + Plus

Essentials plan features

The Essentials feature plan has most of the best and latest features of Amazon Cognito user pools.
When you switch from the Lite to the Essentials plan, you get new features for your managed
login pages, multi-factor authentication with email-message one-time passwords, an enhanced
password policy, and custom access tokens. To stay up-to-date with new user pool features, choose
the Essentials plan for your user pools.

The sections that follows present a brief overview of the features that you can add to your
application with the Essentials plan. For detailed information, see the following pages.

Additional resources

• Access token customization: Pre token generation Lambda trigger

• Email MFA: SMS and email message MFA

• Password history: Passwords, account recovery, and password policies

• Enhanced UI: Apply branding to managed login pages

Topics

• Access token customization

• Email MFA

• Password reuse prevention

• Managed login hosted sign-in and authorization server

• Choice-based authentication

Essentials plan features 473

Amazon Cognito Developer Guide

Access token customization

User pool access tokens grant permissions to applications: to access an API, to retrieve user
attributes from the userInfo endpoint, or to establish group membership for an external system.
In advanced scenarios, you might want to add to the default access-token data from the user pool
directory with additional temporary parameters that your application determines at runtime. For
example, you might want to verify a user's API permissions with Amazon Verified Permissions and
adjust the scopes in the access token accordingly.

The Essentials plan adds to the existing functions of a pre token generation trigger. With lower-tier
plans, you can customize ID tokens with additional claims, roles, and group membership. Essentials
adds new versions of the trigger input event that customize access token claims, roles, group
membership, and scopes. Access token customization is available to machine-to-machine (M2M)
client credentials grants with event version three.

To customize access tokens

1. Select the Essentials or Plus feature plan.

2. Create a Lambda function for your trigger. To use our example function, configure it for
Node.js.

3. Populate your Lambda function with our example code or compose your own. You function
must process a request object from Amazon Cognito and return the changes that you want to
include.

4. Assign your new function as a version two or three pre token generation trigger. Version two
events customize access tokens for user identities. Version three customizes access tokens for
user and machine identities.

Learn more

• Customizing the access token

• How to customize access tokens in Amazon Cognito user pools

Email MFA

Amazon Cognito user pools can be configured to use email as the second factor in multi-factor
authentication (MFA). With email MFA, Amazon Cognito can send users an email with a verification
code that they must enter to complete the authentication process. This adds an important

Essentials plan features 474

https://datatracker.ietf.org/doc/html/rfc6749#section-1.4
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-nodejs.html
https://www.amazonaws.cn/blogs/security/how-to-customize-access-tokens-in-amazon-cognito-user-pools/

Amazon Cognito Developer Guide

extra layer of security to the user login flow. To enable email-based MFA, the user pool must
be configured to use the Amazon SES email-sending configuration instead of the default email
configuration.

When your user selects MFA by email message, Amazon Cognito will send a one-time verification
code to the user's registered email address whenever they attempt to sign in. The user must then
provide this code back to your user pool to complete the authentication flow and gain access.
This ensures that even if a user's username and password are compromised, they must provide an
additional factor—the emailed code—before they can access your application resources.

For more information, see SMS and email message MFA. The following is an overview of how to
set up your user pool and users for email MFA.

To set up email MFA in the Amazon Cognito console

1. Select the Essentials or Plus feature plan.

2. In the Sign-in menu of your user pool, edit Multi-factor authentication.

3. Choose the level of MFA enforcement that you want to set up. With Require MFA, users in the
API automatically receive a challenge to set up, confirm, and sign in with MFA. In user pools
that require MFA, managed login prompts them to choose and set up an MFA factor. With
Optional MFA, your application must offer users the option to set up MFA and set the user's
preference for email MFA.

4. Under MFA methods, select Email message as one of the options.

Learn more

• SMS and email message MFA

Password reuse prevention

By default, a Amazon Cognito user pools password policy sets password length and character-
type requirements, and temporary-password expiration. The Essentials plan adds the capability
to enforce password history. When a user attempts to reset their password, your user pool can
prevent them from setting it to a previous password. For more information about configuring the
password policy, see Adding user pool password requirements. The following is an overview of how
to set up your user pool with a password-history policy.

Essentials plan features 475

Amazon Cognito Developer Guide

To set up password history in the Amazon Cognito console

1. Select the Essentials or Plus feature plan.

2. In the Authentication methods menu of your user pool, locate Password policy and select
Edit.

3. Configure other available options and set a value for Prevent use of previous passwords.

Learn more

• Passwords, account recovery, and password policies

Managed login hosted sign-in and authorization server

Amazon Cognito user pools have optional webpages that support the following functions: an
OpenID Connect (OIDC) IdP, a service provider or relying party to third-party IdPs, and public user-
interactive pages for sign-up and sign-in. These pages are collectively called managed login. When
you choose a domain for your user pool, Amazon Cognito automatically activates these pages.
Where the Lite plan has the hosted UI, the Essentials plan opens up this advanced version of sign-
up and sign-in pages.

Managed login pages have a clean, up-to-date interface with more features and options for
customizing your branding and styles. The Essentials plan is the lowest plan level that unlocks
access to managed login.

To set up managed login in the Amazon Cognito console

1. From the Settings menu, select the Essentials or Plus feature plan.

2. From the Domain menu, Assign a domain to your user pool and select a Branding version of
Managed login.

3. From the Managed login menu, under Styles tab, choose Create a style and assign the style
to an app client, or create a new app client.

Learn more

• User pool managed login

Essentials plan features 476

Amazon Cognito Developer Guide

Choice-based authentication

The Essentials tier introduces a new authentication flow for authentication operations in the
enhanced UI and SDK-based API operations.This flow is choice-based authentication. Choice-based
authentication is a method where your users' authentication starts not with an application-side
declaration of a sign-in method, but a query of possible sign-in methods followed by a choice.
You can configure your user pool to support choice-based authentication and unlock username-
password, passwordless, and passkey authentication. In the API, this is the USER_AUTH flow.

To set up choice-based authentication in the Amazon Cognito console

1. Select the Essentials or Plus feature plan.

2. In the Sign-in menu of your user pool, edit Options for choice-based sign-in. Select and
configure the authentication methods you want to enable in choice-based authentication.

3. In the Authentication methods menu of your user pool, edit the configuration of sign-in
operations.

Learn more

• Authentication with Amazon Cognito user pools

Plus plan features

The Plus feature plan has advanced security features for Amazon Cognito user pools. These
features log and analyze user context at runtime for potential security issues in devices, locations,
request data, and passwords. They then mitigate potential risks with automatic responses that
block or add security safeguards to user accounts. You can also export your security logs to
Amazon S3, Amazon Data Firehose, or Amazon CloudWatch Logs for further analysis.

When you switch from the Essentials to the Plus plan, you get all the features in Essentials and
the additional features that follow. These include the threat protection set of security options also
known as advanced security features. To configure your user pools to automatically adapt to threats
in your authentication front end, choose the Plus plan for your user pools.

The sections that follows present a brief overview of the features that you can add to your
application with the Plus plan. For detailed information, see the following pages.

Plus plan features 477

Amazon Cognito Developer Guide

Additional resources

• Adaptive authentication: Working with adaptive authentication

• Compromised credentials: Working with compromised-credentials detection

• Log export: Exporting logs from Amazon Cognito user pools

Topics

• Threat protection: adaptive authentication

• Threat protection: compromised-credentials detection

• Threat protection: user activity logging

Threat protection: adaptive authentication

The Plus plan includes an adaptive authentication feature. When you activate this feature, your user
pool makes a risk assessment of every user authentication session. From the resulting risk ratings,
you can block authentication or push MFA for users who sign in with a risk level above a threshhold
that you determine. With adaptive authentication, your user pool and application automatically
block or set up MFA for users whose accounts you suspect are being attacked. You can also provide
feedback on the risk ratings from your user pool to adjust future ratings.

To set up adaptive authentication in the Amazon Cognito console

1. Select the Plus feature plan.

2. From the Threat protection menu of your user pool, edit Standard and custom
authentication under Threat protection.

3. Set the enforcement mode for standard or custom authentication to Full-function.

4. Under Adaptive authentication, configure automatic risk responses for different levels of risk.

Learn more

• Working with adaptive authentication

• Collecting data for threat protection in applications

Plus plan features 478

Amazon Cognito Developer Guide

Threat protection: compromised-credentials detection

The Plus plan includes a compromised-credentials detection feature. This feature guards against
the use of insecure passwords and the threat of unintended application access that this practice
creates. When you permit your users to sign in with username and password, they might reuse
a password that they've used elsewhere. That password might have been leaked, or just be
commonly guessed. With compromised-credentials detection, your user pool reads the passwords
your users submit and compares them to password databases. If the operation results in a decision
that the password is likely compromised, you can configure your user pool to block sign-in and
then initiate a password reset for the user in your application.

Compromised-credentials detection can react to insecure passwords when new users sign up, when
existing users sign in, and when users attempt to reset their passwords. With this feature, your user
pool can prevent or warn about sign-in with insecure passwords wherever users enter them.

To set up compromised-credentials detection in the Amazon Cognito console

1. Select the Plus feature plan.

2. From the Threat protection menu of your user pool, edit Standard and custom
authentication under Threat protection.

3. Set the enforcement mode for standard or custom authentication to Full-function.

4. Under Compromised credentials, configure the types of authentication operations that you
want to check, and the automated response that you want from your user pool.

Learn more

• Working with compromised-credentials detection

Threat protection: user activity logging

The Plus plan adds a logging feature that gives security analysis and details of user authentication
attempts. You can see risk assessments, user IP addresses, user agents, and other information
about the device that connected to your application. You can act on this information with the
built-in threat protection features, or you can analyze your logs in your own systems and take
appropriate action. You can export the logs from threat protection to Amazon S3, CloudWatch
Logs, or Amazon DynamoDB.

Plus plan features 479

Amazon Cognito Developer Guide

To set up user activity logging in the Amazon Cognito console

1. Select the Plus feature plan.

2. From the Threat protection menu of your user pool, edit Standard and custom
authentication under Threat protection.

3. Set the enforcement mode for standard or custom authentication to Audit-only. This is the
minimum setting for logs. You can also activate it in Full-function mode and configure other
threat protection features.

4. To export your logs to another Amazon Web Services service for third-party analysis, go to the
Log streaming menu of your user pool and set up an export destination.

Learn more

• Exporting user authentication events

• Exporting logs from Amazon Cognito user pools

Turning off features to change feature plans

Feature plans add configuration options to your user pool. You can configure and use these
features only when the related feature plan is active. For example, you can configure access
token customization in the Plus and Essentials plans, but not in the Lite plan. To deactivate these
features, you must deactivate each active component. The Switch to option in the Settings menu
in the Amazon Cognito console notifies you of the features you must deactivate before you can
change your feature plan. With this chapter, you can learn the changes that deactivation makes to
your user pool configuration, and how to turn off these features individually.

Access token customization

To switch to a plan that doesn't include access token customization, you must remove the pre
token generation Lambda trigger from your user pool. To add a new pre token generation
trigger without access token customization, assign a new function to the trigger and configure
it for V1_0 events. These version one trigger events can process changes to ID tokens only.

To manually deactivate access token customization, remove your pre token generation trigger
and add a new version one trigger.

Turn off ineligible features 480

Amazon Cognito Developer Guide

Threat protection

To switch to a plan without threat protection, deactivate all features from the Threat
protection menu of your user pool.

Log export

To switch to a plan without log export, deactivate it from the Log streaming menu of your
user pool. Your user pool no longer generates local or exported user-activity logs. You can
also send a SetLogDeliveryConfiguration API request that removes any configuration with an
EventSource value of UserActivity.

Email MFA

To switch to a plan without email MFA, go to the Sign-in menu of your user pool. Edit Multi-
factor authentication and deselect Email message as one of the available MFA methods.

Security best practices for Amazon Cognito user pools

This page describes security best practices that you can implement when you want to guard
against common threats. The configuration that you choose will depend on the use case of
each application. We recommend that at a minimum, you apply least privilege to administrative
operations and take action to guard application and user secrets. Another advanced but effective
step that you can take is to configure and apply Amazon WAF web ACLs to your user pools.

Protect your user pool at the network level

Amazon WAF web ACLs can protect the performance and cost of the authentication mechanisms
that you build with Amazon Cognito. With web ACLs, you can implement guardrails in front of
API and managed login requests. Web ACLs create network- and application-layer filters that can
drop traffic or require a CAPTCHA based on rules that you devise. Requests aren’t passed to your
Amazon Cognito resources until they meet the qualifications in your web ACL rules. For more
information, see Amazon WAF web ACLs.

Protect against SMS message abuse

When you permit public sign-up in your user pool, you can configure account verification with
codes that Amazon Cognito sends in SMS text messages. SMS messages can be associated with
unwanted activity and increase your Amazon bill. Configure your infrastructure to be resilient

Security best practices 481

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetLogDeliveryConfiguration.html

Amazon Cognito Developer Guide

against sending SMS messages under circumstances of fraud. For more information, review the
following posts from Amazon Blogs.

• Reduce risks of user sign-up fraud and SMS pumping with Amazon Cognito user pools

• Defending Against SMS Pumping: New Amazon Features to Help Combat Artificially Inflated
Traffic

Understand public authentication

Amazon Cognito user pools have customer identity and access management (CIAM) features
that support use cases where members of the general public can sign up for a user account and
access your applications. When a user pool permits self-service sign-up, it’s open to requests for
user accounts from the public internet. Self-service requests come in from API operations like
SignUp and InitiateAuth, and from user interaction with managed login. You can configure user
pools to mitigate abuse that might come in from public requests, or disable public authentication
operations entirely.

The following settings are some of the ways that you can manage public and internal
authentication requests in your user pools and app clients.

Examples of user pool settings that affect public user pool access

Setting Available options Configure
d on

Effect on public
authentication

Console
setting

API
operation
and
parameter

Self-serv
ice sign-
up

Permit users to sign
up for an account or
create user accounts
as an administrator.

User
pool

Prevent public sign-
up

Sign-up
– Self-
service
sign-up

CreateUse
rPool,
UpdateUse
rPool

AdminCrea
teUserCon
fig –
AllowAdmi
nCreateUs
erOnly

Understand public authentication 482

https://www.amazonaws.cn/blogs/security/reduce-risks-of-user-sign-up-fraud-and-sms-pumping-with-amazon-cognito-user-pools/
https://www.amazonaws.cn/blogs/messaging-and-targeting/defending-against-sms-pumping-new-aws-features-to-help-combat-artificially-inflated-traffic/
https://www.amazonaws.cn/blogs/messaging-and-targeting/defending-against-sms-pumping-new-aws-features-to-help-combat-artificially-inflated-traffic/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AdminCreateUserConfig
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AdminCreateUserConfig
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-AdminCreateUserConfig
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-AdminCreateUserConfig

Amazon Cognito Developer Guide

Setting Available options Configure
d on

Effect on public
authentication

Console
setting

API
operation
and
parameter

Administr
ator
confirmat
ion

Send confirmation
codes to new users
or require administr
ators to confirm
them.

User
pool

Prevent confirmation
of sign-up without
administrator action

Sign-
up –
Cognito-
assisted
verificat
ion and
confirmat
ion

CreateUse
rPool,
UpdateUse
rPool

AccountRe
coverySet
tings
–
admin_onl
y

User
disclosur
e

Deliver "user not
found" messages at
sign-in and password
reset or prevent
disclosure.

User
pool

Guard against
guessing sign-in
name, email address,
or phone numbers

App
clients –
Prevent
user
existence
 errors

CreateUse
rPoolClie
nt,
UpdateUse
rPoolClie
nt

PreventUs
erExisten
ceErrors

Client
secret

Require or don't
require a secret hash
at sign-up, sign-in,
password reset

App
client

Guard against
authentication
requests from
unauthorized sources

App
clients
– Client
secret

CreateUse
rPoolClie
nt

GenerateS
ecret

Understand public authentication 483

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AccountRecoverySetting
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AccountRecoverySetting
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-AccountRecoverySetting
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-AccountRecoverySetting
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-PreventUserExistenceErrors
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-GenerateSecret
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-GenerateSecret
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-GenerateSecret

Amazon Cognito Developer Guide

Setting Available options Configure
d on

Effect on public
authentication

Console
setting

API
operation
and
parameter

Web
ACLs

Enable or don't
enable a network
firewall for authentic
ation requests

User
pool

Limit or prevent
access based on
administrator-defi
ned request character
istics and IP address
rules

Amazon
WAF
– WAF
settings

Associate
WebACL

ResourceA
rn

External
IdP

Permit sign-in by
users in third-party
IdPs, the user pool
directory, or both

App
client

Exclude local users or
federated users from
sign-up & sign-in.

App
clients –
Identity
providers

CreateUse
rPoolClie
nt,
UpdateUse
rPoolClie
nt

Supported
IdentityP
roviders

Authoriza
tion
server

Host or don't host
public webpages for
authentication

User
pool

Turn off public
webpages and allow
only SDK-based
authentication

Domain CreateUse
rPoolDoma
in

Creation
of any
user pool
domain
makes
public
webpages
available.

Understand public authentication 484

https://docs.amazonaws.cn/waf/latest/APIReference/API_AssociateWebACL.html#WAF-AssociateWebACL-request-ResourceArn
https://docs.amazonaws.cn/waf/latest/APIReference/API_AssociateWebACL.html#WAF-AssociateWebACL-request-ResourceArn
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-SupportedIdentityProviders
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html

Amazon Cognito Developer Guide

Setting Available options Configure
d on

Effect on public
authentication

Console
setting

API
operation
and
parameter

Threat
protectio
n

Enable or disable
monitoring for signs
of malicious activity
or unsafe passwords

User
pool
or app
client

Can automatically
block sign-in or
require MFA when
users show indicators
of compromise

Threat
protectio
n –
Protectio
n
settings

SetRiskCo
nfigurati
on

The
parameter
s of
SetRiskCo
nfigurati
on
define
your
threat
protectio
n
settings.

Protect confidential clients with client secrets

The client secret is an optional string that’s associated with an app client. All authentication
requests to app clients with client secrets must include a secret hash that’s generated from the
username, client ID, and client secret. Those who don’t know the client secret are shut out of your
application from the beginning.

However, client secrets have limitations. If you embed a client secret in public client software, your
client secret is open to inspection. This opens the ability to create users, submit password-reset
requests, and perform other operations in your app client. Client secrets must be implemented
only when an application is the only entity that has access to the secret. Typically, this is possible
in server-side confidential client applications. This is also true of M2M applications, where a client
secret is required. Store the client secret in encrypted local storage or Amazon Secrets Manager.
Never let your client secret be visible on the public internet.

Protect confidential clients with client secrets 485

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html

Amazon Cognito Developer Guide

Protect other secrets

You authentication system with Amazon Cognito user pools might handle private data, passwords,
and Amazon credentials. The following are some best practices for handling secrets that your
application might access.

Passwords

Users might enter passwords when they sign in to your application. Amazon Cognito has refresh
tokens that your application can employ to continue expired user sessions without a new
password prompt. Don’t place any passwords or password hashes in local storage. Design your
application to treat passwords as opaque and only pass them through to your user pool.

As a best practice, implement passwordless authentication with WebAuthn passkeys. If you
must implement passwords, use the Secure Remote Password (SRP) authentication flow and
multi-factor authentication (MFA).

Amazon credentials

Administrative authentication and user pool administrative operations require authentication
with Amazon credentials. To implement these operations in an application, grant secure access
to temporary Amazon credentials. Grant credentials access only to applications that run on a
server component that you control. Don’t put applications that have Amazon credentials in
them on public version-control systems like GitHub. Don’t encode Amazon credentials in public
client-side applications.

PKCE code verifier

Proof Key for Code Exchange, or PKCE, is for OpenID Connect (OIDC) authorization-code grants
with your user pool authorization server. Applications share code verifier secrets with your
user pool when they request authorization codes. To exchange authorization codes for tokens,
clients must reaffirm that they know the code verifier. This practice guards against issuing
tokens with intercepted authorization codes.

Clients must generate a new random code verifier with each authorization request. The use of a
static or predictable code verifier means that an attacker is only then required to intercept the
hardcoded verifier and the authorization code. Design your application so that it doesn’t expose
code verifier values to users.

Protect other secrets 486

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html

Amazon Cognito Developer Guide

User pool administration least privilege

IAM policies can define the level of access that principals have to Amazon Cognito user pool
administration and administrative authentication operations. For example:

• To a webserver, grant permissions for authentication with administrative API operations.

• To an Amazon IAM Identity Center user who manages a user pool in your Amazon Web Services
account, grant permissions for user pool maintenance and reporting.

The level of resource granularity in Amazon Cognito is limited to two resource types for IAM policy
purposes: user pool and identity pool. Note that you can’t apply permissions to manage individual
app clients. Configure user pools with the knowledge that permissions that you grant are effective
across all app clients. When your organization has multiple application tenants and your security
model requires separation of administrative responsibilities between tenants, implement multi-
tenancy with one tenant per user pool.

Although you can create IAM policies with permissions for user authentication operations like
InitiateAuth, those permissions have no effect. Public and token-authorized API operations
aren’t subject to IAM permissions. Of the available user pool authentication operations, you can
only grant permissions to administrative server-side operations like AdminInitiateAuth.

You can limit levels of user pool administration with least-privilege Action lists. The following
example policy is for an administrator who can manage IdPs, resource servers, app clients, and the
user pool domain, but not users or the user pool.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UserPoolClientAdministrator",
 "Action": [
 "cognito-idp:CreateIdentityProvider",
 "cognito-idp:CreateManagedLoginBranding",
 "cognito-idp:CreateResourceServer",
 "cognito-idp:CreateUserPoolDomain",
 "cognito-idp:DeleteIdentityProvider",
 "cognito-idp:DeleteResourceServer",
 "cognito-idp:DeleteUserPoolDomain",
 "cognito-idp:DescribeIdentityProvider",
 "cognito-idp:DescribeManagedLoginBranding",

User pool administration least privilege 487

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-resources-for-iam-policies

Amazon Cognito Developer Guide

 "cognito-idp:DescribeManagedLoginBrandingByClient",
 "cognito-idp:DescribeResourceServer",
 "cognito-idp:DescribeUserPool",
 "cognito-idp:DescribeUserPoolClient",
 "cognito-idp:DescribeUserPoolDomain",
 "cognito-idp:GetIdentityProviderByIdentifier",
 "cognito-idp:GetUICustomization",
 "cognito-idp:ListIdentityProviders",
 "cognito-idp:ListResourceServers",
 "cognito-idp:ListUserPoolClients",
 "cognito-idp:ListUserPools",
 "cognito-idp:SetUICustomization",
 "cognito-idp:UpdateIdentityProvider",
 "cognito-idp:UpdateManagedLoginBranding",
 "cognito-idp:UpdateResourceServer",
 "cognito-idp:UpdateUserPoolClient",
 "cognito-idp:UpdateUserPoolDomain"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_EXAMPLE"
 }
]
}

The following example policy grants user and group management and authentication to a server-
side application.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "UserAdminAuthN",
 "Action": [
 "cognito-idp:AdminAddUserToGroup",
 "cognito-idp:AdminConfirmSignUp",
 "cognito-idp:AdminCreateUser",
 "cognito-idp:AdminDeleteUser",
 "cognito-idp:AdminDeleteUserAttributes",
 "cognito-idp:AdminDisableProviderForUser",
 "cognito-idp:AdminDisableUser",
 "cognito-idp:AdminEnableUser",
 "cognito-idp:AdminForgetDevice",

User pool administration least privilege 488

Amazon Cognito Developer Guide

 "cognito-idp:AdminGetDevice",
 "cognito-idp:AdminGetUser",
 "cognito-idp:AdminInitiateAuth",
 "cognito-idp:AdminLinkProviderForUser",
 "cognito-idp:AdminListDevices",
 "cognito-idp:AdminListGroupsForUser",
 "cognito-idp:AdminListUserAuthEvents",
 "cognito-idp:AdminRemoveUserFromGroup",
 "cognito-idp:AdminResetUserPassword",
 "cognito-idp:AdminRespondToAuthChallenge",
 "cognito-idp:AdminSetUserMFAPreference",
 "cognito-idp:AdminSetUserPassword",
 "cognito-idp:AdminSetUserSettings",
 "cognito-idp:AdminUpdateAuthEventFeedback",
 "cognito-idp:AdminUpdateDeviceStatus",
 "cognito-idp:AdminUpdateUserAttributes",
 "cognito-idp:AdminUserGlobalSignOut",
 "cognito-idp:AssociateSoftwareToken",
 "cognito-idp:ListGroups",
 "cognito-idp:ListUsers",
 "cognito-idp:ListUsersInGroup",
 "cognito-idp:RevokeToken",
 "cognito-idp:UpdateGroup",
 "cognito-idp:VerifySoftwareToken"
],
 "Effect": "Allow",
 "Resource": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_EXAMPLE"
 }
]
}

Secure and verify tokens

Tokens can contain internal references to group membership and user attributes that you might
not want to disclose to the end user. Don’t store ID and access tokens in local storage. Refresh
tokens are encrypted with a key that only your user pool can access, and are opaque to users and
applications. Revoke refresh tokens when users sign out or when you determine that persisting a
users' session is undesired for security reasons.

Use access tokens to authorize access only to systems that independently verify that the token is
valid and unexpired. For verification resources, see Verifying a JSON web token.

Secure and verify tokens 489

Amazon Cognito Developer Guide

Determine the identity providers that you want to trust

When you configure your user pool with SAML or OIDC identity providers (IdPs), your IdPs can
create new users, set user attributes, and access your application resources. SAML and OIDC
providers are typically used in business-to-business (B2B) or enterprise scenarios where you or your
immediate customer controls membership and configuration of the provider.

Social providers offer user accounts to anyone on the internet and are less under your control than
enterprise providers. Only activate social IdPs in your app client when you’re ready to allow public
customers to sign in and access resources in your application.

Understand the effect of scopes on access to user profiles

You can request access-control scopes in your authentication requests to the user pool
authorization server. These scopes can grant your users access to external resources, and they
can grant users access to view and modify their own user profiles. Configure your app clients to
support the minimum scopes necessary for the operation of your application.

The aws.cognito.signin.user.admin scope is present in all access tokens issued by SDK
authentication with operations like InitiateAuth. It’s designated for user profile self-service
operations in your application. You can also request this scope from your authorization server. This
scope is required for token-authorized operations like UpdateUserAttributes and GetUser. The
effect of these operations is limited by the read and write permissions of your app client.

The openid, profile, email, and phone scopes authorize requests to the userInfo endpoint on
your user pool authorization server. They define the attributes that the endpoint can return. The
openid scope, when requested without other scopes, returns all available attributes, but when you
request more scopes in the request, the response is narrowed down to the attributes represented
by the additional scopes. The openid scope also indicates a request for an ID token; when you
omit this scope from your request to your Authorize endpoint, Amazon Cognito only issues an
access token and, when applicable, a refresh token. For more information, see OpenID Connect
scopes at App client terms.

Sanitize inputs for user attributes

User attributes that might end up as delivery methods and usernames, for example email,
have format restrictions. Other attributes can have string, boolean, or number data types. String
attribute values support a variety of inputs. Configure your application to guard against attempts

Determine the identity providers that you want to trust 490

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html

Amazon Cognito Developer Guide

to write unwanted data to your user directory or the messages that Amazon Cognito delivers to
users. Perform client-side validation of user-submitted string attribute values in your application
before submitting them to Amazon Cognito.

User pools map attributes from IdPs to your user pool based on an attribute mapping that you
specify. Only map secure and predictable IdP attributes to user pool string attributes.

Authentication with Amazon Cognito user pools

Amazon Cognito includes several methods to authenticate your users. Users can sign in with
passwords and WebAuthn passkeys. Amazon Cognito can send them a one-time password in
an email or SMS message. You can implement Lambda functions that orchestrate your own
sequence of challenges and responses. These are authentication flows. In authentication flows,
users provide a secret and Amazon Cognito verifies the secret, then issues JSON web tokens
(JWTs) for applications to process with OIDC libraries. In this chapter, we'll talk about how to
configure your user pools and app clients for various authentication flows in various application
environments. You'll learn about options for the use of the hosted sign-in pages of managed login,
and for building your own logic and front end in an Amazon SDK.

All user pools, whether you have a domain or not, can authenticate users in the user pools API.
If you add a domain to your user pool, you can use the user pool endpoints. The user pools API
supports a variety of authorization models and request flows for API requests.

To verify the identity of users, Amazon Cognito supports authentication flows that incorporate
challenge types in addition to passwords like email and SMS message one-time passwords and
passkeys.

Topics

• Implement authentication flows

• Things to know about authentication with user pools

• An example authentication session

• Configure authentication methods for managed login

• Manage authentication methods in Amazon SDKs

• Authentication flows

• Authorization models for API and SDK authentication

Authentication 491

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html

Amazon Cognito Developer Guide

Implement authentication flows

Whether you're implementing managed login or a custom-built application front end with an
Amazon SDK for authentication, you must configure your app client for the types of authentication
that you want to implement. The following information describes setup for authentication flows in
your app clients and your application.

App client supported flows

You can configure supported flows for your app clients in the Amazon Cognito console or with
the API in an Amazon SDK. After you configure your app client to support these flows, you can
deploy them in your application.

The following procedure configures available authentication flows for an app client with the
Amazon Cognito console.

To configure an app client for authentication flows (console)

1. Sign in to Amazon and navigate to the Amazon Cognito user pools console. Choose a user
pool or create a new one.

2. In your user pool configuration, select the App clients menu. Choose an app client or create
a new one.

3. Under App client information, select Edit.

4. Under App client flows, choose the authentication flows that you want to support.

To configure an app client for authentication flows (API/SDK)

To configure available authentication flows for an app client with the Amazon Cognito API, set
the value of ExplicitAuthFlows in a CreateUserPoolClient or UpdateUserPoolClient request.
The following is an example that provisions secure remote password (SRP) and choice-based
authentication to a client.

"ExplicitAuthFlows": [
 "ALLOW_USER_AUTH",
 "ALLOW_USER_SRP_AUTH
]

When you configure app client supported flows, you can specify the following options and API
values.

Implement authentication flows 492

https://console.amazonaws.cn/cognito/v2/idp
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-ExplicitAuthFlows
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html#CognitoUserPools-UpdateUserPoolClient-request-ExplicitAuthFlows

Amazon Cognito Developer Guide

App client flow support

Authentication flow Compatibility Console API

Choice-based
authentication

Server-side, client-si
de

Select an authentic
ation type at sign-in

ALLOW_USE
R_AUTH

Sign-in with
persistent passwords

Client-side Sign in with
username and
password

ALLOW_USE
R_PASSWOR
D_AUTH

Sign-in with
persistent passwords
and secure payload

Server-side, client-si
de

Sign in with secure
remote password
(SRP)

ALLOW_USE
R_SRP_AUTH

Refresh tokens Server-side, client-si
de

Get new user tokens
from existing
authenticated
sessions

ALLOW_REF
RESH_TOKE
N_AUTH

Server-side
authentication

Server-side Sign in with server-
side administrative
credentials

ALLOW_ADM
IN_USER_P
ASSWORD_AUTH

Custom authentic
ation

Server-side and
client-side custom-
built applications.
Not compatible with
managed login.

Sign in with custom
authentication
flows from Lambda
triggers

ALLOW_CUS
TOM_AUTH

Implement flows in your application

Managed login automatically makes your configured authentication options available in your
sign-pages. In custom-built applications, start authentication with a declaration of the initial
flow.

• To choose from a list of flow options for a user, declare choice-based authentication with
the USER_AUTH flow. This flow has available authentication methods that aren't available in
client-based authentication flows, for example passkey and passwordless authentication.

Implement authentication flows 493

Amazon Cognito Developer Guide

• To choose your authentication flow up front, declare client-based authentication with any
other flow that's available in your app client.

When you sign users in, the body of your InitiateAuth or AdminInitiateAuth request must
include an AuthFlow parameter.

Choice-based authentication:

"AuthFlow": "USER_AUTH"

Client-based authentication with SRP:

"AuthFlow": "USER_SRP_AUTH"

Things to know about authentication with user pools

Consider the following information in the design of your authentication model with Amazon
Cognito user pools.

Authentication flows in managed login and the hosted UI

Managed login and the classic hosted UI have different options for authentication. You can only
do passwordless and passkey authentication in managed login.

Custom authentication flows only available in Amazon SDK authentication

You can't do custom authentication flows, or custom authentication with Lambda triggers, with
managed login or the classic hosted UI. Custom authentication is available in authentication
with Amazon SDKs.

Managed login for external identity provider (IdP) sign-in

You can't sign users in through third-party IdPs in authentication with Amazon SDKs. You
must implement managed login or the classic hosted UI, redirect to IdPs, and then process the
resulting authentication object with OIDC libraries in your application. For more information
about managed login, see User pool managed login.

Passwordless authentication effect on other user features

Activation of passwordless sign-in with one-time passwords or passkeys in your user pool and
app client has an effect on user creation and migration. When passwordless sign-in is active:

Things to know 494

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthFlow
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-AuthFlow

Amazon Cognito Developer Guide

1. Administrators can create users without passwords. The default invitation message template
changes to no longer include the {###} password placeholder. For more information, see
Creating user accounts as administrator.

2. For SDK-based SignUp operations, users aren't required to supply a password when they
sign up. Managed login and the hosted UI require a password in the sign-up page, even
if passwordless authentication is permitted. For more information, see Signing up and
confirming user accounts.

3. Users imported from a CSV file can sign in immediatelywith passwordless options, without a
password reset, if their attributes include an email address or phone number for an available
passwordless sign-in option. For more information, see Importing users into user pools from
a CSV file.

4. Passwordless authentication doesn't invoke the user migration Lambda trigger.

5. Users who sign in with a passwordless first factor can't add a multi-factor authentication
(MFA) factor to their session. Only password-based authentication flows support MFA.

Passkey relying party URLs can't be on the public suffix list

You can use domain names that you own, like www.example.com, as the relying party (RP)
ID in your passkey configuration. This configuration is intended to support custom-built
applications that run on domains that you own. The public suffix list, or PSL, contains protected
high-level domains. Amazon Cognito returns an error when you attempt to set your RP URL to a
domain on the PSL.

Topics

• Authentication session flow duration

• Lockout behavior for failed sign-in attempts

Authentication session flow duration

Depending on the features of your user pool, you can end up responding to several challenges to
InitiateAuth and RespondToAuthChallenge before your app retrieves tokens from Amazon
Cognito. Amazon Cognito includes a session string in the response to each request. To combine
your API requests into an authentication flow, include the session string from the response to
the previous request in each subsequent request. By default, your users have three minutes to
complete each challenge before the session string expires. To adjust this period, change your app

Things to know 495

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://publicsuffix.org/

Amazon Cognito Developer Guide

client Authentication flow session duration. The following procedure describes how to change this
setting in your app client configuration.

Note

Authentication flow session duration settings apply to authentication with the Amazon
Cognito user pools API. Managed login sets session duration to 3 minutes for multi-factor
authentication and 8 minutes for password-reset codes.

Amazon Cognito console

To configure app client authentication flow session duration (Amazon Web Services
Management Console)

1. From the App integration tab in your user pool, select the name of your app client from
the App clients and analytics container.

2. Choose Edit in the App client information container.

3. Change the value of Authentication flow session duration to the validity duration that you
want, in minutes, for SMS and email MFA codes. This also changes the amount of time that
any user has to complete any authentication challenge in your app client.

4. Choose Save changes.

User pools API

To configure app client authentication flow session duration (Amazon Cognito API)

1. Prepare an UpdateUserPoolClient request with your existing user pool settings from a
DescribeUserPoolClient request. Your UpdateUserPoolClient request must include
all existing app client properties.

2. Change the value of AuthSessionValidity to the validity duration that you want, in
minutes, for SMS MFA codes. This also changes the amount of time that any user has to
complete any authentication challenge in your app client.

For more information about app clients, see Application-specific settings with app clients.

Things to know 496

Amazon Cognito Developer Guide

Lockout behavior for failed sign-in attempts

After five failed unauthenticated or IAM-authorized sign-in attempts with a password, Amazon
Cognito locks out your user for one second. The lockout duration then doubles after each
additional one failed attempt, up to a maximum of approximately 15 minutes. Attempts made
during a lockout period generate a Password attempts exceeded exception, and don't affect
the duration of subsequent lockout periods. For a cumulative number of failed sign-in attempts
n, not including Password attempts exceeded exceptions, Amazon Cognito locks out your
user for 2^(n-5) seconds. To reset the lockout to its n=0 initial state, your user must either sign in
successfully after a lockout period expires, or not initiate any sign-in attempts for 15 consecutive
minutes at any time after a lockout. This behavior is subject to change. This behavior doesn't apply
to custom challenges unless they also perform password-based authentication.

An example authentication session

The following diagram and step-by-step guide illustrate a typical scenario where a user signs in to
an application. The example application presents a user with several sign-in options. They select
one by entering their credentials, provide an additional authentication factor, and sign in.

Authentication flow example 497

Amazon Cognito Developer Guide

Authentication flow example 498

Amazon Cognito Developer Guide

Picture an application with a sign-in page where users can sign in with a username and password,
request a one-time code in an email message, or choose a fingerprint option.

1. Sign-in prompt: Your application shows a home screen with a Log in button.

2. Request sign-in: The user selects Log in. From a cookie or a cache, your application retrieves
their username, or prompts them to enter it.

3. Request options: Your application requests the user's sign-in options with an InitiateAuth
API request with the USER_AUTH flow, requesting the available sign-in methods for the user.

4. Send sign-in options: Amazon Cognito responds with PASSWORD, EMAIL_OTP, and WEB_AUTHN.
The response includes a session identifier for you to replay back in the next response.

5. Display options: Your application shows UI elements for the user to enter their username and
password, get a one-time code, or scan their fingerprint.

6. Choose option/Enter credentials: The user enters their username and password.

7. Initiate authentication: Your application provides the user's sign-in information with a
RespondToAuthChallenge API request that confirms username-password sign-in and provides
the username and the password.

8. Validate credentials: Amazon Cognito confirms the user's credentials.

9. Additional challenge: The user has multi-factor authentication configured with an authenticator
app. Amazon Cognito returns a SOFTWARE_TOKEN_MFA challenge.

10.Challenge prompt: Your application displays a form requesting a time-based one-time password
(TOTP) from the user's authenticator app.

11.Answer challenge: The user submits the TOTP.

12.Respond to challenge: In another RespondToAuthChallenge request, your application
provides the user's TOTP.

13.Validate challenge response: Amazon Cognito confirms the user's code and determines that
your user pool is configured to issue no additional challenges to the current user.

14.Issue tokens: Amazon Cognito returns ID, access, and refresh JSON web tokens (JWTs). The
user's initial authentication is complete.

15.Store tokens: Your application caches the user's tokens so that it can reference user data,
authorize access to resources, and update tokens when they expire.

16.Render authorized content: Your application makes a determination of the user's access to
resources based on their identity and roles, and delivers application content.

17.Access content: The user is signed in and begins using the application.

Authentication flow example 499

Amazon Cognito Developer Guide

18.Request content with expired token: Later, the user requests a resource that requires
authorization. The user's cached token has expired.

19.Refresh tokens: Your application makes an InitiateAuth request with the user's saved refresh
token.

20.Issue tokens: Amazon Cognito returns new ID and access JWTs. The user's session is securely
refreshed without additional prompts for credentials.

You can use Amazon Lambda triggers to customize the way users authenticate. These triggers issue
and verify their own challenges as part of the authentication flow.

You can also use the admin authentication flow for secure backend servers. You can use the user
migration authentication flow to make user migration possible without the requirement that your
users to reset their passwords.

Configure authentication methods for managed login

You can invoke managed login pages, a web front end for user pool authentication, when you want
users to sign in, sign out, or reset their password. In this model, your application imports OIDC
libraries to process browser-based authentication attempts with user pool managed login pages.
The forms of authentication that are available to your users are dependent on the configuration of
your user pool and your app client. Implement the ALLOW_USER_AUTH flow in your app client, and
Amazon Cognito prompts users to select a sign-in method from the available options. Implement
ALLOW_USER_PASSWORD_AUTH and assign a SAML provider, and your login pages prompt users
with the option to enter their username and password or to connect with their IdP.

The Amazon Cognito user pools console can get you started with setting up managed login
authentication for your application. When you create a new user pool, specify the platform you're
developing for and the console gives you examples for implementation of OIDC and OAuth
libraries with starter code to implement sign-in and sign-out flows. You can build managed login
with many OIDC relying-party implementations. We recommend that you work with certified OIDC
relying party libraries where possible. For more information, see Getting started with user pools.

Typically, OIDC relying party libraries preiodically check the .well-known/openid-
configuration endpoint of your user pool to determine issuer URLs like the token endpoint and
authorization endpoint. As a best practice, implement this automatic-discovery behavior where
you have to option to. Manual configuration of issuer endpoints introduces potential for error.
For example, you might change your user pool domain. The path to openid-configuration

Managed login authentication 500

https://openid.net/developers/certified-openid-connect-implementations/
https://openid.net/developers/certified-openid-connect-implementations/

Amazon Cognito Developer Guide

isn't linked to your user pool domain, so applications that autodiscover service endpoints will
automatically pick up your domain change.

User pool settings for managed login

You might want to allow sign in with multiple providers for your application, or you might want
to use Amazon Cognito as an independent user directory. You might also want to collect user
attributes, set up and prompt for MFA, or require email addresses as usernames. You can't directly
edit the fields in managed login and the hosted UI. Instead, the configuration of your user pool
automatically sets the handling of managed-login authentication flows.

The following user pool configuration items determine the authentication methods that Amazon
Cognito presents to users in managed login and the hosted UI.

User pool options (Sign-in menu)

The following options are in the Sign-in menu of a user pool in the Amazon Cognito console.

Cognito user pool sign-in options

Has options for usernames. Your managed login and hosted UI pages only accept usernames in
the formats that you select. When you, for example, set up a user pool with Email as the only
sign-in option, your managed login pages only accept usernames in an email format.

Required attributes

When you set an attribute as required in your user pool, managed login prompts users for a
value for that attribute when they sign up.

Options for choice-based sign-in

Has settings for authentication methods in Choice-based authentication. Here, you can turn on
or off authentication methods like passkey and passwordless. These methods are only available
to user pools with managed login domains and feature plans above the Lite tier.

Multi-factor authentication

Managed login and the hosted UI handle registration and authentication operations for MFA.
When MFA is required in your user pool, your sign-in pages automatically prompt users to set
up their additional factor. They also prompt users who have an MFA configuration to complete
authentication with an MFA code. When MFA is off or optional in your user pool, your sign-in
pages don't prompt to set up MFA.

Managed login authentication 501

Amazon Cognito Developer Guide

User account recovery

The self-service account recovery setting of your user pool determines whether your sign-in
pages display a link where users can reset their password.

User pool options (Domain menu)

The following options are in the Domain menu of a user pool in the Amazon Cognito console.

Domain

Your choice of a user pool domain sets the path for the link that users open when you invoke
their browsers for authentication.

Branding version

Your choice of a branding version determines whether your user pool domain displays managed
login or the hosted UI.

User pool options (Social and external providers menu)

The following option is in the Social and external providers menu of a user pool in the Amazon
Cognito console.

Providers

The identity providers (IdPs) that you add to your user pool can be left active or inactive for
each app client in the user pool.

App client options

The following options are in the App clients menu of a user pool in the Amazon Cognito
console. To review these options, select an app client from the list.

Quick setup guide

The quick setup guide has code examples for a variety of developer environments. They contain
the libraries necessary to integrate managed login authentication with your application.

App client information

Edit this configuration to set assigned IdPs for the application that's represented by the current
app client. On the managed login pages, Amazon Cognito displays choices for users. These

Managed login authentication 502

Amazon Cognito Developer Guide

choices are determined from the assigned methods and IdP. For example, if you assign a
SAML 2.0 IdP named MySAML and local user pool login, your managed login pages display
authentication-method prompts and a button for MySAML.

Authentication settings

Edit this configuration to set authentication methods for your application. On the managed
login pages, Amazon Cognito displays choices for users. These choices are determined from the
availability of the user pool as an IdP, and from the methods that you assign. For example, if
you assign choice-based ALLOW_USER_AUTH authentication, your managed login pages display
available choices like entering an email address and signing in with a passkey. Managed login
pages also render buttons for the assigned IdPs.

Login pages

Set the visual effect of your managed login or hosted UI user-interactive pages with the options
available in this tab. For more information, see Apply branding to managed login pages.

Manage authentication methods in Amazon SDKs

Users in Amazon Cognito user pools can sign in with a variety of initial sign-in options, or factors.
For some factors, users can follow up with multi-factor authentication (MFA). These first factors
include username and password, one-time password, passkey, and custom authentication. For
more information, see Authentication flows. When your application has built-in UI components and
imports an Amazon SDK module, you must build application logic for authentication. You must
choose one of two primary methods and from that method, the authentication mechanisms that
you want to implement.

You can implement client-based authentication where your application, or client, declares the
type of authentication up front. Your other option is choice-based authentication, where your app
collects a username and requests the available authentication types for users. You can implement
these models together in the same application or split between app clients, according to your
requirements. Each method has features that are unique to it, for example custom authentication
in client-based and passwordless authentication in choice-based.

In custom-built applications that perform authentication with Amazon SDK implementation of
the users pools API, you must structure your API requests to align with user pool configuration,
app client configuration, and client-side preferences. An InitiateAuth session that begins with
an AuthFlow of USER_AUTH begins choice-based authentication. Amazon Cognito responds to

SDK authentication 503

Amazon Cognito Developer Guide

your API with a challenge of either a preferred authentication method or a list of choices. A session
that begins with AuthFlow of CUSTOM_AUTH goes right into custom authentication with Lambda
triggers.

Some authentication methods are fixed to one of the two flow types, and some methods are
available in both.

Topics

• Choice-based authentication

• Client-based authentication

Choice-based authentication

Your application can request the following authentication methods in choice-based
authentication. Declare these options in the PREFERRED_CHALLENGE parameter of InitiateAuth
or AdminInitiateAuth, or in the ChallengeName parameter of RespondToAuthChallenge or
AdminRespondToAuthChallenge.

1. EMAIL_OTP and SMS_OTP

Passwordless sign-in with one-time passwords

2. WEB_AUTHN

Passwordless sign-in with WebAuthn passkeys

3. PASSWORD

Sign-in with persistent passwords

Sign-in with persistent passwords and secure payload

MFA after sign-in

To review these options in their API context, see ChallengeName in RespondToAuthChallenge.

Choice-based sign-in issues a challenge in response to your initial request. This challenge either
verifies that a requested option is available, or provides a list of available choices. Your application
can display these choices to users, who then enter credentials for their preferred sign-in method
and proceed with authentication in challenge responses.

SDK authentication 504

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthParameters
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-AuthParameters
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html#CognitoUserPools-RespondToAuthChallenge-request-ChallengeName
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html#CognitoUserPools-AdminRespondToAuthChallenge-request-ChallengeName
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html#CognitoUserPools-RespondToAuthChallenge-request-ChallengeName

Amazon Cognito Developer Guide

You have the following choice-based options in your authentication flow. All requests of this type
require that your app first collect a username or retrieve it from a cache.

1. Request options with AuthParameters of USERNAME only. Amazon Cognito returns a
SELECT_CHALLENGE challenge. From there, your application can prompt the user to select a
challenge and return this response to your user pool.

2. Request a preferred challenge with AuthParameters of PREFERRED_CHALLENGE
and the parameters of your preferred challenge, if any. For example, if you request a
PREFERRED_CHALLENGE of PASSWORD_SRP, you must also include SRP_A. If your user, user
pool, and app client are all configured for the preferred challenge, Amazon Cognito responds
with the next step in that challenge, for example PASSWORD_VERIFIER in the PASSWORD_SRP
flow or CodeDeliveryDetails in the EMAIL_OTP and SMS_OTP flows. If the preferred challenge
isn't available, Amazon Cognito responds with SELECT_CHALLENGE and a list of available
challenges.

3. Sign users in first, then request their choice-based authentication options. A GetUserAuthFactors
request with the access token of a signed-in user returns their available choice-based
authentication factors and their MFA settings. With this option, a user can sign in with username
and password first, then activate a different form of authentication. You can also use this
operation to check additional options for a user who has signed in with a preferred challenge.

To configure your app client for choice-based authentication, add ALLOW_USER_AUTH to the
allowed authentication flows. You must also choose the choice-based factors that you want to
permit in your user pool configuration. The following process illustrates how to choose choice-
based authentication factors.

Amazon Cognito console

To configure choice-based authentication options in a user pool

1. Sign in to Amazon and navigate to the Amazon Cognito user pools console. Choose a user
pool or create a new one.

2. In your user pool configuration, select the Sign-in menu. Locate Options for choice-based
sign-in and choose Edit.

3. The Password option is always available. This includes the PASSWORD and PASSWORD_SRP
flows. Select the Additional choices that you want to add to your users' options. You can
add Passkey for WEB_AUTHN, Email message one-time password for EMAIL_OTP, and SMS
message one-time password for SMS_OTP.

SDK authentication 505

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CodeDeliveryDetailsType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAuthFactors.html
https://console.amazonaws.cn/cognito/v2/idp

Amazon Cognito Developer Guide

4. Choose Save changes.

API/SDK

The following partial CreateUserPool or UpdateUserPool request body configures all available
options for choice-based authentication.

"Policies": {
 "SignInPolicy": {
 "AllowedFirstAuthFactors": [
 "PASSWORD",
 "WEB_AUTHN",
 "EMAIL_OTP",
 "SMS_OTP"
]
 }
},

Client-based authentication

Client-based authentication supports the following authentication flows. Declare these options in
the AuthFlow parameter of InitiateAuth or AdminInitiateAuth.

1. USER_PASSWORD_AUTH and ADMIN_USER_PASSWORD_AUTH

Sign-in with persistent passwords

MFA after sign-in

This authentication flow is equivalent to PASSWORD in choice-based authentication.

2. USER_SRP_AUTH

Sign-in with persistent passwords and secure payload

MFA after sign-in

This authentication flow is equivalent to PASSWORD_SRP in choice-based authentication.

3. REFRESH_TOKEN_AUTH

Refresh tokens

SDK authentication 506

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthFlow
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-AuthFlow

Amazon Cognito Developer Guide

This authentication flow is only available in client-based authentication.

4. CUSTOM_AUTH

Custom authentication

This authentication flow is only available in client-based authentication.

With client-based authentication, Amazon Cognito assumes that you have determined how your
user wants to authenticate before they begin authentication flows. The logic of determining
the sign-in factor that a user wants to provide must be determined with default settings or
custom prompts, then declared in the first request to your user pool. The InitiateAuth
request declares a sign-in AuthFlow that directly corresponds to one of the listed options, for
example USER_SRP_AUTH. With this declaration, the request also includes the parameters to
begin authentication, for example USERNAME, SECRET_HASH, and SRP_A. Amazon Cognito
might follow up this request with additional challenges like PASSWORD_VERIFIER for SRP or
SOFTWARE_TOKEN_MFA for password sign-in with TOTP MFA.

To configure your app client for client-based authentication, add any authentication
flows other than ALLOW_USER_AUTH to the allowed authentication flows. Examples are
ALLOW_USER_PASSWORD_AUTH, ALLOW_CUSTOM_AUTH, ALLOW_REFRESH_TOKEN_AUTH. To permit
client-based authentication flows, no additional user pool configuration is required.

Authentication flows

The process of authentication with Amazon Cognito user pools can best be described as a flow
where users make an initial choice, submit credentials, and respond to additional challenges. When
you implement managed login authentication in your application, Amazon Cognito manages the
flow of these prompts and challenges. When you implement flows with an Amazon SDK in your
application back end, you must construct the logic of requests, prompt users for input, and respond
to challenges.

As an application administrator, your user characteristics, security requirements, and authorization
model help determine how you want to permit users to sign in. Ask yourself the following
questions.

• Do I want to permit users to sign in with credentials from other identity providers (IdPs)?

• Is a username and password enough proof of identity?

Authentication flows 507

Amazon Cognito Developer Guide

• Could my authentication requests for username-password authentication be intercepted? Do
I want my application to transmit passwords, or to negotiate authentication using hashes and
salts?

• Do I want to permit users to skip password entry and receive a one-time password that signs
them in?

• Do I want to permit users to sign in with a thumbprint, face, or a hardware security key?

• When do I want to require multi-factor authentication (MFA), if at all?

• Do I want to persist user sessions without re-prompting for credentials?

• Do I want to extend my authorization model beyond the built-in capabilities of Amazon Cognito?

When you have the answers to these questions, you can learn how to activate the relevant features
and implement them in the authentication requests that your application makes.

After you set up sign-in flows for a user, you can check their current status for MFA and choice-
based authentication factors with requests to the GetUserAuthFactors API operation. This
operation requires authorization with the access token of a signed-in user. It returns user
authentication factors and MFA settings.

Topics

• Sign-in with third-party IdPs

• Sign-in with persistent passwords

• Sign-in with persistent passwords and secure payload

• Passwordless sign-in with one-time passwords

• Passwordless sign-in with WebAuthn passkeys

• MFA after sign-in

• Refresh tokens

• Custom authentication

• User migration authentication flow

Sign-in with third-party IdPs

Amazon Cognito user pools serve as an intermediate broker of authentication sessions between
IdPs like Sign in with Apple, Login with Amazon, and OpenID Connect (OIDC) services. This process
is also called federated sign-in or federated authentication. Federated authentication doesn't make

Authentication flows 508

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAuthFactors.html

Amazon Cognito Developer Guide

use of any of the authentication flows that you can build into your app client. Instead, you assign
configured user pool IdPs to your app client. Federated sign-in happens when users select their IdP
in managed login or your application invokes a session with a redirect to their IdP sign-in page.

With federated sign-in, you delegate primary and MFA authentication factors to the user's IdP.
Amazon Cognito doesn't add the other advanced flows in this section to a federated user unless
you link them to a local user. Unlinked federated users have usernames, but they are a store of
mapped attribute data that's not typically used for sign-in independent of the browser-based flow.

Implementation resources

• User pool sign-in with third party identity providers

Sign-in with persistent passwords

In Amazon Cognito user pools, every user has a username. This might be a phone number, an
email address, or a chosen or administrator-provided identifier. Users of this type can sign in
with their username and their password, and optionally provide MFA. User pools can perform
username-password sign-in with public or IAM-authorized API operations and SDK methods.
Your application can directly send the password to your user pool for authentication. Your user
pool responds with additional challenges or the JSON web tokens (JWTs) that are the result of
successful authentication.

Activate password sign-in

To activate client-based authentication with username and password, configure your app
client to permit it. In the Amazon Cognito console, navigate to the App clients menu under
Applications in your user pool configuration. To permit plain-password sign-in for a client-
side mobile or native app, edit an app client and choose Sign in with username and password:
ALLOW_USER_PASSWORD_AUTH under Authentication flows. To permit plain-password sign-
in for a server-side app, edit an app client and choose Sign in with server-side administrative
credentials: ALLOW_ADMIN_USER_PASSWORD_AUTH.

To activate choice-based authentication with username and password, configure your app client
to permit it. Edit your app client and choose Choice-based sign-in: ALLOW_USER_AUTH.

Authentication flows 509

Amazon Cognito Developer Guide

To verify that password authentication is available in choice-based authentication flows,
navigate to the Sign-in menu and review the section under Options for choice-based sign-
in. You can sign in with plain-password authentication if Password is visible under Available
choices. The Password option includes the plain and SRP username-password authentication
variants.

Configure ExplicitAuthFlows with your preferred username-and-password authentication
options in a CreateUserPoolClient or UpdateUserPoolClient request.

"ExplicitAuthFlows": [
 "ALLOW_USER_PASSWORD_AUTH",
 "ALLOW_ADMIN_USER_PASSWORD_AUTH",
 "ALLOW_USER_AUTH"
]

In a CreateUserPool or UpdateUserPool request, configure Policies with the
choice-based authentication flows that you want to support. The PASSWORD value in

Authentication flows 510

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

AllowedFirstAuthFactors includes both the plain-password and SRP authentication flow
options.

"Policies": {
 "SignInPolicy": {
 "AllowedFirstAuthFactors": [
 "PASSWORD",
 "EMAIL_OTP",
 "WEB_AUTHN"
]
 }
}

Choice-based sign-in with a password

To sign a user in to an application with username-password authentication, configure the body
of your AdminInitiateAuth or InitiateAuth request as follows. This sign-in request succeeds
or continues to the next challenge if the current user is eligible for username-password
authentication. Otherwise, it responds with a list of available primary-factor authentication
challenges. This set of parameters is the minimum required for sign-in. Additional parameters
are available.

{
 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "PREFERRED_CHALLENGE" : "PASSWORD",
 "PASSWORD" : "[User's password]"
 },
 "ClientId": "1example23456789"
}

You can also omit the PREFERRED_CHALLENGE value and receive a response that contains a list
of eligible sign-in factors for the user.

{
 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser"
 },
 "ClientId": "1example23456789"

Authentication flows 511

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

}

If you didn't submit a preferred challenge or the submitted user isn't eligible for their
preferred challenge, Amazon Cognito returns a list of options in AvailableChallenges.
When AvailableChallenges includes a ChallengeName of PASSWORD, you can continue
authentication with a RespondToAuthChallenge or AdminRespondToAuthChallenge challenge
response in the format that follows. You must pass a Session parameter that associates the
challenge response with the API response to your initial sign-in request. This set of parameters
is the minimum required for sign-in. Additional parameters are available.

{
 "ChallengeName": "PASSWORD",
 "ChallengeResponses": {
 "USERNAME" : "testuser",
 "PASSWORD" : "[User's Password]"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response"
}

Amazon Cognito responds to eligible and successful preferred-challenge requests and
PASSWORD challenge responses with tokens or an additional required challenge like multi-factor
authentication (MFA).

Client-based sign-in with a password

To sign a user in to a client-side app with username-password authentication, configure the
body of your InitiateAuth request as follows. This set of parameters is the minimum required for
sign-in. Additional parameters are available.

{
 "AuthFlow": "USER_PASSWORD_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "PASSWORD" : "[User's password]"
 },
 "ClientId": "1example23456789"
}

To sign a user in to a server-side app with username-password authentication, configure the
body of your AdminInitiateAuth request as follows. Your application must sign this request with

Authentication flows 512

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

Amazon credentials. This set of parameters is the minimum required for sign-in. Additional
parameters are available.

{
 "AuthFlow": "ADMIN_USER_PASSWORD_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "PASSWORD" : "[User's password]"
 },
 "ClientId": "1example23456789"
}

Amazon Cognito responds to successful requests with tokens or an additional required
challenge like multi-factor authentication (MFA).

Sign-in with persistent passwords and secure payload

Another form of the username-password sign-in methods in user pools is with the Secure Remote
Password (SRP) protocol. This option sends proof of knowledge of a password—a password
hash and a salt—that your user pool can verify. With no readable secret information in the
request to Amazon Cognito, your application is the only entity that processes the passwords
that users enter. SRP authentication involves mathematical calculations that are best done by an
existing component that you can import in your SDK. SRP is typically implemented in client-side
applications like mobile apps. For more information about the protocol, see The Stanford SRP
Homepage. Wikipedia also has resources and examples. A variety of public libraries are available to
perform the SRP calculations for your authentication flows.

The initiate-challenge-respond sequence of Amazon Cognito authentication validates users
and their passwords with SRP. You must configure your user pool and app client to support SRP
authentication, then implement the logic of sign-in requests and challenge responses in your
application. Your SRP libraries can generate the random numbers and calculated values that
demonstrate to your user pool that you are in possession of a user's password. Your application fills
in these calculated values to the JSON-formatted AuthParameters and ChallengeParameters
fields in the Amazon Cognito user pools API operations and SDK methods for authentication.

Activate SRP sign-in

To activate client-based authentication with username and SRP, configure your app client
to permit it. In the Amazon Cognito console, navigate to the App clients menu under

Authentication flows 513

http://srp.stanford.edu/
http://srp.stanford.edu/
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol#Implementations

Amazon Cognito Developer Guide

Applications in your user pool configuration. To permit SRP sign-in for a client-side mobile
or native app, edit an app client and choose Sign in with secure remote password (SRP):
ALLOW_USER_SRP_AUTH under Authentication flows.

To activate choice-based authentication with username and SRP, edit your app client and
choose Choice-based sign-in: ALLOW_USER_AUTH.

To verify that SRP authentication is available in your choice-based authentication flows,
navigate to the Sign-in menu and review the section under Options for choice-based sign-
in. You can sign in with SRP authentication if Password is visible under Available choices. The
Password option includes the plaintext and SRP username-password authentication variants.

Configure ExplicitAuthFlows with your preferred username-and-password authentication
options in a CreateUserPoolClient or UpdateUserPoolClient request.

"ExplicitAuthFlows": [
 "ALLOW_USER_SRP_AUTH",
 "ALLOW_USER_AUTH"

Authentication flows 514

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

]

In a CreateUserPool or UpdateUserPool request, configure Policies with the
choice-based authentication flows that you want to support. The PASSWORD value in
AllowedFirstAuthFactors includes both the plaintext-password and SRP authentication
flow options.

"Policies": {
 "SignInPolicy": {
 "AllowedFirstAuthFactors": [
 "PASSWORD",
 "EMAIL_OTP",
 "WEB_AUTHN"
]
 }
}

Choice-based sign-in with SRP

To sign a user in to an application with username-password authentication with SRP, configure
the body of your AdminInitiateAuth or InitiateAuth request as follows. This sign-in request
succeeds or continues to the next challenge if the current user is eligible for username-
password authentication. Otherwise, it responds with a list of available primary-factor
authentication challenges. This set of parameters is the minimum required for sign-in.
Additional parameters are available.

{
 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "PREFERRED_CHALLENGE" : "PASSWORD_SRP",
 "SRP_A" : "[g^a % N]"
 },
 "ClientId": "1example23456789"
}

You can also omit the PREFERRED_CHALLENGE value and receive a response that contains a list
of eligible sign-in factors for the user.

{

Authentication flows 515

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser"
 },
 "ClientId": "1example23456789"
}

If you didn't submit a preferred challenge or the submitted user isn't eligible for their preferred
challenge, Amazon Cognito returns a list of options in AvailableChallenges. When
AvailableChallenges includes a ChallengeName of PASSWORD_SRP, you can continue
authentication with a RespondToAuthChallenge or AdminRespondToAuthChallenge challenge
response in the format that follows. You must pass a Session parameter that associates the
challenge response with the API response to your initial sign-in request. This set of parameters
is the minimum required for sign-in. Additional parameters are available.

{
 "ChallengeName": "PASSWORD_SRP",
 "ChallengeResponses": {
 "USERNAME" : "testuser",
 "SRP_A" : "[g^a % N]"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response"
}

Amazon Cognito responds to eligible preferred-challenge requests and PASSWORD_SRP
challenge responses with a PASSWORD_VERIFIER challenge. Your client must complete
SRP calculations and respond to the challenge in a RespondToAuthChallenge or
AdminRespondToAuthChallenge request.

{
 "ChallengeName": "PASSWORD_VERIFIER",
 "ChallengeResponses": {
 "PASSWORD_CLAIM_SIGNATURE" : "string",
 "PASSWORD_CLAIM_SECRET_BLOCK" : "string",
 "TIMESTAMP" : "string"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response]"
}

Authentication flows 516

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html

Amazon Cognito Developer Guide

On a successful PASSWORD_VERIFIER challenge response, Amazon Cognito issues tokens or
another required challenge like multi-factor authentication (MFA).

Client-based sign-in with SRP

SRP authentication is more common to client-side authentication than to server-side. However,
you can use SRP authentication with InitiateAuth and AdminInitiateAuth. To sign a user in to
an application, configure the body of your InitiateAuth or AdminInitiateAuth request as
follows. This set of parameters is the minimum required for sign-in. Additional parameters are
available.

The client generates SRP_A from a generator modulo N g raised to the power of a secret
random integer a.

{
 "AuthFlow": "USER_SRP_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "SRP_A" : "[g^a % N]"
 },
 "ClientId": "1example23456789"
}

Amazon Cognito responds with a PASSWORD_VERIFIER challenge. Your client must
complete SRP calculations and respond to the challenge in a RespondToAuthChallenge or
AdminRespondToAuthChallenge request.

{
 "ChallengeName": "PASSWORD_VERIFIER",
 "ChallengeResponses": {
 "PASSWORD_CLAIM_SIGNATURE" : "string",
 "PASSWORD_CLAIM_SECRET_BLOCK" : "string",
 "TIMESTAMP" : "string"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response]"
}

On a successful PASSWORD_VERIFIER challenge response, Amazon Cognito issues tokens or
another required challenge like multi-factor authentication (MFA).

Authentication flows 517

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html

Amazon Cognito Developer Guide

Passwordless sign-in with one-time passwords

Passwords can be lost or stolen. You might want to verify only that your users have access to a
verified email address, phone number, or authenticator app. The solution to this is passwordless
sign-in. Your application can prompt users to enter their username, email address, or phone
number. Amazon Cognito then generates a one-time password (OTP), a code that they must
confirm. A successful code completes authentication.

Passwordless authentication flows aren't compatible with required multi-factor authentication
(MFA) in your user pool. If MFA is optional in your user pool, users who have activated MFA can't
sign in with a passwordless first factor. Users who don't have an MFA preference in an MFA-optional
user pool can sign in with passwordless factors. For more information, see Things to know about
user pool MFA.

When a user correctly enters a code they received in an SMS or email message as part of
passwordless authentication, in addition to authenticating the user, your user pool marks the
user’s unverified email address or phone number attribute as verified. The user status also changed
from UNCONFIRMED to CONFIRMED, regardless of whether you configured your user pool to
automatically verify email addresses or phone numbers.

New options with passwordless sign-in

When you activate passwordless authentication in your user pool, it changes how some user flows
work.

1. Users can sign up without a password and choose a passwordless factor when they sign in. You
can also create users without passwords as an administrator.

2. Users who you import with a CSV file can sign in immediately with a passwordless factor. They
aren't required to set a password before sign-in.

3. Users who don't have a password can submit ChangePassword API requests without the
PreviousPassword parameter.

Automatic sign-in with OTPs

Users who sign up and confirm their user accounts with email or SMS message OTPs can
automatically sign in with the passwordless factor that matches their confirmation message. In
the managed login UI, users who confirm their accounts and are eligible for OTP sign-in with the
confirmation-code delivery method automatically proceed through to their first sign-in after they

Authentication flows 518

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ChangePassword.html

Amazon Cognito Developer Guide

provide the confirmation code. In your custom-built application with an Amazon SDK, pass the
following parameters to an InitiateAuth or AdminInitiateAuth operation.

• The Session parameter from the ConfirmSignUp API response as the Session request
parameter.

• An AuthFlow of USER_AUTH.

You can pass a PREFERRED_CHALLENGE of EMAIL_OTP or SMS_OTP, but it's not required.
The Session parameter provides proof of authentication and Amazon Cognito ignores the
AuthParameters when you pass a valid session code.

The sign-in operation returns the response that indicates successful authentication,
AuthenticationResult, with no additional challenges if the following conditions are true.

• The Session code is valid and not expired.

• The user is eligible for the OTP authentication method.

Activate passwordless sign-in

Console

To activate passwordless sign-in, configure your user pool to permit primary sign-in with one
or more passwordless types, then configure your app client to permit the USER_AUTH flow. In
the Amazon Cognito console, navigate to the Sign-in menu under Authentication in your user
pool configuration. Edit Options for choice-based sign-in and choose Email message one-
time password or SMS message one-time password. You can activate both options. Save your
changes.

Navigate to the App clients menu and choose an app client or create a new one. Select Edit and
choose Select an authentication type at sign-in: ALLOW_USER_AUTH.

API/SDK

In the user pools API, configure SignInPolicy with the appropriate passwordless options in a
CreateUserPool or UpdateUserPool request.

"SignInPolicy": {
 "AllowedFirstAuthFactors": [
 "EMAIL_OTP",

Authentication flows 519

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthFlow
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthParameters
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AuthenticationResultType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

 "SMS_OTP"
]
}

Configure your app client ExplicitAuthFlows with the required option in a
CreateUserPoolClient or UpdateUserPoolClient request.

"ExplicitAuthFlows": [
 "ALLOW_USER_AUTH"
]

Sign in with passwordless

Passwordless sign-in doesn't have a client-based AuthFlow that you can specify in InitiateAuth
and AdminInitiateAuth. OTP authentication is only available in the choice-based AuthFlow
of USER_AUTH, where you can request a preferred sign-in option or choose the passwordless
option from a user's AvailableChallenges. To sign a user in to an application, configure the body
of your InitiateAuth or AdminInitiateAuth request as follows. This set of parameters is
the minimum required for sign-in. Additional parameters are available.

In this example, we don't know which way the user wants to sign in. If we add a
PREFERRED_CHALLENGE parameter and the preferred challenge is available to the user,
Amazon Cognito responds with that challenge.

{
 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser"
 },
 "ClientId": "1example23456789"
}

You can instead add "PREFERRED_CHALLENGE": "EMAIL_OTP" or
"PREFERRED_CHALLENGE": "SMS_OTP" to AuthParameters in this example. If the
user is eligible for that preferred method, your user pool immediately sends a code to the
user's email address or phone number and returns "ChallengeName": "EMAIL_OTP" or
"ChallengeName": "SMS_OTP".

If you don't specify a preferred challenge, Amazon Cognito responds with an
AvailableChallenges parameter.

Authentication flows 520

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-response-AvailableChallenges

Amazon Cognito Developer Guide

{
 "AvailableChallenges": [
 "EMAIL_OTP",
 "SMS_OTP",
 "PASSWORD"
],
 "Session": "[Session ID]"
}

This user is eligible for passwordless sign-in with email message OTP, SMS message OTP,
and username-password. Your application can prompt the user for their selection, or make
a selection based on internal logic. It then proceeds with a RespondToAuthChallenge or
AdminRespondToAuthChallenge request that selects the challenge. Suppose the user wants to
complete passwordless authentication with an email-message OTP.

{
 "ChallengeName": "SELECT_CHALLENGE",
 "ChallengeResponses": {
 "USERNAME" : "testuser",
 "ANSWER" : "EMAIL_OTP"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response]"
}

Amazon Cognito responds with an EMAIL_OTP challenge and sends a code to your user's
verified email address. Your application then must respond again to this challenge.

This would also be the next challenge response if you requested EMAIL_OTP as a
PREFERRED_CHALLENGE.

{
 "ChallengeName": "EMAIL_OTP",
 "ChallengeResponses": {
 "USERNAME" : "testuser",
 "EMAIL_OTP_CODE" : "123456"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response]"
}

Authentication flows 521

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html

Amazon Cognito Developer Guide

Passwordless sign-in with WebAuthn passkeys

Passkeys are secure and impose a relatively low effort level on users. Passkey sign-in makes use
of authenticators, external devices that users can authenticate with. Regular passwords expose
users to vulnerabilities like phishing, password guessing, and credential theft. With passkeys, your
application can benefit from advanced security measures on mobile phones and other devices
attached to or built in to information systems. A common passkey sign-in workflow starts with
a call to your device that invokes your password or credentials manager, for example the iOS
keychain or the Google Chrome password manager. The on-device credentials manager prompts
them to select a passkey and authorize it with an existing credential or device-unlock mechanism.
Modern phones have face scanners, fingerprint scanners, unlock patterns and other mechanisms,
some that simultaneously satisfy the something you know and something you have principles of
strong authentication. In the case of passkey authentication with biometrics, passkeys represent a
something you are.

You might want to replace passwords with the thumbprint, face, or security-key authentication.
This is passkey or WebAuthn authentication. It's common for application developers to permit users
to enroll a biometric device after they first sign in with a password. With Amazon Cognito user
pools, your application can configure this sign-in option for users. Passkey authentication isn't
eligible for multi-factor authentication (MFA).

Passwordless authentication flows aren't compatible with required multi-factor authentication
(MFA) in your user pool. If MFA is optional in your user pool, users who have activated MFA can't
sign in with a passwordless first factor. Users who don't have an MFA preference in an MFA-optional
user pool can sign in with passwordless factors. For more information, see Things to know about
user pool MFA.

What are passkeys?

Passkeys simplify the user experience by eliminating the need to remember complex passwords
or enter OTPs. Passkeys are based on WebAuthn and CTAP2 standards drafted by the World
Wide Web Consortium (W3C) and FIDO (Fast Identity Online) Alliance. Browsers and platforms
implement these standards, provide APIs for web or mobile applications to start a passkey
registration or authentication process, and also UI for user to select and interact with a passkey
authenticator.

When a user registers an authenticator with a website or an app, the authenticator creates a
public-private key pair. WebAuthn browsers and platforms submit the public key to the application

Authentication flows 522

https://www.w3.org/TR/webauthn-3/
https://www.w3.org/TR/webauthn-3/

Amazon Cognito Developer Guide

back end of the website or app. The authenticator keeps the private key, key IDs, and metadata
about the user and application. When the user wants to authenticate in the registered application
with their registered authenticator, the application generates a random challenge. The response
to this challenge is the digital signature of the challenge generated with the private key of the
authenticator for that application and user, and relevant metadata. The browser or application
platform receives the digital signature and passes it to the application back end. The application
then validates the signature with the stored public key.

Note

Your application doesn't receive any authentication secrets that users provide to their
authenticator, nor does it receive information about the private key.

The following are some examples and capabilities of authenticators currently on the market. An
authenticator might meet any or all of these categories.

• Some authenticators perform user verification with factors like a PIN, biometric input with a face
or fingerprint, or a passcode before granting access, ensuring that only the legitimate user can
authorize actions. Other authenticators don't have any user verification capabilities, and some
can skip user verification when an application doesn't require it.

• Some authenticators, for example YubiKey hardware tokens, are portable. They communicate
with devices through USB, Bluetooth or NFC connections. Some authenticators are local and
bound to a platform, for example Windows Hello on a PC or Face ID on an iPhone. A device-
bound authenticator can be carried by user if small enough, like a mobile device. Sometimes
users can connect their hardware authenticator with many different platforms with wireless
communication. For example, users in desktop browsers can use their smart phone as a passkey
authenticator when they scan a QR code.

• Some platform-bound passkeys sync to the cloud so that they can be used from multiple
locations. For example, Face ID passkeys on iPhones sync passkey metadata with users' Apple
accounts in their iCloud Keychain. These passkeys grant seamless authentication across Apple
devices, instead of requiring that users register each device independently. Software-based
authenticator apps like 1Password, Dashlane, and Bitwarden sync passkeys across all platforms
where the user has installed the app.

In WebAuthn terminology, websites and apps are relying parties. Each passkey is associated with
a specific relying party ID, a unified identifier that represents the websites or apps that accept

Authentication flows 523

Amazon Cognito Developer Guide

passkey authentication.. Developers must carefully select their relying party ID to have the right
scope of authentication. A typical reliying party ID is the root domain name of a webserver. A
passkey with this relying party ID specification can authenticate for that domain and subdomains.
Browsers and platforms deny passkey authentication when the URL of the website a user want to
access doesn't match the relying party ID. Similarly, for mobile apps, a passkey can only be used if
the app path is present in the .well-known association files that the application makes available
at the path indicated by the relying party ID.

Passkeys are discoverable. They can be automatically recognized and used by a browser or platform
without requiring the user to input a username. When a user visits a website or app that supports
passkey authentication, they can select from a list of passkeys that the browser or platform already
knows, or they can scan a QR code.

How does Amazon Cognito implement passkey authentication?

Passkeys are an opt-in feature that's available in all feature plans except for Lite. It is only available
in the choice-based authentication flow. With managed login, Amazon Cognito handles the logic of
passkey authentication. You can also use the Amazon Cognito user pools API in Amazon SDKs to do
passkey authentication in your application back end.

Amazon Cognito recognizes passkeys created using either of two asymmetric cryptographic
algorithms, ES256(-7) and RS256(-257). Most authenticators support both algorithms. By
default, users can set up any type of authenticators, for example hardware tokens, mobile smart
phones, and software authenticator apps. Amazon Cognito doesn't currently support attestation
enforcement.

In your user pool, you can configure user verification to be preferred or required. This setting
defaults to preferred in API requests that don't provide a value, and preferred is selected by
default in the Amazon Cognito console. When you set user verification to preferred, users
can set up authenticators that don't have the user verification capability, and registration and
authentication operations can succeed without user verification. To mandate user verification in
passkey registration and authentication, change this setting to required.

The relying party (RP) ID that you set in your passkey configuration is an important decision. When
you don't specify otherwise and your domain branding version is managed login, your user pool
defaults to expecting the name of your custom domain as the RP ID. If you don't have a custom
domain and don't specify otherwise, your user pool defaults to an RP ID of your prefix domain.
You can also configure your RP ID to be any domain name not in the public suffix list (PSL). Your
RP ID entry applies to passkey registration and authentication in managed login and in SDK

Authentication flows 524

https://csrc.nist.gov/glossary/term/attestation

Amazon Cognito Developer Guide

authentication. Passkey is only functional in mobile applications with Amazon Cognito can locate
a .well-known association file with your RP ID as the domain. As a best practice, determine and
set the value of your relying party ID before your website or app is publicly available. If you change
your RP ID, your users must register again with the new RP ID.

Each user can register up to 20 passkeys. They can only register a passkey after they have signed in
to your user pool at least once. Managed login removes significant effort from passkey registration.
When you enable passkey authentication for a user pool and app client, your user pool with a
managed login domain reminds end users to register a passkey after they sign up for a new user
account. You can also invoke users' browsers at any time to direct them to a managed login page
for passkey registration. Users must provide a username before Amazon Cognito can initiate
passkey authentication. Managed login handles this automatically. The sign-in page prompts for
a username, validates that the user has at least one passkey registered, and then prompts for
passkey sign-in. Similarly, SDK-based applications must prompt for a username and provide it in
the authentication request.

When you set up user pool authentication with passkeys and you have a custom domain and a
prefix domain, the RP ID defaults to the fully-qualified domain name (FQDN) of your custom
domain. To set a prefix domain as the RP ID in the Amazon Cognito console, delete your custom
domain or enter the FQDN of the prefix domain as a Third-party domain.

Activate passkey sign-in

Console

To activate sign-in with passkeys, configure your user pool to permit primary sign-in with one or
more passwordless types, then configure your app client to permit the USER_AUTH flow. In the
Amazon Cognito console, navigate to the Sign-in menu under Authentication in your user pool
configuration. Edit Options for choice-based sign-in and add Passkey to the list of Available
choices.

Navigate to the Authentication methods menu and edit Passkey.

• User verification is the setting for whether your user pool requires passkey devices that
perform additional checks that the current user is authorized for a passkey. To encourage
users to configure a device with user verification, but not require it, select Preferred. To
only support devices with user verification, select Required. For more information, see User
verification at w3.org.

Authentication flows 525

https://www.w3.org/TR/webauthn-2/#user-verification
https://www.w3.org/TR/webauthn-2/#user-verification

Amazon Cognito Developer Guide

• The Domain for relying party ID is the identifier that your application will pass in users'
passkey registration requests. It sets the target of the trust relationship with the issuer of
users' passkeys. Your relying party ID can be: the domain of your user pool if

Cognito domain

The Amazon Cognito prefix domain of your user pool.

Custom domain

The custom domain of your user pool.

Third-party domain

The domain for applications that don't use the user pools managed login pages. This
setting is typically associated with user pools that don't have a domain and perform
authentication with an Amazon SDK and the user pools API in the backend.

Navigate to the App clients menu and choose an app client or create a new one. Select
Edit and under Authentication flows, choose Select an authentication type at sign-in:
ALLOW_USER_AUTH.

API/SDK

In the user pools API, configure SignInPolicy with the appropriate passkey options in a
CreateUserPool or UpdateUserPool request. The WEB_AUTHN option for passkey authentication
must be accompanied by at least one other option. Passkey registration requires an existing
authentication session.

"SignInPolicy": {
 "AllowedFirstAuthFactors": [
 "PASSWORD",
 "WEB_AUTHN"
]
}

Configure your user-verification preference and RP ID in the WebAuthnConfiguration
parameter of a SetUserPoolMfaConfig request. The RelyingPartyId, the intended target of
passkey authentication outcomes, can be your user pool prefix or custom domain, or a domain
of your own choosing.

"WebAuthnConfiguration": {

Authentication flows 526

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html#CognitoUserPools-SetUserPoolMfaConfig-request-WebAuthnConfiguration

Amazon Cognito Developer Guide

 "RelyingPartyId": "example.auth.us-east-1.amazoncognito.com",
 "UserVerification": "preferred"
}

Configure your app client ExplicitAuthFlows with the required option in a
CreateUserPoolClient or UpdateUserPoolClient request.

"ExplicitAuthFlows": [
 "ALLOW_USER_AUTH"
]

Register a passkey (managed login)

Managed login handles user registration of passkeys. When passkey authentication is active in
your user pool, Amazon Cognito prompts users to set up a passkey when the register for a new
user account.

Amazon Cognito doesn't prompt users to set up a passkey when they have already signed up
and not set up a passkey, or if you created their account as an administrator. Users in this state
must sign in with another factor like a password or passwordless OTP before they can register a
passkey.

To register a passkey

1. Direct the user to your sign-in page.

https://auth.example.com/oauth2/authorize/?
client_id=1example23456789&response_type=code&scope=email+openid
+phone&redirect_uri=https%3A%2F%2Fwww.example.com

2. Process the authentication result from the user. In this example, Amazon Cognito redirects
them to www.example.com with an authorization code that your application exchanges
for tokens.

3. Direct the user to your register-passkey page. The user will have a browser cookie that
maintains their signed-in session. The passkey URL takes client_id and redirect_uri
parameters. Amazon Cognito only permits authenticated users to access this page. Sign in
your user with a password, email OTP, or SMS OTP and then invoke a URL that matches the
following pattern.

Authentication flows 527

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

You can also add other Authorize endpoint parameters to this request, like
response_type and scope.

https://auth.example.com/passkeys/add?
client_id=1example23456789&redirect_uri=https%3A%2F%2Fwww.example.com

Register a passkey (SDK)

You register passkey credentials with metadata in a PublicKeyCreationOptions object. You can
generate this object with the credentials of a signed-in user and present them in an API request
to their passkey issuer. The issuer will return a RegistrationResponseJSON object that confirms
passkey registration.

To start the process of passkey registration, sign in a user with an existing sign-in option.
Authorize the token-authorized StartWebAuthnRegistration API request with the current user's
access token. The following is the body of an example GetWebAuthnRegistrationOptions
request.

{
 "AccessToken": "eyJra456defEXAMPLE"
}

The response from your user pool contains the PublicKeyCreationOptions object. Present
this object in an API request to the user's issuer. It provides information like the public key and
relying party ID. The issuer will respond with a RegistrationResponseJSON object.

Present the registration response in a CompleteWebAuthnRegistration API request, again
authorized with the user's access token. When your user pool responds with an HTTP 200
response with an empty body, your user's passkey is registered.

Sign in with a passkey

Passwordless sign-in doesn't have an AuthFlow that you can specify in InitiateAuth and
AdminInitiateAuth. Instead, you must declare an AuthFlow of USER_AUTH and request a sign-
in option or choose your passwordless option from the response from your user pool. To sign a
user in to an application, configure the body of your InitiateAuth or AdminInitiateAuth
request as follows. This set of parameters is the minimum required for sign-in. Additional
parameters are available.

Authentication flows 528

https://www.w3.org/TR/webauthn-3/#dictdef-publickeycredentialcreationoptions
https://www.w3.org/TR/webauthn-3/#dictdef-registrationresponsejson
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartWebAuthnRegistration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CompleteWebAuthnRegistration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

In this example, we know that the user wants to sign in with a passkey, and we add a
PREFERRED_CHALLENGE parameter.

{
 "AuthFlow": "USER_AUTH",
 "AuthParameters": {
 "USERNAME" : "testuser",
 "PREFERRED_CHALLENGE" : "WEB_AUTHN"
 },
 "ClientId": "1example23456789"
}

Amazon Cognito responds with a WEB_AUTHN challenge. Your application must respond to
this challenge. Initiate a sign-in request with the user's passkey provider. It will return an
AuthenticationResponseJSON object.

{
 "ChallengeName": "WEB_AUTHN",
 "ChallengeResponses": {
 "USERNAME" : "testuser",
 "CREDENTIAL" : "{AuthenticationResponseJSON}"
 },
 "ClientId": "1example23456789",
 "Session": "[Session ID from the previous response]"
}

MFA after sign-in

You can set up users who complete sign-in with a username-password flow to be prompted for
additional verification with a one-time password from an email message, SMS message, or code-
generating application. MFA is distinct from passwordless sign-in, a first authentication factor
with one-time passwords or WebAuthn passkeys that doesn't include MFA. MFA in user pools is a
challenge-response model, where a user first demonstrates they know the password, then they
demonstrate that they have access to their registered second-factor device.

Implementation resources

• Adding MFA to a user pool

Authentication flows 529

https://www.w3.org/TR/webauthn-3/#dictdef-authenticationresponsejson

Amazon Cognito Developer Guide

Refresh tokens

When you want to keep users signed in without re-entering their credentials, refresh tokens are the
tool that your application has to persist a user's session. Applications can present refresh tokens
to your user pool and exchange them for new ID and access tokens. With token refresh, you can
ensure that a signed-in user is still active, get updated attribute information, and update access-
control entitlements without user intervention.

Implementation resources

• Refresh tokens

Custom authentication

You might want to configure a method of authentication for your users that isn't listed here. You
can do that with custom authentication with Lambda triggers. In a sequence of Lambda functions,
Amazon Cognito issues a challenge, asks a question that users must answer, checks the answer for
accuracy, then determines if another challenge should be issued. The questions and answers can
include security questions, requests to a CAPTCHA service, requests to an external MFA service API,
or all of these in sequence.

Implementation resources

• Custom authentication challenge Lambda triggers

Custom authentication flow

Amazon Cognito user pools also make it possible to use custom authentication flows, which can
help you create a challenge/response-based authentication model using Amazon Lambda triggers.

The custom authentication flow makes possible customized challenge and response cycles to
meet different requirements. The flow starts with a call to the InitiateAuth API operation that
indicates the type of authentication to use and provides any initial authentication parameters.
Amazon Cognito responds to the InitiateAuth call with one of the following types of
information:

• A challenge for the user, along with a session and parameters.

• An error if the user fails to authenticate.

Authentication flows 530

Amazon Cognito Developer Guide

• ID, access, and refresh tokens if the supplied parameters in the InitiateAuth call are sufficient
to sign the user in. (Typically the user or app must first answer a challenge, but your custom code
must determine this.)

If Amazon Cognito responds to the InitiateAuth call with a challenge, the app gathers
more input and calls the RespondToAuthChallenge operation. This call provides the
challenge responses and passes it back the session. Amazon Cognito responds to the
RespondToAuthChallenge call similarly to the InitiateAuth call. If the user has signed in,
Amazon Cognito provides tokens, or if the user isn't signed in, Amazon Cognito provides another
challenge, or an error. If Amazon Cognito returns another challenge, the sequence repeats and the
app calls RespondToAuthChallenge until the user successfully signs in or an error is returned.
For more details about the InitiateAuth and RespondToAuthChallenge API operations, see
the API documentation.

Custom authentication flow and challenges

An app can initiate a custom authentication flow by calling InitiateAuth with CUSTOM_AUTH as
the Authflow. With a custom authentication flow, three Lambda triggers control challenges and
verification of the responses.

• The DefineAuthChallenge Lambda trigger uses a session array of previous challenges and
responses as input. It then generates the next challenge name and Booleans that indicate
whether the user is authenticated and can be granted tokens. This Lambda trigger is a state
machine that controls the user’s path through the challenges.

• The CreateAuthChallenge Lambda trigger takes a challenge name as input and generates
the challenge and parameters to evaluate the response. When DefineAuthChallenge
returns CUSTOM_CHALLENGE as the next challenge, the authentication flow calls
CreateAuthChallenge. The CreateAuthChallenge Lambda trigger passes the next type of
challenge in the challenge metadata parameter.

• The VerifyAuthChallengeResponse Lambda function evaluates the response and returns a
Boolean to indicate if the response was valid.

A custom authentication flow can also use a combination of built-in challenges, such as SRP
password verification and MFA through SMS. It can use custom challenges such as CAPTCHA or
secret questions.

Authentication flows 531

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

Use SRP password verification in custom authentication flow

If you want to include SRP in a custom authentication flow, you must begin with SRP.

• To initiate SRP password verification in a custom flow, the app calls InitiateAuth with
CUSTOM_AUTH as the Authflow. In the AuthParameters map, the request from your app
includes SRP_A: (the SRP A value) and CHALLENGE_NAME: SRP_A.

• The CUSTOM_AUTH flow invokes the DefineAuthChallenge Lambda trigger with an initial
session of challengeName: SRP_A and challengeResult: true. Your Lambda function
responds with challengeName: PASSWORD_VERIFIER, issueTokens: false, and
failAuthentication: false.

• The app next must call RespondToAuthChallenge with challengeName:
PASSWORD_VERIFIER and the other parameters required for SRP in the challengeResponses
map.

• If Amazon Cognito verifies the password, RespondToAuthChallenge invokes the
DefineAuthChallenge Lambda trigger with a second session of challengeName:
PASSWORD_VERIFIER and challengeResult: true. At that point, the
DefineAuthChallenge Lambda trigger responds with challengeName:
CUSTOM_CHALLENGE to start the custom challenge.

• If MFA is enabled for a user, after Amazon Cognito verifies the password, your user is then
challenged to set up or sign in with MFA.

Note

The Amazon Cognito hosted sign-in webpage can't activate Custom authentication
challenge Lambda triggers.

For more information about the Lambda triggers, including sample code, see Customizing user
pool workflows with Lambda triggers.

User migration authentication flow

A user migration Lambda trigger helps migrate users from a legacy user management system into
your user pool. If you choose the USER_PASSWORD_AUTH authentication flow, users don't have to
reset their passwords during user migration. This flow sends your users' passwords to the service
over an encrypted SSL connection during authentication.

Authentication flows 532

Amazon Cognito Developer Guide

When you have migrated all your users, switch flows to the more secure SRP flow. The SRP flow
doesn't send any passwords over the network.

To learn more about Lambda triggers, see Customizing user pool workflows with Lambda triggers.

For more information about migrating users with a Lambda trigger, see Importing users with a user
migration Lambda trigger.

Authorization models for API and SDK authentication

When you're starting development of your application with user pools authentication, you must
decide on the API authorization model that fits your application type. An authorization model is a
system for providing authorization to make requests with the authentication components in the
Amazon Cognito user pools API and SDK integrations. Amazon Cognito has three authorization
models: IAM-authorized, public, and token-authorized.

With IAM-authorized requests, the authorization comes from a signature by a set of Amazon
IAM credentials in the Authorization header of a request. For server-side applications, this
practice protects authentication operations with IAM authorization. With public (unauthenticated)
authentication requests, no authorization is required. This is suitable for client-side applications
distributed to users. With token-authorized operations, typically implemented in combination
with public operations, the authorization comes from a session token or an access token included
in the Authorization header of the request. Amazon Cognito authentication typically requires
that you implement two or more API operations in order, and the API operations you use depend
on the characteristics of your application. Public clients, where the application is distributed
to users, use public operations, where requests for sign-in don't require authorization. Token-
authorized operations continue the session of users in public applications. Server-side clients,
where the application logic is hosted on a remote system, protect authentication operations with
IAM authorization for sign-in requests. The API operation pairs that follow, and their corresponding
SDK methods, map to the available authorization models.

Each public authentication operation has some form of server-side equivalent, for example
UpdateUserAttributes and AdminUpdateUserAttributes. While client-side operations are user-
initiated and require confirmation, server-side operations assume the change was committed by
a user pool administrator and changes take immediate effect. In this example, Amazon Cognito
sends a message with a confirmation code to the user, and the user's access token authorizes a
VerifyUserAttribute request that submits the code. The server-side application can immediately set
the value of any attribute, although special considerations apply for changing the value of email
addresses and phone numbers when they're used for sign-in.

SDK authorization models 533

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html#CognitoUserPools-AdminUpdateUserAttributes-request-UserAttributes

Amazon Cognito Developer Guide

To compare API authentication and see a full list of API operations and their authorization models,
see Understanding API, OIDC, and managed login pages authentication.

Client-side (public) authentication

The following is a typical sequence of requests in a client-side application

1. The public InitiateAuth operation submits primary credentials like a username and password.

2. The token-authorized RespondToAuthChallenge operation submits a session token from the
InitiateAuth response and the answer to a challenge, for example MFA. Session token
authorization indicates requests that are part of not-yet-complete authentication cycles.

3. The token-authorized ConfirmDevice operation submits an access token and performs
the write operation of adding a remembered device to the user's profile. Access token
authorization indicates requests that are for user self-service operations after they have
completed authentication.

For more information, see Client-side authentication options and Understanding API, OIDC, and
managed login pages authentication.

Server-side authentication

The following is a typical sequence of requests from a server-side operation. Each request has
an Amazon Signature Version 4 authorization header signed with IAM machine credentials that
were issued to the application server.

1. The AdminInitiateAuth operation submits primary credentials like a username and password.

2. AdminRespondToAuthChallenge operation submits the answer to a challenge, for example
MFA.

3. The AdminUpdateDeviceStatus operation sets the device key from the AdminInitiateAuth
response as remembered.

For more information, see Server-side authentication options and Understanding API, OIDC, and
managed login pages authentication.

A user authenticates by answering successive challenges until authentication either fails or Amazon
Cognito issues tokens to the user. You can repeat these steps with Amazon Cognito, in a process
that includes different challenges, to support any custom authentication flow.

SDK authorization models 534

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmDevice.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#API_AdminInitiateAuth_ResponseSyntax

Amazon Cognito Developer Guide

Topics

• Server-side authentication options

• Client-side authentication options

• Understanding API, OIDC, and managed login pages authentication

• List of API operations grouped by authorization model

Server-side authentication options

Web applications and other server-side applications implement authentication on a remote server
that a client loads in a remote-display application like a browser or SSH session. Server-side
applications typically have the following characteristics.

• They're built in an application installed on a server in languages like Java, Ruby, or Node.js.

• They connect to user pool app clients that might have a client secret, called confidential clients.

• They have access to Amazon credentials.

• They invoke managed login for authentication, or use IAM-authorized operations in the user
pools API with an Amazon SDK.

• They serve internal customers and might serve public customers.

Server-side operations with the user pools API can use passwords, one-time passwords, or
passkeys as the primary sign-in factor. For server-side apps, user pool authentication is similar to
authentication for client-side apps, except for the following:

• The server-side app makes an AdminInitiateAuth API request. This operation requires Amazon
credentials with permissions that include cognito-idp:AdminInitiateAuth and cognito-
idp:AdminRespondToAuthChallenge. The operation returns the required challenge or
authentication outcome.

• When the application receives a challenge, it makes an AdminRespondToAuthChallenge API
request. The AdminRespondToAuthChallenge API operation also requires Amazon credentials.

For more information about signing Amazon Cognito API requests with Amazon credentials, see
Signature Version 4 signing process in the Amazon General Reference.

In the AdminInitiateAuth response ChallengeParameters, the USER_ID_FOR_SRP attribute,
if present, contains the user's actual username, not an alias (such as email address or phone

SDK authorization models 535

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/general/latest/gr/signature-version-4.html

Amazon Cognito Developer Guide

number). In your call to AdminRespondToAuthChallenge, in the ChallengeResponses, you
must pass this username in the USERNAME parameter.

Note

Because backend admin implementations use the admin authentication flow, the flow
doesn't support remembered devices. When you have turned on device tracking, admin
authentication succeeds, but any call to refresh the access token fails.

Client-side authentication options

Mobile apps and other client-side application types are installed on users' devices and perform the
logic of authentication and user interface locally. They typically have the following characteristics.

• They're built in languages like React native, Flutter, and Swift and deploy to user devices.

• They connect to user pool app clients that don't have a client secret, called public clients.

• They don't have access to Amazon credentials that would authorize IAM-authorized API requests.

• They invoke managed login for authentication, or use public and token-authorized operations in
the user pools API with an Amazon SDK.

• They serve public customers and permit anyone to sign up and sign in.

Client-side operations with the user pools API can use passwords, one-time passwords, or passkeys
as the primary sign-in factor. The following process works for user client-side apps that you create
with Amazon Amplify or the Amazon SDKs.

1. The user enters their username and password into the app.

2. The app calls the InitiateAuth operation with the user's username and Secure Remote
Password (SRP) details.

This API operation returns the authentication parameters.

Note

The app generates SRP details with the Amazon Cognito SRP features that are built in to
Amazon SDKs.

SDK authorization models 536

https://docs.amplify.aws/javascript/start/getting-started/
https://www.amazonaws.cn/developer/tools/

Amazon Cognito Developer Guide

3. The app calls the RespondToAuthChallenge operation. If the call succeeds, Amazon Cognito
returns the user's tokens, and the authentication flow is complete.

If Amazon Cognito requires another challenge, the call to RespondToAuthChallenge returns
no tokens. Instead, the call returns a session.

4. If RespondToAuthChallenge returns a session, the app calls RespondToAuthChallenge
again, this time with the session and the challenge response (for example, MFA code).

Understanding API, OIDC, and managed login pages authentication

Amazon Cognito user pools are a combination of several authentication technologies. They are
relying parties to external identity providers (IdPs). They are IdPs to applications that implement
authentication with OpenID Connect (OIDC) SDKs. They provide authentication as issuers of JSON
web tokens (JWTs) similar to OIDC authentication, but in API methods that are part of Amazon
SDKs. They can also be secure points of entry to your applications.

When you want to sign up, sign in, and manage users in your user pool, you have two options.

1. Your managed login pages and the classic hosted UI include the managed login user-interactive
endpoints and the federation endpoints that handle IdP and relying-party roles. They make up
a package of public webpages that Amazon Cognito activates when you choose a domain for
your user pool. For a quick start with the authentication and authorization features of Amazon
Cognito user pools, including pages for sign-up, sign-in, password management, and multi-
factor authentication (MFA), use the built-in user interface of managed login.

The other user pool endpoints facilitate authentication with third-party identity providers (IdPs).
The services that they perform include the following.

a. Service-provider callback endpoints for authenticated claims from your IdPs, like saml2/
idpresponse and oauth2/idpresponse. When Amazon Cognito is an intermediate service
provider (SP) between your app and your IdP, the callback endpoints represent the service.

b. Endpoints that provide information about your environment, like oauth2/userInfo and
/.well-known/jwks.json. Your app uses these endpoints when it verifies tokens or
retrieves user profile data with OIDC or OAuth 2.0 developer libraries.

2. The Amazon Cognito user pools API is a set of tools for your web or mobile app to authenticate
users after it collects sign-in information in your own custom front end. User pools API
authentication produces the following JSON web tokens.

a. An identity token with verifiable attribute claims from your user.

SDK authorization models 537

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

b. An access token that authorizes your user to create token-authorized API requests to an
Amazon service endpoint.

Note

By default, access tokens from user pools API authentication only contain the
aws.cognito.signin.user.admin scope. To generate an access token with
additional scopes, for example to authorize a request to a third-party API, request
scopes during authentication through your user pool endpoints or add custom scopes
in a Pre token generation Lambda trigger. Access token customization adds costs to
your Amazon bill.

c. A refresh token that authorizes requests for new ID and access tokens, and refreshes user
identity and access-control properties.

You can link a federated user, who would normally sign in through the user pools endpoints, with
a user whose profile is local to your user pool. A local user exists exclusively in your user pool
directory without federation through an external IdP. If you link their federated identity to a local
user in an AdminLinkProviderForUser API request, they can sign in with the user pools API. For
more information, see Linking federated users to an existing user profile.

The Amazon Cognito user pools API is dual-purpose.

1. It creates and configures your Amazon Cognito user pools resources. For example, you can create
user pools, add Amazon Lambda triggers, and configure the user pool domain that hosts your
managed login pages.

2. It performs sign-up, sign-in and other user operations for local and linked users.

Example scenario with the Amazon Cognito user pools API

1. Your user selects a "Create an account" button that you created in your app. They enter an
email address and password.

2. Your app sends a SignUp API request and creates a new user in your user pool.

3. Your app prompts your user for an email confirmation code. Your users enters the code they
received in an email message.

4. Your app sends a ConfirmSignUp API request with the user's confirmation code.

SDK authorization models 538

https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html

Amazon Cognito Developer Guide

5. Your app prompts your user for their username and password, and they enter their
information.

6. Your app sends an InitiateAuth API request and stores an ID token, access token, and refresh
token. Your app calls OIDC libraries to manage your user's tokens and maintain a persistent
session for that user.

In the Amazon Cognito user pools API, you can't sign in users who federate through an IdP. You
must authenticate these users through your user pool endpoints. For more information about
the user pool endpoints that include managed login, see User pool endpoints and managed login
reference.

Your federated users can start in managed login and select their IdP, or you can skip managed
login and send your users directly to your IdP to sign in. When your API request to the Authorize
endpoint includes an IdP parameter, Amazon Cognito silently redirects your user to the IdP sign-in
page.

Example scenario with managed login pages

1. Your user selects a "Create an account" button that you created in your app.

2. Managed login presents your user with a list of the social identity providers where you have
registered developer credentials. Your user chooses Apple.

3. Your app initiates a request to the Authorize endpoint with provider name SignInWithApple.

4. Your user's browser opens the Apple authentication page. Your user signs in and chooses to
authorize Amazon Cognito to read their profile information.

5. Amazon Cognito confirms the Apple access token and queries your user's Apple profile.

6. Your user presents an Amazon Cognito authorization code to your app.

7. The OIDC library in your application exchanges the authorization code with the Token
endpoint and stores an ID token, access token, and refresh token issued by the user pool. Your
app uses OIDC libraries to manage your user's tokens and maintain a persistent session for that
user.

The user pools API and managed login pages support a variety of scenarios, described throughout
this guide. The following sections examine how the user pools API further divides into classes that
support your sign-up, sign-in, and resource-management requirements.

SDK authorization models 539

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

List of API operations grouped by authorization model

The Amazon Cognito user pools API, both a resource-management interface and a user-facing
authentication and authorization interface, combines the authorization models that follow in
its operations. Depending on the API operation, you might have to provide authorization with
IAM credentials, an access token, a session token, a client secret, or a combination of these. For
many user authentication and authorization operations, you have a choice of authenticated and
unauthenticated versions of the request. Unauthenticated operations are best security practice for
apps that you distribute to your users, like mobile apps; you don't need to include any secrets in
your code.

You can only assign permissions in IAM policies for IAM-authorized management operations and
IAM-authorized user operations.

IAM-authorized management operations

IAM-authorized management operations modify and view your user pool and app client
configuration, like you would do in the Amazon Web Services Management Console.

For example, to modify your user pool in an UpdateUserPool API request, you must present
Amazon credentials and IAM permissions to update the resource.

To authorize these requests in the Amazon Command Line Interface (Amazon CLI) or an Amazon
SDK, configure your environment with environment variables or client configuration that adds
IAM credentials to your request. For more information, see Accessing Amazon using your Amazon
credentials in the Amazon Web Services General Reference. You can also send requests directly
to the service endpoints for the Amazon Cognito user pools API. You must authorize, or sign,
these requests with Amazon credentials that you embed in the header of your request. For more
information, see Signing Amazon API requests.

IAM-authorized management operations

AddCustomAttributes

CreateGroup

CreateIdentityProvider

CreateResourceServer

SDK authorization models 540

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.amazonaws.cn/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AddCustomAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateResourceServer.html

Amazon Cognito Developer Guide

IAM-authorized management operations

CreateUserImportJob

CreateUserPool

CreateUserPoolClient

CreateUserPoolDomain

DeleteGroup

DeleteIdentityProvider

DeleteResourceServer

DeleteUserPool

DeleteUserPoolClient

DeleteUserPoolDomain

DescribeIdentityProvider

DescribeResourceServer

DescribeRiskConfiguration

DescribeUserImportJob

DescribeUserPool

DescribeUserPoolClient

DescribeUserPoolDomain

GetCSVHeader

GetGroup

GetIdentityProviderByIdentifier

GetSigningCertificate

SDK authorization models 541

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetCSVHeader.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetIdentityProviderByIdentifier.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetSigningCertificate.html

Amazon Cognito Developer Guide

IAM-authorized management operations

GetUICustomization

GetUserPoolMfaConfig

ListGroups

ListIdentityProviders

ListResourceServers

ListTagsForResource

ListUserImportJobs

ListUserPoolClients

ListUserPools

ListUsers

ListUsersInGroup

SetRiskConfiguration

SetUICustomization

SetUserPoolMfaConfig

StartUserImportJob

StopUserImportJob

TagResource

UntagResource

UpdateGroup

UpdateIdentityProvider

UpdateResourceServer

SDK authorization models 542

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUICustomization.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListGroups.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListIdentityProviders.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListResourceServers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserImportJobs.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserPoolClients.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserPools.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsersInGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StopUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateResourceServer.html

Amazon Cognito Developer Guide

IAM-authorized management operations

UpdateUserPool

UpdateUserPoolClient

UpdateUserPoolDomain

IAM-authorized user operations

IAM-authorized user operations sign up, sign in, manage credentials for, modify, and view your
users.

For example, you can have a server-side application tier that backs a web front end. Your server-
side app is an OAuth confidential client that you trust with privileged access to your Amazon
Cognito resources. To register a user in the app, your server can include Amazon credentials in an
AdminCreateUser API request. For more information about OAuth client types, see Client Types in
The OAuth 2.0 Authorization Framework.

To authorize these requests in the Amazon CLI or an Amazon SDK, configure your server-side
app environment with environment variables or client configuration that adds IAM credentials
to your request. For more information, see Accessing Amazon using your Amazon credentials in
the Amazon Web Services General Reference. You can also send requests directly to the service
endpoints for the Amazon Cognito user pools API. You must authorize, or sign, these requests
with Amazon credentials that you embed in the header of your request. For more information, see
Signing Amazon API requests.

If your app client has a client secret, you must provide both your IAM credentials and,
depending on the operation, either the SecretHash parameter or the SECRET_HASH value in
AuthParameters. For more information, see Computing secret hash values.

IAM-authorized user operations

AdminAddUserToGroup

AdminConfirmSignUp

AdminCreateUser

SDK authorization models 543

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://www.rfc-editor.org/rfc/rfc6749#section-2.1
https://docs.amazonaws.cn/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminAddUserToGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html

Amazon Cognito Developer Guide

IAM-authorized user operations

AdminDeleteUser

AdminDeleteUserAttributes

AdminDisableProviderForUser

AdminDisableUser

AdminEnableUser

AdminForgetDevice

AdminGetDevice

AdminGetUser

AdminInitiateAuth

AdminLinkProviderForUser

AdminListDevices

AdminListGroupsForUser

AdminListUserAuthEvents

AdminRemoveUserFromGroup

AdminResetUserPassword

AdminRespondToAuthChallenge

AdminSetUserMFAPreference

AdminSetUserPassword

AdminSetUserSettings

AdminUpdateAuthEventFeedback

AdminUpdateDeviceStatus

SDK authorization models 544

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminEnableUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListGroupsForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListUserAuthEvents.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRemoveUserFromGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserSettings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateDeviceStatus.html

Amazon Cognito Developer Guide

IAM-authorized user operations

AdminUpdateUserAttributes

AdminUserGlobalSignOut

Unauthenticated user operations

Unauthenticated user operations sign up, sign in, and initiate password resets for your users. Use
unauthenticated, or public, API operations when you want anyone on the internet to sign up and
sign in to your app.

For example, to register a user in your app, you can distribute an OAuth public client that doesn't
provide any privileged access to secrets. You can register this user with the unauthenticated API
operation SignUp.

To send these requests in a public client that you developed with an Amazon SDK, you don't need
to configure any credentials. You can also send requests directly to the service endpoints for the
Amazon Cognito user pools API with no additional authorization.

If your app client has a client secret, you must provide, depending on the operation, either the
SecretHash parameter or the SECRET_HASH value in AuthParameters. For more information,
see Computing secret hash values.

Unauthenticated user operations

SignUp

ConfirmSignUp

ResendConfirmationCode

ForgotPassword

ConfirmForgotPassword

InitiateAuth

SDK authorization models 545

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Token-authorized user operations

Token-authorized user operations sign out, manage credentials for, modify, and view your users
after they have signed in or begun the sign-in process. Use token-authorized API operations
when you don't want to distribute secrets in your app, and you want to authorize requests with
your user's own credentials. If your user has completed sign-in, you must authorize their token-
authorized API request with an access token. If your user is in the middle of a sign-in process, you
must authorize their token-authorized API request with a session token that Amazon Cognito
returned in the response to the previous request.

For example, in a public client, you might want to update a user's profile in a way that restricts the
write access to the user's own profile only. To make this update, your client can include the user's
access token in a UpdateUserAttributes API request.

To send these requests in a public client that you developed with an Amazon SDK, you don't need
to configure any credentials. Include an AccessToken or Session parameter in your request. You
can also send requests directly to the service endpoints for the Amazon Cognito user pools API. To
authorize a request to a service endpoint, include the access or session token in the POST body of
your request.

To sign an API request for a token-authorized operation, include the access token as an
Authorization header in your request, in the format Bearer <Base64-encoded access
token>.

Token-authorized
user operations

AccessToken Session

RespondToAuthChall
enge

✓

ChangePassword ✓

GetUser ✓

StartWebAuthnRegis
tration

✓

CompleteW
ebAuthnRegistration

✓

SDK authorization models 546

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ChangePassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartWebAuthnRegistration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartWebAuthnRegistration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CompleteWebAuthnRegistration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CompleteWebAuthnRegistration.html

Amazon Cognito Developer Guide

Token-authorized
user operations

AccessToken Session

DeleteWebAuthnCred
ential

✓

ListWebAuthnCreden
tials

✓

UpdateUserAttributes ✓

DeleteUserAttributes ✓

DeleteUser ✓

ConfirmDevice ✓

ForgetDevice ✓

GetDevice ✓

ListDevices ✓

UpdateDeviceStatus ✓

GetUserAttributeVe
rificationCode

✓

VerifyUserAttribute ✓

SetUserSettings ✓

SetUserMFAPreferen
ce

✓

GlobalSignOut ✓

UpdateAuthEventFee
dback

✓

SDK authorization models 547

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteWebAuthnCredential.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteWebAuthnCredential.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListWebAuthnCredentials.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListWebAuthnCredentials.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserSettings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateAuthEventFeedback.html

Amazon Cognito Developer Guide

Token-authorized
user operations

AccessToken Session

AssociateSoftwareT
oken

✓ ✓

VerifySoftwareToken ✓ ✓

RevokeToken¹

GetTokensFromRefre
shToken¹

¹ RevokeToken and GetTokensFromRefreshToken take refresh tokens as the authorization
parameter. The refresh token serves as the authorizing token, and as the target resource.

User pool sign-in with third party identity providers

Your app users can either sign in directly through a user pool, or they can federate through a third-
party identity provider (IdP). The user pool manages the overhead of handling the tokens that are
returned from social sign-in through Facebook, Google, Amazon, and Apple, and from OpenID
Connect (OIDC) and SAML IdPs. With the built-in hosted web UI, Amazon Cognito provides token
handling and management for authenticated users from all IdPs. This way, your backend systems
can standardize on one set of user pool tokens.

How federated sign-in works in Amazon Cognito user pools

Sign-in through a third party (federation) is available in Amazon Cognito user pools. This feature is
independent of federation through Amazon Cognito identity pools (federated identities).

Third-party IdP sign-in 548

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html

Amazon Cognito Developer Guide

Amazon Cognito is a user directory and an OAuth 2.0 identity provider (IdP). When you sign in
local users to the Amazon Cognito directory, your user pool is an IdP to your app. A local user exists
exclusively in your user pool directory without federation through an external IdP.

When you connect Amazon Cognito to social, SAML, or OpenID Connect (OIDC) IdPs, your user pool
acts as a bridge between multiple service providers and your app. To your IdP, Amazon Cognito is
a service provider (SP). Your IdPs pass an OIDC ID token or a SAML assertion to Amazon Cognito.
Amazon Cognito reads the claims about your user in the token or assertion and maps those claims
to a new user profile in your user pool directory.

Amazon Cognito then creates a user profile for your federated user in its own directory. Amazon
Cognito adds attributes to your user based on the claims from your IdP and, in the case of OIDC
and social identity providers, an IdP-operated public userinfo endpoint. Your user's attributes
change in your user pool when a mapped IdP attribute changes. You can also add more attributes
independent of those from the IdP.

After Amazon Cognito creates a profile for your federated user, it changes its function and presents
itself as the IdP to your app, which is now the SP. Amazon Cognito is a combination OIDC and
OAuth 2.0 IdP. It generates access tokens, ID tokens, and refresh tokens. For more information
about tokens, see Understanding user pool JSON web tokens (JWTs).

You must design an app that integrates with Amazon Cognito to authenticate and authorize your
users, whether federated or local.

The responsibilities of an app as a service provider with Amazon
Cognito

Verify and process the information in the tokens

In most scenarios, Amazon Cognito redirects your authenticated user to an app URL that it
appends with an authorization code. Your app exchanges the code for access, ID, and refresh
tokens. Then, it must check the validity of the tokens and serve information to your user based
on the claims in the tokens.

Respond to authentication events with Amazon Cognito API requests

Your app must integrate with the Amazon Cognito user pools API and the authentication API
endpoints. The authentication API signs your user in and out, and manages tokens. The user
pools API has a variety of operations that manage your user pool, your users, and the security

The responsibilities of an app as a service provider with Amazon Cognito 549

https://docs.amazonaws.cn/cognito/latest/developerguide/token-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-verifying-a-jwt.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html

Amazon Cognito Developer Guide

of your authentication environment. Your app must know what to do next when it receives a
response from Amazon Cognito.

Things to know about Amazon Cognito user pools third-party sign-in

• If you want your users to sign in with federated providers, you must choose a domain. This sets
up the pages for managed login. For more information, see Using your own domain for managed
login.

• You can't sign in federated users with API operations like InitiateAuth and AdminInitiateAuth.
Federated users can only sign in with the Login endpoint or the Authorize endpoint.

• The Authorize endpoint is a redirection endpoint. If you provide an idp_identifier or
identity_provider parameter in your request, it redirects silently to your IdP, bypassing
managed login. Otherwise, it redirects to the managed login Login endpoint.

• When managed login redirects a session to a federated IdP, Amazon Cognito includes the user-
agent header Amazon/Cognito in the request.

• Amazon Cognito derives the username attribute for a federated user profile from a combination
of a fixed identifier and the name of your IdP. To generate a user name that matches your
custom requirements, create a mapping to the preferred_username attribute. For more
information, see Things to know about mappings.

Example: MyIDP_bob@example.com

• Amazon Cognito creates a user group for each OIDC, SAMl, and social IdP that you add to your
user pool. The name of the group is in the format [user pool ID]_[IdP name], for example
us-east-1_EXAMPLE_MYSSO or us-east-1_EXAMPLE_Google. Each unique automatically-
generated IdP user profile is automatically added to this group. Linked users aren't automatically
added to this group, but you can add their profiles to the group in a separate process.

• Amazon Cognito records information about your federated user's identity to an attribute, and
a claim in the ID token, called identities. This claim contains your user's provider and their
unique ID from the provider. You can't change the identities attribute in a user profile
directly. For more information about how to link a federated user, see Linking federated users to
an existing user profile.

• When you update your IdP in an UpdateIdentityProvider API request, your changes can take up
to a minute to appear in managed login.

• Amazon Cognito supports up to 20 HTTP redirects between itself and your IdP.

Things to know about Amazon Cognito user pools third-party sign-in 550

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html

Amazon Cognito Developer Guide

• When your user signs in with managed login, their browser stores an encrypted login-session
cookie which records the client and provider they signed in with. If they attempt to sign in again
with the same parameters, managed login reuses any unexpired existing session, and the user
authenticates without providing credentials again. If your user signs in again with a different IdP,
including a switch to or from local user pool sign-in, they must provide credentials and generate
a new login session.

You can assign any of your user pool IdPs to any app client, and users can only sign in with an IdP
that you assigned to their app client.

Topics

• Configuring identity providers for your user pool

• Using social identity providers with a user pool

• Using SAML identity providers with a user pool

• Using OIDC identity providers with a user pool

• Mapping IdP attributes to profiles and tokens

• Linking federated users to an existing user profile

Configuring identity providers for your user pool

With user pools, you can implement sign-in through a variety of external identity providers
(IdPs). This section of the guide has instructions for setting up these identity providers with your
user pool in the Amazon Cognito console. Alternatively, you can use the user pools API and an
Amazon SDK to programmatically add user pool identity providers. For more information, see
CreateIdentityProvider.

The supported identity provider options include social providers like Facebook, Google, and
Amazon, as well as OpenID Connect (OIDC) and SAML 2.0 providers. Before you get started, set
yourself up with administrative credentials for your IdP. For each type of provider, you'll need to
register your application, obtain the necessary credentials, and then configure the provider details
in your user pool. Your users can then sign up and sign in to your application with their existing
accounts from the connected identity providers.

The Social and external providers menu under Authentication adds and updates user pool IdPs.
For more information, see User pool sign-in with third party identity providers.

Identity providers 551

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html

Amazon Cognito Developer Guide

Topics

• Set up user sign-in with a social IdP

• Set up user sign-in with an OIDC IdP

• Set up user sign-in with a SAML IdP

Set up user sign-in with a social IdP

You can use federation to integrate Amazon Cognito user pools with social identity providers such
as Facebook, Google, and Login with Amazon.

To add a social identity provider, you first create a developer account with the identity provider.
After you have your developer account, register your app with the identity provider. The identity
provider creates an app ID and an app secret for your app, and you configure those values in your
Amazon Cognito user pools.

• Google identity platform

• Facebook for developers

• Login with Amazon

• Sign in with Apple

To integrate user sign-in with a social IdP

1. Sign in to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Social and external providers menu.

4. Choose Add an identity provider, or choose the Facebook, Google, Amazon, or Apple identity
provider you have configured, locate Identity provider information, and choose Edit. For
more information about adding a social identity provider, see Using social identity providers
with a user pool.

5. Enter your social identity provider's information by completing one of the following steps,
based on your choice of IdP:

Facebook, Google, and Login with Amazon

Enter the app ID and app secret that you received when you created your client app.

Identity providers 552

https://developers.google.com/identity/
https://developers.facebook.com/docs/facebook-login
https://developer.amazon.com/login-with-amazon
https://developer.apple.com/sign-in-with-apple/
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Sign In with Apple

Enter the service ID that you provided to Apple, and the team ID, key ID, and private key
you received when you created your app client.

6. For Authorized scopes, enter the names of the social identity provider scopes that you want to
map to user pool attributes. Scopes define which user attributes, such as name and email, that
you want to access with your app. When entering scopes, use the following guidelines based
on your choice of IdP:

• Facebook — Separate scopes with commas. For example:

public_profile, email

• Google, Login with Amazon, and Sign In with Apple — Separate scopes with spaces. For
example:

• Google: profile email openid

• Login with Amazon: profile postal_code

• Sign In with Apple: name email

Note

For Sign In with Apple (console), use the check boxes to choose scopes.

7. Choose Save changes.

8. From the App clients menu, choose an app client from the list and then select Edit. Add the
new social identity provider to the app client under Identity providers.

9. Choose Save changes.

For more information on social IdPs, see Using social identity providers with a user pool.

Set up user sign-in with an OIDC IdP

You can integrate user sign-in with an OpenID Connect (OIDC) identity provider (IdP) such as
Salesforce or Ping Identity.

To add an OIDC provider to a user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

Identity providers 553

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

2. Choose User Pools from the navigation menu.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Social and external providers menu and select Add an identity provider.

5. Choose an OpenID Connect identity provider.

6. Enter a unique name into Provider name.

7. Enter the client ID that you received from your provider into Client ID.

8. Enter the client secret that you received from your provider into Client secret.

9. Enter Authorized scopes for this provider. Scopes define which groups of user attributes (such
as name and email) that your application will request from your provider. Scopes must be
separated by spaces, following the OAuth 2.0 specification.

Your user must consent to provide these attributes to your application.

10. Choose an Attribute request method to provide Amazon Cognito with the HTTP method
(either GET or POST) that Amazon Cognito uses to fetch the details of the user from the
userInfo endpoint operated by your provider.

11. Choose a Setup method to retrieve OpenID Connect endpoints either by Auto fill through
issuer URL or Manual input. Use Auto fill through issuer URL when your provider has a public
.well-known/openid-configuration endpoint where Amazon Cognito can retrieve the
URLs of the authorization, token, userInfo, and jwks_uri endpoints.

12. Enter the issuer URL or authorization, token, userInfo, and jwks_uri endpoint URLs
from your IdP.

Note

You can use only port numbers 443 and 80 with discovery, auto-filled, and manually
entered URLs. User logins fail if your OIDC provider uses any nonstandard TCP ports.
The issuer URL must start with https://, and must not end with a / character. For
example, Salesforce uses this URL:
https://login.salesforce.com
The openid-configuration document associated with your issuer URL must
provide HTTPS URLs for the following values: authorization_endpoint,
token_endpoint, userinfo_endpoint, and jwks_uri. Similarly, when you choose
Manual input, you can only enter HTTPS URLs.

Identity providers 554

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://tools.ietf.org/html/rfc6749#section-3.3

Amazon Cognito Developer Guide

13. The OIDC claim sub is mapped to the user pool attribute Username by default. You can map
other OIDC claims to user pool attributes. Enter the OIDC claim, and select the corresponding
user pool attribute from the drop-down list. For example, the claim email is often mapped to
the user pool attribute Email.

14. Map additional attributes from your identity provider to your user pool. For more information,
see Specifying Identity Provider attribute mappings for your user pool.

15. Choose Create.

16. From the App clients menu, select an app client from the list and select Edit. To add the new
SAML identity provider to the app client, navigate to the Login pages tab and select Edit on
Managed login pages configuration.

17. Choose Save changes.

For more information on OIDC IdPs, see Using OIDC identity providers with a user pool.

Set up user sign-in with a SAML IdP

You can use federation for Amazon Cognito user pools to integrate with a SAML identity provider
(IdP). You supply a metadata document, either by uploading the file or by entering a metadata
document endpoint URL. For information about obtaining metadata documents for third-party
SAML IdPs, see Configuring your third-party SAML identity provider.

To configure a SAML 2.0 identity provider in your user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Social and external provider menu and select Add an identity provider.

5. Choose a SAML identity provider.

6. Enter Identifiers separated by commas. An identifier directs Amazon Cognito to check the
user sign-in email address, and then direct the user to the provider that corresponds to their
domain.

7. Choose Add sign-out flow if you want Amazon Cognito to send signed sign-out requests to
your provider when a user logs out. Configure your SAML 2.0 identity provider to send sign-out
responses to the https://mydomain.auth.us-east-1.amazoncognito.com/saml2/
logout endpoint that Amazon Cognito creates when you configure managed login. The
saml2/logout endpoint uses POST binding.

Identity providers 555

https://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-specifying-attribute-mapping.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Note

If you select this option and your SAML identity provider expects a signed logout
request, you also must configure the signing certificate provided by Amazon Cognito
with your SAML IdP.
The SAML IdP will process the signed logout request and logout your user from the
Amazon Cognito session.

8. Choose a Metadata document source. If your identity provider offers SAML metadata at a
public URL, you can choose Metadata document URL and enter that public URL. Otherwise,
choose Upload metadata document and select a metadata file you downloaded from your
provider earlier.

Note

If your provider has a public endpoint, we recommend that you enter a metadata
document URL, rather than uploading a file. If you use the URL, Amazon Cognito
refreshes metadata automatically. Typically, metadata refresh happens every 6 hours
or before the metadata expires, whichever is earlier.

9. Map attributes between your SAML provider and your app to map SAML provider attributes
to the user profile in your user pool. Include your user pool required attributes in your attribute
map.

For example, when you choose User pool attribute email, enter the SAML attribute name
as it appears in the SAML assertion from your identity provider. Your identity provider might
offer sample SAML assertions for reference. Some identity providers use simple names, such as
email, while others use URL-formatted attribute names similar to:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

10. Choose Create.

Note

If you see InvalidParameterException while creating a SAML IdP with an HTTPS
metadata endpoint URL, make sure that the metadata endpoint has SSL correctly set

Identity providers 556

Amazon Cognito Developer Guide

up and that there is a valid SSL certificate associated with it. One example of such an
exception would be "Error retrieving metadata from <metadata endpoint>".

To set up the SAML IdP to add a signing certificate

• To get the certificate containing the public key that the IdP uses to verify the signed logout
request, do the following:

1. Go to the Social and external providers menu of your user pool.

2. Select your SAML provider,

3. Choose View signing certificate.

For more information on SAML IdPs see Using SAML identity providers with a user pool.

Using social identity providers with a user pool

Your web and mobile app users can sign in through social identity providers (IdP) like Facebook,
Google, Amazon, and Apple. With the built-in hosted web UI, Amazon Cognito provides token
handling and management for all authenticated users. This way, your backend systems can
standardize on one set of user pool tokens. You must enable managed login to integrate with
supported social identity providers. When Amazon Cognito builds your managed login pages, it
creates OAuth 2.0 endpoints that Amazon Cognito and your OIDC and social IdPs use to exchange
information. For more information, see the Amazon Cognito user pools Auth API reference.

You can add a social IdP in the Amazon Web Services Management Console, or you can use the
Amazon CLI or Amazon Cognito API.

Note

Sign-in through a third party (federation) is available in Amazon Cognito user pools. This
feature is independent of federation through Amazon Cognito identity pools (federated
identities).

Topics

• Set up a social IdP developer account and application

• Configure your user pool with a social IdP

Social identity providers 557

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html

Amazon Cognito Developer Guide

• Test your social IdP configuration

Set up a social IdP developer account and application

Before you create a social IdP with Amazon Cognito, you must register your application with the
social IdP to receive a client ID and client secret.

Facebook

For the latest information about configuration of Meta developer accounts and authentication,
see Meta App Development.

How to register an application with Facebook/Meta

1. Create a developer account with Facebook.

2. Sign in with your Facebook credentials.

3. From the My Apps menu, choose Create New App.

4. Enter a name for your Facebook app, and then choose Create App ID.

5. On the left navigation bar, choose Settings, and then Basic.

6. Note the App ID and the App Secret. You will use them in the next section.

7. Choose + Add Platform from the bottom of the page.

8. Choose Website.

9. Under Website, enter the path to the sign-in page for your app into Site URL.

https://mydomain.auth.us-east-1.amazoncognito.com/login?
response_type=code&client_id=1example23456789&redirect_uri=https://
www.example.com

10. Choose Save changes.

11. Enter the path to the root of your user pool domain into App Domains.

https://mydomain.auth.us-east-1.amazoncognito.com

12. Choose Save changes.

13. From the navigation bar choose Add Product and choose Set up for the Facebook Login
product.

Social identity providers 558

https://developers.facebook.com/docs/development
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/

Amazon Cognito Developer Guide

14. From the navigation bar choose Facebook Login and then Settings.

Enter the path to the /oauth2/idpresponse endpoint for your user pool domain into
Valid OAuth Redirect URIs.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

15. Choose Save changes.

Login with Amazon

For the latest information about configuration of Login with Amazon developer accounts and
authentication, see Login with Amazon Documentation.

How to register an application with Login with Amazon

1. Create a developer account with Amazon.

2. Sign in with your Amazon credentials.

3. You need to create an Amazon security profile to receive the Amazon client ID and client
secret.

Choose Apps and Services from navigation bar at the top of the page and then choose
Login with Amazon.

4. Choose Create a Security Profile.

5. Enter a Security Profile Name, a Security Profile Description, and a Consent Privacy
Notice URL.

6. Choose Save.

7. Choose Client ID and Client Secret to show the client ID and secret. You will use them in
the next section.

8. Hover over the gear icon and choose Web Settings, and then choose Edit.

9. Enter your user pool domain into Allowed Origins.

https://mydomain.auth.us-east-1.amazoncognito.com

10. Enter your user pool domain with the /oauth2/idpresponse endpoint into Allowed
Return URLs.

Social identity providers 559

https://developer.amazon.com/docs/login-with-amazon/documentation-overview.html
https://developer.amazon.com/login-with-amazon
https://developer.amazon.com/lwa/sp/overview.html

Amazon Cognito Developer Guide

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

11. Choose Save.

Google

For more information about OAuth 2.0 in the Google Cloud platform, see Learn about
authentication & authorization in the Google Workspace for Developers documentation.

How to register an application with Google

1. Create a developer account with Google.

2. Sign in to the Google Cloud Platform console.

3. From the top navigation bar, choose Select a project. If you already have a project in the
Google platform, this menu displays your default project instead.

4. Select NEW PROJECT.

5. Enter a name for your product and then choose CREATE.

6. On the left navigation bar, choose APIs and Services, then Oauth consent screen.

7. Enter App information, an App domain, Authorized domains, and Developer contact
information. Your Authorized domains must include amazoncognito.com and the root
of your custom domain, for example example.com. Choose SAVE AND CONTINUE.

8. 1. Under Scopes, choose Add or remove scopes, and choose, at minimum, the following
OAuth scopes.

1. .../auth/userinfo.email

2. .../auth/userinfo.profile

3. openid

9. Under Test users, choose Add users. Enter your email address and any other authorized
test users, then choose SAVE AND CONTINUE.

10. Expand the left navigation bar again, and choose APIs and Services, then Credentials.

11. Choose CREATE CREDENTIALS, then OAuth client ID.

12. Choose an Application type and give your client a Name.

13. Under Authorized JavaScript origins, choose ADD URI. Enter your user pool domain.

Social identity providers 560

https://developers.google.com/workspace/guides/auth-overview
https://developers.google.com/workspace/guides/auth-overview
https://developers.google.com/identity
https://console.cloud.google.com/home/dashboard

Amazon Cognito Developer Guide

https://mydomain.auth.us-east-1.amazoncognito.com

14. Under Authorized redirect URIs, choose ADD URI. Enter the path to the /oauth2/
idpresponse endpoint of your user pool domain.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

15. Choose CREATE.

16. Securely store the values the Google displays under Your client ID and Your client secret.
Provide these values to Amazon Cognito when you add a Google IdP.

Sign in with Apple

For the most up-to-date information about setting up Sign in with Apple, see Configuring Your
Environment for Sign in with Apple in the Apple Developer documentation.

How to register an application with Sign in with Apple (SIWA)

1. Create a developer account with Apple.

2. Sign in with your Apple credentials.

3. On the left navigation bar, choose Certificates, Identifiers & Profiles.

4. On the left navigation bar, choose Identifiers.

5. On the Identifiers page, choose the + icon.

6. On the Register a New Identifier page, choose App IDs, and then choose Continue.

7. On the Select a type page, choose App, then choose Continue.

8. On the Register an App ID page, do the following:

1. Under Description, enter a description.

2. Under App ID Prefix, enter a Bundle ID. Make a note of the value under App ID Prefix.
You will use this value after you choose Apple as your identity provider in Configure your
user pool with a social IdP.

3. Under Capabilities, choose Sign In with Apple, and then choose Edit.

4. On the Sign in with Apple: App ID Configuration page, choose to set up the app as
either primary or grouped with other App IDs, and then choose Save.

5. Choose Continue.

Social identity providers 561

https://developer.apple.com/documentation/signinwithapple/configuring-your-environment-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/configuring-your-environment-for-sign-in-with-apple
https://developer.apple.com/programs/enroll/
https://developer.apple.com/account/#/welcome

Amazon Cognito Developer Guide

9. On the Confirm your App ID page, choose Register.

10. On the Identifiers page, choose the + icon.

11. On the Register a New Identifier page, choose Services IDs, and then choose Continue.

12. On the Register a Services ID page, do the following:

1. Under Description, type a description.

2. Under Identifier, type an identifier. Make a note of this Services ID as you will need this
value after you choose Apple as your identity provider in Configure your user pool with a
social IdP.

3. Choose Continue, then Register.

13. Choose the Services ID you just create from the Identifiers page.

1. Select Sign In with Apple, and then choose Configure.

2. On the Web Authentication Configuration page, select the app ID that you created
earlier as the Primary App ID.

3. Choose the + icon next to Website URLs.

4. Under Domains and subdomains, enter your user pool domain without an https://
prefix.

mydomain.auth.us-east-1.amazoncognito.com

5. Under Return URLs, enter the path to the /oauth2/idpresponse endpoint of your
user pool domain.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

6. Choose Next, and then Done. You don't need to verify the domain.

7. Choose Continue, and then choose Save.

14. On the left navigation bar, choose Keys.

15. On the Keys page, choose the + icon.

16. On the Register a New Key page, do the following:

1. Under Key Name, enter a key name.

2. Choose Sign In with Apple, and then choose Configure.

Social identity providers 562

Amazon Cognito Developer Guide

3. On the Configure Key page and select the app ID that you created earlier as the Primary
App ID. Choose Save.

4. Choose Continue, and then choose Register.

17. On the Download Your Key page, choose Download to download the private key and note
the Key ID shown, and then choose Done. You will need this private key and the Key ID
value shown on this page after you choose Apple as your identity provider in Configure
your user pool with a social IdP.

Configure your user pool with a social IdP

To configure a user pool social IdP with the Amazon Web Services Management Console

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list or create a user pool.

4. Choose the Social and external providers menu and then select Add an identity provider.

5. Choose a social IdP: Facebook, Google, Login with Amazon, or Sign in with Apple.

6. Choose from the following steps, based on your choice of social IdP:

• Google and Login with Amazon — Enter the app client ID and app client secret generated
in the previous section.

• Facebook — Enter the app client ID and app client secret generated in the previous section,
and then choose an API version (for example, version 2.12). We recommend that you choose
the latest possible version, as each Facebook API has a lifecycle and discontinuation date.
Facebook scopes and attributes can vary between API versions. We recommend that you test
your social identity log in with Facebook to make sure that federation works as you intend.

• Sign In with Apple — Enter the Services ID, Team ID, Key ID, and private key generated in
the previous section.

7. Enter the names of the Authorized scopes you want to use. Scopes define which user
attributes (such as name and email) you want to access with your app. For Facebook, these
should be separated by commas. For Google and Login with Amazon, they should be separated
by spaces. For Sign in with Apple, select the check boxes for the scopes you want access to.

Social identity providers 563

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Social identity provider Example scopes

Facebook public_profile, email

Google profile email openid

Login with Amazon profile postal_code

Sign in with Apple email name

Your app user is prompted to consent to providing these attributes to your app. For more
information about social provider scopes, see the documentation from Google, Facebook,
Login with Amazon, or Sign in with Apple.

With Sign in with Apple, the following are user scenarios where scopes might not be returned:

• An end user encounters failures after leaving Apple’s sign in page (can be from Internal
failures within Amazon Cognito or anything written by the developer)

• The service ID identifier is used across user pools and/or other authentication services

• A developer adds additional scopes after the end user has signed in before (no new
information is retrieved)

• A developer deletes the user and then the user signs in again without removing the app
from their Apple ID profile

8. Map attributes from your IdP to your user pool. For more information, see Specifying Identity
Provider Attribute Mappings for Your User Pool.

9. Choose Create.

10. From the App clients menu, select an app client from the list and select Edit. To add the new
social identity provider to the app client, navigate to the Login pages tab and select Edit on
Managed login pages configuration.

11. Choose Save changes.

Test your social IdP configuration

In your application, you must invoke a browser in the user's client so that they can sign in with
their social provider. Test sign-in with your social provider after you have completed the setup

Social identity providers 564

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-specifying-attribute-mapping.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-specifying-attribute-mapping.html

Amazon Cognito Developer Guide

procedures in the preceding sections. The following example URL loads the sign-in page for your
user pool with a prefix domain.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&client_id=1example23456789&redirect_uri=https://www.example.com

This link is the page that Amazon Cognito directs you to when you go to the App clients menu,
select an app client, navigate to the Login pages tab, and select View login page. For more
information about user pool domains, see Configuring a user pool domain. For more information
about app clients, including client IDs and callback URLs, see Application-specific settings with app
clients.

The following example link sets up silent redirect to a social provider from the Authorize endpoint
with an identity_provider query parameter. This URL bypasses interactive user pool sign-in
with managed login and goes directly to the IdP sign-in page.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/
authorize?identity_provider=Facebook|Google|LoginWithAmazon|
SignInWithApple&response_type=code&client_id=1example23456789&redirect_uri=https://
www.example.com

Using SAML identity providers with a user pool

You can choose to have your web and mobile app users sign in through a SAML identity provider
(IdP) like Microsoft Active Directory Federation Services (ADFS), or Shibboleth. You must choose a
SAML IdP which supports the SAML 2.0 standard.

With the managed login, Amazon Cognito authenticates local and third-party IdP users and
issues JSON web tokens (JWTs). With the tokens that Amazon Cognito issues, you can consolidate
multiple identity sources into a universal OpenID Connect (OIDC) standard across all of your
apps. Amazon Cognito can process SAML assertions from your third-party providers into that
SSO standard. You can create and manage a SAML IdP in the Amazon Web Services Management
Console, through the Amazon CLI, or with the Amazon Cognito user pools API. To create your first
SAML IdP in the Amazon Web Services Management Console, see Adding and managing SAML
identity providers in a user pool.

SAML providers 565

https://msdn.microsoft.com/en-us/library/bb897402.aspx
http://www.shibboleth.net/
http://saml.xml.org/saml-specifications

Amazon Cognito Developer Guide

Note

Federation with sign-in through a third-party IdP is a feature of Amazon Cognito user
pools. Amazon Cognito identity pools, sometimes called Amazon Cognito federated
identities, are an implementation of federation that you must set up separately in

SAML providers 566

Amazon Cognito Developer Guide

each identity pool. A user pool can be a third-party IdP to an identity pool. For more
information, see Amazon Cognito identity pools.

Quick reference for IdP configuration

You must configure your SAML IdP to accept request and send responses to your user pool. The
documentation for your SAML IdP will contain information about how to add your user pool as a
relying party or application for your SAML 2.0 IdP. The documentation that follows provides the
values that you must provide for the SP entity ID and assertion consumer service (ACS) URL.

User pool SAML values quick reference

SP entity ID

urn:amazon:cognito:sp:us-east-1_EXAMPLE

ACS URL

https://Your user pool domain/saml2/idpresponse

You must configure your user pool to support your identity provider. The high-level steps to add an
external SAML IdP are as follows.

1. Download SAML metadata from your IdP, or retrieve the URL to your metadata endpoint. See
Configuring your third-party SAML identity provider.

2. Add a new IdP to your user pool. Upload the SAML metadata or provide the metadata URL. See
Adding and managing SAML identity providers in a user pool.

3. Assign the IdP to your app clients. See Application-specific settings with app clients.

Topics

• Things to know about SAML IdPs in Amazon Cognito user pools

• Case sensitivity of SAML user names

• Configuring your third-party SAML identity provider

• Adding and managing SAML identity providers in a user pool

SAML providers 567

Amazon Cognito Developer Guide

• SAML session initiation in Amazon Cognito user pools

• Signing out SAML users with single sign-out

• SAML signing and encryption

• SAML identity provider names and identifiers

Things to know about SAML IdPs in Amazon Cognito user pools

Implementation of a SAML 2.0 IdP comes with some requirements and restrictions. Refer to
this section when you're implementing your IdP. You'll also find information that's useful for
troubleshooting errors during SAML federation with a user pool.

Amazon Cognito processes SAML assertions for you

Amazon Cognito user pools support SAML 2.0 federation with POST-binding endpoints. This
eliminates the need for your app to retrieve or parse SAML assertion responses, because the
user pool directly receives the SAML response from your IdP through a user agent. Your user
pool acts as a service provider (SP) on behalf of your application. Amazon Cognito supports SP-
initiated and IdP-initiated single sign-on (SSO) as described in sections 5.1.2 and 5.1.4 of the
SAML V2.0 Technical Overview.

Provide a valid IdP signing certificate

The signing certificate in your SAML provider metadata must not be expired when you configure
the SAML IdP in your user pool.

User pools support multiple signing certificates

When your SAML IdP includes more than one signing certificate in SAML metadata, at sign-in
your user pool determines that the SAML assertion is valid if it matches any certificate in the
SAML metadata. Each signing certificate must be no longer than 4,096 characters in length.

Maintain the relay state parameter

Amazon Cognito and your SAML IdP maintain session information with a relayState
parameter.

1. Amazon Cognito supports relayState values greater than 80 bytes. While SAML
specifications state that the relayState value "must not exceed 80 bytes in length”, current
industry practice often deviates from this behavior. As a consequence, rejecting relayState
values greater than 80 bytes will break many standard SAML provider integrations.

SAML providers 568

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html

Amazon Cognito Developer Guide

2. The relayState token is an opaque reference to state information maintained by Amazon
Cognito. Amazon Cognito doesn't guarantee the contents of the relayState parameter.
Don't parse its contents such that your app depends on the result. For more information, see
the SAML 2.0 specification.

Identify the ACS endpoint

Your SAML identity provider requires that you set an assertion consumer endpoint. Your
IdP redirects your users to this endpoint with their SAML assertion. Configure the following
endpoint in your user pool domain for SAML 2.0 POST binding in your SAML identity provider.

https://Your user pool domain/saml2/idpresponse
With an Amazon Cognito domain:
https://mydomain.auth.us-east-1.amazoncognito.com/saml2/idpresponse
With a custom domain:
https://auth.example.com/saml2/idpresponse

See Configuring a user pool domain for more information about user pool domains.

No replayed assertions

You can't repeat, or replay, a SAML assertion to your Amazon Cognito saml2/idpresponse
endpoint. A replayed SAML assertion has an assertion ID that duplicates the ID of an earlier IdP
response.

User pool ID is SP entity ID

You must provide your IdP with your user pool ID in the service provider (SP) urn, also called
the audience URI or SP entity ID. The audience URI for your user pool has the following format.

urn:amazon:cognito:sp:us-east-1_EXAMPLE

You can find your user pool ID under User pool overview in the Amazon Cognito console.

Map all required attributes

Configure your SAML IdP to provide values for any attributes that you set as required in your
user pool. For example, email is a common required attribute for user pools. Before your users
can sign in, your SAML IdP assertions must include a claim that you map to the User pool
attribute email. For more information about attribute mapping, see Mapping IdP attributes to
profiles and tokens.

SAML providers 569

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Assertion format has specific requirements

Your SAML IdP must include the following claims in the SAML assertion.

• A NameID claim. Amazon Cognito associates a SAML assertion with the destination user by
NameID. If NameID changes, Amazon Cognito considers the assertion to be for a new user.
The attribute that you set to NameID in your IdP configuration must have a persistent value.
To assign SAML users to a consistent user profile in your user pool, assign your NameID claim
from an attribute with a value that doesn't change.

<saml2:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:persistent">
 carlos
</saml2:NameID>

A Format in your IdP NameID claim of urn:oasis:names:tc:SAML:1.1:nameid-
format:persistent indicates that your IdP is passing an unchanging value.
Amazon Cognito doesn't require this format declaration, and assigns a format of
urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified if your IdP doesn't
specify a format of the NameID claim. This behavior complies with section 2.2.2 Complex Type
NameIDType, of the SAML 2.0 specification.

• An AudienceRestriction claim with an Audience value that sets your user pool SP entity
ID as the target of the response.

<saml:AudienceRestriction>
 <saml:Audience> urn:amazon:cognito:sp:us-east-1_EXAMPLE
</saml:AudienceRestriction>

• For SP-initiated single sign-on, a Response element with an InResponseTo value of the
original SAML request ID.

<saml2p:Response Destination="https://mydomain.auth.us-east-1.amazoncognito.com/
saml2/idpresponse" ID="id123" InResponseTo="_dd0a3436-bc64-4679-
a0c2-cb4454f04184" IssueInstant="Date-time stamp" Version="2.0"
 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol" xmlns:xs="http://
www.w3.org/2001/XMLSchema">

Note

IdP-initiated SAML assertions must not contain an InResponseTo value.

SAML providers 570

https://groups.oasis-open.org/higherlogic/ws/public/download/35711/sstc-saml-core-errata-2.0-wd-06-diff.pdf/latest

Amazon Cognito Developer Guide

• A SubjectConfirmationData element with a Recipient value of your user pool saml2/
idpresponse endpoint and, for SP-initiated SAML, an InResponseTo value that matches
the original SAML request ID.

<saml2:SubjectConfirmationData InResponseTo="_dd0a3436-bc64-4679-a0c2-
cb4454f04184" NotOnOrAfter="Date-time stamp" Recipient="https://mydomain.auth.us-
east-1.amazoncognito.com/saml2/idpresponse"/>

SP-initiated sign-in requests

When the Authorize endpoint redirects your user to your IdP sign-in page, Amazon Cognito
includes a SAML request in a URL parameter of the HTTP GET request. A SAML request contains
information about your user pool, including your ACS endpoint. You can optionally apply a
cryptographic signature to these requests.

Sign requests and encrypt responses

Every user pool with a SAML provider generates an asymmetric key pair and signing certificate
for a digital signature that Amazon Cognito assigns to SAML requests. Every external SAML IdP
that you configure to support encrypted SAML response causes Amazon Cognito to generate a
new key pair and encryption certificate for that provider. To view and download the certificates
with the public key, choose your IdP in the Social and external providers menu in the Amazon
Cognito console.

To establish trust with SAML requests from your user pool, provide your IdP with a copy of your
user pool SAML 2.0 signing certificate. Your IdP might ignore SAML requests that your user pool
signed if you don’t configure the IdP to accept signed requests.

1. Amazon Cognito applies a digital signature to SAML requests that your user passes to your
IdP. Your user pool signs all single logout (SLO) requests, and you can configure your user
pool to sign single sign-on (SSO) requests for any SAML external IdP. When you provide a
copy of the certificate, your IdP can verify the integrity of your users' SAML requests.

2. Your SAML IdP can encrypt SAML responses with the encryption certificate. When you
configure an IdP with SAML encryption, your IdP must only send encrypted responses.

Encode non-alphanumeric characters

Amazon Cognito doesn't accept 4-byte UTF-8 characters like # or # that your IdP passes as an
attribute value. You can encode the character to Base64, pass it as text, and then decode it in
your app.

In the following example, the attribute claim will not be accepted:

SAML providers 571

Amazon Cognito Developer Guide

<saml2:Attribute Name="Name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xsd:string">#</saml2:AttributeValue>
</saml2:Attribute>

In contrast to the preceding example, the following attribute claim will be accepted:

<saml2:Attribute Name="Name" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:unspecified">
 <saml2:AttributeValue xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="xsd:string">8J+YkA==</saml2:AttributeValue>
</saml2:Attribute>

Metadata endpoint must have valid transport-layer security

If you see InvalidParameterException while creating a SAML IdP with an HTTPS metadata
endpoint URL, for example, "Error retrieving metadata from <metadata endpoint>," make
sure that the metadata endpoint has SSL correctly set up and that there is a valid SSL certificate
associated with it. For more information about validating certificates, see What Is An SSL/TLS
Certificate?.

Metadata endpoint must be on standard TCP port for HTTP or HTTPS

Amazon Cognito only accepts metadata URLs for SAML providers on the standard TCP
ports 80 for HTTP and 443 for HTTPS. As a security best practice, host SAML metadata
at a TLS-encrypted URL with the https:// prefix. Enter metadata URLs in the format
http://www.example.com/saml2/metadata.xml or https://www.example.com/
saml2/metadata.xml. The Amazon Cognito console accepts metadata URLs only with
the https:// prefix. You can also configure IdP metadata with CreateIdentityProvider and
UpdateIdentityProvider.

App clients with IdP-initiated SAML can only sign in with SAML

When you activate support for a SAML 2.0 IdP that supports IdP-initiated sign in an app client,
you can only add other SAML 2.0 IdPs to that app client. You're prevented from adding the
user directory in the user pool and all non-SAML external identity providers to an app client
configured in this way.

SAML providers 572

https://www.amazonaws.cn/what-is/ssl-certificate/
https://www.amazonaws.cn/what-is/ssl-certificate/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html

Amazon Cognito Developer Guide

Logout responses must use POST binding

The /saml2/logout endpoint accepts LogoutResponse as HTTP POST requests. User pools
don't accept logout responses with HTTP GET binding.

Metadata Signing Certificate Rotation

Amazon Cognito caches SAML metadata for up to six hours when you provide metadata with
a URL. When performing any metadata signing certificate rotation, configure your metadata
source to publish both the original and new certificates for at least six hours. When Amazon
Cognito refreshes the cache from the metadata URL, it treats each certificate as valid and your
SAML IdP can start signing SAML assertions with the new certificate. After this period has
elapsed, you can remove the original certificate from the published metadata.

Case sensitivity of SAML user names

When a federated user attempts to sign in, the SAML identity provider (IdP) passes a unique
NameId to Amazon Cognito in the user's SAML assertion. Amazon Cognito identifies a SAML-
federated user by their NameId claim. Regardless of the case sensitivity settings of your user pool,
Amazon Cognito recognizes a returning federated user from a SAML IdP when they pass their
unique and case-sensitive NameId claim. If you map an attribute like email to NameId, and your
user changes their email address, they can't sign in to your app.

Map NameId in your SAML assertions from an IdP attribute that has values that don't change.

For example, Carlos has a user profile in your case-insensitive user pool from an Active
Directory Federation Services (ADFS) SAML assertion that passed a NameId value of
Carlos@example.com. The next time Carlos attempts to sign in, your ADFS IdP passes a NameId
value of carlos@example.com. Because NameId must be an exact case match, the sign-in doesn't
succeed.

If your users can't log in after their NameID changes, delete their user profiles from your user pool.
Amazon Cognito will create new user profiles the next time they sign in.

Topics

• Configuring your third-party SAML identity provider

• Adding and managing SAML identity providers in a user pool

• SAML session initiation in Amazon Cognito user pools

SAML providers 573

Amazon Cognito Developer Guide

• Signing out SAML users with single sign-out

• SAML signing and encryption

• SAML identity provider names and identifiers

Configuring your third-party SAML identity provider

When you want to add a SAML identity provider (IdP) to your user pool, you must make some
configuration updates in the management interface of your IdP. This section describes how to
format the values that you must provide to your IdP. You can also learn about how to retrieve the
static or active-URL metadata document that identifies the IdP and its SAML claims to your user
pool.

To configure third-party SAML 2.0 identity provider (IdP) solutions to work with federation
for Amazon Cognito user pools, you must configure your SAML IdP to redirect to the
following Assertion Consumer Service (ACS) URL: https://mydomain.auth.us-
east-1.amazoncognito.com/saml2/idpresponse. If your user pool has an Amazon Cognito
domain, you can find your user pool domain path in the Domain menu of your user pool in the
Amazon Cognito console.

Some SAML IdPs require that you provide the urn, also called the audience URI or SP entity ID, in
the form urn:amazon:cognito:sp:us-east-1_EXAMPLE. You can find your user pool ID under
User pool overview in the Amazon Cognito console.

You must also configure your SAML IdP to provide values for any attributes that you designated as
required attributes in your user pool. Typically, email is a required attribute for user pools, in which
case the SAML IdP must provide some form of an email claim in their SAML assertion, and you
must map the claim to the attribute for that provider.

The following configuration information for third-party SAML 2.0 IdP solutions is a good place
to start setting up federation with Amazon Cognito user pools. For the most current information,
consult your provider's documentation directly.

To sign SAML requests, you must configure your IdP to trust requests signed by your user pool
signing certificate. To accept encrypted SAML responses, you must configure your IdP to encrypt all
SAML responses to your user pool. Your provider will have documentation about configuring these
features. For an example from Microsoft, see Configure Microsoft Entra SAML token encryption.

SAML providers 574

https://console.amazonaws.cn/cognito/home
https://learn.microsoft.com/en-us/entra/identity/enterprise-apps/howto-saml-token-encryption

Amazon Cognito Developer Guide

Note

Amazon Cognito only requires your identity provider metadata document. Your provider
might also offer customized configuration information for SAML 2.0 federation with IAM
or Amazon IAM Identity Center. To learn how to set up Amazon Cognito integration, look
for general directions for retrieving the metadata document and manage the rest of the
configuration in your user pool.

Solution More information

Microsoft Entra ID Federation Metadata

Okta How to Download the IdP Metadata and SAML
Signing Certificates for a SAML App Integrati
on

Auth0 Configure Auth0 as SAML Identity Provider

Ping Identity (PingFederate) Exporting SAML metadata from PingFederate

JumpCloud SAML Configuration Notes

SecureAuth SAML application integration

Adding and managing SAML identity providers in a user pool

After you configure your identity provider to work with Amazon Cognito, you can add it to your
user pools and app clients. The following procedures demonstrate how to create, modify, and
delete SAML providers in an Amazon Cognito user pool.

Amazon Web Services Management Console

You can use the Amazon Web Services Management Console to create and delete SAML identity
providers (IdPs).

Before you create a SAML IdP, you must have the SAML metadata document that you get from
the third-party IdP. For instructions on how to get or generate the required SAML metadata
document, see Configuring your third-party SAML identity provider.

SAML providers 575

https://learn.microsoft.com/en-us/entra/identity-platform/federation-metadata
https://support.okta.com/help/s/article/Location-to-download-Okta-IDP-XML-metadata-for-a-SAML-app-in-the-new-Admin-User-Interface
https://support.okta.com/help/s/article/Location-to-download-Okta-IDP-XML-metadata-for-a-SAML-app-in-the-new-Admin-User-Interface
https://support.okta.com/help/s/article/Location-to-download-Okta-IDP-XML-metadata-for-a-SAML-app-in-the-new-Admin-User-Interface
https://auth0.com/docs/authenticate/protocols/saml/saml-sso-integrations/configure-auth0-saml-identity-provider
https://docs.pingidentity.com/integrations/contentful/configuring_single_sign-on/pf_contentful_integration_exporting_saml_metadata_from_pf.html
https://jumpcloud.com/support/saml-configuration-notes
https://docs.secureauth.com/2104/en/saml-application-integration.html

Amazon Cognito Developer Guide

To configure a SAML 2.0 IdP in your user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Social and external providers menu and then select Add an identity provider.

5. Choose a SAML IdP.

6. Enter a Provider name. You can pass this friendly name in an identity_provider
request parameter to the Authorize endpoint.

7. Enter Identifiers separated by commas. An identifier tells Amazon Cognito it should check
the email address a user enters when they sign in, and then direct them to the provider
that corresponds to their domain.

8. Choose Add sign-out flow if you want Amazon Cognito to send signed sign-out requests to
your provider when a user logs out. You must configure your SAML 2.0 IdP to send sign-out
responses to the https://mydomain.auth.us-east-1.amazoncognito.com/saml2/
logout endpoint that is created when you configure managed login. The saml2/logout
endpoint uses POST binding.

Note

If this option is selected and your SAML IdP expects a signed logout request, you
must also provide your SAML IdP with the signing certificate from your user pool.
The SAML IdP will process the signed logout request and sign out your user from
the Amazon Cognito session.

9. Choose your IdP-initiated SAML sign-in configuration. As a security best practice, choose
Accept SP-initiated SAML assertions only. If you have prepared your environment to
securely accept unsolicited SAML sign-in sessions, choose Accept SP-initiated and IdP-
initiated SAML assertions. For more information, see SAML session initiation in Amazon
Cognito user pools.

10. Choose a Metadata document source. If your IdP offers SAML metadata at a public URL,
you can choose Metadata document URL and enter that public URL. Otherwise, choose
Upload metadata document and select a metadata file you downloaded from your
provider earlier.

SAML providers 576

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Note

We recommend that you enter a metadata document URL if your provider has
a public endpoint instead of uploading a file. Amazon Cognito automatically
refreshes metadata from the metadata URL. Typically, metadata refresh happens
every 6 hours or before the metadata expires, whichever is earlier.

11. Map attributes between your SAML provider and your user pool to map SAML provider
attributes to the user profile in your user pool. Include your user pool required attributes in
your attribute map.

For example, when you choose User pool attribute email, enter the SAML attribute
name as it appears in the SAML assertion from your IdP. If your IdP offers sample SAML
assertions, you can use these sample assertions to help you to find the name. Some IdPs
use simple names, such as email, while others use names like the following.

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

12. Choose Create.

API/CLI

Use the following commands to create and manage a SAML identity provider (IdP).

To create an IdP and upload a metadata document

• Amazon CLI: aws cognito-idp create-identity-provider

Example with metadata file: aws cognito-idp create-identity-provider --user-
pool-id us-east-1_EXAMPLE --provider-name=SAML_provider_1 --provider-
type SAML --provider-details file:///details.json --attribute-
mapping email=http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
emailaddress

Where details.json contains:

"ProviderDetails": {
 "MetadataFile": "<SAML metadata XML>",
 "IDPSignout" : "true",

SAML providers 577

Amazon Cognito Developer Guide

 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"
}

Note

If the <SAML metadata XML> contains any instances of the character ", you must
add \ as an escape character: \".

Example with metadata URL: aws cognito-idp create-identity-provider
--user-pool-id us-east-1_EXAMPLE --provider-name=SAML_provider_1
--provider-type SAML --provider-details MetadataURL=https://
myidp.example.com/sso/saml/metadata --attribute-mapping email=http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

• Amazon API: CreateIdentityProvider

To upload a new metadata document for an IdP

• Amazon CLI: aws cognito-idp update-identity-provider

Example with metadata file: aws cognito-idp update-identity-provider --user-
pool-id us-east-1_EXAMPLE --provider-name=SAML_provider_1 --provider-
details file:///details.json --attribute-mapping email=http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

Where details.json contains:

"ProviderDetails": {
 "MetadataFile": "<SAML metadata XML>",
 "IDPSignout" : "true",
 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"
}

SAML providers 578

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html

Amazon Cognito Developer Guide

Note

If the <SAML metadata XML> contains any instances of the character ", you must
add \ as an escape character: \".

Example with metadata URL: aws cognito-idp update-identity-provider --user-
pool-id us-east-1_EXAMPLE --provider-name=SAML_provider_1 --provider-
details MetadataURL=https://myidp.example.com/sso/saml/metadata
--attribute-mapping email=http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress

• Amazon API: UpdateIdentityProvider

To get information about a specific IdP

• Amazon CLI: aws cognito-idp describe-identity-provider

aws cognito-idp describe-identity-provider --user-pool-id us-
east-1_EXAMPLE --provider-name=SAML_provider_1

• Amazon API: DescribeIdentityProvider

To list information about all IdPs

• Amazon CLI: aws cognito-idp list-identity-providers

Example: aws cognito-idp list-identity-providers --user-pool-id us-
east-1_EXAMPLE --max-results 3

• Amazon API: ListIdentityProviders

To delete an IdP

• Amazon CLI: aws cognito-idp delete-identity-provider

aws cognito-idp delete-identity-provider --user-pool-id us-
east-1_EXAMPLE --provider-name=SAML_provider_1

• Amazon API: DeleteIdentityProvider

SAML providers 579

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListIdentityProviders.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteIdentityProvider.html

Amazon Cognito Developer Guide

To set up the SAML IdP to add a user pool as a relying party

• The user pools service provider URN is: urn:amazon:cognito:sp:us-east-1_EXAMPLE.
Amazon Cognito requires an audience restriction value that matches this URN in the SAML
response. Configure your IdP to use the following POST binding endpoint for the IdP-to-SP
response message.

https://mydomain.auth.us-east-1.amazoncognito.com/saml2/idpresponse

• Your SAML IdP must populate NameID and any required attributes for your user pool in the
SAML assertion. NameID is used for uniquely identifying your SAML federated user in the user
pool. Your IdP must pass each user’s SAML name ID in a consistent, case-sensitive format. Any
variation in the value of a user's name ID creates a new user profile.

To provide a signing certificate to your SAML 2.0 IDP

• To download a copy of the the public key from Amazon Cognito that your IdP can use to validate
SAML logout requests, choose the Social and external providers menu of your user pool, select
your IdP, and under View signing certificate, select Download as .crt.

You can delete any SAML provider you have set up in your user pool with the Amazon Cognito
console.

To delete a SAML provider

1. Sign in to the Amazon Cognito console.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Social and external providers menu.

4. Select the radio button next to the SAML IdPs you wish to delete.

5. When you are prompted to Delete identity provider, enter the name of the SAML provider to
confirm deletion, and then choose Delete.

SAML session initiation in Amazon Cognito user pools

Amazon Cognito supports service provider-initiated (SP-initiated) single sign-on (SSO) and IdP-
initiated SSO. As a best security practice, implement SP-initiated SSO in your user pool. Section
5.1.2 of the SAML V2.0 Technical Overview describes SP-initiated SSO. Amazon Cognito is the

SAML providers 580

https://console.amazonaws.cn/cognito/home
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html%235.1.2.SP-Initiated%2520SSO:%2520%2520Redirect/POST%2520Bindings%7Coutline

Amazon Cognito Developer Guide

identity provider (IdP) to your app. The app is the service provider (SP) that retrieves tokens for
authenticated users. However, when you use a third-party IdP to authenticate users, Amazon
Cognito is the SP. When your SAML 2.0 users authenticate with an SP-initiated flow, they must
always first make a request to Amazon Cognito and redirect to the IdP for authentication.

For some enterprise use cases, access to internal applications starts at a bookmark on a dashboard
hosted by the enterprise IdP. When a user selects a bookmark, the IdP generates a SAML response
and sends it to the SP to authenticate the user with the application.

You can configure a SAML IdP in your user pool to support IdP-initiated SSO. When you support
IdP-initiated authentication, Amazon Cognito can't verify that it has solicited the SAML response
that it receives because Amazon Cognito doesn't initiate authentication with a SAML request. In
SP-initiated SSO, Amazon Cognito sets state parameters that validate a SAML response against
the original request. With SP-initiated sign-in you can also guard against cross-site request forgery
(CSRF).

Topics

• Implement SP-initated SAML sign-in

• Implement IdP-initiated SAML sign-in

Implement SP-initated SAML sign-in

As a best practice, implement service-provider-initiated (SP-initiated) sign-in to your user pool.
Amazon Cognito initiates your user's session and redirects them to your IdP. With this method, you
have the greatest control over who presents sign-in requests. You can also permit IdP-initiated
sign-in under certain conditions.

The following process shows how users complete SP-initiated sign in to your user pool through a
SAML provider.

SAML providers 581

Amazon Cognito Developer Guide

1. Your user enters their email address at a sign-in page. To determine your user’s redirect to
their IdP, you can collect their email address in a custom-built application or invoke managed
login in web view.

You can configure your managed login pages to display a list of IdPs or to prompt for an email
address and match it to the identifier of your SAML IdP. To prompt for an email address, edit

SAML providers 582

Amazon Cognito Developer Guide

your managed login branding style and in Foundation, locate Authentication behavior and
under Provider display, set Display style to Domain search input.

2. Your app invokes your user pool redirect endpoint and requests a session with the client ID
that corresponds to the app and the IdP ID that corresponds to the user.

3. Amazon Cognito redirects your user to the IdP with a SAML request, optionally signed, in an
AuthnRequest element.

4. The IdP authenticates the user interactively, or with a remembered session in a browser cookie.

5. The IdP redirects your user to your user pool SAML response endpoint with the optionally-
encrypted SAML assertion in their POST payload.

Note

Amazon Cognito cancels sessions that don't receive a response within 5 minutes, and
redirects the user to managed login. When your user experiences this outcome, they
receive a Something went wrong error message.

6. After it verifies the SAML assertion and maps user attributes from the claims in the response,
Amazon Cognito internally creates or updates the user's profile in the user pool. Typically, your
user pool returns an authorization code to your user's browser session.

7. Your user presents their authorization code to your app, which exchanges the code for JSON
web tokens (JWTs).

8. Your app accepts and processes your user's ID token as authentication, generates authorized
requests to resources with their access token, and stores their refresh token.

When a user authenticates and receives an authorization code grant, the user pool returns ID,
access, and refresh tokens. The ID token is a authentication object for OIDC-based identity
management. The access token is an authorization object with OAuth 2.0 scopes. The refresh token
is an object that generates new ID and access tokens when your user's current tokens have expired.
You can configure the duration of users' tokens in your user pool app client.

You can also choose the duration of refresh tokens. After a user's refresh token expires, they must
sign in again. If they authenticated through a SAML IdP, your users' session duration is set by the
expiration of their tokens, not the expiration of their session with their IdP. Your app must store
each user's refresh token and renew their session when it expires. Managed login maintains user
sessions in a browser cookie that's valid for 1 hour.

SAML providers 583

https://oauth.net/2/

Amazon Cognito Developer Guide

Implement IdP-initiated SAML sign-in

When you configure your identity provider for IdP-initiated SAML 2.0 sign-in, you can present
SAML assertions to the saml2/idpresponse endpoint in your user pool domain without the need
to initiate the session at the Authorize endpoint. A user pool with this configuration accepts IdP-
initiated SAML assertions from a user pool external identity provider that the requested app client
supports.

1. A user requests SAML sign-in with your application.

2. Your application invokes a browser or redirects the user to the sign-in page for their SAML
provider.

3. The IdP authenticates the user interactively, or with a remembered session in a browser cookie.

4. The IdP redirects your user to your application with the SAML assertion, or response, in their
POST body.

5. Your application adds the SAML assertion to the POST body of a request to your user pool
saml2/idpresponse endpoint.

6. Amazon Cognito issues an authorization code to your user.

SAML providers 584

Amazon Cognito Developer Guide

7. Your user presents their authorization code to your app, which exchanges the code for JSON
web tokens (JWTs).

8. Your application accepts and processes your user's ID token as authentication, generates
authorized requests to resources with their access token, and stores their refresh token.

The following steps describe the overall process to configure and sign in with an IdP-initiated SAML
2.0 provider.

1. Create or designate a user pool and app client.

2. Create a SAML 2.0 IdP in your user pool.

3. Configure your IdP to support IdP initiation. IdP-initiated SAML introduces security
considerations that other SSO providers aren’t subject to. Because of this, you can’t add non-
SAML IdPs, including the user pool itself, to any app client that uses a SAML provider with IdP-
initiated sign-in.

4. Associate your IdP-initiated SAML provider with an app client in your user pool.

5. Direct your user to the sign-in page for your SAML IdP and retrieve a SAML assertion.

6. Direct your user to your user pool saml2/idpresponse endpoint with their SAML assertion.

7. Receive JSON web tokens (JWTs).

To accept unsolicited SAML assertions in your user pool, you must consider its effect on your app
security. Request spoofing and CSRF attempts are likely when you accept IdP-initiated requests.
Although your user pool can't verify an IdP-initiated sign-in session, Amazon Cognito validates your
request parameters and SAML assertions.

Additionally, your SAML assertion must not contain an InResponseTo claim and must have been
issued within the previous 6 minutes.

You must submit requests with IdP-initiated SAML to your /saml2/idpresponse. For SP-initiated
and managed login authorization requests, you must provide parameters that identify your
requested app client, scopes, redirect URI, and other details as query string parameters in HTTP
GET requests. For IdP-initiated SAML assertions, however, the details of your request must be
formatted as a RelayState parameter in the body of an HTTP POST request. The request body
must also contain your SAML assertion as a SAMLResponse parameter.

The following is an example request and response for an IdP-initiated SAML provider.

SAML providers 585

Amazon Cognito Developer Guide

POST /saml2/idpresponse HTTP/1.1
User-Agent: USER_AGENT
Accept: */*
Host: example.auth.us-east-1.amazoncognito.com
Content-Type: application/x-www-form-urlencoded

SAMLResponse=[Base64-encoded SAML assertion]&RelayState=identity_provider
%3DMySAMLIdP%26client_id%3D1example23456789%26redirect_uri%3Dhttps%3A%2F
%2Fwww.example.com%26response_type%3Dcode%26scope%3Demail%2Bopenid%2Bphone

HTTP/1.1 302 Found
Date: Wed, 06 Dec 2023 00:15:29 GMT
Content-Length: 0
x-amz-cognito-request-id: 8aba6eb5-fb54-4bc6-9368-c3878434f0fb
Location: https://www.example.com?code=[Authorization code]

Amazon Web Services Management Console

To configure an IdP for IdP-initiated SAML

1. Create a user pool, app client, and SAML identity provider.

2. Disassociate all social and OIDC identity providers from your app client, if any are
associated.

3. Navigate to the Social and external providers menu of your user pool.

4. Edit or add a SAML provider.

5. Under IdP-initiated SAML sign-in, choose Accept SP-initiated and and IdP-initiated
SAML assertions.

6. Choose Save changes.

API/CLI

To configure an IdP for IdP-initiated SAML

Configure IdP-initiated SAML with the IDPInit parameter in a CreateIdentityProvider or
UpdateIdentityProvider API request. The following is an example ProviderDetails of an IdP
that supports IdP-initiated SAML.

"ProviderDetails": {
 "MetadataURL" : "https://myidp.example.com/saml/metadata",

SAML providers 586

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-configuring-app-integration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html

Amazon Cognito Developer Guide

 "IDPSignout" : "true",
 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"
}

Signing out SAML users with single sign-out

Amazon Cognito supports SAML 2.0 single logout (SLO. With SLO, your application can sign out
users from their SAML identity providers (IdPs) when they sign out from your user pool. This way,
when users want to sign in to your application again, they must authenticate with their SAML IdP.
Otherwise, they might have IdP or user pool browser cookies in place that pass them through to
your application without the requirement that they provide credentials.

When you configure your SAML IdP to support Sign-out flow, Amazon Cognito redirects your user
with a signed SAML logout request to your IdP. Amazon Cognito determines the redirect location
from the SingleLogoutService URL in your IdP metadata. Amazon Cognito signs the sign-out
request with your user pool signing certificate.

SAML providers 587

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0-cd-02.html%235.3.Single%2520Logout%2520Profile%7Coutline

Amazon Cognito Developer Guide

When you direct a user with a SAML session to your user pool /logout endpoint, Amazon Cognito
redirects your SAML user with the following request to the SLO endpoint that's specified in the IdP
metadata.

https://[SingleLogoutService endpoint]?
SAMLRequest=[encoded SAML request]&
RelayState=[RelayState]&
SigAlg=http://www.w3.org/2001/04/xmldsig-more#rsa-sha256&
Signature=[User pool RSA signature]

SAML providers 588

Amazon Cognito Developer Guide

Your user then returns to your saml2/logout endpoint with a LogoutResponse from their
IdP. Your IdP must send the LogoutResponse in an HTTP POST request. Amazon Cognito then
redirects them to the redirect destination from their initial sign-out request.

Your SAML provider might send a LogoutResponse with more than one AuthnStatement in
it. The sessionIndex in the first AuthnStatement in a response of this type must match the
sessionIndex in the SAML response that originally authenticated the user. If the sessionIndex
is in any other AuthnStatement, Amazon Cognito won’t recognize the session and your user
won’t be signed out.

Amazon Web Services Management Console

To configure SAML sign-out

1. Create a user pool, app client, and SAML IdP.

2. When you create or edit your SAML identity provider, under Identity provider information,
check the box with the title Add sign-out flow.

3. From the Social and external providers menu of your user pool, choose your IdP and
locate the Signing certificate.

4. Choose Download as .crt.

5. Configure your SAML provider to support SAML single logout and request signing, and
upload the user pool signing certificate. Your IdP must redirect to /saml2/logout in your
user pool domain.

API/CLI

To configure SAML sign-out

Configure single logout with the IDPSignout parameter of a CreateIdentityProvider or
UpdateIdentityProvider API request. The following is an example ProviderDetails of an IdP
that supports SAML single logout.

"ProviderDetails": {
 "MetadataURL" : "https://myidp.example.com/saml/metadata",
 "IDPSignout" : "true",,
 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"

SAML providers 589

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-configuring-app-integration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html

Amazon Cognito Developer Guide

}

SAML signing and encryption

SAML 2.0 sign-in is built around the user of an application as a bearer of requests and responses in
their authentication flow. You might want to ensure that users aren't reading or modifying these
SAML documents in transit. To accomplish this, add SAML signing and encryption to the SAML
identity providers (IdPs) in your user pool. With SAML signing, your user pools adds a signature to
SAML sign-in and sign-out requests. With your user pool public key, your IdP can verify that it's
receiving unmodified SAML requests. Then, when your IdP responds and passes SAML assertions to
users' browser sessions, the IdP can encrypt that response so that the user can't inspect their own
attributes and entitlements.

With SAML signing and encryption, all cryptographic operations during user pool SAML operations
must generate signatures and ciphertext with user-pool-provided keys that Amazon Cognito
generates. Currently, you can't configure a user pool to sign requests or accept encrypted
assertions with an external key.

Note

Your user pool certificates are valid for 10 years. Once per year, Amazon Cognito generates
new signing and encryption certificates for your user pool. Amazon Cognito returns the
most recent certificate when you request the signing certificate, and signs requests with
the most recent signing certificate. Your IdP can encrypt SAML assertions with any user
pool encryption certificate that isn’t expired. Your previous certificates continue to be valid
for their entire duration and the public key doesn't change between certificates. As a best
practice, update the certificate in your provider configuration annually.

Topics

• Accepting encrypted SAML responses from your IdP

• Signing SAML requests

Accepting encrypted SAML responses from your IdP

Amazon Cognito and your IdP can establish confidentiality in SAML responses when users sign
in and sign out. Amazon Cognito assigns a public-private RSA key pair and a certificate to each

SAML providers 590

Amazon Cognito Developer Guide

external SAML provider that you configure in your user pool. When you enable response encryption
for your user pool SAML provider, you must upload your certificate to an IdP that supports
encrypted SAML responses. Your user pool connection to your SAML IdP isn’t functional before
your IdP begins to encrypt all SAML assertions with the provided key.

The following is an overview of the flow of an encrypted SAML sign-in.

1. Your user starts sign-in and chooses their SAML IdP.

2. Your user pool Authorize endpoint redirects your user to their SAML IdP with a SAML sign-in
request. Your user pool can optionally accompany this request with a signature that enables
integrity verification by the IdP. When you want to sign SAML requests, you must configure
your IdP to accept requests that your user pool has signed with the public key in the signing
certificate.

3. The SAML IdP signs in your user and generates a SAML response. The IdP encrypts the response
with the public key and redirects your user to your user pool /saml2/idpresponse endpoint.
The IdP must encrypt the response as defined by the SAML 2.0 specification. For more
information, see Element <EncryptedAssertion> in Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0.

4. Your user pool decrypts the ciphertext in the SAML response with the private key and signs in
your user.

Important

When you enable response encryption for a SAML IdP in your user pool, your IdP must
encrypt all responses with a public key that's specific to the provider. Amazon Cognito
doesn't accept unencrypted SAML responses from a SAML external IdP that you configure
to support encryption.

Any external SAML IdP in your user pool can support response encryption, and each IdP receives its
own key pair.

Amazon Web Services Management Console

To configure SAML response encryption

1. Create a user pool, app client, and SAML IdP.

SAML providers 591

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-configuring-app-integration.html

Amazon Cognito Developer Guide

2. When you create or edit your SAML identity provider, under Sign requests and encrypt
responses, check the box with the title Require encrypted SAML assertions from this
provider.

3. From the Social and external providers menu of your user pool, select your SAML IdP and
choose View encryption certificate.

4. Choose Download as .crt and provide the downloaded file to your SAML IdP. Configure
your SAML IdP to encrypt SAML responses with the key in the certificate.

API/CLI

To configure SAML response encryption

Configure response encryption with the EncryptedResponses parameter of a
CreateIdentityProvider or UpdateIdentityProvider API request. The following is an example
ProviderDetails of an IdP that supports request signing.

"ProviderDetails": {
 "MetadataURL" : "https://myidp.example.com/saml/metadata",
 "IDPSignout" : "true",
 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"
}

To get the encryption certificate from your user pool, make a DescribeIdentityProvider API
request and retrieve the value of ActiveEncryptionCertificate in the response parameter
ProviderDetails. Save this certificate and provide it to your IdP as the encryption certificate
for sign-in requests from your user pool.

Signing SAML requests

The ability to prove the integrity of SAML 2.0 requests to your IdP is a security advantage of
Amazon Cognito SP-initiated SAML sign-in. Each user pool with a domain receives a user pool
X.509 signing certificate. With the public key in this certificate, user pools apply a cryptographic
signature to the sign-out requests that your user pool generates when your users select a SAML
IdP. You can optionally configure your app client to sign SAML sign-in requests. When you sign
your SAML requests, your IdP can check that the signature in the XML metadata of your requests
matches the public key in the user pool certificate that you provide.

SAML providers 592

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html

Amazon Cognito Developer Guide

Amazon Web Services Management Console

To configure SAML request signing

1. Create a user pool, app client, and SAML IdP.

2. When you create or edit your SAML identity provider, under Sign requests and encrypt
responses, check the box with the title Sign SAML requests to this provider.

3. From the Social and external providers menu of your user pool, choose View signing
certificate.

4. Choose Download as .crt and provide the downloaded file to your SAML IdP. Configure
your SAML IdP to verify the signature of incoming SAML requests.

API/CLI

To configure SAML request signing

Configure request signing with the RequestSigningAlgorithm parameter of a
CreateIdentityProvider or UpdateIdentityProvider API request. The following is an example
ProviderDetails of an IdP that supports request signing.

"ProviderDetails": {
 "MetadataURL" : "https://myidp.example.com/saml/metadata",
 "IDPSignout" : "true",
 "RequestSigningAlgorithm" : "rsa-sha256",
 "EncryptedResponses" : "true",
 "IDPInit" : "true"
}

SAML identity provider names and identifiers

When you name your SAML identity providers (IdPs) and assign IdP identifiers, you can automate
the flow of SP-initiated sign-in and sign-out requests to that provider. For information about string
constraints to the provider name, see the ProviderName property of CreateIdentityProvider.

SAML providers 593

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-configuring-app-integration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html#CognitoUserPools-CreateIdentityProvider-request-ProviderName

Amazon Cognito Developer Guide

You can also choose up to 50 identifiers for your SAML providers. An identifier is a friendly name
for an IdP in your user pool, and must be unique within the user pool. If your SAML identifiers
match your users' email domains, managed login requests each user's email address, evaluates
the domain in their email address, and redirects them to the IdP that corresponds to their
domain. Because the same organization can own multiple domains, a single IdP can have multiple
identifiers.

Whether you use or don't use email-domain identifiers, you can use identifiers in a multi-tenant
app to redirect users to the correct IdP. When you want to bypass managed login entirely, you
can customize the links that you present to users such that they redirect through the Authorize
endpoint directly to their IdP. To sign in your users with an identifier and redirect to their IdP,
include the identifier in the format idp_identifier=myidp.example.com in the request
parameters of their initial authorization request.

Another method to pass a user through to your IdP is to populate the parameter
identity_provider with the name of your IdP in the following URL format.

SAML providers 594

Amazon Cognito Developer Guide

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&
identity_provider=MySAMLIdP&
client_id=1example23456789&
redirect_uri=https://www.example.com

After a user signs in with your SAML IdP, your IdP redirects them with a SAML response in the
HTTP POST body to your /saml2/idpresponse endpoint. Amazon Cognito processes the SAML
assertion and, if the claims in the response meet expectations, redirects to your app client callback
URL. After your user has completed authentication in this way, they have interacted with webpages
for only your IdP and your app.

With IdP identifiers in a domain format, managed login requests email addresses at sign-in and
then, when the email domain matches an IdP identifier, redirects users to the sign-in page for
their IdP. As an example, you build an app that requires sign-in by employees of two different
companies. The first company, AnyCompany A, owns exampleA.com and exampleA.co.uk. The
second company, AnyCompany B, owns exampleB.com. For this example, you have set up two
IdPs, one for each company, as follows:

• For IdP A, you define identifiers exampleA.com and exampleA.co.uk.

• For IdP B, you define identifier exampleB.com.

In your app, invoke managed login for your app client to prompt each user to enter their email
address. Amazon Cognito derives the domain from the email address, correlates the domain to
an IdP with a domain identifier, and redirects your user to the correct IdP with a request to the
Authorize endpoint that contains an idp_identifier request parameter. For example, if a user
enters bob@exampleA.co.uk, the next page that they interact with is the IdP sign-in page at
https://auth.exampleA.co.uk/sso/saml.

You can also implement the same logic independently. In your app, you can build a custom form
that collects user input and correlates it to the correct IdP according to your own logic. You can
generate custom portals for each of your app tenants, where each links to the authorize endpoint
with the tenant's identifier in the request parameters.

To collect an email address and parse the domain in managed login, assign at least one identifier
to each SAML IdP that you have assigned to your app client. By default, the managed login sign-in
screen displays a button for each of the IdPs that you have assigned to your app client. However,

SAML providers 595

Amazon Cognito Developer Guide

if you have successfully assigned identifiers, your classic hosted UI sign-in page looks like the
following image.

Note

In the classic hosted UI, the sign-in page for your app client automatically prompts for an
email address when you assign identifiers to your IdPs. In the managed login experience,
you must enable this behavior in the branding editor. In the Authentication behavior
settings category, select Domain search input under the heading Provider display.

Domain parsing in managed login requires that you use domains as your IdP identifiers. If you
assign an identifier of any type to each of the SAML IdPs for an app client, managed login for that
app no longer displays IdP-selection buttons. Add IdP identifiers for SAML when you intend to use
email parsing or custom logic to generate redirects. When you want to generate silent redirects
and also want your managed login pages to display a list of IdPs, don't assign identifiers and use
the identity_provider request parameter in your authorization requests.

• If you assign only one SAML IdP to your app client, the managed login sign-in page displays a
button to sign in with that IdP.

• If you assign an identifier to every SAML IdP that you activate for your app client, a user input
prompt for an email address appears in the managed login sign-in page.

• If you have multiple IdPs and you do not assign an identifier to all of them, the managed login
sign-in page displays a button to sign in with each assigned IdP.

• If you assigned identifiers to your IdPs and you want your managed login pages to display a
selection of IdP buttons, add a new IdP that has no identifier to your app client, or create a new
app client. You can also delete an existing IdP and add it again without an identifier. If you create
a new IdP, your SAML users will create new user profiles. This duplication of active users might
have a billing impact in the month that you change your IdP configuration.

For more information about IdP setup, see Configuring identity providers for your user pool.

Using OIDC identity providers with a user pool

Users can sign in to your application using their existing accounts from OpenID Connect (OIDC)
identity providers (IdPs). With OIDC providers, users of independent single sign-on systems can
provide existing credentials while your application receives OIDC tokens in the shared format

OIDC providers 596

Amazon Cognito Developer Guide

of user pools. To configure an OIDC IdP, set up your IdP to handle your user pool as the RP and
configure your application to handle your user pool as the IdP. Amazon Cognito serves as an
intermediate step between multiple OIDC IdPs and your applications. Your user pool applies
attribute-mapping rules to the claims in the ID and access tokens that your provider passes directly
to your user pool. Amazon Cognito then issues new tokens based on the mapped user attributes
and any additional adjustments you've made to the authentication flow with Lambda triggers.

Users who sign in with an OIDC IdP aren't required to provide new credentials or information
to access your user pool application. Your application can silently redirect them to their IdP for
sign-in, with a user pool as a tool in the background that standardizes the token format for your
application. To learn more about IdP redirection, see Authorize endpoint.

Like with other third-party identity providers, you must register your application with the OIDC
provider and obtain information about the IdP application that you want to connect to your user
pool. A user pool OIDC IdP requires a client ID, client secret, scopes that you want to request,
and information about provider service endpoints. Your user pool can discover the provider OIDC
endpoints from a discovery endpoint or you can enter them manually. You must also examine
provider ID tokens and create attribute mappings between the IdP and the attributes in your user
pool.

See OIDC user pool IdP authentication flow for more details about this authentication flow.

OIDC providers 597

Amazon Cognito Developer Guide

Note

Sign-in through a third party (federation) is available in Amazon Cognito user pools. This
feature is independent of OIDC federation with Amazon Cognito identity pools.

You can add an OIDC IdP to your user pool in the Amazon Web Services Management Console,
through the Amazon CLI, or with the user pool API method CreateIdentityProvider.

Topics

• Prerequisites

• Register an application with an OIDC IdP

• Add an OIDC IdP to your user pool

• Test your OIDC IdP configuration

• OIDC user pool IdP authentication flow

Prerequisites

Before you begin, you need the following:

• A user pool with an app client and a user pool domain. For more information, see Create a user
pool.

• An OIDC IdP with the following configuration:

• Supports client_secret_post client authentication. Amazon Cognito doesn't check the
token_endpoint_auth_methods_supported claim at the OIDC discovery endpoint for
your IdP. Amazon Cognito doesn't support client_secret_basic client authentication. For
more information on client authentication, see Client Authentication in the OpenID Connect
documentation.

• Only uses HTTPS for OIDC endpoints such as openid_configuration, userInfo, and
jwks_uri.

• Only uses TCP ports 80 and 443 for OIDC endpoints.

• Only signs ID tokens with HMAC-SHA, ECDSA, or RSA algorithms.

• Publishes a key ID kid claim at its jwks_uri and includes a kid claim in its tokens.

• Presents a non-expired public key with a valid root CA trust chain.

OIDC providers 598

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Amazon Cognito Developer Guide

Register an application with an OIDC IdP

Before you add an OIDC IdP to your user pool configuration and assign it to app clients, you set
up an OIDC client application in your IdP. Your user pool is the relying-party application that will
manage authentication with your IdP.

To register with an OIDC IdP

1. Create a developer account with the OIDC IdP.

Links to OIDC IdPs

OIDC IdP How to Install OIDC Discovery URL

Salesforce Salesforce as an OpenID
Connect Identity Provider

https://MyDomainN
ame .my.salesforce.com
/.well-known/openid-
configuration

OneLogin Connect an OIDC enabled
app

https://your-doma
in.onelogin.com /
oidc/2/.well-known/
openid-configuration

JumpCloud SSO with OIDC https://oauth.id.j
umpcloud.com/.well
-known/openid-conf
iguration

Okta Install an Okta identity
provider

https://Your Okta
subdomain .okta.com
/.well-known/openid-
configuration

Microsoft Entra ID OpenID Connect on
the Microsoft identity
platform

https://login.micr
osoftonli
ne.com/ {tenant}/v2.0

OIDC providers 599

https://help.salesforce.com/s/articleView?id=xcloud.service_provider_define_oid.htm&type=5
https://help.salesforce.com/s/articleView?id=xcloud.service_provider_define_oid.htm&type=5
https://developers.onelogin.com/openid-connect/connect-to-onelogin
https://developers.onelogin.com/openid-connect/connect-to-onelogin
https://jumpcloud.com/support/sso-with-oidc
https://help.okta.com/en/prev/Content/Topics/Apps/Apps_App_Integration_Wizard.htm#OIDCWizard
https://help.okta.com/en/prev/Content/Topics/Apps/Apps_App_Integration_Wizard.htm#OIDCWizard
https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc
https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc
https://learn.microsoft.com/en-us/entra/identity-platform/v2-protocols-oidc

Amazon Cognito Developer Guide

OIDC IdP How to Install OIDC Discovery URL

Values of tenant can include a
tenant ID, common, organizat
ions , or consumers .

2. Register your user pool domain URL with the /oauth2/idpresponse endpoint with your
OIDC IdP. This ensures that the OIDC IdP later accepts it from Amazon Cognito when it
authenticates users.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

3. Select the scopes that you want your user directory to share with your user pool. The
scope openid is required for OIDC IdPs to offer any user information. The email scope is
needed to grant access to the email and email_verified claims. Additional scopes in the
OIDC specification are profile for all user attributes and phone for phone_number and
phone_number_verified.

4. The OIDC IdP provides you with a client ID and a client secret. Note these values and add them
to the configuration of the OIDC IdP that you add to your user pool later.

Example: Use Salesforce as an OIDC IdP with your user pool

You use an OIDC IdP when you want to establish trust between an OIDC-compatible IdP such as
Salesforce and your user pool.

1. Create an account on the Salesforce Developers website.

2. Sign in through your developer account that you set up in the previous step.

3. From your Salesforce page, do one of the following:

• If you’re using Lightning Experience, choose the setup gear icon, then choose Setup Home.

• If you’re using Salesforce Classic and you see Setup in the user interface header, choose it.

• If you’re using Salesforce Classic and you don’t see Setup in the header, choose your name
from the top navigation bar, and choose Setup from the drop-down list.

4. On the left navigation bar, choose Company Settings.

5. On the navigation bar, choose Domain, enter a domain, and choose Create.

6. On the left navigation bar, under Platform Tools, choose Apps.

OIDC providers 600

https://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
https://developer.salesforce.com/signup
https://developer.salesforce.com

Amazon Cognito Developer Guide

7. Choose App Manager.

8. a. Choose New connected app.

b. Complete the required fields.

Under Start URL, enter a URL at the /authorize endpoint for the user pool domain that
signs in with your Salesforce IdP. When your users access your connected app, Salesforce
directs them to this URL to complete sign-in. Then Salesforce redirects the users to the
callback URL that you have associated with your app client.

https://mydomain.auth.us-east-1.amazoncognito.com/authorize?
response_type=code&client_id=<your_client_id>&redirect_uri=https://
www.example.com&identity_provider=CorpSalesforce

c. Enable OAuth settings and enter the URL of the /oauth2/idpresponse endpoint
for your user pool domain in Callback URL. This is the URL where Salesforce issues the
authorization code that Amazon Cognito exchanges for an OAuth token.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/idpresponse

9. Select your scopes. You must include the scope openid. To grant access to the email and
email_verified claims, add the email scope. Separate scopes by spaces.

10. Choose Create.

In Salesforce, the client ID is called a Consumer Key, and the client secret is a Consumer
Secret. Note your client ID and client secret. You will use them in the next section.

Add an OIDC IdP to your user pool

After you set up your IdP, you can configure your user pool to handle authentication requests with
an OIDC IdP.

Amazon Cognito console

Add an OIDC IdP in the console

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools from the navigation menu.

3. Choose an existing user pool from the list, or create a user pool.

OIDC providers 601

https://openid.net/specs/openid-connect-basic-1_0.html#Scopes
https://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

4. Choose the Social and external providers menu and then select Add an identity provider.

5. Choose an OpenID Connect IdP.

6. Enter a unique Provider name.

7. Enter the IdP Client ID. This is the ID of the application client you build in your OIDC IdP.
The client ID that you provide must be an OIDC provider that you've configured with a
callback url of https://[your user pool domain]/oauth2/idpresponse.

8. Enter the IdP Client secret. This must be the client secret for the same application client
from the previous step.

9. Enter Authorized scopes for this provider. Scopes define which groups of user attributes
(such as name and email) that your application will request from your provider. Scopes
must be separated by spaces, following the OAuth 2.0 specification.

Your IdP might prompt users to consent to providing these attributes to your application
when they sign in.

10. Choose an Attribute request method. IdPs might require that requests to their userInfo
endpoints are formatted as either GET or POST. The Amazon Cognito userInfo endpoint
requires HTTP GET requests, for example.

11. Choose a Setup method for the way that you want your user pool to determine the path to
key OIDC-federation endpoints at your IdP. Typically, IdPs host a /well-known/openid-
configuration endpoint at an issuer base URL. If this is the case for your provider, the
Auto fill through issuer URL option promtps you for that base URL, attempts to access the
/well-known/openid-configuration path from there, and reads the endpoints listed
there. You might have non-typical endpoint paths or wish to pass requests to one or more
endpoints through an alternate proxy. In this case, select Manual input and specify paths
for the authorization, token, userInfo, and jwks_uri endpoints.

Note

The URL should start with https://, and shouldn't end with a slash /. Only port
numbers 443 and 80 can be used with this URL. For example, Salesforce uses this
URL:
https://login.salesforce.com
If you choose auto fill, the discovery document must use HTTPS for the following
values: authorization_endpoint, token_endpoint, userinfo_endpoint,
and jwks_uri. Otherwise the login will fail.

OIDC providers 602

https://tools.ietf.org/html/rfc6749#section-3.3

Amazon Cognito Developer Guide

12. Configure your attribute-mapping rules under Map attributes between your OpenID
Connect provider and your user pool. User pool attribute is the destination attribute in
the Amazon Cognito user profile and OpenID Connect attribute is the source attribute that
you want Amazon Cognito to find in an ID-token claim or userInfo response. Amazon
Cognito automatically maps the OIDC claim sub to username in the destination user
profile.

For more information, see Mapping IdP attributes to profiles and tokens.

13. Choose Add identity provider.

14. From the App clients menu, select an app client from the list. Navigate to the Login pages
tab and under Managed login pages configuration, select Edit. Locate Identity providers
and add your new OIDC IdP.

15. Choose Save changes.

API/CLI

See the OIDC configuration in example two at CreateIdentityProvider. You can
modify this syntax and use it as the request body of CreateIdentityProvider,
UpdateIdentityProvider, or the --cli-input-json input file for create-identity-
provider.

Test your OIDC IdP configuration

In your application, you must invoke a browser in the user's client so that they can sign in with their
OIDC provider. Test sign-in with your provider after you have completed the setup procedures in
the preceding sections. The following example URL loads the sign-in page for your user pool with a
prefix domain.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&client_id=1example23456789&redirect_uri=https://www.example.com

This link is the page that Amazon Cognito directs you to when you go to the App clients menu,
select an app client, navigate to the Login pages tab, and select View login page. For more
information about user pool domains, see Configuring a user pool domain. For more information
about app clients, including client IDs and callback URLs, see Application-specific settings with app
clients.

OIDC providers 603

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html#API_CreateIdentityProvider_Example_2
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/create-identity-provider.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/create-identity-provider.html

Amazon Cognito Developer Guide

The following example link sets up silent redirect to the MyOIDCIdP provider from the Authorize
endpoint with an identity_provider query parameter. This URL bypasses interactive user pool
sign-in with managed login and goes directly to the IdP sign-in page.

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
identity_provider=MyOIDCIdP&response_type=code&client_id=1example23456789&redirect_uri=https://
www.example.com

OIDC user pool IdP authentication flow

With OpenID Connect (OIDC) sign-in, your user pool automates an authorization-code sign-in
flow with your identity provider (IdP). After your user completes sign-in with their IdP, Amazon
Cognito collects their code at the oauth2/idpresponse endpoint of the external provider. With
the resulting access token, your user pool queries the IdP userInfo endpoint to retrieve user
attributes. Your user pool then compares the received attributes to the attribute-mapping rules
you've set up and populates the user's profile and ID token accordingly.

The OAuth 2.0 scopes that you request in your OIDC provider configuration define the user
attributes that the IdP provides to Amazon Cognito. As a best security practice, only request the
scopes that correspond to attributes that you want to map to your user pool. For example, if
your user pool requests openid profile, you'll get all possible attributes, but if you request
openid email phone_number you'll only get the user's email address and phone number. You
can configure the scopes that you request from OIDC IdPs to differ from those you authorize and
request in the app client and user pool authentication request.

When your user signs in to your application using an OIDC IdP, your user pool conducts the
following authentication flow.

1. A user accesses your managed login sign-in page, and chooses to sign in with their OIDC IdP.

2. Your application directs the user's browser to the authorization endpoint of your user pool.

3. Your user pool redirects the request to the authorization endpoint of the OIDC IdP.

4. Your IdP displays a login prompt.

5. In your application, your user's session displays a sign-in prompt for the OIDC IdP.

6. The user enters their credentials for the IdP or presents a cookie for an already-authenticated
session.

7. After your user authenticates, the OIDC IdP redirects to Amazon Cognito with an authorization
code.

OIDC providers 604

Amazon Cognito Developer Guide

8. Your user pool exchanges the authorization code for ID and access tokens. Amazon Cognito
receives access tokens when you configure your IdP with the scopes openid. The claims in
the ID token and the userInfo response are determined by additional scopes from your IdP
configuration, for example profile and email.

9. Your IdP issues the requested tokens.

10.Your user pool determines the path to the IdP jwks_uri endpoint from the issuer URLs in
your IdP configuration and requests the token signing keys from the JSON web key set (JWKS)
endpoint.

11.The IdP returns signing keys from the JWKS endpoint.

12.Your user pool validates the IdP tokens from signature and expiration data in the tokens.

13.Your user pool authorizes a request to the IdP userInfo endpoint with the access token. The
IdP responds with user data based on the access token scopes.

14.Your user pool compares the ID token and userInfo response from the IdP to the attribute-
mapping rules in your user pool. It writes mapped IdP attributes to user pool profile attributes.

15.Amazon Cognito issues your application bearer tokens, which might include identity, access, and
refresh tokens.

16.Your application processes the user pool tokens and signs the user in.

OIDC providers 605

Amazon Cognito Developer Guide

Note

Amazon Cognito cancels authentication requests that do not complete within 5 minutes,
and redirects the user to managed login. The page displays a Something went wrong
error message.

OIDC is an identity layer on top of OAuth 2.0, which specifies JSON-formatted (JWT) identity
tokens that are issued by IdPs to OIDC client apps (relying parties). See the documentation for your
OIDC IdP for information about to add Amazon Cognito as an OIDC relying party.

When a user authenticates with an authorization code grant, the user pool returns ID, access, and
refresh tokens. The ID token is a standard OIDC token for identity management, and the access
token is a standard OAuth 2.0 token. For more information about grant types that your user pool
app client can support, see Authorize endpoint.

How a user pool processes claims from an OIDC provider

When your user completes sign-in with a third-party OIDC provider, managed login retrieves an
authorization code from the IdP. Your user pool exchanges the authorization code for access and ID
tokens with the token endpoint of your IdP. Your user pool doesn't pass these tokens on to your
user or your app, but uses them to build a user profile with data that it presents in claims in its own
tokens.

Amazon Cognito doesn't independently validate the access token. Instead, it requests user-
attribute information from the provider userInfo endpoint and expects the request to be denied
if the token isn't valid.

Amazon Cognito validates the provider ID token with the following checks:

1. Check that the provider signed the token with an algorithm from the following set: RSA,
HMAC, Elliptic Curve.

2. If the provider signed the token with an asymmetric signing algorithm, check that the signing
key ID in the token kid claim is listed at the provider jwks_uri endpoint. Amazon Cognito
refreshes the signing key from the JWKS endpoint in your IdP configuration for each IdP ID
token that it processes.

3. Compare the ID token signature to the signature that it expects based on provider metadata.

4. Compare the iss claim to the OIDC issuer configured for the IdP.

OIDC providers 606

http://openid.net/specs/openid-connect-core-1_0.html
https://oauth.net/2/

Amazon Cognito Developer Guide

5. Compare the aud claim matches the client ID configured on the IdP, or that it contains the
configured client ID if there are multiple values in the aud claim.

6. Check that the timestamp in the exp claim is not before the current time.

Your user pool validates the ID token, then attempts a request to the provider userInfo endpoint
with the provider access token. It retrieves any user profile information that the scopes in the
access token authorize it to read. Your user pool then searches for the user attributes that you
have set as required in your user pool. You must create attribute mappings in your provider
configuration for required attributes. Your user pool checks the provider ID token and the
userInfo response. Your user pool writes all claims that match mapping rules to user attributes
on the user pool user profile. Your user pool ignores attributes that match a mapping rule but
aren't required and aren't found in the provider's claims.

Mapping IdP attributes to profiles and tokens

Identity provider (IdP) services, including Amazon Cognito, can typically record more information
about a user. You might want to know what company they work for, how to contact them, and
other identifying information. But the format that these attributes take has variations between
providers. For example, set up three IdPs from three different vendors with your user pool
and examine an example SAML assertion, ID token, or userInfo payload from each. One will
represent the user's email address as email, another as emailaddress, and the third as http://
schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress.

A major benefit that comes from consolidation of IdPs with a user pool is the ability to map the
variety of attribute names into a single OIDC token schema with consistent, predicable, shared
attribute names. This way, your developers aren't required to maintain the logic for processing a
complex variety of single sign-on events. This format consolidation is attribute mapping. User pool
attribute mapping assigns IdP attribute names to the corresponding user pool attribute names. For
example, you can configure your user pool to write the value of an emailaddress claim to the
standard user pool attribute email.

Each user pool IdP has a separate attribute-mapping schema. To specify attribute mappings for
your IdP, configure a user pool identity provider in the Amazon Cognito console, an Amazon SDK,
or the user pools REST API .

Things to know about mappings

Before you begin to set up user-attribute mapping, review the following important details.

Mapping IdP attributes 607

Amazon Cognito Developer Guide

• When a federated user signs in to your application, a mapping must be present for each user
pool attribute that your user pool requires. For example, if your user pool requires an email
attribute for sign-up, map this attribute to its equivalent from the IdP.

• By default, mapped email addresses are unverified. You can't verify a mapped email address
using a one-time code. Instead, map an attribute from your IdP to get the verification status. For
example, Google and most OIDC providers include the email_verified attribute.

• You can map identity provider (IdP) tokens to custom attributes in your user pool. Social
providers present an access token, and OIDC providers present an access and ID token. To map a
token, add a custom attribute with a maximum length of 2,048 characters, grant your app client
write access to the attribute, and map access_token or id_token from the IdP to the custom
attribute.

• For each mapped user pool attribute, the maximum value length of 2,048 characters must be
large enough for the value that Amazon Cognito obtains from the IdP. Otherwise, Amazon
Cognito reports an error when users sign in to your application. Amazon Cognito doesn't support
mapping IdP tokens to custom attributes when the tokens are more than 2,048 characters long.

• Amazon Cognito derives the username attribute in a federated user's profile from specific claims
that your federated IdP passes, as shown in the following table. Amazon Cognito prepends this
attribute value with the name of your IdP, for example MyOIDCIdP_[sub]. When you want
your federated users to have an attribute that exactly matches an attribute in your external user
directory, map that attribute to a Amazon Cognito sign-in attribute like preferred_username.

Identity Provider username source attribute

Facebook id

Google sub

Login with Amazon user_id

Sign in with Apple sub

SAML providers NameID

OpenID Connect (OIDC) providers sub

• When a user pool is case insensitive, Amazon Cognito converts the username source attribute to
lowercase in federated users' automatically-generated usernames. The following is an example

Mapping IdP attributes 608

Amazon Cognito Developer Guide

username for a case-sensitive user pool: MySAML_TestUser@example.com. The following is the
same username for a case-insensitive user pool: MySAML_testuser@example.com.

In case-insensitive user pools, your Lambda triggers that process the username must account for
this modification to any mixed-case claims for user name source attributes. To link your IdP to a
user pool that has a different case-sensitivity setting than your current user pool, create a new
user pool.

• Amazon Cognito must be able to update your mapped user pool attributes when users sign in
to your application. When a user signs in through an IdP, Amazon Cognito updates the mapped
attributes with the latest information from the IdP. Amazon Cognito updates each mapped
attribute, even if its current value already matches the latest information. To ensure that Amazon
Cognito can update the attributes, check the following requirements:

• All of the user pool custom attributes that you map from your IdP must be mutable. You can
update mutable custom attributes at any time. By contrast, you can only set a value for a user's
immutable custom attribute when you first create the user profile. To create a mutable custom
attribute in the Amazon Cognito console, activate the Mutable checkbox for the attribute
you add when you select Add custom attributes in the Sign-up menu. Or, if you create your
user pool by using the CreateUserPool API operation, you can set the Mutable parameter for
each of these attributes to true. If your IdP sends a value for a mapped immutable attribute,
Amazon Cognito returns an error and sign-in fails.

• In the app client settings for your application, the mapped attributes must be writable. You
can set which attributes are writable in the App clients page in the Amazon Cognito console.
Or, if you create the app client by using the CreateUserPoolClient API operation, you can
add these attributes to the WriteAttributes array. If your IdP sends a value for a mapped
non-writable attribute, Amazon Cognito doesn't set the attribute value and proceeds with
authentication.

• When IdP attributes contain multiple values, Amazon Cognito flattens all values into a single
comma-delimited string enclosed in the square-bracket characters [and]. Amazon Cognito URL
form-encodes the values containing non-alphanumeric characters except for ., -, *, and _. You
must decode and parse the individual values before you use them in your app.

Specifying identity provider attribute mappings for your user pool (Amazon Web
Services Management Console)

You can use the Amazon Web Services Management Console to specify attribute mappings for the
IdP your user pool.

Mapping IdP attributes 609

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html

Amazon Cognito Developer Guide

Note

Amazon Cognito will map incoming claims to user pool attributes only if the claims exist in
the incoming token. If a previously mapped claim no longer exists in the incoming token,
it won't be deleted or changed. If your application requires mapping of deleted claims,
you can use the Pre-Authentication Lambda trigger to delete the custom attribute during
authentication and allow these attributes to repopulate from the incoming token.

To specify a social IdP attribute mapping

1. Sign in to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Social and external providers menu.

4. Choose Add an identity provider, or choose the Facebook, Google, Amazon or Apple IdP you
have configured. Locate Attribute mapping and choose Edit.

For more information about adding a social IdP, see Using social identity providers with a user
pool.

5. For each attribute you need to map, complete the following steps:

a. Select an attribute from the User pool attribute column. This is the attribute that is
assigned to the user profile in your user pool. Custom attributes are listed after standard
attributes.

b. Select an attribute from the <provider> attribute column. This will be the attribute
passed from the provider directory. Known attributes from the social provider are
provided in a drop-down list.

c. To map additional attributes between your IdP and Amazon Cognito, choose Add another
attribute.

6. Choose Save changes.

To specify a SAML provider attribute mapping

1. Sign in to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Social and external providers menu.

Mapping IdP attributes 610

https://console.amazonaws.cn/cognito/home
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

4. Choose Add an identity provider, or choose the SAML IdP you have configured. Locate
Attribute mapping, and choose Edit. For more information about adding a SAML IdP, see
Using SAML identity providers with a user pool.

5. For each attribute you need to map, complete the following steps:

a. Select an attribute from the User pool attribute column. This is the attribute that is
assigned to the user profile in your user pool. Custom attributes are listed after standard
attributes.

b. Select an attribute from the SAML attribute column. This will be the attribute passed
from the provider directory.

Your IdP might offer sample SAML assertions for reference. Some IdPs use simple names,
such as email, while others use URL-formatted attribute names similar to:

http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

c. To map additional attributes between your IdP and Amazon Cognito, choose Add another
attribute.

6. Choose Save changes.

Specifying identity provider attribute mappings for your user pool (Amazon CLI
and Amazon API)

The following request body for CreateIdentityProvider or UpdateIdentityProvider maps the SAML
provider "MyIdP" attributes emailaddress, birthdate, and phone to the user pool attributes
email, birthdate, and phone_number, in that order. This is a complete request body for a SAML
2.0 provider—your request body will vary depending on IdP type and specific details. The attribute
mapping is in the AttributeMapping parameter.

{
 "AttributeMapping": {
 "email" : "emailaddress",
 "birthdate" : "birthdate",
 "phone_number" : "phone"
 },
 "IdpIdentifiers": [
 "IdP1",
 "pdxsaml"
],

Mapping IdP attributes 611

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html

Amazon Cognito Developer Guide

 "ProviderDetails": {
 "IDPInit": "true",
 "IDPSignout": "true",
 "EncryptedResponses" : "true",
 "MetadataURL": "https://auth.example.com/sso/saml/metadata",
 "RequestSigningAlgorithm": "rsa-sha256"
 },
 "ProviderName": "MyIdP",
 "ProviderType": "SAML",
 "UserPoolId": "us-west-2_EXAMPLE"
}

Use the following commands to specify IdP attribute mappings for your user pool.

To specify attribute mappings at provider creation time

• Amazon CLI: aws cognito-idp create-identity-provider

Example with metadata file: aws cognito-idp create-identity-provider --user-
pool-id <user_pool_id> --provider-name=SAML_provider_1 --provider-
type SAML --provider-details file:///details.json --attribute-mapping
email=http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

Where details.json contains:

{
 "MetadataFile": "<SAML metadata XML>"
}

Note

If the <SAML metadata XML> contains any quotations ("), they must be escaped (\").

Example with metadata URL:

aws cognito-idp create-identity-provider \
--user-pool-id us-east-1_EXAMPLE \
--provider-name=SAML_provider_1 \
--provider-type SAML \
--provider-details MetadataURL=https://myidp.example.com/saml/metadata \

Mapping IdP attributes 612

Amazon Cognito Developer Guide

--attribute-mapping email=http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
emailaddress

• API/SDK: CreateIdentityProvider

To specify attribute mappings for an existing IdP

• Amazon CLI: aws cognito-idp update-identity-provider

Example: aws cognito-idp update-identity-provider --user-pool-id
<user_pool_id> --provider-name <provider_name> --attribute-mapping
email=http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

• API/SDK: UpdateIdentityProvider

To get information about attribute mapping for a specific IdP

• Amazon CLI: aws cognito-idp describe-identity-provider

Example: aws cognito-idp describe-identity-provider --user-pool-id
<user_pool_id> --provider-name <provider_name>

• API/SDK: DescribeIdentityProvider

Linking federated users to an existing user profile

Often, the same user has a profile with multiple identity providers (IdPs) that you have connected
to your user pool. Amazon Cognito can link each occurrence of a user to the same user profile in
your directory. This way, one person who has multiple IdP users can have a consistent experience in
your app. AdminLinkProviderForUser tells Amazon Cognito to recognize a user's unique ID in your
federated directory as a user in the user pool. A user in your user pool counts as one monthly active
user (MAU) for the purposes of billing when you have zero or more federated identities associated
with the user profile.

When a federated user signs in to your user pool for the first time, Amazon Cognito looks for a
local profile that you have linked to their identity. If no linked profile exists, your user pool creates
a new profile. You can create a local profile and link it to your federated user at any time before
their first sign-in, in an AdminLinkProviderForUser API request, either in a planned prestaging
task or in a Pre sign-up Lambda trigger. After your user signs in and Amazon Cognito detects a
linked local profile, your user pool reads your user's claims and compares them to mapping rules

Linking federated users 613

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html
https://www.amazonaws.cn/cognito/pricing/

Amazon Cognito Developer Guide

for the IdP. Your user pool then updates the linked local profile with the claims mapped from their
sign-in. In this way, you can configure the local profile with access claims and keep their identity
claims up-to-date with your provider. After Amazon Cognito matches your federated user to a
linked profile, they always sign in to that profile. You can then link more of your user's provider
identities to the same profile, giving one customer a consistent experience in your app. To link
a federated user who has previously signed in, you must first delete their existing profile. You
can identify existing profiles by their format: [Provider name]_identifier. For example,
LoginWithAmazon_amzn1.account.AFAEXAMPLE. A user that you created and then linked to
a third-party user identity has the username that they were created with, and an identities
attribute that contains the details of their linked identities.

Important

Because AdminLinkProviderForUser allows a user with an external federated identity
to sign in as an existing user in the user pool, it is critical that it only be used with external
IdPs and provider attributes that have been trusted by the application owner.

For example, if you're a managed service provider (MSP) with an app that you share with multiple
customers. Each of the customers signs in to your app through Active Directory Federation Services
(ADFS). Your IT administrator, Carlos, has an account in each of your customers' domains. You want
Carlos to be recognized as an app administrator every time he signs in, regardless of the IdP.

Your ADFS IdPs present Carlos' email address msp_carlos@example.com in the email claim
of the Carlos' SAML assertions to Amazon Cognito. You create a user in your user pool with the
user name Carlos. The following Amazon Command Line Interface (Amazon CLI) commands link
Carlos' identities from IdPs ADFS1, ADFS2, and ADFS3.

Note

You can link a user based on specific attribute claims. This ability is unique to OIDC
and SAML IdPs. For other provider types, you must link based on a fixed source
attribute. For more information, see AdminLinkProviderForUser. You must set
ProviderAttributeName to Cognito_Subject when you link a social IdP to a user
profile. ProviderAttributeValue must be the user's unique identifier with your IdP.

aws cognito-idp admin-link-provider-for-user \

Linking federated users 614

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html

Amazon Cognito Developer Guide

--user-pool-id us-east-1_EXAMPLE \
--destination-user ProviderAttributeValue=Carlos,ProviderName=Cognito \
--source-user
 ProviderName=ADFS1,ProviderAttributeName=email,ProviderAttributeValue=msp_carlos@example.com

aws cognito-idp admin-link-provider-for-user \
--user-pool-id us-east-1_EXAMPLE \
--destination-user ProviderAttributeValue=Carlos,ProviderName=Cognito \
--source-user
 ProviderName=ADFS2,ProviderAttributeName=email,ProviderAttributeValue=msp_carlos@example.com

aws cognito-idp admin-link-provider-for-user \
--user-pool-id us-east-1_EXAMPLE \
--destination-user ProviderAttributeValue=Carlos,ProviderName=Cognito \
--source-user
 ProviderName=ADFS3,ProviderAttributeName=email,ProviderAttributeValue=msp_carlos@example.com

The user profile Carlos in your user pool now has the following identities attribute.

[{
 "userId": "msp_carlos@example.com",
 "providerName": "ADFS1",
 "providerType": "SAML",
 "issuer": "http://auth.example.com",
 "primary": false,
 "dateCreated": 111111111111111
}, {
 "userId": "msp_carlos@example.com",
 "providerName": "ADFS2",
 "providerType": "SAML",
 "issuer": "http://auth2.example.com",
 "primary": false,
 "dateCreated": 111111111111111
}, {
 "userId": "msp_carlos@example.com",
 "providerName": "ADFS3",
 "providerType": "SAML",
 "issuer": "http://auth3.example.com",
 "primary": false,
 "dateCreated": 111111111111111
}]

Linking federated users 615

Amazon Cognito Developer Guide

Things to know about linking federated users

• You can link up to five federated users to each user profile.

• You can link users to each IdP from up to five IdP attribute claims, as defined by the
ProviderAttributeName parameter of SourceUser in an AdminLinkProviderForUser API
request. For example, if you have linked at least one user to the source attributes email, phone,
department, given_name, and location, you can only link additional users on one of those
five attributes.

• You can link federated users to either an existing federated user profile, or to a local user.

• You can't link providers to user profiles in the Amazon Web Services Management Console.

• Your user's ID token contains all of their associated providers in the identities claim.

• You can set a password for the automatically-created federated user profile in an
AdminSetUserPassword API request. That user's status then changes from EXTERNAL_PROVIDER
to CONFIRMED. A user in this state can sign in as a federated user, and initiate authentication
flows in the API like a linked local user. They can also modify their password and attributes
in token-authenticated API requests like ChangePassword and UpdateUserAttributes. As a
best security practice and to keep users in sync with your external IdP, don't set passwords on
federated user profiles. Instead, link users to local profiles with AdminLinkProviderForUser.

• Amazon Cognito populates user attributes to a linked local user profile when the user signs in
through their IdP. Amazon Cognito processes identity claims in the ID token from an OIDC IdP,
and also checks the userInfo endpoint of both OAuth 2.0 and OIDC providers. Amazon Cognito
prioritizes information in an ID token over information from userInfo.

When you learn that your user is no longer using an external user account that you've linked to
their profile, you can disassociate that user account with your user pool user. When you linked your
user, you supplied the user's attribute name, attribute value and provider name in the request.
To remove a profile that your user no longer needs, make an AdminDisableProviderForUser API
request with equivalent parameters.

See AdminLinkProviderForUser for additional command syntax and examples in the Amazon SDKs.

User pool managed login

You can choose a web domain to host services for your user pool. An Amazon Cognito user pool
gains the following functions when you add a domain, collectively referred to as managed login.

Managed login 616

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ChangePassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html

Amazon Cognito Developer Guide

• An authorization server that acts as an identity provider (IdP) to applications that work with
OAuth 2.0 and OpenID Connect (OIDC). The authorization server routes requests, issues and
manages JSON web tokens (JWTs), and delivers user attribute information.

• A ready-to-use user interface (UI) for authentication operations like sign-in, sign-out and
password management. The managed login pages act as a web front end for authentication
services.

• A service provider (SP), or relying party (RP), to SAML 2.0 IdPs, OIDC IdPs, Facebook, Login with
Amazon, Sign in with Apple, and Google.

An additional option that shares some features with managed login is the classic hosted UI. The
classic hosted UI is a first-generation version of the managed login services. Hosted UI IdP and
RP services generally have the same characteristics as managed login, but the login pages have a
simpler design and fewer features. For example, passkey sign-in isn't available in the classic hosted
UI. In the Lite feature plan, the classic hosted UI is your only option for user pool domain services.

The managed login pages are a collection of web interfaces for basic sign-up, sign-in, multi-factor
authentication and password-reset activities in your user pool. They also connect users to one or
more third-party identity providers (IdPs) when you want to give users a choice of sign-in option.
Your app can invoke your managed login pages in users' browsers when you want to authenticate
and authorize users.

You can make the managed login user experience fit your brand with custom logos, backgrounds
and styles. You have two options for the branding that you might apply to your managed login UI:
the branding editor for managed login, and hosted UI (classic) branding for the hosted UI.

Branding editor

An updated user experience with the most up-to-date authentication options and a visual editor
in the Amazon Cognito console.

Hosted UI branding

A familiar user experience for previous adopters of Amazon Cognito user pools. Branding for
the hosted UI is a file-based system. To apply branding to hosted UI pages, you upload a logo
image file and a file that sets values for several predetermined CSS style options.

The branding editor isn't available in all feature plans for user pools. For more information, see
User pool feature plans.

Managed login 617

https://datatracker.ietf.org/doc/html/rfc6749#section-1.1

Amazon Cognito Developer Guide

For more information about constructing requests to managed login and hosted UI services, see
User pool endpoints and managed login reference.

Note

Amazon Cognito managed login doesn't support custom authentication with custom
authentication challenge Lambda triggers.

Topics

• Managed login localization

• Setting up managed login with Amazon Amplify

• Setting up managed login with the Amazon Cognito console

• Viewing your sign-in page

• Customizing your authentication pages

• Things to know about managed login and the hosted UI

• Configuring a user pool domain

• Apply branding to managed login pages

Managed login localization

Managed login defaults to the English language in user-interactive pages. You can display your
managed login pages localized for the language of your choice. The available languages are those
available in the Amazon Web Services Management Console. In the link that you distribute to users,
add a lang query parameter, as shown in the following example.

https://<your domain>/oauth2/authorize?lang=es&response_type=code&client_id=<your app
 client id>&redirect_uri=<your relying-party url>

Amazon Cognito sets a cookie in users' browser with their language preference after the initial
request with a lang parameter. After the cookie is set, the language selection persists without
displaying or requiring you to include the parameter in requests. For example, after a user makes a
sign-in request with a lang=de parameter, their managed login pages render in German until they
clear their cookies or make a new request with a new localization parameter like lang=en.

Managed login localization 618

Amazon Cognito Developer Guide

Localization is only available for managed login. You must be on the Essentials or Plus feature plan
and have assigned your domain to use managed login branding.

The selection that your user makes in managed login isn't available to custom email or SMS sender
triggers. When you implement these triggers, you must use other mechanisms, for example the
locale attribute, to determine a user's preferred language.

The following languages are available.

Managed login languages

Language Code

German de

English en

Spanish es

French fr

Bahasa Indonesia id

Italian it

Japanese ja

Korean ko

Portuguese (Brazil) pt-BR

Chinese (Simplified) zh-CN

Chinese (Traditional) zh-TW

Setting up managed login with Amazon Amplify

If you use Amazon Amplify to add authentication to your web or mobile app, you can set up your
managed login pages in the Amplify command line interface (CLI) and libraries in the Amplify
framework. To add authentication to your app, add the Auth category to your project. Then, in
your application, authenticate user pool users with Amplify client libraries.

Setting up managed login with Amazon Amplify 619

Amazon Cognito Developer Guide

You can invoke managed login pages for authentication or you can federate users through an
authorization endpoint that redirects to an IdP. After a user successfully authenticates with the
provider, Amplify creates a new user in your user pool and passes the user's tokens to your app.

The following examples show how to use Amazon Amplify to set up managed login with social
providers in your app.

• Amazon Amplify authentication for JavaScript.

• Amazon Amplify authentication for Swift.

• Amazon Amplify authentication for Flutter.

• Amazon Amplify authentication for Android.

Setting up managed login with the Amazon Cognito console

The first requirement for managed login and hosted UI is a user pool domain. In the user pools
console, navigate to the Domain tab of your user pool and add a Cognito domain or a custom
domain. You can also choose a domain during the process of creating a new user pool. For more
information, see Configuring a user pool domain. When a domain is active in your user pool, all app
clients serve public authentication pages on that domain.

When you create or modify a user pool domain, you set the Branding version for your domain.
This branding version is a choice of Managed login or Hosted UI (classic). Your choice of branding
version applies to all app clients that use the sign-in services at your domain.

The next step is to create an app client from the App clients tab of your user pool. In the process
of creating an app client, Amazon Cognito will ask you for information about your application, then
prompt you to select a Return URL. The return URL is also called the relying party (RP) URL, the
redirect URI, and the callback URL. This is the URL that your application runs from, for example
https://www.example.com or myapp://example.

After you configure a domain and app client with a branding style in your user pool, your managed
login pages become available on the internet.

Viewing your sign-in page

In the Amazon Cognito console, choose the View login pages button in the Login pages tab for
your app client under the App clients menu. This button takes you to a sign-in page in your user
pool domain with the following basic parameters.

Setting up managed login with the Amazon Cognito console 620

https://docs.amplify.aws/react/build-a-backend/auth/add-social-provider/
https://docs.amplify.aws/swift/build-a-backend/auth/add-social-provider/
https://docs.amplify.aws/flutter/build-a-backend/auth/add-social-provider/
https://docs.amplify.aws/android/build-a-backend/auth/add-social-provider/

Amazon Cognito Developer Guide

• The app client id

• An authorization code grant request

• A request for all scopes that you have activated for the current app client

• The first callback URL in the list for the current app client

The View login page button is useful when you want to test the basic functions of your managed
login pages. Your login pages will match the Branding version that you assigned to your user
pool domain. You can customize your sign-in URL with additional and modified parameters. In
most cases, the automatically-generated parameters of the View login page link don’t fully match
the needs of your app. In these cases, you must customize the URL that your app invokes when it
signs in your users. For more information about sign-in parameter keys and values, see User pool
endpoints and managed login reference.

The sign-in webpage uses the following URL format. This example requests an authorization code
grant with the response_type=code parameter.

https://<your domain>/oauth2/authorize?response_type=code&client_id=<your app client
 id>&redirect_uri=<your relying-party url>

You can look up your user pool domain string from the Domain menu in your user pool. In the App
clients menu, you can identify app client IDs, their callback URLs, their allowed scopes, and other
configuration.

When you navigate to the /oauth2/authorize endpoint with your custom parameters,
Amazon Cognito either redirects you to the /oauth2/login endpoint or, if you have an
identity_provider or idp_identifier parameter, silently redirects you to your IdP sign-in
page.

Example request for an implicit grant

You can view your sign-in webpage with the following URL for the implicit code grant where
response_type=token. After a successful sign-in, Amazon Cognito returns user pool tokens to
your web browser's address bar.

 https://mydomain.auth.us-east-1.amazoncognito.com/authorize?
response_type=token&client_id=1example23456789&redirect_uri=https://
mydomain.example.com

Viewing your sign-in page 621

Amazon Cognito Developer Guide

The identity and access tokens appear as parameters appended to your redirect URL.

The following is an example response from an implicit grant request.

 https://auth.example.com/
#id_token=eyJraaBcDeF1234567890&access_token=eyJraGhIjKlM1112131415&expires_in=3600&token_type=Bearer

Customizing your authentication pages

In the past, Amazon Cognito only hosted login pages with the classic hosted UI, a simple design
that grants a universal look to authentication webpages. You could customize Amazon Cognito
user pools with a logo image and tweak some styles with a file that specified some CSS style
values. Later, Amazon Cognito introduced managed login, an updated hosted authentication
service. Managed login is an updated look-and-feel with the branding editor. The branding editor is
a no-code visual editor and a larger suite of options than the hosted UI customization experience.
Managed login also introduced custom background images and a dark mode theme.

You can switch between the managed login and hosted UI branding experiences in user pools. To
learn more about customizing your managed login pages, see Apply branding to managed login
pages.

Things to know about managed login and the hosted UI

The one-hour managed login and hosted UI session cookie

When a user signs in with your login pages or a third-party provider, Amazon Cognito sets a cookie
in their browser. With this cookie, users can sign in again with the same authentication method for
one hour. When they sign in with their browser cookie, they get fresh tokens that last the duration
specified in your app client configuration. Changes to user attributes or authentication factors have
no effect on their ability to sign in again with their browser cookie.

Authentication with the session cookie doesn't reset the cookie duration to an additional hour.
Users must sign in again if they attempt to access your sign-in pages more than an hour after their
most recent successful interactive authentication.

Customizing your authentication pages 622

Amazon Cognito Developer Guide

Confirming user accounts and verifying user attributes

For user pool local users, managed login and the hosted UI work best when you configure your
user pool to Allow Cognito to automatically send messages to verify and confirm. When you
enable this setting, Amazon Cognito sends a message with a confirmation code to users who sign
up. When you instead confirm users as a user pool administrator, your login pages display an
error message after sign-up. In this state, Amazon Cognito has created the new user, but hasn't
been able to send a verification message. You can still confirm users as an administrator, but
they might contact your support desk after they encounter an error. For more information about
administrative confirmation, see Allowing users to sign up in your app but confirming them as a
user pool administrator.

Viewing your changes to configuration

If you make style changes to your pages and they do not immediately appear, wait a few minutes
and then refresh the page.

Decoding user pool tokens

Amazon Cognito user pool tokens are signed using an RS256 algorithm. You can decode and verify
user pool tokens using Amazon Lambda. See Decode and verify Amazon Cognito JWT tokens on
GitHub.

Amazon WAF web ACLs

You can configure your user pool to protect the domain that serves your login pages and
authorization server with rules in Amazon WAF web ACLs. Currently, the rules that you configure
apply to these pages only when you managed login branding version is Hosted UI (classic). For
more information, see Things to know about Amazon WAF web ACLs and Amazon Cognito.

TLS version

Managed login and hosted UI pages require encryption in transit. User pool domains that are
provided by Amazon Cognito require that users' browsers negotiate a minimum TLS version of
1.2. Custom domains support browser connections with TLS version 1.2. The hosted UI (classic)
doesn't require TLS 1.2 for custom domains, but the newer managed login requires TLS version
1.2 both for custom and prefix domains. Because Amazon Cognito manages the configuration of
your domain services, you can't modify the TLS requirements of your user pool domain.

CORS policies

Things to know about managed login and the hosted UI 623

https://github.com/awslabs/aws-support-tools/tree/master/Cognito/decode-verify-jwt

Amazon Cognito Developer Guide

Neither managed login nor the hosted UI support custom cross-origin resource sharing (CORS)
origin policies. A CORS policy would prevent users from passing authentication parameters in their
requests. Instead, implement a CORS policy in your application front end. Amazon Cognito returns
an Access-Control-Allow-Origin: * response header to requests to the following endpoints.

1. Token endpoint

2. Revoke endpoint

3. userInfo endpoint

Cookies

Managed login and the hosted UI set cookies in users' browsers. The cookies conform to the
requirements of some browsers that sites not set third-party cookies. They are scoped only to your
user pool endpoints and include the following:

• An XSRF-TOKEN cookie for each request.

• A csrf-state cookie for session consistency when a user is redirected.

• A csrf-state-legacy cookie for session consistency, read by Amazon Cognito as a fallback
when your browser doesn't have support for the SameSite attribute.

• A cognito session cookie that preserves successful sign-in attempts for an hour.

• A lang cookie that preserves a user's choice of language localization in managed login.

• A page-data cookie that persists required data as a user navigates between managed login
pages.

In iOS, you can block all cookies. This setting isn't compatible with managed login or the hosted UI.
To work with users who might enable this setting, build user pool authentication into a native iOS
app with an Amazon SDK. In this scenario, you can build your own session storage that isn't cookie-
based.

Effects of managed login version change

Consider the following effects of adding domains and setting the managed login version.

• When you add a prefix domain, either with managed login or hosted UI (classic) branding, it can
take up to 60 seconds before your login pages are available.

• When you add a custom domain, either with managed login or hosted UI (classic) branding, it can
take up to five minutes before your login pages are available.

Things to know about managed login and the hosted UI 624

https://support.apple.com/en-us/105082

Amazon Cognito Developer Guide

• When you change the branding version for your domain, it can take up to four minutes before
your login pages are available in the new branding version.

• When you switch between managed login and hosted UI (classic) branding, Amazon Cognito
doesn't maintain user sessions. They must sign in again with the new interface.

Default style

When you create an app client in the Amazon Web Services Management Console, Amazon Cognito
automatically assigns a branding style to your app client. When you programmatically create
an app client with the CreateUserPoolClient operation, no branding style is created. Managed
login isn't available for an app client created with an Amazon SDK until you create one with a
CreateManagedLoginBranding request.

Managed login authentication prompt times out

Amazon Cognito cancels authentication requests that do not complete within five minutes, and
redirects the user to managed login. The page displays a Something went wrong error message.

Configuring a user pool domain

Configuring a domain is an optional part of setting up a user pool. A user pool domain hosts
features for user authentication, federation with third-party providers, and OpenID Connect (OIDC)
flows. It has managed login, a prebuilt interface for key operations like signing up, signing in, and
password recovery. It also hosts the standard OpenID Connect (OIDC) endpoints like authorize,
userInfo, and token, for machine-to-machine (M2M) authorization and other OIDC and OAuth 2.0
authentication and authorization flows.

Users authenticate with managed login pages at the domain associated with your user pool. You
have two options for configuring this domain: you can either use the default Amazon Cognito
hosted domain, or you can configure a custom domain that you own.

The custom domain option has more options for flexibility, security and control. For example, a
familiar, organization-owned domain can encourage user trust and make the sign-in process more
intuitive. However, the custom domain approach requires some additional overhead, like managing
the SSL certificate and DNS configuration.

The OIDC discovery endpoints, /.well-known/openid-configuration for endpoint URLs
and /.well-known/jwks.json for token signing keys, aren't hosted on your domain. For more
information, see Identity provider and relying party endpoints.

Configuring a domain 625

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateManagedLoginBranding.html

Amazon Cognito Developer Guide

Understanding how to configure and manage the domain for your user pool is an important
step in integrating authentication into your application. Sign-in with the user pools API and an
Amazon SDK can be an alternative to configuring a domain. The API-based model delivers tokens
directly in an API response, but for implementations that use the extended capabilities of user
pools as an OIDC IdP, you must configure a domain. For more information about the authentication
models that are available in user pools, see Understanding API, OIDC, and managed login pages
authentication.

Topics

• Things to know about user pool domains

• Using the Amazon Cognito prefix domain for managed login

• Using your own domain for managed login

Things to know about user pool domains

User pool domains are a point of service for OIDC relying parties in your applications and for UI
elements. Consider the following details when you're planning your implementation of a domain
for your user pool.

Reserved terms

You can't use the text aws, amazon, or cognito in the name of an Amazon Cognito prefix domain.

Discovery endpoints are on a different domain

The user pool discovery endpoints .well-known/openid-configuration and .well-known/
jwks.json aren't on your user pool custom or prefix domain. The path to these endpoints is as
follows.

• https://cognito-idp.Region.amazonaws.com/your user pool ID/.well-known/
openid-configuration

• https://cognito-idp.Region.amazonaws.com/your user pool ID/.well-known/
jwks.json

Effective time of domain changes

Configuring a domain 626

Amazon Cognito Developer Guide

It can take Amazon Cognito up to a minute to launch or update the branding version of a prefix
domain. Changes to a custom domain can take up to five minutes to propagate. New custom
domains can take up to one hour to propagate.

Custom and prefix domains at the same time

You can set up a user pool with both a custom domain and a prefix domain that's owned by
Amazon. Because the user pool discovery endpoints are hosted at a different domain, they only
serve the custom domain. For example, your openid-configuration will provide a single value
for "authorization_endpoint" of "https://auth.example.com/oauth2/authorize".

When you have both custom and prefix domains in a user pool, you can use the custom domain
with the full features of an OIDC provider. The prefix domain in a user pool with this configuration
doesn't have discovery or token-signing-key endpoints and should be used accordingly.

Custom domains preferred as relying party ID for passkey

When you set up user pool authentication with passkeys, you must set a relying party (RP) ID.
When you have a custom domain and a prefix domain, you can set the RP ID only as your custom
domain. To set a prefix domain as the RP ID in the Amazon Cognito console, delete your custom
domain or enter the fully-qualified domain name (FQDN) of the prefix domain as a Third-party
domain.

Don't use custom domains at different levels of your domain hierarchy

You can configure separate user pools to have custom domains in the same top-level domain (TLD),
for example auth.example.com and auth2.example.com. The managed login session cookie is valid
for a custom domain and all subdomains, for example *.auth.example.com. Because of this, no user
of your applications should access managed login for any parent domain and subdomain. Where
custom domains use the same TLD, keep them at the same subdomain level.

Say you have a user pool with the custom domain auth.example.com. Then you create
another user pool and assign the custom domain uk.auth.example.com.. A user signs in with
auth.example.com. and gets a cookie that their browser presents to any website in the wildcard
path *.auth.example.com. They then try to sign in to uk.auth.example.com.. They pass an
invalid cookie to your user pool domain and receive an error instead of a sign-in prompt. By
contrast, a user with a cookie for *.auth.example.com has no issues starting a sign-in session at
auth2.example.com.

Branding version

Configuring a domain 627

Amazon Cognito Developer Guide

When you create a domain, you set a Branding version. Your options are the newer managed-login
experience and the classic hosted UI experience. This choice applies to all app clients that host
services at your domain.

Using the Amazon Cognito prefix domain for managed login

The default experience for managed login is hosted on a domain that Amazon owns. This approach
has a low barrier to entry—choose a prefix name and it's active—but doesn't have the trust-
inspiring features of a custom domain. There isn't a cost difference between the Amazon Cognito
domain option and the custom domain option. The only difference is the domain in the web
address that you direct your users to. For cases of third-party IdP redirects and client-credentials
flows, the hosted domain has little visible effect. A custom domain is better for cases where your
users sign in with managed login and would interact with a authentication domain that doesn't
match the application domain.

The hosted Amazon Cognito domain has a prefix of your choosing, but is hosted at the root domain
amazoncognito.com. The following is an example:

https://cognitoexample.auth.ap-south-1.amazoncognito.com

All prefix domains follow this format: prefix.auth.Amazon Web Services Region
code.amazoncognito.com. Custom domain user pools can host the managed login or hosted UI
pages on any domain that you own.

Note

To augment the security of your Amazon Cognito applications, the parent domains of user
pool endpoints are registered in the Public Suffix List (PSL). The PSL helps your users' web
browsers establish a consistent understanding of your user pool endpoints and the cookies
they set.
User pool parent domains take the following formats.

auth.Region.amazoncognito.com
auth-fips.Region.amazoncognito.com

To add an app client and a user pool domain with the Amazon Web Services Management Console,
see Creating an app client.

Configuring a domain 628

https://publicsuffix.org/

Amazon Cognito Developer Guide

Topics

• Prerequisites

• Configure an Amazon Cognito domain prefix

• Verify your sign-in page

Prerequisites

Before you begin, you need:

• A user pool with an app client. For more information, see Getting started with user pools.

Configure an Amazon Cognito domain prefix

You can use either the Amazon Web Services Management Console or the Amazon CLI or API to
configure a user pool domain.

Amazon Cognito console

Configure a domain

1. Navigate to the Domain menu under Branding.

2. Next to Domain, choose Actions and select Create Cognito domain. If you have already
configured a user pool prefix domain, choose Delete Cognito domain before creating your
new custom domain.

3. Enter an available domain prefix to use with a Amazon Cognito domain. For information
on setting up a Custom domain, see Using your own domain for managed login.

4. Choose a Branding version. Your branding version applies to all user-interactive pages at
that domain. Your user pool can host either managed login or hosted UI branding for all
app clients.

Note

You can have a custom domain and a prefix domain, but Amazon Cognito only
serves the /.well-known/openid-configuration endpoint for the custom
domain.

5. Choose Create.

Configuring a domain 629

Amazon Cognito Developer Guide

CLI/API

Use the following commands to create a domain prefix and assign it to your user pool.

To configure a user pool domain

• Amazon CLI: aws cognito-idp create-user-pool-domain

Example: aws cognito-idp create-user-pool-domain --user-pool-id
<user_pool_id> --domain <domain_name> --managed-login-version 2

• User pools API operation: CreateUserPoolDomain

To get information about a domain

• Amazon CLI: aws cognito-idp describe-user-pool-domain

Example: aws cognito-idp describe-user-pool-domain --domain
<domain_name>

• User pools API operation: DescribeUserPoolDomain

To delete a domain

• Amazon CLI: aws cognito-idp delete-user-pool-domain

Example: aws cognito-idp delete-user-pool-domain --domain <domain_name>

• User pools API operation: DeleteUserPoolDomain

Verify your sign-in page

• Verify that the sign-in page is available from your Amazon Cognito hosted domain.

https://<your_domain>/login?
response_type=code&client_id=<your_app_client_id>&redirect_uri=<your_callback_url>

Your domain is shown on the Domain name page of the Amazon Cognito console. Your app client
ID and callback URL are shown on the App client settings page.

Configuring a domain 630

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolDomain.html

Amazon Cognito Developer Guide

Using your own domain for managed login

After you set up an app client, you can configure your user pool with a custom domain for the
domain services of managed login. With a custom domain, users can sign in to your application
using your own web address instead the default amazoncognito.com prefix domain. Custom
domains improve user trust in your application with a familiar domain name, especially when
the root domain matches the domain that hosts your application. Custom domains can improve
compliance with organizational security requirements.

A custom domain has some prerequisites, including a user pool, an app client, and a web domain
that you own. Custom domains also require an SSL certificate for the custom domain, managed
with Amazon Certificate Manager (ACM) in US East (N. Virginia). Amazon Cognito creates a Amazon
CloudFront distribution, secured in transit with your ACM certificate. Because you own the domain,
you must create a DNS record that directs traffic to the CloudFront distribution for your custom
domain.

After these elements are ready, you can add the custom domain to your user pool through the
Amazon Cognito console or API. This involves specifying the domain name and SSL certificate, and
then updating your DNS configuration with the provided alias target. After making these changes,
you can verify that the sign-in page is accessible at your custom domain.

The lowest-effort way to create a custom domain is with a public hosted zone in Amazon Route 53.
The Amazon Cognito console can create the right DNS records in a few steps. Before you begin,
consider creating a Route 53 hosted zone for a domain or subdomain that you own.

Topics

• Adding a custom domain to a user pool

• Prerequisites

• Step 1: Enter your custom domain name

• Step 2: Add an alias target and subdomain

• Step 3: Verify your sign-in page

• Changing the SSL certificate for your custom domain

Adding a custom domain to a user pool

To add a custom domain to your user pool, you specify the domain name in the Amazon Cognito
console, and you provide a certificate you manage with Amazon Certificate Manager (ACM). After

Configuring a domain 631

https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/CreatingHostedZone.html
https://docs.amazonaws.cn/acm/latest/userguide/

Amazon Cognito Developer Guide

you add your domain, Amazon Cognito provides an alias target, which you add to your DNS
configuration.

Prerequisites

Before you begin, you need:

• A user pool with an app client. For more information, see Getting started with user pools.

• A web domain that you own. Its parent domain must have a valid DNS A record. You can assign
any value to this record. The parent may be the root of the domain, or a child domain that is one
step up in the domain hierarchy. For example, if your custom domain is auth.xyz.example.com,
Amazon Cognito must be able to resolve xyz.example.com to an IP address. To prevent accidental
impact on customer infrastructure, Amazon Cognito doesn't support the use of top-level
domains (TLDs) for custom domains. For more information see Domain Names.

• The ability to create a subdomain for your custom domain. We recommend auth for your
subdomain name. For example: auth.example.com.

Note

You might need to obtain a new certificate for your custom domain's subdomain if you
don't have a wildcard certificate.

• A public SSL/TLS certificate managed by ACM in US East (N. Virginia). The certificate must be in
us-east-1 because the certificate will be associated with a distribution in CloudFront, a global
service.

• Browser clients that support Server Name Indication (SNI). The CloudFront distribution that
Amazon Cognito assigns to custom domains requires SNI. You can't change this setting. For more
information about SNI in CloudFront distributions, see Use SNI to serve HTTPS requests in the
Amazon CloudFront Developer Guide.

• An application that permits your user pool authorization server to add cookies to user sessions.
Amazon Cognito sets several required cookies for managed login pages. These include cognito,
cognito-fl, and XSRF-TOKEN. Although each individual cookie conforms to browser size
limits, changes to your user pool configuration might cause managed login cookies to grow in
size. An intermediate service like an Application Load Balancer (ALB) in front of your custom
domain might enforce a maximum header size or total cookie size. If your application also sets
its own cookies, your users' sessions might exceed these limits. We recommend that, to avoid

Configuring a domain 632

https://tools.ietf.org/html/rfc1035
https://en.wikipedia.org/wiki/Wildcard_certificate
https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html#cnames-https-sni

Amazon Cognito Developer Guide

size limit conflicts, your application not set cookies on the subdomain that hosts your user pool
domain services.

• Permission to update Amazon CloudFront distributions. You can do so by attaching the following
IAM policy statement to a user in your Amazon Web Services account:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowCloudFrontUpdateDistribution",
 "Effect": "Allow",
 "Action": [
 "cloudfront:updateDistribution"
],
 "Resource": [
 "*"
]
 }
]
}

For more information about authorizing actions in CloudFront, see Using Identity-Based Policies
(IAM Policies) for CloudFront.

Amazon Cognito initially uses your IAM permissions to configure the CloudFront distribution, but
the distribution is managed by Amazon. You can't change the configuration of the CloudFront
distribution that Amazon Cognito associated with your user pool. For example, you can't update
the supported TLS versions in the security policy.

Step 1: Enter your custom domain name

You can add your domain to your user pool by using the Amazon Cognito console or API.

Amazon Cognito console

To add your domain to your user pool from the Amazon Cognito console:

1. Navigate to the Domain menu under Branding.

Configuring a domain 633

https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/access-control-managing-permissions.html
https://docs.amazonaws.cn/AmazonCloudFront/latest/DeveloperGuide/access-control-managing-permissions.html

Amazon Cognito Developer Guide

2. Next to Domain, choose Actions and select Create custom domain or Create Amazon
Cognito domain. If you have already configured a user pool custom domain, choose Delete
custom domain before creating your new custom domain.

3. Next to Domain, choose Actions and select Create custom domain. If you have already
configured a custom domain, choose Delete custom domain to delete the existing domain
before creating your new custom domain.

4. For Custom domain, enter the URL of the domain you want to use with Amazon Cognito.
Your domain name can include only lowercase letters, numbers, and hyphens. Do not use a
hyphen for the first or last character. Use periods to separate subdomain names.

5. For ACM certificate, choose the SSL certificate that you want to use for your domain. Only
ACM certificates in US East (N. Virginia) are eligible to use with an Amazon Cognito custom
domain, regardless of the Amazon Web Services Region of your user pool.

If you don't have an available certificate, you can use ACM to provision one in US East (N.
Virginia). For more information, see Getting Started in the Amazon Certificate Manager User
Guide.

6. Choose a Branding version. Your branding version applies to all user-interactive pages at
that domain. Your user pool can host either managed login or hosted UI branding for all
app clients.

Note

You can have a custom domain and a prefix domain, but Amazon Cognito only
serves the /.well-known/openid-configuration endpoint for the custom
domain.

7. Choose Create.

8. Amazon Cognito returns you to the Domain menu. A message titled Create an alias record
in your domain's DNS is displayed. Note down the Domain and Alias target displayed in
the console. They will be used in the next step to direct traffic to your custom domain.

API

The following CreateUserPoolDomain request body creates a custom domain.

{
 "Domain": "auth.example.com",

Configuring a domain 634

https://docs.amazonaws.cn/acm/latest/userguide/gs.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html

Amazon Cognito Developer Guide

 "UserPoolId": "us-east-1_EXAMPLE",
 "ManagedLoginVersion": 2,
 "CustomDomainConfig": {
 "CertificateArn": "arn:aws:acm:us-east-1:111122223333:certificate/
a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
 }
}

Step 2: Add an alias target and subdomain

In this step, you set up an alias through your Domain Name Server (DNS) service provider that
points back to the alias target from the previous step. If you are using Amazon Route 53 for DNS
address resolution, choose the section To add an alias target and subdomain using Route 53.

To add an alias target and subdomain to your current DNS configuration

• If you aren't using Route 53 for DNS address resolution, then you must use your DNS service
provider's configuration tools to add the alias target from the previous step to your domain's
DNS record. Your DNS provider will also need to set up the subdomain for your custom
domain.

To add an alias target and subdomain using Route 53

1. Sign in to the Route 53 console. If prompted, enter your Amazon credentials.

2. If you don't have a public hosted zone in Route 53, create one with a root that is a parent of
your custom domain. For more information, see Creating a public hosted zone in the Amazon
Route 53 Developer Guide.

a. Choose Create Hosted Zone.

b. Enter the parent domain, for example auth.example.com, of your custom domain, for
example myapp.auth.example.com, from the Domain Name list.

c. Enter a Description for your hosted zone.

d. Choose a hosted zone Type of Public hosted zone to allow public clients to resolve your
custom domain. Choosing Private hosted zone is not supported.

e. Apply Tags as desired.

f. Choose Create hosted zone.

Configuring a domain 635

https://console.amazonaws.cn/route53/
https://docs.amazonaws.cn/Route53/latest/DeveloperGuide/CreatingHostedZone.html

Amazon Cognito Developer Guide

Note

You can also create a new hosted zone for your custom domain with a delegation
set in the parent hosted zone that directs queries to the subdomain hosted zone.
Otherwise, create an A record. This method offers more flexibility and security
with your hosted zones.For more information, see Creating a subdomain for a
domain hosted through Amazon Route 53.

3. On the Hosted Zones page, choose the name of your hosted zone.

4. Add a DNS record for the parent domain of your custom domain, if you don’t already have one.
Create a DNS record for the parent domain with the following properties:

• Record name: Leave blank.

• Record type: A.

• Alias: Don't enable.

• Value: Enter a target of your choosing. This record must resolve to something, but the value
of the record doesn't matter to Amazon Cognito.

• TTL: Set to your preferred TTL or leave as default.

• Routing policy: Choose Simple routing.

5. Choose Create records. The following is an example record for the domain example.com:

example.com. 60 IN A 198.51.100.1

Note

Amazon Cognito verifies that there is a DNS record for the parent domain of your
custom domain to protect against accidental hijacking of production domains. If you
do not have a DNS record for the parent domain, Amazon Cognito will return an error
when you attempt to set the custom domain. A Start of Authority (SOA) record isn't a
sufficient DNS record for the purposes of parent-domain verification.

6. Add another DNS record for your custom domain with the following properties:

• Record name: Your custom domain prefix, for example auth to create a record for
auth.example.com.

• Record type: A.

Configuring a domain 636

https://aws.amazon.com/premiumsupport/knowledge-center/create-subdomain-route-53/
https://aws.amazon.com/premiumsupport/knowledge-center/create-subdomain-route-53/

Amazon Cognito Developer Guide

• Alias: Enable.

• Route traffic to: Choose Alias to Cloudfront distribution. Enter the Alias target you
recorded earlier, for example 123example.cloudfront.net.

• Routing policy: Choose Simple routing.

7. Choose Create records.

Note

Your new records can take around 60 seconds to propagate to all Route 53 DNS
servers. You can use the Route 53 GetChange API method to verify that your changes
have propagated.

Step 3: Verify your sign-in page

• Verify that the sign-in page is available from your custom domain.

Sign in with your custom domain and subdomain by entering this address into your browser.
This is an example URL of a custom domain example.com with the subdomain auth:

https://myapp.auth.example.com/login?
response_type=code&client_id=<your_app_client_id>&redirect_uri=<your_callback_url>

Changing the SSL certificate for your custom domain

When necessary, you can use Amazon Cognito to change the certificate that you applied to your
custom domain.

Usually, this is unnecessary following routine certificate renewal with ACM. When you renew your
existing certificate in ACM, the ARN for your certificate remains the same, and your custom domain
uses the new certificate automatically.

However, if you replace your existing certificate with a new one, ACM gives the new certificate
a new ARN. To apply the new certificate to your custom domain, you must provide this ARN to
Amazon Cognito.

Configuring a domain 637

https://docs.amazonaws.cn/Route53/latest/APIReference/API_GetChange.html

Amazon Cognito Developer Guide

After you provide your new certificate, Amazon Cognito requires up to 1 hour to distribute it to
your custom domain.

Before you begin

Before you can change your certificate in Amazon Cognito, you must add your certificate
to ACM. For more information, see Getting Started in the Amazon Certificate Manager User
Guide.
When you add your certificate to ACM, you must choose US East (N. Virginia) as the
Amazon Region.

You can change your certificate by using the Amazon Cognito console or API.

Amazon Web Services Management Console

To renew a certificate from the Amazon Cognito console:

1. Sign in to the Amazon Web Services Management Console and open the Amazon Cognito
console at https://console.amazonaws.cn/cognito/home.

2. Choose User Pools.

3. Choose the user pool for which you want to update the certificate.

4. Choose the Domain menu.

5. Choose Actions, Edit ACM certificate.

6. Select the new certificate you want to associate with your custom domain.

7. Choose Save changes.

API

To renew a certificate (Amazon Cognito API)

• Use the UpdateUserPoolDomain action.

Apply branding to managed login pages

You might want to provide a consistent user experience between your authentication service
and your application. You can accomplish this goal either with custom forms and back-end API

Branding and customization 638

https://docs.amazonaws.cn/acm/latest/userguide/gs.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html

Amazon Cognito Developer Guide

operations in an Amazon SDK, or with managed login. Managed login and the classic hosted UI are
web front ends for the component of your application that serves authentication with user pools.
To synchronize your managed authentication services with your application UX, you have two
customization options: the branding editor and hosted UI branding. You can choose your preferred
experience in the Amazon Cognito console and with user pool API operations.

The branding editor

The branding editor is the newest customization option for the newest user pools UI experience,
managed login. The branding editor is a no-code visual editor for managed login assets
and style, and a set of API operations for programmatic configuration of a large number
of configuration options. User pools that you configure with a domain and managed login
automatically render the branding-designer version of your login pages.

Hosted UI (classic) branding

The hosted UI (classic) branding experience has two options: to modify a cascading stylesheets
(CSS) file with a fixed set of style options, and to add a custom logo image. You can set these
options in the Amazon Cognito console or with the SetUICustomization API operation. At the
time that the service launched, Amazon Cognito had only this option. User pools that you
configure with a domain and the hosted UI branding version automatically render the classic
version of your login pages. Your feature plan might also support only the hosted UI.

Note

The branding editor and the classic branding experience modify the visual properties of
your hosted authentication service. Currently, you can't modify the text that's displayed on
your managed login pages, except to apply localization into one of several languages. For
more information about localization, see Managed login localization.

Choose a branding experience and assign styles

In the Amazon Cognito console, new user pools default to the Managed login branding experience.
User pools that you set up before managed login was available will have Hosted UI (classic)
branding. You can switch between managed login and hosted UI branding. When you change your
Branding version, Amazon Cognito immediately applies the change to the user-interactive pages
of your user pool domain. With managed login and the hosted UI, your user pool can have a style
for each app client.

Branding and customization 639

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html

Amazon Cognito Developer Guide

Each app client can have a distinct branding style, but a user pool domain serves either managed
login or the hosted UI. A style is the set of customization settings applied to an app client. You can
set up one custom domain and one prefix domain per user pool. You can assign different branding
versions to your custom and prefix domains. However, a prefix domain isn't fully functional when
you also have a custom domain—the .well-known OIDC discovery endpoints only present
custom-domain paths. You can only use the prefix domain for operations that don't require
endpoint discovery (openid-configuration) in a user pool with this configuration. Because of
these properties of user pools, you can effectively choose one branding version per user pool.

You can assign styles to the app clients in a user pool where a domain is set to the managed
login branding version. Styles are a set of visual settings made up of image files, display options,
CSS values. When you assign a style to an app client, Amazon Cognito immediately pushes your
updates to your user-interactive login pages. Amazon Cognito renders your user-interactive pages
with your chosen branding version and the customization that you have applied to it.

Update and delete styles

When you create a style, you link it to an app client. To change a style assignment for an app
client, you must first delete the original style. Currently, you can't copy settings between styles.
You must do this programmatically. To replicate settings between styles and app clients, get the
settings for a style with the DescribeManagedLoginBranding API operation and apply them with
CreateManagedLoginBranding or UpdateManagedLoginBranding. You can't change the assigned
styles of an app client—you can only delete the original and set a new one. For more information
about managing styles with API and SDK operations, see API and SDK operations for managed
login branding.

Note

Programmatic requests that create or update branding style must have a request size of no
more than 2 MB. If your request is larger than this limit, break your request up into multiple
UpdateManagedLoginBranding requests for groups of parameters that don't exceed the
maximum request size. These requests don't result in unspecified parameters being set to
default, so you can send partial requests without any effect on existing settings.

You delete a style in the Amazon Cognito console from the Managed login menu. Under Styles,
choose the style that you want to delete and choose Delete style.

At a high level, the process of assigning branding to a domain consists of the following steps.

Branding and customization 640

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeManagedLoginBranding.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateManagedLoginBranding.html

Amazon Cognito Developer Guide

1. Create a domain and set the branding version.

2. Create a branding style and assign it to an app client.

To assign a style to an app client

1. In the Domain menu of your user pool, create a domain and set the Branding version to
Managed login.

2. Navigate to the Managed login menu. Under Styles, choose Create a style.

3. Choose the app client that you want to assign your style to, or create a new app client.

4. To start configuring your branding settings, choose Launch branding editor.

Topics

• The branding editor and customizing managed login

• Customizing hosted UI (classic) branding

The branding editor and customizing managed login

The branding editor is a visual design and editing tool for your managed login webpages. It's built
in to the Amazon Cognito console. In the branding editor, you start with a preview of your login
pages and can proceed into a quick-setup option or a detailed view with advanced options. You
can modify and preview style parameters or add a custom background image and logo. You can
configure light mode and dark mode.

Branding and customization 641

Amazon Cognito Developer Guide

To begin, create a style that you can apply to your user pool or an app client.

To get started with the branding editor

1. Create a domain from the Domain tab, or update your existing domain. Under Branding
version, set your domain to use Managed login.

2. Delete the existing app client style, if any.

a. In the App clients menu, select your app client.

b. Under Managed login style, select the syle assigned to your app client.

c. Choose Delete style. Confirm your selection.

3. Navigate to the Managed login menu in your user pool. If you haven't already, follow the
prompt to select a feature plan that includes managed login. You can also select Preview this
feature if you want to check out the branding editor without making changes.

4. Under Styles, choose Create a style.

5. Choose the app client that you want to assign your style to and select Create. You can also
create a new app client.

6. The Amazon Cognito console launches the branding editor.

7. Choose a tab where you want to start editing, or select Launch editor and enter quick setup.
The following tabs are available:

Preview

See how your current selections look in your managed login pages.

Foundation

Set an overall theme, configure links to external identity providers, and style form fields.

Components

Configure styles for headers, footers, and individual UI elements.

8. To make choices about initial settings, enter quick setup. Select Change settings category
and choose Quick setup. When you select Proceed, the branding editor launches with a set of
basic options for you to configure.

Branding and customization 642

Amazon Cognito Developer Guide

Text and localization

You can't modify or localize text in the branding editor. Instead, add a lang query parameter
to the URL that you distribute to users. This parameters causes your managed login pages to
be localized into one of several available languages. For more information, see Managed login
localization.

Quick setup

The Launch branding editor button loads a visual editor for your managed login configuration
where you can select from a variety of primary customization options. As you make selections,
Amazon Cognito renders your managed login changes in a preview window. To return to the
detailed settings menu, select the Change settings category button.

What should be the overall look and feel?

Configure basic theme settings for managed login.

Display mode

Choose a light-mode, dark-mode, or adaptive experience for your managed login. The
adaptive settings defers to the user's browser preference when Amazon Cognito renders
managed login. When you choose a browser-adaptive mode, you can choose different colors
and logo images for light and dark mode.

Spacing

Set the default spacing between elements in the page.

Border radius

Set the rounding depth of the outer border of elements.

How should the page background look?

Background type

The Show image checkbox indicates whether you want a background image or to set a solid
background color.

1. To use an image, select Show image and choose a background image for light and dark
modes. You can also set a dark-mode and light-mode Page background color for areas of
the background that aren't covered by the image.

2. To use only a color for the background, deselect Show image and choose a light-mode
and dark-mode Page background color.

Branding and customization 643

Amazon Cognito Developer Guide

How should forms look?

Configure settings for the form elements of managed login. Examples of form items are login
and code prompts.

Horizontal alignment

Set the horizontal alignment of form fields.

Form logo

Set the positioning of your logo image.

Logo image

Choose a logo image file to include in the form element for light and dark modes. To upload
an image, select the Logo image dropdown, choose Add new asset, and add a logo file.

Primary branding color

Set a theme color for light and dark modes. This color will be applied as the background
color to all elements classified as primary.

How should headers look?

Choose whether you want to include a header in your managed login pages. The header can
contain a logo image.

Header logo

Set the position of the logo image in your header.

Logo image

Choose a logo position and a logo image file to include in the header. To upload an image,
select the Logo image dropdown, choose Add new asset, and add a logo file.

Header background color

Set the light and dark mode colors for the background of the header.

Detailed settings

In the detailed settings view, you can modify individual components in the Foundation and
Components. The Preview tab displays a preview of managed login in the current context with
your customizations.

Branding and customization 644

Amazon Cognito Developer Guide

To enter the visual editor for a component, choose the edit icon in the tile for the component. From
the theme studio editor, you can switch between components with the Change setting category
button.

Foundation

App style

Branding and customization 645

Amazon Cognito Developer Guide

Configure the basics of your managed login configuration. This category has settings for the
overall theme, text spacing, and the page header and footer.

Display mode

Choose a light-mode, dark-mode, or adaptive experience for your managed login pages. When
you choose a browser-adaptive mode, you can choose different colors and logo images for light
and dark mode.

Spacing

Set the default spacing between elements in the page.

Authentication behavior

Configure styles for the buttons that connect your users to external identity providers (IdPs). This
section includes the option Domain search input to have managed login prompt users for an email
address and match them with their SAML identity provider identifier.

Form behavior

Configure styles for input forms: the positioning of inputs, colors, and alignment of elements.

Components

Buttons

Styles for buttons that Amazon Cognito renders on managed login pages.

Divider

Styles for divider lines and boundaries between managed login elements like the input form and
the external-provider sign-in selector.

Dropdown

Styles for dropdown menus.

Favicon

Styles for the image that Amazon Cognito provides for the tab and bookmark icon.

Focus rings

Styles for the highlights that indicate a currently-selected input.

Branding and customization 646

Amazon Cognito Developer Guide

Form container

Styles for the elements that bound a form.

Global footer

Styles for the footer that Amazon Cognito displays at the bottom of managed login pages.

Global header

Styles for the header that Amazon Cognito displays at the top of managed login pages.

Indications

Styles for error and success messages.

Option controls

Styles for checkboxes, multi-selects, and other input prompts.

Page background

Styles for the overall background of managed login.

Inputs

Styles for form-field input prompts.

Link

Styles for hyperlinks in managed login pages.

Text for page

Styles for in-page text.

Text for field

Styles for the text around form inputs.

API and SDK operations for managed login branding

You can also apply branding to a managed login style with the API operations
CreateManagedLoginBranding and UpdateManagedLoginBranding. These operations are ideal
for creating identical or slightly-modified versions of a branding style for another app client
or user pool. Query the managed login branding of an existing style with the API operation

Branding and customization 647

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateManagedLoginBranding.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateManagedLoginBranding.html

Amazon Cognito Developer Guide

DescribeManagedLoginBranding, then modify the output as needed and apply it to another
resource.

The UpdateManagedLoginBranding operation doesn't change the app client that your style is
applied to. It only updates the existing style that's assigned to an app client. To completely replace
the style for an app client, delete the existing style with DeleteManagedLoginBranding and assign
a new style with CreateManagedLoginBranding. In the Amazon Cognito console, the same is
true: you must delete the existing style and create a new one.

Setting up managed login branding in an API or SDK request requires that your settings be
embedded in a JSON file that's converted to a Document datatype. The following is guidance for
images that you can add and for generating programmatic requests to configure a branding style.

Image assets

CreateManagedLoginBranding and UpdateManagedLoginBranding include an Assets parameter.
This parameter is an array of image files in base64-encoded binary format.

Note

Programmatic requests that create or update branding style must have a request size of
no more than 2 MB. The assets in your request might make it exceed this limit. If this is
the case, break your request up into multiple UpdateManagedLoginBranding requests
for groups of parameters that don't exceed the maximum request size. These requests
don't result in unspecified parameters being set to default, so you can send partial requests
without any effect on existing settings.

Some assets have limitations on the filetypes that you can submit.

Asset Accepted file extensions

FAVICON_ICO ico

FAVICON_SVG svg

EMAIL_GRAPHIC png, svg, jpeg

SMS_GRAPHIC png, svg, jpeg

Branding and customization 648

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeManagedLoginBranding.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteManagedLoginBranding.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateManagedLoginBranding.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateManagedLoginBranding.html

Amazon Cognito Developer Guide

Asset Accepted file extensions

AUTH_APP_GRAPHIC png, svg, jpeg

PASSWORD_GRAPHIC png, svg, jpeg

PASSKEY_GRAPHIC png, svg, jpeg

PAGE_HEADER_LOGO png, svg, jpeg

PAGE_HEADER_BACKGROUND png, svg, jpeg

PAGE_FOOTER_LOGO png, svg, jpeg

PAGE_FOOTER_BACKGROUND png, svg, jpeg

PAGE_BACKGROUND png, svg, jpeg

FORM_BACKGROUND png, svg, jpeg

FORM_LOGO png, svg, jpeg

IDP_BUTTON_ICON ico, svg

Files of the SVG type support the following attributes and elements.

Attributes

accent-height, accumulate, additivive, alignment-baseline, ascent, attributename,
 attributetype, azimuth, basefrequency, baseline-shift, begin, bias, by, class,
 clip, clip-path, clip-rule, color, color-interpolation, color-interpolation-
filters, color-profile, color-rendering, cx, cy, d, dx, dy, diffuseconstant,
 direction, display, divisor, dur, edgemode, elevation, end, fill, fill-opacity,
 fill-rule, filter, filterunits, flood-color, flood-opacity, font-family, font-
size, font-size-adjust, font-stretch, font-style, font-variant, font-weight, fx,
 fy, g1, g2, glyph-name, glyphref, gradientunits, gradienttransform, height, href,
 id, image-rendering, in, in2, k, k1, k2, k3, k4, kerning, keypoints, keysplines,
 keytimes, lang, lengthadjust, letter-spacing, kernelmatrix, kernelunitlength,
 lighting-color, local, marker-end, marker-mid, marker-start, markerheight,
 markerunits, markerwidth, maskcontentunits, maskunits, max, mask, media,
 method, mode, min, name, numoctaves, offset, operator, opacity, order, orient,
 orientation, origin, overflow, paint-order, path, pathlength, patterncontentunits,

Branding and customization 649

Amazon Cognito Developer Guide

 patterntransform, patternunits, points, preservealpha, preserveaspectratio, r,
 rx, ry, radius, refx, refy, repeatcount, repeatdur, restart, result, rotate,
 scale, seed, shape-rendering, specularconstant, specularexponent, spreadmethod,
 stddeviation, stitchtiles, stop-color, stop-opacity, stroke-dasharray, stroke-
dashoffset, stroke-linecap, stroke-linejoin, stroke-miterlimit, stroke-opacity,
 stroke, stroke-width, style, surfacescale, tabindex, targetx, targety, transform,
 text-anchor, text-decoration, text-rendering, textlength, type, u1, u2, unicode,
 values, viewbox, visibility, vert-adv-y, vert-origin-x, vert-origin-y, width, word-
spacing, wrap, writing-mode, xchannelselector, ychannelselector, x, x1, x2, xmlns,
 y, y1, y2, z, zoomandpan

Elements

svg, a, altglyph, altglyphdef, altglyphitem, animatecolor, animatemotion,
 animatetransform, audio, canvas, circle, clippath, defs, desc, ellipse, filter,
 font, g, glyph, glyphref, hkern, image, line, lineargradient, marker, mask,
 metadata, mpath, path, pattern, polygon, polyline, radialgradient, rect, stop,
 style, switch, symbol, text, textpath, title, tref, tspan, video, view, vkern,
 feBlend, feColorMatrix, feComponentTransfer, feComposite, feConvolveMatrix,
 feDiffuseLighting, feDisplacementMap, feDistantLight, feFlood, feFuncA, feFuncB,
 feFuncG, feFuncR, feGaussianBlur, feMerge, feMergeNode, feMorphology, feOffset,
 fePointLight, feSpecularLighting, feSpotLight, feTile, feTurbulence

Tools for managed login branding operations

Amazon Cognito manages a file in the JSON-Schema format for the managed-login branding
settings object. The following is how to programmatically update your branding style.

To update branding in the user pools API

1. In the Amazon Cognito console, create a default managed login branding style from the
Managed login menu of your user pool. Assign it to an app client.

2. Record the ID of the app client that you created the style for, for example
1example23456789.

3. Retrieve the settings for the branding style with a DescribeManagedLoginBrandingByClient
API request with ReturnMergedResources set to true. The following is an example request
body.

{
 "ClientId": "1example23456789",

Branding and customization 650

https://json-schema.org/docs
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeManagedLoginBrandingByClient.html

Amazon Cognito Developer Guide

 "ReturnMergedResources": true,
 "UserPoolId": "us-east-1_EXAMPLE"
}

4. Modify the output of DescribeManagedLoginBrandingByClient with your
customizations.

a. The response body is wrapped in a ManagedLoginBranding element that isn't part of
the syntax for create and update operations. Remove this top level of the JSON object.

b. To replace images, replace the Bytes value with the Base64-encoded binary data of each
image file.

c. To update settings, modify the output of the Settings object and include it in your next
request. Amazon Cognito ignores any values in your Settings object that aren't in the
schema that you receive in your API response.

5. Use the updated response body in a CreateManagedLoginBranding or
UpdateManagedLoginBranding request. If this request exceeds 2 MB in size, separate it out
into multiple requests. These operations work in a PATCH model where original settings
remain unchanged unless you specify otherwise.

Customizing hosted UI (classic) branding

You can use the Amazon Web Services Management Console, or the Amazon CLI or API, to specify
classic customization settings for the hosted UI. You can upload a custom logo image to be
displayed in the app. You can also apply some cascading style sheets (CSS) options to the look and
feel of the UI.

You can customize the UI defaults and override individual app clients with specific settings.
Amazon Cognito applies the default configuration to every app client that doesn't have client-level
settings.

In the Amazon Cognito console and in API requests, the request that sets your UI customization
must not exceed 135 KB in size. In rare cases, the sum of request headers, your CSS file, and your
logo might exceed 135KB. Amazon Cognito encodes the image file to Base64. This increases the
size of a 100 KB image to 130 KB, keeping five KB for request headers and your CSS. If the request
is too large, the Amazon Web Services Management Console or your SetUICustomization
API request returns a request parameters too large error. Adjust your logo image to be
no greater than 100KB and your CSS file to be no larger than 3 KB. You can't set CSS and logo
customization separately.

Branding and customization 651

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateManagedLoginBranding.html

Amazon Cognito Developer Guide

Note

To customize your UI, you must set up a domain for your user pool.

Specifying a custom logo in classic branding

Amazon Cognito centers your custom logo above the input fields at the Login endpoint.

Choose a PNG, JPG, or JPEG file that can scale to 350 by 178 pixels for your custom hosted UI logo.
Your logo file can be no larger than 100 KB in size, or 130 KB after Amazon Cognito encodes to
Base64. To set an ImageFile in SetUICustomization in the API, convert your file to a Base64-
encoded text string or, in the Amazon CLI, provide a file path and let Amazon Cognito encode it for
you.

Specifying CSS customizations in classic branding

You can customize the CSS for the hosted app pages, with the following restrictions:

• You can use any of the following CSS class names:

• background-customizable

• banner-customizable

• errorMessage-customizable

• idpButton-customizable

• idpButton-customizable:hover

• idpDescription-customizable

• inputField-customizable

• inputField-customizable:focus

• label-customizable

• legalText-customizable

• logo-customizable

• passwordCheck-valid-customizable

• passwordCheck-notValid-customizable

• redirect-customizable

• socialButton-customizable
Branding and customization 652

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html

Amazon Cognito Developer Guide

• submitButton-customizable

• submitButton-customizable:hover

• textDescription-customizable

• Property values can contain HTML, except for the following values: @import, @supports,
@page, or @media statements, or Javascript.

You can customize the following CSS properties.

Labels

• font-weight is a multiple of 100 from 100 to 900.

• color is the text color. Must be a legal CSS color value.

Input fields

• width is the width of the containing block as a percentage.

• height is the height of the input field in pixels (px).

• color is the text color. It can be any standard CSS color value.

• background-color is the background color of the input field. It can be any standard CSS color
value.

• border is a standard CSS border value that specifies the width, transparency, and color of the
border of your app window. Width can be any value from 1px to 100px. Transparency can be
solid or none. Color can be any standard color value.

Text descriptions

• padding-top is the amount of padding above the text description.

• padding-bottom is the amount of padding below the text description.

• display can be block or inline.

• font-size is the font size for text descriptions.

• color is the text color. Must be a legal CSS color value.

Submit button

• font-size is the font size of the button text.

• font-weight is the font weight of the button text: bold, italic, or normal.

• margin is a string of four values indicating the top, right, bottom, and left margin sizes for
the button.

• font-size is the font size for text descriptions.

Branding and customization 653

https://www.w3schools.com/cssref/css_colors_legal.php
https://www.w3schools.com/cssref/css_colors_legal.php

Amazon Cognito Developer Guide

• width is the width of the button text in percent of the containing block.

• height is the height of the button in pixels (px).

• color is the button text color. It can be any standard CSS color value.

• background-color is the background color of the button. It can be any standard color value.

Banner

• padding is a string of four values indicating the top, right, bottom, and left padding sizes for
the banner.

• background-color is the banner's background color. It can be any standard CSS color value.

Submit button hover

• color is the foreground color of the button when you hover over it. It can be any standard CSS
color value.

• background-color is the background color of the button when you hover over it. It can be any
standard CSS color value.

Identity provider button hover

• color is the foreground color of the button when you hover over it. It can be any standard CSS
color value.

• background-color is the background color of the button when you hover over it. It can be any
standard CSS color value.

Password check not valid

• color is the text color of the "Password check not valid" message. It can be any
standard CSS color value.

Background

• background-color is the background color of the app window. It can be any standard CSS
color value.

Error messages

• margin is a string of four values indicating the top, right, bottom, and left margin sizes.

• padding is the padding size.

• font-size is the font size.

• width is the width of the error message as a percentage of the containing block.

• background is the background color of the error message. It can be any standard CSS color
value.

• border is a string of three values specifying the width, transparency, and color of the border.

Branding and customization 654

Amazon Cognito Developer Guide

• color is the error message text color. It can be any standard CSS color value.

• box-sizing is used to indicate to the browser what the sizing properties (width and height)
should include.

Identity provider buttons

• height is the height of the button in pixels (px).

• width is the width of the button text as a percentage of the containing block.

• text-align is the text alignment setting. It can be left, right, or center.

• margin-bottom is the bottom margin setting.

• color is the button text color. It can be any standard CSS color value.

• background-color is the background color of the button. It can be any standard CSS color
value.

• border-color is the color of the button border. It can be any standard CSS color value.

Identity provider descriptions

• padding-top is the amount of padding above the description.

• padding-bottom is the amount of padding below the description.

• display can be block or inline.

• font-size is the font size for descriptions.

• color is the text color for IdP section headers for example Sign in with your corporate ID.
Must be a legal CSS color value.

Legal text

• color is the text color. It can be any standard CSS color value.

• font-size is the font size.

Note

When you customize Legal text, you are customizing the message We won't post to any
of your accounts without asking first that is displayed under social identity providers in
the sign-in page.

Logo

• max-width is the maximum width as a percentage of the containing block.

• max-height is the maximum height as a percentage of the containing block.

Branding and customization 655

https://www.w3schools.com/cssref/css_colors_legal.php

Amazon Cognito Developer Guide

• background-color is the color of the background for logs with transparent sections. Must be
a legal CSS color value.

Input field focus

• border-color is the color of the input field. It can be any standard CSS color value.

• outline is the border width of the input field, in pixels.

Social button

• height is the height of the button in pixels (px).

• text-align is the text alignment setting. It can be left, right, or center.

• width is the width of the button text as a percentage of the containing block.

• margin-bottom is the bottom margin setting.

Password check valid

• color is the text color of the "Password check valid" message. It can be any standard
CSS color value.

Customizing the hosted UI with classic branding in the Amazon Web Services Management
Console

You can use the Amazon Web Services Management Console to specify UI customization settings
for your app.

Note

You can view the hosted UI with your customizations by constructing
the following URL, with the specifics for your user pool, and
typing it into a browser: https://<your_domain>/login?
response_type=code&client_id=<your_app_client_id>&redirect_uri=<your_callback_url>
You may have to wait up to one minute to refresh your browser before changes made in the
console appear.
Your domain is shown on the App integration tab under Domain. Your app client ID and
callback URL are shown under App clients.

To specify app UI customization settings

1. Sign in to the Amazon Cognito console.

Branding and customization 656

https://www.w3schools.com/cssref/css_colors_legal.php
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Create a domain from the Domain tab, or update your existing domain. Under Branding
version, set your domain to use Hosted UI (classic).

4. Choose the Managed login menu.

5. To customize UI settings for all app clients, locate Style under Hosted UI settings and select
Edit.

6. To customize UI settings for one app client, go to the App clients menu and select the app
client you want to modify, then locate Hosted UI (classic) style and select Override. Select
Edit.

7. To upload your own logo image file, choose Choose file or Replace current file.

8. To customize hosted UI CSS, download CSS template.css and modify the template with the
values you want to customize. Only the keys that are included in the template can be used
with the hosted UI. Added CSS keys will not be reflected in your UI. After you have customized
the CSS file, choose Choose file or Replace current file to upload your custom CSS file.

Customizing the hosted UI with classic branding in the user pools API and with the Amazon CLI

Use the following commands to specify app UI customization settings for your user pool.

To get the UI customization settings for a user pool's built-in app UI, use the following API
operations.

• Amazon CLI: aws cognito-idp get-ui-customization

• Amazon API: GetUICustomization

To set the UI customization settings for a user pool's built-in app UI, use the following API
operations.

• Amazon CLI from image file: aws cognito-idp set-ui-customization --user-pool-
id <your-user-pool-id> --client-id <your-app-client-id> --image-file
fileb://"<path-to-logo-image-file>" --css ".label-customizable{ color:
<color>;}"

• Amazon CLI with image encoded as Base64 binary text: aws cognito-idp set-ui-
customization --user-pool-id <your-user-pool-id> --client-id <your-
app-client-id> --image-file <base64-encoded-image-file> --css ".label-
customizable{ color: <color>;}"

Branding and customization 657

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUICustomization.html

Amazon Cognito Developer Guide

• Amazon API: SetUICustomization

Customizing user pool workflows with Lambda triggers

Amazon Cognito works with Amazon Lambda functions to modify the authentication behavior
of your user pool. You can configure your user pool to automatically invoke Lambda functions
before their first sign-up, after they complete authentication, and at several stages in between.
Your functions can modify the default behavior of your authentication flow, make API requests to
modify your user pool or other Amazon resources, and communicate with external systems. The
code in your Lambda functions is your own. Amazon Cognito sends event data to your function,
waits for the function to process the data, and in most cases anticipates a response event that
reflects any changes you want to make to the session.

Within the system of request and response events, you can introduce your own authentication
challenges, migrate users between your user pool and another identity store, customize messages,
and modify JSON web tokens (JWTs).

Lambda triggers can customize the response that Amazon Cognito delivers to your user after they
initiate an action in your user pool. For example, you can prevent sign-in by a user who would
otherwise succeed. They can also perform runtime operations against your Amazon environment,
external APIs, databases, or identity stores. The migrate user trigger, for example, can combine
external action with a change in Amazon Cognito: you can look up user information in an external
directory, then set attributes on a new user based on that external information.

When you have a Lambda trigger assigned to your user pool, Amazon Cognito interrupts its
default flow to request information from your function. Amazon Cognito generates a JSON
event and passes it to your function. The event contains information about your user's request to
create a user account, sign in, reset a password, or update an attribute. Your function then has an
opportunity to take action, or to send the event back unmodified.

The following table summarizes some of the ways you can use Lambda triggers to customize user
pool operations:

User Pool Flow Operation Description

Custom Authentication Flow Define Auth Challenge Determines the next
challenge in a custom auth
flow

Using Lambda triggers 658

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html

Amazon Cognito Developer Guide

User Pool Flow Operation Description

Create Auth Challenge Creates a challenge in a
custom auth flow

Verify Auth Challenge
Response

Determines if a response is
correct in a custom auth flow

the section called “Pre
authentication”

Custom validation to accept
or deny the sign-in request

the section called “Post
authentication”

Logs events for custom
analytics

Authentication Events

the section called “Pre token
generation”

Augments or suppresses
token claims

the section called “Pre sign-
up”

Performs custom validatio
n that accepts or denies the
sign-up request

the section called “Post
confirmation”

Adds custom welcome
messages or event logging for
custom analytics

Sign-Up

the section called “Migrate
user”

Migrates a user from an
existing user directory to user
pools

Messages the section called “Custom
message”

Performs advanced customiza
tion and localization of
messages

Token Creation the section called “Pre token
generation”

Adds or removes attributes in
ID and access tokens

Email and SMS third-party
providers

the section called “Custom
senders”

Uses a third-party provider
to send SMS and email
messages

Using Lambda triggers 659

Amazon Cognito Developer Guide

Topics

• Things to know about Lambda triggers

• Add a user pool Lambda trigger

• User pool Lambda trigger event

• User pool Lambda trigger common parameters

• Client metadata

• Connecting API operations to Lambda triggers

• Connecting Lambda triggers to user pool functional operations

• Pre sign-up Lambda trigger

• Post confirmation Lambda trigger

• Pre authentication Lambda trigger

• Post authentication Lambda trigger

• Custom authentication challenge Lambda triggers

• Pre token generation Lambda trigger

• Migrate user Lambda trigger

• Custom message Lambda trigger

• Custom sender Lambda triggers

Things to know about Lambda triggers

When you are preparing your user pools for Lambda functions, consider the following:

• The events that Amazon Cognito sends to your Lambda triggers might change with new
features. The positions of response and request elements in the JSON hierarchy might change, or
element names might be added. In your Lambda function, you can expect to receive the input-
element key-value pairs described in this guide, but stricter input validation can cause your
functions to fail.

• You can choose one of multiple versions of the events that Amazon Cognito sends to some
triggers. Some versions might require you to accept a change to your Amazon Cognito pricing.
For more information about pricing, see Amazon Cognito Pricing. To customize access tokens in
a Pre token generation Lambda trigger, you must configure your user pool with a feature plan
other than Lite and update your Lambda trigger configuration to use event version 2.

Things to know 660

https://aws.amazon.com/cognito/pricing/

Amazon Cognito Developer Guide

• Except for Custom sender Lambda triggers, Amazon Cognito invokes Lambda functions
synchronously. When Amazon Cognito calls your Lambda function, it must respond within 5
seconds. If it doesn't and if the call can be retried, Amazon Cognito retries the call. After three
unsuccessful attempts, the function times out. You can't change this five-second timeout value.
For more information, see Lambda programming model in the Amazon Lambda Developer
Guide.

Amazon Cognito doesn't retry function calls that return an Invoke error with an HTTP status code
of 500-599. These codes indicate a configuration issue that leaves Lambda unable to launch the
function. For more information, see Error handling and automatic retries in Amazon Lambda.

• You can't declare a function version in your Lambda trigger configuration. Amazon Cognito user
pools invoke the latest version of your function by default. However, you can associate a function
version with an alias and set your trigger LambdaArn to the alias ARN in a CreateUserPool
or UpdateUserPool API request. This option isn't available in the Amazon Web Services
Management Console. For more information about aliases, see Lambda function aliases in the
Amazon Lambda Developer Guide.

• If you delete a Lambda trigger, you must update the corresponding trigger in the user pool. For
example, if you delete the post authentication trigger, you must set the Post authentication
trigger in the corresponding user pool to none.

• If your Lambda function doesn't return the request and response parameters to Amazon Cognito,
or returns an error, the authentication event doesn't succeed. You can return an error in your
function to prevent a user's sign-up, authentication, token generation, or any other stage of their
authentication flow that invokes Lambda trigger.

Managed login returns errors that Lambda triggers generate as error text above the sign-in
prompt. The Amazon Cognito user pools API returns trigger errors in the format [trigger]
failed with error [error text from response]. As a best practice, only generate
errors in your Lambda functions that you want your users to see. Use output methods like
print() to log any sensitive or debugging information to CloudWatch Logs. For an example, see
Pre sign-up example: Deny sign-up if user name has fewer than five characters.

• You can add a Lambda function in another Amazon Web Services account as a trigger for your
user pool. You must add cross-account triggers with the CreateUserPool and UpdateUserPool API
operations, or their equivalents in Amazon CloudFormation and the Amazon CLI. You can't add
cross-account functions in the Amazon Web Services Management Console.

• When you add a Lambda trigger in the Amazon Cognito console, Amazon Cognito adds a
resource-based policy to your function that permits your user pool to invoke the function. When

Things to know 661

https://docs.amazonaws.cn/lambda/latest/dg/foundation-progmodel.html
https://docs.amazonaws.cn/lambda/latest/dg/API_Invoke.html#API_Invoke_Errors
https://docs.amazonaws.cn/lambda/latest/dg/invocation-retries.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/lambda/latest/dg/configuration-aliases.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html

Amazon Cognito Developer Guide

you create a Lambda trigger outside of the Amazon Cognito console, including a cross-account
function, you must add permissions to the resource-based policy of the Lambda function. Your
added permissions must allow Amazon Cognito to invoke the function on behalf of your user
pool. You can add permissions from the Lambda Console or use the Lambda AddPermission API
operation.

Example Lambda Resource-Based Policy

The following example Lambda resource-based policy grants Amazon Cognito a limited ability
to invoke a Lambda function. Amazon Cognito can only invoke the function when it does
so on behalf of both the user pool in the aws:SourceArn condition and the account in the
aws:SourceAccount condition.

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "lambda-allow-cognito",
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-idp.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "<your Lambda function ARN>",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "<your account number>"
 },
 "ArnLike": {
 "AWS:SourceArn": "<your user pool ARN>"
 }
 }
 }
]
}

Things to know 662

https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/lambda/latest/dg/API_AddPermission.html

Amazon Cognito Developer Guide

Add a user pool Lambda trigger

To add a user pool Lambda trigger with the console

1. Use the Lambda console to create a Lambda function. For more information on Lambda
functions, see the Amazon Lambda Developer Guide.

2. Go to the Amazon Cognito console, and then choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Extensions menu and locate Lambda triggers.

5. Choose Add a Lambda trigger.

6. Select a Lambda trigger Category based on the stage of authentication that you want to
customize.

7. Select Assign Lambda function and select a function in the same Amazon Web Services
Region as your user pool.

Note

If your Amazon Identity and Access Management (IAM) credentials have permission to
update the Lambda function, Amazon Cognito adds a Lambda resource-based policy.
With this policy, Amazon Cognito can invoke the function that you select. If the signed-
in credentials do not have sufficient IAM permissions, you must update the resource-
based policy separately. For more information, see the section called “Things to know”.

8. Choose Save changes.

9. You can use CloudWatch in the Lambda console to log your Lambda function . For more
information, see Accessing CloudWatch Logs for Lambda.

User pool Lambda trigger event

Amazon Cognito passes event information to your Lambda function. The Lambda function returns
the same event object back to Amazon Cognito with any changes in the response. If your function
returns the input event without modification, Amazon Cognito proceed with default behavior. The
following shows the parameters that are common to all Lambda trigger input events. For trigger-
specific event syntax, review the event schema on the section of this guide for each trigger.

Set up triggers 663

https://console.amazonaws.cn/lambda/home
https://docs.amazonaws.cn/lambda/latest/dg/
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/lambda/latest/dg/monitoring-functions-logs.html

Amazon Cognito Developer Guide

JSON

{
 "version": "string",
 "triggerSource": "string",
 "region": AWSRegion,
 "userPoolId": "string",
 "userName": "string",
 "callerContext":
 {
 "awsSdkVersion": "string",
 "clientId": "string"
 },
 "request":
 {
 "userAttributes": {
 "string": "string",

 }
 },
 "response": {}
}

User pool Lambda trigger common parameters

version

The version number of your Lambda function.

triggerSource

The name of the event that triggered the Lambda function. For a description of each
triggerSource see Connecting Lambda triggers to user pool functional operations.

region

The Amazon Web Services Region as an AWSRegion instance.

userPoolId

The ID of the user pool.

userName

The current user's username.

User pool Lambda trigger common parameters 664

Amazon Cognito Developer Guide

callerContext

Metadata about the request and the code environment. It contains the fields awsSdkVersion
and clientId.

awsSdkVersion

The version of the Amazon SDK that generated the request.

clientId

The ID of the user pool app client.

request

Details of your user's API request. It includes the following fields, and any request parameters
that are particular to the trigger. For example, an event that Amazon Cognito sends to a pre-
authentication trigger will also contain a userNotFound parameter. You can process the value
of this parameter to take a custom action when your user tries to sign in with an unregistered
username.

userAttributes

One or more key-value pairs of user attribute names and values, for example "email":
"john@example.com".

response

This parameter doesn't contain any information in the original request. Your Lambda
function must return the entire event to Amazon Cognito, and add any return parameters
to the response. To see what return parameters your function can include, refer to the
documentation for the trigger that you want to use.

Client metadata

You can submit custom parameters to your Lambda trigger functions in API operations and Token
endpoint requests. With client metadata, your application can collect additional information
about the environment where requests originate. When you pass client metadata to your Lambda
functions, they can process the additional data and make use of it in logging or customization of
authentication flows. Client metadata is string pairs of your choosing and design in a JSON key-
value format.

Client metadata 665

Amazon Cognito Developer Guide

Client metadata example use cases

• Pass geolocation data at sign-up to the pre sign-up trigger and prevent sign-in from unwanted
locations.

• Pass tenant ID data to custom challenge triggers and issue different challenges to customers
from different business units.

• Pass a user's token to the pre token generation trigger and generate a log of the principal that
an M2M request was made on behalf of. For an example request, see Client credentials with basic
authorization.

Here is an example of passing client metadata to the pre sign-up trigger.

SignUp request

The following is an example SignUp request with client metadata that Amazon Cognito passes
to a pre sign-up trigger.

POST HTTP/1.1
Host: cognito-idp.us-east-1.amazonaws.com
X-Amz-Date: 20230613T200059Z
Accept-Encoding: gzip, deflate, br
X-Amz-Target: AWSCognitoIdentityProviderService.SignUp
User-Agent: <UserAgentString>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=<Headers>,
 Signature=<Signature>
Content-Length: <PayloadSizeBytes>

{
 "ClientId": "1example23456789",
 "Username": "mary_major",
 "Password": "<Password>",
 "SecretHash": "<Secret hash>",
 "ClientMetadata": {
 "IpAddress" : "192.0.2.252",
 "GeoLocation" : "Netherlands (Kingdom of the) [NL]"
 }
 "UserAttributes": [
 {
 "Name": "name",
 "Value": "Mary"
 },

Client metadata 666

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html#CognitoUserPools-SignUp-request-ValidationData

Amazon Cognito Developer Guide

 {
 "Name": "email",
 "Value": "mary_major@example.com"
 },
 {
 "Name": "phone_number",
 "Value": "+12065551212"
 }
],
}

Lambda trigger input event

The request results in the following request body to your pre sign-up function.

{
 "callerContext": {
 "awsSdkVersion": "aws-sdk-unknown-unknown",
 "clientId": "1example23456789"
 },
 "region": "us-west-2",
 "request": {
 "clientMetadata": {
 "GeoLocation": "Netherlands (Kingdom of the) [NL]",
 "IpAddress": "192.0.2.252"
 },
 "userAttributes": {
 "email": "mary_major@example.com",
 "name": "Mary",
 "phone_number": "+12065551212"
 },
 "validationData": null
 },
 "response": {
 "autoConfirmUser": false,
 "autoVerifyEmail": false,
 "autoVerifyPhone": false
 },
 "triggerSource": "PreSignUp_SignUp",
 "userName": "mary_major2",
 "userPoolId": "us-west-2_EXAMPLE",
 "version": "1"
}

Client metadata 667

Amazon Cognito Developer Guide

Client metadata for machine-to-machine (M2M) client credentials

You can pass client metadata in M2M requests. Client metadata is additional information
from a user or application environment that can contribute to the outcomes of a Pre token
generation Lambda trigger. In authentication operations with a user principal, you can pass client
metadata to the pre token generation trigger in the body of AdminRespondToAuthChallenge and
RespondToAuthChallenge API requests. Because applications conduct the flow for generation of
access tokens for M2M with direct requests to the Token endpoint, they have a different model.
In the POST body of token requests for client credentials, pass an aws_client_metadata
parameter with the client metadata object URL-encoded (x-www-form-urlencoded) to string.
For an example request, see Client credentials with basic authorization. The following is an
example parameter that passes the key-value pairs {"environment": "dev", "language":
"en-US"}.

aws_client_metadata=%7B%22environment%22%3A%20%22dev%22,%20%22language%22%3A%20%22en-US
%22%7D

Temporary user attributes: validationData

Some authentication operations also have a validationData parameter. Like client metadata,
this is an opportunity to pass external information that Amazon Cognito doesn't automatically
gather to Lambda triggers. The validation data field is intended to provide your Lambda function
witth additional user context in sign-up and sign-in operations. SignUp and AdminCreateUser
pass validationData to the pre sign-up trigger. InitiateAuth and AdminInitiateAuth pass
ClientMetadata in the API request body as validationData in the input event to the pre
authentication and migrate user triggers.

To map API operations to the functions that they can pass client metadata to, refer to the trigger
source sections that follow.

Connecting API operations to Lambda triggers

The following sections describe the Lambda triggers that Amazon Cognito invokes from the
activity in your user pool.

When your app signs in users through the Amazon Cognito user pools API, managed login, or user
pool endpoints, Amazon Cognito invokes your Lambda functions based on the session context.
For more information about the Amazon Cognito user pools API and user pool endpoints, see

Trigger sources by operation 668

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html#CognitoUserPools-SignUp-request-ValidationData
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html#CognitoUserPools-AdminCreateUser-request-ValidationData
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-ClientMetadata
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-ClientMetadata

Amazon Cognito Developer Guide

Understanding API, OIDC, and managed login pages authentication. The tables in the sections that
follow describe events that cause Amazon Cognito to invoke a function, and the triggerSource
string that Amazon Cognito includes in the request.

Topics

• Lambda triggers in the Amazon Cognito API

• Lambda triggers for Amazon Cognito local users in managed login

• Lambda triggers for federated users

Lambda triggers in the Amazon Cognito API

The following table describes the source strings for the Lambda triggers that Amazon Cognito can
invoke when your app creates, signs in, or updates a local user.

Local user trigger sources in the Amazon Cognito API

API operation Lambda trigger Trigger source

Pre sign-up PreSignUp_AdminCre
ateUser

Pre token generation TokenGeneration_Ne
wPasswordChallenge

Custom message CustomMessage_Admi
nCreateUser

Custom email sender CustomEmailSender_
AdminCreateUser

AdminCreateUser

Custom SMS sender CustomSMSSender_Ad
minCreateUser

Pre sign-up PreSignUp_SignUp

Custom message CustomMessage_SignUp

SignUp

Custom email sender CustomEmailSender_
SignUp

Trigger sources by operation 669

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

API operation Lambda trigger Trigger source

Custom SMS sender CustomSMSSender_Si
gnUp

ConfirmSignUp

AdminConfirmSignUp

Post confirmation PostConfirmation_C
onfirmSignUp

Pre authentication PreAuthentication_
Authentication

Define auth challenge DefineAuthChalleng
e_Authentication

Create auth challenge CreateAuthChalleng
e_Authentication

Pre token generation TokenGeneration_Au
thentication

TokenGeneration_Au
thenticateDevice

TokenGeneration_Re
freshTokens

Migrate user UserMigration_Auth
entication

Custom message CustomMessage_Auth
entication

InitiateAuth

AdminInitiateAuth

Custom email sender CustomEmailSender_
AccountTakeOverNot
ification

CustomEmailSender_
Authentication

Trigger sources by operation 670

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

API operation Lambda trigger Trigger source

Custom SMS sender CustomSMSSender_Au
thentication

Migrate user UserMigration_Forg
otPassword

Custom message CustomMessage_Forg
otPassword

Custom email sender CustomEmailSender_
ForgotPassword

ForgotPassword

Custom SMS sender CustomSMSSender_Fo
rgotPassword

ConfirmForgotPassword Post confirmation PostConfirmation_C
onfirmForgotPasswo
rd

Custom message CustomMessage_Upda
teUserAttribute

Custom email sender CustomEmailSender_
UpdateUserAttribute

UpdateUserAttributes

AdminUpdateUserAttributes

Custom SMS sender CustomSMSSender_Up
dateUserAttribute

Custom message CustomMessage_Veri
fyUserAttribute

Custom email sender CustomEmailSender_
VerifyUserAttribute

VerifyUserAttributes

Custom SMS sender CustomSMSSender_Ve
rifyUserAttribute

Trigger sources by operation 671

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttributes.html

Amazon Cognito Developer Guide

API operation Lambda trigger Trigger source

GetTokensFromRefreshToken Pre token generation TokenGeneration_Au
thentication

Lambda triggers for Amazon Cognito local users in managed login

The following table describes the source strings for the Lambda triggers that Amazon Cognito can
invoke when a local user signs in to your user pool with managed login.

Local user trigger sources in managed login

Managed login URI Lambda trigger Trigger source

Pre sign-up PreSignUp_SignUp

Custom message CustomMessage_SignUp

Custom email sender CustomEmailSender_
SignUp

/signup

Custom SMS sender CustomSMSSender_Si
gnUp

/confirmuser Post confirmation PostConfirmation_C
onfirmSignUp

Pre authentication PreAuthentication_
Authentication

/login

Pre token generation TokenGeneration_Au
thentication

TokenGeneration_Au
thenticateDevice

TokenGeneration_Re
freshTokens

Trigger sources by operation 672

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html

Amazon Cognito Developer Guide

Managed login URI Lambda trigger Trigger source

Migrate user UserMigration_Auth
entication

Custom message CustomMessage_Auth
entication

Custom email sender CustomEmailSender_
AccountTakeOverNot
ification

CustomEmailSender_
Authentication

Custom SMS sender CustomSMSSender_Au
thentication

Migrate user UserMigration_Forg
otPassword

Custom message CustomMessage_Forg
otPassword

Custom email sender CustomEmailSender_
ForgotPassword

/forgotpassword

Custom SMS sender CustomSMSSender_Fo
rgotPassword

/confirmforgotpass
word

Post confirmation PostConfirmation_C
onfirmForgotPasswo
rd

Lambda triggers for federated users

You can use the following Lambda triggers to customize your user pool workflows for users who
sign in with a federated provider.

Trigger sources by operation 673

Amazon Cognito Developer Guide

Note

Federated users can use managed login to sign in, or you can generate a request to the
Authorize endpoint that silently redirects them to their identity provider sign-in page. You
can't sign in federated users with the Amazon Cognito user pools API.

Federated user trigger sources

Sign-in event Lambda trigger Trigger source

Pre sign-up PreSignUp_External
Provider

Post confirmation PostConfirmation_C
onfirmSignUp

First sign-in

Pre token generation TokenGeneration_Ho
stedAuth

Pre authentication PreAuthentication_
Authentication

Post authentication PostAuthentication
_Authentication

Subsequent sign-ins

Pre token generation TokenGeneration_Ho
stedAuth

Federated sign-in does not invoke any Custom authentication challenge Lambda triggers, Migrate
user Lambda trigger, Custom message Lambda trigger, or Custom sender Lambda triggers in your
user pool.

Connecting Lambda triggers to user pool functional operations

Each Lambda trigger serves a functional role in your user pool. For example, a trigger can modify
your sign-up flow, or add a custom authentication challenge. The event that Amazon Cognito
sends to a Lambda function can reflect one of multiple actions that make up that functional
role. For example, Amazon Cognito invokes a pre sign-up trigger when your user signs up, and

Trigger sources by function 674

Amazon Cognito Developer Guide

when you create a user. Each of these different cases for the same functional role has its own
triggerSource value. Your Lambda function can process incoming events differently based on
the operation that invoked it.

Amazon Cognito also invokes all assigned functions when an event corresponds to a trigger
source. For example, when a user signs in to a user pool where you assigned migrate user and pre
authentication triggers, they activate both.

Sign-up, confirmation, and sign-in (authentication) triggers

Trigger triggerSource value Event

Pre sign-up PreSignUp_SignUp Pre sign-up.

Pre sign-up PreSignUp_AdminCre
ateUser

Pre sign-up when an admin
creates a new user.

Pre sign-up PreSignUp_External
Provider

Pre sign-up for external
identity providers.

Post confirmation PostConfirmation_C
onfirmSignUp

Post sign-up confirmation.

Post confirmation PostConfirmation_C
onfirmForgotPasswo
rd

Post Forgot Password
confirmation.

Pre authentication PreAuthentication_
Authentication

Pre authentication.

Post authentication PostAuthentication
_Authentication

Post authentication.

Custom authentication challenge triggers

Trigger triggerSource value Event

Define auth challenge DefineAuthChalleng
e_Authentication

Define Auth Challenge.

Trigger sources by function 675

Amazon Cognito Developer Guide

Trigger triggerSource value Event

Create auth challenge CreateAuthChalleng
e_Authentication

Create Auth Challenge.

Verify auth challenge VerifyAuthChalleng
eResponse_Authenti
cation

Verify Auth Challenge
Response.

Pre token generation triggers

Trigger triggerSource value Event

Pre token generation TokenGeneration_Ho
stedAuth

Amazon Cognito authentic
ates the user from your
managed login sign-in page.

Pre token generation TokenGeneration_Au
thentication

User authentication or token
refresh complete.

Pre token generation TokenGeneration_Ne
wPasswordChallenge

Admin creates the user.
Amazon Cognito invokes this
when the user must change a
temporary password.

Pre token generation TokenGeneration_Au
thenticateDevice

End of the authentication of a
user device.

Pre token generation TokenGeneration_Re
freshTokens

User tries to refresh the
identity and access tokens.

Migrate user triggers

Trigger triggerSource value Event

User migration UserMigration_Auth
entication

User migration at the time of
sign-in.

Trigger sources by function 676

Amazon Cognito Developer Guide

Trigger triggerSource value Event

User migration UserMigration_Forg
otPassword

User migration during the
forgot-password flow.

Custom message triggers

Trigger triggerSource value Event

Custom message CustomMessage_SignUp Custom message when a user
signs up in your user pool.

Custom message CustomMessage_Admi
nCreateUser

Custom message when you
create a user as an administr
ator and Amazon Cognito
sends them a temporary
password.

Custom message CustomMessage_Rese
ndCode

Custom message when your
existing user requests a new
confirmation code.

Custom message CustomMessage_Forg
otPassword

Custom message when your
user requests a password
reset.

Custom message CustomMessage_Upda
teUserAttribute

Custom message when a
user changes their email
address or phone number
and Amazon Cognito sends a
verification code.

Custom message CustomMessage_Veri
fyUserAttribute

Custom message when a user
adds an email address or
phone number and Amazon
Cognito sends a verification
code.

Trigger sources by function 677

Amazon Cognito Developer Guide

Trigger triggerSource value Event

Custom message CustomMessage_Auth
entication

Custom message when a user
who has configured SMS MFA
signs in.

Custom sender triggers

Trigger triggerSource value Event

Custom sender CustomEmailSender_
SignUp

CustomSmsSender_Si
gnUp

When a user signs up in your
user pool.

Custom sender CustomEmailSender_
AdminCreateUser

CustomSmsSender_Ad
minCreateUser

When you create a user
as an administrator and
Amazon Cognito sends them
a temporary password.

Custom sender CustomEmailSender_
ForgotPassword

CustomSmsSender_Fo
rgotPassword

When your user requests a
password reset.

Custom sender CustomEmailSender_
UpdateUserAttribute

CustomSmsSender_Up
dateUserAttribute

When a user changes their
email address or phone
number and Amazon Cognito
sends a verification code.

Custom sender CustomEmailSender_
VerifyUserAttribute

CustomSmsSender_Ve
rifyUserAttribute

When a user adds an email
address or phone number
and Amazon Cognito sends a
verification code.

Trigger sources by function 678

Amazon Cognito Developer Guide

Trigger triggerSource value Event

Custom sender CustomEmailSender_
Authentication

CustomSmsSender_Au
thentication

When a user who has
configured SMS or email MFA
or OTP signs in.

Custom sender CustomEmailSender_
AccountTakeOverNot
ification

When your threat protection
settings take an automated
action against a user's sign-
in attempt and the action
for the risk level includes a
notification.

Pre sign-up Lambda trigger

You might want to customize the sign-up process in user pools that have self-service sign-up
options. Some common uses of the pre sign-up trigger are to perform custom analysis and
recording of new users, apply security and governance standards, or link users from a third-
party IdP to a consolidated user profile. You might also have trusted users who aren't required to
undergo verification and confirmation.

Immediately before Amazon Cognito completes creation of a new local or federated user, it
activates the pre sign-up Lambda function. Your user pool invokes this trigger on self-service
sign-up with SignUp or first sign-in with a trusted identity provider, and on user creation with
AdminCreateUser. As part of the sign-up process, you can use this function to analyze the sign-in
event with custom logic, and modify or deny the new user.

Topics

• Pre sign-up Lambda trigger parameters

• Pre sign-up example: Auto-confirm users from a registered domain

• Pre sign-up example: Auto-confirm and auto-verify all users

• Pre sign-up example: Deny sign-up if user name has fewer than five characters

Pre sign-up 679

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html

Amazon Cognito Developer Guide

Pre sign-up Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "validationData": {
 "string": "string",
 . . .
 },
 "clientMetadata": {
 "string": "string",
 . . .
 }
 },

 "response": {
 "autoConfirmUser": "boolean",
 "autoVerifyPhone": "boolean",
 "autoVerifyEmail": "boolean"
 }
}

Pre sign-up request parameters

userAttributes

One or more name-value pairs representing user attributes. The attribute names are the keys.

validationData

One or more key-value pairs with user attribute data that your app passed to Amazon Cognito
in the request to create a new user. Send this information to your Lambda function in the
ValidationData parameter of your AdminCreateUser or SignUp API request.

Pre sign-up 680

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

Amazon Cognito doesn't set your ValidationData data as attributes of the user that you create.
ValidationData is temporary user information that you supply for the purposes of your pre sign-
up Lambda trigger.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function
that you specify for the pre sign-up trigger. You can pass this data to your Lambda function
by using the ClientMetadata parameter in the following API actions: AdminCreateUser,
AdminRespondToAuthChallenge, ForgotPassword, and SignUp.

Pre sign-up response parameters

In the response, you can set autoConfirmUser to true if you want to auto-confirm the
user. You can set autoVerifyEmail to true to auto-verify the user's email. You can set
autoVerifyPhone to true to auto-verify the user's phone number.

Note

Response parameters autoVerifyPhone, autoVerifyEmail and autoConfirmUser
are ignored by Amazon Cognito when the pre sign-up Lambda function is triggered by the
AdminCreateUser API.

autoConfirmUser

Set to true to auto-confirm the user, or false otherwise.

autoVerifyEmail

Set to true to set as verified the email address of a user who is signing up, or false otherwise.
If autoVerifyEmail is set to true, the email attribute must have a valid, non-null value.
Otherwise an error will occur and the user will not be able to complete sign-up.

If the email attribute is selected as an alias, an alias will be created for the user's email address
when autoVerifyEmail is set. If an alias with that email address already exists, the alias will
be moved to the new user and the previous user's email address will be marked as unverified.
For more information, see Customizing sign-in attributes.

Pre sign-up 681

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

autoVerifyPhone

Set to true to set as verified the phone number of a user who is signing up, or false
otherwise. If autoVerifyPhone is set to true, the phone_number attribute must have a valid,
non-null value. Otherwise an error will occur and the user will not be able to complete sign-up.

If the phone_number attribute is selected as an alias, an alias will be created for the user's
phone number when autoVerifyPhone is set. If an alias with that phone number already
exists, the alias will be moved to the new user and the previous user's phone number will be
marked as unverified. For more information, see Customizing sign-in attributes.

Pre sign-up example: Auto-confirm users from a registered domain

This is example Lambda trigger code. The pre sign-up trigger is invoked immediately before
Amazon Cognito processes the sign-up request. It uses a custom attribute custom:domain to
automatically confirm new users from a particular email domain. Any new users not in the custom
domain will be added to the user pool, but not automatically confirmed.

Node.js

export const handler = async (event, context, callback) => {
 // Set the user pool autoConfirmUser flag after validating the email domain
 event.response.autoConfirmUser = false;

 // Split the email address so we can compare domains
 var address = event.request.userAttributes.email.split("@");

 // This example uses a custom attribute "custom:domain"
 if (event.request.userAttributes.hasOwnProperty("custom:domain")) {
 if (event.request.userAttributes["custom:domain"] === address[1]) {
 event.response.autoConfirmUser = true;
 }
 }

 // Return to Amazon Cognito
 callback(null, event);
};

Python

def lambda_handler(event, context):

Pre sign-up 682

Amazon Cognito Developer Guide

 # It sets the user pool autoConfirmUser flag after validating the email domain
 event['response']['autoConfirmUser'] = False

 # Split the email address so we can compare domains
 address = event['request']['userAttributes']['email'].split('@')

 # This example uses a custom attribute 'custom:domain'
 if 'custom:domain' in event['request']['userAttributes']:
 if event['request']['userAttributes']['custom:domain'] == address[1]:
 event['response']['autoConfirmUser'] = True

 # Return to Amazon Cognito
 return event

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "request": {
 "userAttributes": {
 "email": "testuser@example.com",
 "custom:domain": "example.com"
 }
 },
 "response": {}
}

Pre sign-up example: Auto-confirm and auto-verify all users

This example confirms all users and sets the user's email and phone_number attributes to verified
if the attribute is present. Also, if aliasing is enabled, aliases will be created for phone_number and
email when auto-verify is set.

Pre sign-up 683

Amazon Cognito Developer Guide

Note

If an alias with the same phone number already exists, the alias will be moved to the new
user, and the previous user's phone_number will be marked as unverified. The same is true
for email addresses. To prevent this from happening, you can use the user pools ListUsers
API to see if there is an existing user who is already using the new user's phone number or
email address as an alias.

Node.js

exports.handler = (event, context, callback) => {
 // Confirm the user
 event.response.autoConfirmUser = true;

 // Set the email as verified if it is in the request
 if (event.request.userAttributes.hasOwnProperty("email")) {
 event.response.autoVerifyEmail = true;
 }

 // Set the phone number as verified if it is in the request
 if (event.request.userAttributes.hasOwnProperty("phone_number")) {
 event.response.autoVerifyPhone = true;
 }

 // Return to Amazon Cognito
 callback(null, event);
};

Python

def lambda_handler(event, context):
 # Confirm the user
 event['response']['autoConfirmUser'] = True

 # Set the email as verified if it is in the request
 if 'email' in event['request']['userAttributes']:
 event['response']['autoVerifyEmail'] = True

 # Set the phone number as verified if it is in the request
 if 'phone_number' in event['request']['userAttributes']:

Pre sign-up 684

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide

 event['response']['autoVerifyPhone'] = True

 # Return to Amazon Cognito
 return event

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "request": {
 "userAttributes": {
 "email": "user@example.com",
 "phone_number": "+12065550100"
 }
 },
 "response": {}
}

Pre sign-up example: Deny sign-up if user name has fewer than five characters

This example checks the length of the user name in a sign-up request. The example returns an
error if the user has entered a name less than five characters long.

Node.js

export const handler = (event, context, callback) => {
 // Impose a condition that the minimum length of the username is 5 is imposed on
 all user pools.
 if (event.userName.length < 5) {
 var error = new Error("Cannot register users with username less than the
 minimum length of 5");
 // Return error to Amazon Cognito
 callback(error, event);
 }
 // Return to Amazon Cognito
 callback(null, event);

Pre sign-up 685

Amazon Cognito Developer Guide

};

Python

def lambda_handler(event, context):
 if len(event['userName']) < 5:
 raise Exception("Cannot register users with username less than the minimum
 length of 5")
 # Return to Amazon Cognito
 return event

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "userName": "rroe",
 "response": {}
}

Post confirmation Lambda trigger

Amazon Cognito invokes this trigger after a signed-up user confirms their user account. In your
post confirmation Lambda function, you can send custom messages or add custom API requests.
For example, you can query an external system and populate additional attributes to the user.
Amazon Cognito invokes this trigger only for user who sign up in your user pool, not for user
accounts that you create with your administrator credentials.

The request contains the current attributes for the confirmed user. Your user pool invokes your post
confirmation function on ConfirmSignUp, AdminConfirmSignUp, and ConfirmForgotPassword. This
trigger also runs when users confirm sign-up or password reset in managed login.

Topics

• Post confirmation Lambda trigger parameters

• Post confirmation example

Post confirmation 686

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html

Amazon Cognito Developer Guide

Post confirmation Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "clientMetadata": {
 "string": "string",
 . . .
 }
 },
 "response": {}
}

Post confirmation request parameters

userAttributes

One or more key-value pairs representing user attributes.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function that
you specify for the post confirmation trigger. You can pass this data to your Lambda function
by using the ClientMetadata parameter in the following API actions: AdminConfirmSignUp,
ConfirmForgotPassword, ConfirmSignUp, and SignUp.

Post confirmation response parameters

No additional return information is expected in the response.

Post confirmation example

This example Lambda function sends a confirmation email message to your user using Amazon
SES. For more information see Amazon Simple Email Service Developer Guide.

Post confirmation 687

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/

Amazon Cognito Developer Guide

Node.js

// Import required AWS SDK clients and commands for Node.js. Note that this requires
// the `@aws-sdk/client-ses` module to be either bundled with this code or included
// as a Lambda layer.
import { SES, SendEmailCommand } from "@aws-sdk/client-ses";
const ses = new SES();

const handler = async (event) => {
 if (event.request.userAttributes.email) {
 await sendTheEmail(
 event.request.userAttributes.email,
 `Congratulations ${event.userName}, you have been confirmed.`,
);
 }
 return event;
};

const sendTheEmail = async (to, body) => {
 const eParams = {
 Destination: {
 ToAddresses: [to],
 },
 Message: {
 Body: {
 Text: {
 Data: body,
 },
 },
 Subject: {
 Data: "Cognito Identity Provider registration completed",
 },
 },
 // Replace source_email with your SES validated email address
 Source: "<source_email>",
 };
 try {
 await ses.send(new SendEmailCommand(eParams));
 } catch (err) {
 console.log(err);
 }
};

Post confirmation 688

Amazon Cognito Developer Guide

export { handler };

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "request": {
 "userAttributes": {
 "email": "user@example.com",
 "email_verified": true
 }
 },
 "response": {}
}

Pre authentication Lambda trigger

Amazon Cognito invokes this trigger when a user attempts to sign in so that you can create custom
validation that performs preparatory actions. For example, you can deny the authentication
request or record session data to an external system.

Note

This Lambda trigger doesn't activate when a user doesn't exist unless the
PreventUserExistenceErrors setting of a user pool app client is set to ENABLED.
Renewal of an existing authentication session also doesn't activate this trigger.

Topics

• Flow overview

• Pre authentication Lambda trigger parameters

• Pre authentication example

Pre authentication 689

Amazon Cognito Developer Guide

Flow overview

The request includes client validation data from the ClientMetadata values that your app passes
to the user pool InitiateAuth and AdminInitiateAuth API operations.

For more information, see An example authentication session.

Pre authentication Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

Pre authentication 690

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "validationData": {
 "string": "string",
 . . .
 },
 "userNotFound": boolean
 },
 "response": {}
}

Pre authentication request parameters

userAttributes

One or more name-value pairs that represent user attributes.

userNotFound

When you set PreventUserExistenceErrors to ENABLED for your user pool client, Amazon
Cognito populates this Boolean.

validationData

One or more key-value pairs that contain the validation data in the user's sign-in request. To
pass this data to your Lambda function, use the ClientMetadata parameter in the InitiateAuth
and AdminInitiateAuth API actions.

Pre authentication response parameters

Amazon Cognito doesn't process any added information that your function returns in the response.
Your function can return an error to reject the sign-in attempt, or use API operations to query and
modify your resources.

Pre authentication 691

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

Pre authentication example

This example function prevents users from signing in to your user pool with a specific app client.
Because the pre authentication Lambda function doesn't invoke when your user has an existing
session, this function only prevents new sessions with the app client ID that you want to block.

Node.js

const handler = async (event) => {
 if (
 event.callerContext.clientId === "user-pool-app-client-id-to-be-blocked"
) {
 throw new Error("Cannot authenticate users from this user pool app client");
 }

 return event;
};

export { handler };

Python

def lambda_handler(event, context):
 if event['callerContext']['clientId'] == "<user pool app client id to be
 blocked>":
 raise Exception("Cannot authenticate users from this user pool app client")

 # Return to Amazon Cognito
 return event

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "callerContext": {
 "clientId": "<user pool app client id to be blocked>"

Pre authentication 692

Amazon Cognito Developer Guide

 },
 "response": {}
}

Post authentication Lambda trigger

The post authentication trigger doesn't change the authentication flow for a user. Amazon Cognito
invokes this Lambda after authentication is complete, before a user has received tokens. Add a post
authentication trigger when you want to add custom post-processing of authentication events, for
example logging or user profile adjustments that will be reflected on the next sign-in.

A post authentication Lambda that doesn't return the request body to Amazon Cognito can still
cause authentication to fail to complete. For more information, see Things to know about Lambda
triggers.

Topics

• Authentication flow overview

• Post authentication Lambda trigger parameters

• Post authentication example

Post authentication 693

Amazon Cognito Developer Guide

Authentication flow overview

For more information, see An example authentication session.

Post authentication Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {

Post authentication 694

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

 "string": "string",
 . . .
 },
 "newDeviceUsed": boolean,
 "clientMetadata": {
 "string": "string",
 . . .
 }
 },
 "response": {}
}

Post authentication request parameters

newDeviceUsed

This flag indicates if the user has signed in on a new device. Amazon Cognito only sets this flag
if the remembered devices value of the user pool is Always or User Opt-In.

userAttributes

One or more name-value pairs representing user attributes.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function
that you specify for the post authentication trigger. To pass this data to your Lambda
function, you can use the ClientMetadata parameter in the AdminRespondToAuthChallenge
and RespondToAuthChallenge API actions. Amazon Cognito doesn't include data from the
ClientMetadata parameter in AdminInitiateAuth and InitiateAuth API operations in the request
that it passes to the post authentication function.

Post authentication response parameters

Amazon Cognito doesn't expect any additional return information in the response. Your function
can use API operations to query and modify your resources, or record event metadata to an
external system.

Post authentication example

This post authentication sample Lambda function sends data from a successful sign-in to
CloudWatch Logs.

Post authentication 695

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Node.js

const handler = async (event) => {
 // Send post authentication data to Amazon CloudWatch logs
 console.log("Authentication successful");
 console.log("Trigger function =", event.triggerSource);
 console.log("User pool = ", event.userPoolId);
 console.log("App client ID = ", event.callerContext.clientId);
 console.log("User ID = ", event.userName);

 return event;
};

export { handler };

Python

import os
def lambda_handler(event, context):

 # Send post authentication data to Cloudwatch logs
 print ("Authentication successful")
 print ("Trigger function =", event['triggerSource'])
 print ("User pool = ", event['userPoolId'])
 print ("App client ID = ", event['callerContext']['clientId'])
 print ("User ID = ", event['userName'])

 # Return to Amazon Cognito
 return event

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "triggerSource": "testTrigger",
 "userPoolId": "testPool",
 "userName": "testName",

Post authentication 696

Amazon Cognito Developer Guide

 "callerContext": {
 "clientId": "12345"
 },
 "response": {}
}

Custom authentication challenge Lambda triggers

As you build out your authentication flows for your Amazon Cognito user pool, you might find
that you want to extend your authentication model beyond the built-in flows. One common
use case for the custom challenge triggers is to implement additional security checks beyond
username, password, and multi-factor authentication (MFA). A custom challenge is any question
and response you can generate in a Lambda-supported programming language. For example,
you might want to require users to solve a CAPTCHA or answer a security question before being
allowed to authenticate. Another potential need is to integrate with specialized authentication
factors or devices. Or you might have already developed software that authenticates users with a
hardware security key or a biometric device. The definition of authentication success for a custom
challenge is whatever answer your Lambda function accepts as correct: a fixed string, for example,
or a satisfactory response from an external API.

You can start authentication with your custom challenge and control the authentication process
entirely, or you can perform username-password authentication before your application receives
your custom challenge.

The custom authentication challenge Lambda trigger:

Defines

Initiates a challenge sequence. Determines whether you want to initiate a new challenge, mark
authentication as complete, or halt the authentication attempt.

Creates

Issues the question to your application that the user must answer. This function might present a
security question or a link to a CAPTCHA that your application should display to your user.

Verifies

Knows the expected answer and compares it to the answer your application provides in the
challenge response. The function might call the API of your CAPTCHA service to retrieve the
expected results of your user's attempted solution.

Custom challenge 697

Amazon Cognito Developer Guide

These three Lambda functions chain together to present an authentication mechanism that
is completely within your control and of your own design. Because custom authentication
requires application logic in your client and in the Lambda functions, you can't process custom
authentication within managed login. This authentication system requires additional developer
effort. Your application must perform the authentication flow with the user pools API and handle
the resulting challenge with a custom-built login interface that renders the question at the center
of the custom authentication challenge.

For more information about implementing custom authentication, see Custom authentication flow
and challenges

Authentication between the API operations InitiateAuth or AdminInitiateAuth, and
RespondToAuthChallenge or AdminRespondToAuthChallenge. In this flow, a user authenticates
by answering successive challenges until authentication either fails or the user is issued tokens.
A challenge response might be a new challenge. In this case, your application responds as many
times as necessary to new challenges. Successful authentication happens when the define auth

Custom challenge 698

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html

Amazon Cognito Developer Guide

challenge function analyzes the results so far, determines all challenges have been answered, and
returns IssueTokens.

Topics

• Define Auth challenge Lambda trigger

• Create Auth challenge Lambda trigger

• Verify Auth challenge response Lambda trigger

Define Auth challenge Lambda trigger

The define auth challenge trigger is a Lambda function that maintains the challenge sequence in
a custom authentication flow. It declares success or failure of the challenge sequence, and sets the
next challenge if the sequence isn't yet complete.

Define auth challenge

Amazon Cognito invokes this trigger to initiate the custom authentication flow.

Custom challenge 699

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-custom-authentication-flow

Amazon Cognito Developer Guide

The request for this Lambda trigger contains session. The session parameter is an array that
contains all of the challenges that are presented to the user in the current authentication process.
The request also includes the corresponding result. The session array stores challenge details
(ChallengeResult) in chronological order. The challenge session[0] represents the first
challenge that the user receives.

You can have Amazon Cognito verify user passwords before it issues your custom challenges. Any
Lambda triggers associated in the Authentication category of request-rate quotas will run when
you perform SRP authentication in a custom challenge flow. Here is an overview of the process:

1. Your app initiates sign-in by calling InitiateAuth or AdminInitiateAuth with the
AuthParameters map. Parameters must include CHALLENGE_NAME: SRP_A, and values for
SRP_A and USERNAME.

2. Amazon Cognito invokes your define auth challenge Lambda trigger with an initial session that
contains challengeName: SRP_A and challengeResult: true.

3. After receiving those inputs, your Lambda function responds with challengeName:
PASSWORD_VERIFIER, issueTokens: false, failAuthentication: false.

4. If the password verification succeeds, Amazon Cognito invokes your Lambda function again with
a new session containing challengeName: PASSWORD_VERIFIER and challengeResult:
true.

5. To initiate your custom challenges, your Lambda function responds with challengeName:
CUSTOM_CHALLENGE, issueTokens: false, and failAuthentication: false. If you
don't want to start your custom auth flow with password verification, you can initiate sign-in
with the AuthParameters map including CHALLENGE_NAME: CUSTOM_CHALLENGE.

6. The challenge loop repeats until all challenges are answered.

The following is an example of a starting InitiateAuth request that precedes custom
authentication with an SRP flow.

{
 "AuthFlow": "CUSTOM_AUTH",
 "ClientId": "1example23456789",
 "AuthParameters": {
 "CHALLENGE_NAME": "SRP_A",
 "USERNAME": "testuser",
 "SRP_A": "[SRP_A]",
 "SECRET_HASH": "[secret hash]"

Custom challenge 700

Amazon Cognito Developer Guide

 }
}

Topics

• Define Auth challenge Lambda trigger parameters

• Define Auth challenge example

Define Auth challenge Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "session": [
 ChallengeResult,
 . . .
],
 "clientMetadata": {
 "string": "string",
 . . .
 },
 "userNotFound": boolean
 },
 "response": {
 "challengeName": "string",
 "issueTokens": boolean,
 "failAuthentication": boolean
 }
}

Custom challenge 701

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

Define Auth challenge request parameters

When Amazon Cognito invokes your Lambda function, Amazon Cognito provides the following
parameters:

userAttributes

One or more name-value pairs that represent user attributes.

userNotFound

A Boolean that Amazon Cognito populates when PreventUserExistenceErrors
is set to ENABLED for your user pool client. A value of true means that the user id
(username, email address, and other details) did not match any existing users. When
PreventUserExistenceErrors is set to ENABLED, the service doesn't inform the app
of nonexistent users. We recommend that your Lambda functions maintain the same user
experience and account for latency. This way, the caller can't detect different behavior when the
user exists or doesn’t exist.

session

An array of ChallengeResult elements. Each contains the following elements:

challengeName

One of the following challenge types: CUSTOM_CHALLENGE, SRP_A, PASSWORD_VERIFIER,
SMS_MFA, EMAIL_OTP, SOFTWARE_TOKEN_MFA, DEVICE_SRP_AUTH,
DEVICE_PASSWORD_VERIFIER, or ADMIN_NO_SRP_AUTH.

When your define auth challenge function issues a PASSWORD_VERIFIER challenge for
a user who has set up multifactor authentication, Amazon Cognito follows it up with an
SMS_MFA, EMAIL_OTP, or SOFTWARE_TOKEN_MFA challenge. These are the prompts for a
multi-factor authentication code. In your function, include handling for input events from
SMS_MFA, EMAIL_OTP, and SOFTWARE_TOKEN_MFA challenges. You don't need to invoke
any MFA challenges in your define auth challenge function.

Important

When your function is determining whether a user has successfully authenticated
and you should issue them tokens, always check challengeName in your define
auth challenge function and verify that it matches the expected value.

Custom challenge 702

Amazon Cognito Developer Guide

challengeResult

Set to true if the user successfully completed the challenge, or false otherwise.

challengeMetadata

Your name for the custom challenge. Used only if challengeName is CUSTOM_CHALLENGE.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function that
you specify for the define auth challenge trigger. To pass this data to your Lambda function,
you can use the ClientMetadata parameter in the AdminRespondToAuthChallenge and
RespondToAuthChallenge API operations. The request that invokes the define auth challenge
function doesn't include data passed in the ClientMetadata parameter in AdminInitiateAuth and
InitiateAuth API operations.

Define Auth challenge response parameters

In the response, you can return the next stage of the authentication process.

challengeName

A string that contains the name of the next challenge. If you want to present a new challenge to
your user, specify the challenge name here.

issueTokens

If you determine that the user has completed the authentication challenges sufficiently, set to
true. If the user has not met the challenges sufficiently, set to false.

failAuthentication

If you want to end the current authentication process, set to true. To continue the current
authentication process, set to false.

Define Auth challenge example

This example defines a series of challenges for authentication and issues tokens only if the user
has completed all of the challenges successfully. When users complete SRP authentication with the
SRP_A and PASSWORD_VERIFIER challenges, this function passes them a CUSTOM_CHALLENGE

Custom challenge 703

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

that invokes the create auth challenge trigger. In combination with our create auth challenge
example, this sequence delivers a CAPTCHA challenge for challenge three and a security question
for challenge four.

After the user solves the CAPTCHA and answers the security question, this function confirms that
your user pool can issue tokens. SRP authentication isn't required; you can also set the CAPTCHA
and security question as challenges one & two. In the case where your define auth challenge
function doesn't declare SRP challenges, your users' success is determined entirely by their
responses to your custom prompts.

Node.js

const handler = async (event) => {
 if (
 event.request.session.length === 1 &&
 event.request.session[0].challengeName === "SRP_A"
) {
 event.response.issueTokens = false;
 event.response.failAuthentication = false;
 event.response.challengeName = "PASSWORD_VERIFIER";
 } else if (
 event.request.session.length === 2 &&
 event.request.session[1].challengeName === "PASSWORD_VERIFIER" &&
 event.request.session[1].challengeResult === true
) {
 event.response.issueTokens = false;
 event.response.failAuthentication = false;
 event.response.challengeName = "CUSTOM_CHALLENGE";
 } else if (
 event.request.session.length === 3 &&
 event.request.session[2].challengeName === "CUSTOM_CHALLENGE" &&
 event.request.session[2].challengeResult === true
) {
 event.response.issueTokens = false;
 event.response.failAuthentication = false;
 event.response.challengeName = "CUSTOM_CHALLENGE";
 } else if (
 event.request.session.length === 4 &&
 event.request.session[3].challengeName === "CUSTOM_CHALLENGE" &&
 event.request.session[3].challengeResult === true
) {
 event.response.issueTokens = true;
 event.response.failAuthentication = false;

Custom challenge 704

Amazon Cognito Developer Guide

 } else {
 event.response.issueTokens = false;
 event.response.failAuthentication = true;
 }

 return event;
};

export { handler };

Create Auth challenge Lambda trigger

The create auth challenge trigger is a Lambda function that has the details of each challenge
declared by the define auth challenge trigger. It processes the challenge name declared by the
define auth challenge trigger and returns a publicChallengeParameters that your application
must present to the user. This function then provides your user pool with the answer to the
challenge, privateChallengeParameters, that your user pool passes to the verify auth
challenge trigger. Where your define auth challenge trigger manages the challenge sequence, your
create auth challenge trigger manages the challenge contents.

Custom challenge 705

Amazon Cognito Developer Guide

Create auth challenge

Amazon Cognito invokes this trigger after Define Auth Challenge if a custom challenge has
been specified as part of the Define Auth Challenge trigger. It creates a custom authentication
flow.

This Lambda trigger is invoked to create a challenge to present to the user. The request for this
Lambda trigger includes the challengeName and session. The challengeName is a string and
is the name of the next challenge to the user. The value of this attribute is set in the Define Auth
Challenge Lambda trigger.

The challenge loop will repeat until all challenges are answered.

Topics

• Create Auth challenge Lambda trigger parameters

• Create Auth challenge example

Custom challenge 706

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-custom-authentication-flow
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-custom-authentication-flow

Amazon Cognito Developer Guide

Create Auth challenge Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "challengeName": "string",
 "session": [
 ChallengeResult,
 . . .
],
 "clientMetadata": {
 "string": "string",
 . . .
 },
 "userNotFound": boolean
 },
 "response": {
 "publicChallengeParameters": {
 "string": "string",
 . . .
 },
 "privateChallengeParameters": {
 "string": "string",
 . . .
 },
 "challengeMetadata": "string"
 }
}

Create Auth challenge request parameters

userAttributes

One or more name-value pairs representing user attributes.

Custom challenge 707

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

userNotFound

This boolean is populated when PreventUserExistenceErrors is set to ENABLED for your
User Pool client.

challengeName

The name of the new challenge.

session

The session element is an array of ChallengeResult elements, each of which contains the
following elements:

challengeName

The challenge type. One of: "CUSTOM_CHALLENGE", "PASSWORD_VERIFIER", "SMS_MFA",
"DEVICE_SRP_AUTH", "DEVICE_PASSWORD_VERIFIER", or "ADMIN_NO_SRP_AUTH".

challengeResult

Set to true if the user successfully completed the challenge, or false otherwise.

challengeMetadata

Your name for the custom challenge. Used only if challengeName is
"CUSTOM_CHALLENGE".

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function that
you specify for the create auth challenge trigger. You can use the ClientMetadata parameter in
the AdminRespondToAuthChallenge and RespondToAuthChallenge API actions to pass this data
to your Lambda function. The request that invokes the create auth challenge function does not
include data passed in the ClientMetadata parameter in AdminInitiateAuth and InitiateAuth API
operations.

Create Auth challenge response parameters

publicChallengeParameters

One or more key-value pairs for the client app to use in the challenge to be presented to the
user. This parameter should contain all of the necessary information to present the challenge to
the user accurately.

Custom challenge 708

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

privateChallengeParameters

This parameter is only used by the Verify Auth Challenge Response Lambda trigger. This
parameter should contain all of the information that is required to validate the user's response
to the challenge. In other words, the publicChallengeParameters parameter contains the
question that is presented to the user and privateChallengeParameters contains the valid
answers for the question.

challengeMetadata

Your name for the custom challenge, if this is a custom challenge.

Create Auth challenge example

This function has two custom challenges that correspond to the challenge sequence in our
define auth challenge example. The first two challenges are SRP authentication. For the third
challenge, this function returns a CAPTCHA URL to your application in the challenge response. Your
application renders the CAPTCHA at the given URL and returns the user's input. The URL for the
CAPTCHA image is added to the public challenge parameters as "captchaUrl", and the expected
answer is added to the private challenge parameters.

For the fourth challenge, this function returns a security question. Your application renders the
question and prompts the user for their answer. After users solve both custom challenges, the
define auth challenge trigger confirms that your user pool can issue tokens.

Node.js

const handler = async (event) => {
 if (event.request.challengeName !== "CUSTOM_CHALLENGE") {
 return event;
 }

 if (event.request.session.length === 2) {
 event.response.publicChallengeParameters = {};
 event.response.privateChallengeParameters = {};
 event.response.publicChallengeParameters.captchaUrl = "url/123.jpg";
 event.response.privateChallengeParameters.answer = "5";
 }

 if (event.request.session.length === 3) {
 event.response.publicChallengeParameters = {};

Custom challenge 709

Amazon Cognito Developer Guide

 event.response.privateChallengeParameters = {};
 event.response.publicChallengeParameters.securityQuestion =
 "Who is your favorite team mascot?";
 event.response.privateChallengeParameters.answer = "Peccy";
 }

 return event;
};

export { handler };

Verify Auth challenge response Lambda trigger

The verify auth challenge trigger is a Lambda function that compares a user's provided response
to a known answer. This function tells your user pool whether the user answered the challenge
correctly. When the verify auth challenge trigger responds with an answerCorrect of true, the
authentication sequence can continue.

Custom challenge 710

Amazon Cognito Developer Guide

Verify auth challenge response

Amazon Cognito invokes this trigger to verify if the response from the user for a custom Auth
Challenge is valid or not. It is part of a user pool custom authentication flow.

The request for this trigger contains the privateChallengeParameters and
challengeAnswer parameters. The Create Auth Challenge Lambda trigger returns
privateChallengeParameters values, and contains the expected response from the user. The
challengeAnswer parameter contains the user's response for the challenge.

The response contains the answerCorrect attribute. If the user successfully completes the
challenge, Amazon Cognito sets the attribute value to true. If the user doesn't successfully
complete the challenge, Amazon Cognito sets the value to false.

The challenge loop repeats until the users answers all challenges.

Topics

• Verify Auth challenge Lambda trigger parameters

• Verify Auth challenge response example

Verify Auth challenge Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "privateChallengeParameters": {
 "string": "string",
 . . .
 },
 "challengeAnswer": "string",
 "clientMetadata": {
 "string": "string",

Custom challenge 711

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html#amazon-cognito-user-pools-custom-authentication-flow
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

 . . .
 },
 "userNotFound": boolean
 },
 "response": {
 "answerCorrect": boolean
 }
}

Verify Auth challenge request parameters

userAttributes

This parameter contains one or more name-value pairs that represent user attributes.

userNotFound

When Amazon Cognito sets PreventUserExistenceErrors to ENABLED for your user pool
client, Amazon Cognito populates this Boolean .

privateChallengeParameters

This parameter comes from the Create Auth Challenge trigger. To determine whether
the user passed a challenge, Amazon Cognito compares the parameters against a user’s
challengeAnswer.

This parameter contains all of the information that is required to validate the user's response
to the challenge. That information includes the question that Amazon Cognito presents
to the user (publicChallengeParameters), and the valid answers for the question
(privateChallengeParameters). Only the Verify Auth Challenge Response Lambda trigger
uses this parameter.

challengeAnswer

This parameter value is the answer from the user's response to the challenge.

clientMetadata

This parameter contains one or more key-value pairs that you can provide as custom input to
the Lambda function for the verify auth challenge trigger. To pass this data to your Lambda
function, use the ClientMetadata parameter in the AdminRespondToAuthChallenge and
RespondToAuthChallenge API operations. Amazon Cognito doesn't include data from the

Custom challenge 712

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html

Amazon Cognito Developer Guide

ClientMetadata parameter in AdminInitiateAuth and InitiateAuth API operations in the request
that it passes to the verify auth challenge function.

Verify Auth challenge response parameters

answerCorrect

If the user successfully completes the challenge, Amazon Cognito sets this parameter to true.
If the user doesn't successfully complete the challenge, Amazon Cognito sets the parameter to
false.

Verify Auth challenge response example

This verify auth challenge function checks whether the user's response to a challenge matches the
expected response. The user's answer is defined by input from your application and the preferred
answer is defined by privateChallengeParameters.answer in the response from the create
auth challenge trigger response. Both the correct answer and the given answer are part of the
input event to this function.

In this example, if the user's response matches the expected response, Amazon Cognito sets the
answerCorrect parameter to true.

Node.js

const handler = async (event) => {
 if (
 event.request.privateChallengeParameters.answer ===
 event.request.challengeAnswer
) {
 event.response.answerCorrect = true;
 } else {
 event.response.answerCorrect = false;
 }

 return event;
};

export { handler };

Custom challenge 713

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Pre token generation Lambda trigger

Because Amazon Cognito invokes this trigger before token generation, you can customize
the claims in user pool tokens. With the Basic features of the version one or V1_0 pre token
generation trigger event, you can customize the identity (ID) token. In user pools with the
Essentials or Plus feature plan, you can generate the version two or V2_0 trigger event with access
token customization, and the version three or V3_0 trigger event with access token customization
for machine-to-machine (M2M) client-credentials grants.

Amazon Cognito sends a V1_0 event as a request to your function with data that it would write to
the ID token. A V2_0 or V3_0 event is a single request with the data that Amazon Cognito would
write to both the identity and access tokens. To customize both tokens, you must update your
function to use trigger version two or three, and send data for both tokens in the same response.

Amazon Cognito applies version two event responses to access tokens from user authentication,
where a human user has presented credentials to your user pool. Version three event responses
apply to access tokens from user authentication and machine authentication, where automated
systems authorize access token requests with app client secrets. Aside from the circumstances of
the resulting access tokens, version two and three events are identical.

This Lambda trigger can add, remove, and modify some claims in identity and access tokens before
Amazon Cognito issues them to your app. To use this feature, associate a Lambda function from
the Amazon Cognito user pools console or update your user pool LambdaConfig through the
Amazon Command Line Interface (Amazon CLI).

Event versions

Your user pool can deliver different versions of a pre token generation trigger event to your
Lambda function. A V1_0 trigger delivers the parameters for modification of ID tokens. A V2_0 or
V3_0 trigger delivers parameters for the following.

1. The functions of a V1_0 trigger.

2. The ability to customize access tokens.

3. The ability to pass complex datatypes to ID and access token claim values:

• String

• Number

• Boolean

Pre token generation 714

Amazon Cognito Developer Guide

• Array of strings, numbers, booleans, or a combination of any of these

• JSON

Note

In the ID token, you can populate complex objects to the values of claims except for
phone_number_verified, email_verified, updated_at, and address.

User pools deliver V1_0 events by default. To configure your user pool to send a V2_0 event,
choose a Trigger event version of Basic features + access token customization for user identities
when you configure your trigger in the Amazon Cognito console. To produce V3_0 events, choose
Basic features + access token customization for user and machine identities. You can also
set the value of LambdaVersion in the LambdaConfig parameters in an UpdateUserPool or
CreateUserPool API request. Event versions one, two, and three are available in the Essentials and
Plus feature plans. M2M operations for version three events have a pricing structure separate from
the monthly active users (MAU) formula. For more information, see Amazon Cognito Pricing.

Note

User pools that were operational with the Advanced security features option on or before
November 22, 2024 at 1800 GMT, and that remain on the Lite feature tier have access to
event versions one and two of the pre token generation trigger. User pools in this legacy
tier without advanced security features have access to event version one. Version three is
only available in Essentials and Plus.

Claims and scopes reference

Amazon Cognito limits the claims and scopes that you can add, modify, or suppress in access and
identity tokens. The following table describes the claims that your Lambda function can and can't
modify, and the trigger event parameters that affect the presence or value of the claim.

Pre token generation 715

https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-LambdaConfig
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://www.amazonaws.cn/cognito/pricing/

Amazon Cognito Developer Guide

Claim Default
token
type

Can
add?

Can
modify?

Can
suppress?

Event
parameter
- add or
modify

Event
parameter
-
suppress

Identity
type

Event
version

Any
claim not
in the
user pool
token
schema

None Yes Yes N/A claimsToA
ddOrOverr
ide

claimsToS
uppress

User,

machine1
All2

scope Access Yes Yes Yes scopesToA
dd

scopesToS
uppress

User,

machine1

v2_0, v3_0

cognito:g
roups

ID,
Access

Yes Yes Yes groupsToO
verride

claimsToS
uppress

User All2

cognito:p
referred_
role

ID Yes Yes Yes preferred
Role

claimsToS

uppress 3

User All

cognito:r
oles

ID Yes Yes Yes iamRolesT
oOverride

claimsToS

uppress 3

User All

cognito:u
sername

ID No No No N/A N/A User N/A

Any
other
claim
with a
cognito:
prefix

None No No No N/A N/A N/A N/A

username Access No No No N/A N/A User v2_0, v3_0

Pre token generation 716

Amazon Cognito Developer Guide

Claim Default
token
type

Can
add?

Can
modify?

Can
suppress?

Event
parameter
- add or
modify

Event
parameter
-
suppress

Identity
type

Event
version

sub ID,
Access

No No No N/A N/A User N/A

standard
OIDC
attribute

ID Yes Yes Yes claimsToA
ddOrOverr
ide

claimsToS
uppress

User All

custom:
attribute

ID Yes Yes Yes claimsToA
ddOrOverr
ide

claimsToS
uppress

User All

dev:
attribute

ID No No Yes N/A claimsToS
uppress

User All

identitie
s

ID No No No N/A N/A User N/A

aud4 ID No No No N/A N/A User,
machine

N/A

client_id Access No No No N/A N/A User,
machine

N/A

event_id Access No No No N/A N/A User,
machine

N/A

device_ke
y

Access No No No N/A N/A User N/A

version Access No No No N/A N/A User,
machine

N/A

acr ID,
Access

No No No N/A N/A User,
machine

N/A

Pre token generation 717

Amazon Cognito Developer Guide

Claim Default
token
type

Can
add?

Can
modify?

Can
suppress?

Event
parameter
- add or
modify

Event
parameter
-
suppress

Identity
type

Event
version

amr ID,
Access

No No No N/A N/A User,
machine

N/A

at_hash ID No No No N/A N/A User,
machine

N/A

auth_time ID,
Access

No No No N/A N/A User,
machine

N/A

azp ID,
Access

No No No N/A N/A User,
machine

N/A

exp ID,
Access

No No No N/A N/A User,
machine

N/A

iat ID,
Access

No No No N/A N/A User,
machine

N/A

iss ID,
Access

No No No N/A N/A User,
machine

N/A

jti ID,
Access

No No No N/A N/A User,
machine

N/A

nbf ID,
Access

No No No N/A N/A User,
machine

N/A

nonce ID,
Access

No No No N/A N/A User,
machine

N/A

origin_jt
i

ID,
Access

No No No N/A N/A User,
machine

N/A

Pre token generation 718

Amazon Cognito Developer Guide

Claim Default
token
type

Can
add?

Can
modify?

Can
suppress?

Event
parameter
- add or
modify

Event
parameter
-
suppress

Identity
type

Event
version

token_use ID,
Access

No No No N/A N/A User,
machine

N/A

 1 Access tokens for machine identities are only available with v3_0 of the trigger input event.
Event version three is only available in the Essentials and Plus feature tiers. User pools on the Lite
tier can receive v1_0 events. User pools on the Lite tier with advanced security features can receive
v1_0 and v2_0 events.

2 Configure your pre token generation trigger to event version v1_0 for ID token only, v2_0 for ID
and access token, v3_0 for ID and access token with capabilities for machine identities.

 3 To suppress the cognito:preferred_role and cognito:roles claims, add
cognito:groups to claimsToSuppress.

 4 You can add an aud claim to access tokens, but its value must match the app
client ID of the current session. You can derive the client ID in the request event from
event.callerContext.clientId.

Customizing the identity token

With all event versions of the pre token generation Lambda trigger, you can customize the content
of an identity (ID) token from your user pool. The ID token provides user attributes from a trusted
identity source for sign-in to a web or mobile app. For more information about ID tokens, see
Understanding the identity (ID) token.

The uses of the pre token generation Lambda trigger with an ID token include the following.

• Make a change at runtime to the IAM role that your user requests from an identity pool.

• Add user attributes from an external source.

• Add or replace existing user attribute values.

• Suppress disclosure of user attributes that, because of your user's authorized scopes and the read
access to attributes that you granted to your app client, would otherwise be passed to your app.

Pre token generation 719

Amazon Cognito Developer Guide

Customizing the access token

With event versions two and three of the pre token generation Lambda trigger, you can customize
the content of an access token from your user pool. The access token authorizes users to retrieve
information from access-protected resources like Amazon Cognito token-authorized API operations
and third-party APIs. For machine-to-machine (M2M) authorization with a client credentials grant,
Amazon Cognito only invokes the pre token generation trigger when your user pool is configured
for a version three (V3_0) event. For more information about access tokens, see Understanding the
access token.

The uses of the pre token generation Lambda trigger with an access token include the following.

• Add or suppress scopes in the scope claim. For example, you can add scopes to an access token
that resulted from Amazon Cognito user pools API authentication, which only assigns the scope
aws.cognito.signin.user.admin.

• Change a user's membership in user pool groups.

• Add claims that aren't already present in an Amazon Cognito access token.

• Suppress disclosure of claims that would otherwise be passed to your app.

To support access customization in your user pool, you must configure the user pool to generate an
updated version of the trigger request. Update your user pool as shown in the following procedure.

Amazon Web Services Management Console

To support access token customization in a pre token generation Lambda trigger

1. Go to the Amazon Cognito console, and then choose User Pools.

2. Choose an existing user pool from the list, or create a user pool.

3. Choose the Extensions menu and locate Lambda triggers.

4. Add or edit a Pre token generation trigger.

5. Choose a Lambda function under Assign Lambda function.

6. Choose a Trigger event version of Basic features + access token customization for user
identities or Basic features + access token customization for user and machine identities.
This setting updates the request parameters that Amazon Cognito sends to your function
to include fields for access token customization.

Pre token generation 720

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

User pools API

To support access token customization in a pre token generation Lambda trigger

Generate a CreateUserPool or UpdateUserPool API request. You must specify a value for all
parameters that you don't want set to a default value. For more information, see Updating user
pool and app client configuration.

Include the following content in the LambdaVersion parameter of your request. A
LambdaVersion value of V2_0 causes your user pool to add parameters for, and apply changes
to, access tokens. A LambdaVersion value of V3_0 produces the same event as V2_0, but
causes your user pool to also apply changes to M2M access tokens. To invoke a specific function
version, use a Lambda function ARN with a function version as the value of LambdaArn.

"PreTokenGenerationConfig": {
 "LambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:MyFunction",
 "LambdaVersion": "V3_0"
},

Client metadata for machine-to-machine (M2M) client credentials

You can pass client metadata in M2M requests. Client metadata is additional information
from a user or application environment that can contribute to the outcomes of a Pre token
generation Lambda trigger. In authentication operations with a user principal, you can pass client
metadata to the pre token generation trigger in the body of AdminRespondToAuthChallenge and
RespondToAuthChallenge API requests. Because applications conduct the flow for generation of
access tokens for M2M with direct requests to the Token endpoint, they have a different model.
In the POST body of token requests for client credentials, pass an aws_client_metadata
parameter with the client metadata object URL-encoded (x-www-form-urlencoded) to string.
For an example request, see Client credentials with basic authorization. The following is an
example parameter that passes the key-value pairs {"environment": "dev", "language":
"en-US"}.

aws_client_metadata=%7B%22environment%22%3A%20%22dev%22,%20%22language%22%3A%20%22en-US
%22%7D

More resources

• How to customize access tokens in Amazon Cognito user pools

Pre token generation 721

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://www.amazonaws.cn/blogs/security/how-to-customize-access-tokens-in-amazon-cognito-user-pools/

Amazon Cognito Developer Guide

Topics

• Pre token generation Lambda trigger sources

• Pre token generation Lambda trigger parameters

• Pre token trigger event version two example: Add and suppress claims, scopes, and groups

• Pre token generation event version two example: Add claims with complex objects

• Pre token generation event version one example: Add a new claim and suppress an existing claim

• Pre token generation event version one example: Modify the user's group membership

Pre token generation Lambda trigger sources

triggerSource value Event

TokenGeneration_HostedAuth Called during authentication from the Amazon
Cognito managed login sign-in page.

TokenGeneration_Authentication Called after user authentication flows have
completed.

TokenGeneration_NewPassword
Challenge

Called after the user is created by an admin.
This flow is invoked when the user has to
change a temporary password.

TokenGeneration_ClientCrede
ntials

Called after an M2M client credentials grant.
Your user pool only sends this event when
your event version is V3_0.

TokenGeneration_Authenticat
eDevice

Called at the end of the authentication of a
user device.

TokenGeneration_RefreshTokens Called when a user tries to refresh the identity
and access tokens.

Pre token generation Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests. When

Pre token generation 722

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

you add a pre token generation Lambda trigger to your user pool, you can choose a trigger version.
This version determines whether Amazon Cognito passes a request to your Lambda function with
additional parameters for access-token customization.

Version one

The version one token can set group membership, IAM roles, and new claims in ID tokens. Group
membership overrides also apply to the cognito:groups claim in access tokens.

{
 "request": {
 "userAttributes": {"string": "string"},
 "groupConfiguration": {
 "groupsToOverride": [
 "string",
 "string"
],
 "iamRolesToOverride": [
 "string",
 "string"
],
 "preferredRole": "string"
 },
 "clientMetadata": {"string": "string"}
 },
 "response": {
 "claimsOverrideDetails": {
 "claimsToAddOrOverride": {"string": "string"},
 "claimsToSuppress": [
 "string",
 "string"
],
 "groupOverrideDetails": {
 "groupsToOverride": [
 "string",
 "string"
],
 "iamRolesToOverride": [
 "string",
 "string"
],
 "preferredRole": "string"
 }

Pre token generation 723

Amazon Cognito Developer Guide

 }
 }
}

Versions two and three

The versions two and three request events add fields that customize the access token. User
pools apply changes from version three events to access tokens for machine identities.
These versions also add support for complex claimsToOverride data types in the
response object. Your Lambda function can return the following types of data in the value of
claimsToOverride:

• String

• Number

• Boolean

• Array of strings, numbers, booleans, or a combination of any of these

• JSON

{
 "request": {
 "userAttributes": {
 "string": "string"
 },
 "scopes": ["string", "string"],
 "groupConfiguration": {
 "groupsToOverride": ["string", "string"],
 "iamRolesToOverride": ["string", "string"],
 "preferredRole": "string"
 },
 "clientMetadata": {
 "string": "string"
 }
 },
 "response": {
 "claimsAndScopeOverrideDetails": {
 "idTokenGeneration": {
 "claimsToAddOrOverride": {
 "string": [accepted datatype]
 },
 "claimsToSuppress": ["string", "string"]

Pre token generation 724

Amazon Cognito Developer Guide

 },
 "accessTokenGeneration": {
 "claimsToAddOrOverride": {
 "string": [accepted datatype]
 },
 "claimsToSuppress": ["string", "string"],
 "scopesToAdd": ["string", "string"],
 "scopesToSuppress": ["string", "string"]
 },
 "groupOverrideDetails": {
 "groupsToOverride": ["string", "string"],
 "iamRolesToOverride": ["string", "string"],
 "preferredRole": "string"
 }
 }
 }
}

Pre token generation request parameters

Name Description Minimum
trigger event
version

userAttributes The attributes of your user's profile in your user pool. 1

groupConf
iguration

The input object that contains the current group
configuration. The object includes groupsToO
verride , iamRolesToOverride , and preferred
Role .

1

groupsToO
verride

The user pool groups that your user is a member of. 1

iamRolesT
oOverride

You can associate a user pool group with an Amazon
Identity and Access Management (IAM) role. This
element is a list of all IAM roles from the groups that
your user is a member of.

1

Pre token generation 725

Amazon Cognito Developer Guide

Name Description Minimum
trigger event
version

preferredRole You can set a precedence for user pool groups. This
element contains the name of the IAM role from the
group with the highest precendence in the groupsToO
verride element.

1

clientMetadata One or more key-value pairs that you can specify and
provide as custom input to the Lambda function for the
pre token generation trigger.

To pass this data to your Lambda function, use the
ClientMetadata parameter in the AdminRespondToAuth
Challenge and RespondToAuthChallenge API operation
s. Amazon Cognito doesn't include data from the
ClientMetadata parameter in AdminInitiateAuth and
InitiateAuth API operations in the request that it passes
to the pre token generation function.

1

scopes Access token scopes. The scopes that are present in an
access token are the user pool standard and custom
scopes that your user requested, and that you authorize
d your app client to issue.

2

Pre token generation response parameters

Name Description Minimum
trigger event
version

claimsOve
rrideDetails

A container for all elements in a V1_0 trigger event. 1

Pre token generation 726

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Name Description Minimum
trigger event
version

claimsAnd
ScopeOver
rideDetails

A container for all elements in a V2_0 or V3_0 trigger
event.

2

idTokenGe
neration

The claims that you want to override, add, or suppress in
your user’s ID token. This parent to ID token customiza
tion values appears only in event version 2 and above,
but the child elements appear in version 1 events.

2

accessTok
enGeneration

The claims and scopes that you want to override, add,
or suppress in your user’s access token. This parent to
access token customization values appears only in event
version 2 and above.

2

claimsToA
ddOrOverride

A map of one or more claims and their values that you
want to add or modify. For group-related claims, use
groupOverrideDetails instead.

In event version 2 and above, this element appears
under both accessTokenGeneration and
idTokenGeneration .

1*

claimsToS
uppress

A list of claims that you want Amazon Cognito to
suppress. If your function both suppresses and replaces
a claim value, then Amazon Cognito suppresses the
claim.

In event version 2 and above, this element appears
under both accessTokenGeneration and
idTokenGeneration .

1

Pre token generation 727

Amazon Cognito Developer Guide

Name Description Minimum
trigger event
version

groupOver
rideDetails

The output object that contains the current group
configuration. The object includes groupsToO
verride , iamRolesToOverride , and preferred
Role .

Your function replaces the groupOverrideDetails
object with the object that you provide. If you provide
an empty or null object in the response, then Amazon
Cognito suppresses the groups. To keep the existing
group configuration the same, copy the value of the
groupConfiguration object of the request to the
groupOverrideDetails object in the response.
Then pass it back to the service.

Amazon Cognito ID and access tokens both contain
the cognito:groups claim. Your groupOver
rideDetails object replaces the cognito:g
roups claim in access tokens and ID tokens. Group
overrides are the only changes to the access token that
version 1 events can make.

1

scopesToAdd A list of scopes that you want to add to the scope claim
in your user's access token. You can't add scope values
that contain one or more blank-space characters.

2

scopesToS
uppress

A list of scopes that you want to remove from the scope
claim in your user's access token.

2

 * Response objects to version one events can return strings. Response objects to version two and
three events can return complex objects.

Pre token generation 728

Amazon Cognito Developer Guide

Pre token trigger event version two example: Add and suppress claims, scopes,
and groups

This example makes the following modifications to a user's tokens.

1. Sets their family_name as Doe in the ID token.

2. Prevents email and phone_number claims from appearing in the ID token.

3. Sets their ID token cognito:roles claim to "arn:aws:iam::123456789012:role
\/sns_callerA","arn:aws:iam::123456789012:role\/
sns_callerC","arn:aws:iam::123456789012:role\/sns_callerB".

4. Sets their ID token cognito:preferred_role claim to
arn:aws:iam::123456789012:role/sns_caller.

5. Adds the scopes openid, email, and solar-system-data/asteroids.add to the access
token.

6. Suppresses the scope phone_number and aws.cognito.signin.user.admin from the
access token. Removal of phone_number prevents retrieval of the user's phone number from
userInfo. Removal of aws.cognito.signin.user.admin prevents API requests by the user
to read and modify their own profile with the Amazon Cognito user pools API.

Note

The removal of phone_number from scopes only prevents retrieval of a user's phone
number if the remaining scopes in the access token include openid and at least one
more standard scope. For more information, see About scopes.

7. Sets their ID and access token cognito:groups claim to "new-group-A","new-group-
B","new-group-C".

JavaScript

export const handler = function(event, context) {
 event.response = {
 "claimsAndScopeOverrideDetails": {
 "idTokenGeneration": {
 "claimsToAddOrOverride": {
 "family_name": "Doe"
 },

Pre token generation 729

Amazon Cognito Developer Guide

 "claimsToSuppress": [
 "email",
 "phone_number"
]
 },
 "accessTokenGeneration": {
 "scopesToAdd": [
 "openid",
 "email",
 "solar-system-data/asteroids.add"
],
 "scopesToSuppress": [
 "phone_number",
 "aws.cognito.signin.user.admin"
]
 },
 "groupOverrideDetails": {
 "groupsToOverride": [
 "new-group-A",
 "new-group-B",
 "new-group-C"
],
 "iamRolesToOverride": [
 "arn:aws:iam::123456789012:role/new_roleA",
 "arn:aws:iam::123456789012:role/new_roleB",
 "arn:aws:iam::123456789012:role/new_roleC"
],
 "preferredRole": "arn:aws:iam::123456789012:role/new_role",
 }
 }
 };
 // Return to Amazon Cognito
 context.done(null, event);
};

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

Pre token generation 730

Amazon Cognito Developer Guide

JSON

{
 "version": "2",
 "triggerSource": "TokenGeneration_Authentication",
 "region": "us-east-1",
 "userPoolId": "us-east-1_EXAMPLE",
 "userName": "JaneDoe",
 "callerContext": {
 "awsSdkVersion": "aws-sdk-unknown-unknown",
 "clientId": "1example23456789"
 },
 "request": {
 "userAttributes": {
 "sub": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "cognito:user_status": "CONFIRMED",
 "email_verified": "true",
 "phone_number_verified": "true",
 "phone_number": "+12065551212",
 "family_name": "Zoe",
 "email": "Jane.Doe@example.com"
 },
 "groupConfiguration": {
 "groupsToOverride": ["group-1", "group-2", "group-3"],
 "iamRolesToOverride": ["arn:aws:iam::123456789012:role/sns_caller1",
 "arn:aws:iam::123456789012:role/sns_caller2", "arn:aws:iam::123456789012:role/
sns_caller3"],
 "preferredRole": ["arn:aws:iam::123456789012:role/sns_caller"]
 },
 "scopes": [
 "aws.cognito.signin.user.admin", "openid", "email", "phone"
]
 },
 "response": {
 "claimsAndScopeOverrideDetails": []
 }
}

Pre token generation event version two example: Add claims with complex
objects

This example makes the following modifications to a user's tokens.

Pre token generation 731

Amazon Cognito Developer Guide

1. Adds claims of number, string, boolean, and JSON types to the ID token. This is the only change
that version two trigger events makes available to the ID token.

2. Adds claims of number, string, boolean, and JSON types to the access token.

3. Adds three scopes to the access token.

4. Suppresses the email claim in the ID and access tokens.

5. Suppresses the aws.cognito.signin.user.admin scope in the access token.

JavaScript

export const handler = function(event, context) {

 var scopes = ["MyAPI.read", "MyAPI.write", "MyAPI.admin"]
 var claims = {}
 claims["aud"]= event.callerContext.clientId;
 claims["booleanTest"] = false;
 claims["longTest"] = 9223372036854775807;
 claims["exponentTest"] = 1.7976931348623157E308;
 claims["ArrayTest"] = ["test", 9223372036854775807, 1.7976931348623157E308,
 true];
 claims["longStringTest"] = "\{\
 \"first_json_block\": \{\
 \"key_A\": \"value_A\",\
 \"key_B\": \"value_B\"\
 \},\
 \"second_json_block\": \{\
 \"key_C\": \{\
 \"subkey_D\": [\
 \"value_D\",\
 \"value_E\"\
],\
 \"subkey_F\": \"value_F\"\
 \},\
 \"key_G\": \"value_G\"\
 \}\
 \}";
 claims["jsonTest"] = {
 "first_json_block": {
 "key_A": "value_A",
 "key_B": "value_B"
 },
 "second_json_block": {

Pre token generation 732

Amazon Cognito Developer Guide

 "key_C": {
 "subkey_D": [
 "value_D",
 "value_E"
],
 "subkey_F": "value_F"
 },
 "key_G": "value_G"
 }
 };
 event.response = {
 "claimsAndScopeOverrideDetails": {
 "idTokenGeneration": {
 "claimsToAddOrOverride": claims,
 "claimsToSuppress": ["email"]
 },
 "accessTokenGeneration": {
 "claimsToAddOrOverride": claims,
 "claimsToSuppress": ["email"],
 "scopesToAdd": scopes,
 "scopesToSuppress": ["aws.cognito.signin.user.admin"]
 }
 }
 };
 console.info("EVENT response\n" + JSON.stringify(event, (_, v) => typeof v ===
 'bigint' ? v.toString() : v, 2))
 console.info("EVENT response size\n" + JSON.stringify(event, (_, v) => typeof v
 === 'bigint' ? v.toString() : v).length)
 // Return to Amazon Cognito
 context.done(null, event);
};

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "version": "2",
 "triggerSource": "TokenGeneration_HostedAuth",

Pre token generation 733

Amazon Cognito Developer Guide

 "region": "us-west-2",
 "userPoolId": "us-west-2_EXAMPLE",
 "userName": "JaneDoe",
 "callerContext": {
 "awsSdkVersion": "aws-sdk-unknown-unknown",
 "clientId": "1example23456789"
 },
 "request": {
 "userAttributes": {
 "sub": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "cognito:user_status": "CONFIRMED"
 "email_verified": "true",
 "phone_number_verified": "true",
 "phone_number": "+12065551212",
 "email": "Jane.Doe@example.com"
 },
 "groupConfiguration": {
 "groupsToOverride": ["group-1", "group-2", "group-3"],
 "iamRolesToOverride": ["arn:aws:iam::123456789012:role/sns_caller1"],
 "preferredRole": ["arn:aws:iam::123456789012:role/sns_caller1"]
 },
 "scopes": [
 "aws.cognito.signin.user.admin",
 "phone",
 "openid",
 "profile",
 "email"
]
 },
 "response": {
 "claimsAndScopeOverrideDetails": []
 }
}

Pre token generation event version one example: Add a new claim and suppress
an existing claim

This example uses a version 1 trigger event with a pre token generation Lambda function to add a
new claim and suppresses an existing claim.

Pre token generation 734

Amazon Cognito Developer Guide

Node.js

const handler = async (event) => {
 event.response = {
 claimsOverrideDetails: {
 claimsToAddOrOverride: {
 my_first_attribute: "first_value",
 my_second_attribute: "second_value",
 },
 claimsToSuppress: ["email"],
 },
 };

 return event;
};

export { handler };

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a
test event for this code sample: Because the code example doesn't process any request parameters,
you can use a test event with an empty request. For more information about common request
parameters, see User pool Lambda trigger event.

JSON

{
 "request": {},
 "response": {}
}

Pre token generation event version one example: Modify the user's group
membership

This example uses a version 1 trigger event with a pre token generation Lambda function to modify
the user's group membership.

Pre token generation 735

Amazon Cognito Developer Guide

Node.js

const handler = async (event) => {
 event.response = {
 claimsOverrideDetails: {
 groupOverrideDetails: {
 groupsToOverride: ["group-A", "group-B", "group-C"],
 iamRolesToOverride: [
 "arn:aws:iam::XXXXXXXXXXXX:role/sns_callerA",
 "arn:aws:iam::XXXXXXXXX:role/sns_callerB",
 "arn:aws:iam::XXXXXXXXXX:role/sns_callerC",
],
 preferredRole: "arn:aws:iam::XXXXXXXXXXX:role/sns_caller",
 },
 },
 };

 return event;
};

export { handler };

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "request": {},
 "response": {}
}

Migrate user Lambda trigger

When a user doesn't exist in the user pool at sign-in with a password, or in the forgot-password
flow, Amazon Cognito invokes this trigger. After the Lambda function returns successfully, Amazon

Migrate user 736

Amazon Cognito Developer Guide

Cognito creates the user in the user pool. For details on the authentication flow with the user
migration Lambda trigger, see Importing users with a user migration Lambda trigger.

To migrate users from your existing user directory into Amazon Cognito user pools at sign-in, or
during the forgot-password flow, use this Lambda trigger.

Topics

• Migrate user Lambda trigger sources

• Migrate user Lambda trigger parameters

• Example: Migrate a user with an existing password

Migrate user Lambda trigger sources

triggerSource value Event

UserMigration_Authentication 1 User migration at sign-in.

UserMigration_ForgotPassword User migration during forgot-password flow.

1 Amazon Cognito doesn't invoke this trigger when users authenticate with passwordless sign-in.

Migrate user Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "userName": "string",
 "request": {
 "password": "string",
 "validationData": {
 "string": "string",
 . . .
 },
 "clientMetadata": {
 "string": "string",

Migrate user 737

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

 . . .
 }
 },
 "response": {
 "userAttributes": {
 "string": "string",
 . . .
 },
 "finalUserStatus": "string",
 "messageAction": "string",
 "desiredDeliveryMediums": ["string", . . .],
 "forceAliasCreation": boolean,
 "enableSMSMFA": boolean
 }
}

Migrate user request parameters

userName

The username that the user enters at sign-in.

password

The password that the user enters at sign-in. Amazon Cognito doesn't send this value in a
request that's initiated by a forgot-password flow.

validationData

One or more key-value pairs that contain the validation data in the user's sign-in request. To
pass this data to your Lambda function, you can use the ClientMetadata parameter in the
InitiateAuth and AdminInitiateAuth API actions.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function
for the migrate user trigger. To pass this data to your Lambda function, you can use the
ClientMetadata parameter in the AdminRespondToAuthChallenge and ForgotPassword API
actions.

Migrate user 738

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html

Amazon Cognito Developer Guide

Migrate user response parameters

userAttributes

This field is required.

This field must contain one or more name-value pairs that Amazon Cognito stores in the
user profile in your user pool and uses as user attributes. You can include both standard and
custom user attributes. Custom attributes require the custom: prefix to distinguish them from
standard attributes. For more information, see Custom attributes.

Note

To reset their passwords in the forgot-password flow, a user must have either a verified
email address or a verified phone number. Amazon Cognito sends a message containing
a reset password code to the email address or phone number in the user attributes.

Attributes Requirement

Any attributes marked
as required when you
created your user pool

If any required attributes are missing during the migration,
Amazon Cognito uses default values.

username Required if you configured your user pool with alias attributes
in addition to username for sign-in, and the user has entered an
valid alias value as a username. This alias value can be an email
address, preferred username, or phone number.

If the request and the user pool meet the alias requirements,
the response from your function must assign the username
parameter that it received to an alias attribute, Also, the response
must assign your own value to the username attribute. If your
user pool doesn't meet the conditions required to map the
received username to an alias, then the username parameter
in the response must either exactly match the request, or be
omitted.

Migrate user 739

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html#user-pool-settings-custom-attributes.html

Amazon Cognito Developer Guide

Attributes Requirement

Note

username must be unique in the user pool.

finalUserStatus

You can set this parameter to CONFIRMED to auto-confirm your users so that they can sign in
with their previous passwords. When you set a user to CONFIRMED, they do not need to take
additional action before they can sign in. If you don't set this attribute to CONFIRMED, it's set to
RESET_REQUIRED.

A finalUserStatus of RESET_REQUIRED means that the user must change their
password immediately after migration at sign-in, and your client app must handle the
PasswordResetRequiredException during the authentication flow.

Note

Amazon Cognito doesn't enforce the password strength policy that you configured for
the user pool during migration using Lambda trigger. If the password doesn't meet the
password policy that you configured, Amazon Cognito still accepts the password so
that it can continue to migrate the user. To enforce password strength policy and reject
passwords that don't meet the policy, validate the password strength in your code.
Then, if the password doesn't meet the policy, set finalUserStatus to RESET_REQUIRED.

messageAction

You can set this parameter to SUPPRESS to decline to send the welcome message that Amazon
Cognito usually sends to new users. If your function doesn't return this parameter, Amazon
Cognito sends the welcome message.

desiredDeliveryMediums

You can set this parameter to EMAIL to send the welcome message by email, or SMS to send
the welcome message by SMS. If your function doesn't return this parameter, Amazon Cognito
sends the welcome message by SMS.

Migrate user 740

Amazon Cognito Developer Guide

forceAliasCreation

If you set this parameter to TRUE and the phone number or email address in the UserAttributes
parameter already exists as an alias with a different user, the API call migrates the alias from the
previous user to the newly created user. The previous user can no longer log in using that alias.

If you set this parameter to FALSE and the alias exists, Amazon Cognito doesn't migrate the
user and returns an error to the client app.

If you don't return this parameter, Amazon Cognito assumes its value is "false".

enableSMSMFA

Set this parameter to true to require that your migrated user complete SMS text message
multi-factor authentication (MFA) to sign in. Your user pool must have MFA enabled. Your user's
attributes in the request parameters must include a phone number, or else the migration of that
user will fail.

Example: Migrate a user with an existing password

This example Lambda function migrates the user with an existing password and suppresses the
welcome message from Amazon Cognito.

Node.js

exports.handler = (event, context, callback) => {
 var user;

 if (event.triggerSource == "UserMigration_Authentication") {
 // authenticate the user with your existing user directory service
 user = authenticateUser(event.userName, event.request.password);
 if (user) {
 event.response.userAttributes = {
 email: user.emailAddress,
 email_verified: "true",
 };
 event.response.finalUserStatus = "CONFIRMED";
 event.response.messageAction = "SUPPRESS";
 context.succeed(event);
 } else {
 // Return error to Amazon Cognito
 callback("Bad password");

Migrate user 741

Amazon Cognito Developer Guide

 }
 } else if (event.triggerSource == "UserMigration_ForgotPassword") {
 // Lookup the user in your existing user directory service
 user = lookupUser(event.userName);
 if (user) {
 event.response.userAttributes = {
 email: user.emailAddress,
 // required to enable password-reset code to be sent to user
 email_verified: "true",
 };
 event.response.messageAction = "SUPPRESS";
 context.succeed(event);
 } else {
 // Return error to Amazon Cognito
 callback("Bad password");
 }
 } else {
 // Return error to Amazon Cognito
 callback("Bad triggerSource " + event.triggerSource);
 }
};

Custom message Lambda trigger

When you have an external standard for the email and SMS messages that you want to send
to your users, or when you want to apply your own logic at runtime to the formatting of user
messages, add a custom message trigger to your user pool. The custom message Lambda receives
the contents of all email and SMS messages before your user pool sends them. Your Lambda
function then has the opportunity to modify the message contents and subject.

Amazon Cognito invokes this trigger before it sends an email or phone verification message or a
multi-factor authentication (MFA) code. You can customize the message dynamically with your
custom message trigger.

The request includes codeParameter. This is a string that acts as a placeholder for the code that
Amazon Cognito delivers to the user. Insert the codeParameter string into the message body
where you want the verification code to appear. When Amazon Cognito receives this response,
Amazon Cognito replaces the codeParameter string with the actual verification code.

Custom message 742

Amazon Cognito Developer Guide

Note

The input event for a custom message Lambda function with the
CustomMessage_AdminCreateUser trigger source includes a username and verification
code. Because an admin-created user must receive both their user name and code, the
response from your function must include placeholder variables for the username and
code. The placeholders for your message are the values of request.usernameParameter
and request.codeParameter. These values are typically {username} and {####}; as a
best practice, reference the input values instead of hardcoding the variable names.

Topics

• Custom message Lambda trigger sources

• Custom message Lambda trigger parameters

• Custom message for sign-up example

• Custom message for admin create user example

Custom message Lambda trigger sources

triggerSource value Event

CustomMessage_SignUp Custom message – To send the confirmation
code post sign-up.

CustomMessage_AdminCreateUser Custom message – To send the temporary
password to a new user.

CustomMessage_ResendCode Custom message – To resend the confirmation
code to an existing user.

CustomMessage_ForgotPassword Custom message – To send the confirmation
code for Forgot Password request.

CustomMessage_UpdateUserAtt
ribute

Custom message – When a user's email or
phone number is changed, this trigger sends

Custom message 743

Amazon Cognito Developer Guide

triggerSource value Event

a verification code automatically to the user.
Cannot be used for other attributes.

CustomMessage_VerifyUserAtt
ribute

Custom message – This trigger sends a
verification code to the user when they
manually request it for a new email or phone
number.

CustomMessage_Authentication Custom message – To send MFA code during
authentication.

Custom message Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "userAttributes": {
 "string": "string",
 . . .
 }
 "codeParameter": "####",
 "usernameParameter": "string",
 "clientMetadata": {
 "string": "string",
 . . .
 }
 },
 "response": {
 "smsMessage": "string",
 "emailMessage": "string",
 "emailSubject": "string"
 }
}

Custom message 744

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

Custom message request parameters

userAttributes

One or more name-value pairs representing user attributes.

codeParameter

A string for you to use as the placeholder for the verification code in the custom message.

usernameParameter

The user name. Amazon Cognito includes this parameter in requests that result from admin-
created users.

clientMetadata

One or more key-value pairs that you can provide as custom input to the Lambda function
that you specify for the custom message trigger. The request that invokes a custom message
function doesn't include data passed in the ClientMetadata parameter in AdminInitiateAuth
and InitiateAuth API operations. To pass this data to your Lambda function, you can use the
ClientMetadata parameter in the following API actions:

• AdminResetUserPassword

• AdminRespondToAuthChallenge

• AdminUpdateUserAttributes

• ForgotPassword

• GetUserAttributeVerificationCode

• ResendConfirmationCode

• SignUp

• UpdateUserAttributes

Custom message response parameters

In the response, specify the custom text to use in messages to your users. For the string constraints
that Amazon Cognito applies to these parameters, see MessageTemplateType.

smsMessage

The custom SMS message to be sent to your users. Must include the codeParameter value
that you received in the request.

Custom message 745

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_MessageTemplateType.html

Amazon Cognito Developer Guide

emailMessage

The custom email message to send to your users. You can use HTML formatting in the
emailMessage parameter. Must include the codeParameter value that you received
in the request as the variable {####}. Amazon Cognito can use the emailMessage
parameter only if the EmailSendingAccount attribute of the user pool is DEVELOPER.
If the EmailSendingAccount attribute of the user pool isn't DEVELOPER and an
emailMessage parameter is returned, Amazon Cognito generates a 400 error code
com.amazonaws.cognito.identity.idp.model.InvalidLambdaResponseException.
When you choose Amazon Simple Email Service (Amazon SES) to send email messages, the
EmailSendingAccount attribute of a user pool is DEVELOPER. Otherwise, the value is
COGNITO_DEFAULT.

emailSubject

The subject line for the custom message. You can only use the emailSubject
parameter if the EmailSendingAccount attribute of the user pool is DEVELOPER. If the
EmailSendingAccount attribute of the user pool isn't DEVELOPER and Amazon Cognito
returns an emailSubject parameter, Amazon Cognito generates a 400 error code
com.amazonaws.cognito.identity.idp.model.InvalidLambdaResponseException.
The EmailSendingAccount attribute of a user pool is DEVELOPER when you choose to use
Amazon Simple Email Service (Amazon SES) to send email messages. Otherwise, the value is
COGNITO_DEFAULT.

Custom message for sign-up example

This example Lambda function customizes an email or SMS message when the service requires an
app to send a verification code to the user.

Amazon Cognito can invoke a Lambda trigger at multiple events: post-registration, resending
a verification code, recovering a forgotten password, or verifying a user attribute. The response
includes messages for both SMS and email. The message must include the code parameter
"####". This parameter is the placeholder for the verification code that the user receives.

The maximum length for an email message is 20,000 UTF-8 characters,. This length includes the
verification code. You can use HTML tags in these email messages.

The maximum length of SMS messages is 140 UTF-8 characters. This length includes the
verification code.

Custom message 746

Amazon Cognito Developer Guide

Node.js

const handler = async (event) => {
 if (event.triggerSource === "CustomMessage_SignUp") {
 const message = `Thank you for signing up. Your confirmation code is
 ${event.request.codeParameter}.`;
 event.response.smsMessage = message;
 event.response.emailMessage = message;
 event.response.emailSubject = "Welcome to the service.";
 }
 return event;
};

export { handler };

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "version": "1",
 "region": "us-west-2",
 "userPoolId": "us-west-2_EXAMPLE",
 "userName": "test-user",
 "callerContext": {
 "awsSdkVersion": "aws-sdk-unknown-unknown",
 "clientId": "1example23456789"
 },
 "triggerSource": "CustomMessage_SignUp",
 "request": {
 "userAttributes": {
 "sub": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "cognito:user_status": "CONFIRMED",
 "email_verified": "true",
 "phone_number_verified": "true",
 "phone_number": "+12065551212",
 "email": "test-user@example.com"
 },
 "codeParameter": "{####}",

Custom message 747

Amazon Cognito Developer Guide

 "linkParameter": "{##Click Here##}",
 "usernameParameter": "None"
 },
 "response": {
 "smsMessage": "None",
 "emailMessage": "None",
 "emailSubject": "None"
 }
}

Custom message for admin create user example

The request that Amazon Cognito sent to this example custom message Lambda function has a
triggerSource value of CustomMessage_AdminCreateUser and a username and temporary
password. The function populates ${event.request.codeParameter} from the temporary
password in the request, and ${event.request.usernameParameter} from the username in
the request.

Your custom messages must insert the values of codeParameter and usernameParameter
into smsMessage and emailMessage in the response object. In this example, the function
writes the same message to the response fields event.response.smsMessage and
event.response.emailMessage.

The maximum length of an email message is 20,000 UTF-8 characters. This length includes the
verification code. You can use HTML tags in these emails. The maximum length of SMS messages is
140 UTF-8 characters. This length includes the verification code.

The response includes messages for both SMS and email.

Node.js

const handler = async (event) => {
 if (event.triggerSource === "CustomMessage_AdminCreateUser") {
 const message = `Welcome to the service. Your user name is
 ${event.request.usernameParameter}. Your temporary password is
 ${event.request.codeParameter}`;
 event.response.smsMessage = message;
 event.response.emailMessage = message;
 event.response.emailSubject = "Welcome to the service";
 }

Custom message 748

Amazon Cognito Developer Guide

 return event;
};

export { handler };

Amazon Cognito passes event information to your Lambda function. The function then returns the
same event object to Amazon Cognito, with any changes in the response. In the Lambda console,
you can set up a test event with data that is relevant to your Lambda trigger. The following is a test
event for this code sample:

JSON

{
 "version": 1,
 "triggerSource": "CustomMessage_AdminCreateUser",
 "region": "<region>",
 "userPoolId": "<userPoolId>",
 "userName": "<userName>",
 "callerContext": {
 "awsSdk": "<calling aws sdk with version>",
 "clientId": "<apps client id>",
 ...
 },
 "request": {
 "userAttributes": {
 "phone_number_verified": false,
 "email_verified": true,
 ...
 },
 "codeParameter": "####",
 "usernameParameter": "username"
 },
 "response": {
 "smsMessage": "<custom message to be sent in the message with code parameter
 and username parameter>"
 "emailMessage": "<custom message to be sent in the message with code parameter
 and username parameter>"
 "emailSubject": "<custom email subject>"
 }
}

Custom message 749

Amazon Cognito Developer Guide

Custom sender Lambda triggers

The Lambda triggers CustomEmailSender and CustomSMSSender support third-party email and
SMS notifications in user pools. You can choose SMS and email providers to send notifications to
users from within your Lambda function code. When Amazon Cognito sends invitations, MFA codes,
confirmation codes, verification codes, and temporary passwords to users, the events activate your
configured Lambda functions. Amazon Cognito sends the code and temporary passwords (secrets)
to your activated Lambda functions. Amazon Cognito encrypts these secrets with an Amazon KMS
customer managed key and the Amazon Encryption SDK. The Amazon Encryption SDK is a client-
side encryption library that helps you to encrypt and decrypt generic data.

Note

To configure your user pools to use these Lambda triggers, you can use the Amazon CLI or
SDK. These configurations aren't available from Amazon Cognito console.

CustomEmailSender

Amazon Cognito invokes this trigger to send email notifications to users.

CustomSMSSender

Amazon Cognito invokes this trigger to send SMS notifications to users.

Required resources

Amazon Cognito doesn't send users' codes in plaintext in the events that it sends to custom sender
triggers. The Lambda functions must decrypt codes in the events. The following concepts are the
encryption architecture that your function must use to get codes that it can deliver to users.

Amazon KMS

Amazon KMS is a managed service to create and control Amazon KMS keys. These keys encrypt
your data. For more information see, What is Amazon Key Management Service?.

KMS key

A KMS key is a logical representation of a cryptographic key. The KMS key includes metadata,
such as the key ID, creation date, description, and key state. The KMS key also contains the key
material used to encrypt and decrypt data. For more information see, Amazon KMS keys.

Custom senders 750

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#kms_keys

Amazon Cognito Developer Guide

Symmetric KMS key

A symmetric KMS key is a 256-bit encryption key that doesn't exit Amazon KMS unencrypted.
To use a symmetric KMS key, you must call Amazon KMS. Amazon Cognito uses symmetric keys.
The same key encrypts and decrypts. For more information see, Symmetric KMS keys.

Custom email sender Lambda trigger

When you assign a custom email sender trigger to your user pool, Amazon Cognito invokes a
Lambda function instead of its default behavior when a user event requires that it send an email
message. With a custom sender trigger, your Amazon Lambda function can send email notifications
to your users through a method and provider that you choose. The custom code of your function
must process and deliver all email messages from your user pool.

This trigger serves scenarios where you might want to have greater control over how your user
pool sends email messages. Your Lambda function can customize the call to Amazon SES API
operations, for example when you want to manage multiple verified identities or cross Amazon
Web Services Regions. Your function also might redirect messages to another delivery medium or
third-party service.

Note

Currently, you can't assign custom sender triggers in the Amazon Cognito console.
You can assign a trigger with the LambdaConfig parameter in a CreateUserPool or
UpdateUserPool API request.

To set up this trigger, perform the following steps:

1. Create a symmetric encryption key in Amazon Key Management Service (Amazon KMS). Amazon
Cognito generates secrets—temporary passwords, verification codes, and confirmation codes
—then uses this KMS key to encrypt the secrets. You can then use the Decrypt API operation
in your Lambda function to decrypt the secrets and send them to the user in plaintext. The
Amazon Encryption SDK is a useful tool for Amazon KMS operations in your function.

2. Create a Lambda function that you want to assign as your custom sender trigger. Grant
kms:Decrypt permissions for your KMS key to the Lambda function role.

3. Grant Amazon Cognito service principal cognito-idp.amazonaws.com access to invoke the
Lambda function.

Custom senders 751

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html

Amazon Cognito Developer Guide

4. Write Lambda function code that directs your messages to custom delivery methods or third-
party providers. To deliver your user's verification or confirmation code, Base64 decode and
decrypt the value of the code parameter in the request. This operation produces a plaintext
code or password that you must include in your message.

5. Update the user pool so that it uses a custom sender Lambda trigger. The IAM principal that
updates or creates a user pool with a custom sender trigger must have permission to create a
grant for your KMS key. The following LambdaConfig snippet assigns custom SMS and email
sender functions.

"LambdaConfig": {
 "KMSKeyID": "arn:aws:kms:us-
east-1:123456789012:key/a6c4f8e2-0c45-47db-925f-87854bc9e357",
 "CustomEmailSender": {
 "LambdaArn": "arn:aws:lambda:us-east-1:123456789012:function:MyFunction",
 "LambdaVersion": "V1_0"
 },
 "CustomSMSSender": {
 "LambdaArn": "arn:aws:lambda:us-east-1:123456789012:function:MyFunction",
 "LambdaVersion": "V1_0"
 }

Custom email sender Lambda trigger sources

The following table shows the triggering events for custom email trigger sources in your Lambda
code.

TriggerSource value Event

CustomEmailSender_SignUp A user signs up and Amazon Cognito sends a
welcome message.

CustomEmailSender_Authentication A user signs in and Amazon Cognito sends an
multi-factor authentication (MFA) code.

CustomEmailSender_ForgotPassword A user requests a code to reset their password.

CustomEmailSender_ResendCode A user requests a replacement account-c
onfirmation code.

Custom senders 752

Amazon Cognito Developer Guide

TriggerSource value Event

CustomEmailSender_UpdateUse
rAttribute

A user updates an email address or phone
number attribute and Amazon Cognito sends a
code to verify the attribute.

CustomEmailSender_VerifyUse
rAttribute

A user creates a new email address or phone
number attribute and Amazon Cognito sends a
code to verify the attribute.

CustomEmailSender_AdminCrea
teUser

You create a new user in your user pool and
Amazon Cognito sends them a temporary
password.

CustomEmailSender_AccountTa
keOverNotification

Amazon Cognito detects an attempt to take
over a user account and sends the user a
notification.

Custom email sender Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

JSON

{
 "request": {
 "type": "customEmailSenderRequestV1",
 "code": "string",
 "clientMetadata": {
 "string": "string",
 . . .
 },
 "userAttributes": {
 "string": "string",
 . . .
 }
}

Custom senders 753

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

Custom email sender request parameters

type

The request version. For a custom email sender event, the value of this string is always
customEmailSenderRequestV1.

code

The encrypted code that your function can decrypt and send to your user.

clientMetadata

One or more key-value pairs that you can provide as custom input to the custom
email sender Lambda function trigger. To pass this data to your Lambda function, you
can use the ClientMetadata parameter in the AdminRespondToAuthChallenge and
RespondToAuthChallenge API actions. Amazon Cognito doesn't include data from the
ClientMetadata parameter in AdminInitiateAuth and InitiateAuth API operations in the request
that it passes to the post authentication function.

Note

Amazon Cognito sends ClientMetadata to custom email trigger functions in events
with the following trigger sources:

• CustomEmailSender_ForgotPassword

• CustomEmailSender_SignUp

• CustomEmailSender_Authentication
Amazon Cognito doesn't send ClientMetadata in trigger events with source
CustomEmailSender_AccountTakeOverNotification.

userAttributes

One or more key-value pairs that represent user attributes.

Custom email sender response parameters

Amazon Cognito doesn't expect any additional return information in the custom email sender
response. Your Lambda function must interpret the event and decrypt the code, then deliver the

Custom senders 754

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

message contents. A typical function assembles an email message and directs it to a third-party
SMTP relay.

Activating the custom email sender Lambda trigger

To set up a custom email sender trigger that uses custom logic to send email messages for your
user pool, activate the trigger as follows. The procedure that follows assigns a custom email
trigger, a custom SMS trigger, or both to your user pool. After you add your custom email sender
trigger, Amazon Cognito always sends user attributes, including the email address, and the one-
time code to your Lambda function when it would have otherwise sent an email message with
Amazon Simple Email Service.

Important

Amazon Cognito HTML-escapes reserved characters like < (<) and > (>) in your
user's temporary password. These characters might appear in temporary passwords
that Amazon Cognito sends to your custom email sender function, but don't appear in
temporary verification codes. To send temporary passwords, your Lambda function must
unescape these characters after it decrypts the password, and before it sends the message
to your user.

1. Create an encryption key in Amazon KMS. This key encrypts temporary passwords and
authorization codes that Amazon Cognito generates. You can then decrypt these secrets in the
custom sender Lambda function and send them to your user in plaintext.

2. The IAM principal that creates or updates your user pool creates a one-time grant against the
KMS key that Amazon Cognito uses to encrypt the code. Grant this principal CreateGrant
permissions for your KMS key. For this example KMS key policy to be effective, the
administrator who updates the user pool must be signed in with an assumed-role session for
the IAM role arn:aws:iam::111222333444:role/my-example-role.

Apply the following resource-based policy to your KMS key.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111222333444:role/my-example-role"

Custom senders 755

Amazon Cognito Developer Guide

 },
 "Action": "kms:CreateGrant",
 "Resource": "arn:aws:kms:us-
west-2:111222333444:key/1example-2222-3333-4444-999example",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111222333444"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cognito-idp:us-
west-2:111222333444:userpool/us-east-1_EXAMPLE"
 }
 }
 }]
}

3. Create a Lambda function for the custom sender trigger. Amazon Cognito uses the Amazon
encryption SDK to encrypt the secrets, temporary passwords and codes that authorize your
users' API requests.

• Assign an IAM role to your Lambda function that has, at minimum, kms:Decrypt
permissions for your KMS key.

4. Grant Amazon Cognito service principal cognito-idp.amazonaws.com access to invoke the
Lambda function.

The following Amazon CLI command grants Amazon Cognito permission to invoke your
Lambda function:

 aws lambda add-permission --function-name lambda_arn --statement-id
 "CognitoLambdaInvokeAccess" --action lambda:InvokeFunction --principal cognito-
idp.amazonaws.com

5. Compose your Lambda function code to send your messages. Amazon Cognito uses Amazon
Encryption SDK to encrypt secrets before Amazon Cognito sends the secrets to the custom
sender Lambda function. In your function, decrypt the secret and process any relevant
metadata. Then send the code, your own custom message, and destination phone number to
the custom API that delivers your message.

Custom senders 756

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html

Amazon Cognito Developer Guide

6. Add the Amazon Encryption SDK to your Lambda function. For more information, see Amazon
Encryption SDK programming languages. To update the Lambda package, complete the
following steps.

a. Export your Lambda function as a .zip file in the Amazon Web Services Management
Console.

b. Open your function and add the Amazon Encryption SDK. For more information and
download links, see Amazon Encryption SDK programming languages in the Amazon
Encryption SDK Developer Guide.

c. Zip your function with your SDK dependencies, and upload the function to Lambda. For
more information, see Deploying Lambda functions as .zip file archives in the Amazon
Lambda Developer Guide.

7. Update your user pool to add custom sender Lambda triggers. Include a CustomSMSSender or
CustomEmailSender parameter in an UpdateUserPool API request. The UpdateUserPool
API operation requires all the parameters of your user pool and the parameters that you want
to change. If you don't provide all relevant parameters, Amazon Cognito sets the values of any
missing parameters to their defaults. As demonstrated in the example that follows, include
entries for all Lambda functions that you want to add to or keep in your user pool. For more
information, see Updating user pool and app client configuration.

 #Send this parameter in an 'aws cognito-idp update-user-pool' CLI command,
 including any existing
 #user pool configurations. This snippet also includes a pre sign-up trigger for
 syntax reference. The pre sign-up trigger
 #doesn't have a role in custom sender triggers.

 --lambda-config "PreSignUp=lambda-arn, \
 CustomSMSSender={LambdaVersion=V1_0,LambdaArn=lambda-arn}, \
 CustomEmailSender={LambdaVersion=V1_0,LambdaArn=lambda-arn},
 \
 KMSKeyID=key-id"

To remove a custom sender Lambda trigger with an update-user-pool Amazon CLI, omit the
CustomSMSSender or CustomEmailSender parameter from --lambda-config, and include all
other triggers that you want to use with your user pool.

Custom senders 757

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-zip.html#configuration-function-create

Amazon Cognito Developer Guide

To remove a custom sender Lambda trigger with an UpdateUserPool API request, omit the
CustomSMSSender or CustomEmailSender parameter from the request body that contains the
rest of your user pool configuration.

Code example

The following Node.js example processes an email message event in your custom email sender
Lambda function. This example assumes your function has two environment variables defined.

KEY_ALIAS

The alias of the KMS key that you want to use to encrypt and decrypt your users' codes.

KEY_ARN

The Amazon Resource Name (ARN) of the KMS key that you want to use to encrypt and decrypt
your users' codes.

To deploy this function

1. Install the latest version of NodeJS in your developer workspace.

2. Create a new NodeJS project in your workspace.

3. Initialize your project with npm init -y.

4. Create the script for the Lambda function: touch index.mjs.

5. Paste the contents of the below example into index.mjs.

6. Download the project dependency, Amazon Encryption SDK: npm install @aws-crypto/
client-node.

7. Zip the project directory into a file: zip -r my_deployment_package.zip ..

8. Deploy the ZIP file to your function.

This example function decrypts the code and, for sign-up events, simulates sending an email
message to the user's email address.

import { KmsKeyringNode, buildClient, CommitmentPolicy } from '@aws-crypto/client-
node';

// Configure the encryption SDK client with the KMS key from the environment variables
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT

Custom senders 758

https://docs.amazonaws.cn/kms/latest/developerguide/kms-alias.html
https://docs.amazonaws.cn/lambda/latest/dg/nodejs-package.html

Amazon Cognito Developer Guide

);

const generatorKeyId = process.env.KEY_ID;
const keyIds = [process.env.KEY_ARN];
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds });

// Example function to simulate sending email.
// This example logs message details to CloudWatch Logs from your Lambda function.
// Update this function with custom logic that sends an email message to 'emailaddress'
 with body 'message'.
const sendEmail = async (emailAddress, message) => {
 // Log the destination with the email address masked.
 console.log(`Simulating email send to ${emailAddress.replace(/[^@.]/g, '*')}`);
 // Log the message with the code masked.
 console.log(`Message content: ${message.replace(/\b\d{6,8}\b/g, '********')}`);
 // Simulate API delay
 await new Promise(resolve => setTimeout(resolve, 100));
 console.log('Email sent successfully');
 return true;
};

export const handler = async (event) => {
 try {
 // Decrypt the secret code using encryption SDK
 let plainTextCode;
 if (event.request.code) {
 const { plaintext, messageHeader } = await decrypt(keyring,
 Buffer.from(event.request.code, 'base64'));
 plainTextCode = Buffer.from(plaintext).toString('utf-8');
 }

 // Handle different trigger sources
 if (event.triggerSource == 'CustomEmailSender_SignUp') {
 const emailAddress = event.request.userAttributes.email;
 const message = `Welcome! Your verification code is: ${plainTextCode}`;
 await sendEmail(emailAddress, message);
 }
 else if (event.triggerSource == 'CustomEmailSender_ResendCode') {
 // Handle resend code
 }
 else if (event.triggerSource == 'CustomEmailSender_ForgotPassword') {
 // Handle forgot password
 }
 else if (event.triggerSource == 'CustomEmailSender_UpdateUserAttribute') {

Custom senders 759

Amazon Cognito Developer Guide

 // Handle update attribute
 }
 else if (event.triggerSource == 'CustomEmailSender_VerifyUserAttribute') {
 // Handle verify attribute
 }
 else if (event.triggerSource == 'CustomEmailSender_AdminCreateUser') {
 // Handle admin create user
 }
 else if (event.triggerSource == 'CustomEmailSender_Authentication') {
 // Handle authentication
 }
 else if (event.triggerSource ==
 'CustomEmailSender_AccountTakeOverNotification') {
 // Handle account takeover notification
 }

 return;
 } catch (error) {
 console.error('Error in custom email sender:', error);
 throw error;
 }
};

Custom SMS sender Lambda trigger

When you assign a custom SMS sender trigger to your user pool, Amazon Cognito invokes a
Lambda function instead of its default behavior when a user event requires that it send an SMS
message. With a custom sender trigger, your Amazon Lambda function can send SMS notifications
to your users through a method and provider that you choose. The custom code of your function
must process and deliver all SMS messages from your user pool.

This trigger serves scenarios where you might want to have greater control over how your user pool
sends SMS messages. Your Lambda function can customize the call to Amazon SNS API operations,
for example when you want to manage multiple origination IDs or cross Amazon Web Services
Regions. Your function also might redirect messages to another delivery medium or third-party
service.

Custom senders 760

Amazon Cognito Developer Guide

Note

Currently, you can't assign custom sender triggers in the Amazon Cognito console.
You can assign a trigger with the LambdaConfig parameter in a CreateUserPool or
UpdateUserPool API request.

To set up this trigger, perform the following steps:

1. Create a symmetric encryption key in Amazon Key Management Service (Amazon KMS). Amazon
Cognito generates secrets—temporary passwords, verification codes, and confirmation codes
—then uses this KMS key to encrypt the secrets. You can then use the Decrypt API operation
in your Lambda function to decrypt the secrets and send them to the user in plaintext. The
Amazon Encryption SDK is a useful tool for Amazon KMS operations in your function.

2. Create a Lambda function that you want to assign as your custom sender trigger. Grant
kms:Decrypt permissions for your KMS key to the Lambda function role.

3. Grant Amazon Cognito service principal cognito-idp.amazonaws.com access to invoke the
Lambda function.

4. Write Lambda function code that directs your messages to custom delivery methods or third-
party providers. To deliver your user's verification or confirmation code, Base64 decode and
decrypt the value of the code parameter in the request. This operation produces a plaintext
code or password that you must include in your message.

5. Update the user pool so that it uses a custom sender Lambda trigger. The IAM principal that
updates or creates a user pool with a custom sender trigger must have permission to create a
grant for your KMS key. The following LambdaConfig snippet assigns custom SMS and email
sender functions.

"LambdaConfig": {
 "KMSKeyID": "arn:aws:kms:us-
east-1:123456789012:key/a6c4f8e2-0c45-47db-925f-87854bc9e357",
 "CustomEmailSender": {
 "LambdaArn": "arn:aws:lambda:us-east-1:123456789012:function:MyFunction",
 "LambdaVersion": "V1_0"
 },
 "CustomSMSSender": {
 "LambdaArn": "arn:aws:lambda:us-east-1:123456789012:function:MyFunction",
 "LambdaVersion": "V1_0"

Custom senders 761

https://docs.amazonaws.cn/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.amazonaws.cn/kms/latest/APIReference/API_Decrypt.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html

Amazon Cognito Developer Guide

 }

Custom SMS sender Lambda trigger sources

The following table shows the triggering event for custom SMS trigger sources in your Lambda
code.

TriggerSource value Event

CustomSMSSender_SignUp A user signs up and Amazon Cognito sends a
welcome message.

CustomSMSSender_ForgotPassword A user requests a code to reset their password.

CustomSMSSender_ResendCode A user requests a new code to confirm their
registration.

CustomSMSSender_VerifyUserA
ttribute

A user creates a new email address or phone
number attribute and Amazon Cognito sends a
code to verify the attribute.

CustomSMSSender_UpdateUserA
ttribute

A user updates an email address or phone
number attribute and Amazon Cognito sends a
code to verify the attribute.

CustomSMSSender_Authentication A user configured with SMS multi-factor
authentication (MFA) signs in.

CustomSMSSender_AdminCreateUser You create a new user in your user pool and
Amazon Cognito sends them a temporary
password.

Custom SMS sender Lambda trigger parameters

The request that Amazon Cognito passes to this Lambda function is a combination of the
parameters below and the common parameters that Amazon Cognito adds to all requests.

Custom senders 762

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html#cognito-user-pools-lambda-trigger-syntax-shared

Amazon Cognito Developer Guide

JSON

{
 "request": {
 "type": "customSMSSenderRequestV1",
 "code": "string",
 "clientMetadata": {
 "string": "string",
 . . .
 },
 "userAttributes": {
 "string": "string",
 . . .
 }
}

Custom SMS sender request parameters

type

The request version. For a custom SMS sender event, the value of this string is always
customSMSSenderRequestV1.

code

The encrypted code that your function can decrypt and send to your user.

clientMetadata

One or more key-value pairs that you can provide as custom input to the custom
SMS sender Lambda function trigger. To pass this data to your Lambda function, you
can use the ClientMetadata parameter in the AdminRespondToAuthChallenge and
RespondToAuthChallenge API actions. Amazon Cognito doesn't include data from the
ClientMetadata parameter in AdminInitiateAuth and InitiateAuth API operations in the request
that it passes to the post authentication function.

userAttributes

One or more key-value pairs that represent user attributes.

Custom senders 763

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Custom SMS sender response parameters

Amazon Cognito doesn't expect any additional return information in the response. Your function
can use API operations to query and modify your resources, or record event metadata to an
external system.

Activating the custom SMS sender Lambda trigger

You can set up a custom SMS sender trigger that uses custom logic to send SMS messages for your
user pool. The following procedure assigns a custom SMS trigger, a custom email trigger, or both to
your user pool. After you add your custom SMS sender trigger, Amazon Cognito always sends user
attributes, including the phone number, and the one-time code to your Lambda function instead of
the default behavior that sends an SMS message with Amazon Simple Notification Service.

Important

Amazon Cognito HTML-escapes reserved characters like < (<) and > (>) in your
user's temporary password. These characters might appear in temporary passwords
that Amazon Cognito sends to your custom email sender function, but don't appear in
temporary verification codes. To send temporary passwords, your Lambda function must
unescape these characters after it decrypts the password, and before it sends the message
to your user.

1. Create an encryption key in Amazon KMS. This key encrypts temporary passwords and
authorization codes that Amazon Cognito generates. You can then decrypt these secrets in the
custom sender Lambda function and send them to your user in plaintext.

2. The IAM principal that creates or updates your user pool creates a one-time grant against the
KMS key that Amazon Cognito uses to encrypt the code. Grant this principal CreateGrant
permissions for your KMS key. For this example KMS key policy to be effective, the
administrator who updates the user pool must be signed in with an assumed-role session for
the IAM role arn:aws:iam::111222333444:role/my-example-role.

Apply the following resource-based policy to your KMS key.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",

Custom senders 764

Amazon Cognito Developer Guide

 "Principal": {
 "AWS": "arn:aws:iam::111222333444:role/my-example-role"
 },
 "Action": "kms:CreateGrant",
 "Resource": "arn:aws:kms:us-
west-2:111222333444:key/1example-2222-3333-4444-999example",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "111222333444"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cognito-idp:us-
west-2:111222333444:userpool/us-east-1_EXAMPLE"
 }
 }
 }]
}

3. Create a Lambda function for the custom sender trigger. Amazon Cognito uses the Amazon
encryption SDK to encrypt the secrets, temporary passwords and codes that authorize your
users' API requests.

• Assign an IAM role to your Lambda function that has, at minimum, kms:Decrypt
permissions for your KMS key.

4. Grant Amazon Cognito service principal cognito-idp.amazonaws.com access to invoke the
Lambda function.

The following Amazon CLI command grants Amazon Cognito permission to invoke your
Lambda function:

 aws lambda add-permission --function-name lambda_arn --statement-id
 "CognitoLambdaInvokeAccess" --action lambda:InvokeFunction --principal cognito-
idp.amazonaws.com

5. Compose your Lambda function code to send your messages. Amazon Cognito uses Amazon
Encryption SDK to encrypt secrets before Amazon Cognito sends the secrets to the custom
sender Lambda function. In your function, decrypt the secret and process any relevant
metadata. Then send the code, your own custom message, and destination phone number to
the custom API that delivers your message.

Custom senders 765

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/introduction.html

Amazon Cognito Developer Guide

6. Add the Amazon Encryption SDK to your Lambda function. For more information, see Amazon
Encryption SDK programming languages. To update the Lambda package, complete the
following steps.

a. Export your Lambda function as a .zip file in the Amazon Web Services Management
Console.

b. Open your function and add the Amazon Encryption SDK. For more information and
download links, see Amazon Encryption SDK programming languages in the Amazon
Encryption SDK Developer Guide.

c. Zip your function with your SDK dependencies, and upload the function to Lambda. For
more information, see Deploying Lambda functions as .zip file archives in the Amazon
Lambda Developer Guide.

7. Update your user pool to add custom sender Lambda triggers. Include a CustomSMSSender or
CustomEmailSender parameter in an UpdateUserPool API request. The UpdateUserPool
API operation requires all the parameters of your user pool and the parameters that you want
to change. If you don't provide all relevant parameters, Amazon Cognito sets the values of any
missing parameters to their defaults. As demonstrated in the example that follows, include
entries for all Lambda functions that you want to add to or keep in your user pool. For more
information, see Updating user pool and app client configuration.

 #Send this parameter in an 'aws cognito-idp update-user-pool' CLI command,
 including any existing
 #user pool configurations. This snippet also includes a pre sign-up trigger for
 syntax reference. The pre sign-up trigger
 #doesn't have a role in custom sender triggers.

 --lambda-config "PreSignUp=lambda-arn, \
 CustomSMSSender={LambdaVersion=V1_0,LambdaArn=lambda-arn}, \
 CustomEmailSender={LambdaVersion=V1_0,LambdaArn=lambda-arn},
 \
 KMSKeyID=key-id"

To remove a custom sender Lambda trigger with an update-user-pool Amazon CLI, omit the
CustomSMSSender or CustomEmailSender parameter from --lambda-config, and include all
other triggers that you want to use with your user pool.

Custom senders 766

https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.amazonaws.cn/lambda/latest/dg/configuration-function-zip.html#configuration-function-create

Amazon Cognito Developer Guide

To remove a custom sender Lambda trigger with an UpdateUserPool API request, omit the
CustomSMSSender or CustomEmailSender parameter from the request body that contains the
rest of your user pool configuration.

Code example

The following Node.js example processes an SMS message event in your custom SMS sender
Lambda function. This example assumes your function has two environment variables defined.

KEY_ALIAS

The alias of the KMS key that you want to use to encrypt and decrypt your users' codes.

KEY_ARN

The Amazon Resource Name (ARN) of the KMS key that you want to use to encrypt and decrypt
your users' codes.

To deploy this function

1. Install the latest version of NodeJS in your developer workspace.

2. Create a new NodeJS project in your workspace.

3. Initialize your project with npm init -y.

4. Create the script for the Lambda function: touch index.mjs.

5. Paste the contents of the below example into index.mjs.

6. Download the project dependency, Amazon Encryption SDK: npm install @aws-crypto/
client-node.

7. Zip the project directory into a file: zip -r my_deployment_package.zip ..

8. Deploy the ZIP file to your function.

import { KmsKeyringNode, buildClient, CommitmentPolicy } from '@aws-crypto/client-
node';

// Configure the encryption SDK client with the KMS key from the environment variables
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT
);

const generatorKeyId = process.env.KEY_ID;

Custom senders 767

https://docs.amazonaws.cn/kms/latest/developerguide/kms-alias.html
https://docs.amazonaws.cn/lambda/latest/dg/nodejs-package.html

Amazon Cognito Developer Guide

const keyIds = [process.env.KEY_ARN];
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds });

// Example function to simulate sending SMS.
// This example logs message details to CloudWatch Logs from your Lambda function.
// Update this function with custom logic that sends an SMS message to 'phoneNumber'
 with body 'message'.
const sendSMS = async (phoneNumber, message) => {
 // Log the destination with the phone number masked.
 console.log(`Simulating SMS send to ${phoneNumber.replace(/[^+]/g, '*')}`);
 // Log the message with the code masked.
 console.log(`Message content: ${message.replace(/\b\d{6,8}\b/g, '********')}`);
 // Simulate API delay
 await new Promise(resolve => setTimeout(resolve, 100));
 console.log('SMS sent successfully');
 return true;
};

export const handler = async (event) => {
 try {
 // Decrypt the secret code using encryption SDK
 let plainTextCode;
 if (event.request.code) {
 const { plaintext, messageHeader } = await decrypt(keyring,
 Buffer.from(event.request.code, 'base64'));
 plainTextCode = Buffer.from(plaintext).toString('utf-8');
 }

 // Handle different trigger sources
 if (event.triggerSource == 'CustomSMSSender_SignUp') {
 const phoneNumber = event.request.userAttributes.phone_number;
 const message = `Welcome! Your verification code is: ${plainTextCode}`;
 await sendSMS(phoneNumber, message);
 }
 else if (event.triggerSource == 'CustomSMSSender_ResendCode') {
 // Handle resend code
 }
 else if (event.triggerSource == 'CustomSMSSender_ForgotPassword') {
 // Handle forgot password
 }
 else if (event.triggerSource == 'CustomSMSSender_UpdateUserAttribute') {
 // Handle update attribute
 }
 else if (event.triggerSource == 'CustomSMSSender_VerifyUserAttribute') {

Custom senders 768

Amazon Cognito Developer Guide

 // Handle verify attribute
 }
 else if (event.triggerSource == 'CustomSMSSender_AdminCreateUser') {
 // Handle admin create user
 }
 return;
 } catch (error) {
 console.error('Error in custom SMS sender:', error);
 throw error;
 }
};

Topics

• Evaluate SMS message capabilities with a custom SMS sender function

Evaluate SMS message capabilities with a custom SMS sender function

A custom SMS sender Lambda function accepts the SMS messages that your user pool would send,
and the function delivers the content based on your custom logic. Amazon Cognito sends the
Custom SMS sender Lambda trigger parameters to your function. Your function can do what you
want with this information. For example, you can send the code to an Amazon Simple Notification
Service (Amazon SNS) topic. An Amazon SNS topic subscriber can be an SMS message, an HTTPS
endpoint, or an email address.

To create a test environment for Amazon Cognito SMS messaging with a custom SMS sender
Lambda function, see amazon-cognito-user-pool-development-and-testing-with-sms-redirected-
to-email in the aws-samples library on GitHub. The repository contains Amazon CloudFormation
templates that can create a new user pool, or work with a user pool that you already have. These
templates create Lambda functions and an Amazon SNS topic. The Lambda function that the
template assigns as a custom SMS sender trigger, redirects your SMS messages to the subscribers
to the Amazon SNS topic.

When you deploy this solution to a user pool, all messages that Amazon Cognito usually sends
through SMS messaging, the Lambda function instead sends to a central email address. Use
this solution to customize and preview SMS messages, and to test the user pool events that
cause Amazon Cognito to send an SMS message. After you complete your tests, roll back the
CloudFormation stack, or remove the custom SMS sender function assignment from your user pool.

Custom senders 769

https://github.com/aws-samples/amazon-cognito-user-pool-development-and-testing-with-sms-redirected-to-email
https://github.com/aws-samples/amazon-cognito-user-pool-development-and-testing-with-sms-redirected-to-email
https://github.com/aws-samples

Amazon Cognito Developer Guide

Important

Don't use the templates in amazon-cognito-user-pool-development-and-testing-with-sms-
redirected-to-email to build a production environment. The custom SMS sender Lambda
function in the solution simulates SMS messages, but the Lambda function sends them
all to a single central email address. Before you can send SMS messages in a production
Amazon Cognito user pool, you must complete the requirements shown at SMS message
settings for Amazon Cognito user pools.

Managing users in your user pool

After you create a user pool, you can create, confirm, and manage user accounts. With Amazon
Cognito user pools groups you can manage your users and their access to resources by mapping
IAM roles to groups.

Managing users in your Amazon Cognito user pool involves a variety of configuration options
and administrative tasks. User pools can scale to millions of users. A user directory of this scale
requires equally scalable and repeatable administrative tools. You might want to create many
user profiles, manage inactive users, produce governance and compliance reports, or set up self-
service tools where users do most of the work. After you create a user pool, you can control how
users sign up and confirm their accounts, including requiring email or phone number verification.
Administrators can also create user accounts directly and customize the welcome messages and
password requirements.

User pools have user groups, where you can manage access to resources based on a user's group
membership. You can assign IAM roles to these groups to manage access to Amazon Web Services
services with identity pools. Users' group membership is present in both ID and access tokens. With
this information, you can make access-control decisions at runtime in your application or with a
policy engine like Amazon Verified Permissions.

User pools often have many users. You will frequently find yourself searching for and updating
user accounts. The Amazon Cognito console and API support querying users based on standard
attributes like username, email, and phone number. Administrators can also reset passwords,
disable accounts, and view user event history.

Managing users 770

https://github.com/aws-samples/amazon-cognito-user-pool-development-and-testing-with-sms-redirected-to-email
https://github.com/aws-samples/amazon-cognito-user-pool-development-and-testing-with-sms-redirected-to-email

Amazon Cognito Developer Guide

For migrating existing user data, Amazon Cognito has options to import users from a CSV file
and to use a Lambda trigger to automatically migrate users when they first sign in. These options
support user transitions from other user directories to your user pool.

You can use the user-management features in user pools to have fine-grained control over the user
lifecycle and authentication experience. The combination of self-service sign-up, admin-created
accounts, groups, and migration tools makes Amazon Cognito user pools a flexible user directory.

Topics

• Configuring policies for user creation

• Signing up and confirming user accounts

• Creating user accounts as administrator

• Adding groups to a user pool

• Managing and searching for user accounts

• Passwords, account recovery, and password policies

• Importing users into a user pool

• Working with user attributes

Configuring policies for user creation

Your user pool can allow users to sign up, or you can create them as an administrator. You can also
control how much of the process of verification and confirmation after sign-up is in the hands of
your users. For example, you might want to review sign-ups and accept them based on an external
validation process. This configuration, or admin create user policy, also sets the amount of time
before a user can no longer confirm their user account.

Amazon Cognito can serve the needs of your public customers as the customer identity and
access management (CIAM) platform for your software. A user pool that accepts sign-up and has
an app client, with or without managed login, creates a user profile for anyone on the internet
who knows your publicly-discoverable app client ID and requests to sign up. A signed-up user
profile can receive access and identity tokens and can access resources that you've authorized
for your app. Before you activate sign-up in your user pool, review your options and ensure
that your configuration complies with your security standards. Set Enable self-registration and
AllowAdminCreateUserOnly, described in the following procedures, with care.

Allowing user sign-up 771

Amazon Cognito Developer Guide

Amazon Web Services Management Console

The Sign-up menu of your user pool contains some of the settings for sign-up and
administrative creation of users in your user pool.

To configure the sign-up experience

1. In Cognito-assisted verification and confirmation, choose whether you want to Allow
Cognito to automatically send messages to verify and confirm. With this setting enabled,
Amazon Cognito sends an email or SMS message to new users with a code that they must
present to your user pool. This confirms their ownership of the email address or phone
number, setting the equivalent attribute as verified and confirming the user account for
sign-in. The Attributes to verify that you choose determine the delivery methods and
destinations of the verification messages.

2. Verifying attribute changes isn't significant when you're creating users, but relates to
attribute verification. You can permit users who have changed but not yet verified their
sign-in attributes to continue to sign in either with their new attribute value or with their
original. For more information, see Verifying when users change their email or phone
number.

3. Required attributes displays the attributes that must be provided a value before a user
can sign up or you can create a user. You can only set required attributes when you create a
user pool.

4. Custom attributes are important to the user creation and sign-up process because you can
only set a value for immutable custom attributes when you first create a user. For more
information about custom attributes, see Custom attributes.

5. In Self-service sign-up, select Enable self-registration if you want users to be able
to generate a new account with the unauthenticated SignUp API. If you disable self-
registration, you can only create new users as an administrator, in the Amazon Cognito
console or with AdminCreateUser API requests. In a user pool where self-registration is
inactive, SignUp API requests return NotAuthorizedException and managed login
doesn't display a Sign up link.

For user pools where you plan to create users as an administrator, you can configure the
duration of their temporary passwords in the setting in the Sign-in menu Temporary
passwords set by administrators expire in.

Allowing user sign-up 772

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html#user-pool-apis-auth-unauth
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

Another important element of the creation of users as an administrator is the invitation
message. When you create a new user, Amazon Cognito sends them a message with a link to
your app so that they can sign in for the first time. Customize this message template in the
Authentication methods menu under Message templates.

You can configure confidential app clients, typically web applications, with a client secret that
prevents sign-up without the app client secret. As a security best practice, do not distribute app
client secrets in public app clients, typically mobile apps. You can create app clients with client
secrets in the App clients menu of the Amazon Cognito console.

Amazon Cognito user pools API

You can programmatically set the parameters for creation of users in a user pool in a
CreateUserPool or UpdateUserPool API request.

The AdminCreateUserConfig element sets values for the following properties of a user pool.

1. Enable self-service sign-up

2. The invitation message that you send to new admin-created users

The following example, when added to a full API request body, sets a user pool with self-service
sign-up inactive and a basic invitation email.

"AdminCreateUserConfig": {
 "AllowAdminCreateUserOnly": true,
 "InviteMessageTemplate": {
 "EmailMessage": "Your username is {username} and temporary password is
 {####}.",
 "EmailSubject": "Welcome to ExampleApp",
 "SMSMessage": "Your username is {username} and temporary password is
 {####}."
 }
 }

The following additional parameters of a CreateUserPool or UpdateUserPool API request
govern the creation of new users.

AutoVerifiedAttributes

The attributes, email addresses or phone numbers, that you want to automatically send a
message to when you register a new user.

Allowing user sign-up 773

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AdminCreateUserConfig
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AutoVerifiedAttributes

Amazon Cognito Developer Guide

Policies

The user pool password policy.

Schema

The user pool custom attributes. They are important to the user creation and sign-up
process because you can only set a value for immutable custom attributes when you first
create a user.

This parameter also sets the required attributes for your user pool. The following text, when
inserted into the Schema element of a full API request body, set the email attribute as
required.

{
 "Name": "email",
 "Required": true
}

Signing up and confirming user accounts

User accounts are added to your user pool in one of the following ways:

• The user signs up in your user pool's client app. This can be a mobile or web app.

• You can import the user's account into your user pool. For more information, see Importing users
into user pools from a CSV file.

• You can create the user's account in your user pool and invite the user to sign in. For more
information, see Creating user accounts as administrator.

Users who sign themselves up must be confirmed before they can sign in. Imported and created
users are already confirmed, but they must create their password the first time they sign in. The
following sections explain the confirmation process and email and phone verification.

Passwords at sign-up

Amazon Cognito requires passwords from all users when they sign up, except under the following
conditions. If all of these conditions are met, you can omit passwords in sign-up operations.

1. Passwordless sign-in is active in your user pool and app client.

Signing up and confirming user accounts 774

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Policies
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Schema

Amazon Cognito Developer Guide

2. Your application is custom-built with authentication modules in an Amazon SDK. Managed login
and the hosted UI always require passwords.

3. Users provide attribute values for the passwordless sign-in methods—email or SMS message
one-time passwords (OTPs)—that you permit. For example, if you allow sign-in with email and
phone OTP, users can provide either a phone number or email address, but if you only allow
sign-in with email, they must provide an email address.

4. Your user pool automatically verifies the attributes that users can use with passwordless sign-in.

5. For any given SignUp request, the user doesn't provide a value for the Password parameter.

Overview of user account confirmation

The following diagram illustrates the confirmation process:

Signing up and confirming user accounts 775

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html#CognitoUserPools-SignUp-request-Password

Amazon Cognito Developer Guide

A user account can be in any of the following states:

Registered (Unconfirmed)

The user has successfully signed up, but cannot sign in until the user account is confirmed. The
user is enabled but not confirmed in this state.

New users who sign themselves up start in this state.

Confirmed

The user account is confirmed and the user can sign in. When a user enters a code or follows an
email link to confirm their user account, that email or phone number is automatically verified.
The code or link is valid for 24 hours.

If the user account was confirmed by the administrator or a pre sign-up Lambda trigger, there
might not be a verified email or phone number associated with the account.

Password Reset Required

The user account is confirmed, but the user must request a code and reset their password
before they can sign in.

User accounts that are imported by an administrator or developer start in this state.

Force Change Password

The user account is confirmed and the user can sign in using a temporary password, but on first
sign-in, the user must change their password to a new value before doing anything else.

User accounts that are created by an administrator or developer start in this state.

Disabled

Before you can delete a user account, you must disable sign-in access for that user.

More resources

• Detecting and remediating inactive user accounts with Amazon Cognito

Verifying contact information at sign-up

When new users sign up in your app, you probably want them to provide at least one contact
method. For example, with your users' contact information, you might:

Signing up and confirming user accounts 776

https://www.amazonaws.cn/blogs/security/detecting-and-remediating-inactive-user-accounts-with-amazon-cognito/

Amazon Cognito Developer Guide

• Send a temporary password when a user chooses to reset their password.

• Notify users when their personal or financial information is updated.

• Send promotional messages, such as special offers or discounts.

• Send account summaries or billing reminders.

For use cases like these, it's important that you send your messages to a verified destination.
Otherwise, you might send your messages to an invalid email address or phone number that was
typed incorrectly. Or worse, you might send sensitive information to bad actors who pose as your
users.

To help ensure that you send messages only to the right individuals, configure your Amazon
Cognito user pool so that users must provide the following when they sign up:

a. An email address or phone number.

b. A verification code that Amazon Cognito sends to that email address or phone
number. If 24 hours have passed and your user's code or link is no longer valid, call the
ResendConfirmationCode API operation to generate and send a new code or link.

By providing the verification code, a user proves that they have access to the mailbox or phone
that received the code. After the user provides the code, Amazon Cognito updates the information
about the user in your user pool by:

• Setting the user's status to CONFIRMED.

• Updating the user's attributes to indicate that the email address or phone number is verified.

To view this information, you can use the Amazon Cognito console. Or, you can use the
AdminGetUser API operation, the admin-get-user command with the Amazon CLI, or a
corresponding action in one of the Amazon SDKs.

If a user has a verified contact method, Amazon Cognito automatically sends a message to the user
when the user requests a password reset.

Other actions that confirm and verify user attributes

The following user activity verifies user attributes. You're not required to set these attributes to
automatically verify: the listed actions mark them as verified in all cases.

Signing up and confirming user accounts 777

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html

Amazon Cognito Developer Guide

Email address

1. Successfully completing passwordless authentication with an email one-time password
(OTP).

2. Successfully completing multi-factor authentication (MFA) with an email OTP.

Phone number

1. Successfully completing passwordless authentication with an SMS OTP.

2. Successfully completing MFA with an SMS OTP.

To configure your user pool to require email or phone verification

When you verify your users' email addresses and phone numbers, you ensure that you can contact
your users. Complete the following steps in the Amazon Web Services Management Console
to configure your user pool to require that your users confirm their email addresses or phone
numbers.

Note

If you don't yet have a user pool in your account, see Getting started with user pools.

To configure your user pool

1. Navigate to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. From the navigation pane, choose User Pools. Choose an existing user pool from the list, or
create a user pool.

3. Choose the Sign-up menu and locate Attribute verification and user account confirmation.
Choose Edit.

4. Under Cognito-assisted verification and confirmation, choose whether you will Allow
Cognito to automatically send messages to verify and confirm. With this setting enabled,
Amazon Cognito sends messages to the user contact attributes you choose when a user signs
up, or you create a user profile. To verify attributes and confirm user profiles for sign-in,
Amazon Cognito sends a code or link in messages to users. The users must then enter the code
in your UI so that your app can confirm them in a ConfirmSignUp or AdminConfirmSignUp
API request.

Signing up and confirming user accounts 778

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Note

You can also disable Cognito-assisted verification and confirmation and use
authenticated API actions or Lambda triggers to verify attributes and confirm users.
If you choose this option, Amazon Cognito doesn't send verification codes when users
sign up. Choose this option if you are using a custom authentication flow that verifies
at least one contact method without using verification codes from Amazon Cognito.
For example, you might use a pre sign-up Lambda trigger that automatically verifies
email addresses that belong to a specific domain.
If you don't verify your users' contact information, they may be unable to use your app.
Remember that users require verified contact information to:

• Reset their passwords — When a user chooses an option in your app that calls the
ForgotPassword API action, Amazon Cognito sends a temporary password to the
user's email address or phone number. Amazon Cognito sends this password only if
the user has at least one verified contact method.

• Sign in by using an email address or phone number as an alias — If you configure
your user pool to allow these aliases, then a user can sign in with an alias only if the
alias is verified. For more information, see Customizing sign-in attributes.

5. Choose your Attributes to verify:

Send SMS message, verify phone number

Amazon Cognito sends a verification code in an SMS message when the user signs up.
Choose this option if you typically communicate with your users through SMS messages.
For example, you will want to use verified phone numbers if you send delivery notifications,
appointment confirmations, or alerts. User phone numbers will be the verified attribute
when accounts are confirmed; you must take additional action to verify and communicate
with user email addresses.

Send email message, verify email address

Amazon Cognito sends a verification code through an email message when the user signs
up. Choose this option if you typically communicate with your users through email. For
example, you will want to use verified email addresses if you send billing statements,
order summaries, or special offers. User email addresses will be the verified attribute when

Signing up and confirming user accounts 779

Amazon Cognito Developer Guide

accounts are confirmed; you must take additional action to verify and communicate with
user phone numbers.

Send SMS message if phone number is available, otherwise send email message

Choose this option if you don't require all users to have the same verified contact method.
In this case, the sign-up page in your app could ask users to verify only their preferred
contact method. When Amazon Cognito sends a verification code, it sends the code to the
contact method provided in the SignUp request from your app. If a user provides both an
email address and a phone number, and your app provides both contact methods in the
SignUp request, Amazon Cognito sends a verification code only to the phone number.

If you require users to verify both an email address and a phone number, choose this
option. Amazon Cognito verifies one contact method when the user signs up, and your app
must verify the other contact method after the user signs in. For more information, see If
you require users to confirm both email addresses and phone numbers.

6. Choose Save changes.

Authentication flow with email or phone verification

If your user pool requires users to verify their contact information, your app must facilitate the
following flow when a user signs up:

1. A user signs up in your app by entering a username, phone number and/or email address, and
possibly other attributes.

2. The Amazon Cognito service receives the sign-up request from the app. After verifying that the
request contains all attributes required for sign-up, the service completes the sign-up process
and sends a confirmation code to the user's phone (in an SMS message) or email. The code is
valid for 24 hours.

3. The service returns to the app that sign-up is complete and that the user account is pending
confirmation. The response contains information about where the confirmation code was sent.
At this point the user's account is in an unconfirmed state, and the user's email address and
phone number are unverified.

4. The app can now prompt the user to enter the confirmation code. It is not necessary for the
user to enter the code immediately. However, the user will not be able to sign in until after
they enter the confirmation code.

5. The user enters the confirmation code in the app.

Signing up and confirming user accounts 780

Amazon Cognito Developer Guide

6. The app calls ConfirmSignUp to send the code to the Amazon Cognito service, which verifies
the code and, if the code is correct, sets the user's account to the confirmed state. After
successfully confirming the user account, the Amazon Cognito service automatically marks the
attribute that was used to confirm (email address or phone number) as verified. Unless the
value of this attribute is changed, the user will not have to verify it again.

7. At this point the user's account is in a confirmed state, and the user can sign in.

If you require users to confirm both email addresses and phone numbers

Amazon Cognito verifies only one contact method when a user signs up. In cases where Amazon
Cognito must choose between verifying an email address or phone number, it chooses to verify the
phone number by sending a verification code through SMS message. For example, if you configure
your user pool to allow users to verify either email addresses or phone numbers, and if your app
provides both of these attributes upon sign-up, Amazon Cognito verifies only the phone number.
After a user verifies their phone number, Amazon Cognito sets the user's status to CONFIRMED, and
the user is allowed to sign in to your app.

After the user signs in, your app can provide the option to verify the contact method that wasn't
verified during sign-up. To verify this second method, your app calls the VerifyUserAttribute
API action. Note that this action requires an AccessToken parameter, and Amazon Cognito only
provides access tokens for authenticated users. Therefore, you can verify the second contact
method only after the user signs in.

If you require your users to verify both email addresses and phone numbers, do the following:

1. Configure your user pool to allow users to verify email address or phone numbers.

2. In the sign-up flow for your app, require users to provide both an email address and a phone
number. Call the SignUp API action, and provide the email address and phone number for the
UserAttributes parameter. At this point, Amazon Cognito sends a verification code to the
user's phone.

3. In your app interface, present a confirmation page where the user enters the verification code.
Confirm the user by calling the ConfirmSignUp API action. At this point, the user's status is
CONFIRMED, and the user's phone number is verified, but the email address is not verified.

4. Present the sign-in page, and authenticate the user by calling the InitiateAuth API action.
After the user is authenticated, Amazon Cognito returns an access token to your app.

5. Call the GetUserAttributeVerificationCode API action. Specify the following
parameters in the request:

Signing up and confirming user accounts 781

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html

Amazon Cognito Developer Guide

• AccessToken – The access token returned by Amazon Cognito when the user signed in.

• AttributeName – Specify "email" as the attribute value.

Amazon Cognito sends a verification code to the user's email address.

6. Present a confirmation page where the user enters the verification code. When the user
submits the code, call the VerifyUserAttribute API action. Specify the following
parameters in the request:

• AccessToken – The access token returned by Amazon Cognito when the user signed in.

• AttributeName – Specify "email" as the attribute value.

• Code – The verification code that the user provided.

At this point, the email address is verified.

Allowing users to sign up in your app but confirming them as a user pool
administrator

You might not want your user pool to automatically send verification messages in your user pool,
but still want to allow anyone to sign up for an account. This model leaves room, for example, for
human review of new sign-up requests, and for batch validation and processing of sign-ups. You
can confirm new user accounts in the Amazon Cognito console or with the IAM-authenticated API
operation AdminConfirmSignUp. You can confirm user accounts as an administrator whether or not
your user pool sends verification messages.

You can only confirm a user self-service sign-up with this technique. To confirm a user that you
create as an administrator, create an AdminSetUserPassword API request with Permanent set to
True.

1. A user signs up in your app by entering a username, phone number and/or email address, and
possibly other attributes.

2. The Amazon Cognito service receives the sign-up request from the app. After verifying that the
request contains all attributes required for sign-up, the service completes the sign-up process
and returns to the app that sign-up is complete, pending confirmation. At this point the user's
account is in an unconfirmed state. The user cannot sign in until the account is confirmed.

Signing up and confirming user accounts 782

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html

Amazon Cognito Developer Guide

3. Confirm the user's account. You must sign in to the Amazon Web Services Management
Console or sign your API request with Amazon credentials to confirm the account.

a. To confirm a user in the Amazon Cognito console, navigate to the Users menu, choose the
user who you want to confirm, and from the Actions menu select Confirm.

b. To confirm a user in the Amazon API or CLI, create a AdminConfirmSignUp API request, or
admin-confirm-sign-up in the Amazon CLI.

4. At this point the user's account is in a confirmed state, and the user can sign in.

Computing secret hash values

Assign a client secret to your confidential app client as a best practice. When you assign a client
secret to your app client, your Amazon Cognito user pools API requests must include a hash that
includes the client secret in the request body. To validate your knowledge of the client secret for
the API operations in the following lists, concatenate the client secret with your app client ID and
your user's username, then base64-encode that string.

When your app signs in users to a client that has a secret hash, you can use the value of any user
pool sign-in attribute as the username element of the secret hash. When your app requests new
tokens in an authentication operation with REFRESH_TOKEN_AUTH, the value of the username
element depends on your sign-in attributes. When your user pool doesn’t have username as a
sign-in attribute, set the secret hash username value from the user’s sub claim from their access
or ID token. When username is a sign-in attribute, set the secret hash username value from the
username claim.

The following Amazon Cognito user pools APIs accept a client-secret hash value in a SecretHash
parameter.

• ConfirmForgotPassword

• ConfirmSignUp

• ForgotPassword

• ResendConfirmationCode

• SignUp

Additionally, the following APIs accept a client-secret hash value in a SECRET_HASH parameter,
either in authentication parameters or in a challenge response.

Signing up and confirming user accounts 783

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-confirm-sign-up.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

API operation Parent parameter for SECRET_HASH

InitiateAuth AuthParameters

AdminInitiateAuth AuthParameters

RespondToAuthChallenge ChallengeResponses

AdminRespondToAuthChallenge ChallengeResponses

The secret hash value is a Base 64-encoded keyed-hash message authentication code (HMAC)
calculated using the secret key of a user pool client and username plus the client ID in the
message. The following pseudocode shows how this value is calculated. In this pseudocode, +
indicates concatenation, HMAC_SHA256 represents a function that produces an HMAC value using
HmacSHA256, and Base64 represents a function that produces Base-64-encoded version of the
hash output.

Base64 (HMAC_SHA256 ("Client Secret Key", "Username" + "Client Id"))

For a detailed overview of how to calculate and use the SecretHash parameter, see How do I
troubleshoot "Unable to verify secret hash for client <client-id>" errors from my Amazon Cognito
user pools API? in the Amazon Knowledge Center.

You can use the following code examples in your server-side app code.

Shell

echo -n "[username][app client ID]" | openssl dgst -sha256 -hmac [app client secret]
 -binary | openssl enc -base64

Java

import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;

public static String calculateSecretHash(String userPoolClientId, String
 userPoolClientSecret, String userName) {
 final String HMAC_SHA256_ALGORITHM = "HmacSHA256";

Signing up and confirming user accounts 784

http://www.amazonaws.cn/support-plans/knowledge-center/cognito-unable-to-verify-secret-hash/
http://www.amazonaws.cn/support-plans/knowledge-center/cognito-unable-to-verify-secret-hash/
http://www.amazonaws.cn/support-plans/knowledge-center/cognito-unable-to-verify-secret-hash/

Amazon Cognito Developer Guide

 SecretKeySpec signingKey = new SecretKeySpec(
 userPoolClientSecret.getBytes(StandardCharsets.UTF_8),
 HMAC_SHA256_ALGORITHM);
 try {
 Mac mac = Mac.getInstance(HMAC_SHA256_ALGORITHM);
 mac.init(signingKey);
 mac.update(userName.getBytes(StandardCharsets.UTF_8));
 byte[] rawHmac =
 mac.doFinal(userPoolClientId.getBytes(StandardCharsets.UTF_8));
 return Base64.getEncoder().encodeToString(rawHmac);
 } catch (Exception e) {
 throw new RuntimeException("Error while calculating ");
 }
}

Python

import sys
import hmac, hashlib, base64
username = sys.argv[1]
app_client_id = sys.argv[2]
key = sys.argv[3]
message = bytes(sys.argv[1]+sys.argv[2],'utf-8')
key = bytes(sys.argv[3],'utf-8')
secret_hash = base64.b64encode(hmac.new(key, message,
 digestmod=hashlib.sha256).digest()).decode()
print("SECRET HASH:",secret_hash)

Confirming user accounts without verifying email or phone number

The pre sign-up Lambda trigger can be used to auto-confirm user accounts at sign-up, without
requiring a confirmation code or verifying email or phone number. Users who are confirmed this
way can immediately sign in without having to receive a code.

You can also mark a user's email or phone number verified through this trigger.

Signing up and confirming user accounts 785

Amazon Cognito Developer Guide

Note

While this approach is convenient for users when they're getting started, we recommend
auto-verifying at least one of email or phone number. Otherwise the user can be left
unable to recover if they forget their password.

If you don't require the user to receive and enter a confirmation code at sign-up and you don't
auto-verify email and phone number in the pre sign-up Lambda trigger, you risk not having a
verified email address or phone number for that user account. The user can verify the email
address or phone number at a later time. However, if the user forgets his or her password and
doesn't have a verified email address or phone number, the user is locked out of the account,
because the forgot-password flow requires a verified email or phone number in order to send a
verification code to the user.

Verifying when users change their email or phone number

In user pools that you configure with multiple sign-in names, users can enter a phone number or an
email address as their username at sign-in. When they update their email address or phone number
in your app, Amazon Cognito can immediately send them a message with a code that verifies their
ownership of the new attribute value. To enable automatic sending of these verification codes, see
Configuring email or phone verification.

Users who receive a verification code must provide that code back to Amazon Cognito in a
VerifyUserAttribute request. After they provide the code, their attribute is marked as verified.
Typically, when users update their email address or phone number, you'll want to verify that
they own the new value before they can use it to sign in and receive messages. User pools have a
configurable option that determines whether users must verify updates to their email address or
phone number.

This option is the user pool property AttributesRequireVerificationBeforeUpdate.
Configure it in a CreateUserPool or UpdateUserPool request, or with the setting Keep original
attribute value active when an update is pending in the Sign-up menu of the Amazon Cognito
console.

How your user pool treats updates to email addresses and phone numbers is connected to the
username configuration of your user pool. User pool usernames can be in a username attributes
configuration where sign-in names are email address, phone number, or both. They can also be in
an alias attributes configuration where the username attribute is a sign-in name along with email

Signing up and confirming user accounts 786

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-UserAttributeUpdateSettings
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-UserAttributeUpdateSettings

Amazon Cognito Developer Guide

address, phone number, or preferred username as alternative sign-in names. For more information,
see Customizing sign-in attributes.

You can also use a custom message Lambda trigger to customize the verification message. For
more information, see Custom message Lambda trigger. When a user's email address or phone
number is unverified, your application should inform the user that they must verify the attribute,
and provide a button or link for users to enter their verification code.

The following table describes how AttributesRequireVerificationBeforeUpdate and alias
settings determine the outcome when users change the value of their sign-in attributes.

Username configuration Behavior when users must
verify new attributes

Behavior when users aren't
required to verify new
attributes

Username attributes Original attribute remains
verified, eligible for sign-
in, and at original value.
When user verifies new value,
Amazon Cognito updates
the attribute value, marks it
verified, and makes it eligible
for sign-in.

Amazon Cognito updates
attribute to new value. New
value is eligible for sign-in.
When user verifies new value,
Amazon Cognito marks it as
verified.

Alias attributes Original attribute remains
verified, eligible for sign-
in, and at original value.
When user verifies new value,
Amazon Cognito updates
the attribute value, marks it
verified, and makes it eligible
for sign-in.

Amazon Cognito updates
attribute to new value.
Neither original or new
attribute value is eligible for
sign-in. When user verifies
new value, Amazon Cognito
updates the attribute value,
marks it verified, and makes it
eligible for sign-in.

Example 1

User 1 signs into your application with the email address user1@example.com and has
the username user1 (alias attributes). Your user pool is configured to verify updates

Signing up and confirming user accounts 787

Amazon Cognito Developer Guide

to sign-in attributes and to automatically send verification messages. They request to
update their email address to user1+foo@example.com. They receive a verification
email at user1+foo@example.com and can sign in again only with the email address
user1@example.com. Later, they enter their verification code and can sign in again only with the
email address user1+foo@example.com.

Example 2

User 2 signs into your application with the email address user2@example.com and has a
username (alias attributes). Your user pool is configured not to verify updates to sign-in attributes
and to automatically send verification messages. They request to update their email address to
user2+bar@example.com. They receive a verification email at user2+bar@example.com and
can't sign in again. Later, they enter their verification code and can sign in again only with the email
address user2+bar@example.com.

Example 3

User 3 signs into your application with the email address user3@example.com and doesn't
have a username (username attributes). Your user pool is configured not to verify updates to
sign-in attributes and to automatically send verification messages. They request to update
their email address to user3+baz@example.com. They receive a verification email at
user3+baz@example.com, but they can immediately sign in with no additional action taken with
the verification code.

Confirmation and verification processes for user accounts created by
administrators or developers

User accounts that are created by an administrator or developer are already in the confirmed state,
so users aren't required to enter a confirmation code. The invitation message that the Amazon
Cognito service sends to these users includes the username and a temporary password. The user is
required to change the password before signing in. For more information, see the Customize email
and SMS messages in Creating user accounts as administrator and the Custom Message trigger in
Customizing user pool workflows with Lambda triggers.

Confirmation and verification processes for imported user accounts

User accounts that are created by using the user import feature in the Amazon Web Services
Management Console, CLI, or API (see Importing users into user pools from a CSV file) are already
in the confirmed state, so users aren't required to enter a confirmation code. No invitation

Signing up and confirming user accounts 788

Amazon Cognito Developer Guide

message is sent. However, imported user accounts require users to first request a code by calling
the ForgotPassword API and then create a password using the delivered code by calling
ConfirmForgotPassword API before they sign in. For more information, see Requiring imported
users to reset their passwords.

Either the user's email or phone number must be marked as verified when the user account is
imported, so no verification is required when the user signs in.

Sending emails while testing your app

Amazon Cognito sends email messages to your users when they create and manage their accounts
in the client app for your user pool. If you configure your user pool to require email verification,
Amazon Cognito sends an email when:

• A user signs up.

• A user updates their email address.

• A user performs an action that calls the ForgotPassword API action.

• You create a user account as an administrator.

Depending on the action that initiates the email, the email contains a verification code or
a temporary password. Your users must receive these emails and understand the message.
Otherwise, they might be unable to sign in and use your app.

To ensure that emails send successfully and that the message looks correct, test the actions in your
app that initiate email deliveries from Amazon Cognito. For example, by using the sign-up page
in your app, or by using the SignUp API action, you can initiate an email by signing up with a test
email address. When you test in this way, remember the following:

Important

When you use an email address to test actions that initiate emails from Amazon Cognito,
don't use a fake email address (one that has no mailbox). Use a real email address that will
receive the email from Amazon Cognito without creating a hard bounce.
A hard bounce occurs when Amazon Cognito fails to deliver the email to the recipient's
mailbox, which always happens if the mailbox doesn't exist.
Amazon Cognito limits the number of emails that can be sent by Amazon accounts that
persistently incur hard bounces.

Signing up and confirming user accounts 789

Amazon Cognito Developer Guide

When you test actions that initiate emails, use one of the following email addresses to prevent
hard bounces:

• An address for an email account that you own and use for testing. When you use your own email
address, you receive the email that Amazon Cognito sends. With this email, you can use the
verification code to test the sign-up experience in your app. If you customized the email message
for your user pool, you can check that your customizations look correct.

• The mailbox simulator address, success@simulator.amazonses.com. If you use the simulator
address, Amazon Cognito sends the email successfully, but you're not able to view it. This option
is useful when you don't need to use the verification code and you don't need to check the email
message.

• The mailbox simulator address with the addition of an arbitrary label, such as success
+user1@simulator.amazonses.com or success+user2@simulator.amazonses.com. Amazon Cognito
emails these addresses successfully, but you're not able to view the emails that it sends. This
option is useful when you want to test the sign-up process by adding multiple test users to your
user pool, and each test user has a unique email address.

Configuring email or phone verification

You can choose settings for email or phone verification under the Authentication methods menu.
For more information on multi-factor authentication (MFA), see SMS Text Message MFA.

Amazon Cognito uses Amazon SNS to send SMS messages. If you haven't sent an SMS message
from Amazon Cognito or any other Amazon Web Services service before, Amazon SNS might place
your account in the SMS sandbox. We recommend that you send a test message to a verified phone
number before you remove your account from the sandbox to production. Additionally, if you plan
to send SMS messages to US destination phone numbers, you must obtain an origination or Sender
ID from Amazon Pinpoint. To configure your Amazon Cognito user pool for SMS messages, see SMS
message settings for Amazon Cognito user pools.

Amazon Cognito can automatically verify email addresses or phone numbers. To do this
verification, Amazon Cognito sends a verification code or a verification link. For email addresses,
Amazon Cognito can send a code or a link in an email message. You can choose a Verification type
of Code or Link when you edit your Verification message template in the Message templates
menu in the Amazon Cognito console. For more information, see Customizing email verification
messages.

For phone numbers, Amazon Cognito sends a code in an SMS text message.

Signing up and confirming user accounts 790

Amazon Cognito Developer Guide

Amazon Cognito must verify a phone number or email address to confirm users and help them
to recover forgotten passwords. Alternatively, you can automatically confirm users with the pre
sign-up Lambda trigger or use the AdminConfirmSignUp API operation. For more information, see
Signing up and confirming user accounts.

The verification code or link is valid for 24 hours.

If you choose to require verification for an email address or phone number, Amazon Cognito
automatically sends the verification code or link when a user signs up. If the user pool has a
Custom SMS sender Lambda trigger or Custom email sender Lambda trigger configured, that
function is invoked instead.

Notes

• Amazon SNS charges separately for SMS text messaging that it uses to verify phone
numbers. There is no charge to send email messages. For information about Amazon
SNS pricing, see Worldwide SMS pricing. For the current list of countries where SMS
messaging is available, see Supported regions and countries.

• When you test actions in your app that generate email messages from Amazon Cognito,
use a real email address that Amazon Cognito can reach without hard bounces. For more
information, see the section called “Sending emails while testing your app”.

• The forgotten password flow requires either the user's email or the user's phone number
to verify the user.

Important

If a user signs up with both a phone number and an email address, and your user pool
settings require verification of both attributes, Amazon Cognito sends a verification code
to the phone number through SMS message. Amazon Cognito hasn't yet verified the
email address, so your app must call GetUser to see if an email address awaits verification.
If it does require verification, the app must call GetUserAttributeVerificationCode to
initiate the email verification flow. Then it must submit the verification code by calling
VerifyUserAttribute.

Signing up and confirming user accounts 791

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
http://www.amazonaws.cn/sns/sms-pricing/
https://docs.amazonaws.cn/sns/latest/dg/sms_supported-countries.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html

Amazon Cognito Developer Guide

You can adjust your SMS message spend quota for an Amazon Web Services account and
for individual messages. The limits apply only to the cost to send SMS messages. For more
information, see What are account-level and message-level spend quotas and how do they
work? in the Amazon SNS FAQs.

Amazon Cognito sends SMS messages using Amazon SNS resources in either the Amazon Web
Services Region where you created the user pool or in a Legacy Amazon SNS alternate Region
from the following table. The exception is Amazon Cognito user pools in the Asia Pacific (Seoul)
Region. These user pools use your Amazon SNS configuration in the Asia Pacific (Tokyo) Region. For
more information, see Choose the Amazon Web Services Region for Amazon SNS SMS messages.

Amazon Cognito Region Legacy Amazon SNS alternate Region

US East (Ohio) US East (N. Virginia)

Asia Pacific (Mumbai) Asia Pacific (Singapore)

Asia Pacific (Seoul) Asia Pacific (Tokyo)

Canada (Central) US East (N. Virginia)

Europe (Frankfurt) Europe (Ireland)

Europe (London) Europe (Ireland)

Example: If your Amazon Cognito user pool is in Asia Pacific (Mumbai), and you have increased
your spend limit in ap-southeast-1, you might not want to request a separate increase in ap-
south-1. Instead, you can use your Amazon SNS resources in Asia Pacific (Singapore).

Verifying updates to email addresses and phone numbers

An email address or phone number attribute can become active and unverified immediately after
your user changes its value. Amazon Cognito can also require that your user verifies the new value
before Amazon Cognito updates the attribute. When you require that your users first verify the
new value, they can use the original value for sign-in and to receive messages until they verify the
new value.

When your users can use their email address or phone number as a sign-in alias in your user
pool, their sign-in name for an updated attribute depends on whether you require verification of

Signing up and confirming user accounts 792

https://www.amazonaws.cn/sns/faqs/

Amazon Cognito Developer Guide

updated attributes. When you require that users verify an updated attribute, a user can sign in with
the original attribute value until they verify the new value. When you don’t require that users verify
an updated attribute, a user can’t sign in or receive messages at either the new or the original
attribute value until they verify the new value.

For example, your user pool allows sign-in with an email address alias, and requires that users
verify their email address when they update. Sue, who signs in as sue@example.com, wants to
change her email address to sue2@example.com but accidentally enters ssue2@example.com.
Sue doesn’t receive the verification email, so she can’t verify ssue2@example.com. Sue signs
in as sue@example.com and resubmits the form in your app to update her email address to
sue2@example.com. She receives this email, provides the verification code to your app, and
begins signing in as sue2@example.com.

When a user updates an attribute and your user pool verifies new attribute values

• They can sign in with the original attribute value before they have confirmed the code to verify
the new value.

• They can only sign in with the new attribute value after they have confirmed the code to verify
the new value.

• If you set email_verified or phone_number_verified to true in an
AdminUpdateUserAttributes API request, they can sign in before they have confirmed the code
that Amazon Cognito sent to them.

When a user updates an attribute and your user pool doesn't verify new attribute values

• They can’t sign in with, or receive messages at, the original attribute value.

• They can’t sign in with, or receive messages other than a confirmation code at, the new attribute
value before they have confirmed the code to verify the new value.

• If you set email_verified or phone_number_verified to true in an
AdminUpdateUserAttributes API request, they can sign in before they have confirmed the code
that Amazon Cognito sent to them.

To require attribute verification when users update their email address or phone number

1. Sign in to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

Signing up and confirming user accounts 793

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

3. In the Sign-up menu, choose Edit under Attribute verification and user account
confirmation.

4. Choose Keep original attribute value active when an update is pending.

5. Under Active attribute values when an update is pending, choose the attributes that you
want to require your users verify before Amazon Cognito updates the value.

6. Choose Save changes.

To require attribute update verification with the Amazon Cognito API, you can set the
AttributesRequireVerificationBeforeUpdate parameter in an UpdateUserPool request.

Authorizing Amazon Cognito to send SMS messages on your behalf

To send SMS messages to your users on your behalf, Amazon Cognito needs your permission. To
grant that permission, you can create an Amazon Identity and Access Management (IAM) role. In
the Authentication methods menu of the Amazon Cognito console under SMS, choose Edit to set
a role.

Configuring verification and invitation messages

With Amazon Cognito, you can customize SMS and email verification messages and user invitation
messages, to enhance the security and user experience of your application. With Amazon Cognito,
you can choose between code-based or one-click link verifications to suit your application's needs.
This topic discusses how you can personalize multi-factor authentication (MFA) and verification
communications in the Amazon Cognito console.

In the Message templates menu, you can customize:

• Your SMS text message multi-factor authentication (MFA) message

• Your SMS and email verification messages

• The verification type for email—code or link

Note

Amazon Cognito sends links with your link-based template in the verification messages
when users sign up or resend a confirmation code. Emails from attribute-update and
password-reset operations use the code template.

• Your user invitation messages

Signing up and confirming user accounts 794

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

• FROM and REPLY-TO email addresses for emails going through your user pool

Note

The SMS and email verification message templates only appear if you have chosen to
require phone number and email verification. Similarly, the SMS MFA message template
only appears if the MFA setting is required or optional.

Topics

• Message templates

• Customizing the SMS message

• Customizing email verification messages

• Customizing user invitation messages

• Customizing your email address

• Authorizing Amazon Cognito to send Amazon SES email on your behalf (from a custom FROM
email address)

Message templates

You can use message templates to insert placeholders into your messages. Amazon Cognito replace
the placeholders with the corresponding values. You can reference Universal template placeholders
in message templates of any type, although these values won't be present in all message types.

Universal template placeholders

Description Token Message type

Verification code {####} Verification, confirmation,
and MFA messages

Temporary password {####} Forgot-password and invitatio
n messages

User name {username} Invitation and advanced
security messages

Signing up and confirming user accounts 795

Amazon Cognito Developer Guide

One of the available automated responses with threat protection is to notify the user that
Amazon Cognito detected potentially-malicious activity. You can use advanced security template
placeholders to do the following:

• Include specific details about an event such as IP address, city, country, sign-in time, and device
name. Amazon Cognito advanced security features can analyze these details.

• Verify whether a one-click link is valid.

• Use event ID, feedback token, and user name to build your own one-click link.

Note

To generate one-click links and use the {one-click-link-valid} and {one-click-
link-invalid} placeholders in advanced security email templates, you must already
have a domain configured for your user pool.

Advanced security features add the following placeholders that you can insert into message
templates:

Advanced security template placeholders

Description Token

IP address {ip-address}

City {city}

Country {country}

Log-in time {login-time}

Device name {device-name}

One-click link is valid {one-click-link-valid}

One-click link is not valid {one-click-link-invalid}

Event ID {event-id}

Signing up and confirming user accounts 796

Amazon Cognito Developer Guide

Description Token

Feedback token {feedback-token}

Customizing the SMS message

To customize the SMS message for multi-factor authentication (MFA), edit MFA message from the
Message templates menu in the Amazon Cognito user pools console.

Important

Your custom message must contain the {####} placeholder. This placeholder is replaced
with the authentication code before the message is sent.

Amazon Cognito sets a maximum length for SMS messages, including the authentication code, of
140 UTF-8 characters.

Customizing SMS verification messages

To customize the SMS message for phone number verification, edit the Verification message
template from the Message templates menu of your user pool.

Important

Your custom message must contain the {####} placeholder. This placeholder is replaced
with the verification code before the message is sent.

The maximum length for the message, including the verification code, is 140 UTF-8 characters.

Customizing email verification messages

To verify the email address of a user in your user pool with Amazon Cognito, you can send the user
an email message with a link that they can select, or you can send them a code that they can enter.

To customize the email subject and message content for email address verification messages, edit
the Verification message template in the Message templates menu of your user pool. You can
choose a Verification type of Code or Link when you edit your Verification message template.

Signing up and confirming user accounts 797

Amazon Cognito Developer Guide

When you choose Code as the verification type, your custom message must contain the {####}
placeholder. When you send the message, the verification code replaces this placeholder.

When you choose Link as the verification type, your custom message must include a placeholder in
the format {##Verify Your Email##}. You can change the text string between the placeholder
characters, for example {##Click here##}. A verification link titled Verify Your Email replaces
this placeholder.

The link for an email verification message directs your user to a URL like the following example.

https://<your user pool domain>/confirmUser/?
client_id=abcdefg12345678&user_name=emailtest&confirmation_code=123456

The maximum length for the message, including the verification code (if present), is 20,000 UTF-8
characters. You can use HTML tags in this message to format the contents.

Customizing user invitation messages

You can customize the user invitation message that Amazon Cognito sends to new users by SMS or
email message by editing the Invitation messages template in the Message templates menu.

Important

Your custom message must contain the {username} and {####} placeholders. When
Amazon Cognito sends the invitation message, it replaces these placeholders with your
user's user name and password.

The maximum length of an SMS message, including the verification code, is 140 UTF-8 characters.
The maximum length of an email message, including the verification code, is 20,000 UTF-8
characters. You may use HTML tags in your email messages to format the contents.

Customizing your email address

By default, Amazon Cognito sends email messages to users in your user pools from the address
no-reply@verificationemail.com. You can choose to specify custom FROM and REPLY-TO email
addresses instead of no-reply@verificationemail.com.

To customize the FROM and REPLY-TO email addresses

1. Navigate to the Amazon Cognito console, and choose User Pools.

Signing up and confirming user accounts 798

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

2. Choose an existing user pool from the list, or create a user pool.

3. Choose the Authentication methods menu. Under Email, choose Edit.

4. Choose an SES Region.

5. Choose a FROM email address from the list of email addresses you have verified with
Amazon SES in the SES Region you selected. To use an email address from a verified domain,
configure email settings in the Amazon Command Line Interface or the Amazon API. For more
information, see Verifying email addresses and domains in Amazon SES in the Amazon Simple
Email Service Developer Guide.

6. Choose a Configuration set from the list of configuration sets in your chosen SES Region.

7. Enter a friendly FROM sender name for your email messages, in the format John Stiles
<johnstiles@example.com>.

8. To customize the REPLY-TO email address, enter a valid email address in the REPLY-TO email
address field.

Authorizing Amazon Cognito to send Amazon SES email on your behalf (from a custom FROM
email address)

You can configure Amazon Cognito to send email from a custom FROM email address instead of
its default address. To use a custom address, you must give Amazon Cognito permission to send
email message from an Amazon SES verified identity. In most cases, you can grant permission by
creating a sending authorization policy. For more information, see Using sending authorization
with Amazon SES in the Amazon Simple Email Service Developer Guide.

When you configure a user pool to use Amazon SES for email messages, Amazon Cognito
creates the AWSServiceRoleForAmazonCognitoIdpEmailService role in your account
to grant access to Amazon SES. No sending authorization policy is needed when the
AWSServiceRoleForAmazonCognitoIdpEmailService service-linked role is used. You only
need to add a sending authorization policy when you use both the default email functionality in
your user pool and a verified Amazon SES identity as the FROM address.

For more information about the service-linked role that Amazon Cognito creates, see Using service-
linked roles for Amazon Cognito.

The following example sending authorization policy grants Amazon Cognito a limited ability
to use an Amazon SES verified identity. Amazon Cognito can only send email messages when it
does so on behalf of both the user pool in the aws:SourceArn condition and the account in the

Signing up and confirming user accounts 799

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization.html

Amazon Cognito Developer Guide

aws:SourceAccount condition. For more examples, see Amazon SES sending authorization policy
examples in the Amazon Simple Email Service Developer Guide.

Note

In this example, the "Sid" value is an arbitrary string that uniquely identifies the statement.
For more information about policy syntax, see Amazon SES sending authorization policies
in the Amazon Simple Email Service Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "stmnt1234567891234",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "email.cognito-idp.amazonaws.com"
]
 },
 "Action": [
 "SES:SendEmail",
 "SES:SendRawEmail"
],
 "Resource": "<your SES identity ARN>",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<your account number>"
 },
 "ArnLike": {
 "aws:SourceArn": "<your user pool ARN>"
 }
 }
 }
]
}

The Amazon Cognito console adds a similar policy for you when you select an Amazon SES identity
from the drop-down menu. If you use the CLI or API to configure the user pool, you must attach a
policy structured like the previous example to your Amazon SES Identity.

Signing up and confirming user accounts 800

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policies.html

Amazon Cognito Developer Guide

Creating user accounts as administrator

User pools aren't only a customer identity and access management (CIAM) user directory, where
anyone on the internet can sign up for a user profile in your application. You can disable self-
service sign-up. You might already know your customers and want to only admit those who have
been authorized in advance. You can put manual authentication guardrails around your application
with a private SAML 2.0 or OIDC identity provider, by importing users, by screening users at sign-
up—or by creating users with administrative API operations. Your workflow for administrative
creation of users can be programmatic, provisioning users after they register in another system, or
it can be on a case-by-case or testing basis in the Amazon Cognito console.

When you create users as an administrator, Amazon Cognito sets a temporary password for
them and sends a welcome, or invitation, message. They can follow the link in their invitation
message and sign in for the first time, setting a password and confirming their account. The
page that follows describes how to create new users and configure the welcome message. For
more information about user creation with the user pools API and an Amazon SDK or CDK, see
AdminCreateUser.

After you create your user pool, you can create users using the Amazon Web Services Management
Console, as well as the Amazon Command Line Interface or the Amazon Cognito API. You
can create a profile for a new user in a user pool and send a welcome message with sign-up
instructions to the user via SMS or email.

The following are some examples of how administrators can manage users in user pools.

• Create a new user profile in the Amazon Cognito console or with the AdminCreateUser API
operation.

• Make username-and-password, passwordless, passkey, and custom authentication flows available
to your user pool and app client.

• Set user attribute values.

• Create custom attributes.

• Set the value of immutable custom attributes in AdminCreateUser API requests. This feature
isn't available in the Amazon Cognito console.

• Specify a temporary password, create a user without a password, or allow Amazon Cognito to
automatically generate a password.

• Create new users and automatically confirm their accounts, verify their email addresses, or verify
their phone numbers.

Creating users as administrator 801

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html

Amazon Cognito Developer Guide

• Specify custom SMS and email invitation messages for new users via the Amazon Web Services
Management Console or Lambda triggers like custom message, custom SMS sender, and custom
email sender.

• Specify whether invitation messages are sent via SMS, email, or both.

• Resend the welcome message to an existing user by calling the AdminCreateUser API,
specifying RESEND for the MessageAction parameter.

• Suppress the sending of the invitation message when the user is created.

• Specify an expiration time limit of up to 90 days for new user accounts.

• Allow users to sign themselves up or require that new users only be added by the administrator.

Administrators can also sign users in with Amazon credentials in a server-side application. For more
information, see Authorization models for API and SDK authentication.

User authentication flows and creating users

Administrative creation of users has options that differ based on the configuration of your user
pool. The authentication flows, or methods available to users for sign-in and MFA, can change how
you create users and the messages that you send to them. The following are some authentication
flows that are available in user pools.

• Username and password

• Passkeys

• Sign-in with third-party IdPs

• Passwordless with email and SMS one-time passwords (OTPs)

• Multi-factor authentication with email, SMS, and authenticator-app OTPs

• Custom authentication with Lambda triggers

For more information about how to configure these sign-in factors, see Authentication with
Amazon Cognito user pools.

Create users without passwords

If you have enabled passwordless sign-in for your user pool, you can create users without
passwords. To create a user without a password, you must provide attribute values for an available
passwordless sign-in factor. For example, if email OTP passwordless sign-in is available in your
user pool, you can create a user with no password and an email address attribute. If the only

Creating users as administrator 802

Amazon Cognito Developer Guide

authentication flows available to new users require a password, for example passkey or username-
password, you must create or generate a temporary password for each new user.

To create a new user without a password

• Choose Don't set a password in the Amazon Cognito console

• Omit or leave blank the TemporaryPassword parameter of your AdminCreateUser API
request

Users without passwords are automatically confirmed

Normally new users get a temporary password and go into a FORCE_CHANGE_PASSWORD status
when you create them. When you create users without passwords, they immediately go into a
CONFIRMED state. You can't resend confirmation codes to these users in the CONFIRMED state.

Invitation messages change for users without passwords.

By default, Amazon Cognito sends an invitation message to new users that says Your username
is {userName} and your password is {####}. When you create users with no password,
the message says Your username is {userName}. Customize your invitation message to
reflect whether you will set passwords for users. Omit out the {####} password variable in
passwordless authentication models.

You can't autogenerate passwords when passwordless factors are available

If you have configured your user pool to support email or phone OTP passwordless sign-in, you
can't automatically generate a password. For each user who will have a password, you must set a
temporary password when you create their profile.

Passwordless users must have values for all required attributes

When you create a user without a password, your request only succeeds if the user provides values
for all attributes that you have marked as required in your user pool. This applies to any required
attribute, not only the phone number and email attributes required for OTP delivery.

Creating users who will provide required-attribute values later

You might want to require attributes in your user pool but collect those attributes after you
administratively create users, during user interaction in your application. Administrators can omit
values for required attributes when they create users with temporary passwords. You can't omit
required-attribute values for passwordless users.

Creating users as administrator 803

Amazon Cognito Developer Guide

Users with missing values for required attributes and a temporary password get a
NEW_PASSWORD_REQUIRED challenge at first sign-in. They can then provide a value for the
missing required attributes in the requiredAttributes parameter. You can create users with
passwords and without required attributes only if all required attributes are mutable. Users can
only complete sign-in with NEW_PASSWORD_REQUIRED challenges and required-attribute values if
the required attributes are writeable from the app client they sign in with.

When you set a permanent password for an administrator-created user, their status changes to
CONFIRMED and your user pool doesn't prompt them for a new password or required attributes at
their first sign-in.

Creating a new user in the Amazon Web Services Management Console

You can set user password requirements, configure the invitation and verification messages sent to
users, and add new users with the Amazon Cognito console.

Set a password policy and enable self-registration

You can configure settings for minimum password complexity and whether users can sign up using
public APIs in your user pool.

Configure a password policy

1. Navigate to the Amazon Cognito console, and choose User Pools.

2. Choose an existing user pool from the list, or create a user pool.

3. Choose the Authentication methods menu and locate Password policy. Choose Edit.

4. Choose a Password policy mode of Custom.

5. Choose a Password minimum length. For limits to the password length requirement, see User
pools resource quotas.

6. Choose a Password complexity requirement.

7. Choose how long password set by administrators should be valid for.

8. Choose Save changes.

Allow self-service sign-up

1. Navigate to the Amazon Cognito console, and choose User Pools.

2. Choose an existing user pool from the list, or create a user pool.

Creating users as administrator 804

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html#CognitoUserPools-RespondToAuthChallenge-request-ChallengeResponses
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html#limits-hard
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html#limits-hard
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

3. Choose the Sign-up menu and locate Self-service sign-up. Select Edit.

4. Choose whether to Enable self-registration. Self-registration is typically used with public app
clients that need to register new users in your user pool without distributing a client secret or
Amazon Identity and Access Management (IAM) API credentials.

Disabling self-registration

If you do not enable self-registration, new users must be created by administrative API
actions using IAM API credentials or by sign-in with federated providers.

5. Choose Save changes.

Customize email and SMS messages

Customize user messages

You can customize the messages that Amazon Cognito sends to your users when you invite them
to sign in, they sign up for a user account, or they sign in and are prompted for multi-factor
authentication (MFA).

Note

An Invitation message is sent when you create a user in your user pool and invite them
to sign in. Amazon Cognito sends initial sign-in information to the user's email address or
phone number.
A Verification message is sent when a user signs up for a user account in your user pool.
Amazon Cognito sends a code to the user. When the user provides the code to Amazon
Cognito, they verify their contact information and confirm their account for sign-in.
Verification codes are valid for 24 hours.
An MFA message is sent when you enable SMS MFA in your user pool, and a user that has
configured SMS MFA signs in and is prompted for MFA.

1. Navigate to the Amazon Cognito console, and choose User Pools.

2. Choose an existing user pool from the list, or create a user pool.

3. Choose the Message templates menu and select Verification message, Invitation message, or
MFA message and choose Edit.

Creating users as administrator 805

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

4. Customize the messages for the chosen message type.

Note

All variables in message templates must be included when you customize the message.
If the variable, for example {####}, is not included, your user will have insufficient
information to complete the message action.
For more information, see Message templates.

5. a. Verification messages

i. Choose a Verification type for Email messages. A Code verification sends a numeric
code that the user must enter. A Link verification sends a link the user can click
to verify their contact information. The text in the variable for a Link message is
displayed as hyperlink text. For example, a message template using the variable
{##Click here##} is displayed as Click here in the email message.

ii. Enter an Email subject for Email messages.

iii. Enter a custom Email message template for Email messages. You can customize this
template with HTML.

iv. Enter a custom SMS message template for SMS messages.

v. Choose Save changes.

b. Invitation messages

i. Enter an Email subject for Email messages.

ii. Enter a custom Email message template for Email messages. You can customize this
template with HTML.

iii. Enter a custom SMS message template for SMS messages.

iv. Choose Save changes.

c. MFA messages

i. Enter a custom SMS message template for SMS messages.

ii. Choose Save changes.

Creating users as administrator 806

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-message-templates.html

Amazon Cognito Developer Guide

Create a user

Create a user

You can create new users for your user pool from the Amazon Cognito console. Typically, users can
sign in after they set a password. To sign in with an email address, a user must verify the email
attribute. To sign in with a phone number, the user must verify the phone_number attribute.
To confirm accounts as an administrator, you can also use the Amazon CLI or API, or create user
profiles with a federated identity provider. For more information, see the Amazon Cognito API
Reference.

1. Navigate to the Amazon Cognito console, and choose User Pools.

2. Choose an existing user pool from the list, or create a user pool.

3. Choose the Users menu, and choose Create a user.

4. Review the User pool sign-in and security requirements for guidance on password
requirements, available account recovery methods, and alias attributes for your user pool.

5. Choose how you want to send an Invitation message. Choose SMS message, email message, or
both. To suppress the invitation message, choose Don't send an invitation.

Note

Before you can send invitation messages, configure a sender and an Amazon Web
Services Region with Amazon Simple Notification Service and Amazon Simple Email
Service in the Authentication methods menu of your user pool . Recipient message
and data rates apply. Amazon SES bills you for email messages separately, and Amazon
SNS bills you for SMS messages separately.

6. Choose a Username for the new user.

7. Choose if you want to Create a password or have Amazon Cognito Generate a password for
the user. The option to generate a password isn't available if passwordless sign-in is available
in the user pool. Any temporary password must adhere to the user pool password policy.

8. Choose Create.

9. Choose the Users menu and choose the User name entry for the user. Add and edit User
attributes and Group memberships. Review User event history.

Creating users as administrator 807

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Adding groups to a user pool

Support for groups in Amazon Cognito user pools enables you to create and manage groups,
add users to groups, and remove users from groups. Use groups to create collections of users
to manage their permissions or to represent different types of users. You can assign an Amazon
Identity and Access Management (IAM) role to a group to define the permissions for members of a
group.

You can use groups to create a collection of users in a user pool, which is often done to set the
permissions for those users. For example, you can create separate groups for users who are readers,
contributors, and editors of your website and app. Using the IAM role associated with a group,
you can also set different permissions for those different groups so that only contributors can
put content into Amazon S3 and only editors can publish content through an API in Amazon API
Gateway.

Amazon Cognito creates a user group for each OIDC, SAMl, and social identity provider (IdP)
that you add to your user pool. The name of the group is in the format [user pool ID]_[IdP
name], for example us-east-1_EXAMPLE_MYSSO or us-east-1_EXAMPLE_Google. Each
unique automatically-generated IdP user profile is automatically added to this group. Linked users
aren't automatically added to this group, but you can add their profiles to the group in a separate
process.

You can create and manage groups in a user pool from the Amazon Web Services Management
Console, the APIs, and the CLI. As a developer (using Amazon credentials), you can create, read,
update, delete, and list the groups for a user pool. You can also add users and remove users from
groups.

There is no additional cost for using groups within a user pool. See Amazon Cognito Pricing for
more information.

Assigning IAM roles to groups

You can use groups to control permissions to your resources using an IAM role. IAM roles include
trust policies and permission policies. The role trust policy specifies who can use the role. The
permissions policies specify the actions and resources that your group members can access. When
you create an IAM role, set up the role trust policy to allow your group's users to assume the role. In
the role permissions policies, specify the permissions that you want your group to have.

Adding groups to a user pool 808

http://www.amazonaws.cn/cognito/pricing/
https://docs.aws.amazon.com/cognito/latest/developerguide/role-trust-and-permissions.html
https://docs.aws.amazon.com/cognito/latest/developerguide/iam-roles.html#access-policies

Amazon Cognito Developer Guide

When you create a group in Amazon Cognito, you specify an IAM role by providing the role’s ARN.
When group members sign in using Amazon Cognito, they can receive temporary credentials from
the identity pools. Their permissions are determined by the associated IAM role.

Individual users can be in multiple groups. As a developer, you have the following options for
automatically choosing the IAM role when a user is in multiple groups:

• You can assign precedence values to each group. The group with the better (lower) precedence
will be chosen and its associated IAM role will be applied.

• Your app can also choose from among the available roles when requesting Amazon credentials
for a user through an identity pool, by specifying a role ARN in the GetCredentialsForIdentity
CustomRoleARN parameter. The specified IAM role must match a role that is available to the
user.

Assigning precedence values to groups

A user can belong to more than one group. In the user's access and ID tokens, the
cognito:groups claim contains the list of all the groups a user belongs to. The cognito:roles
claim contains the list of roles corresponding to the groups.

Because a user can belong to more than one group, each group can be assigned a precedence.
This is a non-negative number that specifies the precedence of this group relative to the other
groups that a user belongs to in the user pool. Zero is the top precedence value. Groups with lower
precedence values take precedence over groups with higher or null precedence values. If a user
belongs to two or more groups, the group with the lowest precedence value will have its IAM role
applied to the cognito:preferred_role claim in the user's ID token.

Two groups can have the same precedence value. If this happens, neither group takes precedence
over the other. If two groups with the same precedence value have the same role ARN, that role
is used in the cognito:preferred_role claim in ID tokens for users in each group. If the two
groups have different role ARNs, the cognito:preferred_role claim is not set in users' ID
tokens.

Using groups to control permission with Amazon API Gateway

You can use groups in a user pool to control permission with Amazon API Gateway. The groups that
a user is a member of are included in both the ID token and access token from a user pool in the
cognito:groups claim. You can submit ID or access tokens with requests to Amazon API Gateway
and use an Amazon Cognito user pool authorizer for a REST API. For more information, see Control

Adding groups to a user pool 809

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

Amazon Cognito Developer Guide

access to a REST API using Amazon Cognito user pools as authorizer in the API Gateway Developer
Guide.

You can also authorize access to an Amazon API Gateway HTTP API with a custom JWT authorizer.
For more information, see Controlling access to HTTP APIs with JWT authorizers in the API
Gateway Developer Guide.

Limitations on groups

User groups are subject to the following limitations:

• The number of groups you can create is limited by the Amazon Cognito service quotas.

• Groups cannot be nested.

• You cannot search for users in a group.

• You cannot search for groups by name, but you can list groups.

Creating a new group in the Amazon Web Services Management Console

Use the following procedure to create a new group.

To create a new group

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Groups menu, and then choose Create a group.

5. On the Create a group page, in Group name, enter a friendly name for your new group.

6. You can optionally provide additional information about this group using any of the following
fields:

• Description - Enter details about what this new group will be used for.

• Precedence - Amazon Cognito evaluates and applies all group permissions for a given user
based on which groups that they belong to has a lower precedence value. The group with
the lower precedence will be chosen and its associated IAM role will be applied. For more
information, see Assigning precedence values to groups.

• IAM role - You can assign an IAM role to your group when you need to control permissions
to your resources. If you are integrating a user pool with an identity pool, the IAM role

Adding groups to a user pool 810

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/
https://docs.amazonaws.cn/apigateway/latest/developerguide/
https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-jwt-authorizer.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/
https://docs.amazonaws.cn/apigateway/latest/developerguide/
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

setting determines which role is assigned in the user's ID token if the identity pool is
configured to choose the role from the token. For more information, see Assigning IAM roles
to groups.

• Add users to this group - Add existing users as members of this group after it is created.

7. Choose Create to confirm.

Managing and searching for user accounts

Users pools can contains millions of users. Working with a dataset of this size is a challenge
for administrators. Amazon Cognito has tools for finding and modifying user profiles. The top
methods for finding users are the Users menu of the Amazon Cognito console, and with ListUsers.
Of the methods that retrieve information about users, these are the options that don't have a cost
impact unlike, for example, AdminGetUser.

This section of the guide has information about finding and updating user profiles in a user pool.

Viewing user attributes

Use the following procedure to view user attributes in the Amazon Cognito console.

To view user attributes

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu and select a user in the list.

5. On the user details page, under User attributes, you can view which attributes are associated
with the user.

Resetting a user's password

Use the following procedure to reset a user's password in the Amazon Cognito console.

To reset a user's password

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

Managing and searching for users 811

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html
https://console.amazonaws.cn/cognito/home
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

3. Choose an existing user pool from the list.

4. Choose the Users menu and select a user in the list.

5. On the user details page, choose Actions, Reset password.

6. In the Reset password dialog, review the information and when ready, choose Reset.

This action immediately results in a confirmation code being sent to the user and disables the
user’s current password by changing the user state to RESET_REQUIRED. The Reset password
code is valid for 1 hour.

Enable, disable, and delete user accounts

You can delete unused user profiles or, if you want to temporarily prevent access, disable them.
Users can delete their own accounts, but only user pool administrators can enable and disable user
accounts.

Effect of deletion

Users can't sign in with deleted user accounts and to regain access, must sign up or be created
again.

Effect of disabling accounts

When you disable a user account, Amazon Cognito automatically invalidates all authenticated
sessions, deactivates the user account for sign-in, and revokes their access and refresh tokens.
Amazon Cognito returns an invalid_request error with the message User is not enabled
when a user tries to sign in to an account that you disabled. This behavior doesn't change with
your user existence disclosure settings for the app client. You can disable local user accounts and
the local profiles of federated user accounts. When users sign in with managed login or the classic
hosted UI, then you disable their account, and then they try to sign in again with the the browser
cookie that maintains their authenticated session, Amazon Cognito redirects them to the login
page.

Effect of enabling accounts

Users can immediately sign in to accounts after you enable them. User accounts are enabled by
default. Users' attributes and passwords remain the same as before their account was disabled.
Tokens that your application revoked, whether you disabled the user account or separately revoked
the refresh token, remain non-valid after you enable the user account that owned the token.

Managing and searching for users 812

Amazon Cognito Developer Guide

Delete a user account (console)

To delete a user account

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu and select the radio button next to the username of a user in the
list.

5. Choose Delete.

6. Choose Disable user access.

7. Choose Delete.

Delete a user account (API)

Users can delete their accounts with the self-service access-token-authorized DeleteUser API
operation. The following is an exanple DeleteUser request body.

{
 "AccessToken": "eyJra456defEXAMPLE"
}

Administrators can delete user accounts with the IAM-authorized AdminDeleteUser API
operation. The following is an exanple AdminDeleteUser request body.

{
 "Username": "testuser",
 "UserPoolId": "us-west-2_EXAMPLE"
}

Disable a user account (console)

To disable a user account

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

Managing and searching for users 813

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUser.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

4. Choose the Users menu and select the username of a user in the list.

5. On the user details page, choose Actions, Disable user access.

6. In the dialog that this creates, choose Disable.

Disable a user account (API)

Administrators can disable user accounts with the IAM-authorized AdminDisableUser API
operation. The following is an exanple AdminDisableUser request body.

{
 "Username": "testuser",
 "UserPoolId": "us-west-2_EXAMPLE"
}

Enable a user account (console)

To enable a user account

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu and select the username of a user in the list.

5. On the user details page, choose Actions, Enable user access.

6. In the dialog that this creates, choose Enable.

Enable a user account (API)

Administrators can enable user accounts with the IAM-authorized AdminEnableUser API
operation. The following is an exanple AdminEnableUser request body.

{
 "Username": "testuser",
 "UserPoolId": "us-west-2_EXAMPLE"
}

Managing and searching for users 814

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableUser.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminEnableUser.html

Amazon Cognito Developer Guide

Searching user attributes

If you have already created a user pool, you can search from the Users panel in the Amazon Web
Services Management Console. You can also use the Amazon Cognito ListUsers API, which accepts a
Filter parameter.

You can search for any of the following standard attributes. Custom attributes are not searchable.

• username (case-sensitive)

• email

• phone_number

• name

• given_name

• family_name

• preferred_username

• cognito:user_status (called Status in the Console) (case-insensitive)

• status (called Enabled in the Console) (case-sensitive)

• sub

Note

You can also list users with a client-side filter. The server-side filter matches no more than
1 attribute. For advanced search, use a client-side filter with the --query parameter of
the list-users action in the Amazon Command Line Interface. When you use a client-
side filter, ListUsers returns a paginated list of zero or more users. You can receive multiple
pages in a row with zero results. Repeat the query with each pagination token that is
returned until you receive a null pagination token value, then review the combined result.
For more information about server-side and client-side filtering, see Filtering Amazon CLI
output in the Amazon Command Line Interface User Guide.

Searching for users with the Amazon Web Services Management Console

If you have already created a user pool, you can search from the Users panel in the Amazon Web
Services Management Console.

Managing and searching for users 815

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-filter.html
https://docs.amazonaws.cn/cli/latest/userguide/cli-usage-filter.html

Amazon Cognito Developer Guide

Amazon Web Services Management Console searches are always prefix ("starts with") searches.

To search for a user in the Amazon Cognito console

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu and enter the username in the search field. Note that some attribute
values are case-sensitive (for example, Username).

You can also find users by adjusting the search filter to narrow the scope down to other user
properties, such as Email, Phone number, or Last name.

Searching for users with the ListUsers API

To search for users from your app, use the Amazon Cognito ListUsers API. This API uses the
following parameters:

• AttributesToGet: An array of strings, where each string is the name of a user attribute
to be returned for each user in the search results. To retrieve all attributes, don't include an
AttributesToGet parameter or request AttributesToGet with a value of the literal string
null.

• Filter: A filter string of the form "AttributeName Filter-Type "AttributeValue"".
Quotation marks within the filter string must be escaped using the backslash (\) character. For
example, "family_name = \"Reddy\"". If the filter string is empty, ListUsers returns all
users in the user pool.

• AttributeName: The name of the attribute to search for. You can only search for one
attribute at a time.

Note

You can only search for standard attributes. Custom attributes are not searchable. This
is because only indexed attributes are searchable, and custom attributes cannot be
indexed.

• Filter-Type: For an exact match, use =, for example, given_name = "Jon". For a prefix
("starts with") match, use ^=, for example, given_name ^= "Jon".

Managing and searching for users 816

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide

• AttributeValue: The attribute value that must be matched for each user.

• Limit: Maximum number of users to be returned.

• PaginationToken: A token to get more results from a previous search. Amazon Cognito expires
the pagination token after one hour.

• UserPoolId: The user pool ID for the user pool on which the search should be performed.

All searches are case-insensitive. Search results are sorted by the attribute named by the
AttributeName string, in ascending order.

Examples of using the ListUsers API

The following example returns all users and includes all attributes.

{
 "AttributesToGet": null,
 "Filter": "",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

The following example returns all users whose phone numbers start with "+1312" and includes all
attributes.

{
 "AttributesToGet": null,
 "Filter": "phone_number ^= \"+1312\"",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

The following example returns the first 10 users whose family name is "Reddy". For each user, the
search results include the user's given name, phone number, and email address. If there are more
than 10 matching users in the user pool, the response includes a pagination token.

{

Managing and searching for users 817

Amazon Cognito Developer Guide

 "AttributesToGet": [
 "given_name",
 "phone_number",
 "email"
],
 "Filter": "family_name = \"Reddy\"",
 "Limit": 10,
 "UserPoolId": "us-east-1_samplepool"
}

If the previous example returns a pagination token, the following example returns the next 10
users that match the same filter string.

{
 "AttributesToGet": [
 "given_name",
 "phone_number",
 "email"
],
 "Filter": "family_name = \"Reddy\"",
 "Limit": 10,
 "PaginationToken": "pagination_token_from_previous_search",
 "UserPoolId": "us-east-1_samplepool"
}

Passwords, account recovery, and password policies

All users who sign in to a user pool, even federated users, have passwords assigned to their user
profiles. Local users and linked users must provide a password when they sign in. Federated users
don't use user pool passwords, but sign in with their identity provider (IdP). You can permit users
to reset their own passwords, reset or change passwords as an administrator, and set policies for
password complexity and history.

Amazon Cognito doesn't store user passwords in plaintext. Instead, it stores a hash of each user's
password with a user-specific salt. Because of this, you can't retrieve existing passwords from the
user profiles in your user pools. As a best practice, don't store plaintext user passwords anywhere.
Perform password resets when users forget their passwords.

Passwords 818

Amazon Cognito Developer Guide

Password reset and recovery

Users forget their passwords. You might want them to be able to reset their password themselves,
or you might want to require that an administrator resets their password for them. Amazon
Cognito user pools have options for both models. This part of the guide covers the user pool
settings and the API operations for password reset.

The ForgotPassword API operation and the managed login option Forgot your password? send
users a code that, when they confirm that they have the correct code, gives them an opportunity to
set a new password with ConfirmForgotPassword. This is the self-service password-recovery model.

Recovery of unverified users

You can send recovery messages to users who have verified their email address or phone number.
If they don't have a confirmed recovery email or phone, a user pool administrator can mark their
email address or phone number verified. Edit the user's User attributes in the Amazon Cognito
console and select the checkbox next to Mark phone number as verified or Mark email address
as verified. You can also set email_verified or phone_number_verified to true in an
AdminUpdateUserAttributes request. For new users, the ResendConfirmationCode API operation
sends a new code to their email address or phone number and they can complete self-service
confirmation and verification.

Reset passwords as an administrator

The AdminSetUserPassword and AdminResetUserPassword API operations are the administrator-
inititated methods of password reset. AdminSetUserPassword sets a temporary or permanent
password, and AdminResetUserPassword sends users a password-reset code in the same way as
ForgotPassword.

Configure password reset and recovery

Amazon Cognito automatically selects your account-recovery options from the required attributes
and sign-in options that you choose when you create a user pool in the console. You can modify
these default settings.

A user's preferred MFA method influences the methods they can use to recover their password.
Users whose preferred MFA is by email message can't receive a password-reset code by email. Users
whose preferred MFA is by SMS message can't receive a password-reset code by SMS.

Your password recovery settings must provide an alternative option when users aren't eligible for
your preferred password-reset method. For example, your recovery mechanisms might have email

Passwords 819

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html

Amazon Cognito Developer Guide

as first priority and email MFA might be an option in your user pool. In this case, add SMS-message
account recovery as a second option or use administrative API operations to reset passwords for
those users.

Note

Users can't receive MFA and password reset codes at the same email address or phone
number. If they use one-time passwords (OTPs) from email messages for MFA, they must
use SMS messages for account recovery. If they use OTPs from SMS messages for MFA,
they must use email messages for account recovery. In user pools with MFA, users might be
unable to complete self-service password recovery if they have attributes for their email
address but no phone number, or their phone number but no email address.
To prevent the state where users can't reset their passwords in user pools with this
configuration, set the email and phone_number attributes as required. As an alternative,
you can set up processes that always collect and set those attributes when users sign up or
when your administrators create user profiles. When users have both attributes, Amazon
Cognito automatically sends password-reset codes to the destination that is not the user's
MFA factor.

The following procedure configures self-service account recovery in a user pool.

Configure self-service password reset (API/SDK)

The AccountRecoverySetting parameter is the user pool parameter that sets the methods
that users can use to recover their password in ForgotPassword API requests or when they select
Forgot password? in managed login. ForgotPassword sends a recovery code to a verified
email or a verified phone number. The recovery code is valid for one hour. When you specify
an AccountRecoverySetting for your user pool, Amazon Cognito chooses the code delivery
destination based on the priority that you set.

When you define AccountRecoverySetting and a user has SMS MFA configured, SMS cannot
be used as an account recovery mechanism. The priority for this setting is determined with 1
being of the highest priority. Amazon Cognito sends a verification to only one of the specified
methods. The following example AccountRecoverySetting sets email addresses as the
primary destination for account-recovery codes, falling back to SMS message if the user doesn't
have an email address attribute.

"AccountRecoverySetting": {

Passwords 820

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AccountRecoverySettingType.html

Amazon Cognito Developer Guide

 "RecoveryMechanisms": [
 {
 "Name": "verified_email",
 "Priority": 1
 },
 {
 "Name": "verified_phone_number",
 "Priority": 2
 }
]
}

The value admin_only turns off self-service account recovery, instead requiring users to
contact their administrator for password reset. You cannot use admin_only with any other
account recovery mechanism. The following e

"AccountRecoverySetting": {
 "RecoveryMechanisms": [
 {
 "Name": "admin_only",
 "Priority": 1
 }
]
}

If you do not specify AccountRecoverySetting, Amazon Cognito sends the recovery code
to a verified phone number first, and to a verified email address if users don't have a phone
number attribute.

For more information about AccountRecoverySetting, see CreateUserPool and
UpdateUserPool.

Configure self-service password reset (console)

Configure account-recovery and password-reset options from the Sign-in menu of your user
pool.

To set up user account recovery

1. Sign in to the Amazon Cognito console.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

Passwords 821

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

4. Choose the Sign-in menu. Locate User account recovery and choose Edit

5. To permit users to reset their own passwords, choose Enable self-service account recovery.

6. Configure the delivery method for the password-recovery codes that your user pool sends
to users. Under Delivery method for user account recovery messages, select an available
option. As a best practice, choose an option that has a secondary method for sending
messages, for example Email if available, otherwise SMS. With a secondary delivery
method, Amazon Cognito can send codes to users in a way that requires them to use a
different medium for password reset than for MFA.

7. Select Save changes.

Forgot password behavior

In a given hour, we allow between 5 and 20 attempts for a user to request or enter a password
reset code as part of forgot-password and confirm-forgot-password actions. The exact value
depends on the risk parameters associated with the requests. Please note that this behavior is
subject to change.

Adding user pool password requirements

Strong, complex passwords are a security best practice for your user pool. Especially in applications
that are open to the internet, weak passwords can expose your users' credentials to systems that
guess passwords and try to access your data. The more complex a password is, the more difficult
it is to guess. Amazon Cognito has additional tools for security-conscious administrators, like
threat protection and Amazon WAF web ACLs, but your password policy is a central element of the
security of your user directory.

Passwords for local users in Amazon Cognito user pools don't automatically expire. As a best
practice, log the time, date, and metadata of user password resets in an external system. With an
external log of password age, your application or a Lambda trigger can look up a user's password
age and require a reset after a given period.

You can configure your user pool to require a minimum password complexity that conforms to your
security standards. Complex passwords have a minimum length of at least eight characters. They
also include a mix of uppercase, numeric, and special characters.

With the Essentials or Plus feature tiers, you can also set a policy for password reuse. You can
prevent a user from resetting their password to a new password that matches their current
password or any of up to 23 additional previous passwords, for a maximum total of 24.

Passwords 822

Amazon Cognito Developer Guide

To set a user pool password policy

1. Create a user pool and navigate to the Configure security requirements step, or access an
existing user pool and navigate to the Authentication methods menu.

2. Navigate to Password policy.

3. Choose a Password policy mode. Cognito defaults configures your user pool with the
recommended minimum settings. You can also choose a Custom password policy.

4. Set a Password minimum length. All users must sign up or be created with a password whose
length is greater than or equal to this value. You can set this minimum value as high as 99, but
your users can set passwords up to 256 characters long.

5. Configure password complexity rules under Password requirements. Choose the character
types–numbers, special characters, uppercase letters, and lowercase letters–that you want to
require at least one of in each user's password.

You can require at least one of the following characters in passwords. After Amazon Cognito
verifies that passwords contain the minimum required characters, your users' passwords can
contain additional characters of any type up to the maximum password length.

• Uppercase and lowercase basic latin letters

• Numbers

• The following special characters.

^ $ * . [] { } () ? " ! @ # % & / \ , > < ' : ; | _ ~ ` = + -

• Non-leading, non-trailing space characters.

6. Set a value for Temporary passwords set by administrators expire in. After this
period has passed, a new user that you created in the Amazon Cognito console or with
AdminCreateUser can't sign in and set a new password. After they sign in with their
temporary password, their user accounts never expire. To update the password duration in
the Amazon Cognito user pools API, set a value for TemporaryPasswordValidityDays in your
CreateUserPool or UpdateUserPool API request.

7. Set a value for Prevent use of previous passwords, if available. To use this feature, choose the
Essentials or Plus feature tier in your user pool. The value of this parameter is the number of
previous passwords that a new password is prevented from matching when a user resets their
password.

Passwords 823

https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_PasswordPolicyType.html#CognitoUserPools-Type-PasswordPolicyType-TemporaryPasswordValidityDays
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

To reset access for an expired user account, do one of the following:

• Delete the user profile and create a new one.

• Set a new permanent password in an AdminSetUserPassword API request.

• Generate a new confirmation code in an AdminResetUserPassword API request.

Importing users into a user pool

There are two ways you can import or migrate users from your existing user directory or user
database into Amazon Cognito user pools. You can migrate users when they sign-in using Amazon
Cognito for the first time with a user migration Lambda trigger. With this approach, users can
continue using their existing passwords and will not have to reset them after the migration to your
user pool. Alternatively, you can migrate users in bulk by uploading a CSV file containing the user
profile attributes for all users. The following sections describe both these approaches.

More resources

• Approaches for migrating users to Amazon Cognito user pools

• Amazon re:Inforce 2023 - Migrating to Amazon Cognito

Topics

• Importing users with a user migration Lambda trigger

• Importing users into user pools from a CSV file

Importing users with a user migration Lambda trigger

With this approach, you can seamlessly migrate users from your existing user directory to user
pools when a user signs in for the first time with your app or requests a password reset. Add a
Migrate user Lambda trigger function to your user pool and it receives metadata about users who
try to sign in, and returns user profile information from an external identity source. For details and
example code for this Lambda trigger, including request and response parameters, see Migrate user
Lambda trigger parameters.

Before you start to migrate users, create a user migration Lambda function in your Amazon Web
Services account, and set the Lambda function as the user migration trigger in your user pool. Add
an authorization policy to your Lambda function that permits only the Amazon Cognito service

Importing users into a user pool 824

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://www.amazonaws.cn/blogs/security/approaches-for-migrating-users-to-amazon-cognito-user-pools/
https://www.youtube.com/watch?v=OkDj9uXWwCc

Amazon Cognito Developer Guide

account principal, cognito-idp.amazonaws.com to invoke the Lambda function, and only in the
context of your own user pool. For more information, see Using resource-based policies for Amazon
Lambda (Lambda function policies).

Sign-in process

1. The user opens your app and signs in with the Amazon Cognito user pools API or through
managed login. For more information about how to facilitate sign-in with Amazon Cognito APIs,
see Integrating Amazon Cognito authentication and authorization with web and mobile apps.

2. Your app sends the user name and password to Amazon Cognito. If your app has a custom sign-
in UI that you built with an Amazon SDK, your app must use InitiateAuth or AdminInitiateAuth
with the USER_PASSWORD_AUTH or ADMIN_USER_PASSWORD_AUTH flow. When your app uses
one of these flows, the SDK sends the password to the server.

Note

Before you add a user migration trigger, activate the USER_PASSWORD_AUTH or
ADMIN_USER_PASSWORD_AUTH flow in the settings of your app client. You must use
these flows instead of the default USER_SRP_AUTH flow. Amazon Cognito must send a
password to your Lambda function so that it can verify your user's authentication in the
other directory. An SRP obscures your user's password from your Lambda function.

3. Amazon Cognito checks if the submitted user name matches a user name or alias in the user
pool. You can set the user's email address, phone number, or preferred user name as an alias in
your user pool. If the user doesn't exist, Amazon Cognito sends parameters, including the user
name and password, to your Migrate user Lambda trigger function.

4. Your Migrate user Lambda trigger function checks for or authenticates the user with your
existing user directory or user database. The function returns user attributes that Amazon
Cognito stores in the user's profile in the user pool. You can return a username parameter only
if the submitted user name matches an alias attribute. If you want users to continue to use their
existing passwords, your function sets the attribute finalUserStatus to CONFIRMED in the
Lambda response. Your app must return all "response" parameters shown at Migrate user
Lambda trigger parameters.

Importing users into a user pool 825

https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/lambda/latest/dg/access-control-resource-based.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

Important

Do not log the entire request event object in your user migration Lambda code. This
request event object includes the user's password. If you don't sanitize the logs,
passwords appear in CloudWatch Logs.

5. Amazon Cognito creates the user profile in your user pool, and returns tokens to your app client.

6. Your app performs token intake, accepts the user authentication, and proceeds to the requested
content.

After you migrate your users, use USER_SRP_AUTH for sign-in. The Secure Remote Password (SRP)
protocol doesn't send the password across the network, and provides security benefits over the
USER_PASSWORD_AUTH flow that you use during migration.

In case of errors during migration, including client device or network issues, your app receives error
responses from the Amazon Cognito user pools API. When this happens, Amazon Cognito might or
might not create the user account in your user pool. The user should then attempt to sign in again.
If sign-in fails repeatedly, attempt to reset the user's password with the forgot-password flow in
your app.

The forgot-password flow also invokes your Migrate user Lambda trigger function with a
UserMigration_ForgotPassword event source. Because the user doesn't submit a password
when they request a password reset, Amazon Cognito doesn't include a password in the event that
it sends to your Lambda function. Your function can only look up the user in your existing user
directory and return attributes to add to the user profile in your user pool. After your function
completes its invocation and returns its response to Amazon Cognito, your user pool sends a
password reset code by email or SMS. In your app, prompt your user for their confirmation code
and a new password, then send that information to Amazon Cognito in a ConfirmForgotPassword
API request. You can also use the built-in pages for the forgot-password flow in managed login.

Additional resources

• Approaches for migrating users to Amazon Cognito user pools

Importing users into a user pool 826

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://www.amazonaws.cn/blogs/security/approaches-for-migrating-users-to-amazon-cognito-user-pools/

Amazon Cognito Developer Guide

Importing users into user pools from a CSV file

When you have an external identity store and the time to prepare your user pool for new local
users, a bulk user import from a comma-separated values (CSV) file can be a low-effort, low-
cost option for a migration to an Amazon Cognito user pool. A CSV file import is a process of
downloading and populating a template file, then handing off the file to your user pool in an
import job. You can use a CSV import to quickly create test users. You can also programmatically
populate the file with read API requests to your external identity store, followed by parsing their
details and attributes into write operations to the file.

The import process sets values for all user attributes except password. Password import is not
supported, because security best practices require that passwords are not available as plain text,
and we don't support importing hashes. This means that your users must change their passwords
the first time they sign in. Your users are in a RESET_REQUIRED state when imported using this
method.

The lowest-effort way to import users from a CSV is to activate passwordless sign-in in your user
pool. With email address and phone number attributes and the right user pool configuration,
users can sign in with email or SMS one-time passwords (OTPs) immediately after your import job
completes. For more information, see Requiring imported users to reset their passwords.

You can also set your users' passwords with an AdminSetUserPassword API request that sets the
Permanent parameter to true. CSV import doesn't contribute to the billed monthly active users
(MAUs) in your user pool. However, password-reset operations do generate MAUs. To manage costs
when you import large numbers of users with password who might not be immediately active,
set up your application to prompt users for a new password when they sign in and receive the
RESET_REQUIRED challenge.

Note

The creation date for each user is the time when that user was imported into the user pool.
Creation date is not one of the imported attributes.

Steps to create a user import job

1. Create an Amazon CloudWatch Logs role in the Amazon Identity and Access Management (IAM)
console.

2. Create the user import .csv file.

Importing users into a user pool 827

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html

Amazon Cognito Developer Guide

3. Create and run the user import job.

4. Upload the user import .csv file.

5. Start and run the user import job.

6. Use CloudWatch to check the event log.

7. Require the imported users to reset their passwords.

More resources

• Cognito User Profiles Export Reference Architecture for exporting user accounts between user
pools

Topics

• Creating the CloudWatch Logs IAM role

• Creating the user import CSV file

• Creating and running the Amazon Cognito user pool import job

• Viewing the user pool import results in the CloudWatch console

• Requiring imported users to reset their passwords

Creating the CloudWatch Logs IAM role

If you're using the Amazon Cognito CLI or API, then you need to create a CloudWatch IAM role. The
following procedure describes how to create an IAM role that Amazon Cognito can use to write the
results of your import job to CloudWatch Logs.

Note

When you create an import job in the Amazon Cognito console, you can create the IAM
role at the same time. When you choose to Create a new IAM role, Amazon Cognito
automatically applies the appropriate trust policy and IAM policy to the role.

To create the CloudWatch Logs IAM role for user pool import (Amazon CLI, API)

1. Sign in to the Amazon Web Services Management Console and open the IAM console at
https://console.amazonaws.cn/iam/.

Importing users into a user pool 828

https://www.amazonaws.cn/solutions/implementations/cognito-user-profiles-export-reference-architecture/
https://console.amazonaws.cn/iam/

Amazon Cognito Developer Guide

2. Create a new IAM role for an Amazon Web Services service. For detailed instructions, see
Creating a role for an Amazon Web Services service in the Amazon Identity and Access
Management User Guide.

a. When you select a Use case for your Trusted entity type, choose any service. Amazon
Cognito isn't currently listed in service use cases.

b. In the Add permissions screen, choose Create policy and insert the following policy
statement. Replace REGION with the Amazon Web Services Region of your user pool, for
example us-east-1. Replace ACCOUNT with your Amazon Web Services account ID, for
example 111122223333.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": [
 "arn:aws:logs:REGION:ACCOUNT:log-group:/aws/cognito/*"
]
 }
]
}

3. Because you didn't choose Amazon Cognito as the trusted entity when you created the role,
you now must manually edit the trust relationship of the role. Choose Roles from navigation
pane of the IAM console, then choose the new role that you created.

4. Choose the Trust relationships tab.

5. Choose Edit trust policy.

6. Paste the following policy statement into Edit trust policy, replacing any existing text:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Importing users into a user pool 829

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html#roles-creatingrole-service-console

Amazon Cognito Developer Guide

 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-idp.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }

7. Choose Update policy.

8. Note the role ARN. You'll provide the ARN when you create your import job.

Creating the user import CSV file

Before you can import your existing users into your user pool, you must create a comma-separated
values (CSV) file that contains the users that you want to import, and their attributes. From your
user pool, you can retrieve a user import file with headers that reflect the attribute schema of
your user pool. You can then insert user information that matches the formatting requirements in
Formatting the CSV file.

Downloading the CSV file header (console)

Use the following procedure to download the CSV header file.

To download the CSV file header

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu.

5. In the Import users section, choose Create an import job.

6. Under Upload CSV, select the template.csv link and download the CSV file.

Downloading the CSV file header (Amazon CLI)

To get a list of the correct headers, run the following CLI command, where USER_POOL_ID is the
user pool identifier for the user pool you'll import users into:

aws cognito-idp get-csv-header --user-pool-id "USER_POOL_ID"

Importing users into a user pool 830

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Sample response:

{
 "CSVHeader": [
 "name",
 "given_name",
 "family_name",
 "middle_name",
 "nickname",
 "preferred_username",
 "profile",
 "picture",
 "website",
 "email",
 "email_verified",
 "gender",
 "birthdate",
 "zoneinfo",
 "locale",
 "phone_number",
 "phone_number_verified",
 "address",
 "updated_at",
 "cognito:mfa_enabled",
 "cognito:username"
],
 "UserPoolId": "USER_POOL_ID"
}

Formatting the CSV file

The downloaded user import CSV header file looks like the following string. It also includes any
custom attributes you have added to your user pool.

cognito:username,name,given_name,family_name,middle_name,nickname,preferred_username,profile,picture,website,email,email_verified,gender,birthdate,zoneinfo,locale,phone_number,phone_number_verified,address,updated_at,cognito:mfa_enabled

Edit your CSV file so that it includes this header and the attribute values for your users, and is
formatted according to the following rules:

Importing users into a user pool 831

Amazon Cognito Developer Guide

Note

For more information about attribute values, such as proper format for phone numbers, see
Working with user attributes.

• The first row in the file is the downloaded header row, which contains the user attribute names.

• The order of columns in the CSV file doesn't matter.

• Each row after the first row contains the attribute values for a user.

• All columns in the header must be present, but you don't need to provide values in every column.

• The following attributes are required:

• cognito:username

• cognito:mfa_enabled

• email_verified or phone_number_verified

• At least one of the auto-verified attributes must be true for each user. An auto-verified
attribute is an email address or phone number that Amazon Cognito automatically sends a
code to when a new user joins your user pool.

• The user pool must have at least one auto-verified attribute, either email_verified or
phone_number_verified. If the user pool has no auto-verified attributes, the import job will
not start.

• If the user pool only has one auto-verified attribute, that attribute must be verified for each
user. For example, if the user pool has only phone_number as an auto-verified attribute, the
phone_number_verified value must be true for each user.

Note

For users to reset their passwords, they must have a verified email or phone number.
Amazon Cognito sends a message containing a reset password code to the email or
phone number specified in the CSV file. If the message is sent to the phone number,
it is sent by SMS message. For more information, see Verifying contact information at
sign-up.

• email (if email_verified is true)

• phone_number (if phone_number_verified is true)

• Any attributes that you marked as required when you created the user pool

Importing users into a user pool 832

Amazon Cognito Developer Guide

• Attribute values that are strings should not be in quotation marks.

• If an attribute value contains a comma, you must put a backslash (\) before the comma. This is
because the fields in a CSV file are separated by commas.

• The CSV file contents should be in UTF-8 format without byte order mark.

• The cognito:username field is required and must be unique within your user pool. It can be any
Unicode string. However, it cannot contain spaces or tabs.

• The birthdate values, if present, must be in the format mm/dd/yyyy. This means, for example,
that a birthdate of February 1, 1985 must be encoded as 02/01/1985.

• The cognito:mfa_enabled field is required. If you've set multi-factor authentication (MFA) to be
required in your user pool, this field must be true for all users. If you've set MFA to be off, this
field must be false for all users. If you've set MFA to be optional, this field can be either true
or false, but it can't be empty.

• The maximum row length is 16,000 characters.

• The maximum CSV file size is 100 MB.

• The maximum number of rows (users) in the file is 500,000. This maximum doesn't include the
header row.

• The updated_at field value is expected to be epoch time in seconds, for example: 1471453471.

• Any leading or trailing white space in an attribute value will be trimmed.

The following list is a example CSV import file for a user pool with no custom attributes. Your user
pool schema might differ from this example. In that case, you must provide test values in the CSV
template that you download from your user pool.

cognito:username,name,given_name,family_name,middle_name,nickname,preferred_username,profile,picture,website,email,email_verified,gender,birthdate,zoneinfo,locale,phone_number,phone_number_verified,address,updated_at,cognito:mfa_enabled
John,,John,Doe,,,,,,,johndoe@example.com,TRUE,,02/01/1985,,,+12345550100,TRUE,123 Any
 Street,,FALSE
Jane,,Jane,Roe,,,,,,,janeroe@example.com,TRUE,,01/01/1985,,,+12345550199,TRUE,100 Main
 Street,,FALSE

Creating and running the Amazon Cognito user pool import job

This section describes how to create and run the user pool import job by using the Amazon Cognito
console and the Amazon Command Line Interface (Amazon CLI).

Topics

• Importing users from a CSV file (console)

Importing users into a user pool 833

Amazon Cognito Developer Guide

• Importing users (Amazon CLI)

Importing users from a CSV file (console)

The following procedure describes how to import the users from the CSV file.

To import users from the CSV file (console)

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Users menu.

5. In the Import users section, choose Create an import job.

6. On the Create import job page, enter a Job name.

7. Choose to Create a new IAM role or to Use an existing IAM role.

a. If you chose Create a new IAM role, enter a name for your new role. Amazon Cognito will
automatically create a role with the correct permissions and trust relationship. The IAM
principal that creates the import job must have permissions to create IAM roles.

b. If you chose Use an existing IAM role, choose a role from the list under IAM role
selection. This role must have the permissions and trust policy described in Creating the
CloudWatch Logs IAM role.

8. Under Upload CSV, choose Choose file and attach the CSV file that you prepared.

9. Choose Create job to submit your job, but start it later. Choose Create and start job to submit
your job and start it immediately.

10. If you created your job but didn't start it, you can start it later. In the Users menu
under Import users, choose your import job, then select Start. You can also submit a
StartUserImportJob API request from an Amazon SDK.

11. Monitor the progress of your user import job in the Users menu under Import users. If your
job doesn't succeed, you can select the Status value. For additional details, select View the
CloudWatch logs for more details and review any issues in the CloudWatch Logs console.

Importing users (Amazon CLI)

The following CLI commands are available for importing users into a user pool:

Importing users into a user pool 834

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartUserImportJob.html

Amazon Cognito Developer Guide

• create-user-import-job

• get-csv-header

• describe-user-import-job

• list-user-import-jobs

• start-user-import-job

• stop-user-import-job

To get the list of command line options for these commands, use the help command line option.
For example:

aws cognito-idp get-csv-header help

Creating a user import job

After you create your CSV file, create a user import job by running the following CLI command,
where JOB_NAME is the name you're choosing for the job, USER_POOL_ID is the user pool ID for
the user pool into which the new users will be added, and ROLE_ARN is the role ARN you received
in Creating the CloudWatch Logs IAM role:

aws cognito-idp create-user-import-job --job-name "JOB_NAME" --user-pool-id
 "USER_POOL_ID" --cloud-watch-logs-role-arn "ROLE_ARN"

The PRE_SIGNED_URL returned in the response is valid for 15 minutes. After that time, it will
expire and you must create a new user import job to get a new URL.

Example response:

{
 "UserImportJob": {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl": "PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965

Importing users into a user pool 835

Amazon Cognito Developer Guide

 }
}

Status values for a user import job

In the responses to your user import commands, you'll see one of the following Status values:

• Created - The job was created but not started.

• Pending - A transition state. You have started the job, but it has not begun importing users yet.

• InProgress - The job has started, and users are being imported.

• Stopping - You have stopped the job, but the job has not stopped importing users yet.

• Stopped - You have stopped the job, and the job has stopped importing users.

• Succeeded - The job has completed successfully.

• Failed - The job has stopped due to an error.

• Expired - You created a job, but did not start the job within 24-48 hours. All data associated
with the job was deleted, and the job can't be started.

Uploading the CSV file

Use the following curl command to upload the CSV file containing your user data to the
presigned URL that you obtained from the response of the create-user-import-job command.

curl -v -T "PATH_TO_CSV_FILE" -H "x-amz-server-side-encryption:aws:kms"
 "PRE_SIGNED_URL"

In the output of this command, look for the phrase "We are completely uploaded and
fine". This phrase indicates that the file was uploaded successfully. Your user pools don't keep
the information in your import files after you run your import jobs. After they complete or expire,
Amazon Cognito deletes your uploaded CSV file.

Describing a user import job

To get a description of your user import job, use the following command, where USER_POOL_ID
is your user pool ID, and JOB_ID is the job ID that was returned when you created the user import
job.

aws cognito-idp describe-user-import-job --user-pool-id "USER_POOL_ID" --job-id
 "JOB_ID"

Importing users into a user pool 836

Amazon Cognito Developer Guide

Example Sample response:

{
 "UserImportJob": {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl": "PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 }
}

In the preceding sample output, the PRE_SIGNED_URL is the URL that you uploaded the CSV file
to. The ROLE_ARN is the CloudWatch Logs role ARN that you received when you created the role.

Listing your user import jobs

To list your user import jobs, use the following command:

aws cognito-idp list-user-import-jobs --user-pool-id "USER_POOL_ID" --max-results 2

Example Sample response:

{
 "UserImportJobs": [
 {
 "Status": "Created",
 "SkippedUsers": 0,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 },
 {

Importing users into a user pool 837

Amazon Cognito Developer Guide

 "CompletionDate": 1470954227.701,
 "StartDate": 1470954226.086,
 "Status": "Failed",
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "CompletionMessage": "Too many users have failed or been skipped during the
 import.",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn":"ROLE_ARN",
 "FailedUsers": 5,
 "CreationDate": 1470953929.313
 }
],
 "PaginationToken": "PAGINATION_TOKEN"
}

Jobs are listed in chronological order from last created to first created. The PAGINATION_TOKEN
string after the second job indicates that there are additional results for this list command. To list
the additional results, use the --pagination-token option as follows:

aws cognito-idp list-user-import-jobs --user-pool-id "USER_POOL_ID" --max-results 10 --
pagination-token "PAGINATION_TOKEN"

Starting a user import job

To start a user import job, use the following command:

aws cognito-idp start-user-import-job --user-pool-id "USER_POOL_ID" --job-id "JOB_ID"

Only one import job can be active at a time per account.

Example Sample response:

{
 "UserImportJob": {
 "Status": "Pending",
 "StartDate": 1470957851.483,
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,

Importing users into a user pool 838

Amazon Cognito Developer Guide

 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957431.965
 }
}

Stopping a user import job

To stop a user import job while it is in progress, use the following command. After you stop the job,
it cannot be restarted.

aws cognito-idp stop-user-import-job --user-pool-id "USER_POOL_ID" --job-id "JOB_ID"

Example Sample response:

{
 "UserImportJob": {
 "CompletionDate": 1470958050.571,
 "StartDate": 1470958047.797,
 "Status": "Stopped",
 "UserPoolId": "USER_POOL_ID",
 "ImportedUsers": 0,
 "SkippedUsers": 0,
 "JobName": "JOB_NAME",
 "CompletionMessage": "The Import Job was stopped by the developer.",
 "JobId": "JOB_ID",
 "PreSignedUrl":"PRE_SIGNED_URL",
 "CloudWatchLogsRoleArn": "ROLE_ARN",
 "FailedUsers": 0,
 "CreationDate": 1470957972.387
 }
}

Viewing the user pool import results in the CloudWatch console

You can view the results of your import job in the Amazon CloudWatch console.

Topics

Importing users into a user pool 839

Amazon Cognito Developer Guide

• Viewing the results

• Interpreting the results

Viewing the results

The following steps describe how to view the user pool import results.

To view the results of the user pool import

1. Sign in to the Amazon Web Services Management Console and open the CloudWatch console
at https://console.amazonaws.cn/cloudwatch/.

2. Choose Logs.

3. Choose the log group for your user pool import jobs. The log group name is in the form /aws/
cognito/userpools/USER_POOL_ID/USER_POOL_NAME.

4. Choose the log for the user import job you just ran. The log name is in the form
JOB_ID/JOB_NAME. The results in the log refer to your users by line number. No user data is
written to the log. For each user, a line similar to the following appears:

• [SUCCEEDED] Line Number 5956 - The import succeeded.

• [SKIPPED] Line Number 5956 - The user already exists.

• [FAILED] Line Number 5956 - The User Record does not set any of the
auto verified attributes to true. (Example: email_verified to true).

Interpreting the results

Successfully imported users have their status set to "PasswordReset".

In the following cases, the user will not be imported, but the import job will continue:

• No auto-verified attributes are set to true.

• The user data doesn't match the schema.

• The user couldn't be imported due to an internal error.

In the following cases, the import job will fail:

• The Amazon CloudWatch Logs role cannot be assumed, doesn't have the correct access policy, or
has been deleted.

Importing users into a user pool 840

https://console.amazonaws.cn/cloudwatch/

Amazon Cognito Developer Guide

• The user pool has been deleted.

• Amazon Cognito is unable to parse the .csv file.

Requiring imported users to reset their passwords

If your user pool only offers password-based sign-in, users must reset their passwords after they
are imported. The first time they sign in, they can enter any password. Amazon Cognito promtps
them to enter a new password in the API response to the sign-in request from your application.

If your user pool has passwordless authentication factors, Amazon Cognito defaults to those for
imported users. They're not prompted for a new password, and can sign in immediately with a
passwordless email or SMS OTP. You can also prompt users to set a password so that they can
complete other sign-in methods like username-password and passkey. The following conditions
apply to passwordless sign-in after user import.

1. You must import users with an attribute that corresponds to an available passwordless sign-in
factor. If users can sign in with an email address, you must import an email attribute. If a phone
number, you must import a phone_number attribute. If both, import a value for either attribute.

2. Normally, users import in a RESET_REQUIRED state where they must reset their password. If
they are imported with the ability to sign in with a passwordless factor, Amazon Cognito sets
their state to CONFIRMED.

For more information about passwordless authentication including how to set it up and how to
construct the authentication flow in your application, see Authentication with Amazon Cognito
user pools.

The following procedure describes the user experience in a custom-built login mechanism with
local users in a RESET_REQUIRED after you import a CSV file. If your users sign in with managed
login, instruct them to select the Forgot password? option, provide the code from their email or
text message, and set a password.

Requiring imported users to reset their passwords

1. In your app, silently attempt sign-in for the current user with InitiateAuth using a random
password.

Importing users into a user pool 841

Amazon Cognito Developer Guide

2. Amazon Cognito returns a NotAuthorizedException when
PreventUserExistenceErrors is enabled. Otherwise, it returns
PasswordResetRequiredException.

3. Your app makes a ForgotPassword API request and resets the user's password.

a. The app submits the username in a ForgotPassword API request.

b. Amazon Cognito sends a code to the verified email or phone number. The
destination depends on the values you provided for email_verified and
phone_number_verified in your CSV file. The response to the ForgotPassword
request indicates the destination of the code.

Note

Your user pool must be configured to verify emails or phone numbers. For more
information, see Signing up and confirming user accounts.

c. Your app displays a message to your user to check the location where the code was sent,
and prompts your user to enter the code and a new password.

d. The user enters the code and new password in the app.

e. The app submits the code and new password in a ConfirmForgotPassword API request.

f. Your app redirects your user to sign-in.

Working with user attributes

Attributes are pieces of information that help you identify individual users, such as name, email
address, and phone number. A new user pool has a set of default standard attributes. You can
also add custom attributes to your user pool definition in the Amazon Web Services Management
Console. This topic describes those attributes in detail and gives you tips on how to set up your
user pool.

Don't store all information about your users in attributes. For example, keep user data that changes
frequently, such as usage statistics or game scores, in a separate data store, such as Amazon
Cognito Sync or Amazon DynamoDB.

Sanitize the inputs for user-attribute string values before you submit them to your user pool. One
method to analyze proposed user attribute values is with a Lambda trigger like pre sign-up.

Attributes 842

Amazon Cognito Developer Guide

Note

Some documentation and standards refer to attributes as members.

Topics

• Standard attributes

• Username and preferred username

• Customizing sign-in attributes

• Custom attributes

• Attribute permissions and scopes

Standard attributes

Amazon Cognito assigns all users a set of standard attributes based on the OpenID Connect
specification. By default, standard and custom attribute values can be any string with a length of
up to 2048 characters, but some attribute values have format restrictions.

The standard attributes are:

• name

• family_name

• given_name

• middle_name

• nickname

• preferred_username

• profile

• picture

• website

• gender

• birthdate

• zoneinfo

• locale

Attributes 843

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide

• updated_at

• address

• email

• phone_number

• sub

Except for sub, standard attributes are optional by default for all users. To make an attribute
required, during the user pool creation process, select the Required check box next to the attribute.
Amazon Cognito assigns a unique user identifier value to each user's sub attribute. Only the email
and phone_number attributes can be verified.

Standard attributes have predefined properties that you can view in the SchemaAttributes
parameter of a DescribeUserPool API response. You can set custom values for these attribute
properties, like data type, mutability, and length constraints. To modify standard attribute
properties, set their custom values in the CreateUserPool Schema parameter. The schema is also
where you set required attributes. You can't modify the properties of standard attributes when you
create user pools in the Amazon Cognito console.

Note

When you mark a standard attribute as Required, a user can't register unless they provide
a value for the attribute. To create users and not give values for required attributes,
administrators can use the AdminCreateUser API. After you create a user pool, you can't
switch an attribute between required and not required.

Standard attribute details and format restrictions

birthdate

Value must be a valid 10 character date in the format YYYY-MM-DD.

email

Users and administrators can verify email address values.

An administrator with proper Amazon Web Services account permissions can change the
user's email address and also mark it as verified. Mark an email address as verified with the
AdminUpdateUserAttributes API or the admin-update-user-attributes Amazon Command

Attributes 844

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPool.html#API_DescribeUserPool_ResponseSyntax
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Schema
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-update-user-attributes.html

Amazon Cognito Developer Guide

Line Interface (Amazon CLI) command. With this command, the administrator can change the
email_verified attribute to true. You can also edit a user in the Users menu of the Amazon
Cognito console to mark an email address as verified.

Value must be a valid email address string following the standard email format with @ symbol
and domain, up to 2048 characters in length.

phone_number

A user must provide a phone number if SMS multi-factor authentication (MFA) is active. For
more information, see Adding MFA to a user pool.

Users and administrators can verify phone number values.

An administrator with proper Amazon Web Services account permissions can change the
user's phone number and also mark it as verified. Mark a phone number as verified with the
AdminUpdateUserAttributes API or the admin-update-user-attributes Amazon CLI command.
With this command, the administrator can change the phone_number_verified attribute
to true. You can also edit a user in the Users menu of the Amazon Cognito console to mark a
phone number as verified.

Important

Phone numbers must follow these format rules: A phone number must start with a
plus (+) sign, followed immediately by the country code. A phone number can only
contain the + sign and digits. Remove any other characters from a phone number,
such as parentheses, spaces, or dashes (-) before you submit the value to the service.
For example, a phone number based in the United States must follow this format:
+14325551212.

preferred_username

You can select preferred_username as required or as an alias, but not both. If the
preferred_username is an alias, you can make a request to the UpdateUserAttributes API
operation and add the attribute value after you confirm the user.

sub

Index and search your users based on the sub attribute. The sub attribute is a unique user
identifier within each user pool. Users can change attributes like phone_number and email.

Attributes 845

https://datatracker.ietf.org/doc/html/rfc3696#section-3
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-update-user-attributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html

Amazon Cognito Developer Guide

The sub attribute has a fixed value. For more information about finding users, see Managing
and searching for user accounts.

View required attributes

Use the following procedure to view required attributes for a given user pool.

Note

You can't change required attributes after you create a user pool.

To view required attributes

1. Go to Amazon Cognito in the Amazon Web Services Management Console. If the console
prompts you, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Sign-up menu.

5. In the Required attributes section, view the required attributes of your user pool.

Username and preferred username

The username value is a separate attribute and not the same as the name attribute. Each user has
a username attribute. Amazon Cognito automatically generates a username for federated users.
You must provide a username attribute to create a local user in the Amazon Cognito directory.
After you create a user, you can't change the value of the username attribute.

Developers can use the preferred_username attribute to give users usernames that they can
change. For more information, see Customizing sign-in attributes.

If your application doesn't require a username, you don't need to ask users to provide one. Your
app can create a unique username for users in the background. This can be useful if you want users
to register and sign in with an email address and password. For more information, see Customizing
sign-in attributes.

Attributes 846

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

The username must be unique within a user pool. A username can be reused, but only after you
delete it and it is no longer in use. For information about the string constraints to the username
attributes, see the username property of a SignUp API request.

Customizing sign-in attributes

When you create a user pool, you can set up username attributes if you want your users to be able
to sign up and sign in with an email address or phone number as their username. Alternatively,
you can set up alias attributes to give your users the option: they can include multiple attributes
when they sign up, and then sign in with a username, preferred username, email address, or phone
number.

Important

After you create a user pool, you can't change this setting.

How to choose between alias attributes and username attributes

Your requirement Alias attributes Username attributes

Users have multiple sign-in
attributes

Yes¹ No²

Users must verify email
address or phone number
before they can sign in with it

Yes No

Sign up users with duplicate
email addresses or phone
numbers and prevent
UsernameExistsExce
ption errors³

Yes No

Can assign the same email
address or phone number
attribute value to more than
one user

Yes⁴ No

Attributes 847

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html#CognitoUserPools-SignUp-request-Username

Amazon Cognito Developer Guide

¹ Available sign-in attributes are username, email address, phone number, and preferred username.

² Can sign in with email address or phone number.

³ Your user pool doesn't generate UsernameExistsException errors when users register with
potentially-duplicate email addresses or phone numbers, but no username. This behavior is
independent of Prevent username existence errors, which applies to sign-in, but not sign-up,
operations.

⁴ Only the last user who has verified the attribute can sign in with it.

Option 1: Multiple sign-in attributes (alias attributes)

An attribute is an alias when users have a username but can also sign in with that attribute. Set up
aliases when you want to allow your users to choose between their username and other attribute
values in the username field of your sign-in form. The username attribute is a fixed value that
users can't change. If you mark an attribute as an alias, users can sign in with that attribute in
place of the username. You can mark the email address, phone number, and preferred username
attributes as aliases. For example, if you select email address and phone number as aliases for a
user pool, users in that user pool can sign in with their username, email address, or phone number,
along with their password.

To choose alias attributes, select User name and at least one additional sign-in option when you
create your user pool.

Note

When you configure your user pool to be case insensitive, a user can use either lowercase
or uppercase letters to sign up or sign in with their alias. For more information, see
CreateUserPool in the Amazon Cognito user pools API Reference.

If you select email address as an alias, Amazon Cognito doesn't accept a username that matches
a valid email address format. Similarly, if you select phone number as an alias, Amazon Cognito
doesn't accept a username for that user pool that matches a valid phone number format.

Note

Alias values must be unique in a user pool. If you configure an alias for an email address or
phone number, the value that you provide can be in a verified state in only one account.

Attributes 848

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html

Amazon Cognito Developer Guide

During sign-up, if your user provides an email address or phone number as an alias value
and another user has already used that alias value, registration succeeds. However, when
a user tries to confirm the account with this email (or phone number) and enters the valid
code, Amazon Cognito returns an AliasExistsException error. The error indicates to
the user that an account with this email address (or phone number) already exists. At this
point, the user can abandon their attempt to create the new account and instead try to
reset the password for the old account. If the user continues to create the new account,
your app must call the ConfirmSignUp API with the forceAliasCreation option.
ConfirmSignUp with forceAliasCreation moves the alias from the previous account
to the newly created account, and marks the attribute unverified in the previous account.

Phone numbers and email addresses only become active aliases for a user after your user verifies
the phone numbers and email addresses. We recommend that you choose automatic verification of
email addresses and phone numbers if you use them as aliases.

Choose alias attributes to prevent UsernameExistsException errors for email address and
phone number attributes when your users sign up.

Activate the preferred_username attribute so that your user can change the username that
they use to sign in while their username attribute value doesn't change. If you want to set up
this user experience, submit the new username value as a preferred_username and choose
preferred_username as an alias. Then users can sign in with the new value that they entered.
If you select preferred_username as an alias, your user can provide the value only when they
confirm an account. They can't provide the value during registration.

When the user signs up with a username, you can choose if they can sign in with one or more of the
following aliases.

• Verified email address

• Verified phone number

• Preferred username

After the user signs up, they can change these aliases.

Attributes 849

Amazon Cognito Developer Guide

Important

When your user pool supports sign-in with aliases and you want to authorize or look up
a user, don't identify your user by any of their sign-in attributes. The fixed-value user
identifier sub is the only consistent indicator of your user's identity.

Include the following steps when you create the user pool so that users can sign in with an alias.

Phone number or email address (console)

You must set email address and phone number as alias attributes when you create a user pool.

To create a user pool with username aliases in the Amazon Cognito console

1. Go to Amazon Cognito in the Amazon Web Services Management Console. If the console
prompts you, enter your Amazon credentials.

2. Create a new user pool with the Get started or Create user pool button.

3. Choose application settings in Define your application.

4. In Configure options under Options for sign-in identifiers, select the checkbox next to
Username and at least one of the other options, Email and Phone number.

5. Choose your alias attributes as Required attributes for sign-up. In the managed login sign-
up form, Amazon Cognito prompts new users to provide values for required attributes.

6. Under Add a return URL, set up an application callback URL for redirect after managed
login sign-in.

7. Choose Create.

Phone number or email address (API/SDK)

Create a new user pool with the CreateUserPool API operation. Configure the
AliasAttributes parameter as shown. You can remove the email entry if you only want
phone-number aliases, or remove the phone_number entry if you only want email-address
aliases.

"AliasAttributes": [
 "email",
 "phone_number"

Attributes 850

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html

Amazon Cognito Developer Guide

],

Preferred username (API/SDK)

The Amazon Cognito console creates user pools without preferred_username as an alias. To
create user pools with a preferred_username alias, set up user pools with CreateUserPool
API requests in an Amazon SDK. To support the creation of preferred username attributes at
sign-up, set preferred_username as a required attribute. In the managed login sign-up
form, Amazon Cognito prompts new users to provide values for required attributes. You can set
preferred_username as a required attribute in the Amazon Cognito console, but this doesn't
make it available as an alias.

Configure as an alias

Configure preferred_username as an alias in the AliasAttributes parameter of a
CreateUserPool request as shown. Remove any values that you don't want as alias attributes
from the list.

"AliasAttributes": [
 "email",
 "phone_number",
 "preferred_username"
],

Configure as required

In the managed login sign-up form, Amazon Cognito prompts new users to provide values for
required attributes. Configure preferred_username as required in the SchemaAttributes
parameter of a CreateUserPool request.

To set preferred username as a required attribute, configure it as shown. The following
example modifies the default schema of preferred_username to set it as required.
Other schema parameters like AttributeDataType (defaults to string) and
StringAttributeConstraints (defaults to 1-99 characters in length) assume default
values.

"Schema": [
 {
 "Name": "preferred_username",

Attributes 851

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html

Amazon Cognito Developer Guide

 "Required": true
 }
]

Option 2: Email address or phone number as a sign-in attribute (username attributes)

When the user signs up with an email address or phone number as their username, you can choose
if they can sign up with only email addresses, only phone numbers, or either one.

To choose username attributes, don't select Username as a sign-in option when you create your
user pool.

The email address or phone number must be unique, and it must not already be in use by another
user. It doesn't have to be verified. After the user has signed up with an email address or phone
number, the user can't create a new account with the same email address or phone number. The
user can only reuse the existing account and reset the account password, if needed. However, the
user can change the email address or phone number to a new email address or phone number. If
the email address or phone number isn't already in use, it becomes the new username.

When you select both email address and phone number as username attributes, users can sign
in with one or the other, even if they provide values for both attributes. The sign-in username is
based on the value that you pass in the Username parameter of SignUp.

Note

If a user signs up with an email address as their username, they can change the username
to another email address, but they can't change it to a phone number. If they sign up with
a phone number, they can change the username to another phone number, but they can't
change it to an email address.

Use the following steps during the user pool creation process to set up sign-up and sign-in with
email address or phone number.

Username attributes (console)

The following procedure creates a user pool with email address or phone number username
attributes. The difference in the process for username attributes in the Amazon Cognito console
is that you don't also set Username as a sign-in attribute.

Attributes 852

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html#CognitoUserPools-SignUp-request-Username

Amazon Cognito Developer Guide

To create a user pool with username attributes in the Amazon Cognito console

1. Go to Amazon Cognito in the Amazon Web Services Management Console. If the console
prompts you, enter your Amazon credentials.

2. Create a new user pool with the Get started or Create user pool button.

3. Choose application settings in Define your application.

4. In Configure options under Options for sign-in identifiers, select your username
attributes: Email, Phone number, or both. Leave Username unchecked.

5. As a best practice, select your username attributes as Required attributes for sign-up. In
the managed login sign-up form, Amazon Cognito prompts new users to provide values for
required attributes. If you don't set your username attributes as required, Amazon Cognito
doesn't prompt new users to provide values for them. In that scenario, you must configure
your application to collect and submit email addresses or phone numbers for each user
before they can sign in.

6. Under Add a return URL, set up an application callback URL for redirect after managed
login sign-in.

7. Choose Create.

Username attributes (API/SDK)

In a CreateUserPool request, configure the UsernameAttributes parameter as shown. To
allow sign-in only with email-address usernames, specify email alone in this list. To allow sign-
in only with phone-number usernames, specify phone_number alone. This parameter overrides
username as a sign-in option.

"UsernameAttributes": [
 "email",
 "phone_number"
],

When you configure username attributes, your can make SignUp API requests that pass an email
address or phone number in the username parameter. The following is the behavior of the
codeSignUp API operation with username attributes.

• If the username string is in valid email address format, for example user@example.com, the
user pool automatically populates the email attribute of the user with the username value.

Attributes 853

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html

Amazon Cognito Developer Guide

• If the username string is in valid phone number format, for example +12065551212, the user
pool automatically populates the phone_number attribute of the user with the username value.

• If the username string format isn't in email address or phone number format, the SignUp API
returns an exception.

• If the username string contains an email address or phone number that is already in use, the
SignUp API returns an exception.

• The SignUp API populates the username attribute with a UUID for your user. This UUID has the
same value as the sub claim in the user identity token.

You can use an email address or phone number in place of the username in all APIs except
the ListUsers operation. In ListUsers API requests, you can specify a Filter of email or
phone_number. If you filter by username, you must supply the UUID username, not the email
address or phone number.

Custom attributes

You can add up to 50 custom attributes to your user pool. You can specify a minimum and/or
maximum length for custom attributes. However, the maximum length for any custom attribute
can be no more than 2048 characters. The name of a custom attribute must match the regular
expression pattern that's described in the Name parameter of SchemaAttributeType.

Each custom attribute has the following characteristics:

• You can define it as a string or a number. Amazon Cognito writes custom attribute values to the
ID token only as strings.

• You can't require that users provide a value for the attribute.

• You can't remove or change it after you add it to the user pool.

• The character length of the attribute name is within the limit that Amazon Cognito accepts. For
more information, see Quotas in Amazon Cognito.

• It can be mutable or immutable. You can only write a value to an immutable attribute when
you create a user. You can change the value of a mutable attribute if your app client has write
permission to the attribute. See Attribute permissions and scopes for more information.

Attributes 854

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SchemaAttributeType.html

Amazon Cognito Developer Guide

Note

In your code, and in rules settings for Using role-based access control, custom attributes
require the custom: prefix to distinguish them from standard attributes.

You can also add developer attributes when you create user pools, in the SchemaAttributes
property of CreateUserPool. Developer attributes have a dev: prefix. You can only modify a user's
developer attributes with Amazon credentials. Developer attributes are a legacy feature that
Amazon Cognito replaced with app client read-write permissions.

Use the following procedure to create a new custom attribute.

To add a custom attribute using the console

1. Go to Amazon Cognito in the Amazon Web Services Management Console. If the console
prompts you, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Sign-up menu, and in the Custom attributes section, choose Add custom
attributes.

5. On the Add custom attributes page, provide the following details about the new attribute:

• Enter a Name.

• Select a Type of either String or Number.

• Enter a Min string length or number value.

• Enter a Max string length or number value.

• Select Mutable if you want to give users permission to change the value of a custom
attribute after they set the initial value.

6. Choose Save changes.

Attribute permissions and scopes

For each app client, you can set read and write permissions for each user attribute. This way, you
can control the access that any app has to read and modify each attribute that you store for your
users. For example, you might have a custom attribute that indicates whether a user is a paying

Attributes 855

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

customer or not. Your apps might be able to see this attribute but not change it directly. Instead,
you would update this attribute using an administrative tool or a background process. You can
set permissions for user attributes from the Amazon Cognito console, the Amazon Cognito API,
or the Amazon CLI. By default, any new custom attributes aren't available until you set read and
write permissions for them. By default, when you create a new app client, you grant your app
read and write permissions for all standard and custom attributes. To limit your app to only the
amount of information that it requires, assign specific permissions to attributes in your app client
configuration.

As a best practice, specify attribute read and write permissions when you create an app client.
Grant your app client access to the minimum set of user attributes that you need for the operation
of your application.

Note

DescribeUserPoolClient only returns values for ReadAttributes and WriteAttributes
when you configure app client permissions other than the default.

To update attribute permissions (Amazon Web Services Management Console)

1. Go to Amazon Cognito in the Amazon Web Services Management Console. If the console
prompts you, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the App clients menu and choose an app client from the list.

5. In the Attribute permissions tab, choose Edit.

6. On the Edit attribute read and write permissions page, configure your read and write
permissions, and then choose Save changes.

Repeat these steps for each app client that uses the custom attribute.

For each app client, you can mark attributes as readable or writeable. This applies to both
standard and custom attributes. Your app can retrieve the value of attributes that you mark
as readable, and can set or modify the value of attributes that you mark as writeable. If your
app tries to set a value for an attribute that it isn't authorized to write, Amazon Cognito returns
NotAuthorizedException. GetUser requests include an access token with an app client claim;

Attributes 856

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolClient.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html

Amazon Cognito Developer Guide

Amazon Cognito only returns values for attributes that your app client can read. Your user's ID
token from an app only contains claims that correspond to the readable attributes. All app clients
can write user pool required attributes. You can only set the value of an attribute in an Amazon
Cognito user pools API request when you also provide a value for any required attributes that don't
yet have a value.

Custom attributes have distinct features for read and write permissions. You can create them as
mutable or immutable for the user pool, and you can set them as read or write attributes for any
app client.

An immutable custom attribute can be updated once, during user creation. You can populate an
immutable attribute with the following methods.

• SignUp: A user signs up with an app client that has write access to an immutable custom
attribute. They provide a value for that attribute.

• Sign-in with a third-party IdP: A user signs in to an app client that has write access to an
immutable custom attribute. Your user pool configuration for their IdP has a rule to map a
provided claim to an immutable attribute. This is possible but not practical, because the user will
only be able to sign in one time. On sign-in attempts after their first, Amazon Cognito rejects the
attempt because of the mapping rule to a now-unwriteable attribute.

• AdminCreateUser: You provide a value for an immutable attribute.

Attribute permissions with scopes

In user pools that you configure with an Amazon SDK or CDK, the REST API, or the Amazon
CLI, you can configure app client read or write access with the OIDC scope oidc:profile. The
oidc:profile grants read or write access to the following standard attributes:

• name

• family_name

• given_name

• middle_name

• nickname

• preferred_username

• profile

• picture

Attributes 857

Amazon Cognito Developer Guide

• website

• gender

• birthdate

• zoneinfo

• locale

This list is the OIDC standard attributes minus email, phone_number, sub, and address, as
defined in section 2.4 of the OIDC specification. For information about the scopes that you can
assign to your app clients, see Scopes, M2M, and APIs with resource servers.

To configure your app client to write to the attributes under the oidc:profile scope, set the
value of WriteAttributes to oidc:profile, plus any other attributes that you want to permit your
application to modify, in a CreateUserPoolClient or UpdateUserPoolClient API request. Similarly, to
grant read access to these attributes, add oidc:profile to the value of ReadAttributes.

You can change attribute permissions and scopes after you have created your user pool.

Understanding user pool JSON web tokens (JWTs)

Tokens are artifacts of authentication that your applications can use as proof of OIDC
authentication and to request access to resources. The claims in tokens are information about your
user. The ID token contains claims about their identity, like their username, family name, and email
address. The access token contains claims like scope that the authenticated user can use to access
third-party APIs, Amazon Cognito user self-service API operations, and the userInfo endpoint.
The access and ID tokens both include a cognito:groups claim that contains your user's group
membership in your user pool. For more information about user pool groups, see Adding groups to
a user pool.

Amazon Cognito also has refresh tokens that you can use to get new tokens or revoke existing
tokens. Refresh a token to retrieve a new ID and access tokens. Revoke a token to revoke user
access that is allowed by refresh tokens.

Amazon Cognito issues tokens as base64url-encoded strings. You can decode any Amazon Cognito
ID or access token from base64url to plaintext JSON. Amazon Cognito refresh tokens are
encrypted, opaque to user pools users and administrators, and can only be read by your user pool.

Authenticating with tokens

User pool tokens 858

https://openid.net/specs/openid-connect-basic-1_0.html#Scopes
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-WriteAttributes
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-ReadAttributes
https://datatracker.ietf.org/doc/html/rfc4648#section-5

Amazon Cognito Developer Guide

When a user signs into your app, Amazon Cognito verifies the login information. If the login
is successful, Amazon Cognito creates a session and returns an ID token, an access token, and
a refresh token for the authenticated user. You can use the tokens to grant your users access
to downstream resources and APIs like Amazon API Gateway. Or you can exchange them for
temporary Amazon credentials to access other Amazon Web Services services.

Storing tokens

Your app must be able to store tokens of varying sizes. Token size can change for reasons including,
but not limited to, additional claims, changes in encoding algorithms, and changes in encryption
algorithms. When you enable token revocation in your user pool, Amazon Cognito adds additional
claims to JSON Web Tokens, increasing their size. The new claims origin_jti and jti are added
to access and ID tokens. For more information about token revocation, see Revoking tokens.

Important

As a best practice, secure all tokens in transit and storage in the context of your application.
Tokens can contain personally-identifying information about your users, and information
about the security model that you use for your user pool.

Customizing tokens

You can customize the access and ID tokens that Amazon Cognito passes to your app. In a Pre
token generation Lambda trigger, you can add, modify, and suppress token claims. The pre token
generation trigger is a Lambda function that Amazon Cognito sends a default set of claims to. The
claims include OAuth 2.0 scopes, user pool group membership, user attributes, and others. The
function can then take the opportunity to make changes at runtime and return updated token
claims to Amazon Cognito.

Additional costs apply to access token customization with version 2 events. For more information,
see Amazon Cognito Pricing.

Topics

User pool tokens 859

https://docs.amazonaws.cn/cognito/latest/developerguide/token-revocation.html
https://www.amazonaws.cn/cognito/pricing/

Amazon Cognito Developer Guide

• Understanding the identity (ID) token

• Understanding the access token

• Refresh tokens

• Ending user sessions with token revocation

• Verifying JSON web tokens

• Managing user pool token expiration and caching

Understanding the identity (ID) token

The ID token is a JSON Web Token (JWT) that contains claims about the identity of the
authenticated user, such as name, email, and phone_number. You can use this identity
information inside your application. The ID token can also be used to authenticate users to your
resource servers or server applications. You can also use an ID token outside of the application with
your web API operations. In those cases, you must verify the signature of the ID token before you
can trust any claims inside the ID token. See Verifying JSON web tokens.

You can set the ID token expiration to any value between 5 minutes and 1 day. You can set this
value per app client.

Important

When your user signs in with managed login, Amazon Cognito sets session cookies that
are valid for 1 hour. If you use managed login for authentication in your application,
and specify a minimum duration of less than 1 hour for your access and ID tokens, your
users will still have a valid session until the cookie expires. If the user has tokens that
expire during the one-hour session, the user can refresh their tokens without the need to
reauthenticate.

ID Token Header

The header contains two pieces of information: the key ID (kid), and the algorithm (alg).

{
"kid" : "1234example=",
"alg" : "RS256"
}

ID tokens 860

https://tools.ietf.org/html/rfc7519

Amazon Cognito Developer Guide

kid

The key ID. Its value indicates the key that was used to secure the JSON Web Signature (JWS) of
the token. You can view your user pool signing key IDs at the jwks_uri endpoint.

For more information about the kid parameter, see the Key identifier (kid) header parameter.

alg

The cryptographic algorithm that Amazon Cognito used to secure the access token. User pools
use an RS256 cryptographic algorithm, which is an RSA signature with SHA-256.

For more information about the alg parameter, see Algorithm (alg) header parameter.

ID token default payload

This is a example payload from an ID token. It contains claims about the authenticated user. For
more information about OpenID Connect (OIDC) standard claims, see the list of OIDC standard
claims. You can add claims of your own design with a Pre token generation Lambda trigger.

<header>.{
 "sub": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "cognito:groups": [
 "test-group-a",
 "test-group-b",
 "test-group-c"
],
 "email_verified": true,
 "cognito:preferred_role": "arn:aws:iam::111122223333:role/my-test-role",
 "iss": "https://cognito-idp.us-west-2.amazonaws.com/us-west-2_example",
 "cognito:username": "my-test-user",
 "middle_name": "Jane",
 "nonce": "abcdefg",
 "origin_jti": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "cognito:roles": [
 "arn:aws:iam::111122223333:role/my-test-role"
],
 "aud": "xxxxxxxxxxxxexample",
 "identities": [
 {
 "userId": "amzn1.account.EXAMPLE",
 "providerName": "LoginWithAmazon",
 "providerType": "LoginWithAmazon",

ID tokens 861

https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41#section-4.5
https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41#section-4.4
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide

 "issuer": null,
 "primary": "true",
 "dateCreated": "1642699117273"
 }
],
 "event_id": "64f513be-32db-42b0-b78e-b02127b4f463",
 "token_use": "id",
 "auth_time": 1676312777,
 "exp": 1676316377,
 "iat": 1676312777,
 "jti": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "email": "my-test-user@example.com"
}
.<token signature>

sub

A unique identifier (UUID), or subject, for the authenticated user. The username might not be
unique in your user pool. The sub claim is the best way to identify a given user.

cognito:groups

An array of the names of user pool groups that have your user as a member. Groups can be an
identifier that you present to your app, or they can generate a request for a preferred IAM role
from an identity pool.

cognito:preferred_role

The ARN of the IAM role that you associated with your user's highest-priority user pool
group. For more information about how your user pool selects this role claim, see Assigning
precedence values to groups.

iss

The identity provider that issued the token. The claim has the following format.

https://cognito-idp.<Region>.amazonaws.com/<your user pool ID>

cognito:username

The username of your user in your user pool.

nonce

The nonce claim comes from a parameter of the same name that you can add to requests
to your OAuth 2.0 authorize endpoint. When you add the parameter, the nonce claim is

ID tokens 862

Amazon Cognito Developer Guide

included in the ID token that Amazon Cognito issues, and you can use it to guard against replay
attacks. If you do not provide a nonce value in your request, Amazon Cognito automatically
generates and validates a nonce when you authenticate through a third-party identity provider,
then adds it as a nonce claim to the ID token. The implementation of the nonce claim in
Amazon Cognito is based on OIDC standards.

origin_jti

A token-revocation identifier associated with your user's refresh token. Amazon Cognito
references the origin_jti claim when it checks if you revoked your user's token with the
Revoke endpoint or the RevokeToken API operation. When you revoke a token, Amazon Cognito
invalidates all access and ID tokens with the same origin_jti value.

cognito:roles

An array of the names of the IAM roles associated with your user's groups. Every user pool
group can have one IAM role associated with it. This array represents all IAM roles for your user's
groups, regardless of precedence. For more information, see Adding groups to a user pool.

aud

The user pool app client that authenticated your user. Amazon Cognito renders the same value
in the access token client_id claim.

identities

The contents of the user's identities attribute. The attribute contains information about
each third-party identity provider profile that you've linked to a user, either by federated sign-in
or by linking a federated user to a local profile. This information contains their provider name,
their provider unique ID, and other metadata.

token_use

The intended purpose of the token. In an ID token, its value is id.

auth_time

The authentication time, in Unix time format, that your user completed authentication.

exp

The expiration time, in Unix time format, that your user's token expires.

iat

The issued-at time, in Unix time format, that Amazon Cognito issued your user's token.

ID tokens 863

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html

Amazon Cognito Developer Guide

jti

The unique identifier of the JWT.

The ID token can contain OIDC standard claims that are defined in OIDC standard claims. The ID
token can also contain custom attributes that you define in your user pool. Amazon Cognito writes
custom attribute values to the ID token as strings regardless of attribute type.

Note

User pool custom attributes are always prefixed with custom:.

ID Token Signature

The signature of the ID token is calculated based on the header and payload of the JWT token.
Before you accept the claims in any ID token that your app receives, verify the signature of the
token. For more information, see Verifying a JSON Web Token. Verifying JSON web tokens.

Understanding the access token

The user pool access token contains claims about the authenticated user, a list of the user's groups,
and a list of scopes. The purpose of the access token is to authorize API operations. Your user pool
accepts access tokens to authorize user self-service operations. For example, you can use the access
token to grant your user access to add, change, or delete user attributes.

With OAuth 2.0 scopes in an access token, derived from the custom scopes that you add to your
user pool, you can authorize your user to retrieve information from an API. For example, Amazon
API Gateway supports authorization with Amazon Cognito access tokens. You can populate a REST
API authorizer with information from your user pool, or use Amazon Cognito as a JSON Web Token
(JWT) authorizer for an HTTP API. To generate an access token with custom scopes, you must
request it through your user pool public endpoints.

With the Essentials or Plus feature plan, you can also implement a pre token generation Lambda
trigger that adds scopes to your access tokens at runtime. For more information, see Pre token
generation Lambda trigger.

A user's access token with the openid scope is permission to request more information about
your user's attributes from the userInfo endpoint. The amount of information from the userInfo

Access tokens 864

http://openid.net/specs/openid-connect-core-1_0.html#Claims
https://www.rfc-editor.org/rfc/rfc6749#section-3.3
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html

Amazon Cognito Developer Guide

endpoint derives from the additional scopes in the access token: for example, profile for all user
data, email for their email address.

A user's access token with the aws.cognito.signin.user.admin scope is permission to read
and write user attributes, list authentication factors, configure multi-factor authentication (MFA)
preferences, and manage remembered devices. The level of access to attributes that your access
token grants to this scope matches the attribute read/write permissions you assign to your app
client.

The access token is a JSON Web Token (JWT). The header for the access token has the same
structure as the ID token. Amazon Cognito signs access tokens with a different key from the key
that signs ID tokens. The value of an access key ID (kid) claim won't match the value of the kid
claim in an ID token from the same user session. In your app code, verify ID tokens and access
tokens independently. Don't trust the claims in an access token until you verify the signature. For
more information, see Verifying JSON web tokens. You can set the access token expiration to any
value between 5 minutes and 1 day. You can set this value per app client.

Important

For access and ID tokens, don't specify a minimum less than an hour if you use managed
login. Managed login sets browsers cookies that are valid for one hour. If you configure
an access token duration of less than an hour, this has no effect on the validity of the
managed login cookie and users' ability to reauthenticate without additional credentials for
one hour after initial sign-in.

Access token header

The header contains two pieces of information: the key ID (kid), and the algorithm (alg).

{
"kid" : "1234example="
"alg" : "RS256",
}

kid

The key ID. Its value indicates the key that was used to secure the JSON Web Signature (JWS) of
the token. You can view your user pool signing key IDs at the jwks_uri endpoint.

Access tokens 865

https://www.rfc-editor.org/rfc/rfc7519

Amazon Cognito Developer Guide

For more information about the kid parameter, see the Key identifier (kid) header parameter.

alg

The cryptographic algorithm that Amazon Cognito used to secure the access token. User pools
use an RS256 cryptographic algorithm, which is an RSA signature with SHA-256.

For more information about the alg parameter, see Algorithm (alg) header parameter.

Access token default payload

This is a sample payload from an access token. For more information, see JWT claims. You can add
claims of your own design with a Pre token generation Lambda trigger.

<header>.
{
 "sub":"aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "device_key": "aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "cognito:groups":[
 "testgroup"
],
 "iss":"https://cognito-idp.us-west-2.amazonaws.com/us-west-2_example",
 "version":2,
 "client_id":"xxxxxxxxxxxxexample",
 "origin_jti":"aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "event_id":"aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "token_use":"access",
 "scope":"phone openid profile resourceserver.1/appclient2 email",
 "auth_time":1676313851,
 "exp":1676317451,
 "iat":1676313851,
 "jti":"aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",
 "username":"my-test-user"
}
.<token signature>

sub

A unique identifier (UUID), or subject, for the authenticated user. The username might not be
unique in your user pool. The sub claim is the best way to identify a given user.

Access tokens 866

https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41#section-4.5
https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41#section-4.4
https://tools.ietf.org/html/rfc7519#section-4

Amazon Cognito Developer Guide

cognito:groups

An array of the names of user pool groups that have your user as a member.

iss

The identity provider that issued the token. The claim has the following format.

https://cognito-idp.us-east-1.amazonaws.com/us-east-1_EXAMPLE

client_id

The user pool app client that authenticated your user. Amazon Cognito renders the same value
in the ID token aud claim.

origin_jti

A token-revocation identifier associated with your user's refresh token. Amazon Cognito
references the origin_jti claim when it checks if you revoked your user's token with the
Revoke endpoint or the RevokeToken API operation. When you revoke a token, Amazon Cognito
no longer validates access and ID tokens with the same origin_jti value.

token_use

The intended purpose of the token. In an access token, its value is access.

scope

A list of OAuth 2.0 scopes issued to the signed-in user. Scopes define the access that
the token provides to external APIs, user self-service operations, and user data on the
userInfo endpoint. A token from the Token endpoint can contain any scopes that your
app client supports. A token from Amazon Cognito API sign-in only contains the scope
aws.cognito.signin.user.admin.

auth_time

The authentication time, in Unix time format, that your user completed authentication.

exp

The expiration time, in Unix time format, that your user's token expires.

iat

The issued-at time, in Unix time format, that Amazon Cognito issued your user's token.

jti

The unique identifier of the JWT.

Access tokens 867

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html

Amazon Cognito Developer Guide

username

The user's username in the user pool.

More resources

• How to customize access tokens in Amazon Cognito user pools

Access token signature

The signature of the access token, signed with the key advertised at the .well-known/
jwks.json endpoint, validates the integrity of the token header and payload. When you use
access tokens to authorize access to external APIs, always configure your API authorizer to verify
this signature against the key that signed it. For more information, see Verifying JSON web tokens.

Refresh tokens

You can use the refresh token to retrieve new ID and access tokens. By default, the refresh
token expires 30 days after your application user signs into your user pool. When you create an
application for your user pool, you can set the application's refresh token expiration to any value
between 60 minutes and 10 years.

Getting new access and identity tokens with a refresh token

Amazon Cognito issues refresh tokens in response to successful authentication with the managed
login authorization-code flow and with API operations or SDK methods. The refresh token returns
new ID and access tokens, and optionally a new refresh token. You can use refresh tokens in the
following ways.

GetTokensFromRefreshToken

The GetTokensFromRefreshToken API operation issues new ID and access tokens from a valid
refresh token. You also get a new refresh token if you've enabled refresh token rotation.

InitiateAuth and AdminitiateAuth

The AdminInitiateAuth or InitiateAuth API operations include the REFRESH_TOKEN_AUTH
authentication flow. In this flow, you pass a refresh token and get new ID and access tokens.
You can't authenticate with REFRESH_TOKEN_AUTH in app clients with refresh token rotation
enabled.

Refresh tokens 868

https://www.amazonaws.cn/blogs/security/how-to-customize-access-tokens-in-amazon-cognito-user-pools/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

OAuth token endpoint

The token endpoint in user pools with a domain has a refresh_token grant type that issues
new ID, access, and optionally (with refresh token rotation) refresh tokens from a valid refresh
token.

Refresh token rotation

With refresh token rotation, you can optionally configure your user pool to invalidate the original
refresh token and issue a new refresh token with each token refresh. When this setting is enabled,
each successful request in all forms of token refresh return a new ID, access, and refresh token.
The new refresh token is valid for the remaining duration of the original refresh token. You can
configure app clients to rotate refresh tokens or to carry over the original refresh token. To allow
for retries for a brief duration, you can also configure a grace period for the original refresh token
of up to 60 seconds.

Things to know about refresh token rotation

• After you enable refresh token rotation, new claims are added in JSON web tokens from your
user pool. The origin_jti and jti claims are added to access and ID tokens. These claims
increase the size of the JWTs.

• Refresh token rotation isn't compatible with the authentication flow REFRESH_TOKEN_AUTH.
To implement refresh token rotation, you must disable this authentication flow in
your app client and design your application to submit token-refresh requests with the
GetTokensFromRefreshToken API operation or the equivalent SDK method.

• With refresh token rotation inactive, you can complete token-refresh requests with either
GetTokensFromRefreshToken or REFRESH_TOKEN_AUTH.

• When device remembering is active in your user pool, you must provide the device key in
GetTokensFromRefreshToken requests. If your user doesn't have a confirmed-device key that
your application submits in the initial authentication request, Amazon Cognito issues a new one.
To refresh tokens in this configuration, you must provide a device key, whether you specified one
in AuthParameters or received a new one in the authentication response.

• You can pass ClientMetadata to the pre token generation Lambda trigger in your
GetTokensFromRefreshToken request. This data, which gets passed to the input event for
your trigger, delivers additional context that you can use in the custom logic of your Lambda
function.

Refresh tokens 869

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html

Amazon Cognito Developer Guide

As a security best practice, enable refresh token rotation on your app clients.

Enable refresh token rotation (console)

The following procedure turns refresh token rotation on or off for your app client. This
procedure requires an existing app client. To learn more about creating an app client, see
Application-specific settings with app clients.

To enable refresh token rotation

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Navigate to the App clients menu and select an existing app client.

5. Select Edit from the App client information section of the page.

6. Under Advanced security configurations, locate the Enable refresh token rotation option.

7. To enable rotation, select the checkbox. To disable rotation, deselect the checkbox.

8. Under Refresh token rotation grace period, enter a number of seconds, up to 60, that you
want to set as the delay before the rotated-out refresh token is revoked.

Enable refresh token rotation (API)

Configure refresh token rotation in a CreateUserPoolClient or UpdateUserPoolClient API
request. The following partial request body turns on refresh token rotation and sets the grace
period to ten seconds.

"RefreshTokenRotation" : {
 "Feature" : "ENABLED,
 "RetryGracePeriodSeconds" : 10
}

API and SDK token refresh

There are two ways to use the refresh token to get new ID and access tokens with the user pools
API, depending on whether refresh token rotation is active. In app clients with refresh token
rotation active, use the GetTokensFromRefreshToken API operation. In app clients without refresh

Refresh tokens 870

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html

Amazon Cognito Developer Guide

token rotation, use the REFRESH_TOKEN_AUTH flow of the AdminInitiateAuth or InitiateAuth API
operations.

Note

Users can authenticate with user pools in managed login or in custom applications that you
build with Amazon SDKs and Amazon Cognito API operations. The REFRESH_TOKEN_AUTH
flow and GetTokensFromRefreshToken can both complete token refresh for
managed login users. Token refresh in custom applications doesn't affect managed
login sessions. These sessions are set in a browser cookie and are valid for one hour. The
GetTokensFromRefreshToken response issues new ID, access, and optionally refresh
tokens, but doesn't renew the managed login session cookie.
REFRESH_TOKEN_AUTH isn't available in app clients with refresh token rotation enabled.

GetTokensFromRefreshToken

GetTokensFromRefreshToken returns new ID, access and refresh tokens from a request
that you authorize with a refresh token. The following is an example request body for
GetTokensFromRefreshToken. You can submit client metadata to Lambda triggers in
requests to this operation.

{
 "RefreshToken": "eyJjd123abcEXAMPLE",
 "ClientId": "1example23456789",
 "ClientSecret": "myappclientsecret123abc",
 "ClientMetadata": {
 "MyMetadataKey" : "MyMetadataValue"
 },
}

AdminInitiateAuth/InitiateAuth

To use the refresh token when refresh token rotation is inactive, use the AdminInitiateAuth
or InitiateAuth API operations. Pass REFRESH_TOKEN_AUTH for the AuthFlow parameter. In
the AuthParameters property of AuthFlow, pass your user's refresh token as the value of
"REFRESH_TOKEN". Amazon Cognito returns new ID and access tokens after your API request
passes all challenges.

Refresh tokens 871

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetTokensFromRefreshToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

The following is an example request body for a token refresh with the InitiateAuth or
AdminInitiateAuth API.

{
 "AuthFlow": "REFRESH_TOKEN_AUTH",
 "ClientId": "1example23456789",
 "UserPoolId": "us-west-2_EXAMPLE",
 "AuthParameters": {
 "REFRESH_TOKEN": "eyJjd123abcEXAMPLE",
 "SECRET_HASH": "kT5acwCVrbD6JexhW3EQwnRSe6fLuPTRkEQ50athqv8="
 }
}

OAuth token refresh

You can also submit refresh tokens to the Token endpoint in a user pool where you have
configured a domain. In the request body, include a grant_type value of refresh_token and a
refresh_token value of your user's refresh token.

Requests to the token endpoint are available in app clients with refresh token rotation active and
those where it's inactive. When refresh token rotation is active, the token endpoint returns a new
refresh token.

The following is an example request with a refresh token.

POST /oauth2/token HTTP/1.1
Host: auth.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw
Content-Length: **

client_id=1example23456789&grant_type=refresh_token&refresh_token=eyJjd123abcEXAMPLE

Revoking refresh tokens

You can revoke refresh tokens that belong to a user. For more information about revoking tokens,
see Ending user sessions with token revocation.

Refresh tokens 872

Amazon Cognito Developer Guide

Note

Revoking the refresh token will revoke all ID and access tokens that Amazon Cognito issued
from refresh requests with that token.

To sign users out from all current signed-in session, revoke all of their tokens with GlobalSignOut
or AdminUserGlobalSignOut API requests. After the user is signed out, the following effects
happen.

• The user's refresh token can't get new tokens for the user.

• The user's access token can't make token-authorized API requests.

• The user must re-authenticate to get new tokens. Because managed login session cookies don't
expire automatically, your user can re-authenticate with a session cookie, with no additional
prompt for credentials. After you sign out your managed login users, redirect them to the Logout
endpoint, where Amazon Cognito clears their session cookie.

With refresh tokens, you can persist users' sessions in your app for a long time. Over time, your
users might want to deauthorize some applications where they have stayed signed in with their
refresh tokens. To sign your user out from a single session, revoke their refresh token. When
your user wants to sign themself out from all authenticated sessions, generate a GlobalSignOut
API request . Your app can present your user with a choice like Sign out from all devices.
GlobalSignOut accepts a user's valid–unaltered, unexpired, not-revoked–access token. Because
this API is token-authorized, one user can't use it to initiate sign-out for another user.

You can, however, generate an AdminUserGlobalSignOut API request that you authorize with your
Amazon credentials to sign out any user from all of their devices. The administrator application
must call this API operation with Amazon developer credentials and pass the user pool ID and the
user's username as parameters. The AdminUserGlobalSignOut API can sign out any user in the
user pool.

For more information about requests that you can authorize with either Amazon credentials or a
user's access token, see List of API operations grouped by authorization model.

Refresh tokens 873

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html

Amazon Cognito Developer Guide

Ending user sessions with token revocation

You can revoke refresh tokens and end user sessions with the following methods. When you revoke
a refresh token, all access tokens that were previously issued by that refresh token become invalid.
The other refresh tokens issued to the user are not affected.

RevokeToken operation

RevokeToken revokes all access tokens for a given refresh token, including the initial access
token from interactive sign-in. This operation doesn't affect any of the user's other refresh
tokens or the ID- and access-token children of those other refresh tokens.

Revocation endpoint

The revoke endpoint revokes a given refresh token and all ID and access tokens that the refresh
token generated. This endpoint also revokes the initial access token from interactive sign-in.
Requests to this endpoint don't affect any of the user's other refresh tokens or the ID- and
access-token children of those other refresh tokens.

GlobalSignOut operation

GlobalSignOut is a self-service operation that a user authorizes with their access token. This
operation revokes all of the requesting user's refresh, ID, and access tokens.

AdminUserGlobalSignOut operation

AdminUserGlobalSignOut is a server-side operation that an administrator authorizes with IAM
credentials. This operation revokes all of the target user's refresh, ID, and access tokens.

Things to know about revoking tokens

• Your request to revoke a refresh token must include the client ID that was used to obtain the
token.

• User pool JWTs are self-contained with a signature and expiration time that was assigned when
the token was created. Revoked tokens can't be used with any Amazon Cognito API calls that
require a token. However, revoked tokens will still be valid if they are verified using any JWT
library that verifies the signature and expiration of the token.

• When you create a new user pool client, token revocation is enabled by default.

• You can revoke refresh tokens only in app clients with token revocation enabled.

Revoking tokens 874

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html

Amazon Cognito Developer Guide

• After you enable token revocation, new claims are added in the Amazon Cognito JSON Web
Tokens. The origin_jti and jti claims are added to access and ID tokens. These claims
increase the size of the application client access and ID tokens.

• When you disable token revocation in an app client where it was previously enabled, revoked
tokens don't become active again.

• When you disable a user account (which revokes refresh and access tokens), the revoked tokens
don't become active if you enable the user account again.

• When you create a new user pool client using the Amazon Web Services Management Console,
the Amazon CLI, or the Amazon API, token revocation is enabled by default.

Enable token revocation

Before you can revoke a token for an existing user pool client, you must enable token revocation.
You can enable token revocation for existing user pool clients using the Amazon CLI or the Amazon
API. To do this, call the aws cognito-idp describe-user-pool-client CLI command or
the DescribeUserPoolClient API operation to retrieve the current settings from your app
client. Then call the aws cognito-idp update-user-pool-client CLI command or the
UpdateUserPoolClient API operation. Include the current settings from your app client and set
the EnableTokenRevocation parameter to true.

To create or modify an app client with token revocation enabled with the Amazon Cognito
API or with an Amazon SDK, include the following parameter in your CreateUserPoolClient or
UpdateUserPoolClient API request.

"EnableTokenRevocation": true

To configure token revocation in the Amazon Cognito console, select an app client from the App
clients menu in your user pool. Select the Edit button in App client information and enable or
disable token revocation under Advanced configuration.

Revoke a token

You can revoke a refresh token using a RevokeToken API request, for example with the aws
cognito-idp revoke-token CLI command. You can also revoke tokens using the Revoke
endpoint. This endpoint is available after you add a domain to your user pool. You can use the
revocation endpoint on either an Amazon Cognito hosted domain or your own custom domain.

Revoking tokens 875

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/revoke-token.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/revoke-token.html

Amazon Cognito Developer Guide

The following is the body of an example RevokeToken API request.

{
 "ClientId": "1example23456789",
 "ClientSecret": "abcdef123456789ghijklexample",
 "Token": "eyJjdHkiOiJKV1QiEXAMPLE"
}

The following is an example cURL request to the /oauth2/revoke endpoint of a user pool with a
custom domain.

curl --location 'auth.mydomain.com/oauth2/revoke' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--header 'Authorization: Basic Base64Encode(client_id:client_secret)' \
--data-urlencode 'token=abcdef123456789ghijklexample' \
--data-urlencode 'client_id=1example23456789'

The RevokeToken operation and the /oauth2/revoke endpoint require no additional
authorization unless your app client has a client secret.

Verifying JSON web tokens

JSON web tokens (JWTs) can be decoded, read, and modified easily. A modified access token
creates a risk of privilege escalation. A modified ID token creates a risk of impersonation. Your
application trusts your user pool as a token issuer, but what if a user intercepts the token in transit?
You must ensure that your application is receiving the same token that Amazon Cognito issued.

Amazon Cognito issues tokens that use some of the integrity and confidentiality features of the
OpenID Connect (OIDC) specification. User pool tokens indicate validity with objects like the
expiration time, issuer, and digital signature. The signature, the third and final segment of the .-
delimited JWT, is the key component of token validation. A malicious user can modify a token,
but if your application retrieves the public key and compares the signature, it won't match. Any
application that processes JWTs from OIDC authentication must perform this verification operation
with each sign-in.

On this page, we make some general and specific recommendations for verification of JWTs.
Application development spans a variety of programming languages and platforms. Because
Amazon Cognito implements OIDC sufficiently close to the public specification, any reputable JWT
library in your developer environment of choice can handle your verification requirements.

Verifying a JSON Web Token 876

Amazon Cognito Developer Guide

These steps describe verifying a user pool JSON Web Token (JWT).

Topics

• Prerequisites

• Validate tokens with aws-jwt-verify

• Understanding and inspecting tokens

Prerequisites

Your library, SDK, or software framework might already handle the tasks in this section. Amazon
SDKs provide tools for Amazon Cognito user pool token handling and management in your app.
Amazon Amplify includes functions to retrieve and refresh Amazon Cognito tokens.

For more information, see the following pages.

• Integrating Amazon Cognito authentication and authorization with web and mobile apps

• Code examples for Amazon Cognito Identity Provider using Amazon SDKs

• Advanced workflows in the Amplify Dev Center

Many libraries are available for decoding and verifying a JSON Web Token (JWT). If you want to
manually process tokens for server-side API processing, or if you are using other programming
languages, these libraries can help. See the OpenID foundation list of libraries for working with
JWT tokens.

Validate tokens with aws-jwt-verify

In a Node.js app, Amazon recommends the aws-jwt-verify library to validate the parameters
in the token that your user passes to your app. With aws-jwt-verify, you can populate a
CognitoJwtVerifier with the claim values that you want to verify for one or more user pools.
Some of the values that it can check include the following.

• That access or ID tokens aren't malformed or expired, and have a valid signature.

• That access tokens came from the correct user pools and app clients.

• That access token claims contain the correct OAuth 2.0 scopes.

• That the keys that signed your access and ID tokens match a signing key kid from the JWKS URI
of your user pools.

Verifying a JSON Web Token 877

https://docs.amazonaws.cn/cognito/latest/developerguide/service_code_examples.html
https://docs.amplify.aws/lib/auth/advanced/q/platform/js/#retrieve-jwt-tokens
http://openid.net/developers/jwt/
http://openid.net/developers/jwt/
https://github.com/awslabs/aws-jwt-verify
https://github.com/awslabs/aws-jwt-verify#verifying-jwts-from-amazon-cognito
https://github.com/awslabs/aws-jwt-verify#checking-scope
https://github.com/awslabs/aws-jwt-verify#the-jwks-cache
https://github.com/awslabs/aws-jwt-verify#the-jwks-cache

Amazon Cognito Developer Guide

The JWKS URI contains public information about the private key that signed your
user's token. You can find the JWKS URI for your user pool at https://cognito-
idp.<Region>.amazonaws.com/<userPoolId>/.well-known/jwks.json.

For more information and example code that you can use in a Node.js app or a Amazon Lambda
authorizer, see aws-jwt-verify on GitHub.

Understanding and inspecting tokens

Before you integrate token inspection with your app, consider how Amazon Cognito assembles
JWTs. Retrieve example tokens from your user pool. Decode and examine them in detail to
understand their characteristics, and determine what you want to verify and when. For example,
you might want to examine group membership in one scenario, and scopes in another.

The following sections describe a process to manually inspect Amazon Cognito JWTs as you
prepare your app.

Confirm the structure of the JWT

A JSON Web Token (JWT) includes three sections with a . (dot) delimiter between them.

Header

The key ID, kid, and the RSA algorithm, alg, that Amazon Cognito used to sign the token.
Amazon Cognito signs tokens with an alg of RS256. The kid is a truncated reference to a
2048-bit RSA private signing key held by your user pool.

Payload

Token claims. In an ID token, the claims include user attributes and information about the
user pool, iss, and app client, aud. In an access token, the payload includes scopes, group
membership, your user pool as iss, and your app client as client_id.

Signature

The signature isn't decodable base64url like the header and payload. It's an RSA256 identifier
derived from a signing key and parameters that you can observe at your JWKS URI.

The header and payload are base64url-encoded JSON. You can identify them by the opening
characters eyJ that decode to the starting character {. If your user presents a base64url-encoded

Verifying a JSON Web Token 878

https://github.com/awslabs/aws-jwt-verify

Amazon Cognito Developer Guide

JWT to your app and it's not in the format [JSON Header].[JSON Payload].[Signature],
it's not a valid Amazon Cognito token and you can discard it.

The following example application verifies user pool tokens with aws-jwt-verify.

// cognito-verify.js
// Usage example: node cognito-verify.js eyJra789ghiEXAMPLE

const { CognitoJwtVerifier } = require('aws-jwt-verify');

// Replace with your Amazon Cognito user pool ID
const userPoolId = 'us-west-2_EXAMPLE';

async function verifyJWT(token) {
 try {
 const verifier = CognitoJwtVerifier.create({
 userPoolId,
 tokenUse: 'access', // or 'id' for ID tokens
 clientId: '1example23456789', // Optional, only if you need to verify the token
 audience
 });

 const payload = await verifier.verify(token);
 console.log('Decoded JWT:', payload);
 } catch (err) {
 console.error('Error verifying JWT:', err);
 }
}

// Example usage
if (process.argv.length < 3) {
 console.error('Please provide a JWT token as an argument.');
 process.exit(1);
}

const MyToken = process.argv[2];
verifyJWT(MyToken);

Validate the JWT

The JWT signature is a hashed combination of the header and the payload. Amazon Cognito
generates two pairs of RSA cryptographic keys for each user pool. One private key signs access
tokens, and the other signs ID tokens.

Verifying a JSON Web Token 879

Amazon Cognito Developer Guide

To verify the signature of a JWT token

1. Decode the ID token.

The OpenID Foundation also maintains a list of libraries for working with JWT tokens.

You can also use Amazon Lambda to decode user pool JWTs. For more information, see
Decode and verify Amazon Cognito JWT tokens using Amazon Lambda.

2. Compare the local key ID (kid) to the public kid.

a. Download and store the corresponding public JSON Web Key (JWK) for your user pool. It
is available as part of a JSON Web Key Set (JWKS). You can locate it by constructing the
following jwks_uri URI for your environment:

https://cognito-idp.<Region>.amazonaws.com/<userPoolId>/.well-known/jwks.json

For more information on JWK and JWK sets, see JSON Web Key (JWK).

Note

Amazon Cognito might rotate signing keys in your user pool. As a best practice,
cache public keys in your app, using the kid as a cache key, and refresh the cache
periodically. Compare the kid in the tokens that your app receives to your cache.
If you receive a token with the correct issuer but a different kid, Amazon Cognito
might have rotated the signing key. Refresh the cache from your user pool
jwks_uri endpoint.

This is a sample jwks.json file:

{
 "keys": [{
 "kid": "1234example=",
 "alg": "RS256",
 "kty": "RSA",
 "e": "AQAB",
 "n": "1234567890",
 "use": "sig"
 }, {
 "kid": "5678example=",

Verifying a JSON Web Token 880

http://openid.net/developers/jwt/
https://github.com/awslabs/aws-support-tools/tree/master/Cognito/decode-verify-jwt
https://tools.ietf.org/html/rfc7517

Amazon Cognito Developer Guide

 "alg": "RS256",
 "kty": "RSA",
 "e": "AQAB",
 "n": "987654321",
 "use": "sig"
 }]
}

Key ID (kid)

The kid is a hint that indicates which key was used to secure the JSON Web Signature
(JWS) of the token.

Algorithm (alg)

The alg header parameter represents the cryptographic algorithm that is used to
secure the ID token. User pools use an RS256 cryptographic algorithm, which is an RSA
signature with SHA-256. For more information on RSA, see RSA cryptography.

Key type (kty)

The kty parameter identifies the cryptographic algorithm family that is used with the
key, such as "RSA" in this example.

RSA exponent (e)

The e parameter contains the exponent value for the RSA public key. It is represented
as a Base64urlUInt-encoded value.

RSA modulus (n)

The n parameter contains the modulus value for the RSA public key. It is represented as
a Base64urlUInt-encoded value.

Use (use)

The use parameter describes the intended use of the public key. For this example, the
use value sig represents signature.

b. Search the public JSON Web Key for a kid that matches the kid of your JWT.

Verifying a JSON Web Token 881

https://tools.ietf.org/html/rfc3447

Amazon Cognito Developer Guide

Verify the claims

To verify JWT claims

1. By one of the following methods, verify that the token hasn't expired.

a. Decode the token and compare the exp claim to the current time.

b. If your access token includes an aws.cognito.signin.user.admin claim, send a
request to an API like GetUser. API requests that you authorize with an access token return
an error if your token has expired.

c. Present your access token in a request to the userInfo endpoint. Your request returns an
error if your token has expired.

2. The aud claim in an ID token and the client_id claim in an access token should match the
app client ID that was created in the Amazon Cognito user pool.

3. The issuer (iss) claim should match your user pool. For example, a user pool created in the
us-east-1 Region will have the following iss value:

https://cognito-idp.us-east-1.amazonaws.com/<userpoolID>.

4. Check the token_use claim.

• If you are only accepting the access token in your web API operations, its value must be
access.

• If you are only using the ID token, its value must be id.

• If you are using both ID and access tokens, the token_use claim must be either id or
access.

You can now trust the claims inside the token.

Managing user pool token expiration and caching

Your app must successfully complete one of the following requests each time you want to get a
new JSON Web Token (JWT).

• Request a client credentials or authorization code grant from the Token endpoint.

• Request an implicit grant from your managed login pages.

• Authenticate a local user in an Amazon Cognito API request like InitiateAuth.

Managing user pool token expiration and caching 882

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html#user-pool-apis-auth-unauth
https://www.rfc-editor.org/rfc/rfc6749#section-1.3
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

You can configure your user pool to set tokens to expire in minutes, hours, or days. To ensure the
performance and availability of your app, use Amazon Cognito tokens for about 75% of the token
lifetime, and only then retrieve new tokens. A cache solution that you build for your app keeps
tokens available, and prevents the rejection of requests by Amazon Cognito when your request rate
is too high. A client-side app must store tokens in a memory cache. A server-side app can add an
encrypted cache mechanism to store tokens.

When your user pool generates a high volume of user or machine-to-machine activity, you might
encounter the limits that Amazon Cognito sets on the number of requests for tokens that you can
make. To reduce the number of requests you make to Amazon Cognito endpoints, you can either
securely store and reuse authentication data, or implement exponential backoff and retries.

Authentication data comes from two classes of endpoints. Amazon Cognito OAuth 2.0 endpoints
include the token endpoint, which services client credentials and managed login authorization
code requests. Service endpoints answer user pools API requests like InitiateAuth and
RespondToAuthChallenge. Each type of request has its own limit. For more information about
limits, see Quotas in Amazon Cognito.

Caching machine-to-machine access tokens with Amazon API Gateway

With API Gateway token caching, your app can scale in response to events larger than the default
request rate quota of Amazon Cognito OAuth endpoints.

Managing user pool token expiration and caching 883

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-userpools-server-contract-reference.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html#cognito_identity_your_user_pools_region

Amazon Cognito Developer Guide

You can cache the access tokens so that your app only requests a new access token if a cached
token is expired. Otherwise, your caching endpoint returns a token from the cache. This prevents
an additional call to an Amazon Cognito API endpoint. When you use Amazon API Gateway as a
proxy to the Token endpoint, your API responds to the majority of requests that would otherwise
contribute to your request quota, avoiding unsuccessful requests as a result of rate limiting.

The following API Gateway-based solution offers a low-latency, low-code/no-code implementation
of token caching. API Gateway APIs are encrypted in transit, and optionally at rest. An API Gateway
cache is ideal for the OAuth 2.0 client credentials grant, a frequently high-volume grant type that
produces access tokens to authorize machine-to-machine and microservice sessions. In an event
like a traffic surge that causes your microservices to horizontally scale, you can end up with many
systems using the same client credentials at a volume that exceeds the Amazon request-rate limit
of your user pool or app client. To preserve app availability and low latency, a caching solution is
best practice in such scenarios.

In this solution, you define a cache in your API to store a separate access token for each
combination of OAuth scopes and app client that you want to request in your app. When your app
makes a request that matches the cache key, your API responds with an access token that Amazon
Cognito issued to the first request that matched the cache key. When your cache key duration
expires, your API forwards the request to your token endpoint and caches a new access token.

Note

Your cache key duration must be shorter than the access token duration of your app client.

The cache key is a combination of the OAuth scopes that you request in the scope parameter in
the request body and the Authorization header in the request. The Authorization header
contains your app client ID and client secret. You don't need to implement additional logic in your
app to implement this solution. You must only update your configuration to change the path to
your user pool token endpoint.

You can also implement token caching with ElastiCache (Redis OSS). For fine-grained control with
Amazon Identity and Access Management (IAM) policies, consider an Amazon DynamoDB cache.

Note

Caching in API Gateway is subject to additional cost. See pricing for more details.

Managing user pool token expiration and caching 884

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://docs.amazonaws.cn/elasticache/index.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/authentication-and-access-control.html#authentication
https://aws.amazon.com/api-gateway/pricing

Amazon Cognito Developer Guide

To set up a caching proxy with API Gateway

1. Open the API Gateway console and create a REST API.

2. In Resources, create a POST method.

a. Choose the HTTP Integration type.

b. Select Use HTTP proxy integration.

c. Enter an Endpoint URL of https://<your user pool domain>/oauth2/token.

3. In Resources, configure the cache key.

a. Edit the Method request of your POST method.

b. Set your scope parameter and Authorization header as your caching key.

i. Add a query string to URL query string parameters. Enter a query string Name of
scope and select Required and Caching.

ii. Add a header to HTTP request headers. Enter a request header Name of
Authorization and select Required and Caching.

4. In Stages, configure caching.

a. Choose the stage that you want to modify and choose Edit from Stage Details.

b. Under Additional settings, Cache settings, turn on the Provision API cache option.

c. Choose a Cache capacity. Higher cache capacity improves performance but comes at
additional cost.

d. Clear the Require authorization check box. Select Continue.

e. API Gateway only applies cache policies to GET methods from the stage level. You must
apply a cache policy override to your POST method.

Expand the stage you configured and select the POST method. To create cache settings for
the method, choose Create override.

f. Activate the Enable method cache option.

g. Enter a Cache time-to-live (TTL) of 3600 seconds. Choose Save.

5. In Stages, note the Invoke URL.

6. Update your app to POST token requests to the Invoke URL of your API instead of the /
oauth2/token endpoint of your user pool.

Managing user pool token expiration and caching 885

https://console.amazonaws.cn/apigateway/main/apis

Amazon Cognito Developer Guide

Accessing resources after successful sign-in

Your app users can either sign in directly through a user pool, or they can federate through a third-
party identity provider (IdP). The user pool manages the overhead of handling the tokens that are
returned from social sign-in through Facebook, Google, Amazon, and Apple, and from OpenID
Connect (OIDC) and SAML IdPs. For more information, see Understanding user pool JSON web
tokens (JWTs).

After a successful authentication, your app will receive user pool tokens from Amazon Cognito. You
can use user pool tokens to:

• Retrieve Amazon credentials that authorize requests for application resources in Amazon Web
Services services like Amazon DynamoDB and Amazon S3.

• Provide temporary, revocable proof of authentication.

• Populate identity data to a user profile in your app.

• Authorize changes to the signed-in user's profile in the user pool directory.

• Authorize requests for user information with an access token.

• Authorize requests to data that is behind access-protected external APIs with access tokens.

• Authorize access to application assets that are stored on the client or server with Amazon
Verified Permissions.

For more information, see An example authentication session and Understanding user pool JSON
web tokens (JWTs).

Topics

• Authorizing access to client or server resources with Amazon Verified Permissions

• Accessing resources with API Gateway after sign-in

Accessing resources after sign-in 886

Amazon Cognito Developer Guide

• Accessing Amazon Web Services services using an identity pool after sign-in

Authorizing access to client or server resources with Amazon Verified
Permissions

Your app can pass the tokens from a signed-in user to Amazon Verified Permissions. Verified
Permissions is a scalable, fine-grained permissions management and authorization service for
applications that you've built. An Amazon Cognito user pool can be an identity source to a Verified
Permissions policy store. Verified Permissions makes authorization decisions for requested actions
and resources, like GetPhoto for premium_badge.png, from the principal and their attributes in
user pool tokens.

The following diagram shows how your application can pass a user's token to Verified Permissions
in an authorization request.

Accessing resources with Verified Permissions 887

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/what-is-avp.html

Amazon Cognito Developer Guide

Get started with Amazon Verified Permissions

After you integrate your user pool with Verified Permissions, you gain a central source of granular
authorization for all of your Amazon Cognito apps. This removes the need for fine-grained security
logic that you would otherwise have to code and replicate between all of your apps. For more
information about authorization with Verified Permissions, see Authorization with Amazon Verified
Permissions.

Verified Permissions authorization requests require Amazon credentials. You can implement some
of the following techniques to safely apply credentials to authorization requests.

• Operate a web application that can store secrets in the server backend.

Accessing resources with Verified Permissions 888

Amazon Cognito Developer Guide

• Acquire authenticated identity pool credentials.

• Proxy user requests through an access-token-authorized API, and append Amazon credentials to
the request.

Accessing resources with API Gateway after sign-in

A common use of Amazon Cognito user pools tokens is to authorize requests to an API Gateway
REST API. The OAuth 2.0 scopes in access tokens can authorize a method and path, like HTTP
GET for /app_assets. ID tokens can serve as generic authentication to an API and can pass user
attributes to the backend service. API Gateway has additional custom authorization options like
JWT authorizers for HTTP APIs and Lambda authorizers that can apply more fine-grained logic.

The following diagram illustrates an application that is gaining access to a REST API with the
OAuth 2.0 scopes in an access token.

Accessing API Gateway resources 889

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/http-api-jwt-authorizer.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Cognito Developer Guide

Your app must collect the tokens from authenticated sessions and add them as bearer tokens to
an Authorization header in the request. Configure the authorizer that you configured for the
API, path, and method to evaluate token contents. API Gateway returns data only if the request
matches the conditions that you set up for your authorizer.

Some potential ways that API Gateway API can approve access from an application are:

• The access token is valid, isn't expired, and contains the correct OAuth 2.0 scope. The Amazon
Cognito user pools authorizer for a REST API is a common implementation with a low barrier to
entry. You can also evaluate the body, query string parameters, and headers of a request to this
type of authorizer.

• The ID token is valid and isn't expired. When you pass an ID token to an Amazon Cognito
authorizer, you can perform additional validation of the ID token contents on your application
server.

• A group, claim, attribute, or role in an access or ID token meets the requirements that you define
in a Lambda function. A Lambda authorizer parses the token in the request header and evaluates
it for an authorization decision. You can construct custom logic in your function or make an API
request to Amazon Verified Permissions.

You can also authorize requests to an Amazon AppSync GraphQL API with tokens from a user pool.

Accessing Amazon Web Services services using an identity pool after
sign-in

After your users sign in with a user pool, they can access Amazon Web Services services with
temporary API credentials that are issued from an identity pool.

Your web or mobile app receives tokens from a user pool. When you configure your user pool as an
identity provider to your identity pool, the identity pool exchanges tokens for temporary Amazon
credentials. These credentials can be scoped to IAM roles and their policies that give users access to
a limited set of Amazon resources. For more information, see Identity pools authentication flow.

The following diagram shows how an application signs in with a user pool, retrieves identity pool
credentials, and requests an asset from an Amazon Web Services service.

Accessing Amazon resources using an identity pool 890

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/what-is-avp.html
https://docs.amazonaws.cn/appsync/latest/devguide/security-authz.html#amazon-cognito-user-pools-authorization

Amazon Cognito Developer Guide

You can use identity pool credentials to:

• Make fine-grained authorization requests to Amazon Verified Permissions with your user's own
credentials.

• Connect to an Amazon API Gateway REST API or an Amazon AppSync GraphQL API that
authorizes connections with IAM.

• Connect to a database backend like Amazon DynamoDB or Amazon RDS that authorizes
connections with IAM.

• Retrieve application assets from an Amazon S3 bucket.

• Initiate a session with an Amazon WorkSpaces virtual desktop.

Accessing Amazon resources using an identity pool 891

Amazon Cognito Developer Guide

Identity pools don't operate exclusively within an authenticated session with a user pool. They also
accept authentication directly from third-party identity providers and can generate credentials for
unauthenticated guest users.

For more information about using identity pools together with user pool groups to control access
to your Amazon resources, see Adding groups to a user pool and Using role-based access control.
Also, for more information about identity pools and Amazon Identity and Access Management, see
Identity pools authentication flow.

Setting up a user pool with the Amazon Web Services Management Console

Create an Amazon Cognito user pool and make a note of the User Pool ID and App Client ID for
each of your client apps. For more information about creating user pools, see Getting started with
user pools.

Setting up an identity pool with the Amazon Web Services Management Console

The following procedure describes how to use the Amazon Web Services Management Console to
integrate an identity pool with one or more user pools and client apps.

To add an Amazon Cognito user pools identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Amazon Cognito user pool.

5. Enter a User pool ID and an App client ID.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

a. You can give users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules. With an Amazon Cognito
user pool IdP, you can also Choose role with preferred_role claim in tokens. For more
information about the cognito:preferred_role claim, see Assigning precedence
values to groups.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to use to compare the claim to the rule,

Accessing Amazon resources using an identity pool 892

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

the Value that will cause a match to this role choice, and the Role that you want
to assign when the Role assignment matches. Select Add another to create an
additional rule based on a different condition.

ii. If you chose Choose role with preferred_role claim in tokens, Amazon Cognito
issues credentials for the role in your user's cognito:preferred_role claim. If no
preferred role claim is present, Amazon Cognito issues credentials based on your Role
resolution.

b. Choose a Role resolution. When your user's claims don't match your rules, you can deny
credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

• To apply no principal tags, choose Inactive.

• To apply principal tags based on sub and aud claims, choose Use default mappings.

• To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want to
represent in a tag.

8. Select Save changes.

Integrating a user pool with an identity pool

After your app user is authenticated, add that user's identity token to the logins map in the
credentials provider. The provider name will depend on your Amazon Cognito user pool ID. It will
have the following structure:

cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>

You can derive the value for <region> from the User Pool ID. For example, if the user pool
ID is us-east-1_EXAMPLE1, then the <region> is us-east-1. If the user pool ID is us-
west-2_EXAMPLE2, then the <region> is us-west-2.

JavaScript

var cognitoUser = userPool.getCurrentUser();

if (cognitoUser != null) {

Accessing Amazon resources using an identity pool 893

Amazon Cognito Developer Guide

 cognitoUser.getSession(function(err, result) {
 if (result) {
 console.log('You are now logged in.');

 // Add the User's Id Token to the Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'YOUR_IDENTITY_POOL_ID',
 Logins: {
 'cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>':
 result.getIdToken().getJwtToken()
 }
 });
 }
 });
}

Android

cognitoUser.getSessionInBackground(new AuthenticationHandler() {
 @Override
 public void onSuccess(CognitoUserSession session) {
 String idToken = session.getIdToken().getJWTToken();

 Map<String, String> logins = new HashMap<String, String>();
 logins.put("cognito-idp.<region>.amazonaws.com/<YOUR_USER_POOL_ID>",
 session.getIdToken().getJWTToken());
 credentialsProvider.setLogins(logins);
 }

});

iOS - objective-C

AWSServiceConfiguration *serviceConfiguration = [[AWSServiceConfiguration alloc]
 initWithRegion:AWSRegionUSEast1 credentialsProvider:nil];
AWSCognitoIdentityUserPoolConfiguration *userPoolConfiguration =
 [[AWSCognitoIdentityUserPoolConfiguration alloc] initWithClientId:@"YOUR_CLIENT_ID"
 clientSecret:@"YOUR_CLIENT_SECRET" poolId:@"YOUR_USER_POOL_ID"];
[AWSCognitoIdentityUserPool
 registerCognitoIdentityUserPoolWithConfiguration:serviceConfiguration
 userPoolConfiguration:userPoolConfiguration forKey:@"UserPool"];
AWSCognitoIdentityUserPool *pool = [AWSCognitoIdentityUserPool
 CognitoIdentityUserPoolForKey:@"UserPool"];

Accessing Amazon resources using an identity pool 894

Amazon Cognito Developer Guide

AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider
 alloc] initWithRegionType:AWSRegionUSEast1 identityPoolId:@"YOUR_IDENTITY_POOL_ID"
 identityProviderManager:pool];

iOS - swift

let serviceConfiguration = AWSServiceConfiguration(region: .USEast1,
 credentialsProvider: nil)
let userPoolConfiguration = AWSCognitoIdentityUserPoolConfiguration(clientId:
 "YOUR_CLIENT_ID", clientSecret: "YOUR_CLIENT_SECRET", poolId: "YOUR_USER_POOL_ID")
AWSCognitoIdentityUserPool.registerCognitoIdentityUserPoolWithConfiguration(serviceConfiguration,
 userPoolConfiguration: userPoolConfiguration, forKey: "UserPool")
let pool = AWSCognitoIdentityUserPool(forKey: "UserPool")
let credentialsProvider = AWSCognitoCredentialsProvider(regionType: .USEast1,
 identityPoolId: "YOUR_IDENTITY_POOL_ID", identityProviderManager:pool)

Scopes, M2M, and APIs with resource servers

After you configure a domain for your user pool, Amazon Cognito automatically provisions an
OAuth 2.0 authorization server and a hosted web UI with sign-up and sign-in pages that your app
can present to your users. For more information see User pool managed login. You can choose the
scopes that you want the authorization server to add to access tokens. Scopes authorize access to
resource servers and user data.

A resource server is an OAuth 2.0 API server. To secure access-protected resources, it validates that
access tokens from your user pool contain the scopes that authorize the requested method and
path in the API that it protects. It verifies the issuer based on the token signature, validity based on
token expiration time, and access level based on the scopes in token claims. User pool scopes are
in the access token scope claim. For more information about the claims in Amazon Cognito access
tokens, see Understanding the access token.

With Amazon Cognito, the scopes in access tokens can authorize access to external APIs or to user
attributes. You can issue access tokens to local users, federated users, or machine identities.

Topics

• API authorization

• Machine-to-machine (M2M) authorization

• About scopes

M2M and scopes 895

Amazon Cognito Developer Guide

• About resource servers

API authorization

The following are some of the ways that you can authorize requests to APIs with Amazon Cognito
tokens:

Access token

When add an Amazon Cognito authorizer to a REST API method request configuration, add
Authorization scopes to the authorizer configuration. With this configuration, your API accepts
access tokens in the Authorization header and reviews them for accepted scopes.

ID token

When you pass a valid ID token to an Amazon Cognito authorizer in your REST API, API Gateway
accepts the request and passes the ID token contents to the API backend.

Amazon Verified Permissions

In Verified Permissions, you have the option to create an API-linked policy store. Verified
Permissions creates and assigns a Lambda authorizer that processes ID or access tokens from
your request Authorization header. This Lambda authorizer passes your token to your policy
store, where Verified Permissions compares it to policies and returns an allow or deny decision
to the authorizer.

More resources

• Controlling and managing access to a REST API in API Gateway

• Authorization with Amazon Verified Permissions

Machine-to-machine (M2M) authorization

Amazon Cognito supports applications that access API data with machine identities. Machine
identities in user pools are confidential clients that run on application servers and connect to
remote APIs. Their operation happens without user interaction: scheduled tasks, data streams,
or asset updates. When these clients authorize their requests with an access token, they perform
machine to machine, or M2M, authorization. In M2M authorization, a shared secret replaces user
credentials in access control.

API authorization 896

https://docs.amazonaws.cn/verifiedpermissions/latest/userguide/policy-stores_api-userpool.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-control-access-to-api.html

Amazon Cognito Developer Guide

An application that accesses an API with M2M authorization must have a client ID and client secret.
In your user pool, you must build an app client that supports client credentials grants. To support
client credentials, your app client must have a client secret and you must have a user pool domain.
In this flow, your machine identity requests an access token directly from the Token endpoint.
You can authorize only custom scopes from resource servers in access tokens for client credentials
grants. For more information about setting up app clients, see Application-specific settings with
app clients.

The access token from a client credentials grant is a verifiable statement of the operations that
you want to permit your machine identity to request from an API. To learn more about how access
tokens authorize API requests, continue reading. For an example application, see Amazon Cognito
and API Gateway based machine to machine authorization using Amazon CDK.

M2M authorization has a billing model that differs from the way that monthly active users (MAUs)
are billed. Where user authentication carries a cost per active user, M2M billing reflects active
client credentials app clients and total token-request volume. For more information, see Amazon
Cognito Pricing. To control costs for M2M authorization, optimize the duration of access tokens
and the number of token requests that your applications make. See Managing user pool token
expiration and caching for a way to use API Gateway caching to reduce requests for new tokens in
M2M authorization.

For information about optimizing Amazon Cognito operations that add costs to your Amazon bill,
see Managing costs.

Client metadata for machine-to-machine (M2M) client credentials

You can pass client metadata in M2M requests. Client metadata is additional information
from a user or application environment that can contribute to the outcomes of a Pre token
generation Lambda trigger. In authentication operations with a user principal, you can pass client
metadata to the pre token generation trigger in the body of AdminRespondToAuthChallenge and
RespondToAuthChallenge API requests. Because applications conduct the flow for generation of
access tokens for M2M with direct requests to the Token endpoint, they have a different model.
In the POST body of token requests for client credentials, pass an aws_client_metadata
parameter with the client metadata object URL-encoded (x-www-form-urlencoded) to string.
For an example request, see Client credentials with basic authorization. The following is an
example parameter that passes the key-value pairs {"environment": "dev", "language":
"en-US"}.

Machine-to-machine (M2M) authorization 897

https://github.com/aws-samples/amazon-cognito-and-api-gateway-based-machine-to-machine-authorization-using-aws-cdk
https://github.com/aws-samples/amazon-cognito-and-api-gateway-based-machine-to-machine-authorization-using-aws-cdk
https://www.amazonaws.cn/cognito/pricing
https://www.amazonaws.cn/cognito/pricing
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html

Amazon Cognito Developer Guide

aws_client_metadata=%7B%22environment%22%3A%20%22dev%22,%20%22language%22%3A%20%22en-US
%22%7D

About scopes

A scope is a level of access that an app can request to a resource. In an Amazon Cognito access
token, the scope is backed up by the trust that you set up with your user pool: a trusted issuer of
access tokens with a known digital signature. User pools can generate access tokens with scopes
that prove your customer is allowed to manage some or all of their own user profile, or to retrieve
data from a back-end API. Amazon Cognito user pools issue access tokens with the user pools
reserved API scope, custom scopes, and OpenID Connect (OIDC) scopes.

The user pools reserved API scope

The aws.cognito.signin.user.admin scope authorizes self-service operations for the current
user in the Amazon Cognito user pools API. It authorizes the bearer of an access token to query and
update all information about the bearer with, for example, the GetUser and UpdateUserAttributes
API operations. When you authenticate your user with the Amazon Cognito user pools API, this
is the only scope you receive in the access token. It's also the only scope you need to read and
write user attributes that you've authorized your app client to read and write. You can also request
this scope in requests to your Authorize endpoint. This scope alone isn't sufficient to request
user attributes from the userInfo endpoint. For access tokens that authorize both user pools
API and userInfo requests for your users, you must request both of the scopes openid and
aws.cognito.signin.user.admin in an /oauth2/authorize request.

Custom scopes

Custom scopes authorize requests to the external APIs that resource servers protect. You can
request custom scopes with other types of scopes. You can find more information about custom
scopes throughout this page.

OpenID Connect (OIDC) scopes

When you authenticate users with your user pool authorization server, including with managed
login, you must request scopes. You can authenticate user pool local users and third-party
federated users in your Amazon Cognito authorization server. OIDC scopes authorize your app to
read user information from the userInfo endpoint of your user pool. The OAuth model, where you
query user attributes from the userInfo endpoint, can optimize your app for a high volume of
requests for user attributes. The userInfo endpoint returns attributes at a permission level that's

About scopes 898

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html

Amazon Cognito Developer Guide

determined by the scopes in the access token. You can authorize your app client to issue access
tokens with the following OIDC scopes.

openid

The minimum scope for OpenID Connect (OIDC) queries. Authorizes the ID token, the unique-
identifier claim sub, and the ability to request other scopes.

Note

When you request the openid scope and no others, your user pool ID token and
userInfo response include claims for all user attributes that your app client can read.
When you request openid and other OIDC scopes like profile, email, and phone,
the contents of the ID token and userInfo response are limited to the constraints of the
additional scopes.
For example, a request to the Authorize endpoint with the parameter scope=openid
+email returns an ID token with sub, email, and email_verified. The access token
from this request returns the same attributes from userInfo endpoint. A request with
parameter scope=openid returns all client-readable attributes in the ID token and
from userInfo.

profile

Authorizes all user attributes that the app client can read.

email

Authorizes the user attributes email and email_verified. Amazon Cognito returns
email_verified if it has had a value explicitly set.

phone

Authorizes the user attributes phone_number and phone_number_verified.

About resource servers

A resource server API might grant access to the information in a database, or control your IT
resources. An Amazon Cognito access token can authorize access to APIs that support OAuth 2.0.
Amazon API Gateway REST APIs have built-in support for authorization with Amazon Cognito

About resource servers 899

https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-integrate-with-cognito.html

Amazon Cognito Developer Guide

access tokens. Your app passes the access token in the API call to the resource server. The resource
server inspects the access token to determine if access should be granted.

Amazon Cognito might make future updates to the schema of user pool access tokens. If your app
analyzes the contents of the access token before it passes it to an API, you must engineer your code
to accept updates to the schema.

Custom scopes are defined by you, and extend the authorization capabilities of a user pool to
include purposes unrelated to querying and modifying users and their attributes. For example, if
you have a resource server for photos, it might define two scopes: photos.read for read access to
the photos and photos.write for write/delete access. You can configure an API to accept access
tokens for authorization, and grant HTTP GET requests to access tokens with photos.read in the
scope claim, and HTTP POST requests to tokens with photos.write. These are custom scopes.

Note

Your resource server must verify the access token signature and expiration date before
processing any claims inside the token. For more information about verifying tokens, see
Verifying JSON web tokens. For more information about verifying and using user pool
tokens in Amazon API Gateway, see the blog Integrating Amazon Cognito User Pools with
API Gateway. API Gateway is a good option for inspecting access tokens and protecting
your resources. For more about API Gateway Lambda authorizers, see Use API Gateway
Lambda authorizers.

Overview

With Amazon Cognito, you can create OAuth 2.0 Resource servers and associate Custom scopes
with them. Custom scopes in an access token authorize specific actions in your API. You can
authorize any app client in your user pool to issue custom scopes from any of your resource
servers. Associate your custom scopes with an app client and request those scopes in OAuth 2.0
authorization code grants, implicit grants, and client credentials grants from the Token endpoint.
Amazon Cognito adds custom scopes to the scope claim in an access token. A client can use the
access token against its resource server, which makes the authorization decision based on the
scopes present in the token. For more information about access token scope, see Using Tokens with
User Pools.

About resource servers 900

https://www.amazonaws.cn/blogs/mobile/integrating-amazon-cognito-user-pools-with-api-gateway/
https://www.amazonaws.cn/blogs/mobile/integrating-amazon-cognito-user-pools-with-api-gateway/
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.amazonaws.cn/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Cognito Developer Guide

To get an access token with custom scopes, your app must make a request to the Token endpoint
to redeem an authorization code or to request a client credentials grant. In managed login, you can
also request custom scopes in an access token from an implicit grant.

Note

Because they are designed for human-interactive authentication with the user pool as the
IdP, InitiateAuth and AdminInitiateAuth requests only produce a scope claim in the access
token with the single value aws.cognito.signin.user.admin.

Managing the Resource Server and Custom Scopes

When creating a resource server, you must provide a resource server name and a resource server
identifier. For each scope you create in the resource server, you must provide the scope name and
description.

• Resource server name: A friendly name for the resource server, such as Solar system object
tracker or Photo API.

About resource servers 901

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

• Resource server identifier: A unique identifier for the resource server. The identifier is any name
that you want to associate with your API, for example solar-system-data. You can configure
longer identifiers like https://solar-system-data-api.example.com as a more direct
reference to API URI paths, but longer strings increase the size of access tokens.

• Scope name: The value that you want in your scope claims. For example, sunproximity.read.

• Description: A friendly description of the scope. For example, Check current proximity to
sun.

Amazon Cognito can include custom scopes in access tokens for any users, whether they are local
to your user pool or federated with a third-party identity provider. You can choose scopes for your
users' access tokens during authentication flows with the OAuth 2.0 authorization server that
includes managed login. Your user's authentication must begin at the Authorize endpoint with
scope as one of the request parameters. The following is a recommended format for resource
servers. For an identifier, use an API friendly name. For a custom scope, use the action that they
authorize.

resourceServerIdentifier/scopeName

For example, you've discovered a new asteroid in the Kuiper belt and you want to register it
through your solar-system-data API. The scope that authorizes write operations to the
database of asteroids is asteroids.add. When you request the access token that will authorize
you to register your discovery, format your scope HTTPS request parameter as scope=solar-
system-data/asteroids.add.

Deleting a scope from a resource server does not delete its association with all clients. Instead,
the scope is marked inactive. Amazon Cognito doesn't add inactive scopes to access tokens, but
otherwise proceeds as normal if your app requests one. If you add the scope to your resource
server again later, then Amazon Cognito again writes it to the access token. If you request a scope
that you haven't associated with your app client, regardless of whether you deleted it from your
user pool resource server, authentication fails.

You can use the Amazon Web Services Management Console, API, or CLI to define resource servers
and scopes for your user pool.

About resource servers 902

Amazon Cognito Developer Guide

Defining a resource server for your user pool (Amazon Web Services Management
Console)

You can use the Amazon Web Services Management Console to define a resource server for your
user pool.

To define a resource server

1. Sign in to the Amazon Cognito console.

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Domain menu under Branding and locate Resource servers.

4. Choose Create a resource server.

5. Enter a Resource server name. For example, Photo Server.

6. Enter a Resource server identifier. For example, com.example.photos.

7. Enter Custom scopes for your resources, such as read and write.

8. For each Scope name, enter a Description, such as view your photos and update your
photos.

9. Choose Create.

Your custom scopes can be reviewed in the Domain menu under Resource servers, in the Custom
scopes column. Custom scopes can be enabled for app clients from the App clients menu under
Applications. Select an app client, locate Login pages and choose Edit. Add Custom scopes and
choose Save changes.

Defining a resource server for your user pool (Amazon CLI and Amazon API)

Use the following commands to specify resource server settings for your user pool.

To create a resource server

• Amazon CLI: aws cognito-idp create-resource-server

• Amazon API: CreateResourceServer

To get information about your resource server settings

• Amazon CLI: aws cognito-idp describe-resource-server

About resource servers 903

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateResourceServer.html

Amazon Cognito Developer Guide

• Amazon API: DescribeResourceServer

To list information about all resource servers for your user pool

• Amazon CLI: aws cognito-idp list-resource-servers

• Amazon API: ListResourceServers

To delete a resource server

• Amazon CLI: aws cognito-idp delete-resource-server

• Amazon API: DeleteResourceServer

To update the settings for a resource server

• Amazon CLI: aws cognito-idp update-resource-server

• Amazon API: UpdateResourceServer

Configure user pool features

In previous chapters, you've likely configured some features with guidance from the Amazon
Cognito console. The pages in this section are a deeper dive into the detailed configuration
requirements of some of the core features of user pools. There's important reference information
about your options with app clients, email and SMS configuration, remembering user devices, and
more.

Topics

• Updating user pool and app client configuration

• Application-specific settings with app clients

• Working with user devices in your user pool

• Using Amazon Pinpoint for user pool analytics

• Email settings for Amazon Cognito user pools

• SMS message settings for Amazon Cognito user pools

Additional features 904

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListResourceServers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateResourceServer.html

Amazon Cognito Developer Guide

Updating user pool and app client configuration

When you want to change a setting in a user pool or app client, you can apply the update in the
Amazon Cognito console with a few clicks. You navigate through the feature-based tabs in your
user pool settings and update fields as described in other areas of this guide.

Many organizations manage their resources programmatically in Amazon CloudFormation,
applications built on the Amazon SDKs or CDK, and other automation software. When this is your
resource-management model, you must take extra care when you stage changes to your resources.

The API operations UpdateUserPool and UpdateUserPoolClient make updates to an existing user
pool or app client. Each comes with a warning in the API Reference: If you don't provide a value for
an attribute, Amazon Cognito sets it to its default value. When you submit an update request with
just one parameter, Amazon Cognito sets that parameter to the value of your choosing and sets
all others to a default value. This can reset configurations including your attribute schema, your
Lambda triggers, and your email and SMS message configuration.

Additionally, some settings are locked in after you create your user pool or app client, and you can't
change them unless you create a new resource.

Topics

• Settings you can't change

• SMS configuration

• Updating a user pool with an Amazon SDK, Amazon CDK, or REST API

Settings you can't change

You can't change some settings after you create a user pool. If you want to change the following
settings, you must create a new user pool or app client.

Note

Previously, you couldn't change the name of a user pool. This has changed. You can now
assign new friendly names to your user pools.

User pool ID

API parameter name: Id/UserPoolId

Updating a user pool and app client 905

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserPoolType.html#CognitoUserPools-Type-UserPoolType-ID

Amazon Cognito Developer Guide

The user pool ID, for example us-east-1_EXAMPLE, is automatically generated by Amazon
Cognito and can't be changed.

Amazon Cognito user pool sign-in options

API parameter names: AliasAttributes and UsernameAttributes

The attributes that your users can pass as a user name when they sign in. When you create a
user pool, you can choose to allow sign-in with user name, email address, phone number, or a
preferred user name. To change user pool sign-in options, create a new user pool.

Make user name case sensitive

API parameter name: UsernameConfiguration

When you create a user name that matches another user name except for the letter case,
Amazon Cognito can treat them as either the same user or as unique users. For more
information, see User pool case sensitivity. To change case sensitivity, create a new user pool.

Client secret

API parameter name: GenerateSecret

When you create an app client, you can generate a client secret so that only trusted sources can
make requests to your user pool. For more information, see Application-specific settings with
app clients. To change a client secret, create a new app client in the same user pool.

Required attributes

API parameter name: Schema

The attributes that your users must provide values for when they sign up, or when you create
them. For more information, see Working with user attributes. To change required attributes,
create a new user pool.

Custom attributes (deletion)

API parameter name: Schema

Attributes with custom names. You can change the value of a user's custom attribute, but you
can't delete a custom attribute from your user pool. For more information, see Working with
user attributes. If you reach the maximum number of custom attributes and you want to modify
the list, create a new user pool.

Updating a user pool and app client 906

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AliasAttributes
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-UsernameAttributes
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-UsernameConfiguration
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html#CognitoUserPools-CreateUserPoolClient-request-GenerateSecret
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Schema
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Schema

Amazon Cognito Developer Guide

SMS configuration

After you activate SMS messages in your user pool, you can't deactivate them.

• If you choose to configure SMS messages when you create a user pool, you can't deactivate SMS
after you complete setup.

• You can activate SMS messages in a user pool that you created, but after that you can't
deactivate SMS.

• Amazon Cognito can use SMS messages for user account invitation and recovery, attribute
verification, and multi-factor authentication (MFA). After you activate SMS messages, you can
turn SMS messages on or off for these functions at any time.

• SMS message configuration includes an IAM role that you delegate to Amazon Cognito to send
messages with Amazon SNS. You can change the assigned role at any time.

Updating a user pool with an Amazon SDK, Amazon CDK, or REST API

In the Amazon Cognito console, you can change your user pool settings one parameter at a time.
For example, to add a Lambda trigger, you choose Add Lambda trigger and choose the function
and trigger type. The Amazon Cognito user pools API is structured in a way that update operations
for user pools and app clients require the full set of parameters for the user pool. However, the
console transparently automates this update operation with your other user pool settings.

You might find at times that a change elsewhere in your Amazon Web Services account can cause
updates to generate an error when they aren't related to the setting you want to change. A deleted
Amazon SES identity or a change in an IAM permission for Amazon WAF, for example. If one of
the current parameters is no longer valid, you can't update your settings until you fix it. When you
encounter such an error, examine the error response and validate the setting that it mentions.

The Amazon Cloud Development Kit (Amazon CDK), Amazon Cognito user pools REST API and
Amazon SDKs are tools for automation and programmatic configuration of Amazon Cognito
resources. Requests with these tools must also, like the Amazon Cognito console, update a setting
with a full resource configuration in the request body. At a high level, you must perform the
following process.

1. Capture the output from an operation that describes the configuration of your existing resource .

2. Modify the output with your settings change.

3. Send the modified configuration in an operation that updates your resource.

Updating a user pool and app client 907

https://www.amazonaws.cn/cdk
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://www.amazonaws.cn/developer/tools/

Amazon Cognito Developer Guide

The following procedure updates your configuration with the UpdateUserPool API operation. The
same approach, with different input fields, applies to UpdateUserPoolClient.

Important

If you don't provide values for existing parameters, Amazon Cognito sets them to
default values. For example, when you have existing LambdaConfig and you submit
an UpdateUserPool with an empty LambdaConfig, you delete the assignment of all
Lambda functions to user pool triggers. Plan accordingly when you want to automate
changes to your user pool configuration.

1. Capture the existing state of your user pool with DescribeUserPool.

2. Format the output of DescribeUserPool to match the request parameters of
UpdateUserPool. Remove the following top-level fields and their child objects from the
output JSON.

• Arn

• CreationDate

• CustomDomain

• Update this field with the UpdateUserPoolDomain API operation.

• Domain

• Update this field with the UpdateUserPoolDomain API operation.

• EmailConfigurationFailure

• EstimatedNumberOfUsers

• Id

• LastModifiedDate

• Name

• SchemaAttributes

• SmsConfigurationFailure

• Status

3. Confirm that the resulting JSON matches the request parameters of UpdateUserPool.

4. Modify any parameters that you want to change in the resulting JSON.

5. Submit an UpdateUserPool API request with your modified JSON as the request input.

Updating a user pool and app client 908

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#API_UpdateUserPool_RequestSyntax
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#API_UpdateUserPool_RequestSyntax

Amazon Cognito Developer Guide

You can also use this modified DescribeUserPool output in the --cli-input-json parameter
of update-user-pool in the Amazon CLI.

Alternately, run the following Amazon CLI command to generate JSON with blank values for the
accepted input fields for update-user-pool. You can then populate these fields with the existing
values from your user pool.

aws cognito-idp update-user-pool --generate-cli-skeleton --output json

Run the following command to generate the same JSON object for an app client.

aws cognito-idp update-user-pool-client --generate-cli-skeleton --output json

Application-specific settings with app clients

A user pool app client is a configuration within a user pool that interacts with one mobile or
web application that authenticates with Amazon Cognito. App clients can call authenticated
and unauthenticated API operations, and read or modify some or all of your users' attributes.
Your app must identify itself to the app client in operations to register, sign in, and handle
forgotten passwords. These API requests must include self-identification with an app client ID,
and authorization with an optional client secret. You must secure any app client IDs or secrets so
that only authorized client apps can call these unauthenticated operations. Additionally, if you
configure your app to sign authenticated API requests with Amazon credentials, you must secure
your credentials against user inspection.

You can create multiple apps for a user pool. An app client might be linked to the code platform of
an app, or a separate tenant in your user pool. For example, you might create an app for a server-
side application and a different Android app. Each app has its own app client ID.

You can apply settings for the following user pool features at the app client level:

1. Analytics

2. Managed login IdPs, grant types, callback URLs, and customization

3. Resource servers and custom scopes

4. Threat protection

5. Attribute read and write permissions

6. Token expiration and revocation

App clients 909

Amazon Cognito Developer Guide

7. Authentication flows

App client types

When you create an app client in Amazon Cognito, you can pre-populate options based on the
standard OAuth client types public client and confidential client. Configure a confidential client
with a client secret. For more information about client types, see IETF RFC 6749 #2.1.

Public client

A public client runs in a browser or on a mobile device. Because it does not have trusted server-
side resources, it does not have a client secret.

Confidential client

A confidential client has server-side resources that can be trusted with a client secret for
unauthenticated API operations. The app might run as a daemon or shell script on your backend
server.

Client secret

A client secret, or client password, is a fixed string that your app must use in all API requests
to the app client. Your app client must have a client secret to perform client_credentials
grants. For more information, see IETF RFC 6749 #2.3.1.

You can't change secrets after you create an app. You can create a new app with a new secret
if you want to rotate the secret. You can also delete an app to block access from apps that use
that app client ID.

Note

The Amazon Cognito console creates app clients with client secrets when you select
the Traditional web application and Machine-to-machine application options for
application type. Choose one of these options to generate a client secret, or create the
client programmatically with CreateUserPoolClient and set GenerateSecret to true.

You can use a confidential client, and a client secret, with a public app. Use an Amazon CloudFront
proxy to add a SECRET_HASH in transit. For more information, see Protect public clients for
Amazon Cognito by using an Amazon CloudFront proxy on the Amazon blog.

App clients 910

https://datatracker.ietf.org/doc/html/rfc6749#section-2.1
https://datatracker.ietf.org/doc/html/rfc6749#section-2.3.1
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://aws.amazon.com/blogs/security/protect-public-clients-for-amazon-cognito-by-using-an-amazon-cloudfront-proxy/
https://aws.amazon.com/blogs/security/protect-public-clients-for-amazon-cognito-by-using-an-amazon-cloudfront-proxy/

Amazon Cognito Developer Guide

JSON web tokens

Amazon Cognito app clients can issue JSON web tokens (JWTs) of the following types.

Identity (ID) token

A verifiable statement that your user is authenticated from your user pool. OpenID Connect
(OIDC) added the ID token specification to the access and refresh token standards defined by
OAuth 2.0. The ID token contains identity information, like user attributes, that your app can
use to create a user profile and provision resources. See Understanding the identity (ID) token
for more information.

Access token

A verifiable statement of your user's access rights. The access token contains scopes, a feature
of OIDC and OAuth 2.0. Your app can present scopes to back-end resources and prove that your
user pool authorized a user or machine to access data from an API, or their own user data. An
access token with custom scopes, often from an M2M client-credentials grant, authorizes access
to a resource server. See Understanding the access token for more information.

Refresh token

An encrypted statement of initial authentication that your app can present to your user pool
when your user's tokens expire. A refresh-token request returns new, unexpired access and ID
tokens. See Refresh tokens for more information.

You can set the expiration of these tokens for each app client from the App clients menu of your
user pool in the Amazon Cognito console.

App client terms

The following terms are available properties of app clients in the Amazon Cognito console.

Allowed callback URLs

A callback URL indicates where the user will be redirected after a successful sign-in. Choose at
least one callback URL. The callback URL must:

• Be an absolute URI.

• Be pre-registered with a client.

• Not include a fragment component.

App clients 911

https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3
https://console.amazonaws.cn/cognito/v2/idp/user-pools

Amazon Cognito Developer Guide

See OAuth 2.0 - redirection endpoint.

Amazon Cognito requires HTTPS over HTTP except for http://localhost for testing
purposes only.

App callback URLs such as myapp://example are also supported.

Allowed sign out URLs

A sign-out URL indicates where your user is to be redirected after signing out.

Attribute read and write permissions

Your user pool might have many customers, each with their own app client and IdPs. You can
configure your app client to have read and write access to only those user attributes that are
relevant to the app. In cases like machine-to-machine (M2M) authorization, you can grant
access to none of your user attributes.

Considerations for attribute read and write permissions configuration

• When you create an app client and don't customize attribute read and write permissions,
Amazon Cognito grants read and write permissions to all user pool attributes.

• You can grant write access to immutable custom attributes. Your app client can write values
to immutable attributes when you create or sign up a user. After this, you can't write values to
any immutable custom attributes for the user.

• App clients must have write access to required attributes in your user pool. The Amazon
Cognito console automatically sets required attributes as writeable.

• You can't permit an app client to have write access to email_verified or
phone_number_verified. A user pool administrator can modify these values. A user can
only change the value of these attributes through attribute verification.

Authentication flows

The methods that your app client allows for sign-in. Your app can support authentication
with username and password, email and SMS message OTPs, passkey authenticators, custom
authentication with Lambda triggers, and token refresh. As a best security practice, use SRP
authentication for username and password authentication in custom-built applications.

Custom scopes

A custom scope is one that you define for your own resource server in the Resource Servers.
The format is resource-server-identifier/scope. See Scopes, M2M, and APIs with
resource servers.

App clients 912

https://tools.ietf.org/html/rfc6749#section-3.1.2

Amazon Cognito Developer Guide

Default redirect URI

Replaces the redirect_uri parameter in authentication requests for users with third-
party IdPs. Configure this app client setting with the DefaultRedirectURI parameter of a
CreateUserPoolClient or UpdateUserPoolClient API request. This URL must also be a member of
the CallbackURLs for your app client. Amazon Cognito redirects authenticated sessions to this
URL when:

1. Your app client has one identity provider assigned and multiple callback URLs defined. Your
user pool redirects authentication requests to the authorization server to the default redirect
URI when they don't include a redirect_uri parameter.

2. Your app client has one identity provider assigned and one callback URLs defined. In this
scenario it's not necessary to define a default callback URL. Requests that don't include a
redirect_uri parameter redirect to the one available callback URL.

Identity providers

You can choose some or all of your user pool external identity providers (IdPs) to authenticate
your users. Your app client can also authenticate only local users in your user pool. When you
add an IdP to your app client, you can generate authorization links to the IdP and display it on
your managed login sign-in page. You can assign multiple IdPs, but you must assign at least
one. For more information on using external IdPs, see User pool sign-in with third party identity
providers.

OpenID Connect scopes

Choose one or more of the following OAuth scopes to specify the access privileges that can be
requested for access tokens.

• The openid scope declares that you want to retrieve an ID token and a user's unique ID.
It also requests all or some user attributes, depending on additional scopes in the request.
Amazon Cognito doesn't return an ID token unless you request the openid scope. The
openid scope authorizes structural ID token claims like expiration and key ID, and determines
the user attributes that you receive in a response from the userInfo endpoint.

• When openid is the only scope that you request, Amazon Cognito populates the ID token
with all user attributes that the current app client can read. The userInfo response to an
access token with this scope alone returns all user attributes.

• When you request openid with other scopes like phone, email, or profile, the ID token
and userInfo return the user's unique ID and the attributes defined by the additional
scopes.

App clients 913

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

• The phone scope grants access to the phone_number and phone_number_verified
claims. This scope can only be requested with the openid scope.

• The email scope grants access to the email and email_verified claims. This scope can
only be requested with the openid scope.

• The aws.cognito.signin.user.admin scope grants access to Amazon Cognito
user pools API operations that require access tokens, such as UpdateUserAttributes and
VerifyUserAttribute.

• The profile scope grants access to all user attributes that are readable by the client. This
scope can only be requested with the openid scope.

For more information about scopes, see the list of standard OIDC scopes.

OAuth grant types

An OAuth grant is a method of authentication that retrieves user-pool tokens. Amazon Cognito
supports the following types of grants. To integrate these OAuth grants in your app, you must
add a domain to your user pool.

Authorization code grant

The authorization code grant generates a code that your app can exchange for user pool tokens
with the Token endpoint. When you exchange an authorization code, your app receives ID,
access, and refresh tokens. This OAuth flow, like the implicit grant, happens in your users'
browsers. An authorization code grant is the most secure grant that Amazon Cognito offers,
because tokens aren't visible in your users' sessions. Instead, your app generates the request
that returns tokens and can cache them in protected storage. For more information, see
Authorization code in IETF RFC 6749 #1.3.1

Note

As a best security practice in public-client apps, activate only the authorization-code
grant OAuth flow, and implement Proof Key for Code Exchange (PKCE) to restrict token
exchange. With PKCE, a client can only exchange an authorization code when they have
provided the token endpoint with the same secret that was presented in the original
authentication request. For more information on PKCE, see IETF RFC 7636.

Implicit grant

App clients 914

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
http://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.1
https://datatracker.ietf.org/doc/html/rfc7636

Amazon Cognito Developer Guide

The implicit grant delivers an access and ID token, but not refresh token, to your user's browser
session directly from the Authorize endpoint. An implicit grant removes the requirement for
a separate request to the token endpoint, but isn't compatible with PKCE and doesn't return
refresh tokens. This grant accommodates testing scenarios and app architecture that can't
complete authorization-code grants. For more information, see Implicit grant in IETF RFC 6749
#1.3.2. You can activate both the authorization-code grant and the implicit grant in an app
client, and then use each grant as needed.

Client credentials grant

The client credentials grant is for machine-to-machine (M2M) communications. Authorization-
code and implicit grants issue tokens to authenticated human users. Client credentials grant
scope-based authorization from a non-interactive system to an API. Your app can request client
credentials directly from the token endpoint and receive an access token. For more information,
see Client Credentials in IETF RFC 6749 #1.3.4. You can only activate client-credentials grants
in app clients that have a client secret and that don't support authorization-code or implicit
grants.

Note

Because you don't invoke the client credentials flow as a user, this grant can only add
custom scopes to access tokens. A custom scope is one that you define for your own
resource server. Default scopes like openid and profile don't apply to nonhuman
users.
Because ID tokens are a validation of user attributes, they aren't relevant to M2M
communication, and a client credentials grants doesn't issue them. See Scopes, M2M,
and APIs with resource servers.

Client credentials grants add costs to your Amazon bill. For more information, see Amazon
Cognito Pricing.

App clients 915

https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.2
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.2
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4
https://www.amazonaws.cn/cognito/pricing
https://www.amazonaws.cn/cognito/pricing

Amazon Cognito Developer Guide

Creating an app client

Amazon Web Services Management Console

To create an app client (console)

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool. Both options prompt you
to configure an app client with application-specific settings.

4. Choose an Application type that reflects your application architecture.

5. Name your application with a friendly identifier.

6. Enter a Return URL.

7. Choose Create app client. You can change advanced options after you create your app
client.

8. Amazon Cognito returns you to app client details. To access example code for your
application, select a platform from the Quick setup guide tab.

Amazon CLI

aws cognito-idp create-user-pool-client --user-pool-id MyUserPoolID --client-
name myApp

Note

Use JSON format for callback and logout URLs to prevent the CLI from treating them as
remote parameter files:

--callback-urls "["https://example.com"]"
--logout-urls "["https://example.com"]"

See the Amazon CLI command reference for more information: create-user-pool-client

App clients 916

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/create-user-pool-client.html

Amazon Cognito Developer Guide

Amazon Cognito user pools API

Generate a CreateUserPoolClient API request. You must specify a value for all parameters that
you don't want set to a default value.

Updating a user pool app client (Amazon CLI and Amazon API)

At the Amazon CLI, enter the following command:

aws cognito-idp update-user-pool-client --user-pool-id "MyUserPoolID" --client-id
 "MyAppClientID" --allowed-o-auth-flows-user-pool-client --allowed-o-auth-flows "code"
 "implicit" --allowed-o-auth-scopes "openid" --callback-urls "["https://example.com"]"
 --supported-identity-providers "["MySAMLIdP", "LoginWithAmazon"]"

If the command is successful, the Amazon CLI returns a confirmation:

{
 "UserPoolClient": {
 "ClientId": "MyClientID",
 "SupportedIdentityProviders": [
 "LoginWithAmazon",
 "MySAMLIdP"
],
 "CallbackURLs": [
 "https://example.com"
],
 "AllowedOAuthScopes": [
 "openid"
],
 "ClientName": "Example",
 "AllowedOAuthFlows": [
 "implicit",
 "code"
],
 "RefreshTokenValidity": 30,
 "AuthSessionValidity": 3,
 "CreationDate": 1524628110.29,
 "AllowedOAuthFlowsUserPoolClient": true,
 "UserPoolId": "MyUserPoolID",
 "LastModifiedDate": 1530055177.553
 }
}

App clients 917

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html

Amazon Cognito Developer Guide

See the Amazon CLI command reference for more information: update-user-pool-client.

Amazon API: UpdateUserPoolClient

Getting information about a user pool app client (Amazon CLI and Amazon API)

aws cognito-idp describe-user-pool-client --user-pool-id MyUserPoolID --client-
id MyClientID

See the Amazon CLI command reference for more information: describe-user-pool-client.

Amazon API: DescribeUserPoolClient

Listing all app client information in a user pool (Amazon CLI and Amazon API)

aws cognito-idp list-user-pool-clients --user-pool-id "MyUserPoolID" --max-results 3

See the Amazon CLI command reference for more information: list-user-pool-clients.

Amazon API: ListUserPoolClients

Deleting a user pool app client (Amazon CLI and Amazon API)

aws cognito-idp delete-user-pool-client --user-pool-id "MyUserPoolID" --client-id
 "MyAppClientID"

See the Amazon CLI command reference for more information: delete-user-pool-client

Amazon API: DeleteUserPoolClient

Working with user devices in your user pool

When you sign in local user pool users with the Amazon Cognito user pools API, you can associate
your users’ activity logs from threat protection with each of their devices and, optionally, allow
your users to skip multi-factor authentication (MFA) if they’re on a trusted device. Amazon Cognito
includes a device key in the response to any sign-in that doesn’t already include device information.
The device key is in the format Region_UUID. With a device key, a Secure Remote Password (SRP)
library, and a user pool that permits device authentication, you can prompt users in your app to
trust the current device and no longer prompt for an MFA code at sign-in.

Working with devices 918

https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/update-user-pool-client.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/describe-user-pool-client.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolClient.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/list-user-pool-clients.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserPoolClients.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/delete-user-pool-client.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolClient.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html

Amazon Cognito Developer Guide

Topics

• Setting up remembered devices

• Getting a device key

• Signing in with a device

• Viewing, updating and forgetting devices

Setting up remembered devices

With Amazon Cognito user pools, you can associate each of your users' devices with a unique
device identifier: a device key. When you present the device key and perform device authentication
at sign-in, you can configure your application with a trusted device authentication flow. In this
flow, your application can present a choice to users to sign in without MFA until a later time, as
determined by the security requirements of your app or the preferences of your users. At the end
of that time period, your application must change the device status to not remembered and the
user must sign in with MFA until they confirm that they want to remember a device. For example,
your application might prompt your users to trust a device for 30, 60, or 90 days. You can store this
date in a custom attribute and on that date, change the remembered status of their device. You
must then re-prompt your user to submit an MFA code and set the device to be remembered again
after successful authentication.

1. Remembered devices can override MFA only in user pools with MFA active.

When your user signs in with a remembered device, you must perform an additional device
authentication during their authentication flow. For more information, see Signing in with a device.

Configure your user pool to remember devices in the Sign-in menu of your user pool, under Device
tracking. When setting up the remembered devices functionality through the Amazon Cognito
console, you have three options: Always, User Opt-In, and No.

Don't remember

Your user pool doesn't prompt users to remember devices when they sign in.

Always remember

When your app confirms a user's device, your user pool always remembers the device and
doesn't return MFA challenges on future successful device sign-ins.

Working with devices 919

Amazon Cognito Developer Guide

User opt-in

When your app confirms a user's device, your user pool doesn't automatically suppress MFA
challenges. You must prompt your user to choose whether they want to remember the device.

When you choose Always remember or User Opt-In, Amazon Cognito generates a device-identifier
key and secret every time a user signs in from an unidentified device. The device key is the initial
identifier that your app sends to your user pool when your user performs device authentication.

With each confirmed user device, whether remembered automatically or opted-in, you can use the
device-identifier key and secret to authenticate a device on every user sign-in.

You can also configure remembered-device settings for your user pool in a CreateUserPool or
UpdateUserPool API request. For more information, see the DeviceConfiguration property.

The Amazon Cognito user pools API has additional operations for remembered devices.

1. ListDevices and AdminListDevices return a list of the device keys and their metadata for a user.

2. GetDevice and AdminGetDevice return the device key and metadata for a single device.

3. UpdateDeviceStatus and AdminUpdateDeviceStatus set a user's device as remembered or not
remembered.

4. ForgetDevice and AdminForgetDevice remove a user's confirmed device from their profile.

API operations with names that begin with Admin are for use in server-side apps and must be
authorized with IAM credentials. For more information, see Understanding API, OIDC, and managed
login pages authentication.

Getting a device key

Any time that your user signs in with the user pools API and doesn’t include a device key in the
authentication parameters as DEVICE_KEY, Amazon Cognito returns a new device key in the
response. In your public client-side app, place the device key in app storage so that you can include
it in future requests. In your confidential server-side app, set a browser cookie or another client-
side token with your user’s device key.

Before your user can sign in with their trusted device, your app must confirm the device key
and provide additional information. Generate a ConfirmDevice request to Amazon Cognito that
confirms your user’s device with the device key, a friendly name, password verifier, and a salt. If

Working with devices 920

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#CognitoUserPools-UpdateUserPool-request-DeviceConfiguration
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmDevice.html

Amazon Cognito Developer Guide

you configured your user pool for opt-in device authentication, Amazon Cognito responds to your
ConfirmDevice request with a prompt that your user must choose whether to remember the
current device. Respond with your user’s selection in an UpdateDeviceStatus request.

When you confirm your user’s device but don’t set it as remembered, Amazon Cognito stores
the association but proceeds with non-device sign-in when you provide the device key. Devices
can generate logs that are useful for user security and troubleshooting. A confirmed but
unremembered device doesn’t take advantage of the sign-in feature, but does take advantage of
the security monitoring logs feature. When you activate advanced security features for your app
client and encode a device footprint into your request, Amazon Cognito associates user events with
the confirmed device.

To get a new device key

1. Start your user’s sign-in session with an InitiateAuth API request.

2. Respond to all authentication challenges with RespondToAuthChallenge until you receive JSON
web tokens (JWTs) that mark your user’s sign-in session complete.

3. In your app, record the values that Amazon Cognito returns in NewDeviceMetadata in its
RespondToAuthChallenge or InitiateAuth response: DeviceGroupKey and DeviceKey.

4. Generate a new SRP secret for your user: a salt and a password verifier. This function is available
in SDKs that provide SRP libraries.

5. Prompt your user for a device name, or generate one from your user’s device characteristics.

6. Provide your user’s access token, device key, device name, and SRP secret in a ConfirmDevice
API request. If your user pool is set to Always remember devices, your user’s registration is
complete.

7. If Amazon Cognito responded to ConfirmDevice with "UserConfirmationNecessary":
true, prompt your user to choose if they would like to remember the device. If they affirm that
they want to remember the device, generate an UpdateDeviceStatus API request with your user’s
access token, device key, and "DeviceRememberedStatus": "remembered".

8. If you have instructed Amazon Cognito to remember the device, the next time they sign in,
instead of an MFA challenge, they’re presented with a DEVICE_SRP_AUTH challenge.

Signing in with a device

After you configure a user’s device to be remembered, Amazon Cognito no longer requires them
to submit an MFA code when they sign in with the same device key. Device authentication only

Working with devices 921

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html

Amazon Cognito Developer Guide

replaces the MFA-authentication challenge with a device-authentication challenge. You can’t
sign users in with device authentication only. Your user must first complete authentication with
their password or a custom challenge. The following is the authentication process for a user on a
remembered device.

To perform device authentication in a flow that uses Custom authentication challenge Lambda
triggers, pass a DEVICE_KEY parameter in your InitiateAuth API request. After your user succeeds
all challenges and the CUSTOM_CHALLENGE challenge returns an issueTokens value of true,
Amazon Cognito returns one final DEVICE_SRP_AUTH challenge.

To sign in with a device

1. Retrieve your user’s device key from client storage.

2. Start your user’s sign-in session with an InitiateAuth API request. Choose an AuthFlow of
USER_SRP_AUTH, REFRESH_TOKEN_AUTH, USER_PASSWORD_AUTH, or CUSTOM_AUTH. In
AuthParameters, add your user’s device key to the DEVICE_KEY parameter, and include the
other required parameters for your selected sign-in flow.

a. You can also pass DEVICE_KEY in the parameters of a PASSWORD_VERIFIER response to an
authentication challenge.

3. Complete challenge responses until you receive a DEVICE_SRP_AUTH challenge in the response.

4. In a RespondToAuthChallenge API request, send a ChallengeName of DEVICE_SRP_AUTH and
parameters for USERNAME, DEVICE_KEY, and SRP_A.

5. Amazon Cognito responds with a DEVICE_PASSWORD_VERIFIER challenge. This challenge
response includes values for SECRET_BLOCK and SRP_B.

6. With your SRP library, generate and submit PASSWORD_CLAIM_SIGNATURE,
PASSWORD_CLAIM_SECRET_BLOCK, TIMESTAMP, USERNAME, and DEVICE_KEY parameters.
Submit these in an additional RespondToAuthChallenge request.

7. Complete additional challenges until you receive the user’s JWTs.

The following pseudocode demonstrates how to calculate values for your
DEVICE_PASSWORD_VERIFIER challenge response. For SRP authentication with a device, generate
a new SRP secret for your user: a fresh high-entropy password DeviceSecret, a salt, and the
associated password verifier. These values are distinct from the password, salt, and verifier used for
the user's SRP authentication. They are only used for device authentication and are only stored on
the device. Functions for generating the SRP secrets for users' devices are available in SRP libraries
that are available in various SDKs.

Working with devices 922

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-challenge.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-challenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://github.com/secure-remote-password/implementations

Amazon Cognito Developer Guide

PASSWORD_CLAIM_SECRET_BLOCK = SECRET_BLOCK
TIMESTAMP = "Tue May 27 00:09:40 UTC 2025"
k = SHA256(N || g) as a non-negative integer in big-endian
u = SHA256(SRP_A || SRP_B) as a non-negative integer in big-endian
x = SHA256(salt || SHA256(DeviceGroupKey || DeviceKey || ":" || DeviceSecret)) as a
 non-negative integer in big-endian
S_USER = (SRP_B - k * g^x)^(a + u * x) % N
K_USER = HKDF_HMAC_SHA256(salt=u, ikm=S_USER, info="Caldera Derived Key", length=16
 bytes)
PASSWORD_CLAIM_SIGNATURE = Base64(HMAC_SHA256(key=K_USER, message=(DeviceGroupKey ||
 DeviceKey || PASSWORD_CLAIM_SECRET_BLOCK || TIMESTAMP)))

Viewing, updating and forgetting devices

You can implement the following features in your app with the Amazon Cognito API.

1. Display information about a user’s current device.

2. Display a list of all of your user’s devices.

3. Forget a device.

4. Update a device remembered state.

The access tokens that authorize the API requests in the following descriptions must include the
aws.cognito.signin.user.admin scope. Amazon Cognito adds a claim for this scope to
all access tokens that you generate with the Amazon Cognito user pools API. Third-party IdPs
must separately manage devices and MFA for their users who authenticate to Amazon Cognito. In
managed login, you can request the aws.cognito.signin.user.admin scope, but managed
login automatically adds device information to advanced security user logs, and doesn't offer to
remember devices.

Display information about a device

You can query information about a user’s device to determine if it is still in current use. For
example, you might want to deactivate remembered devices after they haven’t signed in for 90
days.

• To display your user’s device information in a public-client app, submit your user’s access key and
device key in a GetDevice API request.

• To display your user’s device information in a confidential-client app, sign an AdminGetDevice
API request with Amazon credentials and submit your user’s username, device key, and user pool.

Working with devices 923

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetDevice.html

Amazon Cognito Developer Guide

Display a list of all your user’s devices

You can display a list of all your user’s devices and their properties. For example, you might want to
verify that the current device matches a remembered device.

• In a public-client app, submit your user’s access token in a ListDevices API request.

• In a confidential-client app, sign an AdminListDevices API request with Amazon credentials and
submit your user’s username and user pool.

Forget a device

You can delete a user’s device key. You might want to do this when you determine that your
user no longer uses a device, or when you detect unusual activity and want to prompt a user to
complete MFA again. To register the device again later, you must generate and store a new device
key.

• In a public-client app, submit your user’s device key and access token in ForgetDevice API
request.

• In a confidential-client app, submit your user’s device key and access token in AdminForgetDevice
API request.

Using Amazon Pinpoint for user pool analytics

Note

End of support notice: On October 30, 2026, Amazon will end support for Amazon
Pinpoint. After October 30, 2026, you will no longer be able to access the Amazon Pinpoint
console or Amazon Pinpoint resources (endpoints, segments, campaigns, journeys, and
analytics). For more information, see Amazon Pinpoint end of support. Note: APIs related
to SMS, voice, mobile push, OTP, and phone number validate are not impacted by this
change and are supported by Amazon End User Messaging.

Amazon Cognito user pools are integrated with Amazon Pinpoint to provide analytics for Amazon
Cognito user pools and to enrich the user data for Amazon Pinpoint campaigns. Amazon Pinpoint
provides analytics and targeted campaigns to drive user engagement in mobile apps using push
notifications. With Amazon Pinpoint analytics support in Amazon Cognito user pools, you can track

Using Amazon Pinpoint analytics 924

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminForgetDevice.html
https://docs.amazonaws.cn/console/pinpoint/migration-guide

Amazon Cognito Developer Guide

user pool sign-ups, sign-ins, failed authentications, daily active users (DAUs), and monthly active
users (MAUs) in the Amazon Pinpoint console. You can drill into the data for different date ranges
or attributes, such as device platform, device locale, and app version.

You can also set up custom attributes for your app. Those can then be used to segment your users
on Amazon Pinpoint and send them targeted push notifications. If you choose Share user attribute
data with Amazon Pinpoint in the Analytics configuration for your app client in the App clients
menu in the Amazon Cognito console, Amazon Pinpoint creates additional endpoints for user email
addresses and phone numbers.

When you activate Amazon Pinpoint analytics in your user pool with the Amazon Cognito
console, you also create a service-linked role that Amazon Cognito assumes when it makes an
API request to Amazon Pinpoint for your user pool. The IAM principal that adds your analytics
configuration must have CreateServiceLinkedRole permissions. The service-linked role is
AWSServiceRoleForAmazonCognitoIdp. For more information, see Using service-linked roles for
Amazon Cognito.

When you apply an AnalyticsConfiguration to your app client in the Amazon Cognito API,
you can assign a custom IAM role for Amazon Pinpoint and an external ID to assume the role.
The role must trust the cognito-idp service principal, and if the role trust policy requires an
external ID, it must match your AnalyticsConfiguration. You must grant the role cognito-
idp:Describe* permissions, and the following permissions for your Amazon Pinpoint project.

• mobiletargeting:UpdateEndpoint

• mobiletargeting:PutEvents

Amazon Cognito and Amazon Pinpoint Region availability

The following table shows the Amazon Web Services Region mappings between Amazon Cognito
and Amazon Pinpoint that meet one of the following conditions.

• You can only use an Amazon Pinpoint project in the US East (N. Virginia) (us-east-1) Region.

• You can use an Amazon Pinpoint project in the same Region or in the US East (N. Virginia) (us-
east-1) Region

By default, Amazon Cognito can only send analytics to a Amazon Pinpoint project in the same
Amazon Web Services Region. The exceptions to this rule are the Regions in the following table,
and Regions where Amazon Pinpoint in unavailable.

Using Amazon Pinpoint analytics 925

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.amazonaws.cn/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://console.amazonaws.cn/iamv2/home?region=us-east-1#/roles/details/AWSServiceRoleForAmazonCognitoIdp

Amazon Cognito Developer Guide

Amazon Pinpoint isn't available in the following Regions. Amazon Cognito user pools in these
Regions don't support analytics.

• Europe (Milan)

• Middle East (Bahrain)

• Asia Pacific (Osaka)

• Israel (Tel Aviv)

• Africa (Cape Town)

• Asia Pacific (Jakarta)

• Asia Pacific (Malaysia)

The table shows the relation between the Region where you built your Amazon Cognito user pool
and the corresponding Region in Amazon Pinpoint. You must configure your Amazon Pinpoint
project in an available Region to integrate it with Amazon Cognito.

Amazon Cognito user pool Region Region for Amazon Pinpoint project

ap-northeast-1 us-east-1

ap-northeast-2 us-east-1

ap-south-1 us-east-1, ap-south-1

ap-southeast-1 us-east-1

ap-southeast-2 us-east-1, ap-southeast-2

ca-central-1 us-east-1

eu-central-1 us-east-1, eu-central-1

eu-west-1 us-east-1, eu-west-1

eu-west-2 us-east-1

us-east-1 us-east-1

us-east-2 us-east-1

Using Amazon Pinpoint analytics 926

Amazon Cognito Developer Guide

Amazon Cognito user pool Region Region for Amazon Pinpoint project

us-west-2 us-east-1, us-west-2

Region mapping examples

• If you create a user pool in ap-northeast-1, you can create your Amazon Pinpoint project in us-
east-1.

• If you create a user pool in ap-south-1, you can create your Amazon Pinpoint project in either us-
east-1 or ap-south-1.

Note

For all Amazon Web Services Regions except those in the preceding table, Amazon Cognito
can only use an Amazon Pinpoint project in the same Region as your user pool. If Amazon
Pinpoint isn't available in the Region where you built your user pool, and it's not listed in
the table, then Amazon Cognito doesn't support Amazon Pinpoint analytics in that Region.
For detailed Amazon Web Services Region information, see Amazon Pinpoint endpoints and
quotas.

Specifying Amazon Pinpoint analytics settings (Amazon Web Services Management Console)

You can configure your Amazon Cognito user pool to send analytics data to Amazon Pinpoint.
Amazon Cognito only sends analytics data to Amazon Pinpoint for local users. After you
configure your user pool to associate with a Amazon Pinpoint project, you must include
AnalyticsMetadata in your API requests. For more information, see Integrating your app with
Amazon Pinpoint.

To specify analytics settings

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Select User Pools and choose an existing user pool from the list.

3. Choose the App clients menu and select the app client that you want to update.

4. In the Analytics tab under Pinpoint analytics, choose Enable.

5. Choose a Pinpoint Region.

Using Amazon Pinpoint analytics 927

https://docs.amazonaws.cn/general/latest/gr/pinpoint.html
https://docs.amazonaws.cn/general/latest/gr/pinpoint.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

6. Choose an Amazon Pinpoint project or select Create Amazon Pinpoint project.

Note

The Amazon Pinpoint project ID is a 32-character string that is unique to your Amazon
Pinpoint project. It is listed in the Amazon Pinpoint console.
You can map multiple Amazon Cognito apps to a single Amazon Pinpoint project.
However, each Amazon Cognito app can only be mapped to one Amazon Pinpoint
project.
In Amazon Pinpoint, each project should be a single app. For example, if a game
developer has two games, each game should be a separate Amazon Pinpoint project,
even if both games use the same Amazon Cognito user pool. For more information on
Amazon Pinpoint projects, see Create a project in Amazon Pinpoint.

7. Under User data sharing, choose Share user data with Amazon Pinpoint if you want
Amazon Cognito to send email addresses and phone numbers to Amazon Pinpoint and create
additional endpoints for users. After your users verify their email address and phone number,
Amazon Cognito only shares them with Amazon Pinpoint if they are available to the user
account.

Note

An endpoint uniquely identifies a user device to which you can send push notifications
with Amazon Pinpoint. For more information about endpoints, see Adding endpoints in
the Amazon Pinpoint Developer Guide.

8. Choose Save changes.

Specifying Amazon Pinpoint analytics settings (Amazon CLI and Amazon API)

Use the following commands to specify Amazon Pinpoint analytics settings for your user pool.

To specify the analytics settings for your user pool's existing client app at app creation time

• Amazon CLI: aws cognito-idp create-user-pool-client

• Amazon API: CreateUserPoolClient

Using Amazon Pinpoint analytics 928

https://docs.amazonaws.cn/push-notifications/latest/userguide/mobile-push.html#mobile-push-create-project
https://docs.amazonaws.cn/pinpoint/latest/developerguide/endpoints.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html

Amazon Cognito Developer Guide

To update the analytics settings for your user pool's existing client app

• Amazon CLI: aws cognito-idp update-user-pool-client

• Amazon API: UpdateUserPoolClient

Note

Amazon Cognito supports in-Region integrations when you use ApplicationArn

Integrating your app with Amazon Pinpoint

You can publish analytics metadata to Amazon Pinpoint for Amazon Cognito local users in the user
pools API.

Local users

Users who signed up for an account or were created in your user pool instead of signing in
through a third-party identity provider (IdP).

User pools API

The operations that you can integrate with an Amazon SDK, using an app with a custom user
interface (UI). You can't pass analytics metadata for federated or local users who sign in through
managed login. See the Amazon Cognito API Reference for a list of user pools API operations.

After you configure your user pool to publish to a campaign, Amazon Cognito passes metadata to
Amazon Pinpoint for the following API operations.

• AdminInitiateAuth

• AdminRespondToAuthChallenge

• ConfirmForgotPassword

• ConfirmSignUp

• ForgotPassword

• InitiateAuth

• ResendConfirmationCode

Using Amazon Pinpoint analytics 929

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

• RespondToAuthChallenge

• SignUp

To pass metadata about your user's session to your Amazon Pinpoint campaign, include an
AnalyticsEndpointId value in the AnalyticsMetadata parameter of your API request. For
a JavaScript example, see Why aren't my Amazon Cognito user pool analytics appearing on my
Amazon Pinpoint dashboard? in the Amazon Knowledge Center.

Email settings for Amazon Cognito user pools

Certain events in your application can cause Amazon Cognito to email your users. For example, if
you configure your user pool to require email verification, Amazon Cognito sends an email when a
user signs up for a new account in your app or resets their password. Depending on the action that
initiates the email, the email contains a verification code or a temporary password.

To handle email delivery, you can use either of the following options:

• The default email configuration that is built into the Amazon Cognito service.

• Your Amazon Simple Email Service (Amazon SES) configuration.

You can change your delivery option after you create your user pool.

Amazon Cognito sends email messages to your users with either a code that they can enter or a
URL link that they can select. The following table shows the events that can generate an email
message.

Message options

Activity API operation Delivery
options

Format
options

Customiza
ble

Message
template

Forgot
password

ForgotPassword,
AdminRese
tUserPassword

Email, SMS code No N/A

Invitation AdminCrea
teUser

Email, SMS code Yes Invitation
message

Email settings 930

https://www.amazonaws.cn/premiumsupport/knowledge-center/pinpoint-cognito-user-pool-analytics/
https://www.amazonaws.cn/premiumsupport/knowledge-center/pinpoint-cognito-user-pool-analytics/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html

Amazon Cognito Developer Guide

Activity API operation Delivery
options

Format
options

Customiza
ble

Message
template

Self-regi
stration

SignUp,
ResendCon
firmationCode

Email, SMS code, link Yes Verification
message

Email
address
or phone
number
verification

UpdateUse
rAttributes,
AdminUpda
teUserAtt
ributes,
GetUserAt
tributeVerificatio
nCode

Email, SMS code Yes Verification
message

Multi-factor
authentic
ation (MFA)

AdminInit
iateAuth,
InitiateAuth

Email¹, SMS,
authentic
ator app

code Yes² MFA
message

¹ Requires advanced security features and Amazon SES email configuration.

² For SMS and email messages.

Amazon SES charges for email messages. For more information, see Amazon SES pricing.

To learn more about email MFA, see SMS and email message MFA.

Amazon Cognito might prevent delivery of additional email or SMS messages to a single
destination in a short time period. If you believe your user pool is affected, configure and review
logs for message delivery errors and then contact your account team.

Default email configuration

Amazon Cognito can use its default email configuration to handle email deliveries for you. When
you use the default option, Amazon Cognito limits the number of emails it sends each day for your
user pool. For information on service limits, see Quotas in Amazon Cognito. For typical production
environments, the default email limit is below the required delivery volume. To enable a higher
delivery volume, you can use your Amazon SES email configuration.

Email settings 931

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://www.amazonaws.cn/ses/pricing/

Amazon Cognito Developer Guide

When you use the default configuration, you use Amazon SES resources that are managed by
Amazon to send email messages. Amazon SES adds email addresses that return a hard bounce
to an account-level suppression list or a global suppression list. If an undeliverable email address
becomes deliverable later, you can't control its removal from the suppression list while your user
pool is configured to use the default configuration. An email address can remain on the Amazon-
managed suppression list indefinitely. To manage undeliverable email addresses, use your Amazon
SES email configuration with an account-level suppression list, as described in the next section.

When you use the default email configuration, you can use either of the following email addresses
as the FROM address:

• The default email address, no-reply@verificationemail.com.

• A custom email address. Before you can use your own email address, you must verify it with
Amazon SES and grant Amazon Cognito permission to use this address.

Amazon SES email configuration

Your application might require a higher delivery volume than what is available with the default
option. To increase the possible delivery volume, use your Amazon SES resources with your user
pool to email your users. You can also monitor your email sending activity when you send email
messages with your own Amazon SES configuration.

Before you can use your Amazon SES configuration, you must verify one or more email addresses,
or a domain, with Amazon SES. Use a verified email address, or an address from a verified domain,
as the FROM email address that you assign to your user pool. When Amazon Cognito sends email
to a user, it calls Amazon SES for you and uses your email address.

When you use your Amazon SES configuration, the following conditions apply:

• The email delivery limits for your user pool are the same limits that apply to your Amazon SES
verified email address in your Amazon Web Services account.

• You can manage your messages to undeliverable email addresses with an account-level
suppression list in Amazon SES that overrides the global suppression list. When you use an
account-level suppression list, email message bounces affect the reputation of your account as
a sender. For more information, see Using the Amazon SES account-level suppression list in the
Amazon Simple Email Service Developer Guide.

Email settings 932

https://docs.amazonaws.cn/ses/latest/dg/send-email-concepts-deliverability.html#send-email-concepts-deliverability-bounce
https://docs.amazonaws.cn/ses/latest/dg/sending-email-suppression-list.html
https://docs.amazonaws.cn/ses/latest/dg/send-email-concepts-deliverability.html#send-email-concepts-deliverability-suppression-list
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/monitor-sending-activity.html
https://docs.amazonaws.cn/ses/latest/dg/send-email-concepts-deliverability.html#send-email-concepts-deliverability-suppression-list
https://docs.amazonaws.cn/ses/latest/dg/sending-email-suppression-list.html

Amazon Cognito Developer Guide

Amazon SES email configuration Regions

The Amazon Web Services Region where you create a user pool will have one of three requirements
for the configuration of email messages with Amazon SES. You might send email messages from
Amazon SES in the same Region as your user pool, several Regions including the same Region,
or one or more remote Regions. For best performance, send email messages with a Amazon SES
verified identity in the same Region as your user pool when you have the option.

Categories of Region requirements for Amazon SES verified identities

In-Region only

Your user pools can send email messages with verified identities in the same Amazon Web
Services Region as the user pool. In the default email configuration without a custom FROM
email address, Amazon Cognito uses a no-reply@verificationemail.com verified identity
in the same Region.

Backwards compatible

Your user pools can send email messages with verified identities in the same Amazon Web
Services Region or in one of the following alternate Regions:

• US East (N. Virginia)

• US West (Oregon)

• Europe (Ireland)

This feature supports continuity for user pool resources that you might have created to match
Amazon Cognito requirements when the service launched. User pools from that period could
only send email messages with verified identities in a limited number of Amazon Web Services
Regions. In the default email configuration without a custom FROM email address, Amazon
Cognito uses a no-reply@verificationemail.com verified identity in the same Region.

Alternate Region

Your user pools can send email messages with verified identities in an alternate Amazon Web
Services Region that is outside of the user pool Region. This configuration occurs when Amazon
SES isn't available in a Region where Amazon Cognito is available.

The Amazon SES sending authorization policy for your verified identity in the alternate
Region must trust the Amazon Cognito service principal of the originating Region. For more
information, see To grant permissions to use the default email configuration.

Email settings 933

Amazon Cognito Developer Guide

In some of these Regions, Amazon Cognito splits email messages between two alternate
Regions for the default email configuration of COGNITO_DEFAULT. In these cases, to use a
custom FROM email address, the Amazon SES sending authorization policy for your verified
identity in each alternate Region must trust the Amazon Cognito service principal of the
originating Region. For more information, see To grant permissions to use the default email
configuration. With the Amazon SES email configuration of DEVELOPER in these Regions,
you must use a verified identity in the first listed Region and configure it to trust the Amazon
Cognito service principal in the user pool Region. For example, in a user pool in Middle
East (UAE), configure a verified identity in Europe (Frankfurt) to trust cognito-idp.me-
central-1.amazonaws.com. In the default email configuration without a custom FROM email
address, Amazon Cognito uses a no-reply@verificationemail.com verified identity in
each Region.

Note

Under the following combination of conditions, you must specify the SourceArn
parameter of EmailConfiguration with a wildcard in the Region element, in the format
arn:${Partition}:ses:*:${Account}:identity/${IdentityName}. This permits
your user pool to send email messages with identical verified identities in your Amazon
Web Services account in both Amazon Web Services Regions.

• Your EmailSendingAccount is COGNITO_DEFAULT.

• You want to use a custom FROM address.

• Your user pool sends emails in an Alternate Region.

• Your user pool has a second1 Alternate Region specified in the table of Amazon SES
supported Regions that follows.

If you create a user pool programmatically–with an Amazon SDK, the Amazon Cognito API or
CLI, the Amazon CDK, or Amazon CloudFormation–your user pool sends email messages with the
Amazon SES identity that the SourceArn parameter of EmailConfiguration specifies for your user
pool. The Amazon SES identity must occupy a supported Amazon Web Services Region. If your
EmailSendingAccount is COGNITO_DEFAULT and you don't specify a SourceArn parameter,
Amazon Cognito sends email messages from no-reply@verificationemail.com using
resources in the Region where you created your user pool.

Email settings 934

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-EmailConfiguration
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-EmailConfiguration

Amazon Cognito Developer Guide

The following table shows the Amazon Web Services Regions where you can use Amazon SES
identities with Amazon Cognito.

User pool Region Region option Amazon SES supported
Regions

US East (N. Virginia) Backwards compatible US East (N. Virginia), US West
(Oregon), Europe (Ireland)

US East (Ohio) Backwards compatible US East (Ohio), US East (N.
Virginia), US West (Oregon),
 Europe (Ireland)

US West (N. California) In-Region only US West (N. California)

US West (Oregon) Backwards compatible US East (N. Virginia), US West
(Oregon), Europe (Ireland)

Canada (Central) Backwards compatible Canada (Central), US East (N.
Virginia), US West (Oregon),
 Europe (Ireland)

Canada West (Calgary) Alternate Region Canada (Central), US West (N.

California)1

Asia Pacific (Tokyo) Backwards compatible Asia Pacific (Tokyo), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Asia Pacific (Hong Kong) Alternate Region Asia Pacific (Singapore), Asia

Pacific (Tokyo)1

Asia Pacific (Seoul) Backwards compatible Asia Pacific (Seoul), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Asia Pacific (Malaysia) Alternate Region Asia Pacific (Sydney), Asia

Pacific (Singapore)1

Email settings 935

Amazon Cognito Developer Guide

User pool Region Region option Amazon SES supported
Regions

Asia Pacific (Mumbai) Backwards compatible Asia Pacific (Mumbai), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Asia Pacific (Hyderabad) Alternate Region Asia Pacific (Mumbai), Asia

Pacific (Singapore)1

Asia Pacific (Singapore) Backwards compatible Asia Pacific (Singapore), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Asia Pacific (Sydney) Backwards compatible Asia Pacific (Sydney), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Asia Pacific (Osaka) In-Region only Asia Pacific (Osaka)

Asia Pacific (Jakarta) In-Region only Asia Pacific (Jakarta)

Asia Pacific (Melbourne) Alternate Region Asia Pacific (Sydney), Asia

Pacific (Singapore)1

Europe (Ireland) Backwards compatible US East (N. Virginia), US West
(Oregon), Europe (Ireland)

Europe (London) Backwards compatible Europe (London), US East (N.
Virginia), US West (Oregon),
 Europe (Ireland)

Europe (Paris) In-Region only Europe (Paris)

Europe (Frankfurt) Backwards compatible Europe (Frankfurt), US
East (N. Virginia), US West
(Oregon), Europe (Ireland)

Email settings 936

Amazon Cognito Developer Guide

User pool Region Region option Amazon SES supported
Regions

Europe (Zurich) Alternate Region Europe (Frankfurt), Europe

(London)1

Europe (Stockholm) In-Region only Europe (Stockholm)

Europe (Milan) In-Region only Europe (Milan)

Europe (Spain) Alternate Region Europe (Paris), Europe

(Stockholm)1

Middle East (Bahrain) In-Region only Middle East (Bahrain)

Middle East (UAE) Alternate Region Europe (Frankfurt), Europe

(London)1

South America (São Paulo) In-Region only South America (São Paulo)

Israel (Tel Aviv) In-Region only Israel (Tel Aviv)

Africa (Cape Town) In-Region only Africa (Cape Town)

 1 Used in user pools with the default email configuration. Amazon Cognito distributes email
messages among verified identities with the same email address in each Region. To use a custom
FROM address, configure EmailConfiguration with a SourceArn parameter in the format
arn:${Partition}:ses:*:${Account}:identity/${IdentityName}.

Configuring email for your user pool

Complete the following steps to configure the email settings for your user pool. Depending on the
settings that you use, you might need IAM permissions in Amazon SES, Amazon Identity and Access
Management (IAM), and Amazon Cognito.

Note

You can't share the resources that you create in these steps across Amazon Web Services
accounts. For example, you can't configure a user pool in one account, and then use it with

Email settings 937

Amazon Cognito Developer Guide

an Amazon SES email address in a different account. If you use Amazon Cognito in multiple
accounts, repeat these steps for each account.

Step 1: Verify your email address or domain with Amazon SES

Before you configure your user pool, you must verify one or more domains or email addresses with
Amazon SES if you want to do either of the following:

• Use your own email address as the FROM address

• Use your Amazon SES configuration to handle email delivery

By verifying your email address or domain, you confirm that you own it, which helps prevent
unauthorized use.

For information on verifying an email address with Amazon SES, see Verifying an Email Address
in the Amazon Simple Email Service Developer Guide. For information on verifying a domain with
Amazon SES, see Verifying domains.

Step 2: Move your account out of the Amazon SES sandbox

Omit this step if you are using the default Amazon Cognito email configuration.

When you first use Amazon SES in any Amazon Web Services Region, it places your Amazon Web
Services account in the Amazon SES sandbox for that Region. Amazon SES uses the sandbox to
prevent fraud and abuse. If you use your Amazon SES configuration to handle email delivery, you
must move your Amazon Web Services account out of the sandbox before Amazon Cognito can
email your users.

In the sandbox, Amazon SES imposes restrictions on how many emails you can send and where
you can send them. You can send emails only to addresses and domains that you have verified
with Amazon SES, or you can send them to Amazon SES mailbox simulator addresses. While your
Amazon Web Services account remains in the sandbox, don't use your Amazon SES configuration
for applications that are in production. In this situation, Amazon Cognito can't send messages to
your users' email addresses.

To remove your Amazon Web Services account from the sandbox, see Moving out of the Amazon
SES sandbox in the Amazon Simple Email Service Developer Guide.

Email settings 938

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-email-addresses-procedure.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/verify-domains.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/request-production-access.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/request-production-access.html

Amazon Cognito Developer Guide

Step 3: Grant email permissions to Amazon Cognito

You might need to grant specific permissions to Amazon Cognito before it can email your users.
The permissions that you grant, and the process that you use to grant them, depend on whether
you are using the default email configuration, or your Amazon SES configuration.

To grant permissions to use the default email configuration

Complete this step only if you configure your user pool to Send email with Cognito or set
EmailSendingAccount to COGNITO_DEFAULT.

With the default email configuration, your user pool can send email messages with either of the
following addresses.

• The default address no-reply@verificationemail.com.

• A custom FROM address from your verified email addresses or domains in Amazon SES.

If you use a custom address, Amazon Cognito needs additional permissions to email users from
that address. These permissions are granted by a sending authorization policy for the address or
domain in Amazon SES. If you use the Amazon Cognito console to add a custom address to your
user pool, the policy is automatically attached to the Amazon SES verified email address. However,
if you configure your user pool outside of the console, such as using the Amazon CLI or the Amazon
Cognito API, you must attach the policy using the Amazon SES console or the PutIdentityPolicy
API.

Note

You can only configure a FROM address in a verified domain using the Amazon CLI or the
Amazon Cognito API.

A sending authorization policy allows or denies access based on the account resources that are
using Amazon Cognito to invoke Amazon SES. For more information about resource-based policies,
see the IAM User Guide. You can also find example resource-based policies in the Amazon SES
Developer Guide.

Example Sending authorization policy

The following example sending authorization policy grants Amazon Cognito a limited ability
to use an Amazon SES verified identity. Amazon Cognito can only send email messages when it

Email settings 939

https://docs.amazonaws.cn/ses/latest/dg/sending-authorization.html
https://console.amazonaws.cn/ses/
https://docs.amazonaws.cn/ses/latest/APIReference/API_PutIdentityPolicy.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html

Amazon Cognito Developer Guide

does so on behalf of both the user pool in the aws:SourceArn condition and the account in the
aws:SourceAccount condition.

Regions with Amazon SES

Your sending authorization policy in the user pool Region or alternate Region must permit
the Amazon Cognito service principal to send email messages. Refer to the Regions table for
more information. If your User pool Region matches at least one value in Amazon SES Region,
configure your sending authorization policy with the global service principal in the following
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "stmnt1234567891234",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "email.cognito-idp.amazonaws.com"
]
 },
 "Action": [
 "SES:SendEmail",
 "SES:SendRawEmail"
],
 "Resource": "<your SES identity ARN>",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<your account number>"
 },
 "ArnLike": {
 "aws:SourceArn": "<your user pool ARN>"
 }
 }
 }
]
}

Email settings 940

Amazon Cognito Developer Guide

Opt-in Regions without Amazon SES

Amazon SES isn't available in all opt-in Amazon Web Services Regions where Amazon Cognito
is available. Middle East (UAE) is an example, and can only send emails with verified identities
in Europe (Frankfurt) (eu-central-1). In user pools with the default email configuration,
Amazon Cognito also sends email messages with a verified identity in each of two Regions. In
the case of Middle East (UAE), the additional Region is Europe (London). You must update the
sending authorization policy in both Regions.

Your sending authorization policy in each of the alternate Regions must permit the Amazon
Cognito service principal in the user pool opt-in Region to send email messages. Refer to the
Regions table for more information. If your Region is marked as Alternate Region, configure
your sending authorization policies with the Regional service principal as in the following
example. Replace the example Region identifier me-central-1 with the required Region ID as
needed.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "cognito-idp.me-central-1.amazonaws.com"
]
 },
 "Action": [
 "SES:SendEmail",
 "SES:SendRawEmail"
],
 "Resource": "<your SES identity ARN>",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "<your account number>"
 },
 "ArnLike": {
 "aws:SourceArn": "<your user pool ARN>"
 }
 }
 }
]

Email settings 941

Amazon Cognito Developer Guide

}

For more information about policy syntax, see Amazon SES sending authorization policies in the
Amazon Simple Email Service Developer Guide.

For more examples, see Amazon SES sending authorization policy examples in the Amazon Simple
Email Service Developer Guide.

To grant permissions to use your Amazon SES configuration

If you configure your user pool to use your Amazon SES configuration, Amazon Cognito needs
additional permissions to call Amazon SES on your behalf when it emails your users. This
authorization is granted with the IAM service.

When you configure your user pool with this option, Amazon Cognito creates a service-linked
role, which is a type of IAM role, in your Amazon Web Services account. This role contains the
permissions that allow Amazon Cognito to access Amazon SES and send email with your address.

Amazon Cognito creates your service-linked role with the Amazon credentials of the user
session that sets the configuration. The IAM permissions of this session must include the
iam:CreateServiceLinkedRole action. For more information about permissions in IAM, see
Access management for Amazon resources in the IAM User Guide.

For more information about the service-linked role that Amazon Cognito creates, see Using service-
linked roles for Amazon Cognito.

Step 4: Configure your user pool

Complete the following steps if you want to configure your user pool with any of the following:

• A custom FROM address that appears as the email sender

• A custom REPLY-TO address that receives the messages that your users send to your FROM
address

• Your Amazon SES configuration

Email settings 942

https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policies.html
https://docs.amazonaws.cn/ses/latest/DeveloperGuide/sending-authorization-policy-examples.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html

Amazon Cognito Developer Guide

Note

If your verified identity is an email address, Amazon Cognito sets that email address as the
FROM and REPLY-TO email address by default. But, if your verified identity is a domain, you
must provide a value for the FROM email address.

Omit this procedure if you want to use the default Amazon Cognito email configuration and
address.

To configure your user pool to use a custom email address

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Authentication methods menu, locate Email configuration, choose Edit.

5. On the Edit email configuration page, select Send email from Amazon SES or Send email
with Amazon Cognito. You can customize the SES Region, Configuration Set, and FROM
sender name only when you choose Send email from Amazon SES.

6. To use a custom FROM address, complete the following steps:

a. Under SES Region, choose the Region that contains your verified email address.

b. Under FROM email address, choose your email address. Use an email address that you
have verified with Amazon SES.

c. (Optional) Under Configuration set, choose a configuration set for Amazon SES to use.
Making and saving this change creates a service-linked role.

d. (Optional) Under FROM sender address, enter an email address. You can provide only
an email address, or an email address and a friendly name in the format Jane Doe
<janedoe@example.com>.

e. (Optional) Under REPLY-TO email address, enter the email address where you want to
receive messages that your users send to your FROM address.

7. Choose Save changes.

Related Topics

• Customizing email verification messages

Email settings 943

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

• Customizing user invitation messages

SMS message settings for Amazon Cognito user pools

Some Amazon Cognito events for your user pool might cause Amazon Cognito to send SMS text
messages to your users. For example, if you configure your user pool to require phone verification,
Amazon Cognito sends an SMS text message when a user signs up for a new account in your app or
resets their password. Depending on the action that initiates the SMS text message, the message
contains a verification code, a temporary password, or a welcome message.

Amazon Cognito uses Amazon Simple Notification Service (Amazon SNS) for delivery of SMS text
messages. If you are sending a text message through Amazon Cognito or Amazon SNS for the first
time, Amazon SNS places you in a sandbox environment. In the sandbox environment, you can test
your applications for SMS text messages. In the sandbox, messages can be sent only to verified
phone numbers.

Amazon SNS charges for SMS text messages. For more information, see Amazon SNS pricing.

Amazon Cognito sends SMS messages to your users with a code that they can enter. The following
table shows the events that can generate an SMS message.

Message options

Activity API operation Delivery
options

Format
options

Customiza
ble

Message
template

Forgot
password

ForgotPassword,
AdminRese
tUserPassword

Email, SMS code No N/A

Invitation AdminCrea
teUser

Email, SMS code Yes Invitation
message

Self-regi
stration

SignUp,
ResendCon
firmationCode

Email, SMS code, link Yes Verification
message

Email
address

UpdateUse
rAttributes,

Email, SMS code Yes Verification
message

SMS message settings 944

https://www.amazonaws.cn/sns/sms-pricing/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html

Amazon Cognito Developer Guide

Activity API operation Delivery
options

Format
options

Customiza
ble

Message
template

or phone
number
verification

AdminUpda
teUserAtt
ributes,
GetUserAt
tributeVerificatio
nCode

Multi-factor
authentic
ation (MFA)

AdminInit
iateAuth,
InitiateAuth

SMS,
authentic
ator app

code Yes¹ MFA
message

¹ For SMS messages.

Amazon SNS charges for SMS messages. For more information, see Amazon SNS pricing.

To learn more about MFA, see SMS and email message MFA.

Amazon Cognito might prevent delivery of additional email or SMS messages to a single
destination in a short time period. If you believe your user pool is affected, configure and review
logs for message delivery errors and then contact your account team.

Best practices

Because of the volume of unsolicited SMS traffic worldwide, some governments impose barriers
between the senders and recipients of SMS messages. When you use SMS messages for MFA and
user updates, you must take additional steps to ensure that your messages are delivered. You must
also monitor SMS-message-related regulations in countries where your users might live and keep
your SMS message configuration current. For more information, see Mobile text messaging (SMS)
in the Amazon Simple Notification Service Developer Guide.

The use of SMS messages to authenticate and verify users isn't a security best practice. Phone
numbers can change owners, and might not reliably represent a something you have factor of MFA
for your users. Instead, implement TOTP MFA in your app or with your third-party IdP. You can also
create additional custom authentication factors with Custom authentication challenge Lambda
triggers.

SMS message settings 945

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://www.amazonaws.cn/sns/pricing/
https://docs.amazonaws.cn/sns/latest/dg/sns-mobile-phone-number-as-subscriber.html

Amazon Cognito Developer Guide

Review the following links for information about securing your SMS message delivery architecture.

• Reduce risks of user sign-up fraud and SMS pumping with Amazon Cognito user pools

• Defending Against SMS Pumping: New Amazon Features to Help Combat Artificially Inflated
Traffic

Setting up SMS messaging for the first time in Amazon Cognito user pools

Amazon Cognito uses Amazon SNS to send SMS messages to your user pools. You can also use
a Custom SMS sender Lambda trigger to use your own resources to send SMS messages. The
first time that you set up Amazon SNS to send SMS text messages in a particular Amazon Web
Services Region, Amazon SNS places your Amazon Web Services account in the SMS sandbox for
that Region.Amazon SNS uses the sandbox to prevent fraud and abuse and to meet compliance
requirements. When your Amazon Web Services account is in the sandbox, Amazon SNS imposes
some restrictions. For example, you can send text messages to a maximum of 10 phone numbers
that you have verified with Amazon SNS. While your Amazon Web Services account remains in the
sandbox, do not use your Amazon SNS configuration for applications that are in production. When
you're in the sandbox, Amazon Cognito can't send messages to your users' phone numbers.

To send SMS text messages to user pool users

1. Prepare an IAM role that Amazon Cognito can use to send SMS messages with Amazon SNS

2. Choose the Amazon Web Services Region for Amazon SNS SMS messages

3. Obtain an origination identity to send SMS messages to US phone numbers

4. Confirm that you are in the SMS sandbox

5. Move your account out of Amazon SNS sandbox

6. Verify phone numbers for Amazon Cognito in Amazon SNS

7. Complete user pool setup in Amazon Cognito

Prepare an IAM role that Amazon Cognito can use to send SMS messages with Amazon SNS

When you send an SMS message from your user pool, Amazon Cognito assumes an IAM role in your
account. Amazon Cognito uses the sns:Publish permission assigned to that role to send SMS
messages to your users. In the Amazon Cognito console, you can set an IAM role selection from
the Authentication methods menu of your user pool, under SMS or make this selection during the
user pool creation wizard.

SMS message settings 946

https://www.amazonaws.cn/blogs/security/reduce-risks-of-user-sign-up-fraud-and-sms-pumping-with-amazon-cognito-user-pools/
https://www.amazonaws.cn/blogs/messaging-and-targeting/defending-against-sms-pumping-new-aws-features-to-help-combat-artificially-inflated-traffic/
https://www.amazonaws.cn/blogs/messaging-and-targeting/defending-against-sms-pumping-new-aws-features-to-help-combat-artificially-inflated-traffic/
https://docs.amazonaws.cn/sns/latest/dg/sns-sms-sandbox.html

Amazon Cognito Developer Guide

The following example IAM role trust policy grants Amazon Cognito user pools a limited ability to
assume the role. Amazon Cognito can only assume the role when it meets the following conditions:

• The assume-role operation is on behalf of the user pool in the aws:SourceArn condition.

• The assume-role operation is on behalf of a user pool in the Amazon Web Services account set by
the aws:SourceAccount condition.

• The assume-role operation includes the external ID in the sts:externalId condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-idp.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "sts:ExternalId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "aws:SourceAccount": "111122223333"
 },
 "ArnLike": {
 "aws:SourceArn": "arn:aws:cognito-idp:us-
west-2:111122223333:userpool/us-west-2_EXAMPLE"
 }
 }
 }
]
}

You can specify an exact user pool ARN or a wildcard ARN in the value of the aws:SourceArn
condition. Look up the ARNs of your user pools in the Amazon Web Services Management Console
or with a DescribeUserPool API request.

To send SMS messages for multi-factor authentication, your IAM role trust policy must have an
sts:ExternalId condition. The value of this condition must match the ExternalId property of
the SmsConfiguration of your user pool. When you create an IAM role during the process of user

SMS message settings 947

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitouserpools.html#amazoncognitouserpools-resources-for-iam-policies
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-SmsConfiguration

Amazon Cognito Developer Guide

pool creation in the Amazon Cognito console, Amazon Cognito configures the external ID for you in
the role and in the user pool settings. This isn't true when you use an existing IAM role.

You must update the user pool ExternalId parameter in an UpdateUserPool API request and
update the IAM role trust policy with an sts:externalId condition with the same value. To learn
how to use the API to update a user pool in a way that preserves the original configuration, see
Updating user pool and app client configuration.

For more information about IAM roles and trust policies, see Roles terms and concepts in the
Amazon Identity and Access Management User Guide.

Choose the Amazon Web Services Region for Amazon SNS SMS messages

In some Amazon Web Services Regions, you can choose the Region that contains the Amazon SNS
resources that you want to use for Amazon Cognito SMS messages. In any Amazon Web Services
Region where Amazon Cognito is available, except for Asia Pacific (Seoul), you can use Amazon SNS
resources in the Amazon Web Services Region where you created your user pool. To make your SMS
messaging faster and more reliable when you have a choice of Regions, use Amazon SNS resources
in the same Region as your user pool.

Note

In the Amazon Web Services Management Console, you can only change the Region for
SMS resources after you have switched to the new Amazon Cognito console experience.

Choose a Region for SMS resources in the Configure message delivery step of the new user pool
wizard. You can also choose Edit under SMS in the Authentication methods menu of an existing
user pool.

At launch, for some Amazon Web Services Regions, Amazon Cognito sent SMS messages with
Amazon SNS resources in an alternate Region. To set your preferred Region, use the SnsRegion
parameter of the SmsConfigurationType object for your user pool. When you programmatically
create an Amazon Cognito user pools resource in an Amazon Cognito Region from the following
table and you do not provide an SnsRegion parameter, your user pool can send SMS messages
with Amazon SNS resources in a legacy Amazon SNS Region.

Amazon Cognito user pools in the Asia Pacific (Seoul) Amazon Web Services Region must use your
Amazon SNS configuration in the Asia Pacific (Tokyo) Region.

SMS message settings 948

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SmsConfigurationType.html

Amazon Cognito Developer Guide

Amazon SNS sets the spending quota for all new accounts at $1.00 (USD) per month. You might
have increased your spend limit in an Amazon Web Services Region that you use with Amazon
Cognito. Before you change the Amazon Web Services Region for Amazon SNS SMS messages,
open a quota increase case in the Amazon Support Center to increase your limit in the new Region.
For more information, see Requesting increases to your monthly SMS spending quota for Amazon
SNS in the Amazon Simple Notification Service Developer Guide.

You can send SMS messages for any Amazon Cognito Region in the following table with Amazon
SNS resources in the corresponding Amazon SNS Region.

Amazon Cognito Region Amazon SNS Region

US East (Ohio) US East (Ohio), US East (N. Virginia)

US East (N. Virginia) US East (N. Virginia)

US West (N. California) US West (N. California)

US West (Oregon) US West (Oregon)

Canada (Central) Canada (Central), US East (N. Virginia)

Canada West (Calgary) Canada West (Calgary)

Europe (Frankfurt) Europe (Frankfurt), Europe (Ireland)

Europe (London) Europe (London), Europe (Ireland)

Europe (Ireland) Europe (Ireland)

Europe (Paris) Europe (Paris)

Europe (Stockholm) Europe (Stockholm)

Europe (Milan) Europe (Milan)

Europe (Spain) Europe (Spain)

Europe (Zurich) Europe (Zurich)

Asia Pacific (Malaysia) Asia Pacific (Singapore)

SMS message settings 949

https://docs.amazonaws.cn/sns/latest/dg/channels-sms-awssupport-spend-threshold.html
https://docs.amazonaws.cn/sns/latest/dg/channels-sms-awssupport-spend-threshold.html

Amazon Cognito Developer Guide

Amazon Cognito Region Amazon SNS Region

Asia Pacific (Mumbai) Asia Pacific (Mumbai), Asia Pacific (Singapore)

Asia Pacific (Hyderabad) Asia Pacific (Hyderabad)

Asia Pacific (Hong Kong) Asia Pacific (Singapore)

Asia Pacific (Seoul) Asia Pacific (Tokyo)

Asia Pacific (Singapore) Asia Pacific (Singapore)

Asia Pacific (Sydney) Asia Pacific (Sydney)

Asia Pacific (Tokyo) Asia Pacific (Tokyo)

Asia Pacific (Jakarta) Asia Pacific (Jakarta)

Asia Pacific (Osaka) Asia Pacific (Osaka)

Asia Pacific (Melbourne) Asia Pacific (Melbourne)

Middle East (Bahrain) Middle East (Bahrain)

Middle East (UAE) Middle East (UAE)

South America (São Paulo) South America (São Paulo)

Israel (Tel Aviv) Israel (Tel Aviv)

Africa (Cape Town) Africa (Cape Town)

Obtain an origination identity to send SMS messages to US phone numbers

If you plan to send SMS text messages to US phone numbers, you must obtain an origination
identity, regardless of whether you build an SMS sandbox testing environment, or a production
environment.

Starting June 1, 2021, US carriers require an origination identity to send messages to US phone
numbers. If you don't already have an origination identity, you must get one. To learn how to
obtain an origination identity, see Requesting a number in the Amazon Pinpoint User Guide.

SMS message settings 950

https://docs.amazonaws.cn/pinpoint/latest/userguide/settings-request-number.html

Amazon Cognito Developer Guide

If you operate in the following Amazon Web Services Regions, you must open an Amazon Web
Services Support ticket to obtain an origination identity. For instructions, see Requesting support
for SMS messaging in the Amazon Simple Notification Service Developer Guide.

• US East (Ohio)

• Europe (Stockholm)

• Europe (Paris)

• Europe (Milan)

• Middle East (Bahrain)

• South America (São Paulo)

• US West (N. California)

When you have more than one origination identity in the same Amazon Web Services Region,
Amazon SNS chooses an origination identity type in the following order of priority: short code,
10DLC, toll-free number. You can't change this priority. For more information, see Amazon SNS
FAQs.

Confirm that you are in the SMS sandbox

Use the following procedure to confirm that you are in the SMS sandbox. Repeat for each Amazon
Web Services Region where you have production Amazon Cognito user pools.

Review SMS sandbox status in the Amazon Cognito console

To confirm that you are in the SMS sandbox

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list.

4. Choose the Authentication methods menu.

5. In the SMS configuration section, expand Move to Amazon SNS production environment. If
your account is in the SMS sandbox, you will see the following message:

You are currently in the SMS Sandbox and cannot send SMS messages to
unverified numbers.

SMS message settings 951

https://docs.amazonaws.cn/sns/latest/dg/channels-sms-awssupport.html
https://docs.amazonaws.cn/sns/latest/dg/channels-sms-awssupport.html
https://www.amazonaws.cn/sns/faqs/
https://www.amazonaws.cn/sns/faqs/
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

If you don’t see this message, then someone has set up SMS messages in your account already.
Skip to Complete user pool setup in Amazon Cognito.

6. Choose the Amazon SNS link in the message. This opens the Amazon SNS console in a new
tab.

7. Verify that you are in the sandbox environment. The console message indicates your sandbox
status and Amazon Web Services Region, as follows:

This account is in the SMS sandbox in US East (N. Virginia).

Move your account out of Amazon SNS sandbox

If you are testing your app and you only need to send SMS messages to phone numbers that your
administrators can verify, skip this step.

To use your app in production, move your account out of the SMS sandbox and into production.
After you have configured an origination identity in the Amazon Web Services Region that contains
the Amazon SNS resources that you want Amazon Cognito to use, you can verify US phone
numbers while your Amazon Web Services account remains in the SMS sandbox. When your
Amazon SNS environment is in production, you don't have to verify user phone numbers in Amazon
SNS to send SMS messages to your users.

For detailed instructions, see Moving Out of the SMS Sandbox in the Amazon Simple Notification
Service Developer Guide.

Verify phone numbers for Amazon Cognito in Amazon SNS

If you have moved your account out of the SMS sandbox, skip this step.

When you are in the SMS sandbox, you can send messages to any phone number that you have
verified with Amazon SNS.

To verify a phone number, do the following:

1. Add a Sandbox destination phone number in the Text messaging (SMS) section of the Amazon
SNS console.

2. Receive an SMS message with a code at the phone number that you provided.

3. Enter the Verification code from the SMS message in the Amazon SNS console.

SMS message settings 952

https://console.amazonaws.cn/sns/home
https://docs.amazonaws.cn/sns/latest/dg/sns-sms-sandbox-moving-to-production.html

Amazon Cognito Developer Guide

For detailed instructions, see Adding and verifying phone numbers in the SMS sandbox in the
Amazon Simple Notification Service Developer Guide.

Note

Amazon SNS limits the number of destination phone numbers that you can verify while
you are in the SMS sandbox. See SMS sandbox in the Amazon Simple Notification Service
Developer Guide.

Complete user pool setup in Amazon Cognito

Return to the browser tab where you were creating or editing your user pool. Complete the
procedure. When you have successfully added SMS configuration to your user pool, Amazon
Cognito sends a test message to an internal phone number to verify that your configuration works.
Amazon SNS charges for each test SMS message.

Using Amazon Cognito user pools security features

You might want to secure your application against network intrusion, password guessing, user
impersonation, and malicious sign-up and sign-in. Your configuration of Amazon Cognito user
pools security features can be a key component in your security architecture. The security of your
application is Customer responsibility "Security in the cloud" as described in the Amazon Shared
Responsibility Model. The tools in this chapter contribute to the ability of your application security
design to be in line with these goals.

An important decision that you must make when you configure your user pool is whether to permit
public sign-up and sign-in. Some user pool option like confidential clients, administrative creation
and confirmation of users, and user pools without a domain, are subject to a smaller degree to
attacks over the internet. However, a common use case is public clients that accept sign-up from
anyone on the internet and send all operations directly to your user pool. In any configuration, but
especially in the case of these public configurations, we recommend that you plan and deploy your
user pool with security features in mind. Insufficient security can also affect your Amazon bill when
unwanted sources create new active users or attempt to exploit existing users.

MFA and threat protection apply to local users. Third-party IdPs are responsible for the security
posture of federated users.

Using security features 953

https://docs.amazonaws.cn/sns/latest/dg/sns-sms-sandbox-verifying-phone-numbers.html
https://docs.amazonaws.cn/sns/latest/dg/sns-sms-sandbox.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/shared-responsibility-model/

Amazon Cognito Developer Guide

User pools security features

Multi-factor authentication (MFA)

Request a code that your user pool send by email (with the Essentials or Plus feature plan) or
SMS message, or from an authenticator app, to confirm user pool sign-in.

Threat protection

Monitor sign-in for indicators of risk and apply MFA or block sign-in. Add custom claims and
scopes to access tokens. Send MFA codes by email.

Amazon WAF web ACLs

Inspect incoming traffic to your user pool endpoints and authentication API for unwanted
activity at the network and application layers.

Case sensitvity

Prevent creation of users whose email address or preferred username is identical to another
user except for character case.

Deletion protection

Prevent automated systems from accidentally deleting your user pools. Require additional
confirmation of user pool deletion in the Amazon Web Services Management Console.

User existence errors

Guard against disclosure of existing usernames and aliases in your user pool. Return a generic
error in response to unsuccessful authentication, whether the username is valid or not.

Topics

• Adding MFA to a user pool

• Advanced security with threat protection

• Associate an Amazon WAF web ACL with a user pool

• User pool case sensitivity

• User pool deletion protection

• Managing user existence error responses

Using security features 954

Amazon Cognito Developer Guide

Adding MFA to a user pool

MFA adds a something you have authentication factor to the initial something you know factor that
is typically a username and password. You can choose SMS text messages, email messages, or time-
based one-time passwords (TOTP) as additional factors to sign in your users who have passwords
as their primary authentication factor.

Multi-factor authentication (MFA) increases security for the local users in your application. In the
case of federated users, Amazon Cognito delegates all authentication processes to the IdP and
doesn't offer them additional authentication factors.

Note

The first time that a new user signs in to your app, Amazon Cognito issues OAuth 2.0
tokens, even if your user pool requires MFA. The second authentication factor when your
user signs in for the first time is their confirmation of the verification message that Amazon
Cognito sends to them. If your user pool requires MFA, Amazon Cognito prompts your user
to register an additional sign-in factor to use during each sign-in attempt after the first.

With adaptive authentication, you can configure your user pool to require an additional
authentication factor in response to an increased risk level. To add adaptive authentication to your
user pool, see Advanced security with threat protection.

When you set MFA to required for a user pool, all users must complete MFA to sign in. To sign
in, each user must set up at least one MFA factor. When MFA is required, you must include the MFA
setup in user onboarding so that your user pool permits them to sign in.

Managed login prompts users to set up MFA when you set MFA to be required. When you set MFA
to be optional in your user pool, managed login doesn't prompt users. To work with optional MFA,
you must build an interface in your app that prompts your users to select that they want to set up
MFA, then guides them through the API inputs to verify their additional sign-in factor.

Topics

• Things to know about user pool MFA

• User MFA preferences

• Details of MFA logic at user runtime

• Configure a user pool for multi-factor authentication

Adding MFA 955

Amazon Cognito Developer Guide

• SMS and email message MFA

• TOTP software token MFA

Things to know about user pool MFA

Before you set up MFA, consider the following:

• Users can either have MFA or sign in with passwordless factors.

• You can't set MFA to required in user pools that support one-time passwords or passkeys.

• You can't add WEB_AUTHN, EMAIL_OTP, or SMS_OTP to AllowedFirstAuthFactors when
MFA is required in your user pool. In the Amazon Cognito console, you can't edit Options for
choice-based sign-in to include passwordless factors.

• Choice-based sign-in only offers PASSWORD and PASSWORD_SRP factors in all app clients when
MFA is required in the user pool. For more information about username-password flows, see
Sign-in with persistent passwords and Sign-in with persistent passwords and secure payload in
the Authentication chapter of this guide.

• In user pools where MFA is optional, users who have configured an MFA factor can only sign in
with username-password authentication flows in choice-based sign-in. These users are eligible
for all client-based sign-in flows.

• A user's preferred MFA method influences the methods they can use to recover their password.
Users whose preferred MFA is by email message can't receive a password-reset code by email.
Users whose preferred MFA is by SMS message can't receive a password-reset code by SMS.

Your password recovery settings must provide an alternative option when users aren't eligible
for your preferred password-reset method. For example, your recovery mechanisms might have
email as first priority and email MFA might be an option in your user pool. In this case, add SMS-
message account recovery as a second option or use administrative API operations to reset
passwords for those users.

The example request body for UpdateUserPool illustrates an AccountRecoverySetting
where users can fall back to recovery by SMS message when email-message password reset is
unavailable.

• Users can't receive MFA and password reset codes at the same email address or phone number.
If they use one-time passwords (OTPs) from email messages for MFA, they must use SMS
messages for account recovery. If they use OTPs from SMS messages for MFA, they must use
email messages for account recovery. In user pools with MFA, users might be unable to complete

Adding MFA 956

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html#API_UpdateUserPool_Examples

Amazon Cognito Developer Guide

self-service password recovery if they have attributes for their email address but no phone
number, or their phone number but no email address.

To prevent the state where users can't reset their passwords in user pools with this configuration,
set the email and phone_number attributes as required. As an alternative, you can set
up processes that always collect and set those attributes when users sign up or when your
administrators create user profiles. When users have both attributes, Amazon Cognito
automatically sends password-reset codes to the destination that is not the user's MFA factor.

• When you activate MFA in your user pool and choose SMS message or Email message as a
second factor, you can send messages to a phone number or email attribute that you haven't
verified in Amazon Cognito. After your user completes MFA, Amazon Cognito sets their
phone_number_verified or email_verified attribute to true.

• After five unsuccessful attempts to present an MFA code, Amazon Cognito begins the
exponential-timeout lockout process described at Lockout behavior for failed sign-in attempts.

• If your account is in the SMS sandbox in the Amazon Web Services Region that contains the
Amazon Simple Notification Service (Amazon SNS) resources for your user pool, you must verify
phone numbers in Amazon SNS before you can send an SMS message. For more information, see
SMS message settings for Amazon Cognito user pools.

• To change the MFA status of users in response to detected events with threat protection, activate
MFA and set it as optional in the Amazon Cognito user pool console. For more information, see
Advanced security with threat protection.

• Email and SMS messages require that your users have email address and phone number
attributes respectively. You can set email or phone_number as required attributes in your user
pool. In this case, users can't complete sign-up unless they provide a phone number. If you don't
set these attributes as required but want to do email or SMS message MFA, you prompt users for
their email address or phone number when they sign up. As a best practice, configure your user
pool to automatically message users to verify these attributes.

Amazon Cognito counts a phone number or email address as verified if a user has
successfully received a temporary code by SMS or email message and returned that code in a
VerifyUserAttribute API request. As an alternative, your team can set phone numbers and mark
them as verified with an administrative application that performs AdminUpdateUserAttributes
API requests.

• If you have set MFA to be required and you activated more than one authentication factor,
Amazon Cognito prompts new users to select an MFA factor that they want to use. Users
must have a phone number to set up SMS message MFA, and an email address to set up email

Adding MFA 957

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html

Amazon Cognito Developer Guide

message MFA. If a user doesn't have the attribute defined for any available message-based
MFA, Amazon Cognito prompts them to set up TOTP MFA. The prompt to choose an MFA factor
(SELECT_MFA_TYPE) and to set up a chosen factor (MFA_SETUP) comes in as a challenge
response to InitiateAuth and AdminInitiateAuth API operations.

User MFA preferences

Users can set up multiple MFA factors. Only one can be active. You can choose the effective MFA
preference for your users in user pool settings or from user prompts. A user pools prompts a
user for MFA codes when user pool settings and their own user-level settings meet the following
conditions:

1. You set MFA to optional or required in your user pool.

2. The user has a valid email or phone_numberattribute, or has set up an authenticator app for
TOTP.

3. At least one MFA factor is active.

4. One MFA factor is set as preferred.

User pool settings and their effect on MFA options

The configuration of your user pool influences the MFA methods that users can choose. The
following are some user pool settings that influence users’ ability to set up MFA.

• In the Multi-factor authentication configuration in the Sign-in menu of the Amazon Cognito
console, you can set MFA to optional or required, or turn it off. The API equivalent of this
setting is the MfaConfiguration parameter of CreateUserPool, UpdateUserPool, and
SetUserPoolMfaConfig.

Also in the Multi-factor authentication configuration, the MFA methods setting determines the
MFA factors that users can set up. The API equivalent of this setting is the SetUserPoolMfaConfig
operation.

• In the Sign-in menu, under User account recovery, you can configure the way that your user
pool sends messages to users who forget their password. A user's MFA method can’t have the
same MFA delivery method as the user pool delivery method for forgot-password codes. The API
parameter for the forgot-password delivery method is the AccountRecoverySetting parameter of
CreateUserPool and UpdateUserPool.

Adding MFA 958

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-MfaConfiguration
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-AccountRecoverySetting

Amazon Cognito Developer Guide

For example, users can’t set up email MFA when your recovery option is Email only. This is
because you can't enable email MFA and set the recovery option to Email only in the same
user pool. When you set this option to Email if available, otherwise SMS, email is the priority
recovery option but your user pool can fall back to SMS message when a user isn't eligible for
email-message recovery. In this scenario, users can set email MFA as preferred and can only
receive an SMS message when they attempt to reset their password.

• If you set only one MFA method as available, you don’t need to manage user MFA preferences.

• An active SMS configuration automatically makes SMS messages an available MFA method in
your user pool.

An active email configuration with your own Amazon SES resources in a user pool, and the
Essentials or Plus feature plan, automatically makes email messages an available MFA method in
your user pool.

• When you set MFA to required in a user pool, users can’t enable or disable any MFA methods. You
can only set a preferred method.

• When you set MFA to optional in a user pool, managed login doesn’t prompt users to set up MFA,
but it does prompt users for an MFA code when they have a preferred MFA method.

• When you activate threat protection and configure adaptive-authentication responses in full-
function mode, MFA must be optional in your user pool. One of the response options with
adaptive authentication is to require MFA for a user whose sign-in attempt is evaluated to
contain a level of risk.

The Required attributes setting in the Sign-up menu of the console determines whether users
must provide an email address or phone number to sign up in your application. Email and SMS
messages become eligible MFA factors when a user has the corresponding attribute. The Schema
parameter of CreateUserPool sets attributes as required.

• When you set MFA to required in a user pool and a user signs in with managed login, Amazon
Cognito prompts them to select an MFA method from the available methods for your user pool.
Managed login handles the collection of an email address or phone number and the setup of
TOTP. The diagram that follows demonstrates the logic behind the options that Amazon Cognito
presents to users.

Adding MFA 959

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#CognitoUserPools-CreateUserPool-request-Schema

Amazon Cognito Developer Guide

Configure MFA preferences for users

You can configure MFA preferences for users in a self-service model with access-token
authorization, or in an administrator-managed model with administrative API operations. These
operations enable or disable MFA methods and set one of multiple methods as the preferred
option. After your user has set an MFA preference, Amazon Cognito prompts them at sign-in to
provide a code from their preferred MFA method. Users who have not set a preference receive a
prompt to choose a preferred method in a SELECT_MFA_TYPE challenge.

• In a user self-service model or public application, SetUserMfaPreference, authorized with a
signed-in user’s access token, sets MFA configuration.

• In an administrator-managed or confidential application, AdminSetUserPreference, authorized
with administrative Amazon credentials, sets MFA configuration.

You can also set user MFA preferences from the Users menu of the Amazon Cognito console. For
more information about the public and confidential authentication models in the Amazon Cognito
user pools API, see Understanding API, OIDC, and managed login pages authentication.

Details of MFA logic at user runtime

To determine the steps to take when users sign in, your user pool evaluates user MFA preferences,
user attributes, the user pool MFA setting, threat protection actions, and self-service account
recovery settings. It then signs users in, prompts them to choose an MFA method, prompts them to
set up an MFA method, or prompts them for MFA. To set up an MFA method, users must provide an
email address or phone number or register a TOTP authenticator. They can also set up MFA options
and register a preferred option in advance. The following diagram lists the detailed effects of user
pool configuration on sign-in attempts immediately after initial sign-up.

The logic illustrated here applies to SDK-based applications and managed login sign-in, but is less
visible in managed login. When you troubleshoot MFA, work backward from your users' outcomes
to the user-profile and user-pool configurations that contributed to the decision.

Adding MFA 960

https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.aws.amazon.com/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserMFAPreference.html

Amazon Cognito Developer Guide

The following list corresponds to the numbering in the decision logic diagram and describes each
step in detail. A

indicates a successful authentication and the conclusion of the flow. A

indicates unsuccessful authentication.

1. A user presents their username or username and password at your sign-in screen. If they don't
present valid credentials, their sign-in request is denied.

2. If they succeed username-password authentication, determine
whether MFA is required, optional, or off. If it is off, the correct

Adding MFA 961

Amazon Cognito Developer Guide

username and password results in successful authentication.

a. If MFA is optional, determine if the user has previously set up a TOTP
authenticator. If they have set up TOTP, prompt for TOTP MFA. If
they successfully respond to the MFA challenge, they're signed in.

b. Determine if the adaptive authentication feature of threat protection has
required the user to set up MFA. If it hasn't assigned MFA, the user is signed in.

3. If MFA is required or adaptive authentication has assigned MFA, determine if the
user has set an MFA factor as enabled and preferred. If they have, prompt for MFA
with that factor. If they successfully respond to the MFA challenge, they're signed in.

4. If the user hasn't set an MFA preference, determine if the user has registered a TOTP
authenticator.

a. If the user has registered a TOTP authenticator, determine if TOTP MFA is available in the user
pool (TOTP MFA can be disabled after users have previously set up authenticators).

b. Determine whether email-message or SMS-message MFA is also available in the user pool.

c. If neither email nor SMS MFA is available, prompt the user for TOTP
MFA. If they successfully respond to the MFA challenge, they're signed in.

d. If email or SMS MFA are available, determine whether the user has the corresponding email
or phone_number attribute. If so, any attribute that isn't the primary method for self-service
account recovery and is enabled for MFA is available to them.

e. Prompt the user with a SELECT_MFA_TYPE challenge with MFAS_CAN_SELECT options that
include TOTP and the available SMS or email MFA factors.

f. Prompt the user for the factor that they select in response to the SELECT_MFA_TYPE
challenge. If they successfully respond to the MFA challenge, they're signed in.

5. If the user hasn't registered a TOTP authenticator, or if they have but TOTP MFA is currently
disabled, determine whether the user has an email or phone_number attribute.

Adding MFA 962

Amazon Cognito Developer Guide

6. If the user has only an email address or only a phone number, determine whether
that attribute is also the method the user pool implements to send account-
recovery messages for password reset. If true, they can't complete sign-in with MFA
required and Amazon Cognito returns an error. To activate sign-in for this user,
you must add a non-recovery attribute or register a TOTP authenticator for them.

a. If they have an available non-recovery email address or phone number, determine whether
the corresponding email or SMS MFA factor is enabled.

b. If they have a non-recovery email address attribute and email
MFA is enabled, prompt them with an EMAIL_OTP challenge. If
they successfully respond to the MFA challenge, they're signed in.

c. If they have a non-recovery phone number attribute and SMS
MFA is enabled, prompt them with an SMS_MFA challenge. If they
successfully respond to the MFA challenge, they're signed in.

d. If they don't have an attribute that's eligible for an enabled email or SMS MFA factor,
determine whether TOTP MFA is enabled. If TOTP MFA is disabled, they can't complete
sign-in with MFA required and Amazon Cognito returns an error. To activate sign-in for this
user, you must add a non-recovery attribute or register a TOTP authenticator for them.

Note

This step has already been evaluated as No if the user has a TOTP authenticator but
TOTP MFA is disabled.

e. If TOTP MFA is enabled, present the user with a MFA_SETUP challenge with
SOFTWARE_TOKEN_MFA in the MFAS_CAN_SETUP options. To complete this challenge,
you must separately register a TOTP authenticator for the user and respond with
"ChallengeName": "MFA_SETUP", "ChallengeResponses": {"USERNAME":
"[username]", "SESSION": "[Session ID from VerifySoftwareToken]}".

f. After the user responds to the MFA_SETUP challenge with the session token from
a VerifySoftwareToken request, prompt them with an SOFTWARE_TOKEN_MFA

Adding MFA 963

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html

Amazon Cognito Developer Guide

challenge. If they successfully respond to the MFA challenge, they're signed in.

7. If the user has both an email address and phone number, determine which attribute, if any, is
the primary method for account-recovery messages for password reset.

a. If self-service account recovery is disabled, either attribute can be used for MFA. Determine
whether one or both of the email and SMS MFA factors are enabled.

b. If both attributes are enabled as an MFA factor, prompt the user with a SELECT_MFA_TYPE
challenge with MFAS_CAN_SELECT options SMS_MFA and EMAIL_OTP.

c. Prompt them for the factor that they select in response to the SELECT_MFA_TYPE
challenge. If they successfully respond to the MFA challenge, they're signed in.

d. If only one attribute is an eligible MFA factor, prompt them with a challenge for the
remaining factor. If they successfully respond to the MFA challenge, they're signed in.

This outcome happens in the following scenarios.

i. When they have email and phone_number attributes, SMS and email MFA are enabled,
and the primary account-recovery method is by email or SMS message.

ii. When they have email and phone_number attributes, only SMS MFA or email MFA is
enabled, and self-service account recovery is disabled.

8. If the user hasn't registered a TOTP authenticator and has neither an email nor phone_number
attribute, prompt them with an MFA_SETUP challenge. The list in MFAS_CAN_SETUP includes all
enabled MFA factors in the user pool that aren't the primary account-recovery option. They can
respond to this challenge with ChallengeResponses for email or TOTP MFA. To set up SMS
MFA, add a phone number attribute separately and restart authentication.

For TOTP MFA, respond with "ChallengeName": "MFA_SETUP", "ChallengeResponses":
{"USERNAME": "[username]", "SESSION": "[Session ID from
VerifySoftwareToken]"}.

For email MFA, respond with "ChallengeName": "MFA_SETUP", "ChallengeResponses":
{"USERNAME": "[username]", "email": "[user's email address]"}.

Adding MFA 964

Amazon Cognito Developer Guide

a. Prompt them for the factor that they select in response to the SELECT_MFA_TYPE
challenge. If they successfully respond to the MFA challenge, they're signed in.

Configure a user pool for multi-factor authentication

You can configure MFA in the Amazon Cognito console or with the SetUserPoolMfaConfig API
operation and SDK methods.

To configure MFA in the Amazon Cognito console

1. Sign in to the Amazon Cognito console.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Sign-in menu. Locate Multi-factor authentication and choose Edit.

5. Choose the MFA enforcement method that you want to use with your user pool.

a. Require MFA. All users in your user pool must sign in with an additional SMS, email, or
time-based one-time password (TOTP) code as an additional authentication factor.

b. Optional MFA. You can give your users the option to register an additional sign-in
factor but still permit users who haven't configured MFA to sign in. If you use adaptive
authentication, choose this option. For more information about adaptive authentication,
see Advanced security with threat protection.

Adding MFA 965

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

c. No MFA. Your users can't register an additional sign-in factor.

6. Choose the MFA methods that you support in your app. You can set Email message, SMS
message or TOTP-generating Authenticator apps as a second factor.

7. If you use SMS text messages as a second factor and you haven't configured an IAM role to use
with Amazon Simple Notification Service (Amazon SNS) for SMS messages, create one in the
console. In the Authentication methods menu for your user pool, locate SMS and choose Edit.
You can also use an existing role that allows Amazon Cognito to send SMS messages to your
users for you. For more information, see IAM Roles.

If you use email messages as a second factor and you haven't configured an originating
identity to use with Amazon Simple Email Service (Amazon SES) for email messages, create
one in the console. You must choose the Send email with SES option. In the Authentication
methods menu for your user pool, locate Email and choose Edit. Select a FROM email address
from the available verified identities in the list. If you choose a verified domain, for example
example.com, you must also configure a FROM sender name in the verified domain, for
example admin-noreply@example.com.

8. Choose Save changes.

SMS and email message MFA

SMS and email MFA messages confirm that users have access to a message destination before they
can sign in. They confirm that they not only have access to a password, but to the SMS messages or
the email inbox of the original user. Amazon Cognito requests that users provide a short code that
your user pool sent after they successfully provide a username and password.

SMS and email message MFA require no additional configuration after your user adds an email
address or phone number to their profile. Amazon Cognito can send messages to unverified email
addresses and phone numbers. When a user completes their first MFA, Amazon Cognito marks their
email address or phone number as verified.

MFA authentication begins when a user with MFA enters their username and password in your
application. Your application submits these initial parameters in an SDK method that invokes an
InitiateAuth or AdminInitiateAuth API request. The ChallengeParameters in the API response
includes a CODE_DELIVERY_DESTINATION value that indicates where the authorization code was
sent. In your application, display a form that prompts the user to check their phone and includes
an input element for the code. When they enter their code, submit it in a challenge-response API
request to complete the sign-in process.

Adding MFA 966

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html

Amazon Cognito Developer Guide

After a user with MFA signs in with username and password in the managed login pages, they're
automatically prompted for the MFA code.

User pools send SMS messages for MFA and other Amazon Cognito notifications with Amazon
Simple Notification Service (Amazon SNS) resources in your Amazon Web Services account.
Similarly, users pools send email messages with Amazon Simple Email Service (Amazon SES)
resources in your account. These linked services incur their own costs on your Amazon bill for
message delivery. They also have additional requirements for sending messages at production
volumes. See the following links for more information:

• SMS message settings for Amazon Cognito user pools

• Worldwide SMS Pricing

• Email settings for Amazon Cognito user pools

• Amazon SES pricing

Considerations for SMS and email message MFA

• To permit users to sign in with email MFA, your user pool must have the following configuration
options:

1. You have the Plus or Essentials feature plan in your user pool. For more information, see User
pool feature plans.

2. Your user pool sends email messages with your own Amazon SES resources. For more
information, see Amazon SES email configuration.

• The MFA code is valid for the Authentication flow session duration that you set for your app
client.

Set the duration of an authentication flow session in the Amazon Cognito console in the App
clients menu when you Edit your app client. You can also set the authentication flow session
duration in a CreateUserPoolClient or UpdateUserPoolClient API request. For more
information, see An example authentication session.

• When a user successfully provides a code from an SMS or email message that Amazon Cognito
sent to an unverified phone number or email address, Amazon Cognito marks the corresponding
attribute as verified.

• For a user to make a self-service change to the value of a phone number or email address that's
associated with MFA, they must sign in and authorize the request with an access token. If they
can't access their current phone number or email address, they can't sign in. Your team must

Adding MFA 967

http://www.amazonaws.cn/sns/sms-pricing/
https://www.amazonaws.cn/ses/pricing

Amazon Cognito Developer Guide

change these values with administrator Amazon credentials in AdminUpdateUserAttributes API
requests.

• After you configure SMS in your user pool, you can't disable SMS messages as an available MFA
factor.

TOTP software token MFA

When you set up TOTP software token MFA in your user pool, your user signs in with a username
and password, then uses a TOTP to complete authentication. After your user sets and verifies a
username and password, they can activate a TOTP software token for MFA. If your app uses the
Amazon Cognito managed login to sign in users, your user submits their username and password,
and then submits the TOTP password on an additional sign-in page.

You can activate TOTP MFA for your user pool in the Amazon Cognito console, or you can use
Amazon Cognito API operations. At the user pool level, you can call SetUserPoolMfaConfig to
configure MFA and enable TOTP MFA.

Note

If you haven't activated TOTP software token MFA for the user pool, Amazon
Cognito can't use the token to associate or verify users. In this case, users receive a
SoftwareTokenMFANotFoundException exception with the description Software
Token MFA has not been enabled by the userPool. If you deactivate software
token MFA for the user pool later, users who previously associated and verified a TOTP
token can continue to use it for MFA.

Configuring TOTP for your user is a multi-step process where your user receives a secret code that
they validate by entering a one-time password. Next, you can enable TOTP MFA for your user or set
TOTP as the preferred MFA method for your user.

When you configure your user pool to require TOTP MFA and your users sign up for your app in
managed login, Amazon Cognito automates the user process. Amazon Cognito prompts your user
to choose an MFA method, displays a QR code to set up their authenticator app, and verifies their
MFA registration. In user pools where you have allowed users to choose between SMS and TOTP
MFA, Amazon Cognito also presents your user with a choice of method.

Adding MFA 968

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html

Amazon Cognito Developer Guide

Important

When you have an Amazon WAF web ACL associated with a user pool, and a rule in your
web ACL presents a CAPTCHA, this can cause an unrecoverable error in managed login
TOTP registration. To create a rule that has a CAPTCHA action and doesn't affect managed
login TOTP, see Configuring your Amazon WAF web ACL for managed login TOTP MFA. For
more information about Amazon WAF web ACLs and Amazon Cognito, see Associate an
Amazon WAF web ACL with a user pool.

To implement TOTP MFA in a custom-built UI with an Amazon SDK and the Amazon Cognito user
pools API, see Configuring TOTP MFA for a user.

To add MFA to your user pool, see Adding MFA to a user pool.

TOTP MFA considerations and limitations

1. Amazon Cognito supports software token MFA through an authenticator app that generates
TOTP codes. Amazon Cognito doesn't support hardware-based MFA.

2. When your user pool requires TOTP for a user who has not configured it, your user receives a
one-time access token that your app can use to activate TOTP MFA for the user. Subsequent
sign-in attempts fail until your user has registered an additional TOTP sign-in factor.

• A user who signs up in your user pool with the SignUp API operation or through managed
login receives one-time tokens when the user completes sign-up.

• After you create a user, and the user sets their initial password, Amazon Cognito issues one-
time tokens from managed login to the user. If you set a permanent password for the user,
Amazon Cognito issues one-time tokens when the user first signs in.

• Amazon Cognito doesn't issue one-time tokens to an administrator-created user who signs
in with the InitiateAuth or AdminInitiateAuth API operations. After your user succeeds in
the challenge to set their initial password, or if you set a permanent password for the user,
Amazon Cognito immediately challenges the user to set up MFA.

3. If a user in a user pool that requires MFA has already received a one-time access token but hasn't
set up TOTP MFA, the user can't sign in with managed login until they have set up MFA. Instead
of the access token, you can use the session response value from an MFA_SETUP challenge to
InitiateAuth or AdminInitiateAuth in an AssociateSoftwareToken request.

4. If your users have set up TOTP, they can use it for MFA, even if you deactivate TOTP for the user
pool later.

Adding MFA 969

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html

Amazon Cognito Developer Guide

5. Amazon Cognito only accepts TOTPs from authenticator apps that generate codes with the
HMAC-SHA1 hash function. Codes generated with SHA-256 hashing return a Code mismatch
error.

Configuring TOTP MFA for a user

When a user first signs in, your app uses their one-time access token to generate the TOTP private
key and present it to your user in text or QR code format. Your user configures their authenticator
app and provides a TOTP for subsequent sign-in attempts. Your app or managed login presents the
TOTP to Amazon Cognito in MFA challenge responses.

Under some circumstances, managed login prompts new users to set up a TOTP authenticator. for
more information, see Details of MFA logic at user runtime.

Topics

• Associate the TOTP software token

• Verify the TOTP token

• Sign in with TOTP MFA

• Remove the TOTP token

Associate the TOTP software token

To associate the TOTP token, send your user a secret code that they must validate with a one-time
password. Associating the token requires three steps.

1. When your user chooses TOTP software token MFA, call AssociateSoftwareToken to
return a unique generated shared secret key code for the user account. You can authorize
AssociateSoftwareToken with either an access token or a session string.

2. Your app presents the user with the private key, or a QR code that you generate from the private
key. Your user must enter the key into a TOTP-generating app such as Google Authenticator. You
can use libqrencode to generate a QR code.

3. Your user enters the key, or scans the QR code into a authenticator app such as Google
Authenticator, and the app begins generating codes.

Adding MFA 970

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://github.com/fukuchi/libqrencode/

Amazon Cognito Developer Guide

Verify the TOTP token

Next, verify the TOTP token. Request sample codes from your user and provide them to the
Amazon Cognito service to confirm that the user is successfully generating TOTP codes, as follows.

1. Your app prompts your user for a code to demonstrate that they have set up their authenticator
app properly.

2. The user's authenticator app displays a temporary password. The authenticator app bases the
password on the secret key you gave to the user.

3. Your user enters their temporary password. Your app passes the temporary password to Amazon
Cognito in a VerifySoftwareToken API request.

4. Amazon Cognito has retained the secret key associated with the user, and generates a TOTP
and compares it with the one that your user provided. If they match, VerifySoftwareToken
returns a SUCCESS response.

5. Amazon Cognito associates the TOTP factor with the user.

6. If the VerifySoftwareToken operation returns an ERROR response, make sure that the user's
clock is correct and that they have not exceeded the maximum number of retries. Amazon
Cognito accepts TOTP tokens that are within 30 seconds before or after the attempt, to account
for minor clock skew. When you have resolved the issue, try the VerifySoftwareToken operation
again.

Sign in with TOTP MFA

At this point, your user signs in with the time-based one-time password. The process is as follows.

1. Your user enters their username and password to sign in to your client app.

2. The TOTP MFA challenge is invoked, and your user is prompted by your app to enter a temporary
password.

3. Your user gets the temporary password from an associated TOTP-generating app.

4. Your user enters the TOTP code into your client app. Your app notifies the Amazon Cognito
service to verify it. For each sign-in, RespondToAuthChallenge should be called to get a response
to the new TOTP authentication challenge.

5. If the token is verified by Amazon Cognito, the sign-in is successful and your user continues with
the authentication flow.

Adding MFA 971

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html

Amazon Cognito Developer Guide

Remove the TOTP token

Finally, your app should allow your user to deactivate their TOTP configuration. Currently, you can't
delete a user's TOTP software token. To replace your user's software token, associate and verify a
new software token. To deactivate TOTP MFA for a user, call SetUserMFAPreference to modify your
user to use no MFA, or only SMS MFA.

1. Create an interface in your app for users who want to reset MFA. Prompt a user in this interface
to enter their password.

2. If Amazon Cognito returns a TOTP MFA challenge, update your user's MFA preference with
SetUserMFAPreference.

3. In your app, communicate to your user that they have deactivated MFA and prompt them to sign
in again.

Configuring your Amazon WAF web ACL for managed login TOTP MFA

When you have an Amazon WAF web ACL associated with a user pool, and a rule in your web ACL
presents a CAPTCHA, this can cause an unrecoverable error in managed login and managed login
TOTP registration. Amazon WAF CAPTCHA rules only have this effect on TOTP MFA in managed
login and the classic hosted UI. SMS MFA is unaffected.

Amazon Cognito displays the following error when your CAPTCHA rule doesn't let a user complete
TOTP MFA setup.

Request not allowed due to WAF captcha.

This error results when Amazon WAF prompts for a CAPTCHA in response to
AssociateSoftwareToken and VerifySoftwareToken API requests that your user pool makes
in the background. To create a rule that has a CAPTCHA action and doesn't affect TOTP in
managed login pages, exclude the x-amzn-cognito-operation-name header values of
AssociateSoftwareToken and VerifySoftwareToken from the CAPTCHA action in your rule.

The following screenshot shows an example Amazon WAF rule that applies a CAPTCHA action
to all requests that don't have a x-amzn-cognito-operation-name header value of
AssociateSoftwareToken or VerifySoftwareToken.

Adding MFA 972

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html

Amazon Cognito Developer Guide

Adding MFA 973

Amazon Cognito Developer Guide

For more information about Amazon WAF web ACLs and Amazon Cognito, see Associate an
Amazon WAF web ACL with a user pool.

Advanced security with threat protection

After you create your user pool, you have access to Threat protection in the navigation menu
in the Amazon Cognito console. You can turn threat protection features on and customize the
actions that are taken in response to different risks. Or you can use audit mode to gather metrics
on detected risks without applying any security mitigations. In audit mode, threat protection
publishes metrics to Amazon CloudWatch. You can see metrics after Amazon Cognito generates its
first event. See Viewing threat protection metrics.

Threat protection, formerly called advanced security features, is a set of monitoring tools for
unwanted activity in your user pool, and configuration tools to automatically shut down potentially
malicious activity. Threat protection has different configuration options for standard and custom
authentication operations. For example, you might want to send a notification to a user with a
suspicious custom authentication sign-in, where you have set up additional security factors, but
block a user at the same risk level with basic username-password authentication.

Threat protection is available in the Plus feature plan. For more information, see User pool feature
plans.

The following user pool options are the components of threat protection.

Compromised credentials

Users reuse passwords for multiple user accounts. The compromised credentials feature of
Amazon Cognito compiles data from public leaks of user names and passwords, and compares
your users' credentials to lists of leaked credentials. Compromised credentials detection also
checks for commonly-guessed passwords. You can check for compromised credentials in
username-and-password standard authentication flows in user pools. Amazon Cognito doesn't
detect compromised credentials in secure remote password (SRP) or custom authentication.

You can choose the user actions that prompt a check for compromised credentials, and the
action that you want Amazon Cognito to take in response. For sign-in, sign-up, and password-
change events, Amazon Cognito can Block sign-in, or Allow sign-in. In both cases, Amazon
Cognito generates a user activity log where you can find more information about the event.

Learn more

Working with compromised-credentials detection

Threat protection 974

Amazon Cognito Developer Guide

Adaptive authentication

Amazon Cognito can review location and device information from your users' sign-in requests
and apply an automatic response to secure the user accounts in your user pool against
suspicious activity. You can monitor user activity and automate responses to detected risk levels
in username-password and SRP, and custom authentication.

When you activate threat protection, Amazon Cognito assigns a risk score to user activity. You
can assign an automatic response to suspicious activity: you can Require MFA, Block sign-in, or
just log the activity details and risk score. You can also automatically send email messages that
notify your user of the suspicious activity so that they can reset their password or take other
self-guided actions.

Learn more

Working with adaptive authentication

IP address allowlist and denylist

With Amazon Cognito threat protection in Full function mode, you can create IP address
Always block and Always allow exceptions. A session from an IP address on the Always block
exception list isn't assigned a risk level by adaptive authentication, and can't sign in to your user
pool.

Things to know about IP-address allowlists and blocklists

• You must express Always block and Always allow in CIDR format, for example
192.0.2.0/24, a 24-bit mask, or 192.0.2.252/32, a single IP address.

• Devices with IP addresses in an Always block IP range can't sign up or sign in with SDK-based
or managed login applications, but they can sign in with third-party IdPs.

• Always allow and Always block lists don't affect token refresh.

• Amazon Cognito doesn't apply adaptive authentication MFA rules to devices from an Always
allow IP range, but does apply compromised-credentials rules.

Log export

Threat protection logs granular details of users' authentication requests to your user pool.
These logs feature threat assessments, user information, and session metadata like location
and device. You can create external archives of these logs for retention and analysis. Amazon
Cognito user pools export threat protection logs to Amazon S3, CloudWatch Logs, and Amazon
Data Firehose. For more information, see Viewing and exporting user event history.

Threat protection 975

Amazon Cognito Developer Guide

Learn more

Exporting threat protection user activity logs

Topics

• Considerations and limitations for threat protection

• Turning on threat protection in user pools

• Threat protection enforcement concepts

• Threat protection for standard authentication and custom authentication

• Threat protection prerequisites

• Setting up threat protection

• Working with compromised-credentials detection

• Working with adaptive authentication

• Collecting data for threat protection in applications

Considerations and limitations for threat protection

Threat protection options differ between authentication flows

Amazon Cognito supports both adaptive authentication and compromised-credentials detection
with the authentication flows USER_PASSWORD_AUTH and ADMIN_USER_PASSWORD_AUTH. You
can enable only adaptive authentication for USER_SRP_AUTH. You can't use threat protection with
federated sign-in.

Always-block IPs contribute to request quotas

Blocked requests from IP addresses on an Always block exception list in your user pool contribute
to the request rate quotas for your user pools.

Threat protection doesn't apply rate limits

Some malicious traffic has the characteristic of a high volume of requests, like distributed denial
of service (DDoS) attacks. The risk ratings that Amazon Cognito applies to incoming traffic are per-
request and don't take request volume into account. Individual requests in a high-volume event
might receive a risk score and an automated response for application-layer reasons that aren't
related to their role in a volumetric attack. To implement defenses against volumetric attacks in

Threat protection 976

https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html#category_operations

Amazon Cognito Developer Guide

your user pools, add Amazon WAF web ACLs. For more information, see Associate an Amazon WAF
web ACL with a user pool.

Threat protection doesn't affect M2M requests

Client credentials grants are intended for machine-to-machine (M2M) authorization with no
connection to user accounts. Threat protection only monitors user accounts and passwords in
your user pool. To implement security features with your M2M activity, consider the capabilities
of Amazon WAF for monitoring request rates and content. For more information, see Associate an
Amazon WAF web ACL with a user pool.

Turning on threat protection in user pools

Amazon Cognito user pools console

To activate threat protection for a user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. If you haven't already, activate the Plus feature plan from the Settings menu.

5. Choose the Threat protection menu and select Activate.

6. Choose Save changes.

API

Set your feature plan to Plus in a CreateUserPool or UpdateUserPool API request. The following
partial example request body sets threat protection to full-function mode. For a complete
example request, see Examples.

"UserPoolAddOns": {
 "AdvancedSecurityMode": "ENFORCED"
 }

Threat protection is the collective term for the features that monitor user operations for signs of
account takeover and automatically respond to secure affected user accounts. You can apply threat
protection settings to users when they sign in with standard and custom authentication flows.

Threat protection 977

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html#API_CreateUserPool_Examples

Amazon Cognito Developer Guide

Threat protection generates logs that detail users' sign-in, sign-out, and other activity. You can
export these logs to a third-party system. For more information, see Viewing and exporting user
event history.

Threat protection enforcement concepts

Threat protection starts out in an audit-only mode where your user pool monitors user activity,
assigns risk levels, and generates logs. As a best practice, run in audit-only mode for two weeks
or more before you enable full-function mode. Full-function mode includes a set of automatic
reactions to detected risky activity and compromised passwords. With audit-only mode, you can
monitor the threat assessments that Amazon Cognito is performing. You can also provide feedback
that trains the feature on false positives and negatives.

You can configure threat protection enforcement at the user pool level to cover all app clients in
the user pool, and at the level of individual app clients. App client threat-protection configurations
override the user pool configuration. To configure threat protection for an app client, navigate
to the app client settings from the App clients menu of your user pool in the Amazon Cognito
console. There, you can Use client-level settings and configure enforcement exclusive to the app
client.

Additionally, you can configure threat protection separately for standard and custom
authentication types.

Threat protection for standard authentication and custom authentication

The ways that you can configure threat protection depend on the type of authentication you're
doing in your user pool and app clients. Each of the following types of authentication can have
their own enforcement mode and automated responses.

Standard authentication

Standard authentication is user sign-in, sign-out and password management with username-
password flows and in managed login. Amazon Cognito threat protection monitors operations
for indicators of risk when they sign in with managed login or use the following API AuthFlow
parameters:

InitiateAuth

USER_PASSWORD_AUTH, USER_SRP_AUTH. The compromised credentials feature doesn't
have access to passwords in USER_SRP_AUTH sign-in, and doesn't monitor or act on events
with this flow.

Threat protection 978

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-AuthFlow

Amazon Cognito Developer Guide

AdminInitiateAuth

ADMIN_USER_PASSWORD_AUTH, USER_SRP_AUTH. The compromised credentials feature
doesn't have access to passwords in USER_SRP_AUTH sign-in, and doesn't monitor or act on
events with this flow.

You can set the Enforcement mode for standard authentication to Audit only or Full
function. To disable threat monitoring for standard authentication, set threat protection to No
enforcement.

Custom authentication

Custom authentication is user sign-in with custom challenge Lambda triggers. You can't
do custom authentication in managed login. Amazon Cognito threat protection monitors
operations for indicators of risk when they sign in with the API AuthFlow parameter
CUSTOM_AUTH of InitiateAuth and AdminInitiateAuth.

You can set the Enforcement mode for custom authentication to Audit only, Full function,
or No enforcement. The No enforcement option disables threat monitoring for custom
authentication without affecting other threat protection features.

Threat protection prerequisites

Before you begin, you need the following:

• A user pool with an app client. For more information, see Getting started with user pools.

• Set multi-factor authentication (MFA) to Optional in the Amazon Cognito console to use the risk-
based adaptive authentication feature. For more information, see Adding MFA to a user pool.

• If you're using email notifications, go to the Amazon SES console to configure and verify an email
address or domain to use with your email notifications. For more information about Amazon SES,
see Verifying Identities in Amazon SES.

Setting up threat protection

Follow these instructions to set up user pool threat protection.

Threat protection 979

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-AuthFlow
https://console.aws.amazon.com/ses/home
https://docs.amazonaws.cn/ses/latest/dg/verify-addresses-and-domains.html

Amazon Cognito Developer Guide

Note

To set up a different threat protection configuration for an app client in the Amazon
Cognito user pools console, select the app client from the App clients menu and choose
Use client-level settings.

Amazon Web Services Management Console

To configure threat protection for a user pool

1. Go to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Threat protection menu and select Activate.

5. Choose the threat protection method that you want to configure: Standard and custom
authentication. You can set different enforcement modes for custom and standard
authentication, but they share the configuration of automated responses in Full function
mode.

6. Select Edit.

7. Choose an Enforcement mode. To start responding to detected risks immediately, select
Full function and configure the automated responses for compromised credentials and
adaptive authentication. To gather information in user-level logs and in CloudWatch, select
Audit only .

We recommend that you keep threat protection in audit mode for two weeks before
enabling actions. During this time, Amazon Cognito can learn the usage patterns of your
app users and you can provide event feedback to adjust responses.

8. If you selected Audit only, choose Save changes. If you selected Full function:

a. Select whether you will take Custom action or use or Cognito defaults to respond to
suspected Compromised credentials. Cognito defaults are:

i. Detect compromised credentials on Sign-in, Sign-up, and Password change.

ii. Respond to compromised credentials with the action Block sign-in.

Threat protection 980

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

b. If you selected Custom actions for Compromised credentials, choose the user pool
actions that Amazon Cognito will use for Event detection and the Compromised
credentials responses that you would like Amazon Cognito to take. You can Block
sign-in or Allow sign-in with suspected compromised credentials.

c. Choose how to respond to malicious sign-in attempts under Adaptive authentication.
Select whether you will take Custom action or use or Cognito defaults to respond
to suspected malicious activity. When you select Cognito defaults, Amazon Cognito
blocks sign-in at all risk levels and does not notify the user.

d. If you selected Custom actions for Adaptive authentication, choose the Automatic
risk response actions that Amazon Cognito will take in response to detected risks
based on severity level. When you assign a response to a level of risk, you can't assign
a less-restrictive response to a higher level of risk. You can assign the following
responses to risk levels:

i. Allow sign-in - Take no preventative action.

ii. Optional MFA - If the user has MFA configured, Amazon Cognito will always
require the user to provide an additional SMS or time-based one-time password
(TOTP) factor when they sign in. If the user does not have MFA configured, they
can continue signing in normally.

iii. Require MFA - If the user has MFA configured, Amazon Cognito will always require
the user to provide an additional SMS or TOTP factor when they sign in. If the user
does not have MFA configured, Amazon Cognito will prompt them to set up MFA.
Before you automatically require MFA for your users, configure a mechanism in
your app to capture phone numbers for SMS MFA, or to register authenticator
apps for TOTP MFA.

iv. Block sign-in - Prevent the user from signing in.

v. Notify user - Send an email message to the user with information about the
risk that Amazon Cognito detected and the response you have taken. You can
customize email message templates for the messages you send.

9. If you chose Notify user in the previous step, you can customize your email delivery
settings and email message templates for adaptive authentication.

a. Under Email configuration, choose the SES Region, FROM email address, FROM
sender name, and REPLY-TO email address that you want to use with adaptive
authentication. For more information about integrating your user pool email messages
with Amazon Simple Email Service, see Email settings for Amazon Cognito user pools.

Threat protection 981

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html

Amazon Cognito Developer Guide

b. Expand Email templates to customize adaptive authentication notifications with both
HTML and plaintext versions of email messages. To learn more about email message
templates, see Message templates.

10. Expand IP address exceptions to create an Always-allow or an Always-block list of
IPv4 or IPv6 address ranges that will always be allowed or blocked, regardless of the
threat protection risk assessment. Specify the IP address ranges in CIDR notation (such as
192.168.100.0/24).

11. Choose Save changes.

Threat protection 982

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing#CIDR_notation

Amazon Cognito Developer Guide

API (user pool)

To set the threat protection configuration for a user pool, send a SetRiskConfiguration
API request that includes a UserPoolId parameter, but not a ClientId parameter. The
following is an example request body for a user pool. This risk configuration takes an escalating
series of actions based on the severity of risk and notifies users at all risk levels. It applies a
compromised-credentials block to sign-up operations.

To enforce this configuration, you must set AdvancedSecurityMode to ENFORCED in a
separate CreateUserPool or UpdateUserPool API request. For more information about the
placeholder templates like {username} in this example, see Configuring verification and
invitation messages.

{
 "AccountTakeoverRiskConfiguration": {
 "Actions": {
 "HighAction": {
 "EventAction": "MFA_REQUIRED",
 "Notify": true
 },
 "LowAction": {
 "EventAction": "NO_ACTION",
 "Notify": true
 },
 "MediumAction": {
 "EventAction": "MFA_IF_CONFIGURED",
 "Notify": true
 }
 },
 "NotifyConfiguration": {
 "BlockEmail": {
 "Subject": "You have been blocked for suspicious activity",
 "TextBody": "We blocked {username} at {login-time} from {ip-address}."
 },
 "From": "admin@example.com",
 "MfaEmail": {
 "Subject": "Suspicious activity detected, MFA required",
 "TextBody": "Unexpected sign-in from {username} on device {device-name}.
 You must use MFA."
 },
 "NoActionEmail": {
 "Subject": "Suspicious activity detected, secure your user account",

Threat protection 983

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

 "TextBody": "We noticed suspicious sign-in activity by {username} from
 {city}, {country} at {login-time}. If this was not you, reset your password."
 },
 "ReplyTo": "admin@example.com",
 "SourceArn": "arn:aws:ses:us-west-2:123456789012:identity/
admin@example.com"
 }
 },
 "CompromisedCredentialsRiskConfiguration": {
 "Actions": {
 "EventAction": "BLOCK"
 },
 "EventFilter": ["SIGN_UP"]
 },
 "RiskExceptionConfiguration": {
 "BlockedIPRangeList": ["192.0.2.0/24","198.51.100.0/24"],
 "SkippedIPRangeList": ["203.0.113.0/24"]
 },
 "UserPoolId": "us-west-2_EXAMPLE"
}

API (app client)

To set the threat protection configuration for an app client, send a SetRiskConfiguration API
request that includes a UserPoolId parameter and a ClientId parameter. The following is
an example request body for an app client. This risk configuration is more severe than the user
pool configuration, blocking high-risk entries. It also applies compromised-credentials blocks to
sign-up, sign-in, and password-reset operations.

To enforce this configuration, you must set AdvancedSecurityMode to ENFORCED in a
separate CreateUserPool or UpdateUserPool API request. For more information about the
placeholder templates like {username} in this example, see Configuring verification and
invitation messages.

{
 "AccountTakeoverRiskConfiguration": {
 "Actions": {
 "HighAction": {
 "EventAction": "BLOCK",
 "Notify": true
 },
 "LowAction": {

Threat protection 984

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html

Amazon Cognito Developer Guide

 "EventAction": "NO_ACTION",
 "Notify": true
 },
 "MediumAction": {
 "EventAction": "MFA_REQUIRED",
 "Notify": true
 }
 },
 "NotifyConfiguration": {
 "BlockEmail": {
 "Subject": "You have been blocked for suspicious activity",
 "TextBody": "We blocked {username} at {login-time} from {ip-address}."
 },
 "From": "admin@example.com",
 "MfaEmail": {
 "Subject": "Suspicious activity detected, MFA required",
 "TextBody": "Unexpected sign-in from {username} on device {device-name}.
 You must use MFA."
 },
 "NoActionEmail": {
 "Subject": "Suspicious activity detected, secure your user account",
 "TextBody": "We noticed suspicious sign-in activity by {username} from
 {city}, {country} at {login-time}. If this was not you, reset your password."
 },
 "ReplyTo": "admin@example.com",
 "SourceArn": "arn:aws:ses:us-west-2:123456789012:identity/
admin@example.com"
 }
 },
 "ClientId": "1example23456789",
 "CompromisedCredentialsRiskConfiguration": {
 "Actions": {
 "EventAction": "BLOCK"
 },
 "EventFilter": ["SIGN_UP", "SIGN_IN", "PASSWORD_CHANGE"]
 },
 "RiskExceptionConfiguration": {
 "BlockedIPRangeList": ["192.0.2.1/32","192.0.2.2/32"],
 "SkippedIPRangeList": ["192.0.2.3/32","192.0.2.4/32"]
 },
 "UserPoolId": "us-west-2_EXAMPLE"
}

Threat protection 985

Amazon Cognito Developer Guide

Working with compromised-credentials detection

Amazon Cognito can detect if a user's username and password have been compromised elsewhere.
This can happen when users reuse credentials at more than one site, or when they use insecure
passwords. Amazon Cognito checks local users who sign in with username and password, in
managed login and with the Amazon Cognito API. A local user exists exclusively in your user pool
directory without federation through an external IdP.

From the Threat protection menu of the Amazon Cognito console, you can configure
Compromised credentials. Configure Event detection to choose the user events that you want to
monitor for compromised credentials. Configure Compromised credentials responses to choose
whether to allow or block the user if compromised credentials are detected. Amazon Cognito can
check for compromised credentials during sign-in, sign-up, and password changes.

When you choose Allow sign-in, you can review Amazon CloudWatch Logs to monitor the
evaluations that Amazon Cognito makes on user events. For more information, see Viewing threat
protection metrics. When you choose Block sign-in, Amazon Cognito prevents sign-in by users who
use compromised credentials. When Amazon Cognito blocks sign-in for a user, it sets the user's
UserStatus to RESET_REQUIRED. A user with a RESET_REQUIRED status must change their
password before they can sign in again.

Note

Currently, Amazon Cognito doesn't check for compromised credentials for sign-in
operations with Secure Remote Password (SRP) flow. SRP sends a hashed proof of password
during sign-in. Amazon Cognito doesn't have access to passwords internally, so it can only
evaluate a password that your client passes to it in plaintext.
Amazon Cognito checks sign-ins that use the AdminInitiateAuth API with
ADMIN_USER_PASSWORD_AUTH flow, and the InitiateAuth API with USER_PASSWORD_AUTH
flow, for compromised credentials.

To add compromised credentials protections to your user pool, see Advanced security with threat
protection.

Working with adaptive authentication

With adaptive authentication, you can configure your user pool to block suspicious sign-ins
or add second factor authentication in response to an increased risk level. For each sign-in

Threat protection 986

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

attempt, Amazon Cognito generates a risk score for how likely the sign-in request is to be from
a compromised source. This risk score is based on device and user factors that your application
provides, and others that Amazon Cognito derives from the request. Some factors that contribute
to the risk evaluation by Amazon Cognito are IP address, user agent, and geographical distance
from other sign-in attempts. Adaptive authentication can turn on or require multi-factor
authentication (MFA) for a user in your user pool when Amazon Cognito detects risk in a user's
session, and the user hasn't yet chosen an MFA method. When you activate MFA for a user, they
always receive a challenge to provide or set up a second factor during authentication, regardless of
how you configured adaptive authentication. From your user's perspective, your app offers to help
them set up MFA, and optionally Amazon Cognito prevents them from signing in again until they
have configured an additional factor.

Amazon Cognito publishes metrics about sign-in attempts, their risk levels, and failed challenges to
Amazon CloudWatch. For more information, see Viewing threat protection metrics.

To add adaptive authentication to your user pool, see Advanced security with threat protection.

Topics

• Adaptive authentication overview

• Adding user device and session data to API requests

• Viewing and exporting user event history

• Providing event feedback

• Sending notification messages

Adaptive authentication overview

From the Threat protection menu in the Amazon Cognito console, you can choose settings for
adaptive authentication, including what actions to take at different risk levels and customization
of notification messages to users. You can assign a global threat protection configuration to all of
your app clients, but apply a client-level configuration to individual app clients.

Amazon Cognito adaptive authentication assigns one of the following risk levels to each user
session: High, Medium, Low, or No Risk.

Consider your options carefully when you change your Enforcement method from Audit-only to
Full-function. The automatic responses that you apply to risk levels influence the risk level that
Amazon Cognito assigns to subsequent user sessions with the same characteristics. For example,

Threat protection 987

Amazon Cognito Developer Guide

after you choose to take no action, or Allow, user sessions that Amazon Cognito initially evaluates
to be high-risk, Amazon Cognito considers similar sessions to have a lower risk.

For each risk level, you can choose from the following options:

Option Action

Allow Users can sign in without an additional factor.

Optional MFA Users who have a second factor configure
d must complete a second factor challenge
to sign in. A phone number for SMS and
a TOTP software token are the available
second factors. Users without a second factor
configured can sign in with only one set of
credentials.

Require MFA Users who have a second factor configure
d must complete a second factor challenge
to sign in. Amazon Cognito blocks sign-in
for users who don't have a second factor
configured.

Block Amazon Cognito blocks all sign-in attempts at
the designated risk level.

Note

You don't have to verify phone numbers to use them for SMS as a second authentication
factor.

Adding user device and session data to API requests

You can collect and pass information about your user's session to Amazon Cognito threat
protection when you use the API to sign them up, sign them in, and reset their password. This
information includes your user's IP address and a unique device identifier.

Threat protection 988

Amazon Cognito Developer Guide

You might have a intermediate network device between your users and Amazon Cognito, like a
proxy service or an application server. You can collect users' context data and pass it to Amazon
Cognito so that adaptive authentication calculates your risk based on the characteristics of the
user endpoint, instead of your server or proxy. If your client-side app calls Amazon Cognito API
operations directly, adaptive authentication automatically records the source IP address. However,
it does not record other device information like the user-agent unless you also collect a device
fingerprint.

Generate this data with the Amazon Cognito context data collection library and submit it to
Amazon Cognito threat protection with the ContextData and UserContextData parameters.
The context data collection library is included in the Amazon SDKs. For more information, see
Integrating Amazon Cognito authentication and authorization with web and mobile apps. You
can submit ContextData if you have the Plus feature plan. For more information, see Setting up
threat protection.

When you call the following Amazon Cognito authenticated API operations from your application
server, pass the IP of the user’s device in the ContextData parameter. In addition, pass your server
name, server path, and encoded device-fingerprinting data.

• AdminInitiateAuth

• AdminRespondToAuthChallenge

When you call Amazon Cognito unauthenticated API operations, you can submit
UserContextData to Amazon Cognito threat protection. This data includes a device fingerprint
in the EncodedData parameter. You can also submit an IpAddress parameter in your
UserContextData if you meet the following conditions:

• Your user pool is on the Plus feature plan. For more information, see User pool feature plans.

• Your app client has a client secret. For more information, see Application-specific settings with
app clients.

• You have activated Accept additional user context data in your app client. For more
information, see Accepting additional user context data (Amazon Web Services Management
Console).

Your app can populate the UserContextData parameter with encoded device-fingerprinting
data and the IP address of the user's device in the following Amazon Cognito unauthenticated API
operations.

Threat protection 989

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ContextDataType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserContextDataType.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html

Amazon Cognito Developer Guide

• InitiateAuth

• RespondToAuthChallenge

• SignUp

• ConfirmSignUp

• ForgotPassword

• ConfirmForgotPassword

• ResendConfirmationCode

Accepting additional user context data (Amazon Web Services Management Console)

Your user pool accepts an IP address in a UserContextData parameter after you activate the
Accept additional user context data feature. You don’t need to activate this feature if:

• Your users only sign in with authenticated API operations like AdminInitiateAuth , and you use
the ContextData parameter.

• You only want your unauthenticated API operations to send a device fingerprint, but not an IP
address, to Amazon Cognito threat protection.

Update your app client as follows in the Amazon Cognito console to add support for additional
user context data.

1. Sign in to the Amazon Cognito console .

2. In the navigation pane, choose Manage your User Pools, and choose the user pool you want to
edit.

3. Choose the App clients menu.

4. Choose or create an app client. For more information, see Configuring a user pool app client.

5. Choose Edit from the App client information container.

6. In the Advanced authentication settings for your app client, choose Accept additional user
context data.

7. Choose Save changes.

To configure your app client to accept user context data in the Amazon Cognito API, set
EnablePropagateAdditionalUserContextData to true in a CreateUserPoolClient or
UpdateUserPoolClient request. For information about how to work with threat protection in your

Threat protection 990

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-app-idp-settings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

web or mobile app, see Collecting data for threat protection in applications. When your app calls
Amazon Cognito from your server, collect user context data from the client side. The following is
an example that uses the JavaScript SDK method getData.

var EncodedData =
 AmazonCognitoAdvancedSecurityData.getData(username, userPoolId, clientId);

When you design your app to use adaptive authentication, we recommend that you incorporate
the latest Amazon Cognito SDK into your app.. The latest version of the SDK collects device
fingerprinting information like device ID, model, and time zone. For more information about
Amazon Cognito SDKs, see Install a user pool SDK. Amazon Cognito threat protection only saves
and assigns a risk score to events that your app submits in the correct format. If Amazon Cognito
returns an error response, check that your request includes a valid secret hash and that the
IPaddress parameter is a valid IPv4 or IPv6 address.

ContextData and UserContextData resources

• Amazon Amplify SDK for Android: GetUserContextData

• Amazon Amplify SDK for iOS: userContextData

• JavaScript: amazon-cognito-advanced-security-data.min.js

Viewing and exporting user event history

Amazon Cognito generates a log for each authentication event by a user when you enable threat
protection. By default, you can view user logs in the Users menu in the Amazon Cognito console or
with the AdminListUserAuthEvents API operation. You can also export these events to an external
system like CloudWatch Logs, Amazon S3, or Amazon Data Firehose. The export feature can make
security information about user activity in your application more accessible to your own security-
analysis systems.

Topics

• Viewing user event history (Amazon Web Services Management Console)

• Viewing user event history (API/CLI)

• Exporting user authentication events

Threat protection 991

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-sdk-links.html
https://github.com/aws-amplify/aws-sdk-android/blob/main/aws-android-sdk-cognitoidentityprovider/src/main/java/com/amazonaws/mobileconnectors/cognitoidentityprovider/CognitoUserPool.java#L626
https://github.com/aws-amplify/aws-sdk-ios/blob/d3cd4fa0086b526f2f5c9c6c58880c9da7004c66/AWSCognitoIdentityProviderASF/AWSCognitoIdentityProviderASF.m#L21
https://amazon-cognito-assets.us-east-1.amazoncognito.com/amazon-cognito-advanced-security-data.min.js
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListUserAuthEvents.html

Amazon Cognito Developer Guide

Viewing user event history (Amazon Web Services Management Console)

To see the sign-in history for a user, you can choose the user from the Users menu in the Amazon
Cognito console. Amazon Cognito retains user event history for two years.

Each sign-in event has an event ID. The event also has corresponding context data, such as
location, device details, and risk detection results.

You can also correlate the event ID with the token that Amazon Cognito issued at the time that
it recorded the event. The ID and access tokens include this event ID in their payload. Amazon
Cognito also correlates refresh token use to the original event ID. You can trace the original event
ID back to the event ID of the sign-in event that resulted in issuing the Amazon Cognito tokens.
You can trace token usage within your system to a particular authentication event. For more
information, see Understanding user pool JSON web tokens (JWTs).

Viewing user event history (API/CLI)

You can query user event history with the Amazon Cognito API operation
AdminListUserAuthEvents or with the Amazon Command Line Interface (Amazon CLI) with admin-
list-user-auth-events.

AdminListUserAuthEvents request

The following request body for AdminListUserAuthEvents returns the most recent activity
log for one user.

{

Threat protection 992

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListUserAuthEvents.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-list-user-auth-events.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-list-user-auth-events.html

Amazon Cognito Developer Guide

 "UserPoolId": "us-west-2_EXAMPLE",
 "Username": "myexampleuser",
 "MaxResults": 1
}

admin-list-user-auth-events request

The following request for admin-list-user-auth-events returns the most recent activity
log for one user.

aws cognito-idp admin-list-user-auth-events --max-results 1 --username myexampleuser
 --user-pool-id us-west-2_EXAMPLE

Response

Amazon Cognito returns the same JSON response body to both requests. The following is an
example response for a managed login sign-in event that wasn't found to contain risk factors:

{
 "AuthEvents": [
 {
 "EventId": "[event ID]",
 "EventType": "SignIn",
 "CreationDate": "[Timestamp]",
 "EventResponse": "Pass",
 "EventRisk": {
 "RiskDecision": "NoRisk",
 "CompromisedCredentialsDetected": false
 },
 "ChallengeResponses": [
 {
 "ChallengeName": "Password",
 "ChallengeResponse": "Success"
 }
],
 "EventContextData": {
 "IpAddress": "192.168.2.1",
 "DeviceName": "Chrome 125, Windows 10",
 "Timezone": "-07:00",
 "City": "Bellevue",
 "Country": "United States"
 }
 }

Threat protection 993

Amazon Cognito Developer Guide

],
 "NextToken": "[event ID]#[Timestamp]"
}

Exporting user authentication events

Configure your user pool to export user events from threat protection to an external system. The
supported external systems–Amazon S3, CloudWatch Logs, and Amazon Data Firehose–might add
costs to your Amazon bill for data that you send or retrieve. For more information, see Exporting
threat protection user activity logs.

Amazon Web Services Management Console

1. Sign in to the Amazon Cognito console.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Log streaming menu. Select Edit.

5. Under Logging status, select the checkbox next to Activate user activity log export.

6. Under Logging destination, choose the Amazon Web Services service that you want to
handle your logs: CloudWatch log group, Amazon Data Firehose stream, or S3 bucket.

7. Your selection will populate the resource selector with the corresponding resource type.
Select a log group, stream, or bucket from the list. You can also select the Create button
to navigate to the Amazon Web Services Management Console for the selected service and
create a new resource.

8. Select Save changes.

API

Choose one type of destination for your user activity logs.

The following is an example SetLogDeliveryConfiguration request body that sets a
Firehose stream as the log destination.

{
 "LogConfigurations": [
 {

Threat protection 994

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

 "EventSource": "userAuthEvents",
 "FirehoseConfiguration": {
 "StreamArn": "arn:aws:firehose:us-west-2:123456789012:deliverystream/
example-user-pool-activity-exported"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

The following is an example SetLogDeliveryConfiguration request body that sets a
Amazon S3 bucket as the log destination.

{
 "LogConfigurations": [
 {
 "EventSource": "userAuthEvents",
 "S3Configuration": {
 "BucketArn": "arn:aws:s3:::amzn-s3-demo-logging-bucket"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

The following is an example SetLogDeliveryConfiguration request body that sets a
CloudWatch log group as the log destination.

{
 "LogConfigurations": [
 {
 "EventSource": "userAuthEvents",
 "CloudWatchLogsConfiguration": {
 "LogGroupArn": "arn:aws:logs:us-west-2:123456789012:log-group:DOC-
EXAMPLE-LOG-GROUP"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"

Threat protection 995

Amazon Cognito Developer Guide

}

Providing event feedback

Event feedback affects risk evaluation in real time and improves the risk evaluation algorithm over
time. You can provide feedback on the validity of sign-in attempts through the Amazon Cognito
console and API operations.

Note

Your event feedback influences the risk level that Amazon Cognito assigns to subsequent
user sessions with the same characteristics.

In the Amazon Cognito console, choose a user from the Users menu and select Provide event
feedback. You can review the event details and Set as valid or Set as invalid.

The console lists the sign-in history in user details in the Users menu. If you select an entry, you
can mark the event as valid or not valid. You can also provide feedback through the user pool
API operation AdminUpdateAuthEventFeedback, and through the Amazon CLI command admin-
update-auth-event-feedback.

When you select Set as valid in the Amazon Cognito console or provide a FeedbackValue value
of valid in the API, you tell Amazon Cognito that you trust a user session where Amazon Cognito
has evaluated some level of risk. When you select Set as invalid in the Amazon Cognito console or
provide a FeedbackValue value of invalid in the API, you tell Amazon Cognito that you don't
trust a user session, or you don't believe that Amazon Cognito evaluated a high-enough risk level.

Sending notification messages

With threat protection, Amazon Cognito can notify your users of risky sign-in attempts. Amazon
Cognito can also prompt users to select links to indicate if the sign-in was valid or not valid.
Amazon Cognito uses this feedback to improve the risk detection accuracy for your user pool.

Note

Amazon Cognito only sends notification messages to users when their action generates an
automated risk response: block sign-in, allow sign-in, set MFA to optional, or require MFA.
Some requests might be assigned a level of risk but don't generate adaptive authentication

Threat protection 996

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-update-auth-event-feedback.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/admin-update-auth-event-feedback.html

Amazon Cognito Developer Guide

automated risk responses; for these, your user pool doesn't send notifications. For example,
incorrect passwords might be logged with a risk rating, but the response by Amazon
Cognito is to fail sign-in, not to apply an adaptive authentication rule.

In the Automatic risk response section choose Notify Users for low, medium, or high-risk cases.

Amazon Cognito sends email notifications to your users regardless of whether they have verified
their email address.

You can customize notification email messages, and provide both plaintext and HTML versions
of these messages. To customize your email notifications, open Email templates from Adaptive
authentication messages in your threat protection configuration. To learn more about email
templates, see Message templates.

Collecting data for threat protection in applications

Amazon Cognito adaptive authentication evaluates risk levels for attempted account takeover
from contextual details of users' sign-in attempts. Your application must add context data to API
requests so that Amazon Cognito threat protection can more accurately evaluate risk. Context
data is information like IP address, browser agent, device information, and request headers that
provides contextual information about how a user connected to your user pool.

The central responsibility of an application that submits this context to Amazon Cognito is
an EncodedData parameter in authentication requests to user pools. To add this data to
your requests, you can implement Amazon Cognito with an SDK that automatically generates
this information for you, or you can implement a module for JavaScript, iOS, or Android that
collects this data. Client-only applications that make direct requests to Amazon Cognito must
implement Amazon Amplify SDKs. Client-server applications that have an intermediate server or
API component must implement a separate SDK module.

Threat protection 997

Amazon Cognito Developer Guide

In the following scenarios, your authentication front end manages user context data collection
without any additional configuration:

• Managed login automatically collects and submits context data to threat protection.

• All Amazon Amplify libraries have context-data collection built into their authentication
methods.

Submitting user context data in client-only applications with Amplify

Amplify SDKs support mobile clients that authenticate with Amazon Cognito directly. Clients
of this kind make direct API requests to Amazon Cognito public API operations. Amplify clients
automatically collect context data for threat protection by default.

Amplify applications with JavaScript are an exception. They require the addition of a JavaScript
module that collects user context data.

Typically, an application in this configuration uses unauthenticated API operations like
InitiateAuth and RespondToAuthChallenge. The UserContextData object helps evaluate risks
more accurately for these operations. The Amplify SDKs add device and session information to an
EncodedDataparameter of UserContextData.

Threat protection 998

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserContextDataType.html

Amazon Cognito Developer Guide

Collecting context data in client-server applications

Some applications have a front-end tier that collects user authentication data and an application
back-end tier that submits authentication requests to Amazon Cognito. This is a common
architecture in webservers and applications backed by microservices. In these applications, you
must import a public context-data collection library.

Typically, an application server in this configuration uses authenticated API operations like
AdminInitiateAuth and AdminRespondToAuthChallenge. The ContextData object helps Amazon
Cognito evaluate risks more accurately for these operations. . The contents of ContextData
are the encoded data that your front end passed to your server, and additional details from the
user's HTTP request to your server. These additional context details, like the HTTP headers and IP
address, provide your application server with the characteristics of the user's environment.

Your application server might also do sign-in with unauthenticated API operations like InitiateAuth
and RespondToAuthChallenge. The UserContextData object informs threat protection risk analysis
in these operations. The operations in the available public context data collection libraries add
security information to the EncodedData parameter in authentication requests. Additionally,
configure your user pool to accept additional context data and add the user’s source IP to the
IpAddress parameter of UserContextData.

To add context data to client-server applications

1. In your front-end application, collect encoded context data from the client with an iOS,
Android, or JavaScript module.

2. Pass the encoded data and the details of the authentication request to your application server.

Threat protection 999

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-ContextData
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html#CognitoUserPools-InitiateAuth-request-UserContextData

Amazon Cognito Developer Guide

3. In your application server, extract the user's IP address, relevant HTTP headers, requested
server name, and requested path from the HTTP request. Populate these values to the
ContextData parameter of your API request to Amazon Cognito.

4. Populate the EncodedData parameter of ContextData in your API request with the encoded
device data that your SDK module collected. Add this context data to the authentication
request.

Context data libraries for client-server applications

JavaScript

The amazon-cognito-advanced-security-data.min.js module collects EncodedData that
you can pass to your application server.

Add the amazon-cognito-advanced-security-data.min.js module to your JavaScript
configuration. Replace <region> with an Amazon Web Services Region from the following list:
us-east-1, us-east-2, us-west-2, eu-west-1, eu-west-2, or eu-central-1.

<script src="https://amazon-cognito-assets.<region>.amazoncognito.com/amazon-cognito-
advanced-security-data.min.js"></script>

To generate an encodedContextData object that you can use in the EncodedData parameter,
add the following to your JavaScript application source:

var encodedContextData = AmazonCognitoAdvancedSecurityData.getData(_username,
 _userpoolId, _userPoolClientId);

iOS/Swift

To generate context data, iOS applications can integrate the Mobile SDK for iOS module
AWSCognitoIdentityProviderASF.

To collect encoded context data for threat protection, add the following snippet to your
application:

import AWSCognitoIdentityProviderASF

let deviceId = getDeviceId()

Threat protection 1000

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html#CognitoUserPools-AdminInitiateAuth-request-ContextData
https://github.com/aws-amplify/aws-sdk-ios/tree/main
https://github.com/aws-amplify/aws-sdk-ios/tree/main/AWSCognitoIdentityProviderASF

Amazon Cognito Developer Guide

let encodedContextData = AWSCognitoIdentityProviderASF.userContextData(
 userPoolId,
 username: username,
 deviceId: deviceId,
 userPoolClientId: userPoolClientId)

/**
 * Reuse DeviceId from keychain or generate one for the first time.
 */
func getDeviceId() -> String {
 let deviceIdKey = getKeyChainKey(namespace: userPoolId, key:
 "AWSCognitoAuthAsfDeviceId")

 if let existingDeviceId = self.keychain.string(forKey: deviceIdKey) {
 return existingDeviceId
 }

 let newDeviceId = UUID().uuidString
 self.keychain.setString(newDeviceId, forKey: deviceIdKey)
 return newDeviceId
}

/**
 * Get a namespaced keychain key given a namespace and key
 */
func getKeyChainKey(namespace: String, key: String) -> String {
 return "\(namespace).\(key)"
}

Android

To generate context data, Android applications can integrate the Mobile SDK for Android module
aws-android-sdk-cognitoidentityprovider-asf.

To collect encoded context data for threat protection, add the following snippet to your
application:

UserContextDataProvider provider = UserContextDataProvider.getInstance();
// context here is android application context.
String encodedContextData = provider.getEncodedContextData(context, username,
 userPoolId, userPoolClientId);

Threat protection 1001

https://github.com/aws-amplify/aws-sdk-android/tree/main
https://github.com/aws-amplify/aws-sdk-android/tree/main/aws-android-sdk-cognitoidentityprovider-asf

Amazon Cognito Developer Guide

Associate an Amazon WAF web ACL with a user pool

Amazon WAF is a web application firewall. With an Amazon WAF web access control list (web ACL),
you can protect your user pool from unwanted requests to your classic hosted UI, managed login,
and Amazon Cognito API service endpoints. A web ACL gives you fine-grained control over all of
the HTTPS web requests that your user pool responds to. For more information about Amazon
WAF web ACLs, see Managing and using a web access control list (web ACL) in the Amazon WAF
Developer Guide.

When you have an Amazon WAF web ACL associated with a user pool, Amazon Cognito forwards
selected non-confidential headers and contents of requests from your users to Amazon WAF.
Amazon WAF inspects the contents of the request, compares it to the rules that you specified in
your web ACL, and returns a response to Amazon Cognito.

Things to know about Amazon WAF web ACLs and Amazon Cognito

• You can't configure web ACL rules to match on personally identifiable information (PII) in user
pool requests, for example usernames, passwords, phone numbers, or email addresses. This
data won't be available to Amazon WAF. Instead, configure your web ACL rules to match on
session data in the headers, path, and body like IP addresses, browser agents, and requested API
operations.

• The rule conditions in your web ACL must match users' first request to managed login. Their first
request is typically to the Authorize endpoint. The authorize endpoint always redirects requests;
don't configure URL path matching in your web ACL rules.

• Requests blocked by Amazon WAF do not count towards the request rate quota for any request
type. The Amazon WAF handler is called before the API-level throttling handlers.

• When you create a web ACL, a small amount of time passes before the web ACL has fully
propagated and is available to Amazon Cognito. The propagation time can be from a few
seconds to a number of minutes. Amazon WAF returns a WAFUnavailableEntityException
when you attempt to associate a web ACL before it has fully propagated.

• You can associate one web ACL with each user pool.

• Your request might result in a payload that is larger than the limits of what Amazon WAF can
inspect. See Oversize request component handling in the Amazon WAF Developer Guide to learn
how to configure how Amazon WAF handles oversize requests from Amazon Cognito.

• You can’t associate a web ACL that uses Amazon WAF Fraud Control account takeover prevention
(ATP) with an Amazon Cognito user pool. You implement the ATP feature when you add the

Amazon WAF Web ACLs 1002

https://docs.amazonaws.cn/waf/latest/developerguide/web-acl.html
https://docs.amazonaws.cn/waf/latest/APIReference/API_AssociateWebACL.html#API_AssociateWebACL_Errors
https://docs.amazonaws.cn/waf/latest/developerguide/waf-rule-statement-oversize-handling.html
https://docs.amazonaws.cn/waf/latest/developerguide/waf-atp.html
https://docs.amazonaws.cn/waf/latest/developerguide/waf-atp.html

Amazon Cognito Developer Guide

AWS-AWSManagedRulesATPRuleSet managed rule group. Before you associate it with a user
pool, ensure that your web ACL doesn’t use this managed rule group.

• When you have an Amazon WAF web ACL associated with a user pool, and a rule in your
web ACL presents a CAPTCHA, this can cause an unrecoverable error in managed login TOTP
registration. To create a rule that has a CAPTCHA action and doesn't affect managed login TOTP,
see Configuring your Amazon WAF web ACL for managed login TOTP MFA.

Amazon WAF inspects requests to the following endpoints.

Managed login and the classic hosted UI

Requests to all endpoints in the User pool endpoints and managed login reference.

Public API operations

Requests from your app to the Amazon Cognito API that don't use Amazon credentials to
authorize. This includes API operations like InitiateAuth, RespondToAuthChallenge, and
GetUser. The API operations that are in scope of Amazon WAF don't require authentication with
Amazon credentials. They are unauthenticated, or authorized with a session string or access
token. For more information, see List of API operations grouped by authorization model.

You can configure the rules in your web ACL with rule actions that Count, Allow, Block, or present
a CAPTCHA in response to a request that matches a rule. For more information, see Amazon WAF
rules in the Amazon WAF Developer Guide. Depending on the rule action, you can customize the
response that Amazon Cognito returns to your users.

Important

Your options to customize the error response depends on the way you make an API request.

• You can customize the error code and response body of managed login requests. You can
only present a CAPTCHA for your user to solve in managed login.

• For requests that you make with the Amazon Cognito user pools API, you can customize
the response body of a request that receives a Block response. You can also specify a
custom error code in the range 400–499.

• The Amazon Command Line Interface (Amazon CLI) and the Amazon SDKs return a
ForbiddenException error to requests that produce a Block or CAPTCHA response.

Amazon WAF Web ACLs 1003

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html
https://docs.amazonaws.cn/waf/latest/developerguide/waf-rules.html
https://docs.amazonaws.cn/waf/latest/developerguide/waf-rules.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

Associating a web ACL with your user pool

To work with a web ACL in your user pool, your Amazon Identity and Access Management (IAM)
principal must have the following Amazon Cognito and Amazon WAF permissions. For information
about Amazon WAF permissions, see Amazon WAF API permissions in the Amazon WAF Developer
Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowWebACLUserPool",
 "Effect": "Allow",
 "Action": [
 "cognito-idp:ListResourcesForWebACL",
 "cognito-idp:GetWebACLForResource",
 "cognito-idp:AssociateWebACL"
],
 "Resource": [
 "arn:aws:cognito-idp:*:123456789012:userpool/*"
]
 },
 {
 "Sid": "AllowWebACLUserPoolWAFv2",
 "Effect": "Allow",
 "Action": [
 "wafv2:ListResourcesForWebACL",
 "wafv2:AssociateWebACL",
 "wafv2:DisassociateWebACL",
 "wafv2:GetWebACLForResource"
],
 "Resource": "arn:aws:wafv2:*:123456789012:*/webacl/*/*"
 },
 {
 "Sid": "DisassociateWebACL1",
 "Effect": "Allow",
 "Action": "wafv2:DisassociateWebACL",
 "Resource": "*"
 },
 {
 "Sid": "DisassociateWebACL2",
 "Effect": "Allow",
 "Action": [

Amazon WAF Web ACLs 1004

https://docs.amazonaws.cn/waf/latest/developerguide/waf-api-permissions-ref.html

Amazon Cognito Developer Guide

 "cognito-idp:DisassociateWebACL"
],
 "Resource": [
 "arn:aws:cognito-idp:*:123456789012:userpool/*"
]
 }
]
}

Though you must grant IAM permissions, the listed actions are permission-only and don't
correspond to any API operation.

To activate Amazon WAF for your user pool and associate a web ACL

1. Sign in to the Amazon Cognito console .

2. In the navigation pane, choose User Pools, and choose the user pool you want to edit.

3. Choose the Amazon WAF tab in the Security section.

4. Choose Edit.

5. Select Use Amazon WAF with your user pool.

6. Choose an Amazon WAF Web ACL that you already created, or choose Create web ACL
in Amazon WAF to create one in a new Amazon WAF session in the Amazon Web Services
Management Console.

7. Choose Save changes.

Amazon WAF Web ACLs 1005

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

To programmatically associate a web ACL with your user pool in the Amazon Command Line
Interface or an SDK, use AssociateWebACL from the Amazon WAF API. Amazon Cognito doesn't
have a separate API operation that associates a web ACL.

Testing and logging Amazon WAF web ACLs

When you set a rule action to Count in your web ACL, Amazon WAF adds the request to a count
of requests that match the rule. To test a web ACL with your user pool, set rule actions to Count
and consider the volume of requests that match each rule. For example, if a rule that you want to
set to a Block action matches a large number of requests that you determine to be normal user
traffic, you might need to reconfigure your rule. For more information, see Testing and tuning your
Amazon WAF protections in the Amazon WAF Developer Guide.

You can also configure Amazon WAF to log request headers to an Amazon CloudWatch Logs log
group, an Amazon Simple Storage Service (Amazon S3) bucket, or an Amazon Data Firehose. You
can identify the Amazon Cognito requests that you make with the user pools API by the x-amzn-
cognito-client-id and x-amzn-cognito-operation-name. Managed login requests only
include the x-amzn-cognito-client-id header. For more information, see Logging web ACL
traffic in the Amazon WAF Developer Guide.

Amazon WAF web ACLs are available in all user pool feature plans. The security features of Amazon
WAF complement Amazon Cognito threat protection. You can activate both features in a user pool.
Amazon WAF bills separately for the inspection of user pool requests. For more information, see
Amazon WAF Pricing.

Logging Amazon WAF request data is subject to additional billing by the service where you target
your logs. For more information, see Pricing for logging web ACL traffic information in the Amazon
WAF Developer Guide.

User pool case sensitivity

Amazon Cognito user pools that you create in the Amazon Web Services Management Console
are case insensitive by default. When a user pool is case insensitive, user@example.com and
User@example.com refer to the same user. When usernames in a user pool are case insensitive, the
preferred_username and email attributes also are case insensitive.

To account for user pool case sensitivity settings, identify users in your app code based on an
alternative user attribute. Because the case of a username, preferred username, or email address
attribute can vary in different user profiles, refer instead to the sub attribute. You can also create

Case sensitivity 1006

https://docs.amazonaws.cn/waf/latest/APIReference/API_AssociateWebACL.html
https://docs.amazonaws.cn/waf/latest/developerguide/web-acl-testing.html
https://docs.amazonaws.cn/waf/latest/developerguide/web-acl-testing.html
https://docs.amazonaws.cn/waf/latest/developerguide/logging.html
https://docs.amazonaws.cn/waf/latest/developerguide/logging.html
https://www.amazonaws.cn/waf/pricing
https://docs.amazonaws.cn/waf/latest/developerguide/logging.html#logging-pricing

Amazon Cognito Developer Guide

an immutable custom attribute in your user pool, and assign your own unique identifier value to
the attribute in each new user profile. When you first create a user, you can write a value to the
immutable custom attribute that you created.

Note

Regardless of the case sensitivity settings of your user pool, Amazon Cognito requires
that a federated user from a SAML or OIDC identity provider (IdP) pass a unique and
case-sensitive NameId or sub claim. For more information about unique identifier case
sensitivity and SAML IdPs, see Implement SP-initated SAML sign-in.

Creating a case-sensitive user pool

If you create resources with the Amazon Command Line Interface (Amazon CLI) and API
operations such as CreateUserPool, you must set the Boolean CaseSensitive parameter
to false. This setting creates a case-insensitive user pool. If you do not specify a value,
CaseSensitive defaults to true. User pools that you create in the Amazon Cognito
console are note case-sensitive. To produce a case-sensitive user pool, you must use the
CreateUserPool operation. Before February 12, 2020, user pools defaulted to case sensitive
regardless of platform.

In the Sign-in menu of the Amazon Web Services Management Console and in the
UsernameConfiguration property of DescribeUserPool, you can review the case sensitivity
settings for each user pool in your account.

Migrating to a new user pool

Because of potential conflicts between user profiles, you can't change an Amazon Cognito
user pool from case-sensitive to case-insensitive. Instead, migrate your users to a new user
pool. You must build migration code to resolve case-related conflicts. This code must either
return a unique new user or reject the sign-in attempt when it detects a conflict. In a new case-
insensitive user pool, assign a Migrate user Lambda trigger. The Amazon Lambda function
can create users in the new case-insensitive user pool. When the user fails sign-in with the
case-insensitive user pool, the Lambda function finds and duplicates the user from the case-
sensitive user pool. You can also activate a migrate user Lambda trigger on ForgotPassword
events. Amazon Cognito passes user information and event metadata from the sign-in or
password-recovery action to your Lambda function. You can use event data to manage conflicts
between usernames and email addresses when your function creates the new user in your case-

Case sensitivity 1007

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UserPoolType.html#CognitoUserPools-Type-UserPoolType-UsernameConfiguration
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html

Amazon Cognito Developer Guide

insensitive user pool. These conflicts are between usernames and email addresses that would be
unique in a case-sensitive user pool, but identical in a case-insensitive user pool.

For more information about how to use a migrate user Lambda trigger between Amazon
Cognito user pools, see Migrating Users to Amazon Cognito user pools in the Amazon blog.

User pool deletion protection

To make it so that your administrators don't accidentally delete your user pool, activate deletion
protection. With deletion protection active, you must confirm that you want to delete your user
pool before you delete it. When you delete a user pool in the Amazon Web Services Management
Console, you can deactivate deletion protection at the same time. When you accept the prompt
to deactivate deletion protection and confirm your intention to delete, as shown in the following
image, Amazon Cognito deletes your user pool.

When you want to delete a user pool with an Amazon Cognito API request, you must first change
DeletionProtection to Inactive in an UpdateUserPool request. If you don't deactivate
deletion protection, Amazon Cognito returns an InvalidParameterException error. After you
deactivate deletion protection, you can delete the user pool in a DeleteUserPool request.

Deletion protection 1008

https://www.amazonaws.cn/blogs/mobile/migrating-users-to-amazon-cognito-user-pools/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPool.html

Amazon Cognito Developer Guide

Amazon Cognito activates Deletion protection by default when you create a new user pool
in the Amazon Web Services Management Console. When you create a user pool with the
CreateUserPool API, deletion protection is inactive by default. To use this feature in user pools
that you create with the Amazon CLI or an Amazon SDK, set the DeletionProtection parameter
to True.

You can activate or deactivate deletion protection status in the Deletion protection container in
the Settings menu in the Amazon Cognito console.

To configure deletion protection

1. Go to the Amazon Cognito console. You might be prompted for your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Settings menu and navigate to the Deletion Protection tab. Select Activate or
Deactivate.

5. Confirm your choice in the next dialogue.

Managing user existence error responses

Amazon Cognito supports customizing error responses returned by user pools. Custom error
responses are available for user creation and authentication, password recovery, and confirmation
operations.

Use the PreventUserExistenceErrors setting of a user pool app client to enable or
disable user existence related errors. When you create a new app client with the Amazon
Cognito user pools API, PreventUserExistenceErrors is LEGACY, or disabled, by default.
In the Amazon Cognito console, the option Prevent user existence errors —a setting of
ENABLED for PreventUserExistenceErrors—is selected by default. To update your
PreventUserExistenceErrors configuration, do one of the following:

• Change the value of PreventUserExistenceErrors between ENABLED and LEGACY in an
UpdateUserPoolClient API request.

• Edit your app client in the Amazon Cognito console and change the state of Prevent user
existence errors between selected (ENABLED) and deselected (LEGACY).

Managing user disclosure 1009

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

When this property has a value of LEGACY, your app client returns a UserNotFoundException
error response when a user attempts to sign in with a username that doesn't exist in your user pool.

When this property has a value of ENABLED, your app client doesn't disclose the
nonexistence of a user account in your user pool with a UserNotFoundException error. A
PreventUserExistenceErrors configuration of ENABLED has the following effects when you
submit a request for a username that doesn't exist:

• Amazon Cognito responds with nonspecific information to API requests where its response might
otherwise disclose that a valid user exists.

• Amazon Cognito returns a generic authentication failure response to forgot-password requests,
and to authentication requests with authentication flows except for choice-based authentication
(USER_AUTH)—for example, USER_SRP_AUTH or CUSTOM_AUTH. The error response tells you the
user name or password is incorrect.

• Amazon Cognito responds to requests for choice-based authentication with a random selection
from the challenge types allowed for the user pool. Your user pool might return a passkey, one-
time password, or password challenge.

• Amazon Cognito account confirmation and password recovery APIs return a response indicating
a code was sent to a simulated delivery medium, instead of a partial representation of a user's
contact information.

The following information details the behaviors of user pool operations when
PreventUserExistenceErrors is set to ENABLED.

Authentication and user creation operations

You can configure error responses in username-password, and Secure Remote Password (SRP)
authentication. You can also customize the errors that you return with custom authentication.
Choice-based authentication is unaffected by your PreventUserExistenceErrors
configuration.

User-existence disclosure details in authentication flows

Choice-based authentication

In the USER_AUTH choice-based authentication flow, Amazon Cognito returns a challenge
from the primary authentication factors that are available, depending on your user pool
configuration and users' attributes. This authentication flow can return password, secure

Managing user disclosure 1010

Amazon Cognito Developer Guide

remote password (SRP), WebAuthn (passkey), SMS one-time password (OTP), or email OTP
challenges. With PreventUserExistenceErrors active, Amazon Cognito issues a challenge
to nonexistent users to complete one or more of the available forms of authentication.
With PreventUserExistenceErrors inactive, Amazon Cognito returns a UserNotFound
exception.

Username and password authentication

The authentication flows ADMIN_USER_PASSWORD_AUTH, USER_PASSWORD_AUTH,
and the PASSWORD flow of USER_AUTH return a NotAuthorizedException with the
message Incorrect username or password when PreventUserExistenceErrors
is active. When PreventUserExistenceErrors is inactive, these flows return
UserNotFoundException.

Secure Remote Password (SRP) based authentication

As a best practice, only implement PreventUserExistenceErrors with USER_SRP_AUTH or
the PASSWORD_SRP flow of USER_AUTH in user pools without email address, phone number,
or preferred username alias attributes. Users with alias attributes might not be subject to user-
existence suppression in the SRP authentication flow. Username-password authentication flows
—ADMIN_USER_PASSWORD_AUTH, USER_PASSWORD_AUTH, and the USER_AUTH PASSWORD
challenge—fully suppress the existence of users from alias attributes.

When someone attempts SRP sign-in with a username that isn't known to your app
client, Amazon Cognito returns a simulated response in the first step as described
in RFC 5054. Amazon Cognito returns the same salt and an internal user ID in
UUID format for the same username and user pool combination. When you send a
RespondToAuthChallenge API request with proof of password, Amazon Cognito returns a
generic NotAuthorizedException error when either username or password is incorrect. For
more information about implementation of SRP authentication, see Sign-in with persistent
passwords and secure payload.

Note

You can simulate a generic response with username and password authentication if
you are using verification-based alias attributes, and the immutable username isn't
formatted as a UUID.

Managing user disclosure 1011

https://tools.ietf.org/html/rfc5054#section-2.5.1.3

Amazon Cognito Developer Guide

Custom authentication challenge Lambda trigger

Amazon Cognito invokes the custom authentication challenge Lambda triggers when users
attempt to sign in with the CUSTOM_AUTH authentication flow, but their username isn't found.
The input event includes a boolean parameter named UserNotFound with a value of true for
any nonexistent user. This parameter appears in the request events that your user pool sends
to the create, define, and verify auth challenge Lambda functions that make up the custom-
authentication architecture. When you examine this indicator in the logic of your Lambda
function, you can simulate custom authentication challenges for a user that doesn't exist.

Pre authentication Lambda trigger

Amazon Cognito invokes the pre authentication trigger when users attempt to sign in but their
username isn't found. The input event includes a UserNotFound parameter with a value of
true for any nonexistent user.

The following list describes the effect of PreventUserExistenceErrors on user account
creation.

User-existence disclosure details in user creation flows

SignUp

The SignUp operation always returns UsernameExistsException when a username is
already taken. If you don't want Amazon Cognito to return a UsernameExistsException
error for email addresses and phone numbers when you sign up users in your app, use
verification-based alias attributes. For more information about aliases, see Customizing sign-in
attributes.

For an example of how Amazon Cognito can prevent the use of SignUp API requests to discover
users in your user pool, see Preventing UsernameExistsException errors for email addresses
and phone numbers on sign-up.

Imported users

If PreventUserExistenceErrors is enabled, during authentication of imported users
a generic NotAuthorizedException error is returned indicating either the username or
password was incorrect instead of returning PasswordResetRequiredException. See
Requiring imported users to reset their passwords for more information.

Managing user disclosure 1012

Amazon Cognito Developer Guide

Migrate user Lambda trigger

Amazon Cognito returns a simulated response for users that don't exist when an empty
response was set in the original event context by the Lambda trigger. For more information, see
Importing users with a user migration Lambda trigger.

Preventing UsernameExistsException errors for email addresses and phone numbers on
sign-up

The following example demonstrates how, when you configure alias attributes in your
user pool, you can keep duplicate email addresses and phone numbers from generating
UsernameExistsException errors in response to SignUp API requests. You must have created
your user pool with email address or phone number as an alias attribute. For more information, see
the Customizing sign-in attributes section of User pool attributes.

1. Jie signs up for a new username, and also provides the email address jie@example.com.
Amazon Cognito sends a code to their email address.

Example Amazon CLI command

aws cognito-idp sign-up --client-id 1234567890abcdef0 --username jie --password
 PASSWORD --user-attributes Name="email",Value="jie@example.com"

Example response

{
 "UserConfirmed": false,
 "UserSub": "<subId>",
 "CodeDeliveryDetails": {
 "AttributeName": "email",
 "Destination": "j****@e****",
 "DeliveryMedium": "EMAIL"
 }
}

2. Jie provides the code sent to them to confirm their ownership of the email address. This
completes their registration as a user.

Example Amazon CLI command

Managing user disclosure 1013

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html#user-pool-settings-aliases

Amazon Cognito Developer Guide

aws cognito-idp confirm-sign-up --client-id 1234567890abcdef0 --username=jie --
confirmation-code xxxxxx

3. Shirley registers a new user account and provides the email address jie@example.com.
Amazon Cognito doesn't return a UsernameExistsException error, and sends a confirmation
code to Jie's email address.

Example Amazon CLI command

aws cognito-idp sign-up --client-id 1234567890abcdef0 --username shirley --password
 PASSWORD --user-attributes Name="email",Value="jie@example.com"

Example response

{
 "UserConfirmed": false,
 "UserSub": "<new subId>",
 "CodeDeliveryDetails": {
 "AttributeName": "email",
 "Destination": "j****@e****",
 "DeliveryMedium": "EMAIL"
 }
}

4. In a different scenario, Shirley has ownership of jie@example.com. Shirley retrieves the code
that Amazon Cognito sent to Jie's email address and attempts to confirm the account.

Example Amazon CLI command

aws cognito-idp confirm-sign-up --client-id 1234567890abcdef0 --username=shirley --
confirmation-code xxxxxx

Example response

An error occurred (AliasExistsException) when calling the ConfirmSignUp operation: An
 account with the email already exists.

Managing user disclosure 1014

Amazon Cognito Developer Guide

Amazon Cognito doesn't return an error to Shirley's aws cognito-idp sign-up request, despite
jie@example.com being assigned to an existing user. Shirley must demonstrate ownership of
the email address before Amazon Cognito returns an error response. In a user pool with alias
attributes, this behavior prevents use of the public SignUp API to check whether a user exists with
a given email address or phone number.

This behavior is different from the response that Amazon Cognito returns to SignUp request with
an existing username, as shown in the following example. While Shirley learns from this response
that a user already exists with the username jie, they don't learn about any email addresses or
phone numbers associated with the user.

Example CLI command

aws cognito-idp sign-up --client-id 1example23456789 --username jie --password PASSWORD
 --user-attributes Name="email",Value="shirley@example.com"

Example response

An error occurred (UsernameExistsException) when calling the SignUp operation: User
 already exists

Password reset operations

Amazon Cognito returns the following responses to user password reset operations when you
prevent user existence errors.

ForgotPassword

When a user isn't found, is deactivated, or doesn't have a verified delivery mechanism to recover
their password, Amazon Cognito returns CodeDeliveryDetails with a simulated delivery
medium for a user. The simulated delivery medium is determined by the input username format
and verification settings of the user pool.

ConfirmForgotPassword

Amazon Cognito returns the CodeMismatchException error for users that don't exist or are
disabled. If a code isn't requested when using ForgotPassword, Amazon Cognito returns the
ExpiredCodeException error.

Managing user disclosure 1015

Amazon Cognito Developer Guide

Confirmation operations

Amazon Cognito returns the following responses to user confirmation and verification operations
when you prevent user existence errors.

ResendConfirmationCode

Amazon Cognito returns CodeDeliveryDetails for a disabled user or a user that doesn't
exist. Amazon Cognito sends a confirmation code to the existing user's email or phone number.

ConfirmSignUp

ExpiredCodeException returns if a code has expired. Amazon Cognito returns
NotAuthorizedException when a user isn't authorized. If the code doesn't match what the
server expects Amazon Cognito returns CodeMismatchException.

User pool endpoints and managed login reference

Amazon Cognito has two models of user pool authentication: with the user pools API and with the
OAuth 2.0 authorization server. Use the API when you want to retrieve OpenID Connect (OIDC)
tokens with an Amazon SDK in your application back end. Use the authorization server when you
want to implement your user pool as an OIDC provider. The authorization server adds features like
federated sign-in, API and M2M authorization with access token scopes, and managed login. You
can use the API and OIDC models each on their own or together, configured at the user pool level
or at the app client level. This section is a reference for the implementation of the OIDC model.
For more information about the two authentication models, see Understanding API, OIDC, and
managed login pages authentication.

Amazon Cognito activates the public webpages listed here when you assign a domain to your user
pool. Your domain serves as a central access point for all of your app clients. They include managed
login, where your users can sign up and sign in (Login endpoint), and sign out (Logout endpoint).
For more information about these resources, see User pool managed login.

These pages also include the public web resources that allow your user pool to communicate with
third-party SAML, OpenID Connect (OIDC) and OAuth 2.0 identity providers (IdPs). To sign in a user
with a federated identity provider, your users must initiate a request to the interactive managed
login Login endpoint or the OIDC Authorize endpoint. The Authorize endpoint redirects your users
either to your managed login pages or your IdP sign-in page.

User pool endpoints reference 1016

Amazon Cognito Developer Guide

Your app can also sign in local users with the Amazon Cognito user pools API. A local user exists
exclusively in your user pool directory without federation through an external IdP.

In addition to managed login, Amazon Cognito integrates with SDKs for Android, iOS, JavaScript,
and more. The SDKs provide tools to perform user pool API operations with Amazon Cognito API
service endpoints. For more information about service endpoints, see Amazon Cognito Identity
endpoints and quotas.

Warning

Don't pin the end-entity or intermediate Transport Layer Security (TLS) certificates for
Amazon Cognito domains. Amazon manages all certificates for all of your user pool
endpoints and prefix domains. The certificate authorities (CAs) in the chain of trust that
supports Amazon Cognito certificates dynamically rotate and renew. When you pin your
app to an intermediate or leaf certificate, your app can fail without notice when Amazon
rotates certificates.
Instead, pin your application to all available Amazon root certificates. For more
information, see best practices and recommendations at Certificate pinning in the Amazon
Certificate Manager User Guide.

Topics

• User-interactive managed login and classic hosted UI endpoints

• Identity provider and relying party endpoints

• OAuth 2.0 grants

• Using PKCE in authorization code grants

• Managed login and federation error responses

User-interactive managed login and classic hosted UI endpoints

Amazon Cognito activates the managed login endpoints in this section when you add a domain
to your user pool. They are webpages where your users can complete the core authentication
operations of a user pool. They include pages for password management, multi-factor
authentication (MFA), and attribute verification.

The webpages that make up managed login are a front-end web application for interactive user
sessions with your customers. Your app must invoke managed login in your users' browsers.

Managed login endpoints 1017

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://docs.amazonaws.cn/general/latest/gr/cognito_identity.html
https://www.amazontrust.com/repository/
https://docs.amazonaws.cn/acm/latest/userguide/acm-bestpractices.html#best-practices-pinning

Amazon Cognito Developer Guide

Amazon Cognito doesn't support programmatic access to the webpages in this chapter. Those
federation endpoints in the Identity provider and relying party endpoints that return a JSON
response can be queried directly in your app code. The Authorize endpoint redirects either to
managed login or to an IdP sign-in page and also must be opened in users' browsers.

All user pool endpoints accept traffic from IPv4 and IPv6 source IP addresses.

The topics in this guide describe frequently-used managed login and classic hosted UI endpoints in
detail. The difference between managed login and the hosted UI is visible, not functional. Except
for /passkeys/add, all paths are shared between the two versions of managed login branding.

Amazon Cognito makes the webpages that follow available when you assign a domain to your user
pool.

Managed login endpoints

Endpoint URL Description How it's accessed

https://Your user pool
domain/login

Signs in user pool local and
federated users.

Redirect from endpoints
like Authorize endpoint, /
logout, and /confirmf
orgotPassword . See
Login endpoint.

https://Your user pool
domain/logout

Signs out user pool users. Direct link. See Logout
endpoint.

https://Your user pool
domain/confirmUser

Confirms users who have
selected an email link to
verify their user account.

User selected link in an email
message.

https://Your user pool
domain/signup

Signs up a new user. The /
login page directs your user
to /signup when they select
Sign up.

Direct link with same
parameters as /oauth2/a
uthorize .

https://Your user pool
domain/confirm

After your user pool sends a
confirmation code to a user
who signed up, prompts your
user for the code.

Redirect-only from /signup.

Managed login endpoints 1018

Amazon Cognito Developer Guide

Endpoint URL Description How it's accessed

https://Your user pool
domain/forgotPassword

Prompts your user for their
user name and sends a
password-reset code. The
/login page directs your
user to /forgotPassword
when they select Forgot your
password?.

1. From Forgot password link
at /login.

2. Direct link with same
parameters as /oauth2/a
uthorize .

https://Your user pool
domain/confirmforgotPass
word

Prompts your user for their
password-reset code and
a new password. The /
forgotPassword page
directs your user to /
confirmforgotPass
word when they select Reset
your password.

Redirect-only from /
forgotPassword .

https://Your user pool
domain/resendcode

Sends a new confirmation
code to a user who has signed
up in your user pool.

Redirect-only from Send a
new code link at /confirm.

https://Your user pool
domain/passkeys/add

Registers a new passkey. Only
available in managed login.

• In the sign-up flow after
confirmation in app clients
that support passkey
authentication.

• Direct link with same
parameters as /oauth2/a
uthorize .

Topics

• The managed login sign-in endpoint: /login

• The managed login sign-out endpoint: /logout

Managed login endpoints 1019

Amazon Cognito Developer Guide

The managed login sign-in endpoint: /login

The login endpoint is an authentication server and a redirect destination from Authorize endpoint.
It's the entry point to managed login when you don't specify an identity provider. When you
generate a redirect to the login endpoint, it loads the login page and presents the authentication
options configured for the client to the user.

Note

The login endpoint is a component of managed login. In your app, invoke federation and
managed login pages that redirect to the login endpoint. Direct access by users to the login
endpoint isn't a best practice.

GET /login

The /login endpoint only supports HTTPS GET for your user's initial request. Your app invokes
the page in a browser like Chrome or Firefox. When you redirect to /login from the Authorize
endpoint, it passes along all the parameters that you provided in your initial request. The login
endpoint supports all the request parameters of the authorize endpoint. You can also access
the login endpoint directly. As a best practice, originate all your users' sessions at /oauth2/
authorize.

Example – prompt the user to sign in

This example displays the login screen.

GET https://mydomain.auth.us-east-1.amazoncognito.com/login?
 response_type=code&
 client_id=ad398u21ijw3s9w3939&
 redirect_uri=https://YOUR_APP/redirect_uri&
 state=STATE&
 scope=openid+profile+aws.cognito.signin.user.admin

Example – response

The authentication server redirects to your app with the authorization code and state. The server
must return the code and state in the query string parameters and not in the fragment.

Managed login endpoints 1020

Amazon Cognito Developer Guide

HTTP/1.1 302 Found
 Location: https://YOUR_APP/redirect_uri?
code=AUTHORIZATION_CODE&state=STATE

User-initiated sign-in request

After your user loads the /login endpoint, they can enter a user name and password and choose
Sign in. When they do this, they generate an HTTPS POST request with the same header request
parameters as the GET request, and a request body with their username, password, and a device
fingerprint.

The managed login sign-out endpoint: /logout

The /logout endpoint is a redirection endpoint. It signs out the user and redirects either to an
authorized sign-out URL for your app client, or to the /login endpoint. The available parameters
in a GET request to the /logout endpoint are tailored to Amazon Cognito managed login use
cases.

The logout endpoint is a front-end web application for interactive user sessions with your
customers. Your app must invoke this and other managed login endpoints in your users' browsers.

To redirect your user to managed login to sign in again, add a redirect_uri parameter to your
request. A logout request with a redirect_uri parameter must also include parameters for
your subsequent request to the Login endpoint, like client_id, response_type, and scope.

To redirect your user to a page that you choose, add Allowed sign-out URLs to your app client. In
your users' requests to the logout endpoint, add logout_uri and client_id parameters. If the
value of logout_uri is one of the Allowed sign-out URLs for your app client, Amazon Cognito
redirects users to that URL.

With single logout (SLO) for SAML 2.0 IdPs, Amazon Cognito first redirects your user to the SLO
endpoint you defined in your IdP configuration. After your IdP redirects your user back to saml2/
logout, Amazon Cognito responds with one more redirect to the redirect_uri or logout_uri
from your request. For more information, see Signing out SAML users with single sign-out.

The logout endpoint doesn't sign users out of OIDC or social identity providers (IdPs). To sign users
out from their session with an external IdP, direct them to the sign-out page for that provider.

Managed login endpoints 1021

Amazon Cognito Developer Guide

GET /logout

The /logout endpoint only supports HTTPS GET. The user pool client typically makes this request
through the system browser. The browser is typically Custom Chrome Tab in Android or Safari View
Control in iOS.

Request parameters

client_id

The app client ID for your app. To get an app client ID, you must register the app in the user
pool. For more information, see Application-specific settings with app clients.

Required.

logout_uri

Redirect your user to a custom sign-out page with a logout_uri parameter. Set its value to the
app client sign-out URL where you want to redirect your user after they sign out. Use logout_uri
only with a client_id parameter. For more information, see Application-specific settings with app
clients.

You can also use the logout_uri parameter to redirect your user to the sign-in page for another
app client. Set the sign-in page for the other app client as an Allowed callback URL in your app
client. In your request to the /logout endpoint, set the value of the logout_uri parameter to
the URL-encoded sign-in page.

Amazon Cognito requires either a logout_uri or a redirect_uri parameter in your request to the
/logout endpoint. A logout_uri parameter redirects your user to another website. If both
logout_uri and redirect_uri parameters are included in your request to the /logout endpoint,
Amazon Cognito will utilize the logout_uri parameter exclusively, overriding the redirect_uri
parameter.

nonce

(Optional) A random value that you can add to the request. The nonce value that you provide is
included in the ID token that Amazon Cognito issues. To guard against replay attacks, your app
can inspect the nonce claim in the ID token and compare it to the one you generated. For more
information about the nonce claim, see ID token validation in the OpenID Connect standard.

Managed login endpoints 1022

https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

Amazon Cognito Developer Guide

redirect_uri

Redirect your user to your sign-in page to authenticate with a redirect_uri parameter. Set its
value to the app client Allowed callback URL where you want to redirect your user after they
sign in again. Add client_id, scope, state, and response_type parameters that you want to pass to
your /login endpoint.

Amazon Cognito requires either a logout_uri or a redirect_uri parameter in your request to
the /logout endpoint. To redirect your user to your /login endpoint to reauthenticate
and pass tokens to your app, add a redirect_uri parameter. If both logout_uri and redirect_uri
parameters are included in your request to the /logout endpoint, Amazon Cognito overrides
the redirect_uri parameter and processes the logout_uri parameter exclusively.

response_type

The OAuth 2.0 response that you want to receive from Amazon Cognito after your user signs in.
code and token are the valid values for the response_type parameter.

Required if you use a redirect_uri parameter.

state

When your application adds a state parameter to a request, Amazon Cognito returns its value to
your app when the /oauth2/logout endpoint redirects your user.

Add this value to your requests to guard against CSRF attacks.

You can't set the value of a state parameter to a URL-encoded JSON string. To pass a string
that matches this format in a state parameter, encode the string to base64, then decode it in
your application.

Strongly recommended if you use a redirect_uri parameter.

scope

The OAuth 2.0 scopes that you want to request from Amazon Cognito after you sign them out
with a redirect_uri parameter. Amazon Cognito redirects your user to the /login endpoint with
the scope parameter in your request to the /logout endpoint.

Optional if you use a redirect_uri parameter. If you don't include a scope parameter, Amazon
Cognito redirects your user to the /login endpoint with a scope parameter. When Amazon

Managed login endpoints 1023

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Amazon Cognito Developer Guide

Cognito redirects your user and automatically populates scope, the parameter includes all
authorized scopes for your app client.

Example requests

Example – log out and redirect user to client

Amazon Cognito redirects user sessions to the URL in the value of logout_uri, ignoring all other
request parameters, when requests include logout_uri and client_id. This URL must be an
authorized sign-out URL for the app client.

The following is an example request for sign-out and redirect to https://www.example.com/
welcome.

GET https://mydomain.auth.us-east-1.amazoncognito.com/logout?
 client_id=1example23456789&
 logout_uri=https%3A%2F%2Fwww.example.com%2Fwelcome

Example – log out and prompt the user to sign in as another user

When requests omit logout_uri but otherwise provide the parameters that make up a well-
formed request to the authorize endpoint, Amazon Cognito redirects users to managed login
sign-in. The logout endpoint appends the parameters in your original request to the redirect
destination.

The additional parameters that you add to the logout request must be in the list at Request
parameters. For example, the logout endpoint doesn't support automatic IdP redirect with
identity_provider or idp_identifier parameters. The parameter redirect_uri in a
request to the logout endpoint is not a sign-out URL, but a post-sign-in URL that you want to pass
through to the authorize endpoint.

The following is an example request that signs a user out, redirects to the sign-in page, and
provides an authorization code to https://www.example.com after sign-in.

GET https://mydomain.auth.us-east-1.amazoncognito.com/logout?
 response_type=code&
 client_id=1example23456789&
 redirect_uri=https%3A%2F%2Fwww.example.com&
 state=example-state-value&

Managed login endpoints 1024

Amazon Cognito Developer Guide

 nonce=example-nonce-value&
 scope=openid+profile+aws.cognito.signin.user.admin

Identity provider and relying party endpoints

Federation endpoints are user pool endpoints serve a purpose for one of the authentication
standards used by user pools. They include SAML ACS URLs, OIDC discovery endpoints, and service
endpoints for user pool roles both as identity provider and relying party. Federation endpoints
initiate authentication flows, receive proof of authentication from IdPs, and issue tokens to clients.
They interact with IdPs, applications, and administrators, but not with users.

The full-page topics after this page have details about the OAuth 2.0 and OIDC provider endpoints
that become available when you add a domain to your user pool. The following chart is a list of all
federation endpoints.

Examples of user pool domains are:

1. Prefix domain: mydomain.auth.us-east-1.amazoncognito.com

2. Custom domain: auth.example.com

User pool federation endpoints

Endpoint URL Description How it's accessed

https://Your user pool
domain/oauth2/authorize

Redirects a user to either
managed login or to sign in
with their IdP.

Invoked in customer browser
to begin user authentication.
See Authorize endpoint.

https://Your user pool
domain/oauth2/token

Returns tokens based on an
authorization code or client
credentials request.

Requested by app to retrieve
tokens. See Token endpoint.

https://Your user pool
domain/oauth2/userInfo

Returns user attributes based
on OAuth 2.0 scopes and user
identity in an access token.

Requested by app to retrieve
user profile. See userInfo
endpoint.

https://Your user pool
domain/oauth2/revoke

Revokes a refresh token and
the associated access tokens.

Requested by app to revoke a
token. See Revoke endpoint.

Federation endpoints 1025

Amazon Cognito Developer Guide

Endpoint URL Description How it's accessed

https://cognito-id
p.Region.amazonaw
s.com/your user pool
ID/.well-known/openid-
configuration

A directory of the OIDC
architecture of your user pool.

Requested by app to locate
user pool issuer metadata.

https://cognito-id
p.Region.amazonaw
s.com/your user pool
ID/.well-known/jwks.json

Public keys that you can use
to validate Amazon Cognito
tokens.

Requested by app to verify
JWTs.

https://Your user pool
domain/oauth2/idpresponse

Social identity providers must
redirect your users to this
endpoint with an authoriza
tion code. Amazon Cognito
redeems the code for a token
when it authenticates your
federated user.

Redirected from OIDC IdP
sign-in as the IdP client
callback URL.

https://Your user pool
domain/saml2/idpresponse

The Assertion Consumer
Response (ACS) URL for
integration with SAML 2.0
identity providers.

Redirected from SAML 2.0
IdP as the ACS URL, or the
origination point for IdP-initi

ated sign-in1.

https://Your user pool
domain/saml2/logout

The Single Logout (SLO) URL
for integration with SAML 2.0
identity providers.

Redirected from SAML 2.0
IdP as the single logout (SLO)
URL. Accepts POST binding
only.

1 For more information about IdP-initiated SAML sign-in, see Implement IdP-initiated SAML sign-in.

For more information on the OpenID Connect and OAuth standards, see OpenID Connect 1.0 and
OAuth 2.0.

Topics

Federation endpoints 1026

http://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6749

Amazon Cognito Developer Guide

• The redirect and authorization endpoint

• The token issuer endpoint

• The user attributes endpoint

• The token revocation endpoint

• The IdP SAML assertion endpoint

The redirect and authorization endpoint

The /oauth2/authorize endpoint is a redirection endpoint that supports two redirect
destinations. If you include an identity_provider or idp_identifier parameter in the URL,
it silently redirects your user to the sign-in page for that identity provider (IdP). Otherwise, it
redirects to the Login endpoint with the same URL parameters that you included in your request.

The authorize endpoint redirects either to managed login or to an IdP sign-in page. The destination
of a user session at this endpoint is a webpage that your user must interact with directly in their
browser.

To use the authorize endpoint, invoke your user's browser at /oauth2/authorize with
parameters that provide your user pool with information about the following user pool details.

• The app client that you want to sign in to.

• The callback URL that you want to end up at.

• The OAuth 2.0 scopes that you want to request in your user's access token.

• Optionally, the third-party IdP that you want to use to sign in.

You can also supply state and nonce parameters that Amazon Cognito uses to validate incoming
claims.

GET /oauth2/authorize

The /oauth2/authorize endpoint only supports HTTPS GET. Your app typically initiates this
request in your user's browser. You can only make requests to the /oauth2/authorize endpoint
over HTTPS.

You can learn more about the definition of the authorization endpoint in the OpenID Connect
(OIDC) standard at Authorization Endpoint.

Federation endpoints 1027

http://openid.net/specs/openid-connect-core-1_0.html#ImplicitAuthorizationEndpoint

Amazon Cognito Developer Guide

Request parameters

response_type

Required.

The response type. Must be code or token.

A successful request with a response_type of code returns an authorization code grant.
An authorization code grant is a code parameter that Amazon Cognito appends to your
redirect URL. Your app can exchange the code with the Token endpoint for access, ID, and
refresh tokens. As a security best practice, and to receive refresh tokens for your users, use an
authorization code grant in your app.

A successful request with a response_type of token returns an implicit grant. An implicit
grant is an ID and access token that Amazon Cognito appends to your redirect URL. An implicit
grant is less secure because it exposes tokens and potential identifying information to users.
You can deactivate support for implicit grants in the configuration of your app client.

client_id

Required.

The app client ID.

The value of client_id must be the ID of an app client in the user pool where you make the
request. Your app client must support sign-in by Amazon Cognito local users or at least one
third-party IdP.

redirect_uri

Required.

The URL where the authentication server redirects the browser after Amazon Cognito
authorizes the user.

A redirect uniform resource identifier (URI) must have the following attributes:

• It must be an absolute URI.

• You must have pre-registered the URI with a client.

• It can't include a fragment component.

See OAuth 2.0 - Redirection Endpoint.

Federation endpoints 1028

https://tools.ietf.org/html/rfc6749#section-3.1.2

Amazon Cognito Developer Guide

Amazon Cognito requires that your redirect URI use HTTPS, except for http://localhost,
which you can set as a callback URL for testing purposes.

Amazon Cognito also supports app callback URLs such as myapp://example.

state

Optional, recommended.

When your app adds a state parameter to a request, Amazon Cognito returns its value to your
app when the /oauth2/authorize endpoint redirects your user.

Add this value to your requests to guard against CSRF attacks.

You can't set the value of a state parameter to a URL-encoded JSON string. To pass a string
that matches this format in a state parameter, encode the string to base64, then decode it in
your app.

identity_provider

Optional.

Add this parameter to bypass managed login and redirect your user to a provider sign-in page.
The value of the identity_provider parameter is the name of the identity provider (IdP) as it
appears in your user pool.

• For social providers, you can use the identity_provider values Facebook, Google,
LoginWithAmazon, and SignInWithApple.

• For Amazon Cognito user pools, use the value COGNITO.

• For SAML 2.0 and OpenID Connect (OIDC) identity providers (IdPs), use the name that you
assigned to the IdP in your user pool.

idp_identifier

Optional.

Add this parameter to redirect to a provider with an alternative name for the identity_provider
name. You can enter identifiers for your SAML 2.0 and OIDC IdPs from the Social and external
providers menu of the Amazon Cognito console.

scope

Optional.

Federation endpoints 1029

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Amazon Cognito Developer Guide

Can be a combination of any system-reserved scopes or custom scopes that are associated
with a client. Scopes must be separated by spaces. System reserved scopes are openid,
email, phone, profile, and aws.cognito.signin.user.admin. Any scope used must be
associated with the client, or it will be ignored at runtime.

If the client doesn't request any scopes, the authentication server uses all scopes that are
associated with the client.

An ID token is only returned if openid scope is requested. The access token can be only
used against Amazon Cognito user pools if aws.cognito.signin.user.admin scope is
requested. The phone, email, and profile scopes can only be requested if openid scope is
also requested. These scopes dictate the claims that go inside the ID token.

code_challenge_method

Optional.

The hashing protocol that you used to generate the challenge. The PKCE RFC defines two
methods, S256 and plain; however, Amazon Cognito authentication server supports only S256.

code_challenge

Optional.

The proof of key code exchange (PKCE) challenge that you generated from the
code_verifier. For more information, see Using PKCE in authorization code grants.

Required only when you specify a code_challenge_method parameter.

nonce

Optional.

A random value that you can add to the request. The nonce value that you provide is included in
the ID token that Amazon Cognito issues. To guard against replay attacks, your app can inspect
the nonce claim in the ID token and compare it to the one you generated. For more information
about the nonce claim, see ID token validation in the OpenID Connect standard.

lang

Optional.

The language that you want to display user-interactive pages in. Managed login pages can
be localized, but hosted UI (classic) pages can't. For more information, see Managed login
localization.

Federation endpoints 1030

https://tools.ietf.org/html/rfc7636
https://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

Amazon Cognito Developer Guide

login_hint

Optional.

A username prompt that you want to pass to the authorization server. You can collect a
username, email address or phone number from your user and allow the destination provider
to pre-populate the user's sign-in name. When you submit a login_hint parameter and no
idp_identifier or identity_provider parameters to the oauth2/authorize endpoint,
managed login fills the username field with your hint value. You can also pass this parameter to
the Login endpoint and automatically fill the username value.

When your authorization request invokes a redirect to OIDC IdPs or Google, Amazon Cognito
adds a login_hint parameter to the request to that third-party authorizer. You can't forward
login hints to SAML, Apple, Login With Amazon, or Facebook (Meta) IdPs.

prompt

Optional.

An OIDC parameter that controls authentication behavior for existing sessions. Available in the
managed login branding version only, not in the classic hosted UI. For more information from
the OIDC specification, see Authentication request. The values none and login have an effect
on user pool authentication behavior.

Amazon Cognito forwards all values of prompt except none to your IdPs when users select
authentication with third-party providers. This is true when the URL that users access includes
an identity_provider or idp_identifier parameter, or when the authorization server
redirects them to the Login endpoint and they select and IdP from the available buttons.

Prompt parameter values

prompt=none

Amazon Cognito silently continues authentication for users who have a valid authenticated
session. With this prompt, users can silently authenticate between different app clients in
your user pool. If the user is not already authenticated, the authorization server returns a
login_required error.

prompt=login

Amazon Cognito requires users to re-authenticate even if they have an existing session. Send
this value when you want to verify the user's identity again. Authenticated users who have
an existing session can return to sign-in without invalidating that session. When a user who

Federation endpoints 1031

https://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Amazon Cognito Developer Guide

has an existing session signs in again, Amazon Cognito assigns them a new session cookie.
This parameter can also be forwarded to your IdPs. IdPs that accept this parameter also
request a new authentication attempt from the user.

prompt=select_account

This value has no effect on local sign-in and must be submitted in requests that
redirect to IdPs. When included in your authorization request, this parameter adds
prompt=select_account to the URL path for the IdP redirect destination. When IdPs
support this parameter, they request that users select the account that they want to log in
with.

prompt=consent

This value has no effect on local sign-in and must be submitted in requests that redirect to
IdPs. When included in your authorization request, this parameter adds prompt=consent
to the URL path for the IdP redirect destination. When IdPs support this parameter, they
request user consent before they redirect back to your user pool.

When you omit the prompt parameter from your request, managed login follows the default
behavior: users must sign in unless their browser has a valid managed login session cookie.
You can combine multiple values for prompt with a space-character delimiter, for example
prompt=login consent.

Example: authorization code grant

This is an example request for an authorization code grant.

The following request initiates a session to retrieve an authorization code that your user passes to
your app at the redirect_uri destination. This session requests scopes for user attributes and
for access to Amazon Cognito self-service API operations.

GET https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&
client_id=1example23456789&
redirect_uri=https://www.example.com&
state=abcdefg&
scope=openid+profile+aws.cognito.signin.user.admin

The Amazon Cognito authentication server redirects back to your app with the authorization code
and state. The authorization code is valid for five minutes.

Federation endpoints 1032

Amazon Cognito Developer Guide

HTTP/1.1 302 Found
Location: https://www.example.com?code=a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111&state=abcdefg

Example: authorization code grant with PKCE

This example flow performs an authorization code grant with PKCE.

This request adds a code_challenge parameter. To complete the exchange of a code for a
token, you must include the code_verifier parameter in your request to the /oauth2/token
endpoint.

GET https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&
client_id=1example23456789&
redirect_uri=https://www.example.com&
state=abcdefg&
scope=aws.cognito.signin.user.admin&
code_challenge_method=S256&
code_challenge=a1b2c3d4...

The authorization server redirects back to your application with the authorization code and state.
Your application processes the authorization code and exchanges it for tokens.

HTTP/1.1 302 Found
Location: https://www.example.com?code=a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111&state=abcdefg

Example: require re-authentication with prompt=login

The following request adds a prompt=login parameter that requires the user to authenticate
again, even if they have an existing session.

GET https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&
client_id=1example23456789&
redirect_uri=https://www.example.com&
state=abcdefg&
scope=openid+profile+aws.cognito.signin.user.admin&
prompt=login

Federation endpoints 1033

Amazon Cognito Developer Guide

The authorization server redirects to the login endpoint, requiring re-authentication.

HTTP/1.1 302 Found Location: https://mydomain.auth.us-east-1.amazoncognito.com/
login?response_type=code&client_id=1example23456789&redirect_uri=https://
www.example.com&state=abcdefg&scope=openid+profile
+aws.cognito.signin.user.admin&prompt=login

Example: silent authentication with prompt=none

The following request adds a prompt=none parameter that silently checks if the user has a valid
session.

GET https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&
client_id=1example23456789&
redirect_uri=https://www.example.com&
state=abcdefg&
scope=openid+profile+aws.cognito.signin.user.admin&
prompt=none

When no valid session exists, the authorization server returns an error to the redirect URI

HTTP/1.1 302 Found Location: https://www.example.com?error=login_required&state=abcdefg

When a valid session exists, the authorization server returns an authorization code.

HTTP/1.1 302 Found Location: https://www.example.com?
code=AUTHORIZATION_CODE&state=abcdefg

Example: Token (implicit) grant without openid scope

This example flow generates an implicit grant and returns JWTs directly to the user's session.

The request is for an implicit grant from your authorization server. It requests scopes in the access
token that authorize user profile self-service operations.

GET https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=token&
client_id=1example23456789&

Federation endpoints 1034

Amazon Cognito Developer Guide

redirect_uri=https://www.example.com&
state=abcdefg&
scope=aws.cognito.signin.user.admin

The authorization server redirects back to your application with an access token only. Because
openid scope was not requested, Amazon Cognito doesn't return an ID token. Also, Amazon
Cognito doesn't return a refresh token in this flow.

HTTP/1.1 302 Found
Location: https://example.com/
callback#access_token=eyJra456defEXAMPLE&token_type=bearer&expires_in=3600&state=STATE

Example: Token (implicit) grant with openid scope

This example flow generates an implicit grant and returns tokens to the user's browser.

The request is for an implicit grant from your authorization server. It requests scopes in the access
token that authorize access to user attributes and self-service operations.

GET
https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=token&
client_id=1example23456789&
redirect_uri=https://www.example.com&
state=abcdefg&
scope=aws.cognito.signin.user.admin+openid+profile

The authorization server redirects back to your application with access token and ID token (because
openid scope was included):

HTTP/1.1 302 Found
Location: https://
www.example.com#id_token=eyJra67890EXAMPLE&access_token=eyJra12345EXAMPLE&token_type=bearer&expires_in=3600&state=abcdefg

Examples of negative responses

Amazon Cognito might deny your request. Negative requests come with an HTTP error code and
a description that you can use to correct your request parameters. The following are examples of
negative responses.

Federation endpoints 1035

Amazon Cognito Developer Guide

• If client_id and redirect_uri are valid, but the request parameters aren't formatted
correctly, the authentication server redirects the error to the client's redirect_uri and
appends an error message in a URL parameter. The following are examples of incorrect
formatting.

• The request doesn't include a response_type parameter.

• The authorization request provided a code_challenge parameter, but not a
code_challenge_method parameter.

• The value of the code_challenge_method parameter isn't S256.

The following is the response to an example request with incorrect formatting.

HTTP 1.1 302 Found Location: https://client_redirect_uri?error=invalid_request

• If the client requests code or token in response_type, but doesn't have permission for these
requests, the Amazon Cognito authorization server returns unauthorized_client to client's
redirect_uri, as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?error=unauthorized_client

• If the client requests scope that is unknown, malformed, or not valid, the Amazon Cognito
authorization server returns invalid_scope to the client's redirect_uri, as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?error=invalid_scope

• If there is any unexpected error in the server, the authentication server returns server_error
to the client's redirect_uri. Because the HTTP 500 error doesn't get sent to the client, the
error doesn't display in the user's browser. The authorization server returns the following error.

HTTP 1.1 302 Found Location: https://client_redirect_uri?error=server_error

• When Amazon Cognito authenticates through federation to third-party IdPs, Amazon Cognito
might experience connection issues, such as the following:

• If a connection timeout occurs while requesting token from the IdP, the authentication server
redirects the error to the client’s redirect_uri as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=Timeout+occurred+in+calling+IdP+token
+endpoint

Federation endpoints 1036

Amazon Cognito Developer Guide

• If a connection timeout occurs while calling the jwks_uri endpoint for ID token validation,
the authentication server redirects with an error to the client’s redirect_uri as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=error_description=Timeout+in+calling+jwks
+uri

• When authenticating by federating to third-party IdPs, the providers may return error responses.
This can be due to configuration errors or other reasons, such as the following:

• If an error response is received from other providers, the authentication server redirects the
error to the client’s redirect_uri as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=[IdP name]+Error+-+[status code]+error
 getting token

• If an error response is received from Google, the authentication server redirects the error to
the client’s redirect_uri as follows:

HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=Google+Error+-+[status code]+[Google-
provided error code]

• When Amazon Cognito encounters an communication exception when it connects to an external
IdP, the authentication server redirects with an error to the client's redirect_uri with either of
the following messages:

• HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=Connection+reset

• HTTP 1.1 302 Found Location: https://client_redirect_uri?
error=invalid_request&error_description=Read+timed+out

The token issuer endpoint

The OAuth 2.0 token endpoint at /oauth2/token issues JSON web tokens (JWTs) to applications
that want to complete authorization-code and client-credentials grant flows. These tokens are the
end result of authentication with a user pool. They contain information about the user (ID token),
the user's level of access (access token), and the user's entitlement to persist their signed-in session

Federation endpoints 1037

https://www.rfc-editor.org/rfc/rfc6749#section-3.2

Amazon Cognito Developer Guide

(refresh token). OpenID Connect (OIDC) relying-party libraries handle requests to and response
payloads from this endpoint. Tokens provide verifiable proof of authentication, profile information,
and a mechanism for access to back-end systems.

Your user pool OAuth 2.0 authorization server issues JSON web tokens (JWTs) from the token
endpoint to the following types of sessions:

1. Users who have completed a request for an authorization code grant. Successful redemption of a
code returns ID, access, and refresh tokens.

2. Machine-to-machine (M2M) sessions that have completed a client-credentials grant. Successful
authorization with the client secret returns an access token.

3. Users who have previously signed in and received refresh tokens. Refresh token authentication
returns new ID and access tokens.

Note

Users who sign in with an authorization code grant in managed login or through
federation can always refresh their tokens from the token endpoint. Users who sign in
with the API operations InitiateAuth and AdminInitiateAuth can refresh their
tokens with the token endpoint when remembered devices is not active in your user
pool. If remembered devices is active, refresh tokens with the relevant API or SDK token-
refresh operation for your app client.

The token endpoint becomes publicly available when you add a domain to your user pool. It
accepts HTTP POST requests. For application security, use PKCE with your authorization code
sign-in events. PKCE verifies that the user passing an authorization code is that same user who
authenticated. For more information about PKCE, see IETF RFC 7636.

You can learn more about the user pool app clients and their grant types, client secrets, allowed
scopes, and client IDs at Application-specific settings with app clients. You can learn more about
M2M authorization, client credentials grants, and authorization with access token scopes at Scopes,
M2M, and APIs with resource servers.

To retrieve information about a user from their access token, pass it to your userInfo endpoint or to
a GetUser API request. The access token must contain the appropriate scopes for these requests,

Federation endpoints 1038

https://datatracker.ietf.org/doc/html/rfc7636
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html

Amazon Cognito Developer Guide

Format a POST request to the token endpoint

The /oauth2/token endpoint only supports HTTPS POST. This endpoint is not user-interactive.
Handle token requests with an OpenID Connect (OIDC) library in your application.

The token endpoint supports client_secret_basic and client_secret_post authentication.
For more information about the OIDC specification, see Client Authentication. For more
information about the token endpoint from the OpenID Connect specification, see Token Endpoint.

Request parameters in header

You can pass the following parameters in the header of your request to the token endpoint.

Authorization

If the client was issued a secret, the client can pass its client_id and client_secret in the
authorization header as client_secret_basic HTTP authorization. You can also include the
client_id and client_secret in the request body as client_secret_post authorization.

The authorization header string is Basic Base64Encode(client_id:client_secret).
The following example is an authorization header for app client djc98u3jiedmi283eu928
with client secret abcdef01234567890, using the Base64-encoded version of the string
djc98u3jiedmi283eu928:abcdef01234567890:

Authorization: Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

Content-Type

Set the value of this parameter to 'application/x-www-form-urlencoded'.

Request parameters in body

The following are parameters that you can request in x-www-form-urlencoded format in the
request body to the token endpoint.

grant_type

Required.

The type of OIDC grant that you want to request.

Federation endpoints 1039

https://openid.net/developers/certified-openid-connect-implementations/
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
http://openid.net/specs/openid-connect-core-1_0.html#TokenEndpoint
https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side

Amazon Cognito Developer Guide

Must be authorization_code or refresh_token or client_credentials. You can
request an access token for a custom scope from the token endpoint under the following
conditions:

• You enabled the requested scope in your app client configuration.

• You configured your app client with a client secret.

• You enable client credentials grant in your app client.

Note

The token endpoint returns a refresh token only when the grant_type is
authorization_code.

client_id

Optional. Not required when you provide the app client ID in the Authorization header.

The ID of an app client in your user pool. Specify the same app client that authenticated your
user.

You must provide this parameter if the client is public and does not have a secret, or with
client_secret in client_secret_post authorization.

client_secret

Optional. Not required when you provide the client secret in the Authorization header and
when the app client doesn't have a secret.

The app client secret, if the app client has one, for client_secret_post authorization.

scope

Optional.

Can be a combination of any scopes that are associated with your app client. Amazon Cognito
ignores scopes in the request that aren't allowed for the requested app client. If you don't
provide this request parameter, the authorization server returns an access token scope claim
with all authorization scopes that you enabled in your app client configuration. You can request
any of the scopes allowed for the requested app client: standard scopes, custom scopes from
resource servers, and the aws.cognito.signin.user.admin user self-service scope.

Federation endpoints 1040

Amazon Cognito Developer Guide

redirect_uri

Optional. Not required for client-credentials grants.

Must be the same redirect_uri that was used to get authorization_code in /oauth2/
authorize.

You must provide this parameter if grant_type is authorization_code.

refresh_token

Optional. Used only when the user already has a refresh token and wishes to get new ID and
access tokens.

To generate new access and ID tokens for a user's session, set the value of refresh_token to a
valid refresh token that the requested app client issued.

Returns a new refresh token with new ID and access token when refresh token rotation is active,
otherwise returns only ID and access tokens.

code

Optional. Only required in authorization-code grants.

The authorization code from an authorization code grant. You must provide this parameter if
your authorization request included a grant_type of authorization_code.

aws_client_metadata

Optional.

Information that you want to pass to the Pre token generation Lambda trigger in machine-
to-machine (M2M) authorization flows. Your application can collect context information
about the session and pass it in this parameter. When you pass aws_client_metadata in
URL-encoded JSON format, Amazon Cognito includes it in the input event to your trigger
Lambda function. Your pre token trigger event version or global Lambda trigger version must
be configured for version three or later. Although Amazon Cognito accepts requests to this
endpoint in authorization code and client credentials M2M flows, your user pool only passes
aws_client_metadata to the pre token generation trigger from client credentials requests.

code_verifier

Optional. Required only if you provided code_challenge_method and code_challenge
parameters in your initial authorization request.

Federation endpoints 1041

Amazon Cognito Developer Guide

The generated code verifier that your application calculated the code_challenge from in an
authorization code grant request with PKCE.

Exchanging an authorization code for tokens

The following request successfully generates ID, access, and refresh tokens after authentication
with an authorization-code grant. The request passes the client secret in client_secret_basic
format in the Authorization header.

POST https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/token&
Content-Type='application/x-www-form-urlencoded'&
Authorization=Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

grant_type=authorization_code&
client_id=1example23456789&
code=AUTHORIZATION_CODE&
redirect_uri=com.myclientapp://myclient/redirect

The response issues new ID, access, and refresh tokens to the user, with additional metadata.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "eyJra1example",
 "id_token": "eyJra2example",
 "refresh_token": "eyJj3example",
 "token_type": "Bearer",
 "expires_in": 3600
}

Client credentials with basic authorization

The following request from an M2M application requests a client credentials grant. Because client
credentials requires a client secret, the request is authorized with an Authorization header
derived from the app client ID and secret. The request results in an access token with the two
requested scopes. The request also includes client metadata that provides IP-address information
and a token issued to the user who this grant is on behalf of. Amazon Cognito passes the client
metadata to the pre token generation Lambda trigger.

Federation endpoints 1042

Amazon Cognito Developer Guide

POST https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/token >
Content-Type='application/x-www-form-urlencoded'&
Authorization=Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

grant_type=client_credentials&
client_id=1example23456789&
scope=resourceServerIdentifier1%2Fscope1%20resourceServerIdentifier2%2Fscope2&
&aws_client_metadata=%7B%22onBehalfOfToken%22%3A%22eyJra789ghiEXAMPLE%22,
%20%22ClientIpAddress%22%3A%22192.0.2.252%22%7D

Amazon Cognito passes the following input event to the pre token generation Lambda trigger.

{
 version: '3',
 triggerSource: 'TokenGeneration_ClientCredentials',
 region: 'us-east-1',
 userPoolId: 'us-east-1_EXAMPLE',
 userName: 'ClientCredentials',
 callerContext: {
 awsSdkVersion: 'aws-sdk-unknown-unknown',
 clientId: '1example23456789'
 },
 request: {
 userAttributes: {},
 groupConfiguration: null,
 scopes: [
 'resourceServerIdentifier1/scope1',
 'resourceServerIdentifier2/scope2'
],
 clientMetadata: {
 'onBehalfOfToken': 'eyJra789ghiEXAMPLE',
 'ClientIpAddress': '192.0.2.252'
 }
 },
 response: { claimsAndScopeOverrideDetails: null }
}

The response returns an access token. Client credentials grants are for machine-to-machine (M2M)
authorization and only return access tokens.

HTTP/1.1 200 OK
Content-Type: application/json

Federation endpoints 1043

Amazon Cognito Developer Guide

{
 "access_token": "eyJra1example",
 "token_type": "Bearer",
 "expires_in": 3600
}

Client credentials with POST body authorization

The following client-credentials grant request includes the client_secret parameter in
the request body and doesn't include an Authorization header. This request uses the
client_secret_post authorization syntax. The request results in an access token with the
requested scope. The request also includes client metadata that provides IP-address information
and a token issued to the user who this grant is on behalf of. Amazon Cognito passes the client
metadata to the pre token generation Lambda trigger.

POST /oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
X-Amz-Target: AWSCognitoIdentityProviderService.Client credentials request
User-Agent: USER_AGENT
Accept: /
Accept-Encoding: gzip, deflate, br
Content-Length: 177
Referer: http://auth.example.com/oauth2/token
Host: auth.example.com
Connection: keep-alive

grant_type=client_credentials&
client_id=1example23456789&
scope=my_resource_server_identifier%2Fmy_custom_scope&
client_secret=9example87654321&
aws_client_metadata=%7B%22onBehalfOfToken%22%3A%22eyJra789ghiEXAMPLE%22,
%20%22ClientIpAddress%22%3A%22192.0.2.252%22%7D

Amazon Cognito passes the following input event to the pre token generation Lambda trigger.

{
 version: '3',
 triggerSource: 'TokenGeneration_ClientCredentials',
 region: 'us-east-1',
 userPoolId: 'us-east-1_EXAMPLE',
 userName: 'ClientCredentials',

Federation endpoints 1044

Amazon Cognito Developer Guide

 callerContext: {
 awsSdkVersion: 'aws-sdk-unknown-unknown',
 clientId: '1example23456789'
 },
 request: {
 userAttributes: {},
 groupConfiguration: null,
 scopes: [
 'resourceServerIdentifier1/my_custom_scope'
],
 clientMetadata: {
 'onBehalfOfToken': 'eyJra789ghiEXAMPLE',
 'ClientIpAddress': '192.0.2.252'
 }
 },
 response: { claimsAndScopeOverrideDetails: null }
}

The response returns an access token. Client credentials grants are for machine-to-machine (M2M)
authorization and only return access tokens.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Date: Tue, 05 Dec 2023 16:11:11 GMT
x-amz-cognito-request-id: 829f4fe2-a1ee-476e-b834-5cd85c03373b

{
 "access_token": "eyJra12345EXAMPLE",
 "expires_in": 3600,
 "token_type": "Bearer"
}

Authorization code grant with PKCE

The following example request completes an authorization request that included
code_challenge_method and code_challenge parameters in an authorization code grant
request with PKCE.

POST https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/token
Content-Type='application/x-www-form-urlencoded'&
Authorization=Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

Federation endpoints 1045

Amazon Cognito Developer Guide

grant_type=authorization_code&
client_id=1example23456789&
code=AUTHORIZATION_CODE&
code_verifier=CODE_VERIFIER&
redirect_uri=com.myclientapp://myclient/redirect

The response returns ID, access, and refresh tokens from the successful PKCE verification by the
application.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "eyJra1example",
 "id_token": "eyJra2example",
 "refresh_token": "eyJj3example",
 "token_type": "Bearer",
 "expires_in": 3600
}

Token refresh without refresh token rotation

The following example requests provides a refresh token to an app client where refresh
token rotation is inactive. Because the app client has a client secret, the request provides an
Authorization header.

POST https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/token >
Content-Type='application/x-www-form-urlencoded'&
Authorization=Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

grant_type=refresh_token&
client_id=1example23456789&
refresh_token=eyJj3example

The response returns new ID and access tokens.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "eyJra1example",
 "id_token": "eyJra2example",

Federation endpoints 1046

Amazon Cognito Developer Guide

 "token_type": "Bearer",
 "expires_in": 3600
}

Token refresh with refresh token rotation

The following example requests provides a refresh token to an app client where refresh
token rotation is active. Because the app client has a client secret, the request provides an
Authorization header.

POST https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/token >
Content-Type='application/x-www-form-urlencoded'&
Authorization=Basic ZGpjOTh1M2ppZWRtaTI4M2V1OTI4OmFiY2RlZjAxMjM0NTY3ODkw

grant_type=refresh_token&
client_id=1example23456789&
refresh_token=eyJj3example

The response returns new ID, access, and refresh tokens.

HTTP/1.1 200 OK
Content-Type: application/json

{
 "access_token": "eyJra1example",
 "id_token": "eyJra2example",
 "refresh_token": "eyJj4example",
 "token_type": "Bearer",
 "expires_in": 3600
}

Examples of negative responses

Malformed requests generate errors from the token endpoint. The following is a general map of
the response body when token requests generate an error.

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8

{
"error":"invalid_request|invalid_client|invalid_grant|unauthorized_client|
unsupported_grant_type"

Federation endpoints 1047

Amazon Cognito Developer Guide

}

invalid_request

The request is missing a required parameter, includes an unsupported parameter value (other
than unsupported_grant_type), or is otherwise malformed. For example, grant_type is
refresh_token but refresh_token is not included.

invalid_client

Client authentication failed. For example, when the client includes client_id and
client_secret in the authorization header, but there's no such client with that client_id
and client_secret.

invalid_grant

Refresh token has been revoked.

Authorization code has been consumed already or does not exist.

App client doesn't have read access to all attributes in the requested scope. For example,
your app requests the email scope and your app client can read the email attribute, but not
email_verified.

unauthorized_client

Client is not allowed for code grant flow or for refreshing tokens.

unsupported_grant_type

Returned if grant_type is anything other than authorization_code or refresh_token or
client_credentials.

The user attributes endpoint

Where OIDC issues ID tokens that contain user attributes, OAuth 2.0 implements the /oauth2/
userInfo endpoint. An authenticated user or client receives an access token with a scopes
claim. This claim determines the attributes that the authorization server should return. When an
application presents an access token to the userInfo endpoint, the authorization server returns
a response body that contains the user attributes that are within the boundaries set by the access
token scopes. Your application can retrieve information about a user from the userInfo endpoint
as long as it holds a valid access token with at least an openid scope claim.

Federation endpoints 1048

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html

Amazon Cognito Developer Guide

The userInfo endpoint is an OpenID Connect (OIDC) userInfo endpoint. It responds with user
attributes when service providers present access tokens that your token endpoint issued. The
scopes in your user's access token define the user attributes that the userInfo endpoint returns in
its response. The openid scope must be one of the access token claims.

Amazon Cognito issues access tokens in response to user pools API requests like InitiateAuth.
Because they don't contain any scopes, the userInfo endpoint doesn't accept these access tokens.
Instead, you must present access tokens from your token endpoint.

Your OAuth 2.0 third-party identity provider (IdP) also hosts a userInfo endpoint. When your user
authenticates with that IdP, Amazon Cognito silently exchanges an authorization code with the
IdP token endpoint. Your user pool passes the IdP access token to authorize retrieval of user
information from the IdP userInfo endpoint.

The scopes in a user's access token are determined by the scopes request parameter in
authentication requests, or the scopes that the pre token generation Lambda trigger adds. You
can decode access tokens and examine scope claims to see the access-control scopes that they
contain. The following are some scope combinations that influence the data returned from the
userInfo endpoint. The reserved Amazon Cognito scope aws.cognito.signin.user.admin
has no effect on the data returned from this endpoint.

Example scopes in access token and their effect on the userInfo response

openid

Returns a response with all user attributes that the app client can read.

openid profile

Returns the user attributes name, family_name, given_name, middle_name, nickname,
preferred_username, profile, picture, website, gender, birthdate, zoneinfo,
locale, and updated_at. Also returns custom attributes. In app clients that don't have
read access to each attribute, the response to this scope is all of the attributes within the
specification that your app client does have read access to.

openid email

Returns basic profile information and the email and email_verified attributes.

openid phone

Returns basic profile information and the phone_number and phone_number_verified
attributes.

Federation endpoints 1049

https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

GET /oauth2/userInfo

Your application generates requests to this endpoint directly, not through a browser.

For more information, see UserInfo Endpoint in the OpenID Connect (OIDC) specification.

Topics

• Request parameters in header

• Example – request

• Example – positive response

• Example negative responses

Request parameters in header

Authorization: Bearer <access_token>

Pass the access token in the authorization header field.

Required.

Example – request

GET /oauth2/userInfo HTTP/1.1
Content-Type: application/x-amz-json-1.1
Authorization: Bearer eyJra12345EXAMPLE
User-Agent: [User agent]
Accept: */*
Host: auth.example.com
Accept-Encoding: gzip, deflate, br
Connection: keep-alive

Example – positive response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Content-Length: [Integer]
Date: [Timestamp]
x-amz-cognito-request-id: [UUID]
X-Content-Type-Options: nosniff

Federation endpoints 1050

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo

Amazon Cognito Developer Guide

X-XSS-Protection: 1; mode=block
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0
Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Frame-Options: DENY
Server: Server
Connection: keep-alive
{
 "sub": "[UUID]",
 "email_verified": "true",
 "custom:mycustom1": "CustomValue",
 "phone_number_verified": "true",
 "phone_number": "+12065551212",
 "email": "bob@example.com",
 "username": "bob"
}

For a list of OIDC claims, see Standard Claims. Currently, Amazon Cognito returns the values for
email_verified and phone_number_verified as strings.

Example negative responses

Example – bad request

HTTP/1.1 400 Bad Request
WWW-Authenticate: error="invalid_request",
error_description="Bad OAuth2 request at UserInfo Endpoint"

invalid_request

The request is missing a required parameter, it includes an unsupported parameter value, or it is
otherwise malformed.

Example – bad token

HTTP/1.1 401 Unauthorized
WWW-Authenticate: error="invalid_token",
error_description="Access token is expired, disabled, or deleted, or the user has
 globally signed out."

Federation endpoints 1051

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide

invalid_token

The access token is expired, revoked, malformed, or it's invalid.

The token revocation endpoint

Users who hold a refresh token in their session have something similar to a browser cookie. They
can renew their existing session as long as the refresh token is valid. Instead of prompting a user to
sign in after their ID or access token expires, your application can use the refresh token to get new,
valid tokens. However, you might externally determine that a user's session should be ended, or the
user might elect to forget their current session. At that point, you can revoke that refresh token so
that they can no longer persist their session.

The /oauth2/revoke endpoint revokes a user's access token that Amazon Cognito initially issued
with the refresh token that you provide. This endpoint also revokes the refresh token itself and all
subsequent access and identity tokens from the same refresh token. After the endpoint revokes
the tokens, you can't use the revoked access tokens to access APIs that Amazon Cognito tokens
authenticate.

POST /oauth2/revoke

The /oauth2/revoke endpoint only supports HTTPS POST. The user pool client makes requests
to this endpoint directly and not through the system browser.

Request parameters in header

Authorization

If your app client has a client secret, the application must pass its client_id and
client_secret in the authorization header through Basic HTTP authorization. The secret is
Basic Base64Encode(client_id:client_secret).

Content-Type

Must always be 'application/x-www-form-urlencoded'.

Federation endpoints 1052

https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side

Amazon Cognito Developer Guide

Request parameters in body

token

(Required) The refresh token that the client wants to revoke. The request also revokes all access
tokens that Amazon Cognito issued with this refresh token.

Required.

client_id

(Optional) The app client ID for the token that you want to revoke.

Required if the client is public and doesn't have a secret.

Revocation request examples

This revocation request revokes a refresh token for an app client that has no client secret. Note the
client_id parameter in the request body.

POST /oauth2/revoke HTTP/1.1
Host: mydomain.auth.us-east-1.amazoncognito.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
token=2YotnFZFEjr1zCsicMWpAA&
client_id=1example23456789

This revocation request revokes a refresh token for an app client that has a client secret. Note the
Authorization header that contains an encoded client ID and client secret, but no client_id in
the request body.

POST /oauth2/revoke HTTP/1.1
Host: mydomain.auth.us-east-1.amazoncognito.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
token=2YotnFZFEjr1zCsicMWpAA

Federation endpoints 1053

Amazon Cognito Developer Guide

Revocation error response

A successful response contains an empty body. The error response is a JSON object with an error
field and, in some cases, an error_description field.

Endpoint errors

• If the token isn't present in the request or if the feature is disabled for the app client, you receive
an HTTP 400 and error invalid_request.

• If the token that Amazon Cognito sent in the revocation request isn't a refresh token, you receive
an HTTP 400 and error unsupported_token_type.

• If the client credentials aren't valid, you receive an HTTP 401 and error invalid_client.

• If the token has been revoked or if the client submitted a token that isn't valid, you receive an
HTTP 200 OK.

The IdP SAML assertion endpoint

The /saml2/idpresponse receives SAML assertions. In service-provider-initiated (SP-initiated)
sign-in, your application doesn't interact directly with this endpoint—your SAML 2.0 identity
provider (IdP) redirects your user here with their SAML response. For SP-initiated sign-in, configure
your IdP with the path to your saml2/idpresponse as the assertion consumer service (ACS) URL.
For more information about session initiation, see SAML session initiation in Amazon Cognito user
pools.

In IdP-initiated sign-in, invoke requests to this endpoint in your application after you sign in
user with your SAML 2.0 provider. Your users sign in with your IdP in their browser, then your
application collects the SAML assertion and submits it to this endpoint. You must submit SAML
assertions in the body of a HTTP POST request over HTTPS. The body of your POST request
must be a SAMLResponse parameter and a Relaystate parameter. For more information, see
Implement IdP-initiated SAML sign-in.

The saml2/idpresponse endpoint can accept SAML assertions of up to 100,000 characters in
length.

POST /saml2/idpresponse

To use the /saml2/idpresponse endpoint in an IdP-initiated sign-in, generate a POST request
with parameters that provide your user pool with information about your user's session.

Federation endpoints 1054

Amazon Cognito Developer Guide

• The app client that they want to sign in to.

• The callback URL that they want to end up at.

• The OAuth 2.0 scopes that they want to request in your user's access token.

• The IdP that initiated the sign-in request.

IdP-initiated request body parameters

SAMLResponse

A Base64-encoded SAML assertion from an IdP associated with a valid app client and IdP
configuration in your user pool.

RelayState

A RelayState parameter contains the request parameters that you would otherwise pass
to the oauth2/authorize endpoint. For detailed information about these parameters, see
Authorize endpoint.

response_type

The OAuth 2.0 grant type.

client_id

The app client ID.

redirect_uri

The URL where the authentication server redirects the browser after Amazon Cognito
authorizes the user.

identity_provider

The name of the identity provider where you want to redirect your user.

idp_identifier

The identifier of the identity provider where you want to redirect your user.

scope

The OAuth 2.0 scopes that you want your user to request from the authorization server.

Federation endpoints 1055

Amazon Cognito Developer Guide

Example requests with positive responses

Example – POST request

The following request is for an authorization code grant for a user from IdP MySAMLIdP in app
client 1example23456789. The user redirects to https://www.example.com with their
authorization code, which can be exchanged for tokens that include an access token with the
OAuth 2.0 scopes openid, email, and phone.

POST /saml2/idpresponse HTTP/1.1
User-Agent: USER_AGENT
Accept: */*
Host: example.auth.us-east-1.amazoncognito.com
Content-Type: application/x-www-form-urlencoded

SAMLResponse=[Base64-encoded SAML assertion]&RelayState=identity_provider
%3DMySAMLIdP%26client_id%3D1example23456789%26redirect_uri%3Dhttps%3A%2F
%2Fwww.example.com%26response_type%3Dcode%26scope%3Demail%2Bopenid%2Bphone

Example – response

The following is the response to the previous request.

HTTP/1.1 302 Found
Date: Wed, 06 Dec 2023 00:15:29 GMT
Content-Length: 0
x-amz-cognito-request-id: 8aba6eb5-fb54-4bc6-9368-c3878434f0fb
Location: https://www.example.com?code=[Authorization code]

OAuth 2.0 grants

The Amazon Cognito user pool OAuth 2.0 authorization server issues tokens in response to three
types of OAuth 2.0 authorization grants. You can set the supported grant types for each app client
in your user pool. You can't enable client credentials grants in the same app client as either implicit
or authorization code grants. Requests for implicit and authorization code grants begin at your
Authorize endpoint and requests for client credentials grants start at your Token endpoint.

Authorization code grant

In response to your successful authentication request, the authorization server appends an
authorization code in a code parameter to your callback URL. You must then exchange the

OAuth 2.0 grants 1056

https://datatracker.ietf.org/doc/html/rfc6749#section-1.3

Amazon Cognito Developer Guide

code for ID, access, and refresh tokens with the Token endpoint. To request an authorization
code grant, set response_type to code in your request. For an example request, see Example:
authorization code grant. Amazon Cognito supports Proof Key for Code Exchange (PKCE) in
authorization code grants.

The authorization code grant is the most secure form of authorization grant. It doesn't
show token contents directly to your users. Instead, your app is responsible for retrieving
and securely storing your user's tokens. In Amazon Cognito, an authorization code grant is
the only way to get all three token types—ID, access, and refresh—from the authorization
server. You can also get all three token types from authentication through the Amazon
Cognito user pools API, but the API doesn't issue access tokens with scopes other than
aws.cognito.signin.user.admin.

Implicit grant

In response to your successful authentication request, the authorization server appends an
access token in an access_token parameter, and an ID token in an id_token parameter, to
your callback URL. An implicit grant requires no additional interaction with the Token endpoint.
To request an implicit grant, set response_type to token in your request. The implicit grant
only generates an ID and access token. For an example request, see Example: Token (implicit)
grant without openid scope.

The implicit grant is a legacy authorization grant. Unlike with the authorization code grant,
users can intercept and inspect your tokens. To prevent token delivery through implicit grant,
configure your app client to support authorization code grant only.

Client credentials

Client credentials is an authorization-only grant for machine-to-machine access. To receive a
client credentials grant, bypass the Authorize endpoint and generate a request directly to the
Token endpoint. Your app client must have a client secret and support client credentials grants
only. In response to your successful request, the authorization server returns an access token.

The access token from a client credentials grant is an authorization mechanism that contains
OAuth 2.0 scopes. Typically, the token contains custom scope claims that authorize HTTP
operations to access-protected APIs. For more information, see Scopes, M2M, and APIs with
resource servers.

Client credentials grants add costs to your Amazon bill. For more information, see Amazon
Cognito Pricing.

OAuth 2.0 grants 1057

https://www.amazonaws.cn/cognito/pricing
https://www.amazonaws.cn/cognito/pricing

Amazon Cognito Developer Guide

Refresh token

You can request a refresh token grant directly from the Token endpoint. This grant returns new
ID and access tokens in exchange for a valid refresh token.

For more perspective on these grants and their implementation, see How to use OAuth 2.0 in
Amazon Cognito: Learn about the different OAuth 2.0 grants in the Amazon Security Blog.

Using PKCE in authorization code grants

Amazon Cognito supports Proof Key for Code Exchange (PKCE) authentication in authorization
code grants. PKCE is an extension to the OAuth 2.0 authorization code grant for public clients.
PKCE guards against the redemption of intercepted authorization codes.

How Amazon Cognito uses PKCE

To start authentication with PKCE, your application must generate a unique string value. This string
is the code verifier, a secret value that Amazon Cognito uses to compare the client requesting the
initial authorization grant to the client exchanging the authorization code for tokens.

Your app must apply an SHA256 hash to the code verifier string and encode the result to base64.
Pass the hashed string to the Authorize endpoint as a code_challenge parameter in the request
body. When your app exchanges the authorization code for tokens, it must include the code verifier
string in plaintext as a code_verifier parameter in the request body to the Token endpoint.
Amazon Cognito performs the same hash-and-encode operation on the code verifier. Amazon
Cognito only returns ID, access, and refresh tokens if it determines that the code verifier results in
the same code challenge that it received in the authorization request.

To implement Authorization Grant Flow with PKCE

1. Open the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool. If you create a user pool, you
will be prompted to set up an app client and configure managed login during the wizard.

a. If you create a new user pool, set up an app client and configure managed login during the
guided setup.

b. If you configure an existing user pool, add a domain and a public app client, if you haven’t
already.

Using PKCE 1058

https://www.amazonaws.cn/blogs/security/how-to-use-oauth-2-0-in-amazon-cognito-learn-about-the-different-oauth-2-0-grants/
https://www.amazonaws.cn/blogs/security/how-to-use-oauth-2-0-in-amazon-cognito-learn-about-the-different-oauth-2-0-grants/
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

4. Generate a random alphanumeric string, typically a universally unique identifier (UUID),
to create a code challenge for the PKCE. This string is the value of the code_verifier
parameter that you will submit in your request to the Token endpoint.

5. Hash the code_verifier string with the SHA256 algorithm. Encode the result of the hashing
operation to base64. This string is the value of the code_challenge parameter that you will
submit in your request to the Authorize endpoint.

The following Python example generates a code_verifier and calculates the
code_challenge:

#!/usr/bin/env python3

import random
from base64 import urlsafe_b64encode
from hashlib import sha256
from string import ascii_letters
from string import digits

use a cryptographically strong random number generator source
rand = random.SystemRandom()

code_verifier = ''.join(rand.choices(ascii_letters + digits, k=128))
code_verifier_hash = sha256(code_verifier.encode()).digest()
code_challenge = urlsafe_b64encode(code_verifier_hash).decode().rstrip('=')

print(f"code challenge: {code_challenge}")
print(f"code verifier: {code_verifier}")

The following is an example output from the Python script:

code challenge: Eh0mg-OZv7BAyo-tdv_vYamx1boOYDulDklyXoMDtLg
code verifier: 9D-aW_iygXrgQcWJd0y0tNVMPSXSChIc2xceDhvYVdGLCBk-
JWFTmBNjvKSdOrjTTYazOFbUmrFERrjWx6oKtK2b6z_x4_gHBDlr4K1mRFGyE8yA-05-_v7Dxf3EIYJH

6. Complete managed login sign-in with an authorization code grant request with PKCE. The
following is an example URL:

https://mydomain.auth.us-east-1.amazoncognito.com/oauth2/authorize?
response_type=code&client_id=1example23456789&redirect_uri=https://

Using PKCE 1059

Amazon Cognito Developer Guide

www.example.com&code_challenge=Eh0mg-OZv7BAyo-
tdv_vYamx1boOYDulDklyXoMDtLg&code_challenge_method=S256

7. Collect the authorization code and redeem it for tokens with the token endpoint. The
following is an example request:

POST /oauth2/token HTTP/1.1
Host: mydomain.auth.us-east-1.amazoncognito.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 296

redirect_uri=https%3A%2F%2Fwww.example.com&
client_id=1example23456789&
code=7378f445-c87f-400c-855e-0297d072ff03&
grant_type=authorization_code&
code_verifier=9D-aW_iygXrgQcWJd0y0tNVMPSXSChIc2xceDhvYVdGLCBk-
JWFTmBNjvKSdOrjTTYazOFbUmrFERrjWx6oKtK2b6z_x4_gHBDlr4K1mRFGyE8yA-05-_v7Dxf3EIYJH

8. Review the response. It will contain ID, access, and refresh tokens. For more information
about using Amazon Cognito user pool tokens, see Understanding user pool JSON web tokens
(JWTs).

Managed login and federation error responses

A sign-in process in managed login or federated sign-in might return an error. The following are
some conditions that can cause authentication to end with an error.

• A user performs an operation that your user pool can't fulfill.

• A Lambda trigger doesn't respond with expected syntax.

• Your identity provider (IdP) returns an error.

• Amazon Cognito couldn't validate attribute information that your user provided.

• Your IdP didn't send claims that map to required attributes.

When Amazon Cognito encounters an error, it communicates it in one of the following ways.

1. Amazon Cognito sends a redirect URL with the error in the request parameters.

2. Amazon Cognito displays an error in managed login.

Managed login and federation error responses 1060

Amazon Cognito Developer Guide

Errors that Amazon Cognito appends to request parameters have the following format.

https://<Callback URL>/?error_description=error+description&error=error+name

When you help your users submit error information when they can't perform an operation, request
that they capture the URL and the text or a screenshot of the page.

Note

Amazon Cognito error descriptions are not fixed strings and you shouldn't use logic that
relies on a fixed pattern or format.

OIDC and social identity provider error messages

Your identity provider might return an error. When an OIDC or OAuth 2.0 IdP returns an error
that conforms to standards, Amazon Cognito redirects your user to the callback URL and adds the
provider error response to error request parameters. Amazon Cognito adds the provider name and
HTTP error code to the existing error strings.

The following URL is an example redirect from an IdP that returned an error to Amazon Cognito.

https://www.amazon.com/?error_description=LoginWithAmazon+Error+-+400+invalid_request
+The+request+is+missing+a+required+parameter+%3A+client_secret&error=invalid_request

Because Amazon Cognito only returns what it receives from a provider, your user might see a
subset of this information.

When your user encounters an issue with initial sign-in through your IdP, the IdP delivers any error
messages directly to your user. Amazon Cognito relays an error message to your user when it
generates a request to your IdP to validate your user's session. Amazon Cognito relays OAuth and
OIDC IdP error messages from the following endpoints.

/token

Amazon Cognito exchanges an IdP authorization code for an access token.

/.well-known/openid-configuration

Amazon Cognito discovers the path to your issuer endpoints.

Managed login and federation error responses 1061

Amazon Cognito Developer Guide

/.well-known/jwks.json

To verify your user's JSON Web Tokens (JWTs), Amazon Cognito discovers the JSON Web Keys
(JWKs) that your IdP uses to sign tokens.

Because Amazon Cognito doesn't initiate outbound sessions to SAML 2.0 providers that might
return HTTP errors, your users' errors during a session with a SAML 2.0 IdP don't include this form
of provider error message.

Managed login and federation error responses 1062

Amazon Cognito Developer Guide

Amazon Cognito identity pools

An Amazon Cognito identity pool is a directory of federated identities that you can exchange for
Amazon credentials. Identity pools generate temporary Amazon credentials for the users of your
app, whether they’ve signed in or you haven’t identified them yet. With Amazon Identity and
Access Management (IAM) roles and policies, you can choose the level of permission that you want
to grant to your users. Users can start out as guests and retrieve assets that you keep in Amazon
Web Services services. Then they can sign in with a third-party identity provider to unlock access
to assets that you make available to registered members. The third-party identity provider can
be a consumer (social) OAuth 2.0 provider like Apple or Google, a custom SAML or OIDC identity
provider, or a custom authentication scheme, also called a developer provider, of your own design.

Features of Amazon Cognito identity pools

Sign requests for Amazon Web Services services

Sign API requests to Amazon Web Services services like Amazon Simple Storage Service
(Amazon S3) and Amazon DynamoDB. Analyze user activity with services like Amazon Pinpoint
and Amazon CloudWatch.

Filter requests with resource-based policies

Exercise granular control over user access to your resources. Transform user claims into IAM
session tags, and build IAM policies that grant resource access to distinct subsets of your users.

Assign guest access

For your users who haven’t signed in yet, configure your identity pool to generate Amazon
credentials with a narrow scope of access. Authenticate users through a single sign-on provider
to elevate their access.

Assign IAM roles based on user characteristics

Assign a single IAM role to all of your authenticated users, or choose the role based on the
claims of each user.

Accept a variety of identity providers

Exchange an ID or access token, a user pool token, a SAML assertion, or a social-provider OAuth
token for Amazon credentials.

1063

https://docs.amazonaws.cn/AmazonS3/latest/API/sig-v4-authenticating-requests.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_session-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_session-tags.html

Amazon Cognito Developer Guide

Validate your own identities

Perform your own user validation and use your developer Amazon credentials to issue
credentials for your users.

You might already have an Amazon Cognito user pool that provides authentication and
authorization services to your app. You can set up your user pool as an identity provider (IdP)
to your identity pool. When you do, your users can authenticate through your user pool IdPs,
consolidate their claims into a common OIDC identity token, and exchange that token for Amazon
credentials. Your user can then present their credentials in a signed request to your Amazon Web
Services services.

You can also present authenticated claims from any of your identity providers directly to your
identity pool. Amazon Cognito customizes user claims from SAML, OAuth, and OIDC providers into
an AssumeRoleWithWebIdentity API request for short-term credentials.

Amazon Cognito user pools are like OIDC identity providers to your SSO-enabled apps. Identity
pools act as an Amazon identity provider to any app with resource dependencies that work best
with IAM authorization.

Amazon Cognito identity pools support the following identity providers:

• Public providers: Setting up Login with Amazon as an identity pools IdP, Setting up Facebook as
an identity pools IdP, Setting up Google as an identity pool IdP, Setting up Sign in with Apple as
an identity pool IdP, Twitter.

• Amazon Cognito user pools

• Setting up an OIDC provider as an identity pool IdP

• Setting up a SAML provider as an identity pool IdP

• Developer-authenticated identities

For information about Amazon Cognito identity pools Region availability, see Amazon Service
Region Availability.

For more information about Amazon Cognito identity pools, see the following topics.

Topics

• Identity pools console overview

1064

https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/

Amazon Cognito Developer Guide

• Identity pools authentication flow

• IAM roles

• Security best practices for Amazon Cognito identity pools

• Using attributes for access control

• Using role-based access control

• Getting credentials

• Accessing Amazon Web Services services with temporary credentials

• Identity pools third-party identity providers

• Developer-authenticated identities

• Switching unauthenticated users to authenticated users

Identity pools console overview

Amazon Cognito identity pools provide temporary Amazon credentials for users who are guests
(unauthenticated) and for users who have been authenticated and received a token. An identity
pool is a store of user identifiers linked to your external identity providers.

One way to understand the features and options of identity pools is to create one in the Amazon
Cognito console. You can explore the effect of different settings on authentication flows, role-
based and attribute-based access control, and guest access. From there, you can proceed to later
chapters in this guide and add the appropriate components to your application so that you can
implement identity pool authentication.

Topics

• Create an identity pool

• User IAM roles

• Authenticated and unauthenticated identities

• Activate or deactivate guest access

• Change the role associated with an identity type

• Edit identity providers

• Delete an identity pool

• Delete an identity from an identity pool

• Using Amazon Cognito Sync with identity pools

Configuring identity pools 1065

Amazon Cognito Developer Guide

Create an identity pool

To create a new identity pool in the console

1. Sign in to the Amazon Cognito console and select Identity pools.

2. Choose Create identity pool.

3. In Configure identity pool trust, choose to set up your identity pool for Authenticated access,
Guest access, or both.

• If you chose Authenticated access, select one or more Identity types that you want to set
as the source of authenticated identities in your identity pool. If you configure a Custom
developer provider, you can't modify or delete it after you create your identity pool.

4. In Configure permissions, choose a default IAM role for authenticated or guest users in your
identity pool.

a. Choose to Create a new IAM role if you want Amazon Cognito to create a new role for you
with basic permissions and a trust relationship with your identity pool. Enter an IAM role
name to identify your new role, for example myidentitypool_authenticatedrole.
Select View policy document to review the permissions that Amazon Cognito will assign
to your new IAM role.

b. You can choose to Use an existing IAM role if you already have a role in your Amazon Web
Services account that you want to use. You must configure your IAM role trust policy to
include cognito-identity.amazonaws.com. Configure your role trust policy to only
allow Amazon Cognito to assume the role when it presents evidence that the request
originated from an authenticated user in your specific identity pool. For more information,
see Role trust and permissions.

5. In Connect identity providers, enter the details of the identity providers (IdPs) that you chose
in Configure identity pool trust. You might be asked to provide OAuth app client information,
choose a Amazon Cognito user pool, choose an IAM IdP, or enter a custom identifier for a
developer provider.

a. Choose the Role settings for each IdP. You can assign users from that IdP the Default
role that you set up when you configured your Authenticated role, or you can Choose
role with rules. With a Amazon Cognito user pool IdP, you can also Choose role with
preferred_role in tokens. For more information about the cognito:preferred_role
claim, see Assigning precedence values to groups.

Create an identity pool 1066

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

b. Configure Attributes for access control for each IdP. Attributes for access control maps
user claims to principal tags that Amazon Cognito applies to their temporary session.
You can build IAM policies to filter user access based on the tags that you apply to their
session.

i. To apply no principal tags, choose Inactive.

ii. To apply principal tags based on sub and aud claims, choose Use default mappings.

iii. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you
want to represent in a tag.

6. In Configure properties, enter a Name under Identity pool name.

7. Under Basic (classic) authentication, choose whether you want to Activate basic flow. With
the basic flow active, you can bypass the role selections you made for your IdPs and call
AssumeRoleWithWebIdentity directly. For more information, see Identity pools authentication
flow.

8. Under Tags, choose Add tag if you want to apply tags to your identity pool.

9. In Review and create, confirm the selections that you made for your new identity pool. Select
Edit to return to the wizard and change any settings. When you're done, select Create identity
pool.

User IAM roles

An IAM role defines the permissions for your users to access Amazon resources, like Amazon
Cognito Sync. Users of your application will assume the roles you create. You can specify different
roles for authenticated and unauthenticated users. To learn more about IAM roles, see IAM roles.

User IAM roles 1067

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_iam-tags.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/general/latest/gr/aws_tagging.html

Amazon Cognito Developer Guide

Authenticated and unauthenticated identities

Amazon Cognito identity pools support both authenticated and unauthenticated identities.
Authenticated identities belong to users who are authenticated by any supported identity provider.
Unauthenticated identities typically belong to guest users.

• To configure authenticated identities with a public login provider, see Identity pools third-party
identity providers.

• To configure your own backend authentication process, see Developer-authenticated identities.

Activate or deactivate guest access

Amazon Cognito identity pools guest access (unauthenticated identities) provides a unique
identifier and Amazon credentials for users who do not authenticate with an identity provider.
If your application allows users who do not log in, you can activate access for unauthenticated
identities. To learn more, see Getting started with Amazon Cognito identity pools.

To update guest access in an identity pool

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Locate Guest access. In an identity pool that doesn't currently support guest access, Status is
Inactive.

a. If Guest access is Active and you want to deactivate it, select Deactivate.

b. If Guest access is Inactive and you want to activate it, select Edit.

• Choose a default IAM role for guest users in your identity pool.

A. Choose to Create a new IAM role if you want Amazon Cognito to create a
new role for you with basic permissions and a trust relationship with your
identity pool. Enter an IAM role name to identify your new role, for example
myidentitypool_authenticatedrole. Select View policy document to
review the permissions that Amazon Cognito will assign to your new IAM role.

B. You can choose to Use an existing IAM role if you already have a role in your
Amazon Web Services account that you want to use. You must configure your IAM
role trust policy to include cognito-identity.amazonaws.com. Configure
your role trust policy to only allow Amazon Cognito to assume the role when it

Authenticated and unauthenticated identities 1068

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

presents evidence that the request originated from an authenticated user in your
specific identity pool. For more information, see Role trust and permissions.

C. Select Save changes.

D. To activate guest access, select Activate in the User access tab.

Change the role associated with an identity type

Every identity in your identity pool is either authenticated or unauthenticated. Authenticated
identities belong to users who are authenticated by a public login provider (Amazon Cognito user
pools, Login with Amazon, Sign in with Apple, Facebook, Google, SAML, or any OpenID Connect
Providers) or a developer provider (your own backend authentication process). Unauthenticated
identities typically belong to guest users.

For each identity type, there is an assigned role. This role has a policy attached to it that dictates
which Amazon Web Services services that role can access. When Amazon Cognito receives a
request, the service determines the identity type, determines the role assigned to that identity
type, and uses the policy attached to that role to respond. By modifying a policy or assigning a
different role to an identity type, you can control which Amazon Web Services services an identity
type can access. To view or modify the policies associated with the roles in your identity pool, see
the Amazon IAM Console.

To change the identity pool default authenticated or unauthenticated role

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Locate Guest access or Authenticated access. In an identity pool that isn't currently configured
for that access type, Status is Inactive. Select Edit.

4. Choose a default IAM role for guest or authenticated users in your identity pool.

a. Choose to Create a new IAM role if you want Amazon Cognito to create a new role for you
with basic permissions and a trust relationship with your identity pool. Enter an IAM role
name to identify your new role, for example myidentitypool_authenticatedrole.
Select View policy document to review the permissions that Amazon Cognito will assign
to your new IAM role.

b. You can choose to Use an existing IAM role if you already have a role in your Amazon Web
Services account that you want to use. You must configure your IAM role trust policy to
include cognito-identity.amazonaws.com. Configure your role trust policy to only

Change the role associated with an identity type 1069

https://console.amazonaws.cn/iam/home
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

allow Amazon Cognito to assume the role when it presents evidence that the request
originated from an authenticated user in your specific identity pool. For more information,
see Role trust and permissions.

5. Select Save changes.

Edit identity providers

If you allow your users to authenticate using consumer identity providers (for example, Amazon
Cognito user pools, Login with Amazon, Sign in with Apple, Facebook, or Google), you can specify
your application identifiers in the Amazon Cognito identity pools (federated identities) console.
This associates the application ID (provided by the public login provider) with your identity pool.

You can also configure authentication rules for each provider from this page. Each provider allows
up to 25 rules. The rules are applied in the order you save for each provider. For more information,
see Using role-based access control.

Warning

Changing the linked IdP application ID in your identity pool prevents existing users from
authenticating with that identity pool. For more information, see Identity pools third-party
identity providers.

To update an identity pool identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Locate Identity providers. Choose the identity provider that you want to edit. If you want to
add a new IdP, select Add identity provider.

• If you chose Add identity provider, choose one of the Identity types that you want to
add.

4. To change the application ID, choose Edit in Identity provider information.

5. To change the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, choose Edit in Role settings.

Edit identity providers 1070

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules. With a Amazon Cognito user
pool IdP, you can also Choose role with preferred_role in tokens. For more information
about the cognito:preferred_role claim, see Assigning precedence values to groups.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

6. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, choose Edit in Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

7. Select Save changes.

Delete an identity pool

You can't undo identity pool deletion. After you delete an identity pool, all apps and users that
depend on it stop working.

To delete an identity pool

1. Choose Identity pools from the Amazon Cognito console. Select the radio button next to the
identity pool that you want to delete.

2. Select Delete.

3. Enter or paste the name of your identity pool and select Delete.

Delete an identity pool 1071

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Warning

When you select the Delete button, you will permanently delete your identity pool and
all the user data it contains. Deleting an identity pool will cause applications and other
services using the identity pool to stop working.

Delete an identity from an identity pool

When you delete an identity from an identity pool, you remove the identifying information that
Amazon Cognito has stored for that federated user. When your user requests credentials again,
they receive a new identity ID if your identity pool still trusts their identity provider. You can't undo
this operation.

To delete an identity

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the Identity browser tab.

3. Select the check boxes next to the identities that you want to delete and choose Delete.
Confirm that you want to delete the identities and choose Delete.

Using Amazon Cognito Sync with identity pools

Amazon Cognito Sync is an Amazon Web Services service and client library that makes it possible
to sync application-related user data across devices. Amazon Cognito Sync can synchronize user
profile data across mobile devices and the web without using your own backend. The client libraries
cache data locally so that your app can read and write data regardless of device connectivity status.
When the device is online, you can synchronize data. If you set up push sync, you can notify other
devices immediately that an update is available.

Managing datasets

If you have implemented Amazon Cognito Sync functionality in your application, the Amazon
Cognito identity pools console enables you to manually create and delete datasets and records
for individual identities. Any change you make to an identity's dataset or records in the Amazon
Cognito identity pools console isn't saved until you select Synchronize in the console. The change
isn't visible to the end user until the identity calls Synchronize. The data being synchronized

Delete an identity from an identity pool 1072

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

from other devices for individual identities is visible once you refresh the list datasets page for a
particular identity.

Create a dataset for an identity

Amazon Cognito Sync associates a dataset with one identity. You can populate your dataset with
identifying information about the user that the identity represents, then sync that information to
all of your user's devices.

To add a dataset and dataset records to an identity

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the Identity browser tab.

3. Select the identity that you want to edit.

4. In Datasets, choose Create dataset.

5. Enter a Dataset name and select Create dataset.

6. If you want to add records to your dataset, choose your dataset from identity details. In
Records, select Create record.

7. Enter a Key and Value for your record. Choose Confirm. Repeat to add more records.

Delete a dataset associated with an identity

To delete a dataset and its records from an identity

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the Identity browser tab.

3. Select the identity that contains the dataset that you want to delete.

4. In Datasets, choose the radio button next to the dataset that you want to delete.

5. Select Delete. Review your choice and select Delete again.

Bulk publish data

Bulk publish can be used to export data already stored in your Amazon Cognito Sync store
to a Amazon Kinesis stream. For instructions on how to bulk publish all of your streams, see
Implementing Amazon Cognito Sync streams.

Using Amazon Cognito Sync with identity pools 1073

https://console.amazonaws.cn/cognito/home
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Activate push synchronization

Amazon Cognito automatically tracks the association between identity and devices. Using the push
sync feature, you can make sure that every instance of a given identity is notified when identity
data changes. Push sync makes it so that, whenever the dataset changes for an identity, all devices
associated with that identity receive a silent push notification informing them of the change.

You can activate push sync in the Amazon Cognito console.

To activate push synchronization

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the Identity pool properties tab.

3. In Push synchronization, select Edit

4. Select Activate push synchronization with your identity pool.

5. Choose one of the Amazon Simple Notification Service (Amazon SNS) Platform applications
that you created in the current Amazon Web Services Region. Amazon Cognito publishes push
notifications to your platform application. Select Create platform application to navigate to
the Amazon SNS console and create a new one.

6. To publish to your platform application, Amazon Cognito assumes an IAM role in your
Amazon Web Services account. Choose to Create a new IAM role if you want Amazon
Cognito to create a new role for you with basic permissions and a trust relationship
with your identity pool. Enter an IAM role name to identify your new role, for example
myidentitypool_authenticatedrole. Select View policy document to review the
permissions that Amazon Cognito will assign to your new IAM role.

7. You can choose to Use an existing IAM role if you already have a role in your Amazon Web
Services account that you want to use. You must configure your IAM role trust policy to include
cognito-identity.amazonaws.com. Configure your role trust policy to only allow Amazon
Cognito to assume the role when it presents evidence that the request originated from an
authenticated user in your specific identity pool. For more information, see Role trust and
permissions.

8. Select Save changes.

Using Amazon Cognito Sync with identity pools 1074

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Set up Amazon Cognito Streams

Amazon Cognito Streams gives developers control and insight into their data stored in Amazon
Cognito Sync. Developers can now configure a Kinesis stream to receive events as data. Amazon
Cognito can push each dataset change to a Kinesis stream you own in real time. For instructions on
how to set up Amazon Cognito Streams in the Amazon Cognito console, see Implementing Amazon
Cognito Sync streams.

Set up Amazon Cognito Events

Amazon Cognito Events allows you to run an Amazon Lambda function in response to important
events in Amazon Cognito Sync. Amazon Cognito Sync raises the Sync Trigger event when a
dataset is synchronized. You can use the Sync Trigger event to take an action when a user updates
data. For instructions on setting up Amazon Cognito Events from the console, see Customizing
workflows with Amazon Cognito Events.

To learn more about Amazon Lambda, see Amazon Lambda.

Identity pools authentication flow

Amazon Cognito helps you create unique identifiers for your end users that are kept consistent
across devices and platforms. Amazon Cognito also delivers temporary, limited-privilege
credentials to your application to access Amazon resources. This page covers the basics of how
authentication in Amazon Cognito works and explains the lifecycle of an identity inside your
identity pool.

External provider authflow

A user authenticating with Amazon Cognito goes through a multi-step process to bootstrap their
credentials. Amazon Cognito has two different flows for authentication with public providers:
enhanced and basic.

Once you complete one of these flows, you can access other Amazon Web Services services as
defined by your role's access policies. By default, the Amazon Cognito console creates roles with
access to the Amazon Cognito Sync store and to Amazon Mobile Analytics. For more information
on how to grant additional access, see IAM roles.

Identity pools accept the following artifacts from providers:

Identity pools authentication flow 1075

http://www.amazonaws.cn/lambda/
https://console.amazonaws.cn/cognito/

Amazon Cognito Developer Guide

Provider Authentication artifact

Amazon Cognito user pool ID token

OpenID Connect (OIDC) ID token

SAML 2.0 SAML assertion

Social provider Access token

Enhanced (simplified) authflow

When you use the enhanced authflow, your app first presents a proof of authentication from an
authorized Amazon Cognito user pool or third-party identity provider in a GetId request.

1. Your application presents a proof of authentication–a JSON web token or a SAML assertion–
from an authorized Amazon Cognito user pool or third-party identity provider in a GetID
request.

2. Your identity pool returns an identity ID.

3. Your application combines the identity ID with the same proof of authentication in a
GetCredentialsForIdentity request.

4. Your identity pool returns Amazon credentials.

5. Your application signs Amazon API requests with the temporary credentials.

Enhanced authentication manages the logic of IAM role selection and credentials retrieval in
your identity pool configuration. You can configure your identity pool to select a default role, to
apply attribute-based access control (ABAC) or role-based access control (RBAC) principles to role
selection. The Amazon credentials from enhanced authentication are valid for one hour.

Order of operations in Enhanced authentication

1. GetId

2. GetCredentialsForIdentity

Identity pools authentication flow 1076

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html

Amazon Cognito Developer Guide

Basic (classic) authflow

When you use the basic authflow,

1. Your application presents a proof of authentication–a JSON web token or a SAML assertion–
from an authorized Amazon Cognito user pool or third-party identity provider in a GetID
request.

2. Your identity pool returns an identity ID.

3. Your application combines the identity ID with the same proof of authentication in a
GetOpenIdToken request.

4. GetOpenIdToken returns a new OAuth 2.0 token that is issued by your identity pool.

5. Your application presents the new token in an AssumeRoleWithWebIdentity request.

6. Amazon Security Token Service (Amazon STS) returns Amazon credentials.

7. Your application signs Amazon API requests with the temporary credentials.

The basic workflow gives you more granular control over the credentials that you distribute to
your users. The GetCredentialsForIdentity request of the enhanced authflow requests a
role based on the contents of an access token. The AssumeRoleWithWebIdentity request in the

Identity pools authentication flow 1077

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Amazon Cognito Developer Guide

classic workflow grants your app a greater ability to request credentials for any Amazon Identity
and Access Management role that you have configured with a sufficient trust policy. You can also
request a custom role session duration.

You can sign in with the Basic authflow in user pools that don't have role mappings. This type of
identity pool doesn't have a default authenticated or unauthenticated role, and doesn't have role-
based or attribute-based access control configured. When you attempt GetOpenIdToken in an
identity pool with role mappings, you receive the following error.

Basic (classic) flow is not supported with RoleMappings, please use enhanced flow.

Order of operations in Basic authentication

1. GetId

2. GetOpenIdToken

3. AssumeRoleWithWebIdentity

Identity pools authentication flow 1078

Amazon Cognito Developer Guide

Developer authenticated identities authflow

When using Developer-authenticated identities, the client uses a different authflow that includes
code outside of Amazon Cognito to validate the user in your own authentication system. Code
outside of Amazon Cognito is indicated as such.

Enhanced authflow

Order of operations in Enhanced authentication with a developer provider

1. Login via Developer Provider (code outside of Amazon Cognito)

2. Validate the user login (code outside of Amazon Cognito)

3. GetOpenIdTokenForDeveloperIdentity

4. GetCredentialsForIdentity

Order of operations in Basic authentication with a developer provider

1. Implement logic outside of identity pool to sign in and generate a developer-provider identifier.

2. Retrieve stored server-side Amazon credentials.

3. Send developer provider identifier in a GetOpenIdTokenForDeveloperIdentity API request signed
with authorized Amazon credentials.

Identity pools authentication flow 1079

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html

Amazon Cognito Developer Guide

4. Request application credentials with AssumeRoleWithWebIdentity.

Which authflow should I use?

The enhanced flow is the most secure choice with the lowest level of developer effort:

• The enhanced flow reduces the complexity, size, and rate of API requests.

• Your application doesn't need to make additional API requests to Amazon STS.

• Your identity pool evaluates your users for the IAM role credentials that they should receive. You
don't need to embed logic for role selection in your client.

Important

When you create a new identity pool, don't activate basic (classic) authentication by
default, as a best practice. To implement basic authentication, first evaluate the trust
relationships of your IAM roles for web identities. Then build the logic for role selection into
your client and secure the client against modification by users.

The basic authentication flow delegates the logic of IAM role selection to your application. In this
flow, Amazon Cognito validates your user's authenticated or unauthenticated session and issues a

Identity pools authentication flow 1080

https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Amazon Cognito Developer Guide

token that you can exchange for credentials with Amazon STS. Users can exchange the tokens from
basic authentication for any IAM roles that trust your identity pool and amr, or authenticated/
unauthenticated state.

Similarly, understand that developer authentication is a shortcut around validation of identity
provider authentication. Amazon Cognito trusts the Amazon credentials that authorize a
GetOpenIdTokenForDeveloperIdentity request without additional validation of the request
contents. Secure the secrets that authorize developer authentication from access by users.

API summary

GetId

The GetId API call is the first call necessary to establish a new identity in Amazon Cognito.

Unauthenticated access

Amazon Cognito can grant unauthenticated guest access in your applications. If this feature
is enabled in your identity pool, users can request a new identity ID at any time via the
GetId API. The application is expected to cache this identity ID to make subsequent calls
to Amazon Cognito. The Amazon Mobile SDKs and the Amazon SDK for JavaScript in the
Browser have credentials providers that handle this caching for you.

Authenticated access

When you've configured your application with support for a public login provider (Facebook,
Google+, Login with Amazon, or Sign in with Apple), users can also supply tokens (OAuth
or OpenID Connect) that identify them in those providers. When used in a call to GetId,
Amazon Cognito creates a new authenticated identity or returns the identity already
associated with that particular login. Amazon Cognito does this by validating the token with
the provider and making sure of the following:

• The token is valid and from the configured provider.

• The token is not expired.

• The token matches the application identifier created with that provider (for example,
Facebook app ID).

• The token matches the user identifier.

Identity pools authentication flow 1081

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html

Amazon Cognito Developer Guide

GetCredentialsForIdentity

The GetCredentialsForIdentity API can be called after you establish an identity
ID. This operation is functionally equivalent to calling GetOpenIdToken, then
AssumeRoleWithWebIdentity.

For Amazon Cognito to call AssumeRoleWithWebIdentity on your behalf, your identity pool
must have IAM roles associated with it. You can do this via the Amazon Cognito console or
manually via the SetIdentityPoolRoles operation.

GetOpenIdToken

Make a GetOpenIdToken API request after you establish an identity ID. Cache identity IDs
after your first request, and start subsequent basic (classic) sessions for that identity with
GetOpenIdToken.

The response to a GetOpenIdToken API request is a token that Amazon Cognito
generates. You can submit this token as the WebIdentityToken parameter in an
AssumeRoleWithWebIdentity request.

Before you submit the OpenID token, verify it in your app. You can use OIDC libraries in your
SDK or a library like aws-jwt-verify to confirm that Amazon Cognito issued the token. The
signing key ID, or kid, of the OpenID token is one of those listed in the Amazon Cognito
Identity jwks_uri document†. These keys are subject to change. Your function that verifies
Amazon Cognito Identity tokens should periodically update its list of keys from the jwks_uri
document. Amazon Cognito sets the refresh duration in the jwks_uri cache-control response
header, currently set to a max-age of 30 days.

Unauthenticated access

To obtain a token for an unauthenticated identity, you only need the identity ID itself. It is
not possible to get an unauthenticated token for authenticated identities or identities that
you have deactivated.

Authenticated access

If you have an authenticated identity, you must pass at least one valid token for a login
already associated with that identity. All tokens passed in during the GetOpenIdToken
call must pass the same validation mentioned earlier; if any of the tokens fail, the whole
call fails. The response from the GetOpenIdToken call also includes the identity ID. This is
because the identity ID that you pass in may not be the one that is returned.

Identity pools authentication flow 1082

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://github.com/awslabs/aws-jwt-verify
https://cognito-identity.amazonaws.com/.well-known/jwks_uri

Amazon Cognito Developer Guide

Linking logins

If you submit a token for a login that is not already associated with any identity, the login
is considered to be "linked" to the associated identity. You may only link one login per
public provider. Attempts to link more than one login with a public provider results in a
ResourceConflictException error response. If a login is merely linked to an existing
identity, the identity ID returned from GetOpenIdToken is the same as the one that you
passed in.

Merging identities

If you pass in a token for a login that is not currently linked to the given identity, but
is linked to another identity, the two identities are merged. Once merged, one identity
becomes the parent/owner of all associated logins and the other is disabled. In this case,
the identity ID of the parent/owner is returned. You must update your local cache if this
value differs. The providers in the Amazon Mobile SDKs or Amazon SDK for JavaScript in the
Browser perform this operation for you.

GetOpenIdTokenForDeveloperIdentity

The GetOpenIdTokenForDeveloperIdentity operation replaces the use of GetId and
GetOpenIdToken from the device when using developer authenticated identities. Because your
application signs requests to this API operation with Amazon credentials, Amazon Cognito
trusts that the user identifier supplied in the request is valid. Developer authentication replaces
the token validation that Amazon Cognito performs with external providers.

The payload for this API includes a logins map. This map must contain the key of your
developer provider and a value as an identifier for the user in your system. If the user identifier
isn't already linked to an existing identity, Amazon Cognito creates a new identity and returns
the new identity ID and an OpenID Connect token for that identity. If the user identifier is
already linked, Amazon Cognito returns the pre-existing identity ID and an OpenID Connect
token. Cache developer identity IDs after your first request, and start subsequent basic (classic)
sessions for that identity with GetOpenIdTokenForDeveloperIdentity.

The response to a GetOpenIdTokenForDeveloperIdentity API request is a token that
Amazon Cognito generates. You can submit this token as the WebIdentityToken parameter in
an AssumeRoleWithWebIdentity request.

Before you submit the OpenID Connect token, verify it in your app. You can use OIDC libraries
in your SDK or a library like aws-jwt-verify to confirm that Amazon Cognito issued the token.

Identity pools authentication flow 1083

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://github.com/awslabs/aws-jwt-verify

Amazon Cognito Developer Guide

The signing key ID, or kid, of the OpenID Connect token is one of those listed in the Amazon
Cognito Identity jwks_uri document†. These keys are subject to change. Your function that
verifies Amazon Cognito Identity tokens should periodically update its list of keys from the
jwks_uri document. Amazon Cognito sets the refresh duration in the jwks_uri cache-control
response header, currently set to a max-age of 30 days.

Linking logins

As with external providers, supplying additional logins that are not already associated with
an identity implicitly links those logins to that identity. If you link an external provider login
to an identity, the user can use the external provider authflow with that provider. However,
they cannot use your developer provider name in the logins map when calling GetId or
GetOpenIdToken.

Merging identities

With developer authenticated identities, Amazon Cognito supports both implicit merging
and explicit merging through the MergeDeveloperIdentities API. With explicit merging, you
can mark two identities with user identifiers in your system as a single identity. If you supply
the source and destination user identifiers, Amazon Cognito merges them. The next time you
request an OpenID Connect token for either user identifier, the same identity id is returned.

AssumeRoleWithWebIdentity

After you have an OpenID Connect token, you can then trade this for temporary Amazon
credentials through the AssumeRoleWithWebIdentity API request to Amazon Security Token
Service (Amazon STS).

Because there is no restriction on the number of identities that you can create, it is important
to understand the permissions that you're granting to your users. Set up different IAM roles for
your application: one for unauthenticated users, and one for authenticated users. The Amazon
Cognito console can create default roles when you first set up your identity pool. These roles
have effectively no permissions granted. Modify them to meet your needs.

Learn more about Role trust and permissions.

† The default Amazon Cognito Identity jwks_uri document contains information about the keys
that sign tokens for identity pools in most Amazon Web Services Regions. The following Regions
have different jwks_uri documents.

Identity pools authentication flow 1084

https://cognito-identity.amazonaws.com/.well-known/jwks_uri
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_MergeDeveloperIdentities.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://cognito-identity.amazonaws.com/.well-known/jwks_uri

Amazon Cognito Developer Guide

Amazon Cognito Identity JSON web key URIs in other Amazon Web Services Regions

Amazon Web Services Region Path to jwks_uri document

Amazon GovCloud (US-West) https://cognito-identity.us-gov-
west-1.amazonaws.com/.well-know
n/jwks_uri

China (Beijing) https://cognito-identity.cn-
north-1.amazonaws.com.cn/.well-
known/jwks_uri

Opt-in Regions like Europe (Milan) and Africa
(Cape Town)

https://cognito-id
entity. Region.amazonaws.com/.we
ll-known/jwks_uri

You can also extrapolate the jwks_uri from the issuer or iss that you receive in the OpenID
token from Amazon Cognito. The OIDC-standard discovery endpoint <issuer>/.well-known/
openid-configuration lists a path to the jwks_uri for your token.

IAM roles

While creating an identity pool, you're prompted to update the IAM roles that your users assume.
IAM roles work like this: When a user logs in to your app, Amazon Cognito generates temporary
Amazon credentials for the user. These temporary credentials are associated with a specific IAM
role. With the IAM role, you can define a set of permissions to access your Amazon resources.

You can specify default IAM roles for authenticated and unauthenticated users. In addition, you
can define rules to choose the role for each user based on claims in the user's ID token. For more
information, see Using role-based access control.

By default, the Amazon Cognito console creates IAM roles that provide access to Amazon Mobile
Analytics and to Amazon Cognito Sync. Alternatively, you can choose to use existing IAM roles.

Modify IAM roles to allow or restrict access to other services. To do so, log in to the IAM Console.
Then select Roles, and select a role. The policies attached to the selected role are listed in the
Permissions tab. You can customize an access policy by selecting the corresponding Manage Policy
link. To learn more about using and defining policies, see Overview of IAM Policies.

IAM roles 1085

https://console.amazonaws.cn/iam/home
https://docs.amazonaws.cn/IAM/latest/UserGuide/PoliciesOverview.html

Amazon Cognito Developer Guide

Note

As a best practice, define policies that follow the principle of granting least privilege. In
other words, the policies include only the permissions that users require to perform their
tasks. For more information, see Grant Least Privilege in the IAM User Guide.
Remember that unauthenticated identities are assumed by users who do not log in to your
app. Typically, the permissions that you assign for unauthenticated identities should be
more restrictive than those for authenticated identities.

Topics

• Set up a trust policy

• Access policies

• Role trust and permissions

Set up a trust policy

Amazon Cognito uses IAM roles to generate temporary credentials for your application's users.
Access to permissions is controlled by a role's trust relationships. Learn more about Role trust and
permissions.

The token presented to Amazon STS is generated by an identity pool, which translates a user
pool, social, or OIDC provider token, or a SAML assertion, to its own token. The identity pool token
contains an aud claim that is the identity pool ID.

The following example role trust policy allows the federated service principal cognito-
identity.amazonaws.com to call the Amazon STS API AssumeRoleWithWebIdentity. The
request will only succeed if the identity pool token in the API request has the following claims.

1. An aud claim of the identity pool ID us-west-2:abcdefg-1234-5678-910a-0e8443553f95.

2. An amr claim of authenticated that is added when the user has signed in and isn't a guest
user.

{
 "Version": "2012-10-17",
 "Statement": [

Set up a trust policy 1086

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

Amazon Cognito Developer Guide

 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com.cn:aud": "us-
west-2:abcdefg-1234-5678-910a-0e8443553f95"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com.cn:amr": "authenticated"
 }
 }
 }
]
}

Trust policies for IAM roles in Basic (Classic) authentication

You must apply at least one condition that limits trust policies for roles that you use with identity
pools. When you create or update role trust policies for identity pools, IAM returns an error if you
try to save your changes without at least one condition key that limits source identities. Amazon
STS doesn't permit cross-account AssumeRoleWithWebIdentity operations from identity pools to
IAM roles that lack a condition of this type.

This topic includes several conditions that limit source identities for identity pools. For a full list,
see Available keys for Amazon web identity federation.

In basic, or classic, authentication with an identity pool, you can assume any IAM role with Amazon
STS if it has the right trust policy. IAM roles for Amazon Cognito identity pools trust the service
principal cognito-identity.amazonaws.com to assume the role. This configuration is not
sufficient to secure your IAM roles against unintended access to resources. Roles of this type must
apply an additional condition to the role trust policy. You can't create or modify roles for identity
pools without at least one of the following conditions.

cognito-identity.amazonaws.com:aud

Restricts the role to operations from one or more identity pools. Amazon Cognito indicates the
source identity pool in the aud claim in the identity pool token.

Set up a trust policy 1087

https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif

Amazon Cognito Developer Guide

cognito-identity.amazonaws.com:amr

Restricts the role to either authenticated or unauthenticated (guest) users. Amazon
Cognito indicates the authentication state in the amr claim in the identity pool token.

cognito-identity.amazonaws.com:sub

Restricts the role to one or more users by UUID. This UUID is the user's identity ID in the identity
pool. This value isn’t the sub value from the user’s original identity provider. Amazon Cognito
indicates this UUID in the sub claim in the identity pool token.

Enhanced-flow authentication requires that the IAM role be in the same Amazon Web Services
account as the identity pool, but this isn't the case in basic authentication.

Additional considerations apply to Amazon Cognito identity pools that assume cross-account IAM
roles. The trust policies of those roles must accept the cognito-identity.amazonaws.com
service principal and must contain the specific cognito-identity.amazonaws.com:aud
condition. To prevent unintended access to your Amazon resources, the aud condition key restricts
the role to users from the identity pools in the condition value.

The token that an identity pool issues for an identity contains information about the originating
Amazon Web Services account of the identity pool. When you present an identity pool token in
an AssumeRoleWithWebIdentity API request, Amazon STS checks to see if the originating identity
pool is in the same Amazon Web Services account as the IAM role. If Amazon STS determines that
the request is cross-account, it checks to see if the role trust policy has an aud condition. The
assume-role call fails if no such conditions are present in the role trust policy. If the request is
not cross-account, Amazon STS doesn’t enforce this restriction. As a best practice, always apply a
condition of this type to the trust policies of your identity pool roles.

Additional trust policy conditions

Reuse roles across identity pools

To reuse a role across multiple identity pools, because they share a common permission set, you
can include multiple identity pools, like this:

"StringEquals": {
 "cognito-identity.amazonaws.com:aud": [
 "us-east-1:12345678-abcd-abcd-abcd-123456790ab",

Set up a trust policy 1088

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Amazon Cognito Developer Guide

 "us-east-1:98765432-dcba-dcba-dcba-123456790ab"
]
}

Limit access to specific identities

To create a policy limited to a specific set of app users, check the value of cognito-
identity.amazonaws.com:sub:

"StringEquals": {
 "cognito-identity.amazonaws.com:aud": "us-east-1:12345678-abcd-abcd-
abcd-123456790ab",
 "cognito-identity.amazonaws.com:sub": [
 "us-east-1:12345678-1234-1234-1234-123456790ab",
 "us-east-1:98765432-1234-1234-1243-123456790ab"
]
}

Limit access to specific providers

To create a policy limited to users who have logged in with a specific provider (perhaps your own
login provider), check the value of cognito-identity.amazonaws.com:amr:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "login.myprovider.myapp"
}

For example, an app that trusts only Facebook would have the following amr clause:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "graph.facebook.com"
}

Access policies

The permissions that you attach to a role apply to all users who assume that role. To partition your
users' access, use policy conditions and variables. For more information, see IAM policy elements:
Variables and tags. You can use the sub condition to restrict actions to Amazon Cognito identity
IDs in your access policies. Use this option with caution, particularly for unauthenticated identities,

Access policies 1089

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Cognito Developer Guide

which lack a consistent user ID. For more information about the IAM policy variables for web
federation with Amazon Cognito, see IAM and Amazon STS condition context keys in the Amazon
Identity and Access Management User Guide.

For additional security protection, Amazon Cognito applies a scope-down policy to
credentials that you assign your unauthenticated users in the enhanced flow, using
GetCredentialsForIdentity. The scope-down policy adds an Inline session policy and an
Amazon managed session policy to the IAM policies that you apply to your unauthenticated role.
Because you must grant access in both the IAM policies for your role and the session policies, the
scope-down policy limits users' access to services other than those in the list that follows.

Note

In the basic (classic) flow, you make your own AssumeRoleWithWebIdentity API request,
and can apply these restrictions to the request. As a best security practice, don't assign any
permissions above this scope-down policy to unauthenticated users.

Amazon Cognito also prevents authenticated and unauthenticated users from making API requests
to Amazon Cognito identity pools and Amazon Cognito Sync. Other Amazon Web Services services
might place restrictions on service access from web identities.

In a successful request with the enhanced flow, Amazon Cognito makes an
AssumeRoleWithWebIdentity API request in the background. Among the parameters in this
request, Amazon Cognito includes the following.

1. Your user's identity ID.

2. The ARN of the IAM role that your user wants to assume.

3. A policy parameter that adds an inline session policy.

4. A PolicyArns.member.N parameter whose value is an Amazon managed policy that grants
additional permissions in Amazon CloudWatch.

Services that unauthenticated users can access

When you use the enhanced flow, the scope-down policies that Amazon Cognito applies to your
user's session prevent them from using any services other than those listed in the following table.
For a subset of services, only specific actions are allowed.

Access policies 1090

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-wif
https://docs.amazonaws.cn/cognito/latest/developerguide/authentication-flow.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Amazon Cognito Developer Guide

Category Service

Analytics Amazon Data Firehose

Amazon Managed Service for Apache Flink

Application Integration Amazon Simple Queue Service

AR & VR Amazon Sumerian¹

Business Applications Amazon Mobile Analytics

Amazon Simple Email Service

Compute Amazon Lambda

Cryptography & PKI Amazon Key Management Service¹

Database Amazon DynamoDB

Amazon SimpleDB

Front-end Web & Mobile Amazon AppSync

Amazon Location Service

Amazon Simple Notification Service

Amazon Pinpoint

Amazon Location Service

Game Development Amazon GameLift Servers

Internet of Things (IoT) Amazon IoT

Machine Learning Amazon CodeWhisperer

Amazon Comprehend

Amazon Lex

Amazon Machine Learning

Access policies 1091

Amazon Cognito Developer Guide

Category Service

Amazon Personalize

Amazon Polly

Amazon Rekognition

Amazon SageMaker AI¹

Amazon Textract¹

Amazon Transcribe

Amazon Translate

Management & Governance Amazon CloudWatch

Amazon CloudWatch Logs

Networking & Content Delivery Amazon API Gateway

Security, Identity, & Compliance Amazon Cognito user pools

Storage Amazon Simple Storage Service

¹ For the Amazon Web Services services in the following table, the inline policy grants a subset of
actions. The table displays the available actions in each.

Amazon Web Services
service

Maximum permissions for unauthenticated enhanced flow
users

Amazon Key Management
Service

Encrypt

Decrypt

ReEncryptTo

ReEncryptFrom

GenerateDataKey

Access policies 1092

Amazon Cognito Developer Guide

Amazon Web Services
service

Maximum permissions for unauthenticated enhanced flow
users

GenerateDataKeyPair

GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

GenerateDataKeyWithoutPlaintext

Amazon SageMaker AI InvokeEndpoint

Amazon Textract DetectDocumentText

AnalyzeDocument

Amazon Sumerian View*

Amazon Location Service SearchPlaceIndex*

GetPlace

CalculateRoute*

*Geofence

*Geofences

DevicePosition

To grant access to Amazon Web Services services beyond this list, activate the basic (classic)
authentication flow in your identity pool. If your users see NotAuthorizedException errors
from Amazon Web Services services that are allowed by the policies assigned to the IAM role for
unauthenticated users, evaluate whether you can remove that service from your use case. If you
can't, switch to the basic flow.

The inline session policy for guest users

Amazon Cognito first applies an inline policy in the request for IAM credentials. The inline session
policy restricts your user's effective permissions from including access to any Amazon Web Services

Access policies 1093

Amazon Cognito Developer Guide

services outside those in the following list. You must also grant permissions to these Amazon Web
Services services in the policies that you apply to the user's IAM role. A user's effective permissions
for an assumed-role session are the intersection of the policies assigned to their role, and their
session policy. For more information, see Session policies in the Amazon Identity and Access
Management User Guide.

Amazon Cognito adds the following inline policy to sessions for your users in Amazon Web Services
Regions that are enabled by default. For an overview of the net effect of the inline policy and other
session policies, see Services that unauthenticated users can access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "logs:*",
 "dynamodb:*",
 "kinesis:*",
 "mobileanalytics:*",
 "s3:*",
 "ses:*",
 "sns:*",
 "sqs:*",
 "lambda:*",
 "machinelearning:*",
 "execute-api:*",
 "iot:*",
 "gamelift:*",
 "scs:*",
 "cognito-identity:*",
 "cognito-idp:*",
 "lex:*",
 "polly:*",
 "comprehend:*",
 "translate:*",
 "transcribe:*",
 "rekognition:*",
 "mobiletargeting:*",
 "firehose:*",
 "appsync:*",
 "personalize:*",

Access policies 1094

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Cognito Developer Guide

 "sagemaker:InvokeEndpoint",
 "cognito-sync:*",
 "sumerian:View*",
 "codewhisperer:*",
 "textract:DetectDocumentText",
 "textract:AnalyzeDocument",
 "sdb:*"
],
 "Resource": [
 "*"
]
 }
]
}

For all other Regions, the inline scope-down policy includes everything listed in the default Regions
except for the following Action statements.

 "cognito-sync:*",
 "sumerian:View*",
 "codewhisperer:*",
 "textract:DetectDocumentText",
 "textract:AnalyzeDocument",
 "sdb:*"

The Amazon managed session policy for guests

Amazon Cognito also applies an Amazon managed policy as a session policy to the enhanced-
flow sessions of unauthenticated guests. This policy limits the scope of unauthenticated users'
permissions with the policy AmazonCognitoUnAuthedIdentitiesSessionPolicy.

You must also grant this permission in the policies that you attach to your unauthenticated IAM
role. A user's effective permissions for an assumed-role session are the intersection of the IAM
policies assigned to their role, and their session policies. For more information, see Session policies
in the Amazon Identity and Access Management User Guide.

For an overview of the net effect of this Amazon managed policy and other session policies, see
Services that unauthenticated users can access.

The AmazonCognitoUnAuthedIdentitiesSessionPolicy managed policy has the following
permissions.

Access policies 1095

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session

Amazon Cognito Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "rum:PutRumEvents",
 "polly:*",
 "comprehend:*",
 "translate:*",
 "transcribe:*",
 "rekognition:*",
 "mobiletargeting:*",
 "firehose:*",
 "personalize:*",
 "sagemaker:InvokeEndpoint",
 "geo:GetMap*",
 "geo:SearchPlaceIndex*",
 "geo:GetPlace",
 "geo:CalculateRoute*",
 "geo:*Geofence",
 "geo:*Geofences",
 "geo:*DevicePosition*",
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncryptTo",
 "kms:ReEncryptFrom",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "*"
 }]
}

Access policy examples

In this section, you can find example Amazon Cognito access policies that grant your users the
minimum permissions necessary to do specific operation. You can further limit the permissions
for a given identity ID by using policy variables where possible. For example, using ${cognito-
identity.amazonaws.com:sub}. For more information, see Understanding Amazon Cognito
Authentication Part 3: Roles and Policies on the Amazon Mobile Blog.

Access policies 1096

https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/

Amazon Cognito Developer Guide

Note

As a security best practice, policies should include only the permissions that users require to
perform their tasks. This means that you should try to always scope access to an individual
identity for objects whenever possible.

Grant an identity read access to a single object in Amazon S3

The following access policy grants read permissions to an identity to retrieve a single object from a
given S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::amzn-s3-demo-bucket/assets/my_picture.jpg"]
 }
]
}

Grant an identity both read and write access to identity specific paths in Amazon S3

The following access policy grants read and write permissions to access a specific prefix "folder"
in an S3 bucket by mapping the prefix to the ${cognito-identity.amazonaws.com:sub}
variable.

With this policy, an identity such as us-east-1:12345678-1234-1234-1234-123456790ab
inserted via ${cognito-identity.amazonaws.com:sub} can get,
put, and list objects into arn:aws:s3:::amzn-s3-demo-bucket/us-
east-1:12345678-1234-1234-1234-123456790ab. However, the identity would not be
granted access to other objects in arn:aws:s3:::amzn-s3-demo-bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Access policies 1097

Amazon Cognito Developer Guide

 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::amzn-s3-demo-bucket"],
 "Condition": {"StringLike": {"s3:prefix": ["${cognito-
identity.amazonaws.com:sub}/*"]}}
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::amzn-s3-demo-bucket/${cognito-
identity.amazonaws.com:sub}/*"]
 }
]
}

A similar access model is achieved with Amazon S3 Access Grants.

Assign identities fine-grained access to Amazon DynamoDB

The following access policy provides fine-grained access control to DynamoDB resources using
Amazon Cognito environment variables. These variables grant access to items in DynamoDB by
identity ID. For more information, see Using IAM Policy Conditions for Fine-Grained Access Control
in the Amazon DynamoDB Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-2:123456789012:table/MyTable"

Access policies 1098

https://docs.amazonaws.cn/AmazonS3/latest/userguide/access-grants.html
https://docs.amazonaws.cn/amazondynamodb/latest/developerguide/specifying-conditions.html

Amazon Cognito Developer Guide

],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${cognito-identity.amazonaws.com:sub}"]
 }
 }
 }
]
}

Grant an identity permission to invoke a Lambda function

The following access policy grants an identity permission to invoke a Lambda function.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": [
 "arn:aws:lambda:us-west-2:123456789012:function:MyFunction"
]
 }
]
 }

Grant an identity permission to publish records to Kinesis Data Streams

The following access policy allows an identity to use the PutRecord operation with any of the
Kinesis Data Streams. It can be applied to users that need to add data records to all streams in an
account. For more information, see Controlling Access to Amazon Kinesis Data Streams Resources
Using IAM in the Amazon Kinesis Data Streams Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"

Access policies 1099

https://docs.amazonaws.cn/streams/latest/dev/controlling-access.html
https://docs.amazonaws.cn/streams/latest/dev/controlling-access.html

Amazon Cognito Developer Guide

]
 }
]
}

Grant an identity access to their data in the Amazon Cognito Sync store

The following access policy grants an identity permissions to access only their own data in the
Amazon Cognito Sync store.

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"cognito-sync:*",
 "Resource":["arn:aws:cognito-sync:us-east-1:123456789012:identitypool/${cognito-
identity.amazonaws.com:aud}/identity/${cognito-identity.amazonaws.com:sub}/*"]
 }]
 }

Role trust and permissions

The way these roles differ is in their trust relationships. The following is an example trust policy for
an unauthenticated role:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com.cn:aud": "us-east-1:12345678-corner-
cafe-123456790ab"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com.cn:amr": "unauthenticated"

Role trust and permissions 1100

Amazon Cognito Developer Guide

 }
 }
 }
]
}

This policy grants federated users from cognito-identity.amazonaws.com (the issuer of the
OpenID Connect token) permission to assume this role. Additionally, the policy restricts the aud of
the token, in this case the identity pool ID, to match the identity pool. Finally, the policy specifies
that one of the array members of the multi-value amr claim of the token issued by the Amazon
Cognito GetOpenIdToken API operation has the value unauthenticated.

When Amazon Cognito creates a token, it sets the amr of the token as either unauthenticated
or authenticated. If amr is authenticated, the token includes any providers used during
authentication. This means that you can create a role that trusts only users that logged in via
Facebook by changing the amr condition as shown:

"ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com:amr": "graph.facebook.com"
}

Be careful when changing your trust relationships on your roles, or when trying to use roles across
identity pools. If you don't configure your role correctly to trust your identity pool, an exception
from STS results, like the following:

AccessDenied -- Not authorized to perform sts:AssumeRoleWithWebIdentity

If you see this message, check that your identity pool and authentication type have an appropriate
role.

Security best practices for Amazon Cognito identity pools

Amazon Cognito identity pools provide temporary Amazon credentials for your application.
Amazon Web Services accounts often contain both the resources that your application users need,
and private back-end resources. The IAM roles and policies that make up Amazon credentials can
grant access to any of these resources.

The primary best practice of identity pool configuration is to ensure that your application can get
the job done without excess or unintended privilege. To guard against security misconfiguration,

Security best practices 1101

Amazon Cognito Developer Guide

review these recommendations before the launch of each application that you want to release to
production.

Topics

• IAM configuration best practices

• Identity pool configuration best practices

IAM configuration best practices

When a guest or authenticated user initiates a session in your application that requires identity
pool credentials, your application retrieves temporary Amazon credentials for an IAM role. The
credentials might be for a default role, a role chosen by rules in your identity pool configuration, or
for a custom role chosen by your app. With the permissions assigned to each role, your user gains
access to your Amazon resources.

For more information about general IAM best practices, see IAM best practices in the Amazon
Identity and Access Management User Guide.

Use trust policy conditions in IAM roles

IAM requires that roles for identity pools have at least one trust policy condition. This condition
can, for example, set the role’s scope to authenticated users only. Amazon STS also requires
that cross-account basic authentication requests have two specific conditions: cognito-
identity.amazonaws.com:aud and cognito-identity.amazonaws.com:amr. As a best
practice, apply both of these conditions in all IAM roles that trust the identity pools service
principal cognito-identity.amazonaws.com.

• cognito-identity.amazonaws.com:aud: The aud claim in the identity pool token must
match a trusted identity pool ID.

• cognito-identity.amazonaws.com:amr: The amr claim in the identity pool token must
be either authenticated or unauthenticated. With this condition, you can reserve access to a
role only to unauthenticated guests, or only to authenticated users. You can further refine
the value of this condition to restrict the role to users from a specific provider, for example
graph.facebook.com.

The following example role trust policy grants access to a role under the following conditions:

IAM configuration best practices 1102

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html

Amazon Cognito Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com.cn:aud": "us-east-1:a1b2c3d4-5678-90ab-cdef-
EXAMPLE11111"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com.cn:amr": "authenticated"
 }
 }
 }
]
}

Elements that relate to identity pools

• "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn": Users must come
from an identity pool.

• "cognito-identity.amazonaws.com.cn:aud": "us-east-1:a1b2c3d4-5678-90ab-
cdef-example11111": Users must come from the specific identity pool us-
east-1:a1b2c3d4-5678-90ab-cdef-example11111.

• "cognito-identity.amazonaws.com.cn:amr": "authenticated": Users must be
authenticated. Guest users can’t assume the role.

Apply least privilege permissions

When you set permissions with IAM policies for authenticated access or guest access, grant only the
specific permissions required to perform specific tasks, or least privilege permissions. The following
example IAM policy, when applied to a role, grants read-only access to a single image file in an
Amazon S3 bucket.

IAM configuration best practices 1103

Amazon Cognito Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket/assets/my_picture.jpg"]
 }
]
}

Identity pool configuration best practices

Identity pools have flexible options for the generation of Amazon credentials. Don’t take design
shortcuts when your application can work with the most secure methods.

Understand the effects of guest access

Unauthenticated guest access permits users to retrieve data from your Amazon Web Services
account before they sign in. Anyone who knows your identity pool ID can request unauthenticated
credentials. Your identity pool ID isn’t confidential information. When you activate guest access,
the Amazon permissions that you grant to unauthenticated sessions are available to everyone.

As a best practice, leave guest access deactivated and fetch required resources only after users
authenticate. If your application requires access to resources before sign-in, take the following
precautions.

• Familiarize yourself with the automatic limitations placed on unauthenticated roles.

• Monitor and adjust the permissions of your unauthenticated IAM roles to match the specific
needs of your application.

• Grant access to specific resources.

• Secure the trust policy of your default unauthenticated IAM role.

• Activate guest access only when you are confident that you would grant the permissions in your
IAM role to anyone on the internet.

Identity pool configuration best practices 1104

Amazon Cognito Developer Guide

Use enhanced authentication by default

With basic (classic) authentication, Amazon Cognito delegates selection of the IAM role to your
app. In contrast, the enhanced flow uses the centralized logic in your identity pool to determine
the IAM role. It also provides additional security for unauthenticated identities with a scope-down
policy that sets an upper limit on IAM permissions. The enhanced flow is the most secure choice
with the lowest level of developer effort. To learn more about these options, see Identity pools
authentication flow .

The basic flow can expose the client-side logic that goes into role selection and assembly of the
Amazon STS API request for credentials. The enhanced flow hides both the logic and the assume-
role request behind identity pool automation.

When you configure basic authentication, apply IAM best practices to your IAM roles and their
permissions.

Use developer providers securely

Developer authenticated identities are a feature of identity pools for server-side applications. The
only evidence of authentication that identity pools require for developer authentication are the
Amazon credentials of an identity pool developer. Identity pools don’t enforce any restrictions on
the validity of the developer-provider identifiers that you present in this authentication flow.

As a best practice, only implement developer providers under the following conditions:

• To create accountability for the use of developer-authenticated credentials, design your
developer provider name and identifiers to indicate the authentication source. For example:
"Logins" : {"MyCorp provider" : "[provider application ID]"}.

• Avoid long-lived user credentials. Configure your server-side client to request identities with
service-linked roles like EC2 instance profiles and Lambda execution roles.

• Avoid mixing internal and external sources of trust in the same identity pool. Add your developer
provider and your single sign-on (SSO) providers in separate identity pools.

Using attributes for access control

Attributes for access control is the Amazon Cognito identity pools implementation of attribute-
based access control (ABAC). You can use IAM policies to control access to Amazon resources
through Amazon Cognito identity pools based on user attributes. These attributes can be drawn

Using attributes for access control 1105

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.amazonaws.cn/lambda/latest/dg/lambda-intro-execution-role.html

Amazon Cognito Developer Guide

from social and corporate identity providers. You can map attributes within providers’ access and ID
tokens or SAML assertions to tags that can be referenced in the IAM permissions policies.

You can choose default mappings or create your own custom mappings in Amazon Cognito identity
pools. The default mappings allow you to write IAM policies based on a fixed set of user attributes.
Custom mappings allow you to select a custom set of user attributes that are referenced in the IAM
permissions policies. The Attribute names in the Amazon Cognito console are mapped to Tag key
for principal, which are the tags that are referenced in the IAM permissions policy.

For example, let's say that you own a media streaming service with a free and a paid membership.
You store the media files in Amazon S3 and tag them with free or premium tags. You can use
attributes for access control to allow access to free and paid content based on user membership
level, which is part of the user's profile. You can map the membership attribute to a tag key
for principal to be passed on to the IAM permissions policy. This way you can create a single
permissions policy and conditionally allow access to premium content based on the value of
membership level and tag on the content files.

Topics

• Using attributes for access control with Amazon Cognito identity pools

• Using attributes for access control policy example

• Turn off attributes for access control (console)

• Default provider mappings

Using attributes to control access has several benefits:

• Permissions management is more efficient when you use attributes for access control. You can
create a basic permissions policy that uses user attributes instead of creating multiple policies for
different job functions.

• You don't need to update your policies whenever you add or remove resources or users for your
application. The permissions policy will only grant the access to users with the matching user
attributes. For example, you might need to control the access to certain S3 buckets based on
the job title of users. In that case, you can create a permissions policy to allow access to these
files only for users within the defined job title. For more information, see IAM Tutorial: Use SAML
session tags for ABAC.

• Attributes can be passed as principal tags to a policy that allows or denies permissions based on
the values of those attributes.

Using attributes for access control 1106

https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_abac-saml.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_abac-saml.html

Amazon Cognito Developer Guide

Using attributes for access control with Amazon Cognito identity pools

Before you can use attributes for access control, ensure that you meet the following prerequisites:

• An Amazon account

• User pool

• Identity pool

• Set up an SDK

• Integrated identity providers

• Credentials

To use attributes for access control, the Claim that you set as the source of data sets the value of
the Tag Key that you choose. Amazon Cognito applies the tag key and value to your user's session.
Your IAM policies can evaluate your user's access from the ${aws:PrincipalTag/tagkey}
condition. IAM evaluates the value of your user's tag against the policy.

You must prepare IAM roles whose credentials you want to pass to your users. The trust policy of
these roles must permit Amazon Cognito to assume the role for your user. For attributes for access
control, you must also allow Amazon Cognito to apply principal tags to your user's temporary
session. Grant permission to assume the role with the action AssumeRoleWithWebIdentity.
Grant permission to tag users' sessions with the permission-only action sts:TagSession.
For more information, see Passing session tags in Amazon Security Token Service in the
Amazon Identity and Access Management User Guide. For an example trust policy that grants
sts:AssumeRoleWithWebIdentity and sts:TagSession permissions to the Amazon Cognito
service principal cognito-identity.amazonaws.com, see Using attributes for access control
policy example.

To configure attributes for access control in the console

1. Sign in to the Amazon Cognito console and select Identity pools. Select an identity pool.

2. Choose the User access tab.

3. Locate Identity providers. Choose the identity provider that you want to edit. If you want to
add a new IdP, select Add identity provider.

4. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, choose Edit in Attributes for access control.

Using attributes for access control with Amazon Cognito identity pools 1107

https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-with-identity-pools.html#aws-sign-up-identity-pools
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-with-identity-pools.html#create-identity-pools
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-with-identity-pools.html%23%23integrate-the-identity-providers
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-with-identity-pools.html#get-credentials
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_awssecuritytokenservice.html#awssecuritytokenservice-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_session-tags.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

5. Select Save changes.

Using attributes for access control policy example

Consider a scenario where an employee from the legal department of a company needs to list all
files in buckets that belong to their department and are classified with their security level. Assume
the token that this employee gets from the identity provider contains the following claims.

Claims

 { .
 .
 "sub" : "57e7b692-4f66-480d-98b8-45a6729b4c88",
 "department" : "legal",
 "clearance" : "confidential",
 .
 .
 }

These attributes can be mapped to tags and referenced in IAM permissions policies as principal
tags. You can now manage access by changing the user profile on the identity provider's end.
Alternatively, you can change attributes on the resource side by using names or tags without
changing the policy itself.

The following permissions policy does two things:

• Allows list access to all S3 buckets that end with a prefix that matches the user’s department
name.

• Allows read access on files in these buckets as long as the clearance tag on the file matches
user’s clearance attribute.

Using attributes for access control policy example 1108

Amazon Cognito Developer Guide

Permissions policy

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:List*",
 "Resource": "arn:aws:s3:::*-${aws:PrincipalTag/department}"
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObject*",
 "Resource": "arn:aws:s3:::*-${aws:PrincipalTag/department}/*",
 "Condition": {
 "StringEquals": {
 "s3:ExistingObjectTag/clearance": "${aws:PrincipalTag/clearance}"
 }
 }
 }
]
}

The trust policy determines who can assume this role. The trust relationship policy allows the
use of sts:AssumeRoleWithWebIdentity and sts:TagSession to allow access. It adds
conditions to restrict the policy to the identity pool that you created and it makes sure that it’s for
an authenticated role.

Trust policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn"
 },
 "Action": [
 "sts:AssumeRoleWithWebIdentity",
 "sts:TagSession"

Using attributes for access control policy example 1109

Amazon Cognito Developer Guide

],
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com.cn:aud": "IDENTITY-POOL-ID"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com.cn:amr": "authenticated"
 }
 }
 }
]
}

Turn off attributes for access control (console)

Follow this procedure to deactivate attributes for access control.

To deactivate attributes for access control in the console

1. Sign in to the Amazon Cognito console and select Identity pools. Select an identity pool.

2. Choose the User access tab.

3. Locate Identity providers. Choose the identity provider that you want to edit.

4. Choose Edit in Attributes for access control.

5. To apply no principal tags, choose Inactive.

6. Select Save changes.

Default provider mappings

The following table has the default mapping information for the authentication providers that
Amazon Cognito supports.

Provider Token type Principal tag values Example

Amazon Cognito user
pool

ID token aud(client ID) and
sub(user ID)

"6jk8ltokc7ac9es6j
rtg9q572f",
"57e7b692
-4f66-480d-98b8-45
a6729b4c88"

Turn off attributes for access control 1110

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

Provider Token type Principal tag values Example

Facebook Access token aud(app_id),
sub(user_id)

"492844718097981",
"112177216992379"

Google ID token aud(client ID) and
sub(user ID)

"620493171733-
eebk7c0hcp5lj
3e1tlqp1gntt3k0rnc
v.apps.googleuserc
ontent.com",
"10922006
3452404746097"

SAML Assertions "http://schemas.xm
lsoap.org/ws/2005/
05/identity/claims
/nameidentifier" ,
"http://schemas.xm
lsoap.org/ws/2005/
05/identity/claims/
name"

"auth0|5e28d196f8f
55a0eaaa95de3",
"user123@gmail.com
"

Apple ID token aud(client ID) and sub
(user ID)

"com.amazonaws.ec2
-54-80-172-243.com
pute-1.client",
"001968.a6ca34e9c1
e742458a2
6cf8005854be9.0733
"

Default provider mappings 1111

Amazon Cognito Developer Guide

Provider Token type Principal tag values Example

Amazon Access token aud (Client ID on
Amzn Dev Ac),
user_id(user ID)

"amzn1.application
-oa2-client.9d70d9
382d34461
08aaee3dd763a0fa6"
, "amzn1.ac
count.AGH
NIFJQMFSB
G3G6XCPVB
35ORQAA"

Standard OIDC
providers

ID and access tokens aud (as client_id), sub
(as user ID)

"620493171733-
eebk7c0hcp5lj
3e1tlqp1gntt3k0rnc
v.apps.googleuserc
ontent.com",
"10922006
3452404746097"

Twitter Access token aud (app ID; app
Secret), sub (user ID)

"DfwifTtKEX1FiIBRn
OTlR0CFK;Xgj5xb8xI
rIVCPjXgLIdkW7fXmw
cJJrFvnoK9gwZkLexo
1y5z1", "12690038
84292222976"

DevAuth Map Not applicable "tag1", "tag2"

Note

The default attribute mappings option is automatically populated for the Tag Key for
Principal and Attribute names. You can't change default mappings.

Default provider mappings 1112

Amazon Cognito Developer Guide

Using role-based access control

Amazon Cognito identity pools assign your authenticated users a set of temporary, limited-
privilege credentials to access your Amazon resources. The permissions for each user are controlled
through IAM roles that you create. You can define rules to choose the role for each user based on
claims in the user's ID token. You can define a default role for authenticated users. You can also
define a separate IAM role with limited permissions for guest users who are not authenticated.

Creating roles for role mapping

It is important to add the appropriate trust policy for each role so that it can only be assumed by
Amazon Cognito for authenticated users in your identity pool. Here is an example of such a trust
policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Federated": "cognito-identity.cn-north-1.amazonaws.com.cn"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "cognito-identity.amazonaws.com.cn:aud": "us-east-1:12345678-corner-
cafe-123456790ab"
 },
 "ForAnyValue:StringLike": {
 "cognito-identity.amazonaws.com.cn:amr": "authenticated"
 }
 }
 }
]
}

This policy allows federated users from cognito-identity.amazonaws.com (the issuer of the
OpenID Connect token) to assume this role. Additionally, the policy restricts the aud of the token,
in this case the identity pool ID, to match the identity pool. Finally, the policy specifies that one

Using role-based access control 1113

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html

Amazon Cognito Developer Guide

of the array members of the multi-value amr claim of the token issued by the Amazon Cognito
GetOpenIdToken API action has the value authenticated.

Granting pass-role permission

To allow a user to set roles with permissions in excess of the user's existing permissions on an
identity pool, grant them iam:PassRole permission to pass the role to the set-identity-
pool-roles API. For example, if the user cannot write to Amazon S3, but the IAM role that the
user sets on the identity pool grants write permission to Amazon S3, the user can only set this role
if iam:PassRole permission is granted for the role. The following example policy shows how to
allow iam:PassRole permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1",
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myS3WriteAccessRole"
]
 }
]
}

In this policy example, the iam:PassRole permission is granted for the myS3WriteAccessRole
role. The role is specified using the role's Amazon Resource Name (ARN). You must also attach this
policy to your user. For more information, see Working with Managed Policies.

Note

Lambda functions use resource-based policy, where the policy is attached directly to the
Lambda function itself. When creating a rule that invokes a Lambda function, you do not
pass a role, so the user creating the rule does not need the iam:PassRole permission. For
more information about Lambda function authorization, see Manage Permissions: Using a
Lambda Function Policy.

Granting pass-role permission 1114

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-using.html
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy
https://docs.amazonaws.cn/lambda/latest/dg/intro-permission-model.html#intro-permission-model-access-policy

Amazon Cognito Developer Guide

Using tokens to assign roles to users

For users who log in through Amazon Cognito user pools, roles can be passed in the ID token that
was assigned by the user pool. The roles appear in the following claims in the ID token:

• The cognito:preferred_role claim is the role ARN.

• The cognito:roles claim is a comma-separated string containing a set of allowed role ARNs.

The claims are set as follows:

• The cognito:preferred_role claim is set to the role from the group with the best (lowest)
Precedence value. If there is only one allowed role, cognito:preferred_role is set to that
role. If there are multiple roles and no single role has the best precedence, this claim is not set.

• The cognito:roles claim is set if there is at least one role.

When using tokens to assign roles, if there are multiple roles that can be assigned to the user,
Amazon Cognito identity pools (federated identities) chooses the role as follows:

• Use the GetCredentialsForIdentity CustomRoleArn parameter if it is set and it matches a role
in the cognito:roles claim. If this parameter doesn't match a role in cognito:roles, deny
access.

• If the cognito:preferred_role claim is set, use it.

• If the cognito:preferred_role claim is not set, the cognito:roles claim is set, and
CustomRoleArn is not specified in the call to GetCredentialsForIdentity, then the
Role resolution setting in the console or the AmbiguousRoleResolution field (in the
RoleMappings parameter of the SetIdentityPoolRoles API) is used to determine the role to be
assigned.

Using rule-based mapping to assign roles to users

Rules allow you to map claims from an identity provider token to IAM roles.

Each rule specifies a token claim (such as a user attribute in the ID token from an Amazon Cognito
user pool), match type, a value, and an IAM role. The match type can be Equals, NotEqual,
StartsWith, or Contains. If a user has a matching value for the claim, the user can assume that

Using tokens to assign roles to users 1115

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html

Amazon Cognito Developer Guide

role when the user gets credentials. For example, you can create a rule that assigns a specific IAM
role for users with a custom:dept custom attribute value of Sales.

Note

In the rule settings, custom attributes require the custom: prefix to distinguish them from
standard attributes.

Rules are evaluated in order, and the IAM role for the first matching rule is used, unless
CustomRoleArn is specified to override the order. For more information about user attributes in
Amazon Cognito user pools, see Working with user attributes.

You can set multiple rules for an authentication provider in the identity pool (federated identities)
console. Rules are applied in order. You can drag the rules to change their order. The first matching
rule takes precedence. If the match type is NotEqual and the claim doesn't exist, the rule is
not evaluated. If no rules match, the Role resolution setting is applied to either Use default
authenticated role or Deny request.

In the API and CLI, you can specify the role to be assigned when no rules match in the
AmbiguousRoleResolution field of the RoleMapping type, which is specified in the
RoleMappings parameter of the SetIdentityPoolRoles API.

To add rule-based mapping to an identity provider in the Amazon Cognito console, add or update
an IdP and select Choose role with rules under Role selection. From there, you can add rules that
map provider claims to IAM roles.

You can set up rule-based mapping for identity providers in the Amazon CLI or API with
the RulesConfiguration field of the RoleMapping type. You can specify this field in the
RoleMappings parameter of the SetIdentityPoolRoles API.

For example, the following Amazon CLI command adds a rule that assigns the
role arn:aws:iam::123456789012:role/Sacramento_team_S3_admin
to users in your Sacramento location who were authenticated by OIDC IdP
arn:aws:iam::123456789012:oidc-provider/myOIDCIdP:

aws cognito-identity set-identity-pool-roles --region us-east-1 --cli-input-json
 file://role-mapping.json

Using rule-based mapping to assign roles to users 1116

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_RoleMapping.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_RoleMapping.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html

Amazon Cognito Developer Guide

Contents of role-mapping.json:

{
 "IdentityPoolId": "us-east-1:12345678-corner-cafe-123456790ab",
 "Roles": {
 "authenticated": "arn:aws:iam::123456789012:role/myS3WriteAccessRole",
 "unauthenticated": "arn:aws:iam::123456789012:role/myS3ReadAccessRole"
 },
 "RoleMappings": {
 "arn:aws:iam::123456789012:oidc-provider/myOIDCIdP": {
 "Type": "Rules",
 "AmbiguousRoleResolution": "AuthenticatedRole",
 "RulesConfiguration": {
 "Rules": [
 {
 "Claim": "locale",
 "MatchType": "Equals",
 "Value": "Sacramento",
 "RoleARN": "arn:aws:iam::123456789012:role/
Sacramento_team_S3_admin"
 }
]
 }
 }
 }
}

For each user pool or other authentication provider that you configure for an identity pool, you
can create up to 25 rules. This limit is not adjustable. For more information, see Quotas in Amazon
Cognito.

Token claims to use in rule-based mapping

Amazon Cognito

An Amazon Cognito ID token is represented as a JSON Web Token (JWT). The token contains claims
about the identity of the authenticated user, such as name, family_name, and phone_number.
For more information about standard claims, see the OpenID Connect specification. Apart from
standard claims, the following are the additional claims specific to Amazon Cognito:

• cognito:groups

• cognito:roles

Token claims to use in rule-based mapping 1117

https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide

• cognito:preferred_role

Amazon

The following claims, along with possible values for those claims, can be used with Login with
Amazon:

• iss: www.amazon.com

• aud: App Id

• sub: sub from the Login with Amazon token

Facebook

The following claims, along with possible values for those claims, can be used with Facebook:

• iss: graph.facebook.com

• aud: App Id

• sub: sub from the Facebook token

Google

A Google token contains standard claims from the OpenID Connect specification. All of the claims
in the OpenID token are available for rule-based mapping. See Google's OpenID Connect site to
learn about the claims available from the Google token.

Apple

An Apple token contains standard claims from the OpenID Connect specification. See
Authenticating Users with Sign in with Apple in Apple’s documentation to learn more about the
claim available from the Apple token. Apple's token doesn’t always contain email.

OpenID

All of the claims in the Open Id token are available for rule-based mapping. For more information
about standard claims, see the OpenID Connect specification. Refer to your OpenID provider
documentation to learn about any additional claims that are available.

SAML

Token claims to use in rule-based mapping 1118

http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://developers.google.com/identity/protocols/OpenIDConnect
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Amazon Cognito Developer Guide

Claims are parsed from the received SAML assertion. All the claims that are available in the SAML
assertion can be used in rule-based mapping.

Best practices for role-based access control

Important

If the claim that you are mapping to a role can be modified by the end user, any end user
can assume your role and set the policy accordingly. Only map claims that cannot be
directly set by the end user to roles with elevated permissions. In an Amazon Cognito user
pool, you can set per-app read and write permissions for each user attribute.

Important

If you set roles for groups in an Amazon Cognito user pool, those roles are passed through
the user's ID token. To use these roles, you must also set Choose role from token for the
authenticated role selection for the identity pool.
You can use the Role resolution setting in the console and the RoleMappings parameter
of the SetIdentityPoolRoles API to specify what the default behavior is when the correct
role cannot be determined from the token.

Getting credentials

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access Amazon resources. This section describes how to get credentials and
how to retrieve an Amazon Cognito identity from an identity pool.

Amazon Cognito supports both authenticated and unauthenticated identities. Unauthenticated
users do not have their identity verified, making this role appropriate for guest users of your app or
in cases when it doesn't matter if users have their identities verified. Authenticated users log in to
your application through a third-party identity provider, or a user pool, that verifies their identities.
Make sure you scope the permissions of resources appropriately so you don't grant access to them
from unauthenticated users.

Amazon Cognito identities are not credentials. They are exchanged for credentials
using web identity federation support in the Amazon Security Token Service (Amazon

Best practices for role-based access control 1119

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_SetIdentityPoolRoles.html

Amazon Cognito Developer Guide

STS). The recommended way to obtain Amazon credentials for your app users is to use
AWS.CognitoIdentityCredentials. The identity in the credentials object is then exchanged
for credentials using Amazon STS.

Note

If you created your identity pool before February 2015, you must reassociate your roles
with your identity pool to use the AWS.CognitoIdentityCredentials constructor
without the roles as parameters. To do so, open the Amazon Cognito console, choose
Manage identity pools, select your identity pool, choose Edit identity Pool, specify your
authenticated and unauthenticated roles, and save the changes.

Web identity credentials providers are part of the default credential provider chain in Amazon
SDKs. To set your identity pool token in a local config file for an Amazon SDK or the Amazon
CLI, add a web_identity_token_file profile entry. See Assume role credential provider in the
Amazon SDKs and Tools Reference Guide.

To learn more about how to populate web identity credentials in your SDK, refer to the SDK
developer guide. For best results, start your project with the identity pool integration that's built in
to Amazon Amplify.

Amazon SDK resources for getting and setting credentials with identity pools

• Identity Pool Federation (Android) in the Amplify Dev Center

• Identity Pool Federation (iOS) in the Amplify Dev Center

• Using Amazon Cognito Identity to authenticate users in the Amazon SDK for JavaScript
Developer Guide

• Amazon Cognito credentials provider in the Amazon SDK for .NET Developer Guide

• Specify Credentials Programmatically in the Amazon SDK for Go Developer Guide

• Supply temporary credentials in code in the Amazon SDK for Java 2.x Developer Guide

• assumeRoleWithWebIdentityCredentialProvider provider in the Amazon SDK for PHP Developer
Guide

• Assume Role With Web Identity Provider in the Amazon SDK for Python (Boto3) documentation

• Specifying your credentials and default region in the Amazon SDK for Rust Developer Guide

Getting credentials 1120

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/sdkref/latest/guide/feature-assume-role-credentials.html
https://docs.amplify.aws/lib/auth/advanced/q/platform/android/#identity-pool-federation
https://docs.amplify.aws/lib/auth/advanced/q/platform/ios/#identity-pool-federation
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/loading-browser-credentials-cognito.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html
https://aws.github.io/aws-sdk-go-v2/docs/configuring-sdk/#specify-credentials-programmatically
https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/credentials-explicit.html
https://docs.amazonaws.cn/sdk-for-php/v3/developer-guide/guide_credentials_provider.html#assume-role-with-web-identity-provider
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html#assume-role-with-web-identity-provider
https://docs.amazonaws.cn/sdk-for-rust/latest/dg/credentials.html

Amazon Cognito Developer Guide

The following sections provide example code in some legacy Amazon SDKs.

Android

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access Amazon resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide Amazon credentials to your app, follow the steps below.

To use a Amazon Cognito identity pool in an Android app, set up Amazon Amplify. For more
information, see Authentication in the Amplify Dev Center.

Retrieving an Amazon Cognito identity

If you're allowing unauthenticated users, you can retrieve a unique Amazon Cognito identifier
(identity ID) for your end user immediately. If you're authenticating users, you can retrieve the
identity ID after you've set the login tokens in the credentials provider:

String identityId = credentialsProvider.getIdentityId();
Log.d("LogTag", "my ID is " + identityId);

Note

Do not call getIdentityId(), refresh(), or getCredentials() in the main
thread of your application. As of Android 3.0 (API Level 11), your app will automatically
fail and throw a NetworkOnMainThreadException if you perform network I/O on the
main application thread. You must move your code to a background thread using
AsyncTask. For more information, consult the Android documentation. You can also call
getCachedIdentityId() to retrieve an ID, but only if one is already cached locally.
Otherwise, the method will return null.

iOS - Objective-C

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access Amazon resources. Amazon Cognito identity pools support both
authenticated and unauthenticated identities. To provide Amazon credentials to your app,
complete the following steps.

To use a Amazon Cognito identity pool in an iOS app, set up Amazon Amplify. For more
information, see Swift Authentication and Flutter Authentication in the Amplify Dev Center.

Getting credentials 1121

https://docs.amplify.aws/lib/auth/getting-started/q/platform/android/
https://developer.android.com/reference/android/os/NetworkOnMainThreadException.html
https://developer.android.com/training/basics/network-ops/connecting.html#AsyncTask
https://docs.amplify.aws/lib/auth/getting-started/q/platform/ios/
https://docs.amplify.aws/lib/auth/getting-started/q/platform/flutter/

Amazon Cognito Developer Guide

Retrieving an Amazon Cognito identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately
if you're allowing unauthenticated users or after you've set the login tokens in the credentials
provider if you're authenticating users:

// Retrieve your Amazon Cognito ID
[[credentialsProvider getIdentityId] continueWithBlock:^id(AWSTask *task) {
 if (task.error) {
 NSLog(@"Error: %@", task.error);
 }
 else {
 // the task result will contain the identity id
 NSString *cognitoId = task.result;
 }
 return nil;
}];

Note

getIdentityId is an asynchronous call. If an identity ID is already set on your
provider, you can call credentialsProvider.identityId to retrieve that identity,
which is cached locally. However, if an identity ID is not set on your provider, calling
credentialsProvider.identityId will return nil. For more information, consult the
Amplify iOS SDK reference.

iOS - Swift

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application
so that your users can access Amazon resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide Amazon credentials to your app, follow the steps below.

To use a Amazon Cognito identity pool in an iOS app, set up Amazon Amplify. For more
information, see Swift Authentication in the Amplify Dev Center.

Retrieving an Amazon Cognito identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately
if you're allowing unauthenticated users or after you've set the login tokens in the credentials
provider if you're authenticating users:

Getting credentials 1122

https://github.com/aws-amplify/aws-sdk-ios
https://docs.amplify.aws/lib/auth/getting-started/q/platform/ios/

Amazon Cognito Developer Guide

// Retrieve your Amazon Cognito ID
credentialsProvider.getIdentityId().continueWith(block: { (task) -> AnyObject? in
 if (task.error != nil) {
 print("Error: " + task.error!.localizedDescription)
 }
 else {
 // the task result will contain the identity id
 let cognitoId = task.result!
 print("Cognito id: \(cognitoId)")
 }
 return task;
})

Note

getIdentityId is an asynchronous call. If an identity ID is already set on your
provider, you can call credentialsProvider.identityId to retrieve that identity,
which is cached locally. However, if an identity ID is not set on your provider, calling
credentialsProvider.identityId will return nil. For more information, consult the
Amplify iOS SDK reference.

JavaScript

If you have not yet created one, create an identity pool in the Amazon Cognito console before
using AWS.CognitoIdentityCredentials.

After you configure an identity pool with your identity providers, you can use
AWS.CognitoIdentityCredentials to authenticate users. To configure your application
credentials to use AWS.CognitoIdentityCredentials, set the credentials property of
either AWS.Config or a per-service configuration. The following example uses AWS.Config:

// Set the region where your identity pool exists (us-east-1, eu-west-1)
AWS.config.region = 'us-east-1';

// Configure the credentials provider to use your identity pool
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: { // optional tokens, used for authenticated login
 'graph.facebook.com': 'FBTOKEN',

Getting credentials 1123

https://github.com/aws-amplify/aws-sdk-ios
https://console.amazonaws.cn/cognito

Amazon Cognito Developer Guide

 'www.amazon.com': 'AMAZONTOKEN',
 'accounts.google.com': 'GOOGLETOKEN',
 'appleid.apple.com': 'APPLETOKEN'
 }
});

// Make the call to obtain credentials
AWS.config.credentials.get(function(){

 // Credentials will be available when this function is called.
 var accessKeyId = AWS.config.credentials.accessKeyId;
 var secretAccessKey = AWS.config.credentials.secretAccessKey;
 var sessionToken = AWS.config.credentials.sessionToken;

});

The optional Logins property is a map of identity provider names to the identity tokens for those
providers. How you get the token from your identity provider depends on the provider you use. For
example, if Facebook is one of your identity providers, you might use the FB.login function from
the Facebook SDK to get an identity provider token:

FB.login(function (response) {
 if (response.authResponse) { // logged in
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030',
 Logins: {
 'graph.facebook.com': response.authResponse.accessToken
 }
 });

 console.log('You are now logged in.');
 } else {
 console.log('There was a problem logging you in.');
 }
});

Retrieving an Amazon Cognito identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately
if you're allowing unauthenticated users or after you've set the login tokens in the credentials
provider if you're authenticating users:

Getting credentials 1124

https://developers.facebook.com/docs/facebook-login/web

Amazon Cognito Developer Guide

var identityId = AWS.config.credentials.identityId;

Unity

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application,
so that your users can access Amazon resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide Amazon credentials to your app, follow the steps below.

The Amazon SDK for Unity is now part of the Amazon SDK for .NET. To get started with Amazon
Cognito in the Amazon SDK for .NET, see Amazon Cognito credentials provider in the Amazon SDK
for .NET Developer Guide. Or see Amplify Dev Center for options for building an app with Amazon
Amplify.

Retrieving an Amazon Cognito identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately
if you're allowing unauthenticated users or after you've set the login tokens in the credentials
provider if you're authenticating users:

credentials.GetIdentityIdAsync(delegate(AmazonCognitoIdentityResult<string> result) {
 if (result.Exception != null) {
 //Exception!
 }
 string identityId = result.Response;
});

Xamarin

You can use Amazon Cognito to deliver temporary, limited-privilege credentials to your application
so that your users can access Amazon resources. Amazon Cognito supports both authenticated and
unauthenticated identities. To provide Amazon credentials to your app, follow the steps below.

The Amazon SDK for Xamarin is now part of the Amazon SDK for .NET. To get started with Amazon
Cognito in the Amazon SDK for .NET, see Amazon Cognito credentials provider in the Amazon SDK
for .NET Developer Guide. Or see Amplify Dev Center for options for building an app with Amazon
Amplify.

Getting credentials 1125

https://docs.amazonaws.cn/mobile/sdkforunity/developerguide/what-is-unity-plugin.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html
https://docs.amplify.aws/
https://docs.amazonaws.cn/mobile/sdkforxamarin/developerguide/Welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html
https://docs.amplify.aws/

Amazon Cognito Developer Guide

Note

Note: If you created your identity pool before February 2015, you must reassociate
your roles with your identity pool in order to use this constructor without the roles as
parameters. To do so, open the Amazon Cognito console, choose Manage identity pools,
select your identity pool, choose Edit identity Pool, specify your authenticated and
unauthenticated roles, and save the changes.

Retrieving an Amazon Cognito identity

You can retrieve a unique Amazon Cognito identifier (identity ID) for your end user immediately
if you're allowing unauthenticated users or after you've set the login tokens in the credentials
provider if you're authenticating users:

var identityId = await credentials.GetIdentityIdAsync();

Accessing Amazon Web Services services with temporary
credentials

The result of a successful authentication with an identity pool is a set of Amazon credentials. With
these credentials, your application can make requests to Amazon resources that are protected with
IAM authentication. With the various Amazon SDKs that you can add to your applications to access
identity pools API operations, you can make unauthenticated API requests that produce temporary
credentials. Then you can add SDKs for other Amazon Web Services services to your client and
sign requests with those temporary credentials. The IAM permissions granted to your temporary-
credentials role must permit the operations that you request from other services.

After you configure your Amazon Cognito credentials provider and retrieve Amazon credentials,
create an Amazon Web Services service client. The following are some examples from Amazon SDK
documentation.

Amazon SDK resources for creating a client

• Amazon Client configuration in the Amazon SDK for C++ Developer Guide

• Using the Amazon SDK for Go V2 with Amazon Web Services services in the Amazon SDK for Go
Developer Guide

Using credentials 1126

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/sdk-for-cpp/v1/developer-guide/client-config.html
https://aws.github.io/aws-sdk-go-v2/docs/making-requests/

Amazon Cognito Developer Guide

• Configuring HTTP clients in the Amazon SDK for Java 2.x Developer Guide

• Creating and calling service objects in the Amazon SDK for JavaScript Developer Guide

• Creating clients in the Amazon SDK for Python (Boto3) documentation

• Creating a service client in the Amazon SDK for Rust Developer Guide

• Using clients in the Amazon SDK for Swift Developer Guide

The following snippet initializes an Amazon DynamoDB client:

Android

To use a Amazon Cognito identity pool in an Android app, set up Amazon Amplify. For more
information, see Authentication in the Amplify Dev Center.

// Create a service client with the provider
AmazonDynamoDB client = new AmazonDynamoDBClient(credentialsProvider);

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited privilege Amazon
credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

iOS - Objective-C

To use a Amazon Cognito identity pool in an iOS app, set up Amazon Amplify. For more
information, see Swift Authentication and Flutter Authentication in the Amplify Dev Center.

// create a configuration that uses the provider
AWSServiceConfiguration *configuration = [AWSServiceConfiguration
 configurationWithRegion:AWSRegionUSEast1 provider:credentialsProvider];
// get a client with the default service configuration
AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited privilege Amazon
credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

Using credentials 1127

https://docs.amazonaws.cn/sdk-for-java/latest/developer-guide/http-configuration.html
https://docs.amazonaws.cn/sdk-for-javascript/v3/developer-guide/creating-and-calling-service-objects.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html#creating-clients
https://docs.amazonaws.cn/sdk-for-rust/latest/dg/client.html
https://docs.amazonaws.cn/sdk-for-swift/latest/developer-guide/using-client-services.html
https://docs.amplify.aws/lib/auth/getting-started/q/platform/android/
https://docs.amplify.aws/lib/auth/getting-started/q/platform/ios/
https://docs.amplify.aws/lib/auth/getting-started/q/platform/flutter/

Amazon Cognito Developer Guide

iOS - Swift

To use a Amazon Cognito identity pool in an iOS app, set up Amazon Amplify. For more
information, see Swift Authentication in the Amplify Dev Center.

// get a client with the default service configuration
let dynamoDB = AWSDynamoDB.default()

// get a client with a custom configuration
AWSDynamoDB.register(with: configuration!, forKey: "USWest2DynamoDB");
let dynamoDBCustom = AWSDynamoDB(forKey: "USWest2DynamoDB")

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited privilege Amazon
credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

JavaScript

// Create a service client with the provider
var dynamodb = new AWS.DynamoDB({region: 'us-west-2'});

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited-privilege Amazon
credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

Unity

The Amazon SDK for Unity is now part of the Amazon SDK for .NET. To get started with Amazon
Cognito in the Amazon SDK for .NET, see Amazon Cognito credentials provider in the Amazon SDK
for .NET Developer Guide. Or see Amplify Dev Center for options for building an app with Amazon
Amplify.

// create a service client that uses credentials provided by Cognito
AmazonDynamoDBClient client = new AmazonDynamoDBClient(credentials, REGION);

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited-privilege Amazon

Using credentials 1128

https://docs.amplify.aws/lib/auth/getting-started/q/platform/ios/
https://docs.amazonaws.cn/mobile/sdkforunity/developerguide/what-is-unity-plugin.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html
https://docs.amplify.aws/

Amazon Cognito Developer Guide

credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

Xamarin

The Amazon SDK for Xamarin is now part of the Amazon SDK for .NET. To get started with Amazon
Cognito in the Amazon SDK for .NET, see Amazon Cognito credentials provider in the Amazon SDK
for .NET Developer Guide. Or see Amplify Dev Center for options for building an app with Amazon
Amplify.

// create a service client that uses credentials provided by Cognito
var client = new AmazonDynamoDBClient(credentials, REGION)

The credentials provider communicates with Amazon Cognito, retrieving both the unique identifier
for authenticated and unauthenticated users as well as temporary, limited-privilege Amazon
credentials for the Amazon Mobile SDK. The retrieved credentials are valid for one hour, and the
provider refreshes them when they expire.

Identity pools third-party identity providers

With Amazon Cognito identity pools, you can integrate with a variety of external identity providers
(IdPs) to provide temporary Amazon credentials through federated authentication in your
application. By configuring your identity pool to work with these external IdPs, you can authorize
access to back-end Amazon resources for your users with authentication by Amazon Cognito user
pools, social providers, OIDC providers, or SAML providers. This section covers the steps to set up
and integrate IdPs with your Amazon Cognito identity pool.

Using the logins property, you can set credentials received from an identity provider (IdP). You
can also associate an identity pool with multiple IdPs. For example, you can set both the Facebook
and Google tokens in the logins property to associate the unique Amazon Cognito identity with
both IdP logins. The user can authenticate with either account, but Amazon Cognito returns the
same user identifier.

The following instructions guide you through authentication with the IdPs that Amazon Cognito
identity pools support.

Topics

• Setting up Facebook as an identity pools IdP

• Setting up Login with Amazon as an identity pools IdP

Third-party identity providers 1129

https://docs.amazonaws.cn/mobile/sdkforxamarin/developerguide/Welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/welcome.html
https://docs.amazonaws.cn/sdk-for-net/v3/developer-guide/cognito-creds-provider.html
https://docs.amplify.aws/

Amazon Cognito Developer Guide

• Setting up Google as an identity pool IdP

• Setting up Sign in with Apple as an identity pool IdP

• Setting up an OIDC provider as an identity pool IdP

• Setting up a SAML provider as an identity pool IdP

Setting up Facebook as an identity pools IdP

Amazon Cognito identity pools work with Facebook to provide federated authentication for your
application users. This section explains how to register and set up your application with Facebook
as an IdP.

Set up Facebook

Register your application with Facebook before you authenticate Facebook users and interact with
Facebook APIs.

The Facebook Developers portal helps you to set up your application. Do this procedure before you
integrate Facebook in your Amazon Cognito identity pool:

Note

Amazon Cognito identity pools federation isn't compatible with Facebook Limited Login.
For more information about how to set up Facebook Login for iOS without exceeding the
permissions set for Limited Login, see Facebook Login for iOS - Quickstart at Meta for
Developers.

Setting up Facebook

1. At the Facebook Developers portal, log in with your Facebook credentials.

2. From the Apps menu, select Add a New App.

3. Select a platform and complete the quick start process.

Android

For more information about how to integrate Android apps with Facebook Login, see the Facebook
Getting Started Guide.

Facebook 1130

https://developers.facebook.com/
https://developers.facebook.com/docs/facebook-login/limited-login
https://developers.facebook.com/docs/facebook-login/ios
https://developers.facebook.com/
https://developers.facebook.com/docs/android/getting-started
https://developers.facebook.com/docs/android/getting-started

Amazon Cognito Developer Guide

iOS - Objective-C

For more information about how to integrate iOS Objective-C apps with Facebook Login, see the
Facebook Getting Started Guide.

iOS - Swift

For more information about how to integrate iOS Swift apps with Facebook Login, see the
Facebook Getting Started Guide.

JavaScript

For more information about how to integrate JavaScript web apps with Facebook Login, see the
Facebook Getting Started Guide.

Configure an identity provider in the Amazon Cognito identity pools console

Use the following procedure to configure your identity provider.

To add a Facebook identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Facebook.

5. Enter the App ID of the OAuth project that you created at Meta for Developers. For more
information, see Facebook Login in the Meta for Developers Docs.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

Facebook 1131

https://developers.facebook.com/docs/ios/getting-started/
https://developers.facebook.com/docs/ios/getting-started/
https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.3
https://console.amazonaws.cn/cognito/home
https://developers.facebook.com/
https://developers.facebook.com/docs/facebook-login/

Amazon Cognito Developer Guide

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Using Facebook

Android

To add Facebook authentication, first follow the Facebook guide and integrate the Facebook SDK
into your application. Then add a Login with Facebook button to your Android user interface. The
Facebook SDK uses a session object to track its state. Amazon Cognito uses the access token from
this session object to authenticate the user, generate the unique identifier, and, if needed, grant
the user access to other Amazon resources.

After you authenticate your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider.

Facebook SDK 4.0 or later:

Map<String, String> logins = new HashMap<String, String>();
logins.put("graph.facebook.com", AccessToken.getCurrentAccessToken().getToken());
credentialsProvider.setLogins(logins);

Facebook SDK before 4.0:

Map<String, String> logins = new HashMap<String, String>();
logins.put("graph.facebook.com", Session.getActiveSession().getAccessToken());
credentialsProvider.setLogins(logins);

The Facebook login process initializes a singleton session in its SDK. The Facebook session object
contains an OAuth token that Amazon Cognito uses to generate Amazon credentials for your
authenticated end user. Amazon Cognito also uses the token to check against your user database

Facebook 1132

https://developers.facebook.com/docs/android
https://developers.facebook.com/docs/facebook-login/android

Amazon Cognito Developer Guide

for the existence of a user that matches this particular Facebook identity. If the user already exists,
the API returns the existing identifier. Otherwise, the API returns a new identifier. The client SDK
automatically caches identifiers on the local device.

Note

After you set the logins map, make a call to refresh or get to retrieve the Amazon
credentials.

iOS - Objective-C

To add Facebook authentication, first follow the Facebook guide and integrate the Facebook
SDK into your application. Then add a Login with Facebook button to your user interface. The
Facebook SDK uses a session object to track its state. Amazon Cognito uses the access token from
this session object to authenticate the user and bind them to a unique Amazon Cognito identity
pools (federated identities).

To provide the Facebook access token to Amazon Cognito, implement the
AWSIdentityProviderManager protocol.

When you implement the logins method, return a dictionary that contains
AWSIdentityProviderFacebook. This dictionary acts as the key, and the current access token
from the authenticated Facebook user acts as the value, as shown in the following code example.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 FBSDKAccessToken* fbToken = [FBSDKAccessToken currentAccessToken];
 if(fbToken){
 NSString *token = fbToken.tokenString;
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook : token }];
 }else{
 return [AWSTask taskWithError:[NSError errorWithDomain:@"Facebook Login"
 code:-1
 userInfo:@{@"error":@"No current
 Facebook access token"}]];
 }
}

When you instantiate the AWSCognitoCredentialsProvider, pass the class that implements
AWSIdentityProviderManager as the value of identityProviderManager in the

Facebook 1133

https://developers.facebook.com/docs/ios
https://developers.facebook.com/docs/facebook-login/ios
https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

constructor. For more information, go to the AWSCognitoCredentialsProvider reference page and
choose initWithRegionType:identityPoolId:identityProviderManager.

iOS - Swift

To add Facebook authentication, first follow the Facebook guide and integrate the Facebook
SDK into your application. Then add a Login with Facebook button to your user interface. The
Facebook SDK uses a session object to track its state. Amazon Cognito uses the access token from
this session object to authenticate the user and bind them to a unique Amazon Cognito identity
pools (federated identities).

Note

Amazon Cognito identity pools federation isn't compatible with Facebook Limited Login.
For more information about how to set up Facebook Login for iOS without exceeding the
permissions set for Limited Login, see Facebook Login for iOS - Quickstart at Meta for
Developers.

To provide the Facebook access token to Amazon Cognito, implement the
AWSIdentityProviderManager protocol.

When you implement the logins method, return a dictionary containing
AWSIdentityProviderFacebook. This dictionary acts as the key, and the current access token
from the authenticated Facebook user acts as the value, as shown in the following code example.

class FacebookProvider: NSObject, AWSIdentityProviderManager {
 func logins() -> AWSTask<NSDictionary> {
 if let token = AccessToken.current?.authenticationToken {
 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }
 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 , userInfo:
 ["Facebook" : "No current Facebook access token"]))
 }
}

When you instantiate the AWSCognitoCredentialsProvider, pass the class that implements
AWSIdentityProviderManager as the value of identityProviderManager in the
constructor. For more information, go to the AWSCognitoCredentialsProvider reference page and
choose initWithRegionType:identityPoolId:identityProviderManager.

Facebook 1134

https://github.com/aws-amplify/aws-sdk-ios
https://developers.facebook.com/docs/ios
https://developers.facebook.com/docs/facebook-login/ios
https://developers.facebook.com/docs/facebook-login/limited-login
https://developers.facebook.com/docs/facebook-login/ios
https://github.com/aws-amplify/aws-sdk-ios
https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

JavaScript

To add Facebook authentication, follow the Facebook Login for the Web and add the Login with
Facebook button on your website. The Facebook SDK uses a session object to track its state.
Amazon Cognito uses the access token from this session object to authenticate the user, generate
the unique identifier, and, if needed, grant the user access to other Amazon resources.

After you authenticate your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider.

FB.login(function (response) {

 // Check if the user logged in successfully.
 if (response.authResponse) {

 console.log('You are now logged in.');

 // Add the Facebook access token to the Amazon Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'graph.facebook.com': response.authResponse.accessToken
 }
 });

 // Obtain AWS credentials
 AWS.config.credentials.get(function(){
 // Access AWS resources here.
 });

 } else {
 console.log('There was a problem logging you in.');
 }

});

The Facebook SDK obtains an OAuth token that Amazon Cognito uses to generate Amazon
credentials for your authenticated end user. Amazon Cognito also uses the token to check against
your user database for the existence of a user matching this particular Facebook identity. If the
user already exists, the API returns the existing identifier. Otherwise a new identifier is returned.
Identifiers are automatically cached by the client SDK on the local device.

Facebook 1135

https://developers.facebook.com/docs/facebook-login/login-flow-for-web/v2.3

Amazon Cognito Developer Guide

Note

After you set the logins map, make a call to refresh or get to get the credentials. For
a code example, see "Use Case 17, Integrating User Pools with Cognito Identity," in the
JavaScript README file.

Unity

To add Facebook authentication, first follow the Facebook guide and integrate the Facebook SDK
into your application. Amazon Cognito uses the Facebook access token from the FB object to
generate a unique user identifier that is associated with an Amazon Cognito identity.

After you authenticate your user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider:

void Start()
{
 FB.Init(delegate() {
 if (FB.IsLoggedIn) { //User already logged in from a previous session
 AddFacebookTokenToCognito();
 } else {
 FB.Login ("email", FacebookLoginCallback);
 }
 });
}

void FacebookLoginCallback(FBResult result)
{
 if (FB.IsLoggedIn)
 {
 AddFacebookTokenToCognito();
 }
 else
 {
 Debug.Log("FB Login error");
 }
}

void AddFacebookTokenToCognito()
{

Facebook 1136

https://github.com/amazon-archives/amazon-cognito-identity-js/blob/master/README.md
https://developers.facebook.com/docs/unity

Amazon Cognito Developer Guide

 credentials.AddLogin ("graph.facebook.com",
 AccessToken.CurrentAccessToken.TokenString);
}

Before you use FB.AccessToken, call FB.Login() and make sure FB.IsLoggedIn is true.

Xamarin

Xamarin for Android:

public void InitializeFacebook() {
 FacebookSdk.SdkInitialize(this.ApplicationContext);
 callbackManager = CallbackManagerFactory.Create();
 LoginManager.Instance.RegisterCallback(callbackManager, new FacebookCallback <
 LoginResult > () {
 HandleSuccess = loginResult = > {
 var accessToken = loginResult.AccessToken;
 credentials.AddLogin("graph.facebook.com", accessToken.Token);
 //open new activity
 },
 HandleCancel = () = > {
 //throw error message
 },
 HandleError = loginError = > {
 //throw error message
 }
 });
 LoginManager.Instance.LogInWithReadPermissions(this, new List < string > {
 "public_profile"
 });
 }

Xamarin for iOS:

public void InitializeFacebook() {
 LoginManager login = new LoginManager();
 login.LogInWithReadPermissions(readPermissions.ToArray(),
 delegate(LoginManagerLoginResult result, NSError error) {
 if (error != null) {
 //throw error message
 } else if (result.IsCancelled) {
 //throw error message

Facebook 1137

Amazon Cognito Developer Guide

 } else {
 var accessToken = loginResult.AccessToken;
 credentials.AddLogin("graph.facebook.com", accessToken.Token);
 //open new view controller
 }
 });
}

Setting up Login with Amazon as an identity pools IdP

Amazon Cognito identity pools work with Login with Amazon to provide federated authentication
for your mobile and web app users. This section explains how to register and set up your
application with Login with Amazon as an identity provider (IdP).

Set up Login with Amazon to work with Amazon Cognito in the Developer Portal. For more
information, see Setting Up Login with Amazon in the Login with Amazon FAQ.

Note

To integrate Login with Amazon into a Xamarin application, follow the Xamarin Getting
Started Guide.

Note

You can't natively integrate Login with Amazon on the Unity platform. Instead, use a web
view and go through the browser sign-in flow.

Setting up Login with Amazon

Implement Login with Amazon

In the Amazon developer portal, you can set up an OAuth application to integrate with your
identity pool, find Login with Amazon documentation, and download SDKs. Choose Developer
console, then Login with Amazon in the developer portal. You can create a security profile
for your application and then build Login with Amazon authentication mechanisms into your
app. See Getting credentials for more information about how to integrate Login with Amazon
authentication with your app.

Login with Amazon 1138

https://developer.amazon.com/login-with-amazon
https://developer.amazon.com/docs/login-with-amazon/faq.html#setting-up-login-with-amazon
https://developer.xamarin.com/guides/cross-platform/getting_started/
https://developer.xamarin.com/guides/cross-platform/getting_started/
https://developer.amazon.com/apps-and-games/login-with-amazon

Amazon Cognito Developer Guide

Amazon issues an OAuth 2.0 client ID for your new security profile. You can find the client ID on
the security profile Web Settings tab. Enter the Security Profile ID in the App ID field of the Login
with Amazon IdP in your identity pool.

Note

You enter the Security Profile ID in the App ID field of the Login with Amazon IdP in your
identity pool. This differs from user pools, which use client ID.

Configure the external provider in the Amazon Cognito console

To add a Login with Amazon identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Login with Amazon.

5. Enter the App ID of the OAuth project that you created at Login with Amazon. For more
information, see Login with Amazon Documentation.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

Login with Amazon 1139

https://console.amazonaws.cn/cognito/home
https://developer.amazon.com/apps-and-games/login-with-amazon
https://developer.amazon.com/docs/login-with-amazon/documentation-overview.html

Amazon Cognito Developer Guide

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Use Login with Amazon: Android

After you authenticate Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the onSuccess method of the TokenListener interface. The code looks like this:

@Override
public void onSuccess(Bundle response) {
 String token = response.getString(AuthzConstants.BUNDLE_KEY.TOKEN.val);
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("www.amazon.com", token);
 credentialsProvider.setLogins(logins);
}

Use Login with Amazon: iOS - Objective-C

After you authenticate Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the requestDidSucceed method of the AMZNAccessTokenDelegate:

- (void)requestDidSucceed:(APIResult *)apiResult {
 if (apiResult.api == kAPIAuthorizeUser) {
 [AIMobileLib getAccessTokenForScopes:[NSArray arrayWithObject:@"profile"]
 withOverrideParams:nil delegate:self];
 }
 else if (apiResult.api == kAPIGetAccessToken) {
 credentialsProvider.logins = @{ @(AWSCognitoLoginProviderKeyLoginWithAmazon):
 apiResult.result };
 }
}}

Use Login with Amazon: iOS - Swift

After you authenticate Amazon login, you can pass the token to the Amazon Cognito credentials
provider in the requestDidSucceed method of the AMZNAccessTokenDelegate:

Login with Amazon 1140

Amazon Cognito Developer Guide

func requestDidSucceed(apiResult: APIResult!) {
 if apiResult.api == API.AuthorizeUser {
 AIMobileLib.getAccessTokenForScopes(["profile"], withOverrideParams: nil,
 delegate: self)
 } else if apiResult.api == API.GetAccessToken {
 credentialsProvider.logins =
 [AWSCognitoLoginProviderKey.LoginWithAmazon.rawValue: apiResult.result]
 }
}

Use Login with Amazon: JavaScript

After the user authenticates with Login with Amazon and is redirected back to your website,
the Login with Amazon access_token is provided in the query string. Pass that token into the
credentials login map.

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'www.amazon.com': 'Amazon Access Token'
 }
});

Setting up Google as an identity pool IdP

Amazon Cognito identity pools work with Google to provide federated authentication for your
mobile application users. This section explains how to register and set up your application with
Google as an IdP.

Android

Note

If your app uses Google and is available on multiple mobile platforms, you should configure
it as an OpenID Connect Provider. Add all created client IDs as additional audience values
for better integration. To learn more about Google's cross-client identity model, see Cross-
client Identity.

Google 1141

https://developers.google.com/accounts/docs/CrossClientAuth
https://developers.google.com/accounts/docs/CrossClientAuth

Amazon Cognito Developer Guide

Setting up Google

To activate Google Sign-in for Android, create a Google Developers console project for your
application.

1. Go to the Google Developers console and create a new project.

2. Choose APIs & Services, then OAuth consent screen. Customize the information that Google
shows to your users when Google asks for their consent to share their profile data with your
app.

3. Choose Credentials, then Create credentials. Choose OAuth client ID. Select Android as the
Application type. Create a separate client ID for each platform where you develop your app.

4. From Credentials, choose Manage service accounts. Choose Create service account. Enter
your service account details, and then choose Create and continue.

5. Grant the service account access to your project. Grant users access to the service account as
your app requires.

6. Choose your new service account, choose the Keys tab, and Add key. Create and download a
new JSON key.

For more information about how to use the Google Developers console, see Creating and
managing projects in the Google Cloud documentation.

For more information about how to integrate Google into your Android app, see Authenticate users
with Sign in with Google in the Google Identity documentation.

To add a Google identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Google.

5. Enter the Client ID of the OAuth project you created at Google Cloud Platform. For more
information, see Setting up OAuth 2.0 in Google Cloud Platform Console Help.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

Google 1142

https://console.developers.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://developer.android.com/identity/sign-in/credential-manager-siwg
https://developer.android.com/identity/sign-in/credential-manager-siwg
https://console.amazonaws.cn/cognito/home
https://console.cloud.google.com/
https://support.google.com/cloud/answer/6158849

Amazon Cognito Developer Guide

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Use Google

To enable login with Google in your application, follow the instructions in the Google
documentation for Android. When a user signs in, they request an OpenID Connect authentication
token from Google. Amazon Cognito then uses the token to authenticate the user and generate a
unique identifier.

The following example code shows how to retrieve the authentication token from the Google Play
service:

GooglePlayServicesUtil.isGooglePlayServicesAvailable(getApplicationContext());
AccountManager am = AccountManager.get(this);
Account[] accounts = am.getAccountsByType(GoogleAuthUtil.GOOGLE_ACCOUNT_TYPE);
String token = GoogleAuthUtil.getToken(getApplicationContext(), accounts[0].name,
 "audience:server:client_id:YOUR_GOOGLE_CLIENT_ID");
Map<String, String> logins = new HashMap<String, String>();
logins.put("accounts.google.com", token);

Google 1143

https://developers.google.com/identity/sign-in/android/start
https://developers.google.com/identity/sign-in/android/start

Amazon Cognito Developer Guide

credentialsProvider.setLogins(logins);

iOS - Objective-C

Note

If your app uses Google and is available on multiple mobile platforms, configure Google
as an OpenID Connect Provider. Add all created client IDs as additional audience values
for better integration. To learn more about Google's cross-client identity model, see Cross-
client Identity.

Setting up Google

To enable Google Sign-in for iOS, create a Google Developers console project for your application.

1. Go to the Google Developers console and create a new project.

2. Choose APIs & Services, then OAuth consent screen. Customize the information that Google
shows to your users when Google asks for their consent to share their profile data with your
app.

3. Choose Credentials, then Create credentials. Choose OAuth client ID. Select iOS as the
Application type. Create a separate client ID for each platform where you develop your app.

4. From Credentials, choose Manage service accounts. Choose Create service account. Enter
your service account details, and choose Create and continue.

5. Grant the service account access to your project. Grant users access to the service account as
your app requires.

6. Choose your new service account. Choose the Keys tab, and Add key. Create and download a
new JSON key.

For more information about how to use the Google Developers console, see Creating and
managing projects in the Google Cloud documentation.

For more information about how to integrate Google into your iOS app, see Google Sign-In for iOS
in the Google Identity documentation.

To add a Google identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

Google 1144

https://developers.google.com/accounts/docs/CrossClientAuth
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://developers.google.com/identity/sign-in/ios/start-integrating
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Google.

5. Enter the Client ID of the OAuth project you created at Google Cloud Platform. For more
information, see Setting up OAuth 2.0 in Google Cloud Platform Console Help.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Use Google

To enable login with Google in your application, follow the Google documentation for iOS.
Successful authentication results in an OpenID Connect authentication token, which Amazon
Cognito uses to authenticate the user and generate a unique identifier.

Successful authentication results in a GTMOAuth2Authentication object, which contains an
id_token, which Amazon Cognito uses to authenticate the user and generate a unique identifier:

Google 1145

https://console.cloud.google.com/
https://support.google.com/cloud/answer/6158849
https://developers.google.com/identity/sign-in/ios/start/

Amazon Cognito Developer Guide

- (void)finishedWithAuth: (GTMOAuth2Authentication *)auth error: (NSError *) error {
 NSString *idToken = [auth.parameters objectForKey:@"id_token"];
 credentialsProvider.logins = @{ @(AWSCognitoLoginProviderKeyGoogle): idToken };
 }

iOS - Swift

Note

If your app uses Google and is available on multiple mobile platforms, configure Google
as an OpenID Connect Provider. Add all created client IDs as additional audience values
for better integration. To learn more about Google's cross-client identity model, see Cross-
client Identity.

Setting up Google

To enable Google Sign-in for iOS, create a Google Developers console project for your application.

1. Go to the Google Developers console and create a new project.

2. Choose APIs & Services, then OAuth consent screen. Customize the information that Google
shows to your users when Google asks for their consent to share their profile data with your
app.

3. Choose Credentials, then Create credentials. Choose OAuth client ID. Select iOS as the
Application type. Create a separate client ID for each platform where you develop your app.

4. From Credentials, choose Manage service accounts. Choose Create service account. Enter
your service account details, and choose Create and continue.

5. Grant the service account access to your project. Grant users access to the service account as
your app requires.

6. Choose your new service account, choose the Keys tab, and Add key. Create and download a
new JSON key.

For more information about how to use the Google Developers console, see Creating and
managing projects in the Google Cloud documentation.

For more information about how to integrate Google into your iOS app, see Google Sign-In for iOS
in the Google Identity documentation.

Google 1146

https://developers.google.com/accounts/docs/CrossClientAuth
https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://developers.google.com/identity/sign-in/ios/start-integrating

Amazon Cognito Developer Guide

Choose Manage Identity Pools from the Amazon Cognito Console home page:

Configuring the external provider in the Amazon Cognito Console

1. Choose the name of the identity pool where you want to enable Google as an external
provider. The Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, choose Edit identity pool. The Edit identity
pool page appears.

3. Scroll down and choose Authentication providers to expand the section.

4. Choose the Google tab.

5. Choose Unlock.

6. Enter the Google Client ID that you obtained from Google, and then choose Save Changes.

Use Google

To enable login with Google in your application, follow the Google documentation for iOS.
Successful authentication results in an OpenID Connect authentication token that Amazon Cognito
uses to authenticate the user and generate a unique identifier.

Successful authentication results in a GTMOAuth2Authentication object that contains an
id_token. Amazon Cognito uses this token to authenticate the user and generate a unique
identifier:

func finishedWithAuth(auth: GTMOAuth2Authentication!, error: NSError!) {
 if error != nil {
 print(error.localizedDescription)
 }
 else {
 let idToken = auth.parameters.objectForKey("id_token")
 credentialsProvider.logins = [AWSCognitoLoginProviderKey.Google.rawValue:
 idToken!]
 }
}

Google 1147

https://console.www.amazonaws.cn/cognito/home
https://developers.google.com/identity/sign-in/ios/start/

Amazon Cognito Developer Guide

JavaScript

Note

If your app uses Google and is available on multiple mobile platforms, you should configure
Google as an OpenID Connect Provider. Add all created client IDs as additional audience
values for better integration. To learn more about Google's cross-client identity model, see
Cross-client Identity.

Setting up Google

To enable Google Sign-in for a JavaScript web app, create a Google Developers console project for
your application.

1. Go to the Google Developers console and create a new project.

2. Choose APIs & Services, then OAuth consent screen. Customize the information that Google
shows to your users when Google asks their consent to share their profile data with your app.

3. Choose Credentials, then Create credentials. Choose OAuth client ID. Select Web application
as the Application type. Create a separate client ID for each platform where you develop your
app.

4. From Credentials, choose Manage service accounts. Choose Create service account. Enter
your service account details, and choose Create and continue.

5. Grant the service account access to your project. Grant users access to the service account as
your app requires.

6. Choose your new service account, choose the Keys tab, and Add key. Create and download a
new JSON key.

For more information about how to use the Google Developers console, see Creating and
managing projects in the Google Cloud documentation.

For more information about how to integrate Google into your web app, see Sign in With Google in
the Google Identity documentation.

Configure the External Provider in the Amazon Cognito Console

Google 1148

https://developers.google.com/accounts/docs/CrossClientAuth
https://console.developers.google.com/
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://developers.google.com/identity/gsi/web/guides/overview

Amazon Cognito Developer Guide

To add a Google identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Google.

5. Enter the Client ID of the OAuth project you created at Google Cloud Platform. For more
information, see Setting up OAuth 2.0 in Google Cloud Platform Console Help.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Use Google

To enable login with Google in your application, follow the Google documentation for Web.

Google 1149

https://console.amazonaws.cn/cognito/home
https://console.cloud.google.com/
https://support.google.com/cloud/answer/6158849
https://developers.google.com/identity/gsi/web/guides/overview

Amazon Cognito Developer Guide

Successful authentication results in a response object that contains an id_token that Amazon
Cognito uses to authenticate the user and generate a unique identifier:

function signinCallback(authResult) {
 if (authResult['status']['signed_in']) {

 // Add the Google access token to the Amazon Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'accounts.google.com': authResult['id_token']
 }
 });

 // Obtain AWS credentials
 AWS.config.credentials.get(function(){
 // Access AWS resources here.
 });
 }
}

Setting up Sign in with Apple as an identity pool IdP

Amazon Cognito identity pools work with Sign in with Apple to provide federated authentication
for your mobile application and web application users. This section explains how to register and set
up your application using Sign in with Apple as an identity provider (IdP).

To add Sign in with Apple as an authentication provider to an identity pool, you must complete two
procedures. First, integrate Sign in with Apple in an application, and then configure Sign in with
Apple in identity pools. For the most up-to-date information about setting up Sign in with Apple,
see Configuring Your Environment for Sign in with Apple in the Apple Developer documentation.

Set up Sign in with Apple

To configure Sign in with Apple as an IdP, register your application with the Apple to receive client
ID.

1. Create a developer account with Apple.

2. Sign in with your Apple credentials.

3. In the left navigation pane, choose Certificates, IDs & Profiles.

Sign in with Apple 1150

https://developer.apple.com/documentation/signinwithapple/configuring-your-environment-for-sign-in-with-apple
https://developer.apple.com/programs/enroll/
https://developer.apple.com/account/#/welcome

Amazon Cognito Developer Guide

4. In the left navigation pane, choose Identifiers.

5. On the Identifiers page, choose the +icon.

6. On the Register a New Identifier page, choose App IDs, and then choose Continue.

7. On the Register an App ID page, do the following:

a. Under Description, type a description.

b. Under Bundle ID, type an identifier. Make a note of this Bundle ID as you need this value
to configure Apple as a provider in the identity pool.

c. Under Capabilities, choose Sign In with Apple, and then choose Edit.

d. On the Sign in with Apple: App ID Configuration page, select the appropriate setting for
your app. Then choose Save.

e. Choose Continue.

8. On the Confirm your App ID page, choose Register.

9. Proceed to step 10 if you want to integrate Sign in with Apple with a native iOS application.
Step 11 is for applications that you want to integrate with Sign in with Apple JS.

10. On the Identifiers page, choose the App IDs menu, then Services IDs. Choose the + icon.

11. On the Register a New Identifier page, choose Services IDs, and then choose Continue.

12. On the Register a Services ID page, do the following:

a. Under Description, type a description.

b. Under Identifier, type an identifier. Make a note of the services ID as you need this value
to configure Apple as a provider in your identity pool.

c. Select Sign In with Apple and then choose Configure.

d. On the Web Authentication Configuration page, choose a Primary App ID. Under
Website URLs, choose the + icon. For Domains and Subdomains, enter the domain name
of your app. In Return URLs, enter the callback URL where the authorization redirects the
user after they authenticate through Sign in with Apple.

e. Choose Next.

f. Choose Continue, and then choose Register.

13. In the left navigation pane, choose Keys.

14. On the Keys page, choose the + icon.

15. On the Register a New Key page, do the following:
Sign in with Apple 1151

Amazon Cognito Developer Guide

a. Under Key Name, type a key name.

b. Choose Sign In with Apple, and then choose Configure.

c. On the Configure Key page, choose a Primary App ID and then choose Save.

d. Choose Continue, and then choose Register.

Note

To integrate Sign in with Apple with a native iOS application, see Implementing User
Authentication with Sign in with Apple.
To integrate Sign in with Apple in a platform other than native iOS, see Sign in with Apple
JS.

Configure the external provider in the Amazon Cognito federated identities
console

Use the following procedure to configure your external provider.

To add a Sign in with Apple identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Sign in with Apple.

5. Enter the Services ID of the OAuth project you created with Apple Developer. For more
information, see Authenticating users with Sign in with Apple in Sign in with Apple
Documentation.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that

Sign in with Apple 1152

https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple
https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapplejs/
https://developer.apple.com/documentation/signinwithapplejs/
https://console.amazonaws.cn/cognito/home
https://developer.apple.com
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple

Amazon Cognito Developer Guide

will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Sign in with Apple as a provider in the Amazon Cognito federated identities CLI
examples

This example creates an identity pool named MyIdentityPool with Sign in with Apple as an IdP.

aws cognito-identity create-identity-pool --identity-
pool-name MyIdentityPool --supported-login-providers
appleid.apple.com="sameple.apple.clientid"

For more information, see Create identity pool

Generate an Amazon Cognito identity ID

This example generates (or retrieves) an Amazon Cognito ID. This is a public API so you don't need
any credentials to call this API.

aws cognito-identity get-id --identity-pool-id SampleIdentityPoolId --
logins appleid.apple.com="SignInWithAppleIdToken"

For more information, see get-id.

Get credentials for an Amazon Cognito identity ID

Sign in with Apple 1153

https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/create-identity-pool.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/get-id.html

Amazon Cognito Developer Guide

This example returns credentials for the provided identity ID and Sign in with Apple login. This is a
public API so you don't need any credentials to call this API.

aws cognito-identity get-credentials-for-identity --identity-id
SampleIdentityId --logins appleid.apple.com="SignInWithAppleIdToken"

For more information, see get-credentials-for-identity

Use Sign in with Apple: Android

Apple doesn't provide an SDK that supports Sign in with Apple for Android. You can use the web
flow in a web view instead.

• To configure Sign in with Apple in your application, follow Configuring Your Web page for Sign In
with Apple in the Apple documentation.

• To add a Sign in with Apple button to your Android user interface, follow Displaying Sign in with
Apple buttons on the web in the Apple documentation.

• To securely authenticate users with Sign in with Apple, follow Authenticating Users with Sign in
with Apple in the Apple documentation.

Sign in with Apple uses a session object to track its state. Amazon Cognito uses the ID token from
this session object to authenticate the user, generate the unique identifier, and, if needed, grant
the user access to other Amazon resources.

@Override
public void onSuccess(Bundle response) {
 String token = response.getString("id_token");
 Map<String, String> logins = new HashMap<String, String>();
 logins.put("appleid.apple.com", token);
 credentialsProvider.setLogins(logins);
}

Use Sign in with Apple: iOS - Objective-C

Apple provided SDK support for Sign in with Apple in native iOS applications. To implement
user authentication with Sign in with Apple in native iOS devices, follow Implementing User
Authentication with Sign in with Apple in the Apple documentation.

Amazon Cognito uses the ID token to authenticate the user, generate the unique identifier, and, if
needed, grant the user access to other Amazon resources.

Sign in with Apple 1154

https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/get-credentials-for-identity.html
https://developer.apple.com/documentation/signinwithapple/configuring-your-webpage-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/configuring-your-webpage-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/displaying-sign-in-with-apple-buttons-on-the-web
https://developer.apple.com/documentation/signinwithapple/displaying-sign-in-with-apple-buttons-on-the-web
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple
https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple
https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple

Amazon Cognito Developer Guide

(void)finishedWithAuth: (ASAuthorizationAppleIDCredential *)auth error: (NSError *)
 error {
 NSString *idToken = [ASAuthorizationAppleIDCredential
 objectForKey:@"identityToken"];
 credentialsProvider.logins = @{ "appleid.apple.com": idToken };
 }

Use Sign in with Apple: iOS - Swift

Apple provided SDK support for Sign in with Apple in native iOS applications. To implement
user authentication with Sign in with Apple in native iOS devices, follow Implementing User
Authentication with Sign in with Apple in the Apple documentation.

Amazon Cognito uses the ID token to authenticate the user, generate the unique identifier, and, if
needed, grant the user access to other Amazon resources.

For more information about how to set up Sign in with Apple in iOS, see Set up Sign in with Apple

func finishedWithAuth(auth: ASAuthorizationAppleIDCredential!, error: NSError!) {
 if error != nil {
 print(error.localizedDescription)
 }
 else {
 let idToken = auth.identityToken,
 credentialsProvider.logins = ["appleid.apple.com": idToken!]
 }
}

Use Sign in with Apple: JavaScript

Apple doesn’t provide an SDK that supports Sign in with Apple for JavaScript. You can use the web
flow in a web view instead.

• To configure Sign in with Apple in your application, follow Configuring Your Web page for Sign In
with Apple in the Apple documentation.

• To add a Sign in with Apple button to your JavaScript user interface, follow Displaying Sign in
with Apple buttons on the web in the Apple documentation.

• To securely authenticate users with Sign in with Apple, follow Authenticating Users with Sign in
with Apple in the Apple documentation.

Sign in with Apple 1155

https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple
https://developer.apple.com/documentation/authenticationservices/implementing-user-authentication-with-sign-in-with-apple
https://docs.amplify.aws/sdk/auth/federated-identities/q/platform/ios#set-up-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/configuring-your-webpage-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/configuring-your-webpage-for-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/displaying-sign-in-with-apple-buttons-on-the-web
https://developer.apple.com/documentation/signinwithapple/displaying-sign-in-with-apple-buttons-on-the-web
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple
https://developer.apple.com/documentation/signinwithapple/authenticating-users-with-sign-in-with-apple

Amazon Cognito Developer Guide

Sign in with Apple uses a session object to track its state. Amazon Cognito uses the ID token from
this session object to authenticate the user, generate the unique identifier, and, if needed, grant
the user access to other Amazon resources.

function signinCallback(authResult) {
 // Add the apple's id token to the Amazon Cognito credentials login map.
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'appleid.apple.com': authResult['id_token']
 }
 });

 // Obtain AWS credentials
 AWS.config.credentials.get(function(){
 // Access AWS resources here.
 });
}

Setting up an OIDC provider as an identity pool IdP

OpenID Connect is an open standard for authentication that a number of login providers support.
With Amazon Cognito, you can link identities with OpenID Connect providers that you configure
through Amazon Identity and Access Management.

Adding an OpenID Connect provider

For information about how to create an OpenID Connect provider, see Creating OpenID Connect
(OIDC) identity providers in the Amazon Identity and Access Management User Guide.

Associating a provider with Amazon Cognito

To add an OIDC identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose OpenID Connect (OIDC).

Open ID Connect providers 1156

http://openid.net/connect/
http://www.amazonaws.cn/iam/
https://docs.amazonaws.cn/IAM/latest/UserGuide/identity-providers-oidc.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/identity-providers-oidc.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

5. Choose an OIDC identity provider from the IAM IdPs in your Amazon Web Services account.
If you want to add a new SAML provider, choose Create new provider to navigate to the IAM
console.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

You can associate multiple OpenID Connect providers with a single identity pool.

Using OpenID Connect

Refer to your provider's documentation for how to sign in and receive an ID token.

After you have a token, add the token to the logins map. Use the URI of your provider as the key.

Validating an OpenID Connect token

When you first integrate with Amazon Cognito, you might receive an InvalidToken exception. It
is important to understand how Amazon Cognito validates OpenID Connect (OIDC) tokens.

Open ID Connect providers 1157

Amazon Cognito Developer Guide

Note

As specified here (https://tools.ietf.org/html/rfc7523), Amazon Cognito provides a grace
period of 5 minutes to handle any clock skew between systems.

1. The iss parameter must match the key that the logins map uses (such as login.provider.com).

2. The signature must be valid. The signature must be verifiable via an RSA public key.

Note

Identity pools maintain a cache of the OIDC IdP signing key for a brief period. If your
provider changes their signing key, Amazon Cognito might return a NoKeyFound error
until this cache refreshes. If you encounter this error, wait about ten minutes for your
identity pool to refresh the signing key.

3. The fingerprint of the certificate public key matches the fingerprint that you set in IAM when
you created your OIDC provider.

4. If the azp parameter is present, check this value against listed client IDs in your OIDC provider.

5. If the azp parameter isn't present, check the aud parameter against listed client IDs in your
OIDC provider.

The website jwt.io is a valuable resource that you can use to decode tokens and verify these values.

Android

Map<String, String> logins = new HashMap<String, String>();
logins.put("login.provider.com", token);
credentialsProvider.setLogins(logins);

iOS - Objective-C

credentialsProvider.logins = @{ "login.provider.com": token }

JavaScript

AWS.config.credentials = new AWS.CognitoIdentityCredentials({

Open ID Connect providers 1158

https://tools.ietf.org/html/rfc7523
http://jwt.io/

Amazon Cognito Developer Guide

 IdentityPoolId: 'IDENTITY_POOL_ID',
 Logins: {
 'login.provider.com': token
 }
});

Setting up a SAML provider as an identity pool IdP

With Amazon Cognito identity pools, you can authenticate users with identity providers (IdPs)
through SAML 2.0. You can use an IdP that supports SAML with Amazon Cognito to provide a
simple onboarding flow for your users. Your SAML-supporting IdP specifies the IAM roles that your
users can assume. This way, different users can receive different sets of permissions.

Configuring your identity pool for a SAML IdP

The following steps describe how to configure your identity pool to use a SAML-based IdP.

Note

Before you configure your identity pool to support a SAML provider, first configure the
SAML IdP in the IAM console. For more information, see Integrating third-party SAML
solution providers with Amazon in the IAM User Guide.

To add a SAML identity provider (IdP)

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose SAML.

5. Choose a SAML identity provider from the IAM IdPs in your Amazon Web Services account.
If you want to add a new SAML provider, choose Create new provider to navigate to the IAM
console.

6. To set the role that Amazon Cognito requests when it issues credentials to users who have
authenticated with this provider, configure Role settings.

• You can assign users from that IdP the Default role that you set up when you configured
your Authenticated role, or you can Choose role with rules.

SAML identity providers 1159

https://console.amazonaws.cn/iam
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_saml_3rd-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_saml_3rd-party.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

i. If you chose Choose role with rules, enter the source Claim from your user's
authentication, the Operator that you want to compare the claim by, the Value that
will cause a match to this role choice, and the Role that you want to assign when the
Role assignment matches. Select Add another to create an additional rule based on a
different condition.

ii. Choose a Role resolution. When your user's claims don't match your rules, you can
deny credentials or issue credentials for your Authenticated role.

7. To change the principal tags that Amazon Cognito assigns when it issues credentials to users
who have authenticated with this provider, configure Attributes for access control.

a. To apply no principal tags, choose Inactive.

b. To apply principal tags based on sub and aud claims, choose Use default mappings.

c. To create your own custom schema of attributes to principal tags, choose Use custom
mappings. Then enter a Tag key that you want to source from each Claim that you want
to represent in a tag.

8. Select Save changes.

Configuring your SAML IdP

After you create the SAML provider, configure your SAML IdP to add relying party trust between
your IdP and Amazon. With many IdPs, you can specify a URL that the IdP can use to read relying
party information and certificates from an XML document. For Amazon, you can use https://
signin.www.amazonaws.cn/static/saml-metadata.xml. The next step is to configure the SAML
assertion response from your IdP to populate the claims that Amazon needs. For details on the
claim configuration, see Configuring SAML assertions for authentication response.

When your SAML IdP includes more than one signing certificate in SAML metadata, at sign-in your
identity pool determines that the SAML assertion is valid if it matches any certificate in the SAML
metadata.

Customizing your user role with SAML

When you use SAML with Amazon Cognito Identity, you can customize the role for the end user.
Amazon Cognito only supports the enhanced flow with the SAML-based IdP. You don't need to
specify an authenticated or unauthenticated role for the identity pool to use a SAML-based IdP.
The https://www.amazonaws.cn/SAML/Attributes/Role claim attribute specifies one

SAML identity providers 1160

https://signin.www.amazonaws.cn/static/saml-metadata.xml
https://signin.www.amazonaws.cn/static/saml-metadata.xml
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_providers_create_saml_assertions.html

Amazon Cognito Developer Guide

or more pairs of comma -delimited role and provider ARN. These are the roles that the user can
assume. You can configure the SAML IdP to populate the role attributes based on the user attribute
information available from the IdP. If you receive multiple roles in the SAML assertion, populate
the optional customRoleArn parameter when you call getCredentialsForIdentity. The user
assumes this customRoleArn if the role matches one in the claim in the SAML assertion.

Authenticating users with a SAML IdP

To federate with the SAML-based IdP, determine the URL where the user initiates
the login. Amazon federation uses IdP-initiated login. In AD FS 2.0, the URL
takes the form of https://<fqdn>/adfs/ls/IdpInitiatedSignOn.aspx?
loginToRp=urn:amazon:webservices.

To add support for your SAML IdP in Amazon Cognito, first authenticate users with your SAML
identity provider from your iOS or Android application. The code that you use to integrate and
authenticate with the SAML IdP is specific to SAML providers. After you authenticate your user, you
can use Amazon Cognito APIs to provide the resulting SAML assertion to Amazon Cognito Identity .

You can't repeat, or replay, a SAML assertion in the Logins map of your identity pool API
request. A replayed SAML assertion has an assertion ID that duplicates the ID of an earlier API
request. API operations that can accept a SAML assertion in the Logins map include GetId,
GetCredentialsForIdentity, GetOpenIdToken, and GetOpenIDTokenForDeveloperIdentity. You
can replay a SAML assertion ID one time per API request in an identity pool authentication flow.
For example, you can supply the same SAML assertion in a GetId request and a subsequent
GetCredentialsForIdentity request, but not in a second GetId request.

Developer-authenticated identities

Amazon Cognito supports developer-authenticated identities, in addition to web identity
federation through Setting up Facebook as an identity pools IdP, Setting up Google as an identity
pool IdP, Setting up Login with Amazon as an identity pools IdP, and Setting up Sign in with Apple
as an identity pool IdP. With developer-authenticated identities, you can register and authenticate
users through your own existing authentication process, while still using Amazon Cognito to
synchronize user data and access Amazon resources. Using developer-authenticated identities
involves interaction between the end user device, your backend for authentication, and Amazon
Cognito. For more details, see Understanding Amazon Cognito Authentication Part 2: Developer
Authenticated Identities in the Amazon blog.

Developer-authenticated identities 1161

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-2-developer-authenticated-identities/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-2-developer-authenticated-identities/

Amazon Cognito Developer Guide

Understanding the authentication flow

The GetOpenIdTokenForDeveloperIdentity API operation can initiate developer authentication
for both enhanced and basic authentication. This API authenticates a request with
administrative credentials. The Logins map is an identity pool developer provider name like
login.mydevprovider paired with a custom identifier.

Example:

"Logins": {
 "login.mydevprovider": "my developer identifier"
 }

Enhanced authentication

Call the GetCredentialsForIdentity API operation with a Logins map with the
name cognito-identity.amazonaws.com and a value of the token from
GetOpenIdTokenForDeveloperIdentity.

Example:

"Logins": {
 "cognito-identity.amazonaws.com": "eyJra12345EXAMPLE"
 }

GetCredentialsForIdentity with developer-authenticated identities returns temporary
credentials for the default authenticated role of the identity pool.

Basic authentication

Call the AssumeRoleWithWebIdentity API operation and request the RoleArn of any IAM role that
has an appropriate trust relationship defined. Set the value of WebIdentityToken to the token
obtained from GetOpenIdTokenForDeveloperIdentity.

For information on the developer-authenticated identities authflow and how they differ from
external-provider identities, see Identity pools authentication flow.

Define a developer provider name and associate it with an identity pool

To use developer-authenticated identities, you'll need an identity pool associated with your
developer provider. To do so, follow these steps:

Understanding the authentication flow 1162

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

Amazon Cognito Developer Guide

To add a custom developer provider

1. Choose Identity pools from the Amazon Cognito console. Select an identity pool.

2. Choose the User access tab.

3. Select Add identity provider.

4. Choose Custom developer provider.

5. Enter a Developer provider name. You can't change or delete your developer provider after
you add it.

6. Select Save changes.

Note: Once the provider name has been set, it cannot be changed.

Implement an identity provider

Android

To use developer-authenticated identities, implement your own identity provider class that extends
AWSAbstractCognitoIdentityProvider. Your identity provider class should return a response
object containing the token as an attribute.

Following is a basic example of an identity provider.

public class DeveloperAuthenticationProvider extends
 AWSAbstractCognitoDeveloperIdentityProvider {

 private static final String developerProvider = "<Developer_provider_name>";

 public DeveloperAuthenticationProvider(String accountId, String identityPoolId,
 Regions region) {
 super(accountId, identityPoolId, region);
 // Initialize any other objects needed here.
 }

 // Return the developer provider name which you choose while setting up the
 // identity pool in the &COG; Console

 @Override
 public String getProviderName() {
 return developerProvider;

Implement an identity provider 1163

https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

 }

 // Use the refresh method to communicate with your backend to get an
 // identityId and token.

 @Override
 public String refresh() {

 // Override the existing token
 setToken(null);

 // Get the identityId and token by making a call to your backend
 // (Call to your backend)

 // Call the update method with updated identityId and token to make sure
 // these are ready to be used from Credentials Provider.

 update(identityId, token);
 return token;

 }

 // If the app has a valid identityId return it, otherwise get a valid
 // identityId from your backend.

 @Override
 public String getIdentityId() {

 // Load the identityId from the cache
 identityId = cachedIdentityId;

 if (identityId == null) {
 // Call to your backend
 } else {
 return identityId;
 }

 }
}

To use this identity provider, you have to pass it into CognitoCachingCredentialsProvider.
Here's an example:

Implement an identity provider 1164

Amazon Cognito Developer Guide

DeveloperAuthenticationProvider developerProvider = new
 DeveloperAuthenticationProvider(null, "IDENTITYPOOLID", context, Regions.USEAST1);
CognitoCachingCredentialsProvider credentialsProvider = new
 CognitoCachingCredentialsProvider(context, developerProvider, Regions.USEAST1);

iOS - objective-C

To use developer-authenticated identities, implement your own identity provider class that extends
AWSCognitoCredentialsProviderHelper. Your identity provider class should return a response object
containing the token as an attribute.

@implementation DeveloperAuthenticatedIdentityProvider
/*
 * Use the token method to communicate with your backend to get an
 * identityId and token.
 */

- (AWSTask <NSString*> *) token {
 //Write code to call your backend:
 //Pass username/password to backend or some sort of token to authenticate user
 //If successful, from backend call getOpenIdTokenForDeveloperIdentity with logins
 map
 //containing "your.provider.name":"enduser.username"
 //Return the identity id and token to client
 //You can use AWSTaskCompletionSource to do this asynchronously

 // Set the identity id and return the token
 self.identityId = response.identityId;
 return [AWSTask taskWithResult:response.token];
}

@end

To use this identity provider, pass it into AWSCognitoCredentialsProvider as shown in the
following example:

DeveloperAuthenticatedIdentityProvider * devAuth =
 [[DeveloperAuthenticatedIdentityProvider alloc]
 initWithRegionType:AWSRegionYOUR_IDENTITY_POOL_REGION
 identityPoolId:@"YOUR_IDENTITY_POOL_ID"
 useEnhancedFlow:YES
 identityProviderManager:nil];

Implement an identity provider 1165

https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

AWSCognitoCredentialsProvider *credentialsProvider = [[AWSCognitoCredentialsProvider
 alloc]

 initWithRegionType:AWSRegionYOUR_IDENTITY_POOL_REGION
 identityProvider:devAuth];

If you want to support both unauthenticated identities and developer-authenticated
identities, override the logins method in your AWSCognitoCredentialsProviderHelper
implementation.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else{
 return [super logins];
 }
}

If you want to support developer-authenticated identities and social providers,
you must manage who the current provider is in your logins implementation of
AWSCognitoCredentialsProviderHelper.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else if (/*logic to determine if user is Facebook*/){
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook :
 [FBSDKAccessToken currentAccessToken] }];
 }else {
 return [super logins];
 }
}

iOS - swift

To use developer-authenticated identities, implement your own identity provider class that extends
AWSCognitoCredentialsProviderHelper. Your identity provider class should return a response object
containing the token as an attribute.

import AWSCore
/*

Implement an identity provider 1166

https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

 * Use the token method to communicate with your backend to get an
 * identityId and token.
 */
class DeveloperAuthenticatedIdentityProvider : AWSCognitoCredentialsProviderHelper {
 override func token() -> AWSTask<NSString> {
 //Write code to call your backend:
 //pass username/password to backend or some sort of token to authenticate user, if
 successful,
 //from backend call getOpenIdTokenForDeveloperIdentity with logins map containing
 "your.provider.name":"enduser.username"
 //return the identity id and token to client
 //You can use AWSTaskCompletionSource to do this asynchronously

 // Set the identity id and return the token
 self.identityId = resultFromAbove.identityId
 return AWSTask(result: resultFromAbove.token)
}

To use this identity provider, pass it into AWSCognitoCredentialsProvider as shown in the
following example:

let devAuth =
 DeveloperAuthenticatedIdentityProvider(regionType: .YOUR_IDENTITY_POOL_REGION,
 identityPoolId: "YOUR_IDENTITY_POOL_ID", useEnhancedFlow: true,
 identityProviderManager:nil)
let credentialsProvider =
 AWSCognitoCredentialsProvider(regionType: .YOUR_IDENTITY_POOL_REGION,
 identityProvider:devAuth)
let configuration = AWSServiceConfiguration(region: .YOUR_IDENTITY_POOL_REGION,
 credentialsProvider:credentialsProvider)
AWSServiceManager.default().defaultServiceConfiguration = configuration

If you want to support both unauthenticated identities and developer-authenticated
identities, override the logins method in your AWSCognitoCredentialsProviderHelper
implementation.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else {
 return super.logins()
 }

Implement an identity provider 1167

Amazon Cognito Developer Guide

}

If you want to support developer-authenticated identities and social providers,
you must manage who the current provider is in your logins implementation of
AWSCognitoCredentialsProviderHelper.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else if (/*logic to determine if user is Facebook*/){
 if let token = AccessToken.current?.authenticationToken {
 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }
 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 , userInfo:
 ["Facebook" : "No current Facebook access token"]))
 }else {
 return super.logins()
 }
}

JavaScript

Once you obtain an identity ID and session token from your backend, you will pass them into the
AWS.CognitoIdentityCredentials provider. Here's an example.

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'IDENTITY_POOL_ID',
 IdentityId: 'IDENTITY_ID_RETURNED_FROM_YOUR_PROVIDER',
 Logins: {
 'cognito-identity.amazonaws.com': 'TOKEN_RETURNED_FROM_YOUR_PROVIDER'
 }
});

Unity

To use developer-authenticated identities, you must extend CognitoAWSCredentials and
override the RefreshIdentity method to retrieve the user identity id and token from your
backend and return them. Following is a simple example of an identity provider that would contact
a hypothetical backend at 'example.com':

using UnityEngine;

Implement an identity provider 1168

Amazon Cognito Developer Guide

using System.Collections;
using Amazon.CognitoIdentity;
using System.Collections.Generic;
using ThirdParty.Json.LitJson;
using System;
using System.Threading;

public class DeveloperAuthenticatedCredentials : CognitoAWSCredentials
{
 const string PROVIDER_NAME = "example.com";
 const string IDENTITY_POOL = "IDENTITY_POOL_ID";
 static readonly RegionEndpoint REGION = RegionEndpoint.USEast1;

 private string login = null;

 public DeveloperAuthenticatedCredentials(string loginAlias)
 : base(IDENTITY_POOL, REGION)
 {
 login = loginAlias;
 }

 protected override IdentityState RefreshIdentity()
 {
 IdentityState state = null;
 ManualResetEvent waitLock = new ManualResetEvent(false);
 MainThreadDispatcher.ExecuteCoroutineOnMainThread(ContactProvider((s) =>
 {
 state = s;
 waitLock.Set();
 }));
 waitLock.WaitOne();
 return state;
 }

 IEnumerator ContactProvider(Action<IdentityState> callback)
 {
 WWW www = new WWW("http://example.com/?username="+login);
 yield return www;
 string response = www.text;

 JsonData json = JsonMapper.ToObject(response);

 //The backend has to send us back an Identity and a OpenID token
 string identityId = json["IdentityId"].ToString();

Implement an identity provider 1169

Amazon Cognito Developer Guide

 string token = json["Token"].ToString();

 IdentityState state = new IdentityState(identityId, PROVIDER_NAME, token,
 false);
 callback(state);
 }
}

The code above uses a thread dispatcher object to call a coroutine. If you don't have a way to do
this in your project, you can use the following script in your scenes:

using System;
using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class MainThreadDispatcher : MonoBehaviour
{
 static Queue<IEnumerator> _coroutineQueue = new Queue<IEnumerator>();
 static object _lock = new object();

 public void Update()
 {
 while (_coroutineQueue.Count > 0)
 {
 StartCoroutine(_coroutineQueue.Dequeue());
 }
 }

 public static void ExecuteCoroutineOnMainThread(IEnumerator coroutine)
 {
 lock (_lock) {
 _coroutineQueue.Enqueue(coroutine);
 }
 }
}

Xamarin

To use developer-authenticated identities, you must extend CognitoAWSCredentials and
override the RefreshIdentity method to retrieve the user identity id and token from your

Implement an identity provider 1170

Amazon Cognito Developer Guide

backend and return them. Following is a basic example of an identity provider that would contact a
hypothetical backend at 'example.com':

public class DeveloperAuthenticatedCredentials : CognitoAWSCredentials
{
 const string PROVIDER_NAME = "example.com";
 const string IDENTITY_POOL = "IDENTITY_POOL_ID";
 static readonly RegionEndpoint REGION = RegionEndpoint.USEast1;
 private string login = null;

 public DeveloperAuthenticatedCredentials(string loginAlias)
 : base(IDENTITY_POOL, REGION)
 {
 login = loginAlias;
 }

 protected override async Task<IdentityState> RefreshIdentityAsync()
 {
 IdentityState state = null;
 //get your identity and set the state
 return state;
 }
}

Updating the logins map (Android and iOS only)

Android

After successfully authenticating the user with your authentication system, update the logins map
with the developer provider name and a developer user identifier. This is an alphanumeric string
that uniquely identifies a user in your authentication system. Be sure to call the refresh method
after updating the logins map as the identityId might have changed:

HashMap<String, String> loginsMap = new HashMap<String, String>();
loginsMap.put(developerAuthenticationProvider.getProviderName(),
 developerUserIdentifier);

credentialsProvider.setLogins(loginsMap);
credentialsProvider.refresh();

Updating the logins map (Android and iOS only) 1171

Amazon Cognito Developer Guide

iOS - objective-C

The iOS SDK only calls your logins method to get the latest logins map if there are no credentials
or they have expired. If you want to force the SDK to obtain new credentials (for example, your
end user went from unauthenticated to authenticated and you want credentials against the
authenticated user), call clearCredentials on your credentialsProvider.

[credentialsProvider clearCredentials];

iOS - swift

The iOS SDK only calls your logins method to get the latest logins map if there are no credentials
or they have expired. If you want to force the SDK to obtain new credentials (e.g., your end user
went from unauthenticated to authenticated and you want credentials against the authenticated
user), call clearCredentials on your credentialsProvider.

credentialsProvider.clearCredentials()

Getting a token (server side)

You obtain a token by calling GetOpenIdTokenForDeveloperIdentity. This API must be invoked from
your backend using Amazon developer credentials. It must not be invoked from the client SDK.
The API receives the Cognito identity pool ID; a logins map containing your identity provider name
as the key and identifier as the value; and optionally a Cognito identity ID (for example, you are
making an unauthenticated user authenticated). The identifier can be the username of your user,
an email address, or a numerical value. The API responds to your call with a unique Cognito ID for
your user and an OpenID Connect token for the end user.

A few things to keep in mind about the token returned by
GetOpenIdTokenForDeveloperIdentity:

• You can specify a custom expiration time for the token so you can cache it. If you don't provide
any custom expiration time, the token is valid for 15 minutes.

• The maximum token duration that you can set is 24 hours.

• Be mindful of the security implications of increasing the token duration. If an attacker obtains
this token, they can exchange it for Amazon credentials for the end user for the token duration.

Getting a token (server side) 1172

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html

Amazon Cognito Developer Guide

The following Java snippet shows how to initialize an Amazon Cognito client and retrieve a token
for a developer-authenticated identity.

// authenticate your end user as appropriate
//

// if authenticated, initialize a cognito client with your AWS developer credentials
AmazonCognitoIdentity identityClient = new AmazonCognitoIdentityClient(
 new BasicAWSCredentials("access_key_id", "secret_access_key")
);

// create a new request to retrieve the token for your end user
GetOpenIdTokenForDeveloperIdentityRequest request =
 new GetOpenIdTokenForDeveloperIdentityRequest();
request.setIdentityPoolId("YOUR_COGNITO_IDENTITY_POOL_ID");

request.setIdentityId("YOUR_COGNITO_IDENTITY_ID"); //optional, set this if your client
 has an
 //identity ID that you want to link
 to this
 //developer account

// set up your logins map with the username of your end user
HashMap<String,String> logins = new HashMap<>();
logins.put("YOUR_IDENTITY_PROVIDER_NAME","YOUR_END_USER_IDENTIFIER");
request.setLogins(logins);

// optionally set token duration (in seconds)
request.setTokenDuration(60 * 15l);
GetOpenIdTokenForDeveloperIdentityResult response =
 identityClient.getOpenIdTokenForDeveloperIdentity(request);

// obtain identity id and token to return to your client
String identityId = response.getIdentityId();
String token = response.getToken();

//code to return identity id and token to client
//...

Following the preceding steps, you should be able to integrate developer-authenticated identities
in your app. If you have any issues or questions please feel free to post in our forums.

Getting a token (server side) 1173

https://forums.aws.csdn.net/forum.jspa?forumID=173

Amazon Cognito Developer Guide

Connect to an existing social identity

All linking of providers when you are using developer-authenticated identities must be done from
your backend. To connect a custom identity to a user's social identity (Login with Amazon, Sign
in with Apple, Facebook, or Google), add the identity provider token to the logins map when you
call GetOpenIdTokenForDeveloperIdentity. To make this possible, when you call your backend
from your client SDK to authenticate your end user, additionally pass the end user's social provider
token.

For example, if you are trying to link a custom identity to Facebook, you would add the
Facebook token in addition to your identity provider identifier to the logins map when you call
GetOpenIdTokenForDeveloperIdentity.

logins.put("YOUR_IDENTITY_PROVIDER_NAME","YOUR_END_USER_IDENTIFIER");
logins.put("graph.facebook.com","END_USERS_FACEBOOK_ACCESSTOKEN");

Supporting transition between providers

Android

Your application might require supporting unauthenticated identities or authenticated identities
using public providers (Login with Amazon, Sign in with Apple, Facebook, or Google) along with
developer-authenticated identities. The essential difference between developer-authenticated
identities and other identities (unauthenticated identities and authenticated identities using
public provider) is the way the identityId and token are obtained. For other identities, the mobile
application will interact directly with Amazon Cognito instead of contacting your authentication
system. So the mobile application should be able to support two distinct flows depending on the
choice made by the app user. For this, you will have to make some changes to the custom identity
provider.

The refresh method checks the logins map. If the map is not empty and has a key with developer
provider name, then call your backend. Otherwise, call the getIdentityId method and return null.

public String refresh() {

 setToken(null);

 // If the logins map is not empty make a call to your backend
 // to get the token and identityId

Connect to an existing social identity 1174

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html

Amazon Cognito Developer Guide

 if (getProviderName() != null &&
 !this.loginsMap.isEmpty() &&
 this.loginsMap.containsKey(getProviderName())) {

 /**
 * This is where you would call your backend
 **/

 // now set the returned identity id and token in the provider
 update(identityId, token);
 return token;

 } else {
 // Call getIdentityId method and return null
 this.getIdentityId();
 return null;
 }
}

Similarly the getIdentityId method will have two flows depending on the contents of the logins
map:

public String getIdentityId() {

 // Load the identityId from the cache
 identityId = cachedIdentityId;

 if (identityId == null) {

 // If the logins map is not empty make a call to your backend
 // to get the token and identityId

 if (getProviderName() != null && !this.loginsMap.isEmpty()
 && this.loginsMap.containsKey(getProviderName())) {

 /**
 * This is where you would call your backend
 **/

 // now set the returned identity id and token in the provider
 update(identityId, token);
 return token;

Supporting transition between providers 1175

Amazon Cognito Developer Guide

 } else {
 // Otherwise call &COG; using getIdentityId of super class
 return super.getIdentityId();
 }

 } else {
 return identityId;
 }

}

iOS - objective-C

Your application might require supporting unauthenticated identities or authenticated identities
using public providers (Login with Amazon, Sign in with Apple, Facebook, or Google) along with
developer-authenticated identities. To do this, override the AWSCognitoCredentialsProviderHelper
logins method to be able to return the correct logins map based on the current identity provider.
This example shows you how you might pivot between unauthenticated, Facebook and developer-
authenticated.

- (AWSTask<NSDictionary<NSString *, NSString *> *> *)logins {
 if(/*logic to determine if user is unauthenticated*/) {
 return [AWSTask taskWithResult:nil];
 }else if (/*logic to determine if user is Facebook*/){
 return [AWSTask taskWithResult: @{ AWSIdentityProviderFacebook :
 [FBSDKAccessToken currentAccessToken] }];
 }else {
 return [super logins];
 }
}

When you transition from unauthenticated to authenticated, you should call
[credentialsProvider clearCredentials]; to force the SDK to get new authenticated
credentials. When you switch between two authenticated providers and you aren't trying to link
the two providers (for example, you are not providing tokens for multiple providers in your logins
dictionary), call [credentialsProvider clearKeychain];. This will clear both the credentials
and identity and force the SDK to get new ones.

Supporting transition between providers 1176

https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

iOS - swift

Your application might require supporting unauthenticated identities or authenticated identities
using public providers (Login with Amazon, Sign in with Apple, Facebook, or Google) along with
developer-authenticated identities. To do this, override the AWSCognitoCredentialsProviderHelper
logins method to be able to return the correct logins map based on the current identity provider.
This example shows you how you might pivot between unauthenticated, Facebook and developer-
authenticated.

override func logins () -> AWSTask<NSDictionary> {
 if(/*logic to determine if user is unauthenticated*/) {
 return AWSTask(result:nil)
 }else if (/*logic to determine if user is Facebook*/){
 if let token = AccessToken.current?.authenticationToken {
 return AWSTask(result: [AWSIdentityProviderFacebook:token])
 }
 return AWSTask(error:NSError(domain: "Facebook Login", code: -1 , userInfo:
 ["Facebook" : "No current Facebook access token"]))
 }else {
 return super.logins()
 }
}

When you transition from unauthenticated to authenticated, you should call
credentialsProvider.clearCredentials() to force the SDK to get new authenticated
credentials. When you switch between two authenticated providers and you aren't trying to link
the two providers (i.e. you are not providing tokens for multiple providers in your logins dictionary),
you should call credentialsProvider.clearKeychain(). This will clear both the credentials
and identity and force the SDK to get new ones.

Unity

Your application might require supporting unauthenticated identities or authenticated identities
using public providers (Login with Amazon, Sign in with Apple, Facebook, or Google) along with
developer-authenticated identities. The essential difference between developer-authenticated
identities and other identities (unauthenticated identities and authenticated identities using
public provider) is the way the identityId and token are obtained. For other identities, the mobile
application will interact directly with Amazon Cognito instead of contacting your authentication
system. The mobile application should be able to support two distinct flows depending on the

Supporting transition between providers 1177

https://github.com/aws-amplify/aws-sdk-ios

Amazon Cognito Developer Guide

choice made by the app user. For this you will have to make some changes to the custom identity
provider.

The recommended way to do it in Unity is to extend your identity provider from
AmazonCognitoEnhancedIdentityProvide instead of AbstractCognitoIdentityProvider, and call the
parent RefreshAsync method instead of your own in case the user is not authenticated with your
own backend. If the user is authenticated, you can use the same flow explained before.

Xamarin

Your application might require supporting unauthenticated identities or authenticated identities
using public providers (Login with Amazon, Sign in with Apple, Facebook, or Google) along with
developer-authenticated identities. The essential difference between developer-authenticated
identities and other identities (unauthenticated identities and authenticated identities using
public provider) is the way the identityId and token are obtained. For other identities, the mobile
application will interact directly with Amazon Cognito instead of contacting your authentication
system. The mobile application should be able to support two distinct flows depending on the
choice made by the app user. For this, you will have to make some changes to the custom identity
provider.

Switching unauthenticated users to authenticated users

Amazon Cognito identity pools support both authenticated and unauthenticated users.
Unauthenticated users receive access to your Amazon resources even if they aren't logged in with
any of your identity providers (IdPs). This degree of access is useful to display content to users
before they log in. Each unauthenticated user has a unique identity in the identity pool, even
though they haven't been individually logged in and authenticated.

This section describes the case where your user chooses to switch from logging in with an
unauthenticated identity to using an authenticated identity.

Android

Users can log in to your application as unauthenticated guests. Eventually they might decide to log
in using one of the supported IdPs. Amazon Cognito makes sure that an old identity retains the
same unique identifier as the new one, and that the profile data is merged automatically.

Your application is informed of a profile merge through the IdentityChangedListener
interface. Implement the identityChanged method in the interface to receive these messages:

Switching identities 1178

Amazon Cognito Developer Guide

@override
public void identityChanged(String oldIdentityId, String newIdentityId) {
 // handle the change
}

iOS - objective-C

Users can log in to your application as unauthenticated guests. Eventually they might decide to log
in using one of the supported IdPs. Amazon Cognito makes sure that an old identity retains the
same unique identifier as the new one, and that the profile data is merged automatically.

NSNotificationCenter informs your application of a profile merge:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(identityIdDidChange:)
 name:AWSCognitoIdentityIdChangedNotification
 object:nil];

-(void)identityDidChange:(NSNotification*)notification {
 NSDictionary *userInfo = notification.userInfo;
 NSLog(@"identity changed from %@ to %@",
 [userInfo objectForKey:AWSCognitoNotificationPreviousId],
 [userInfo objectForKey:AWSCognitoNotificationNewId]);
}

iOS - swift

Users can log in to your application as unauthenticated guests. Eventually they might decide to log
in using one of the supported IdPs. Amazon Cognito makes sure that an old identity retains the
same unique identifier as the new one, and that the profile data is merged automatically.

NSNotificationCenter informs your application of a profile merge:

[NSNotificationCenter.defaultCenter().addObserver(observer: self
 selector:"identityDidChange"
 name:AWSCognitoIdentityIdChangedNotification
 object:nil)

func identityDidChange(notification: NSNotification!) {
 if let userInfo = notification.userInfo as? [String: AnyObject] {
 print("identity changed from: \(userInfo[AWSCognitoNotificationPreviousId])

iOS - objective-C 1179

Amazon Cognito Developer Guide

 to: \(userInfo[AWSCognitoNotificationNewId])")
 }
}

JavaScript

Initially unauthenticated user

Users typically start with the unauthenticated role. For this role, you set the credentials property of
your configuration object without a Logins property. In this case, your default configuration might
look like the following:

// set the default config object
var creds = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030'
});
AWS.config.credentials = creds;

Switch to authenticated user

When an unauthenticated user logs in to an IdP and you have a token, you can switch the user from
unauthenticated to authenticated by calling a custom function that updates the credentials object
and adds the Logins token:

// Called when an identity provider has a token for a logged in user
function userLoggedIn(providerName, token) {
 creds.params.Logins = creds.params.Logins || {};
 creds.params.Logins[providerName] = token;

 // Expire credentials to refresh them on the next request
 creds.expired = true;
}

You can also create a CognitoIdentityCredentials object. If you do, you must reset
the credentials properties of any existing service objects to reflect the updated credentials
configuration information. See Using the global configuration object.

For more information about the CognitoIdentityCredentials object, see
Amazon.CognitoIdentityCredentials in the Amazon SDK for JavaScript API Reference.

JavaScript 1180

https://docs.amazonaws.cn/sdk-for-javascript/latest/developer-guide/global-config-object.html
https://docs.amazonaws.cn/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html

Amazon Cognito Developer Guide

Unity

Users can log in to your application as unauthenticated guests. Eventually they might decide to log
in using one of the supported IdPs. Amazon Cognito makes sure that an old identity retains the
same unique identifier as the new one, and that the profile data is merged automatically.

You can subscribe to the IdentityChangedEvent to be notified of profile merges:

credentialsProvider.IdentityChangedEvent += delegate(object sender,
 CognitoAWSCredentials.IdentityChangedArgs e)
{
 // handle the change
 Debug.log("Identity changed from " + e.OldIdentityId + " to " + e.NewIdentityId);
};

Xamarin

Users can log in to your application as unauthenticated guests. Eventually they might decide to log
in using one of the supported IdPs. Amazon Cognito makes sure that an old identity retains the
same unique identifier as the new one, and that the profile data is merged automatically.

credentialsProvider.IdentityChangedEvent += delegate(object sender,
 CognitoAWSCredentials.IdentityChangedArgs e){
 // handle the change
 Console.WriteLine("Identity changed from " + e.OldIdentityId + " to " +
 e.NewIdentityId);
};

Unity 1181

Amazon Cognito Developer Guide

Amazon Cognito Sync

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

Amazon Cognito Sync is an Amazon Web Services service and client library that makes it possible
to sync application-related user data across devices. Amazon Cognito Sync can synchronize user
profile data across mobile devices and the web without using your own backend. The client libraries
cache data locally so that your app can read and write data regardless of device connectivity status.
When the device is online, you can synchronize data. If you set up push sync, you can notify other
devices immediately that an update is available.

For information about Amazon Cognito Identity region availability, see Amazon Service Region
Availability.

To learn more about Amazon Cognito Sync, see the following topics.

Topics

• Getting started with Amazon Cognito Sync

• Synchronizing data across clients

• Handling event callbacks

• Implementing push synchronization

• Implementing Amazon Cognito Sync streams

• Customizing workflows with Amazon Cognito Events

Getting started with Amazon Cognito Sync

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.

Getting started with Amazon Cognito Sync 1182

http://www.amazonaws.cn/appsync/
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
http://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
http://www.amazonaws.cn/appsync/

Amazon Cognito Developer Guide

It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

Amazon Cognito Sync is an Amazon service and client library that enable cross-device syncing of
application-related user data. You can use it to synchronize user profile data across mobile devices
and web applications. The client libraries cache data locally so your app can read and write data
regardless of device connectivity status. When the device is online, you can synchronize data, and if
you set up push sync, notify other devices immediately that an update is available.

Set up an identity pool in Amazon Cognito

Amazon Cognito Sync requires an Amazon Cognito identity pool to provide user identities. Before
you use Amazon Cognito Sync you must first set up an identity pool. To create an identity pool and
install the SDK, see Getting started with Amazon Cognito identity pools.

Store and sync data

After you have set up your identity pool and installed the SDK, you can start storing and syncing
data between devices. For more information, see Synchronizing data across clients.

Synchronizing data across clients

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

With Amazon Cognito, you can save user data in datasets that contain key-value pairs. Amazon
Cognito associates this data with an identity in your identity pool so that your app can access it
across logins and devices. To sync this data between the Amazon Cognito service and an end user’s
devices, invoke the synchronize method. Each dataset can have a maximum size of 1 MB. You can
associate up to 20 datasets with an identity.

Set up an identity pool in Amazon Cognito 1183

http://www.amazonaws.cn/appsync/

Amazon Cognito Developer Guide

The Amazon Cognito Sync client creates a local cache for the identity data. When your app reads
and writes keys, it communicates with this local cache . This communication guarantees that all
changes you make on the device are immediately available on the device, even when you are
offline. When the synchronize method is called, changes from the service are pulled to the device,
and any local changes are pushed to the service. At this point, the changes are available to other
devices to synchronize.

Initializing the Amazon Cognito Sync client

To initialize the Amazon Cognito Sync client, you must first create a credentials provider. The
credentials provider acquires temporary Amazon credentials to make it possible for your app to
access your Amazon resources. You also must import the necessary header files. Use the following
steps to initialize the Amazon Cognito Sync client.

Android

1. Create a credentials provider, following the instructions in Getting credentials.

2. Import the Amazon Cognito package as follows: import
com.amazonaws.mobileconnectors.cognito.*;

3. Initialize Amazon Cognito Sync. Pass in the Android app context, the identity pool ID, an Amazon
Web Services Region, and an initialized Amazon Cognito credentials provider as follows:

CognitoSyncManager client = new CognitoSyncManager(
 getApplicationContext(),
 Regions.YOUR_REGION,
 credentialsProvider);

iOS - Objective-C

1. Create a credentials provider, following the instructions in Getting credentials.

2. Import AWSCore and Cognito, and initialize AWSCognito as follows:

#import <AWSiOSSDKv2/AWSCore.h>
#import <AWSCognitoSync/Cognito.h>

AWSCognito *syncClient = [AWSCognito defaultCognito];

Initializing the Amazon Cognito Sync client 1184

Amazon Cognito Developer Guide

3. If you're using CocoaPods, replace <AWSiOSSDKv2/AWSCore.h> with AWSCore.h. Follow the
same syntax for the Amazon Cognito import.

iOS - Swift

1. Create a credentials provider, following the instructions in Getting credentials.

2. Import and initialize AWSCognito as follows:

import AWSCognito
let syncClient = AWSCognito.default()!

JavaScript

1. Download the Amazon Cognito Sync Manager for JavaScript.

2. Include the Sync Manager library in your project.

3. Create a credentials provider, following the instructions in Getting credentials.

4. Initialize the Sync Manager as follows:

var syncManager = new AWS.CognitoSyncManager();

Unity

1. Create an instance of CognitoAWSCredentials, following the instructions in Getting
credentials.

2. Create an instance of CognitoSyncManager. Pass the CognitoAwsCredentials object and a
AmazonCognitoSyncConfig, and include at least the Region set, as follows:

AmazonCognitoSyncConfig clientConfig = new AmazonCognitoSyncConfig { RegionEndpoint =
 REGION };
CognitoSyncManager syncManager = new CognitoSyncManager(credentials, clientConfig);

Initializing the Amazon Cognito Sync client 1185

https://github.com/aws/amazon-cognito-js

Amazon Cognito Developer Guide

Xamarin

1. Create an instance of CognitoAWSCredentials, following the instructions in Getting
credentials.

2. Create an instance of CognitoSyncManager. Pass the CognitoAwsCredentials object and a
AmazonCognitoSyncConfig, and include at least the Region set, as follows:

AmazonCognitoSyncConfig clientConfig = new AmazonCognitoSyncConfig { RegionEndpoint =
 REGION };
CognitoSyncManager syncManager = new CognitoSyncManager(credentials, clientConfig);

Understanding datasets

Amazon Cognito organizes user profile data into datasets. Each dataset can contain up to 1MB of
data in the form of key-value pairs. A dataset is the most granular entity that you can synchronize.
Read and write operations performed on a dataset only affect the local store until the synchronize
method is invoked. Amazon Cognito identifies a dataset by a unique string. You can create a new
dataset or open an existing one as follows.

Android

Dataset dataset = client.openOrCreateDataset("datasetname");

To delete a dataset, first call the method to remove it from local storage, then call the
synchronize method to delete the dataset from Amazon Cognito as follows:

dataset.delete();
dataset.synchronize(syncCallback);

iOS - Objective-C

AWSCognitoDataset *dataset = [syncClient openOrCreateDataset:@"myDataSet"];

To delete a dataset, first call the method to remove it from local storage, then call the
synchronize method to delete the dataset from Amazon Cognito as follows:

Understanding datasets 1186

Amazon Cognito Developer Guide

[dataset clear];
[dataset synchronize];

iOS - Swift

let dataset = syncClient.openOrCreateDataset("myDataSet")!

To delete a dataset, first call the method to remove it from local storage, then call the
synchronize method as follows: to delete the dataset from Amazon Cognito:

dataset.clear()
dataset.synchronize()

JavaScript

syncManager.openOrCreateDataset('myDatasetName', function(err, dataset) {
 // ...
});

Unity

string myValue = dataset.Get("myKey");
dataset.Put("myKey", "newValue");

To delete a key from a dataset, use Remove as follows:

dataset.Remove("myKey");

Xamarin

Dataset dataset = syncManager.OpenOrCreateDataset("myDatasetName");

To delete a dataset, first call the method to remove it from local storage, then call the
synchronize method to delete the dataset from Amazon Cognito as follows:

dataset.Delete();

Understanding datasets 1187

Amazon Cognito Developer Guide

dataset.SynchronizeAsync();

Reading and writing data in datasets

Amazon Cognito datasets function as dictionaries, with values accessible by key. You can read,
add, or modify keys and values of a dataset just as if the dataset were a dictionary, as shown in the
following examples.

Note that values you write to a dataset only affect the local cached copy of the data until you call
the synchronize method.

Android

String value = dataset.get("myKey");
dataset.put("myKey", "my value");

iOS - Objective-C

[dataset setString:@"my value" forKey:@"myKey"];
NSString *value = [dataset stringForKey:@"myKey"];

iOS - Swift

dataset.setString("my value", forKey:"myKey")
let value = dataset.stringForKey("myKey")

JavaScript

dataset.get('myKey', function(err, value) {
 console.log('myRecord: ' + value);
});

dataset.put('newKey', 'newValue', function(err, record) {
 console.log(record);
});

dataset.remove('oldKey', function(err, record) {
 console.log(success);
});

Reading and writing data in datasets 1188

Amazon Cognito Developer Guide

Unity

string myValue = dataset.Get("myKey");
dataset.Put("myKey", "newValue");

Xamarin

//obtain a value
string myValue = dataset.Get("myKey");

// Create a record in a dataset and synchronize with the server
dataset.OnSyncSuccess += SyncSuccessCallback;
dataset.Put("myKey", "myValue");
dataset.SynchronizeAsync();

void SyncSuccessCallback(object sender, SyncSuccessEventArgs e) {
 // Your handler code here
}

Android

To remove keys from a dataset, use the remove method as follows:

dataset.remove("myKey");

iOS - Objective-C

To delete a key from a dataset, use removeObjectForKey as follows:

[dataset removeObjectForKey:@"myKey"];

iOS - Swift

To delete a key from a dataset, use removeObjectForKey as follows:

dataset.removeObjectForKey("myKey")

Unity

To delete a key from a dataset, use Remove as follows:

Reading and writing data in datasets 1189

Amazon Cognito Developer Guide

dataset.Remove("myKey");

Xamarin

You can use Remove to delete a key from a dataset:

dataset.Remove("myKey");

Synchronizing local data with the sync store

Android

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.synchronize(syncCallback);

The synchronize method receives an implementation of the SyncCallback interface, discussed
below.

The synchronizeOnConnectivity() method attempts to synchronize when connectivity is
available. If connectivity is immediately available, synchronizeOnConnectivity() behaves
like synchronize(). Otherwise it monitors for connectivity changes and performs a sync once
connectivity is available. If synchronizeOnConnectivity()is called multiple times, only the last
synchronize request is kept, and only the last callback will fire. If either the dataset or the callback
is garbage-collected, this method won't perform a sync, and the callback won't fire.

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

iOS - Objective-C

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

Synchronizing local data with the sync store 1190

Amazon Cognito Developer Guide

The synchronize method is asynchronous and returns an AWSTask object to handle the
response:

[[dataset synchronize] continueWithBlock:^id(AWSTask *task) {
 if (task.isCancelled) {
 // Task cancelled.
 } else if (task.error) {
 // Error while executing task.
 } else {
 // Task succeeded. The data was saved in the sync store.
 }
 return nil;
}];

The synchronizeOnConnectivity method attempts to synchronize when the device has
connectivity. First, synchronizeOnConnectivity checks for connectivity and, if the device
is online, immediately invokes synchronize and returns the AWSTask object associated with the
attempt.

If the device is offline, synchronizeOnConnectivity 1) schedules a synchronize for the
next time the device comes online and 2) returns an AWSTask with a nil result. The scheduled
synchronize is only valid for the lifecycle of the dataset object. The data will not be synchronized
if the app is exited before connectivity is regained. If you want to be notified when events
occur during the scheduled synchronize, you must add observers of the notifications found in
AWSCognito.

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

iOS - Swift

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

The synchronize method is asynchronous and returns an AWSTask object to handle the
response:

dataset.synchronize().continueWith(block: { (task) -> AnyObject? in

Synchronizing local data with the sync store 1191

Amazon Cognito Developer Guide

 if task.isCancelled {
 // Task cancelled.
 } else if task.error != nil {
 // Error while executing task
 } else {
 // Task succeeded. The data was saved in the sync store.
 }
 return task
})

The synchronizeOnConnectivity method attempts to synchronize when the device has
connectivity. First, synchronizeOnConnectivity checks for connectivity and, if the device is
online, immediately invokes synchronize and returns the AWSTask object associated with the
attempt.

If the device is offline, synchronizeOnConnectivity 1) schedules a synchronize for the next
time the device comes online and 2) returns an AWSTask object with a nil result. The scheduled
synchronize is only valid for the lifecycle of the dataset object. The data will not be synchronized
if the app is exited before connectivity is regained. If you want to be notified when events
occur during the scheduled synchronize, you must add observers of the notifications found in
AWSCognito.

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

JavaScript

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.synchronize();

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

Unity

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution

Synchronizing local data with the sync store 1192

Amazon Cognito Developer Guide

is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.Synchronize();

Synchronize will run asynchronously and will end up calling one of the several callbacks you can
specify in the Dataset.

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

Xamarin

The synchronize method compares local cached data to the data stored in the Amazon Cognito
Sync store. Remote changes are pulled from the Amazon Cognito Sync store; conflict resolution
is invoked if any conflicts occur; and updated values on the device are pushed to the service. To
synchronize a dataset, call its synchronize method:

dataset.SynchronizeAsync();

To learn more about dataset synchronization and the different callbacks, see Handling event
callbacks.

Handling event callbacks

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

As an Amazon Cognito Sync developer, you can implement various callbacks to handle different
synchronization events and scenarios. The SyncCallback interface in the Android SDK configures
notifications about dataset synchronization, including onSuccess() when a dataset is successfully
downloaded, onFailure() when an exception occurs, and onConflict() to resolve conflicts
between local and remote data.

Handling event callbacks 1193

http://www.amazonaws.cn/appsync/

Amazon Cognito Developer Guide

In the iOS SDK, you can register for similar notifications like
AWSCognitoDidStartSynchronizeNotification and set handlers like the
AWSCognitoRecordConflictHandler for conflict resolution. The JavaScript, Unity, and Xamarin
platforms have analogous callback mechanisms. When you implement these callbacks, your
application can gracefully handle the various synchronization events and scenarios that can occur
when using Amazon Cognito Sync.

Android

SyncCallback Interface

By implementing the SyncCallback interface, you can receive notifications on your app about
dataset synchronization. Your app can then make active decisions about deleting local data,
merging unauthenticated and authenticated profiles, and resolving sync conflicts. You should
implement the following methods, which are required by the interface:

• onSuccess()

• onFailure()

• onConflict()

• onDatasetDeleted()

• onDatasetsMerged()

Note that, if you don't want to specify all the callbacks, you can also use the class
DefaultSyncCallback which provides default, empty implementations for all of them.

onSuccess

The onSuccess() callback is triggered when a dataset is successfully downloaded from the sync
store.

@Override
public void onSuccess(Dataset dataset, List<Record> newRecords) {
}

onFailure

onFailure() is called if an exception occurs during synchronization.

Android 1194

Amazon Cognito Developer Guide

@Override
public void onFailure(DataStorageException dse) {
}

onConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store.
The onConflict() method handles conflict resolution. If you don't implement this method, the
Amazon Cognito Sync client defaults to using the most recent change.

@Override
public boolean onConflict(Dataset dataset, final List<SyncConflict> conflicts) {
 List<Record> resolvedRecords = new ArrayList<Record>();
 for (SyncConflict conflict : conflicts) {
 /* resolved by taking remote records */
 resolvedRecords.add(conflict.resolveWithRemoteRecord());

 /* alternately take the local records */
 // resolvedRecords.add(conflict.resolveWithLocalRecord());

 /* or customer logic, say concatenate strings */
 // String newValue = conflict.getRemoteRecord().getValue()
 // + conflict.getLocalRecord().getValue();
 // resolvedRecords.add(conflict.resolveWithValue(newValue);
 }
 dataset.resolve(resolvedRecords);

 // return true so that synchronize() is retried after conflicts are resolved
 return true;
}

onDatasetDeleted

When a dataset is deleted, the Amazon Cognito client uses the SyncCallback interface to
confirm whether the local cached copy of the dataset should be deleted too. Implement the
onDatasetDeleted() method to tell the client SDK what to do with the local data.

@Override
public boolean onDatasetDeleted(Dataset dataset, String datasetName) {
 // return true to delete the local copy of the dataset
 return true;

Android 1195

Amazon Cognito Developer Guide

}

onDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the onDatasetsMerged() method:

@Override
public boolean onDatasetsMerged(Dataset dataset, List<String> datasetNames) {
 // return false to handle Dataset merge outside the synchronization callback
 return false;
}

iOS - Objective-C

Sync Notifications

The Amazon Cognito client will emit a number of NSNotification events during a synchronize
call. You can register to monitor these notifications via the standard NSNotificationCenter:

[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(myNotificationHandler:)
 name:NOTIFICATION_TYPE
 object:nil];

Amazon Cognito supports five notification types, listed below.

AWSCognitoDidStartSynchronizeNotification

Called when a synchronize operation is starting. The userInfo will contain the key dataset which
is the name of the dataset being synchronized.

AWSCognitoDidEndSynchronizeNotification

Called when a synchronize operation completes (successfully or otherwise). The userInfo will
contain the key dataset which is the name of the dataset being synchronized.

AWSCognitoDidFailToSynchronizeNotification

iOS - Objective-C 1196

Amazon Cognito Developer Guide

Called when a synchronize operation fails. The userInfo will contain the key dataset which is the
name of the dataset being synchronized and the key error which will contain the error that caused
the failure.

AWSCognitoDidChangeRemoteValueNotification

Called when local changes are successfully pushed to Amazon Cognito. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that were pushed.

AWSCognitoDidChangeLocalValueFromRemoteNotification

Called when a local value changes due to a synchronize operation. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that changed.

Conflict Resolution Handler

During a sync operation, conflicts may arise if the same key has been modified on the local store
and in the sync store. If you haven't set a conflict resolution handler, Amazon Cognito defaults to
choosing the most recent update.

By implementing and assigning an AWSCognitoRecordConflictHandler you can alter the
default conflict resolution. The AWSCognitoConflict input parameter conflict contains an
AWSCognitoRecord object for both the local cached data and for the conflicting record in the sync
store. Using the AWSCognitoConflict you can resolve the conflict with the local record: [conflict
resolveWithLocalRecord], the remote record: [conflict resolveWithRemoteRecord] or a brand new
value: [conflict resolveWithValue:value]. Returning nil from this method prevents synchronization
from continuing and the conflicts will be presented again the next time the sync process starts.

You can set the conflict resolution handler at the client level:

client.conflictHandler = ^AWSCognitoResolvedConflict* (NSString *datasetName,
 AWSCognitoConflict *conflict) {
 // always choose local changes
 return [conflict resolveWithLocalRecord];
};

Or at the dataset level:

iOS - Objective-C 1197

Amazon Cognito Developer Guide

dataset.conflictHandler = ^AWSCognitoResolvedConflict* (NSString *datasetName,
 AWSCognitoConflict *conflict) {
 // override and always choose remote changes
 return [conflict resolveWithRemoteRecord];
};

Dataset Deleted Handler

When a dataset is deleted, the Amazon Cognito client uses the
AWSCognitoDatasetDeletedHandler to confirm whether the local cached copy of the dataset
should be deleted too. If no AWSCognitoDatasetDeletedHandler is implemented, the local
data will be purged automatically. Implement an AWSCognitoDatasetDeletedHandler if you
wish to keep a copy of the local data before wiping, or to keep the local data.

You can set the dataset deleted handler at the client level:

client.datasetDeletedHandler = ^BOOL (NSString *datasetName) {
 // make a backup of the data if you choose
 ...
 // delete the local data (default behavior)
 return YES;
};

Or at the dataset level:

dataset.datasetDeletedHandler = ^BOOL (NSString *datasetName) {
 // override default and keep the local data
 return NO;
};

Dataset Merge Handler

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the DatasetMergeHandler. The handler will
receive the name of the root dataset as well as an array of dataset names that are marked as
merges of the root dataset.

If no DatasetMergeHandler is implemented, these datasets will be ignored, but will continue to
use up space in the identity's 20 maximum total datasets.

iOS - Objective-C 1198

Amazon Cognito Developer Guide

You can set the dataset merge handler at the client level:

client.datasetMergedHandler = ^(NSString *datasetName, NSArray *datasets) {
 // Blindly delete the datasets
 for (NSString *name in datasets) {
 AWSCognitoDataset *merged = [[AWSCognito defaultCognito]
 openOrCreateDataset:name];
 [merged clear];
 [merged synchronize];
 }
};

Or at the dataset level:

dataset.datasetMergedHandler = ^(NSString *datasetName, NSArray *datasets) {
 // Blindly delete the datasets
 for (NSString *name in datasets) {
 AWSCognitoDataset *merged = [[AWSCognito defaultCognito]
 openOrCreateDataset:name];
 // do something with the data if it differs from existing dataset
 ...
 // now delete it
 [merged clear];
 [merged synchronize];
 }
};

iOS - Swift

Sync Notifications

The Amazon Cognito client will emit a number of NSNotification events during a synchronize
call. You can register to monitor these notifications via the standard NSNotificationCenter:

NSNotificationCenter.defaultCenter().addObserver(observer: self,
 selector: "myNotificationHandler",
 name:NOTIFICATION_TYPE,
 object:nil)

Amazon Cognito supports five notification types, listed below.

AWSCognitoDidStartSynchronizeNotification

iOS - Swift 1199

Amazon Cognito Developer Guide

Called when a synchronize operation is starting. The userInfo will contain the key dataset which
is the name of the dataset being synchronized.

AWSCognitoDidEndSynchronizeNotification

Called when a synchronize operation completes (successfully or otherwise). The userInfo will
contain the key dataset which is the name of the dataset being synchronized.

AWSCognitoDidFailToSynchronizeNotification

Called when a synchronize operation fails. The userInfo will contain the key dataset which is the
name of the dataset being synchronized and the key error which will contain the error that caused
the failure.

AWSCognitoDidChangeRemoteValueNotification

Called when local changes are successfully pushed to Amazon Cognito. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that were pushed.

AWSCognitoDidChangeLocalValueFromRemoteNotification

Called when a local value changes due to a synchronize operation. The userInfo will contain
the key dataset which is the name of the dataset being synchronized and the key keys which will
contain an NSArray of record keys that changed.

Conflict Resolution Handler

During a sync operation, conflicts may arise if the same key has been modified on the local store
and in the sync store. If you haven't set a conflict resolution handler, Amazon Cognito defaults to
choosing the most recent update.

By implementing and assigning an AWSCognitoRecordConflictHandler you can alter the
default conflict resolution. The AWSCognitoConflict input parameter conflict contains an
AWSCognitoRecord object for both the local cached data and for the conflicting record in the
sync store. Using the AWSCognitoConflict you can resolve the conflict with the local record:
[conflict resolveWithLocalRecord], the remote record: [conflict resolveWithRemoteRecord] or
a brand new value: [conflict resolveWithValue:value]. Returning nil from this method prevents
synchronization from continuing and the conflicts will be presented again the next time the sync
process starts.

iOS - Swift 1200

Amazon Cognito Developer Guide

You can set the conflict resolution handler at the client level:

client.conflictHandler = {
 (datasetName: String?, conflict: AWSCognitoConflict?) ->
 AWSCognitoResolvedConflict? in
 return conflict.resolveWithLocalRecord()
}

Or at the dataset level:

dataset.conflictHandler = {
 (datasetName: String?, conflict: AWSCognitoConflict?) ->
 AWSCognitoResolvedConflict? in
 return conflict.resolveWithLocalRecord()
}

Dataset Deleted Handler

When a dataset is deleted, the Amazon Cognito client uses the
AWSCognitoDatasetDeletedHandler to confirm whether the local cached copy of the dataset
should be deleted too. If no AWSCognitoDatasetDeletedHandler is implemented, the local
data will be purged automatically. Implement an AWSCognitoDatasetDeletedHandler if you
wish to keep a copy of the local data before wiping, or to keep the local data.

You can set the dataset deleted handler at the client level:

client.datasetDeletedHandler = {
 (datasetName: String!) -> Bool in
 // make a backup of the data if you choose
 ...
 // delete the local data (default behaviour)
 return true
}

Or at the dataset level:

dataset.datasetDeletedHandler = {
 (datasetName: String!) -> Bool in
 // make a backup of the data if you choose
 ...

iOS - Swift 1201

Amazon Cognito Developer Guide

 // delete the local data (default behaviour)
 return true
}

Dataset merge handler

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the DatasetMergeHandler. The handler will
receive the name of the root dataset as well as an array of dataset names that are marked as
merges of the root dataset.

If no DatasetMergeHandler is implemented, these datasets will be ignored, but will continue to
use up space in the identity's 20 maximum total datasets.

You can set the dataset merge handler at the client level:

client.datasetMergedHandler = {
 (datasetName: String!, datasets: [AnyObject]!) -> Void in
 for nameObject in datasets {
 if let name = nameObject as? String {
 let merged = AWSCognito.defaultCognito().openOrCreateDataset(name)
 merged.clear()
 merged.synchronize()
 }
 }
}

Or at the dataset level:

dataset.datasetMergedHandler = {
 (datasetName: String!, datasets: [AnyObject]!) -> Void in
 for nameObject in datasets {
 if let name = nameObject as? String {
 let merged = AWSCognito.defaultCognito().openOrCreateDataset(name)
 // do something with the data if it differs from existing dataset
 ...
 // now delete it
 merged.clear()
 merged.synchronize()
 }
 }

iOS - Swift 1202

Amazon Cognito Developer Guide

}

JavaScript

Synchronization callbacks

When performing a synchronize() on a dataset, you can optionally specify callbacks to handle each
of the following states:

dataset.synchronize({

 onSuccess: function(dataset, newRecords) {
 //...
 },

 onFailure: function(err) {
 //...
 },

 onConflict: function(dataset, conflicts, callback) {
 //...
 },

 onDatasetDeleted: function(dataset, datasetName, callback) {
 //...
 },

 onDatasetMerged: function(dataset, datasetNames, callback) {
 //...
 }

});

onSuccess()

The onSuccess() callback is triggered when a dataset is successfully updated from the sync store.
If you do not define a callback, the synchronization will succeed silently.

onSuccess: function(dataset, newRecords) {
 console.log('Successfully synchronized ' + newRecords.length + ' new records.');
}

JavaScript 1203

Amazon Cognito Developer Guide

onFailure()

onFailure() is called if an exception occurs during synchronization. If you do not define a
callback, the synchronization will fail silently.

onFailure: function(err) {
 console.log('Synchronization failed.');
 console.log(err);
}

onConflict()

Conflicts may arise if the same key has been modified on the local store and in the sync store.
The onConflict() method handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

onConflict: function(dataset, conflicts, callback) {

 var resolved = [];

 for (var i=0; i<conflicts.length; i++) {

 // Take remote version.
 resolved.push(conflicts[i].resolveWithRemoteRecord());

 // Or... take local version.
 // resolved.push(conflicts[i].resolveWithLocalRecord());

 // Or... use custom logic.
 // var newValue = conflicts[i].getRemoteRecord().getValue() +
 conflicts[i].getLocalRecord().getValue();
 // resolved.push(conflicts[i].resovleWithValue(newValue);

 }

 dataset.resolve(resolved, function() {
 return callback(true);
 });

 // Or... callback false to stop the synchronization process.
 // return callback(false);

JavaScript 1204

Amazon Cognito Developer Guide

}

onDatasetDeleted()

When a dataset is deleted, the Amazon Cognito client uses the onDatasetDeleted() callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset
will not be deleted.

onDatasetDeleted: function(dataset, datasetName, callback) {

 // Return true to delete the local copy of the dataset.
 // Return false to handle deleted datasets outside the synchronization callback.

 return callback(true);

}

onDatasetMerged()

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the onDatasetsMerged() callback.

onDatasetMerged: function(dataset, datasetNames, callback) {

 // Return true to continue the synchronization process.
 // Return false to handle dataset merges outside the synchronization callback.

 return callback(false);

}

Unity

After you open or create a dataset, you can set different callbacks to it that will be triggered when
you use the Synchronize method. This is the way to register your callbacks to them:

dataset.OnSyncSuccess += this.HandleSyncSuccess;
dataset.OnSyncFailure += this.HandleSyncFailure;
dataset.OnSyncConflict = this.HandleSyncConflict;
dataset.OnDatasetMerged = this.HandleDatasetMerged;

Unity 1205

Amazon Cognito Developer Guide

dataset.OnDatasetDeleted = this.HandleDatasetDeleted;

Note that SyncSuccess and SyncFailure use += instead of = so you can subscribe more than
one callback to them.

OnSyncSuccess

The OnSyncSuccess callback is triggered when a dataset is successfully updated from the cloud. If
you do not define a callback, the synchronization will succeed silently.

private void HandleSyncSuccess(object sender, SyncSuccessEvent e)
{
 // Continue with your game flow, display the loaded data, etc.
}

OnSyncFailure

OnSyncFailure is called if an exception occurs during synchronization. If you do not define a
callback, the synchronization will fail silently.

private void HandleSyncFailure(object sender, SyncFailureEvent e)
{
 Dataset dataset = sender as Dataset;
 if (dataset.Metadata != null) {
 Debug.Log("Sync failed for dataset : " + dataset.Metadata.DatasetName);
 } else {
 Debug.Log("Sync failed");
 }
 // Handle the error
 Debug.LogException(e.Exception);
}

OnSyncConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store. The
OnSyncConflict callback handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

private bool HandleSyncConflict(Dataset dataset, List < SyncConflict > conflicts)
{
 if (dataset.Metadata != null) {

Unity 1206

Amazon Cognito Developer Guide

 Debug.LogWarning("Sync conflict " + dataset.Metadata.DatasetName);
 } else {
 Debug.LogWarning("Sync conflict");
 }
 List < Amazon.CognitoSync.SyncManager.Record > resolvedRecords = new List <
 Amazon.CognitoSync.SyncManager.Record > ();
 foreach(SyncConflict conflictRecord in conflicts) {
 // SyncManager provides the following default conflict resolution methods:
 // ResolveWithRemoteRecord - overwrites the local with remote records
 // ResolveWithLocalRecord - overwrites the remote with local records
 // ResolveWithValue - to implement your own logic
 resolvedRecords.Add(conflictRecord.ResolveWithRemoteRecord());
 }
 // resolves the conflicts in local storage
 dataset.Resolve(resolvedRecords);
 // on return true the synchronize operation continues where it left,
 // returning false cancels the synchronize operation
 return true;
}

OnDatasetDeleted

When a dataset is deleted, the Amazon Cognito client uses the OnDatasetDeleted callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset
will not be deleted.

private bool HandleDatasetDeleted(Dataset dataset)
 {
 Debug.Log(dataset.Metadata.DatasetName + " Dataset has been deleted");
 // Do clean up if necessary
 // returning true informs the corresponding dataset can be purged in the local
 storage and return false retains the local dataset
 return true;
 }

OnDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the OnDatasetsMerged callback.

public bool HandleDatasetMerged(Dataset localDataset, List<string> mergedDatasetNames)
{

Unity 1207

Amazon Cognito Developer Guide

 foreach (string name in mergedDatasetNames)
 {
 Dataset mergedDataset = syncManager.OpenOrCreateDataset(name);
 //Lambda function to delete the dataset after fetching it
 EventHandler<SyncSuccessEvent> lambda;
 lambda = (object sender, SyncSuccessEvent e) => {
 ICollection<string> existingValues = localDataset.GetAll().Values;
 ICollection<string> newValues = mergedDataset.GetAll().Values;

 //Implement your merge logic here

 mergedDataset.Delete(); //Delete the dataset locally
 mergedDataset.OnSyncSuccess -= lambda; //We don't want this callback to be
 fired again
 mergedDataset.OnSyncSuccess += (object s2, SyncSuccessEvent e2) => {
 localDataset.Synchronize(); //Continue the sync operation that was
 interrupted by the merge
 };
 mergedDataset.Synchronize(); //Synchronize it as deleted, failing to do so
 will leave us in an inconsistent state
 };
 mergedDataset.OnSyncSuccess += lambda;
 mergedDataset.Synchronize(); //Asnchronously fetch the dataset
 }

 // returning true allows the Synchronize to continue and false stops it
 return false;
}

Xamarin

After you open or create a dataset, you can set different callbacks to it that will be triggered when
you use the Synchronize method. This is the way to register your callbacks to them:

dataset.OnSyncSuccess += this.HandleSyncSuccess;
dataset.OnSyncFailure += this.HandleSyncFailure;
dataset.OnSyncConflict = this.HandleSyncConflict;
dataset.OnDatasetMerged = this.HandleDatasetMerged;
dataset.OnDatasetDeleted = this.HandleDatasetDeleted;

Note that SyncSuccess and SyncFailure use += instead of = so you can subscribe more than
one callback to them.

Xamarin 1208

Amazon Cognito Developer Guide

OnSyncSuccess

The OnSyncSuccess callback is triggered when a dataset is successfully updated from the cloud. If
you do not define a callback, the synchronization will succeed silently.

private void HandleSyncSuccess(object sender, SyncSuccessEventArgs e)
{
 // Continue with your game flow, display the loaded data, etc.
}

OnSyncFailure

OnSyncFailure is called if an exception occurs during synchronization. If you do not define a
callback, the synchronization will fail silently.

private void HandleSyncFailure(object sender, SyncFailureEventArgs e)
{
 Dataset dataset = sender as Dataset;
 if (dataset.Metadata != null) {
 Console.WriteLine("Sync failed for dataset : " + dataset.Metadata.DatasetName);
 } else {
 Console.WriteLine("Sync failed");
 }
}

OnSyncConflict

Conflicts may arise if the same key has been modified on the local store and in the sync store. The
OnSyncConflict callback handles conflict resolution. If you don't implement this method, the
synchronization will be aborted when there is a conflict.

private bool HandleSyncConflict(Dataset dataset, List < SyncConflict > conflicts)
{
 if (dataset.Metadata != null) {
 Console.WriteLine("Sync conflict " + dataset.Metadata.DatasetName);
 } else {
 Console.WriteLine("Sync conflict");
 }
 List < Amazon.CognitoSync.SyncManager.Record > resolvedRecords = new List <
 Amazon.CognitoSync.SyncManager.Record > ();
 foreach(SyncConflict conflictRecord in conflicts) {
 // SyncManager provides the following default conflict resolution methods:

Xamarin 1209

Amazon Cognito Developer Guide

 // ResolveWithRemoteRecord - overwrites the local with remote records
 // ResolveWithLocalRecord - overwrites the remote with local records
 // ResolveWithValue - to implement your own logic
 resolvedRecords.Add(conflictRecord.ResolveWithRemoteRecord());
 }
 // resolves the conflicts in local storage
 dataset.Resolve(resolvedRecords);
 // on return true the synchronize operation continues where it left,
 // returning false cancels the synchronize operation
 return true;
}

OnDatasetDeleted

When a dataset is deleted, the Amazon Cognito client uses the OnDatasetDeleted callback to
decide whether the local cached copy of the dataset should be deleted too. By default, the dataset
will not be deleted.

private bool HandleDatasetDeleted(Dataset dataset)
{
 Console.WriteLine(dataset.Metadata.DatasetName + " Dataset has been deleted");
 // Do clean up if necessary
 // returning true informs the corresponding dataset can be purged in the local
 storage and return false retains the local dataset
 return true;
}

OnDatasetMerged

When two previously unconnected identities are linked together, all of their datasets are merged.
Applications are notified of the merge through the OnDatasetsMerged callback.

public bool HandleDatasetMerged(Dataset localDataset, List<string> mergedDatasetNames)
{
 foreach (string name in mergedDatasetNames)
 {
 Dataset mergedDataset = syncManager.OpenOrCreateDataset(name);

 //Implement your merge logic here

 mergedDataset.OnSyncSuccess += lambda;
 mergedDataset.SynchronizeAsync(); //Asnchronously fetch the dataset

Xamarin 1210

Amazon Cognito Developer Guide

 }

 // returning true allows the Synchronize to continue and false stops it
 return false;
}

Implementing push synchronization

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

Amazon Cognito automatically tracks the association between identity and devices. Using the push
synchronization, or push sync, feature, you can ensure that every instance of a given identity is
notified when identity data changes. Push sync ensures that, whenever the sync store data changes
for a particular identity, all devices associated with that identity receive a silent push notification
informing them of the change.

Note

Push sync is not supported for JavaScript, Unity, or Xamarin.

Before you can use push sync, you must first set up your account for push sync and enable push
sync in the Amazon Cognito console.

Create an Amazon Simple Notification Service (Amazon SNS) app

Create and configure an Amazon SNS app for your supported platforms, as described in the SNS
Developer Guide.

Enable push sync in the Amazon Cognito console

You can enable push sync via the Amazon Cognito console. From the console home page:

Implementing push synchronization 1211

http://www.amazonaws.cn/appsync/
https://docs.amazonaws.cn/sns/latest/dg/SNSMobilePush.html
https://docs.amazonaws.cn/sns/latest/dg/SNSMobilePush.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

1. Click the name of the identity pool for which you want to enable push sync. The Dashboard
page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Manage Identity Pools. The Federated
Identities page appears.

3. Scroll down and click Push synchronization to expand it.

4. In the Service role dropdown menu, select the IAM role that grants Cognito permission to send
an SNS notification. Click Create role to create or modify the roles associated with your identity
pool in the Amazon IAM Console.

5. Select a platform application, and then click Save Changes.

6. Grant SNS Access to Your Application

In the Amazon Identity and Access Management console, configure your IAM roles to have full
Amazon SNS access, or create a new role that has full Amazon SNS access. The following example
role trust policy grants Amazon Cognito Sync a limited ability to assume an IAM role. Amazon
Cognito Sync can only assume the role when it does so on behalf of both the identity pool in the
aws:SourceArn condition and the account in the aws:SourceAccount condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-sync.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "123456789012"
 },
 "ArnLike": {
 "AWS:SourceArn": "arn:aws:cognito-identity:us-
east-1:123456789012:identitypool/us-east-1:177a950c-2c08-43f0-9983-28727EXAMPLE"
 }
 }
 }
]
}

Enable push sync in the Amazon Cognito console 1212

https://console.amazonaws.cn/iam/home

Amazon Cognito Developer Guide

To learn more about IAM roles, see Roles (Delegation and Federation).

Use push sync in your app: Android

Your application will need to import the Google Play services. You can download the latest version
of the Google Play SDK via the Android SDK manager. Follow the Android documentation on
Android Implementation to register your app and receive a registration ID from GCM. Once you
have the registration ID, you need to register the device with Amazon Cognito, as shown in the
snippet below:

String registrationId = "MY_GCM_REGISTRATION_ID";
try {
 client.registerDevice("GCM", registrationId);
} catch (RegistrationFailedException rfe) {
 Log.e(TAG, "Failed to register device for silent sync", rfe);
} catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused registration for silent sync to fail", ace);
}

You can now subscribe a device to receive updates from a particular dataset:

Dataset trackedDataset = client.openOrCreateDataset("myDataset");
if (client.isDeviceRegistered()) {
 try {
 trackedDataset.subscribe();
 } catch (SubscribeFailedException sfe) {
 Log.e(TAG, "Failed to subscribe to datasets", sfe);
 } catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused the subscription to fail", ace);
 }
}

To stop receiving push notifications from a dataset, simply call the unsubscribe method.
To subscribe to all datasets (or a specific subset) in the CognitoSyncManager object, use
subscribeAll():

if (client.isDeviceRegistered()) {
 try {
 client.subscribeAll();
 } catch (SubscribeFailedException sfe) {

Use push sync in your app: Android 1213

https://docs.amazonaws.cn/IAM/latest/UserGuide/WorkingWithRoles.html
http://developer.android.com/tools/help/sdk-manager.html
https://developers.google.com/instance-id/guides/android-implementation

Amazon Cognito Developer Guide

 Log.e(TAG, "Failed to subscribe to datasets", sfe);
 } catch (AmazonClientException ace) {
 Log.e(TAG, "An unknown error caused the subscription to fail", ace);
 }
}

In your implementation of the Android BroadcastReceiver object, you can check the latest version
of the modified dataset and decide if your app needs to synchronize again:

@Override
public void onReceive(Context context, Intent intent) {

 PushSyncUpdate update = client.getPushSyncUpdate(intent);

 // The update has the source (cognito-sync here), identityId of the
 // user, identityPoolId in question, the non-local sync count of the
 // data set and the name of the dataset. All are accessible through
 // relevant getters.

 String source = update.getSource();
 String identityPoolId = update.getIdentityPoolId();
 String identityId = update.getIdentityId();
 String datasetName = update.getDatasetName;
 long syncCount = update.getSyncCount;

 Dataset dataset = client.openOrCreateDataset(datasetName);

 // need to access last sync count. If sync count is less or equal to
 // last sync count of the dataset, no sync is required.

 long lastSyncCount = dataset.getLastSyncCount();
 if (lastSyncCount < syncCount) {
 dataset.synchronize(new SyncCallback() {
 // ...
 });
 }

}

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

Use push sync in your app: Android 1214

http://developer.android.com/reference/android/content/BroadcastReceiver.html

Amazon Cognito Developer Guide

• identityPoolId: The identity pool ID. This can be used for validation or additional
information, though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that
the local dataset is out of date, and that the incoming synchronization is new.

Use push sync in your app: iOS - Objective-C

To obtain a device token for your app, follow the Apple documentation on Registering for Remote
Notifications. Once you've received the device token as an NSData object from APNs, you'll need to
register the device with Amazon Cognito using the registerDevice: method of the sync client,
as shown below:

AWSCognito *syncClient = [AWSCognito defaultCognito];
 [[syncClient registerDevice: devToken] continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to registerDevice: %@", task.error);
 } else {
 NSLog(@"Successfully registered device with id: %@", task.result);
 }
 return nil;
 }
];

In debug mode, your device will register with the APNs sandbox; in release mode, it will register
with APNs. To receive updates from a particular dataset, use the subscribe method:

[[[syncClient openOrCreateDataset:@"MyDataset"] subscribe]
 continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to subscribe to dataset: %@", task.error);
 } else {
 NSLog(@"Successfully subscribed to dataset: %@", task.result);
 }
 return nil;
 }
];

Use push sync in your app: iOS - Objective-C 1215

Amazon Cognito Developer Guide

To stop receiving push notifications from a dataset, simply call the unsubscribe method:

[[[syncClient openOrCreateDataset:@”MyDataset”] unsubscribe]
 continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to unsubscribe from dataset: %@", task.error);
 } else {
 NSLog(@"Successfully unsubscribed from dataset: %@", task.result);
 }
 return nil;
 }
];

To subscribe to all datasets in the AWSCognito object, call subscribeAll:

[[syncClient subscribeAll] continueWithBlock:^id(AWSTask *task) {
 if(task.error){
 NSLog(@"Unable to subscribe to all datasets: %@", task.error);
 } else {
 NSLog(@"Successfully subscribed to all datasets: %@", task.result);
 }
 return nil;
 }
];

Before calling subscribeAll, be sure to synchronize at least once on each dataset, so that the
datasets exist on the server.

To react to push notifications, you need to implement the didReceiveRemoteNotification
method in your app delegate:

- (void)application:(UIApplication *)application didReceiveRemoteNotification:
(NSDictionary *)userInfo
 {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"CognitoPushNotification" object:userInfo];
 }

If you post a notification using notification handler, you can then respond to the notification
elsewhere in the application where you have a handle to your dataset. If you subscribe to the
notification like this ...

Use push sync in your app: iOS - Objective-C 1216

Amazon Cognito Developer Guide

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(didReceivePushSync:)
 name: :@"CognitoPushNotification" object:nil];

...you can act on the notification like this:

- (void)didReceivePushSync:(NSNotification*)notification
 {
 NSDictionary * data = [(NSDictionary *)[notification object]
 objectForKey:@"data"];
 NSString * identityId = [data objectForKey:@"identityId"];
 NSString * datasetName = [data objectForKey:@"datasetName"];
 if([self.dataset.name isEqualToString:datasetName] && [self.identityId
 isEqualToString:identityId]){
 [[self.dataset synchronize] continueWithBlock:^id(AWSTask *task) {
 if(!task.error){
 NSLog(@"Successfully synced dataset");
 }
 return nil;
 }];
 }
 }

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

• identityPoolId: The identity pool ID. This can be used for validation or additional
information, though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that
the local dataset is out of date, and that the incoming synchronization is new.

Use push sync in your app: iOS - Swift

To obtain a device token for your app, follow the Apple documentation on Registering for Remote
Notifications. Once you've received the device token as an NSData object from APNs, you'll need

Use push sync in your app: iOS - Swift 1217

Amazon Cognito Developer Guide

to register the device with Amazon Cognito using the registerDevice: method of the sync client, as
shown below:

let syncClient = AWSCognito.default()
syncClient.registerDevice(devToken).continueWith(block: { (task: AWSTask!) ->
 AnyObject! in
 if (task.error != nil) {
 print("Unable to register device: " + task.error.localizedDescription)

 } else {
 print("Successfully registered device with id: \(task.result)")
 }
 return task
})

In debug mode, your device will register with the APNs sandbox; in release mode, it will register
with APNs. To receive updates from a particular dataset, use the subscribe method:

syncClient.openOrCreateDataset("MyDataset").subscribe().continueWith(block: { (task:
 AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to subscribe to dataset: " + task.error.localizedDescription)

 } else {
 print("Successfully subscribed to dataset: \(task.result)")
 }
 return task
})

To stop receiving push notifications from a dataset, call the unsubscribe method:

syncClient.openOrCreateDataset("MyDataset").unsubscribe().continueWith(block: { (task:
 AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to unsubscribe to dataset: " + task.error.localizedDescription)

 } else {
 print("Successfully unsubscribed to dataset: \(task.result)")
 }
 return task
})

Use push sync in your app: iOS - Swift 1218

Amazon Cognito Developer Guide

To subscribe to all datasets in the AWSCognito object, call subscribeAll:

syncClient.openOrCreateDataset("MyDataset").subscribeAll().continueWith(block: { (task:
 AWSTask!) -> AnyObject! in
 if (task.error != nil) {
 print("Unable to subscribe to all datasets: " + task.error.localizedDescription)

 } else {
 print("Successfully subscribed to all datasets: \(task.result)")
 }
 return task
})

Before calling subscribeAll, be sure to synchronize at least once on each dataset, so that the
datasets exist on the server.

To react to push notifications, you need to implement the didReceiveRemoteNotification
method in your app delegate:

func application(application: UIApplication, didReceiveRemoteNotification userInfo:
 [NSObject : AnyObject],
 fetchCompletionHandler completionHandler: (UIBackgroundFetchResult) -> Void) {

 NSNotificationCenter.defaultCenter().postNotificationName("CognitoPushNotification",
 object: userInfo)
})

If you post a notification using notification handler, you can then respond to the notification
elsewhere in the application where you have a handle to your dataset. If you subscribe to the
notification like this ...

NSNotificationCenter.defaultCenter().addObserver(observer:self,
 selector:"didReceivePushSync:",
 name:"CognitoPushNotification",
 object:nil)

...you can act on the notification like this:

func didReceivePushSync(notification: NSNotification) {
 if let data = (notification.object as! [String: AnyObject])["data"] as? [String:
 AnyObject] {

Use push sync in your app: iOS - Swift 1219

Amazon Cognito Developer Guide

 let identityId = data["identityId"] as! String
 let datasetName = data["datasetName"] as! String

 if self.dataset.name == datasetName && self.identityId == identityId {
 dataset.synchronize().continueWithBlock {(task) -> AnyObject! in
 if task.error == nil {
 print("Successfully synced dataset")
 }
 return nil
 }
 }
 }
}

The following keys are available in the push notification payload:

• source: cognito-sync. This can serve as a differentiating factor between notifications.

• identityPoolId: The identity pool ID. This can be used for validation or additional
information, though it's not integral from the receiver's point of view.

• identityId: The identity ID within the pool.

• datasetName: The name of the dataset that was updated. This is available for the sake of the
openOrCreateDataset call.

• syncCount: The sync count for the remote dataset. You can use this as a way to make sure that
the local dataset is out of date, and that the incoming synchronization is new.

Implementing Amazon Cognito Sync streams

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

Amazon Cognito Streams gives developers control and insight into their data stored in Amazon
Cognito. Developers can now configure a Kinesis stream to receive events as data is updated and

Implementing Amazon Cognito Sync streams 1220

http://www.amazonaws.cn/appsync/

Amazon Cognito Developer Guide

synchronized. Amazon Cognito can push each dataset change to a Kinesis stream you own in real
time.

Using Amazon Cognito Streams, you can move all of your Sync data to Kinesis, which can then be
streamed to a data warehouse tool such as Amazon Redshift for further analysis. To learn more
about Kinesis, see Getting Started Using Amazon Kinesis.

Configuring streams

You can set up Amazon Cognito Streams in the Amazon Cognito console. To enable Amazon
Cognito Streams in the Amazon Cognito console, you need to select the Kinesis stream to publish
to and an IAM role that grants Amazon Cognito permission to put events in the selected stream.

From the console home page:

1. Click the name of the identity pool for which you want to set up Amazon Cognito Streams. The
Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Manage Identity Pools. The Manage
Federated Identities page appears.

3. Scroll down and click Cognito Streams to expand it.

4. In the Stream name dropdown menu, select the name of an existing Kinesis stream.
Alternatively, click Create stream to create one, entering a stream name and the number of
shards. To learn about shards and for help on estimating the number of shards needed for your
stream, see the Kinesis Developer Guide.

5. In the Publish role dropdown menu, select the IAM role that grants Amazon Cognito permission
to publish your stream. Click Create role to create or modify the roles associated with your
identity pool in the Amazon IAM Console.

6. In the Stream status dropdown menu, select Enabled to enable the stream updates. Click Save
Changes.

After you've successfully configured Amazon Cognito streams, all subsequent updates to datasets
in this identity pool will be sent to the stream.

Stream contents

Each record sent to the stream represents a single synchronization. Here is an example of a record
sent to the stream:

Implementing Amazon Cognito Sync streams 1221

https://docs.amazonaws.cn/kinesis/latest/dev/getting-started.html
https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/kinesis/latest/dev/amazon-kinesis-streams.html
https://console.amazonaws.cn/iam/home

Amazon Cognito Developer Guide

{
 "identityPoolId": "Pool Id",
 "identityId": "Identity Id",
 "dataSetName": "Dataset Name",
 "operation": "(replace|remove)",
 "kinesisSyncRecords": [
 {
 "key": "Key",
 "value": "Value",
 "syncCount": 1,
 "lastModifiedDate": 1424801824343,
 "deviceLastModifiedDate": 1424801824343,
 "op": "(replace|remove)"
 },
 ...
],
 "lastModifiedDate": 1424801824343,
 "kinesisSyncRecordsURL": "S3Url",
 "payloadType": "(S3Url|Inline)",
 "syncCount": 1
}

For updates that are larger than the Kinesis maximum payload size of 1 MB, Amazon Cognito
incudes a presigned Amazon S3 URL that contains the full contents of the update.

After you have configured Amazon Cognito streams, if you delete the Kinesis stream or change the
role trust permission so that Amazon Cognito Sync can no longer assume the role, you turn off the
Amazon Cognito streams. You must either recreate the Kinesis stream or fix the role, and then you
must turn on the stream again.

Bulk publishing

Once you have configured Amazon Cognito streams, you will be able to execute a bulk publish
operation for the existing data in your identity pool. After you initiate a bulk publish operation,
either via the console or directly via the API, Amazon Cognito will start publishing this data to the
same stream that is receiving your updates.

Amazon Cognito does not guarantee uniqueness of data sent to the stream when using the bulk
publish operation. You may receive the same update both as an update as well as part of a bulk
publish. Keep this in mind when processing the records from your stream.

Implementing Amazon Cognito Sync streams 1222

Amazon Cognito Developer Guide

To bulk publish all of your streams, follow steps 1-6 under Configuring Streams and then click
Start bulk publish. You are limited to one ongoing bulk publish operation at any given time and to
one successful bulk publish request every 24 hours.

Customizing workflows with Amazon Cognito Events

If you're new to Amazon Cognito Sync, use Amazon AppSync. Like Amazon Cognito Sync,
Amazon AppSync is a service for synchronizing application data across devices.
It enables user data like app preferences or game state to be synchronized. It also extends
these capabilities by allowing multiple users to synchronize and collaborate in real time on
shared data.

Amazon Cognito Events allows you to execute an Amazon Lambda function in response to
important events in Amazon Cognito. Amazon Cognito raises the Sync Trigger event when a
dataset is synchronized. You can use the Sync Trigger event to take an action when a user updates
data. The function can evaluate and optionally manipulate the data before it is stored in the cloud
and synchronized to the user's other devices. This is useful to validate data coming from the device
before it is synchronized to the user's other devices, or to update other values in the dataset based
on incoming data such as issuing an award when a player reaches a new level.

The steps below will guide you through setting up a Lambda function that executes each time a
Amazon Cognito Dataset is synchronized.

Note

When using Amazon Cognito events, you can only use the credentials obtained from
Amazon Cognito Identity. If you have an associated Lambda function, but you call
UpdateRecords with Amazon account credentials (developer credentials), your Lambda
function will not be invoked.

Creating a function in Amazon Lambda

To integrate Lambda with Amazon Cognito, you first need to create a function in Lambda. To do so:

Customizing workflows with Amazon Cognito Events 1223

http://www.amazonaws.cn/appsync/

Amazon Cognito Developer Guide

Selecting the Lambda Function in Amazon Cognito

1. Open the Lambda console.

2. Click Create a Lambda function.

3. On the Select blueprint screen, search for and select "cognito-sync-trigger."

4. On the Configure event sources screen, leave the Event source type set to "Cognito Sync Trigger"
and select your identity pool. Click Next.

Note

When configuring a Amazon Cognito Sync trigger outside of the console, you must add
Lambda resource-based permissions to allow Amazon Cognito to invoke the function.
You can add this permission from the Lambda console (see Using resource-based policies
for Amazon Lambda) or by using the Lambda AddPermission operation.
Example Lambda Resource-Based Policy
The following Amazon Lambda resource-based policy grants Amazon Cognito a limited
ability to invoke a Lambda function. Amazon Cognito can only invoke the function on
behalf of the identity pool in the aws:SourceArn condition and the account in the
aws:SourceAccount condition.

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Sid": "lambda-allow-cognito-my-function",
 "Effect": "Allow",
 "Principal": {
 "Service": "cognito-sync.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "<your Lambda function ARN>",
 "Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "<your account number>"
 },
 "ArnLike": {
 "AWS:SourceArn": "<your identity pool ARN>"
 }
 }

Customizing workflows with Amazon Cognito Events 1224

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html

Amazon Cognito Developer Guide

 }
]
}

5. On the Configure function screen, enter a name and description for your function. Leave
Runtime set to "Node.js." Leave the code unchanged for our example. The default example
makes no changes to the data being synced. It only logs the fact that the Amazon Cognito
Sync Trigger event occurred. Leave Handler name set to "index.handler." For Role, select an IAM
role that grants your code permission to access Amazon Lambda. To modify roles, see the IAM
console. Leave Advanced settings unchanged. Click Next.

6. On the Review screen, review the details and click Create function. The next page displays your
new Lambda function.

Now that you have an appropriate function written in Lambda, you need to choose that function
as the handler for the Amazon Cognito Sync Trigger event. The steps below walk you through this
process.

From the console home page:

1. Click the name of the identity pool for which you want to set up Amazon Cognito Events. The
Dashboard page for your identity pool appears.

2. In the top-right corner of the Dashboard page, click Manage Federated Identities. The Manage
Federated Identities page appears.

3. Scroll down and click Cognito Events to expand it.

4. In the Sync Trigger dropdown menu, select the Lambda function that you want to trigger when a
Sync event occurs.

5. Click Save Changes.

Now, your Lambda function will be executed each time a dataset is synchronized. The next section
explains how you can read and modify the data in your function as it is being synchronized.

Writing a Lambda function for sync triggers

Sync triggers follow the programming pattern that service provider interfaces use. Amazon
Cognito provides input to your Lambda function in the following JSON format.

{

Customizing workflows with Amazon Cognito Events 1225

Amazon Cognito Developer Guide

 "version": 2,
 "eventType": "SyncTrigger",
 "region": "us-east-1",
 "identityPoolId": "identityPoolId",
 "identityId": "identityId",
 "datasetName": "datasetName",
 "datasetRecords": {
 "SampleKey1": {
 "oldValue": "oldValue1",
 "newValue": "newValue1",
 "op": "replace"
 },
 "SampleKey2": {
 "oldValue": "oldValue2",
 "newValue": "newValue2",
 "op": "replace"
 },..
 }
}

Amazon Cognito expects the return value of the function to have the same format as the input.

When you write functions for the Sync Trigger event, observe the following:

• When Amazon Cognito calls your Lambda function during UpdateRecords, the function
must respond within 5 seconds. If it doesn't, the Amazon Cognito Sync service generates a
LambdaSocketTimeoutException exception. You can't increase this timeout value.

• If you get a LambdaThrottledException exception, try the sync operation again to update
the records.

• Amazon Cognito provides all the records present in the dataset as input to the function.

• Records that the app user updates have the op field set as replace. The deleted records have op
field set as remove.

• You can modify any record, even if the app user doesn't update the record.

• All the fields except the datasetRecords are read-only. Do not change them. If you change these
fields, you can't update the records.

• To modify the value of a record, update the value and set the op to replace.

• To remove a record, either set the op to remove, or set the value to null.

• To add a record, add a new record to the datasetRecords array.

Customizing workflows with Amazon Cognito Events 1226

Amazon Cognito Developer Guide

• Amazon Cognito ignores any omitted record in the response when Amazon Cognitoupdates the
record.

Sample Lambda function

The following sample Lambda function shows how to access, modify and remove the data.

console.log('Loading function');

exports.handler = function(event, context) {
 console.log(JSON.stringify(event, null, 2));

 //Check for the event type
 if (event.eventType === 'SyncTrigger') {

 //Modify value for a key
 if('SampleKey1' in event.datasetRecords){
 event.datasetRecords.SampleKey1.newValue = 'ModifyValue1';
 event.datasetRecords.SampleKey1.op = 'replace';
 }

 //Remove a key
 if('SampleKey2' in event.datasetRecords){
 event.datasetRecords.SampleKey2.op = 'remove';
 }

 //Add a key
 if(!('SampleKey3' in event.datasetRecords)){
 event.datasetRecords.SampleKey3={'newValue':'ModifyValue3', 'op' :
 'replace'};
 }

 }
 context.done(null, event);
};

Customizing workflows with Amazon Cognito Events 1227

Amazon Cognito Developer Guide

Security in Amazon Cognito

Cloud security at Amazon is the highest priority. As an Amazon customer, you benefit from a
data center and network architecture that is built to meet the requirements of the most security-
sensitive organizations.

Security is a shared responsibility between Amazon and you. The shared responsibility model
describes this as security of the cloud and security in the cloud:

• Security of the cloud – Amazon is responsible for protecting the infrastructure that runs
Amazon services in the Amazon Cloud. Amazon also provides you with services that you can use
securely. Third-party auditors regularly test and verify the effectiveness of our security as part
of the Amazon Compliance Programs. To learn about the compliance programs that apply to
Amazon Cognito, see Amazon Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the Amazon service that you use.
You are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations

This documentation helps you understand how to apply the shared responsibility model when
using Amazon Cognito. It shows you how to configure Amazon Cognito to meet your security and
compliance objectives. You also learn how to use other Amazon services that help you to monitor
and secure your Amazon Cognito resources.

Contents

• Data protection in Amazon Cognito

• Identity and access management for Amazon Cognito

• Logging and monitoring in Amazon Cognito

• Compliance validation for Amazon Cognito

• Resilience in Amazon Cognito

• Infrastructure security in Amazon Cognito

• Configuration and vulnerability analysis in Amazon Cognito user pools

• Amazon managed policies for Amazon Cognito

1228

https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon Cognito Developer Guide

Data protection in Amazon Cognito

The Amazon shared responsibility model applies to data protection in Amazon Cognito (Amazon
Cognito). As described in this model, Amazon is responsible for protecting the global infrastructure
that runs all of the Amazon Cloud. You are responsible for maintaining control over your content
that is hosted on this infrastructure. This content includes the security configuration and
management tasks for the Amazon services that you use. For more information about data privacy,
see the Data Privacy FAQ.

For data protection purposes, we recommend that you protect Amazon account credentials and set
up individual user accounts with Amazon Identity and Access Management (IAM). That way each
user is given only the permissions necessary to fulfill their job duties. We also recommend that you
secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with Amazon resources.

• Set up API and user activity logging with Amazon CloudTrail.

• Use Amazon encryption solutions, along with all default security controls within Amazon
services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when you
work with Amazon Cognito or other Amazon services using the console, API, Amazon CLI, or
Amazon SDKs. Any data that you enter into Amazon Cognito or other services might get picked
up for inclusion in diagnostic logs. When you provide a URL to an external server, don't include
credentials information in the URL to validate your request to that server.

Data encryption

Data encryption typically falls into two categories: encryption at rest and encryption in transit.

Encryption at rest

Data within Amazon Cognito is encrypted at rest in accordance with industry standards.

Encryption in transit

Data protection 1229

https://aws.amazon.com/compliance/shared-responsibility-model/
https://www.amazonaws.cn/compliance/data-privacy-faq

Amazon Cognito Developer Guide

As a managed service, Amazon Cognito is protected by Amazon global network security. For
information about Amazon security services and how Amazon protects infrastructure, see Amazon
Cloud Security. To design your Amazon environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected Framework.

You use Amazon published API calls to access Amazon Cognito through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Amazon Cognito user pools and identity pools have IAM-authenticated, unauthenticated, and
token-authorized API operations. Unauthenticated and token-authorized API operations are
intended for use by your customers, the end users of your app. Unauthenticated and token-
authorized API operations are encrypted at rest and in transit. For more information, see List of API
operations grouped by authorization model.

Note

Amazon Cognito encrypts your content internally and doesn't support customer-provided
keys.

Identity and access management for Amazon Cognito

Amazon Identity and Access Management (IAM) is an Amazon Web Services service that helps an
administrator securely control access to Amazon resources. IAM administrators control who can be
authenticated (signed in) and authorized (have permissions) to use Amazon Cognito resources. IAM
is an Amazon Web Services service that you can use with no additional charge.

Topics

Identity and access management 1230

https://www.amazonaws.cn/security/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/welcome.html

Amazon Cognito Developer Guide

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Cognito works with IAM

• Identity-based policy examples for Amazon Cognito

• Troubleshooting Amazon Cognito identity and access

• Using service-linked roles for Amazon Cognito

Audience

How you use Amazon Identity and Access Management (IAM) differs, depending on the work that
you do in Amazon Cognito.

Service user – If you use the Amazon Cognito service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Amazon Cognito
features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in Amazon Cognito, see Troubleshooting Amazon Cognito identity and access.

Service administrator – If you're in charge of Amazon Cognito resources at your company, you
probably have full access to Amazon Cognito. It's your job to determine which Amazon Cognito
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Amazon Cognito, see How Amazon Cognito works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon Cognito. To view example Amazon Cognito
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
Cognito.

Authenticating with identities

Authentication is how you sign in to Amazon using your identity credentials. You must be
authenticated (signed in to Amazon) as the Amazon Web Services account root user, as an IAM user,
or by assuming an IAM role.

Audience 1231

Amazon Cognito Developer Guide

If you access Amazon programmatically, Amazon provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use Amazon tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Amazon Signature Version 4 for API requests
in the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide
additional security information. For example, Amazon recommends that you use multi-factor
authentication (MFA) to increase the security of your account. To learn more, see Amazon Multi-
factor authentication in IAM in the IAM User Guide.

Amazon Web Services account root user

When you create an Amazon Web Services account, you begin with one sign-in identity that has
complete access to all Amazon Web Services services and resources in the account. This identity
is called the Amazon Web Services account root user and is accessed by signing in with the email
address and password that you used to create the account. We strongly recommend that you don't
use the root user for your everyday tasks. Safeguard your root user credentials and use them to
perform the tasks that only the root user can perform. For the complete list of tasks that require
you to sign in as the root user, see Tasks that require root user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access Amazon Web Services services by using temporary
credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the
Amazon Directory Service, or any user that accesses Amazon Web Services services by using
credentials provided through an identity source. When federated identities access Amazon Web
Services accounts, they assume roles, and the roles provide temporary credentials.

IAM users and groups

An IAM user is an identity within your Amazon Web Services account that has specific permissions
for a single person or application. Where possible, we recommend relying on temporary credentials
instead of creating IAM users who have long-term credentials such as passwords and access keys.
However, if you have specific use cases that require long-term credentials with IAM users, we
recommend that you rotate access keys. For more information, see Rotate access keys regularly for
use cases that require long-term credentials in the IAM User Guide.

Authenticating with identities 1232

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_sigv.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html#rotate-credentials

Amazon Cognito Developer Guide

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your Amazon Web Services account that has specific permissions.
It is similar to an IAM user, but is not associated with a specific person. To temporarily assume an
IAM role in the Amazon Web Services Management Console, you can switch from a user to an IAM
role (console). You can assume a role by calling an Amazon CLI or Amazon API operation or by
using a custom URL. For more information about methods for using roles, see Methods to assume a
role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some Amazon Web Services services, you can attach a policy
directly to a resource (instead of using a role as a proxy). To learn the difference between roles
and resource-based policies for cross-account access, see Cross account resource access in IAM in
the IAM User Guide.

• Cross-service access – Some Amazon Web Services services use features in other Amazon Web
Services services. For example, when you make a call in a service, it's common for that service to
run applications in Amazon EC2 or store objects in Amazon S3. A service might do this using the
calling principal's permissions, using a service role, or using a service-linked role.

Authenticating with identities 1233

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_groups.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

Amazon Cognito Developer Guide

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
Amazon, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an Amazon Web Services service, combined with the requesting Amazon Web
Services service to make requests to downstream services. FAS requests are only made when a
service receives a request that requires interactions with other Amazon Web Services services
or resources to complete. In this case, you must have permissions to perform both actions. For
policy details when making FAS requests, see Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM.
For more information, see Create a role to delegate permissions to an Amazon Web Services
service in the IAM User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an Amazon
Web Services service. The service can assume the role to perform an action on your behalf.
Service-linked roles appear in your Amazon Web Services account and are owned by the
service. An IAM administrator can view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making Amazon CLI or
Amazon API requests. This is preferable to storing access keys within the EC2 instance. To assign
an Amazon role to an EC2 instance and make it available to all of its applications, you create
an instance profile that is attached to the instance. An instance profile contains the role and
enables programs that are running on the EC2 instance to get temporary credentials. For more
information, see Use an IAM role to grant permissions to applications running on Amazon EC2
instances in the IAM User Guide.

Managing access using policies

You control access in Amazon by creating policies and attaching them to Amazon identities or
resources. A policy is an object in Amazon that, when associated with an identity or resource,
defines their permissions. Amazon evaluates these policies when a principal (user, root user, or role
session) makes a request. Permissions in the policies determine whether the request is allowed or
denied. Most policies are stored in Amazon as JSON documents. For more information about the
structure and contents of JSON policy documents, see Overview of JSON policies in the IAM User
Guide.

Managing access using policies 1234

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Cognito Developer Guide

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform
the operation. For example, suppose that you have a policy that allows the iam:GetRole action.
A user with that policy can get role information from the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your Amazon Web Services
account. Managed policies include Amazon managed policies and customer managed policies. To
learn how to choose between a managed policy or an inline policy, see Choose between managed
policies and inline policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in
a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

Resource-based policies are inline policies that are located in that service. You can't use Amazon
managed policies from IAM in a resource-based policy.

Managing access using policies 1235

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Cognito Developer Guide

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, Amazon WAF, and Amazon VPC are examples of services that support ACLs. To learn
more about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service
Developer Guide.

Other policy types

Amazon supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in Amazon Organizations. Amazon Organizations
is a service for grouping and centrally managing multiple Amazon Web Services accounts that
your business owns. If you enable all features in an organization, then you can apply service
control policies (SCPs) to any or all of your accounts. The SCP limits permissions for entities in
member accounts, including each Amazon Web Services account root user. For more information
about Organizations and SCPs, see Service control policies in the Amazon Organizations User
Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts and
can impact the effective permissions for identities, including the Amazon Web Services account
root user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of Amazon Web Services services that support RCPs, see
Resource control policies (RCPs) in the Amazon Organizations User Guide.

Managing access using policies 1236

https://docs.amazonaws.cn/AmazonS3/latest/userguide/acl-overview.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.amazonaws.cn/organizations/latest/userguide/orgs_manage_policies_rcps.html

Amazon Cognito Developer Guide

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how Amazon determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Cognito works with IAM

Before you use IAM to manage access to Amazon Cognito, learn what IAM features are available to
use with Amazon Cognito.

IAM features you can use with Amazon Cognito

IAM feature Amazon Cognito support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions No

How Amazon Cognito works with IAM 1237

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Cognito Developer Guide

IAM feature Amazon Cognito support

Service roles Yes

Service-linked roles Yes

To get a high-level view of how Amazon Cognito and other Amazon services work with most IAM
features, see Amazon services that work with IAM in the IAM User Guide.

Identity-based policies for Amazon Cognito

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Amazon Cognito

To view examples of Amazon Cognito identity-based policies, see Identity-based policy examples
for Amazon Cognito.

Resource-based policies within Amazon Cognito

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in

How Amazon Cognito works with IAM 1238

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_principal.html

Amazon Cognito Developer Guide

a resource-based policy. Principals can include accounts, users, roles, federated users, or Amazon
Web Services services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different Amazon Web Services accounts, an IAM administrator in the trusted account
must also grant the principal entity (user or role) permission to access the resource. They grant
permission by attaching an identity-based policy to the entity. However, if a resource-based policy
grants access to a principal in the same account, no additional identity-based policy is required. For
more information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for Amazon Cognito

Supports policy actions: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated Amazon API
operation. There are some exceptions, such as permission-only actions that don't have a matching
API operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Amazon Cognito actions, see Actions defined by Amazon Cognito in the Service
Authorization Reference.

Policy actions in Amazon Cognito use the following prefix before the action:

cognito-identity

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "cognito-identity:action1",
 "cognito-identity:action2"

How Amazon Cognito works with IAM 1239

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-actions-as-permissions

Amazon Cognito Developer Guide

]

Signed versus unsigned APIs

When you sign Amazon Cognito API requests with Amazon credentials, you can restrict them in
an Amazon Identity and Access Management (IAM) policy. API requests that you must sign with
Amazon credentials include server-side sign-in with AdminInitiateAuth, and actions that create,
view, or modify your Amazon Cognito resources like UpdateUserPool. For more information
about signed API requests, see Signing Amazon API requests.

Because Amazon Cognito is a consumer identity product for apps that you want to make
available to the public, you have access to the following unsigned APIs. Your app makes these API
requests for your users and your prospective users. Some APIs require no prior authorization, like
InitiateAuth to start a new authentication session. Some APIs use access tokens or session
keys for authorization, like VerifySoftwareToken to complete MFA setup for a user that has an
existing authenticated session. An unsigned, authorized Amazon Cognito user pools API supports
a Session or AccessToken parameter in the request syntax as displayed in the Amazon Cognito
API Reference. An unsigned Amazon Cognito Identity API supports an IdentityId parameter as
displayed in the Amazon Cognito Federated Identities API Reference.

For more information about the authorization models and roles of Amazon Cognito user pools API
operations, see List of API operations grouped by authorization model.

Amazon Cognito identity pools API operations

• GetId

• GetOpenIdToken

• GetCredentialsForIdentity

• UnlinkIdentity

Amazon Cognito user pools API operations

• AssociateSoftwareToken

• ChangePassword

• ConfirmDevice

• ConfirmForgotPassword

• ConfirmSignUp

How Amazon Cognito works with IAM 1240

https://docs.amazonaws.cn/general/latest/gr/signing_aws_api_requests.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/Welcome.html

Amazon Cognito Developer Guide

• DeleteUser

• DeleteUserAttributes

• ForgetDevice

• ForgotPassword

• GetDevice

• GetUser

• GetUserAttributeVerificationCode

• GlobalSignOut

• InitiateAuth

• ListDevices

• ResendConfirmationCode

• RespondToAuthChallenge

• RevokeToken

• SetUserMFAPreference

• SetUserSettings

• SignUp

• UpdateAuthEventFeedback

• UpdateDeviceStatus

• UpdateUserAttributes

• VerifySoftwareToken

• VerifyUserAttribute

To view examples of Amazon Cognito identity-based policies, see Identity-based policy examples
for Amazon Cognito.

Policy resources for Amazon Cognito

Supports policy resources: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Cognito works with IAM 1241

Amazon Cognito Developer Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

Amazon resource names (ARNs)

ARNs for Amazon Cognito federated identities

In Amazon Cognito identity pools (federated identities), it is possible to restrict an IAM user's access
to a specific identity pool, using the Amazon Resource Name (ARN) format, as in the following
example. For more information about ARNs, see IAM identifiers.

arn:aws:cognito-identity:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID

ARNs for Amazon Cognito Sync

In Amazon Cognito Sync, customers can also restrict access by the identity pool ID, identity ID, and
dataset name.

For APIs that operate on an identity pool, the identity pool ARN format is the same as for Amazon
Cognito Federated Identities, except that the service name is cognito-sync instead of cognito-
identity:

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID

For APIs that operate on a single identity, such as RegisterDevice, you can refer to the
individual identity by the following ARN format:

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID/
identity/IDENTITY_ID

For APIs that operate on datasets, such as UpdateRecords and ListRecords, you can refer to
the individual dataset using the following ARN format:

How Amazon Cognito works with IAM 1242

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference-arns.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_identifiers.html

Amazon Cognito Developer Guide

arn:aws:cognito-sync:REGION:ACCOUNT_ID:identitypool/IDENTITY_POOL_ID/
identity/IDENTITY_ID/dataset/DATASET_NAME

ARNs for Amazon Cognito user pools

For Amazon Cognito Your User Pools, it is possible to restrict a user's access to a specific user pool,
using the following ARN format:

arn:aws:cognito-idp:REGION:ACCOUNT_ID:userpool/USER_POOL_ID

To see a list of Amazon Cognito resource types and their ARNs, see Resources defined by Amazon
Cognito in the Service Authorization Reference. To learn with which actions you can specify the ARN
of each resource, see Actions defined by Amazon Cognito.

To view examples of Amazon Cognito identity-based policies, see Identity-based policy examples
for Amazon Cognito.

Policy condition keys for Amazon Cognito

Supports service-specific policy condition keys: Yes

Administrators can use Amazon JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, Amazon evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, Amazon evaluates the condition using a logical OR operation. All
of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

How Amazon Cognito works with IAM 1243

https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-resources-for-iam-policies
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_variables.html

Amazon Cognito Developer Guide

Amazon supports global condition keys and service-specific condition keys. To see all Amazon
global condition keys, see Amazon global condition context keys in the IAM User Guide.

To see a list of Amazon Cognito condition keys, see Condition keys for Amazon Cognito in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Actions defined by Amazon Cognito.

To view examples of Amazon Cognito identity-based policies, see Identity-based policy examples
for Amazon Cognito.

Access control lists (ACLs) in Amazon Cognito

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with Amazon Cognito

Supports ABAC (tags in policies): Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In Amazon, these attributes are called tags. You can attach tags to IAM entities (users
or roles) and to many Amazon resources. Tagging entities and resources is the first step of ABAC.
Then you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

How Amazon Cognito works with IAM 1244

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-policy-keys
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html#amazoncognitoidentity-actions-as-permissions
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Cognito Developer Guide

Using temporary credentials with Amazon Cognito

Supports temporary credentials: Yes

Some Amazon Web Services services don't work when you sign in using temporary credentials.
For additional information, including which Amazon Web Services services work with temporary
credentials, see Amazon Web Services services that work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the Amazon Web Services Management
Console using any method except a user name and password. For example, when you access
Amazon using your company's single sign-on (SSO) link, that process automatically creates
temporary credentials. You also automatically create temporary credentials when you sign in to
the console as a user and then switch roles. For more information about switching roles, see Switch
from a user to an IAM role (console) in the IAM User Guide.

You can manually create temporary credentials using the Amazon CLI or Amazon API. You can then
use those temporary credentials to access Amazon. Amazon recommends that you dynamically
generate temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Amazon Cognito

Supports forward access sessions (FAS): No

When you use an IAM user or role to perform actions in Amazon, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an Amazon Web Services service,
combined with the requesting Amazon Web Services service to make requests to downstream
services. FAS requests are only made when a service receives a request that requires interactions
with other Amazon Web Services services or resources to complete. In this case, you must have
permissions to perform both actions. For policy details when making FAS requests, see Forward
access sessions.

Service roles for Amazon Cognito

Supports service roles: Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an Amazon Web Services service in the IAM User Guide.

How Amazon Cognito works with IAM 1245

https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Cognito Developer Guide

For details about Amazon Cognito service roles, see Activate push synchronization and
Implementing push synchronization.

Warning

Changing the permissions for a service role might break Amazon Cognito functionality. Edit
service roles only when Amazon Cognito provides guidance to do so.

Service-linked roles for Amazon Cognito

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an Amazon Web Services service. The
service can assume the role to perform an action on your behalf. Service-linked roles appear in
your Amazon Web Services account and are owned by the service. An IAM administrator can view,
but not edit the permissions for service-linked roles.

For details about creating or managing Amazon Cognito service-linked roles, see Using service-
linked roles for Amazon Cognito.

Identity-based policy examples for Amazon Cognito

By default, users and roles don't have permission to create or modify Amazon Cognito resources.
They also can't perform tasks by using the Amazon Web Services Management Console, Amazon
Command Line Interface (Amazon CLI), or Amazon API. To grant users permission to perform
actions on the resources that they need, an IAM administrator can create IAM policies. The
administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Amazon Cognito, including the format of
the ARNs for each of the resource types, see Actions, resources, and condition keys for Amazon
Cognito in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Amazon Cognito console

• Allow users to view their own permissions

Identity-based policy examples 1246

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html
https://docs.amazonaws.cn/service-authorization/latest/reference/list_amazoncognitoidentity.html

Amazon Cognito Developer Guide

• Restricting console access to a specific identity pool

• Allowing access to specific dataset for all identities in a pool

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Amazon Cognito
resources in your account. These actions can incur costs for your Amazon Web Services account.
When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with Amazon managed policies and move toward least-privilege permissions
– To get started granting permissions to your users and workloads, use the Amazon managed
policies that grant permissions for many common use cases. They are available in your Amazon
Web Services account. We recommend that you reduce permissions further by defining Amazon
customer managed policies that are specific to your use cases. For more information, see Amazon
managed policies or Amazon managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific Amazon Web Services service, such as Amazon
CloudFormation. For more information, see IAM JSON policy elements: Condition in the IAM
User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or a
root user in your Amazon Web Services account, turn on MFA for additional security. To require
MFA when API operations are called, add MFA conditions to your policies. For more information,
see Secure API access with MFA in the IAM User Guide.

Identity-based policy examples 1247

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

Amazon Cognito Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Note

The original and new versions of the Amazon Cognito console have different underlying
behavior when you view and modify your Amazon Cognito resources. If you granted
permission to actions under the cognito-idp service prefix only when the condition
aws:ViaAWSService is true, the affected IAM principal could have been effective for
Amazon Cognito resources in the original console, but not the new console. To work in the
Amazon Cognito console, don't set an aws:ViaAWSService condition on Amazon Cognito
permissions in your IAM policy.

Using the Amazon Cognito console

To access the Amazon Cognito console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Amazon Cognito resources in your
Amazon Web Services account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (users or
roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to
the Amazon CLI or the Amazon API. Instead, allow access to only the actions that match the API
operation that they're trying to perform.

To ensure that users and roles can still use the Amazon Cognito console, also attach the Amazon
Cognito ConsoleAccess or ReadOnly Amazon managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the Amazon CLI or Amazon API.

{
 "Version": "2012-10-17",
 "Statement": [

Identity-based policy examples 1248

https://docs.amazonaws.cn/IAM/latest/UserGuide/best-practices.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Cognito Developer Guide

 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws-cn:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Restricting console access to a specific identity pool

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-identity:ListIdentityPools"
],
 "Resource": "*"
 },
 {

Identity-based policy examples 1249

Amazon Cognito Developer Guide

 "Effect": "Allow",
 "Action": [
 "cognito-identity:*"
],
 "Resource": "arn:aws:cognito-identity:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cognito-sync:*"
],
 "Resource": "arn:aws:cognito-sync:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678"
 }
]
}

Allowing access to specific dataset for all identities in a pool

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cognito-sync:ListRecords",
 "cognito-sync:UpdateRecords"
],
 "Resource": "arn:aws:cognito-sync:us-east-1:0123456789:identitypool/us-
east-1:1a1a1a1a-ffff-1111-9999-12345678/identity/*/dataset/UserProfile"
 }
]
}

Troubleshooting Amazon Cognito identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon Cognito and IAM.

Troubleshooting 1250

Amazon Cognito Developer Guide

Topics

• I am not authorized to perform an action in Amazon Cognito

• I am not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access Amazon Cognito

• I want to allow people outside of my Amazon account to access my Amazon Cognito resources

I am not authorized to perform an action in Amazon Cognito

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
cognito-identity:GetWidget permissions.

User: arn:aws-cn:iam::123456789012:user/mateojackson is not authorized to perform:
 cognito-identity:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the cognito-identity:GetWidget action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon Cognito.

Some Amazon Web Services services allow you to pass an existing role to that service instead of
creating a new service role or service-linked role. To do this, you must have permissions to pass the
role to the service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon Cognito. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

Troubleshooting 1251

Amazon Cognito Developer Guide

User: arn:aws-cn:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your Amazon administrator. Your administrator is the person who
provided you with your sign-in credentials.

I'm an administrator and want to allow others to access Amazon Cognito

To allow others to access Amazon Cognito, you must grant permission to the people or applications
that need access. If you are using Amazon IAM Identity Center to manage people and applications,
you assign permission sets to users or groups to define their level of access. Permission sets
automatically create and assign IAM policies to IAM roles that are associated with the person or
application. For more information, see Permission sets in the Amazon IAM Identity Center User
Guide.

If you are not using IAM Identity Center, you must create IAM entities (users or roles) for the people
or applications that need access. You must then attach a policy to the entity that grants them the
correct permissions in Amazon Cognito. After the permissions are granted, provide the credentials
to the user or application developer. They will use those credentials to access Amazon. To learn
more about creating IAM users, groups, policies, and permissions, see IAM Identities and Policies
and permissions in IAM in the IAM User Guide.

I want to allow people outside of my Amazon account to access my Amazon
Cognito resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon Cognito supports these features, see How Amazon Cognito works with
IAM.

• To learn how to provide access to your resources across Amazon Web Services accounts that you
own, see Providing access to an IAM user in another Amazon Web Services account that you own
in the IAM User Guide.

Troubleshooting 1252

https://docs.amazonaws.cn/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Cognito Developer Guide

• To learn how to provide access to your resources to third-party Amazon Web Services accounts,
see Providing access to Amazon Web Services accounts owned by third parties in the IAM User
Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using service-linked roles for Amazon Cognito

Amazon Cognito uses Amazon Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role with a trust policy that permits an Amazon Web
Services service to assume the role. Service-linked roles are predefined by Amazon Cognito and
include all the permissions that the service requires to call other Amazon services on your behalf.

A service-linked role makes setting up Amazon Cognito easier because you don’t have to manually
add the necessary permissions. Amazon Cognito defines the permissions of its service-linked roles,
and unless defined otherwise, only Amazon Cognito can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your Amazon Cognito resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see Amazon Services That
Work with IAM and look for the services that have Yes in the Service-Linked Role column. Choose
a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions for Amazon Cognito

Amazon Cognito uses the following service-linked roles:

• AWSServiceRoleForAmazonCognitoIdpEmailService – Allows Amazon Cognito user pools
service to use your Amazon SES identities for sending email.

• AWSServiceRoleForAmazonCognitoIdp – Allows Amazon Cognito user pools to publish events
and configure endpoints for your Amazon Pinpoint projects.

Using service-linked roles 1253

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Cognito Developer Guide

AWSServiceRoleForAmazonCognitoIdpEmailService

The AWSServiceRoleForAmazonCognitoIdpEmailService service-linked role trusts the
following services to assume the role:

• email.cognito-idp.amazonaws.com

The role permissions policy allows Amazon Cognito to complete the following actions on the
specified resources:

Allowed Actions for AWSServiceRoleForAmazonCognitoIdpEmailService:

• Action: ses:SendEmail and ses:SendRawEmail

• Resource: *

The policy denies Amazon Cognito the ability to complete the following actions on the specified
resources:

Denied Actions

• Action: ses:List*

• Resource: *

With these permissions, Amazon Cognito can use your verified email addresses in Amazon SES only
to email your users. Amazon Cognito emails your users when they perform certain actions in the
client app for a user pool, such as signing up or resetting a password.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

AWSServiceRoleForAmazonCognitoIdp

The AWSServiceRoleForAmazonCognitoIdp service-linked role trusts the following services to
assume the role:

• email.cognito-idp.amazonaws.com

Using service-linked roles 1254

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon Cognito Developer Guide

The role permissions policy allows Amazon Cognito to complete the following actions on the
specified resources:

Allowed Actions for AWSServiceRoleForAmazonCognitoIdp

• Action: cognito-idp:Describe

• Resource: *

With this permission, Amazon Cognito can call Describe Amazon Cognito API operations for you.

Note

When you integrate Amazon Cognito with Amazon Pinpoint using
createUserPoolClient and updateUserPoolClient, resource permissions
will be added to the SLR as an inline policy. The inline policy will provide
mobiletargeting:UpdateEndpoint and mobiletargeting:PutEvents permissions.
These permissions allow Amazon Cognito to publish events and configure endpoints for
Pinpoint projects you integrate with Cognito.

Creating a service-linked role for Amazon Cognito

You don't need to manually create a service-linked role. When you configure a user pool to use
your Amazon SES configuration to handle email delivery in the Amazon Web Services Management
Console, the Amazon CLI, or the Amazon Cognito API, Amazon Cognito creates the service-linked
role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you configure a user pool to use your Amazon SES
configuration to handle email delivery, Amazon Cognito creates the service-linked role for you
again.

Before Amazon Cognito can create this role, the IAM permissions that you use to set up your user
pool must include the iam:CreateServiceLinkedRole action. For more information about
updating permissions in IAM, see Changing Permissions for an IAM User in the IAM User Guide.

Using service-linked roles 1255

https://docs.amazonaws.cn/IAM/latest/UserGuide/id_users_change-permissions.html

Amazon Cognito Developer Guide

Editing a service-linked role for Amazon Cognito

You can't edit the AmazonCognitoIdp or AmazonCognitoIdpEmailService service-linked roles in
Amazon Identity and Access Management. After you create a service-linked role, you can't change
the name of the role because various entities might reference the role. However, you can edit the
description of the role using IAM. For more information, see Editing a service-linked role in the IAM
User Guide.

Deleting a service-linked role for Amazon Cognito

If you no longer need to use a feature or service that requires a service-linked role, we
recommend that you delete that role. If you delete the role, you only retain entities that
Amazon Cognito actively monitors or maintains. Before you can delete AmazonCognitoIdp or
AmazonCognitoIdpEmailService service-linked roles, you must do one of the following for each
user pool that uses the role:

• Delete the user pool.

• Update the email settings in the user pool to use the default email functionality. The default
setting doesn't use the service-linked role.

Remember to perform the action in each Amazon Web Services Region with a user pool that uses
the role.

Note

If the Amazon Cognito service is using the role when you try to delete the resources, then
the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete an Amazon Cognito user pool

1. Sign in to the Amazon Web Services Management Console and open the Amazon Cognito
console at https://console.amazonaws.cn/cognito.

2. Choose Manage User Pools.

3. On the Your User Pools page, choose the user pool that you want to delete.

4. Choose Delete pool.

5. In the Delete user pool window, type delete, and choose Delete pool.

Using service-linked roles 1256

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.amazonaws.cn/cognito

Amazon Cognito Developer Guide

To update an Amazon Cognito user pool to use the default email functionality

1. Sign in to the Amazon Web Services Management Console and open the Amazon Cognito
console at https://console.amazonaws.cn/cognito.

2. Choose Manage User Pools.

3. On the Your User Pools page, choose the user pool that you want to update.

4. In the navigation menu on the left, choose Message customizations.

5. Under Do you want to send emails through your Amazon SES Configuration?, choose No -
Use Cognito (Default).

6. When you finish setting your email account options, choose Save changes.

To manually delete the service-linked role using IAM

Use the IAM console, the Amazon CLI, or the Amazon API to delete AmazonCognitoIdp or
AmazonCognitoIdpEmailService service-linked roles. For more information, see Deleting a service-
linked role in the IAM User Guide.

Supported Regions for Amazon Cognito service-linked roles

Amazon Cognito supports service-linked roles in all Amazon Web Services Regions where the
service is available. For more information, see Amazon Web Services Regions and Endpoints.

Logging and monitoring in Amazon Cognito

Monitoring is an important part of maintaining the reliability, availability, and performance of
Amazon Cognito and your other Amazon solutions. Amazon Cognito currently supports the
following Amazon Web Services services so that you can monitor your organization and the activity
that happens within it.

• Amazon CloudTrail – With CloudTrail you can capture API calls from the Amazon Cognito
console and from code calls to the Amazon Cognito API operations. For example, when a user
authenticates, CloudTrail can record details such as the IP address in the request, who made the
request, and when it was made.

• Amazon CloudWatch Logs – With CloudWatch Logs, you can send fine-grained logs of user
activity to a log group. For example, you can review detailed user activity logs to troubleshoot
the delivery of email and SMS messages to your users.

Logging and monitoring 1257

https://console.amazonaws.cn/cognito
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.amazonaws.cn/general/latest/gr/rande.html#cognito_identity_region

Amazon Cognito Developer Guide

• Amazon CloudWatch Metrics – With CloudWatch metrics you can monitor, report, and take
automatic actions in case of an event in near real time. For example, you can create CloudWatch
dashboards on the provided metrics to monitor your Amazon Cognito user pools, or you can
create CloudWatch alarms on the provided metrics to notify you on breach of a set threshold.

• Amazon CloudWatch Logs Insights – With CloudWatch Logs Insights, you can configure
CloudTrail to send events to CloudWatch for monitoring Amazon Cognito CloudTrail log files.

Topics

• Monitoring and managing costs

• Exporting logs from Amazon Cognito user pools

• Tracking quotas and usage in CloudWatch and Service Quotas

• Amazon Cognito logging in Amazon CloudTrail

Monitoring and managing costs

Like with any other Amazon Web Services service, it's important to understand the effect of your
Amazon Cognito configuration and usage on your Amazon bill. As part of your preparations for
the deployment of user pools to production, set up monitoring and safeguards for activity and
resource consumption. When you know where to look and what actions produce additional cost,
you can set up precautions against surprises in your bill.

Amazon Cognito charges for the following dimensions of your usage.

• User pool monthly active users (MAUs)—rate varies by feature plan

• User pool MAUs signed in with OIDC or SAML federation

• Active user pool app clients and request volume for machine to machine (M2M) authorization
with client credentials grants

• Purchased usage above default quotas for some categories of user pool APIs

Additionally, features of your user pool like email messages, SMS messages, and Lambda triggers
can incur costs in dependent services. For a complete overview, see Amazon Cognito Pricing.

Viewing and anticipating costs

High-volume events like product launches and opening up to new userbases can increase your
MAU count and have a cost impact. Estimate the new user count in advance and watch activity as it

Monitoring costs 1258

https://www.amazonaws.cn/cognito/pricing

Amazon Cognito Developer Guide

happens. You might find that you want to accommodate the volume with a purchase of additional
quota capacity, or control the volume with additional security measures.

You can view and report on your Amazon costs in the Amazon Billing and Cost Management
console. You can find your most recent charges for Amazon Cognito in the Billing and payments
section. Under Bills, Charges by service, filter on Cognito to view your usage. For more
information, see Viewing your bill in the Amazon Billing User Guide.

To monitor API request rates, review the Utilization metric in the Service Quotas console. For
example, client credentials requests display as Rate of ClientAuthentication requests. In your bill,
these requests are associated with the app client that produced them. With this information, you
can equitable allocate costs to the tenants in a multi-tenant architecture.

To get a count of M2M requests for a period of time, you can also send Amazon CloudTrail events
to CloudWatch Logs for analysis. Query your CloudTrail events for Token_POST events with a
client credentials grant. The following CloudWatch Insights query returns this count.

filter eventName = "Token_POST" and @message like '"grant_type":["client_credentials"]'
 | stats count(*)

Managing costs

Amazon Cognito bills based on user count, feature usage, and request volume. The following are
some tips to manage cost in Amazon Cognito,

Don't activate inactive users

Typical operations that make a user active are sign-in, sign-up, and password reset. For a more
thorough list, see Monthly active users. Amazon Cognito doesn't count inactive users toward your
bill. Avoid any operations that set a user active. Instead of the AdminGetUser API operation, query
users with the ListUsers operation. Don't perform high-volume administrative testing of user pool
operations with inactive users.

Link federated users

Users who sign in with a SAML 2.0 or OpenID Connect (OIDC) identity provider have a higher cost
than local users. You can link these users to a local user profile. A linked user can sign in as a local
user with the attributes and access that come with their federated user. Users from SAML or OIDC
IdPs who, in the course of a month, only sign in with a linked local account are billed as local users.

Manage request rates

Monitoring costs 1259

https://console.amazonaws.cn/billing/home
https://console.amazonaws.cn/billing/home
https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/getting-viewing-bill.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/send-cloudtrail-events-to-cloudwatch-logs.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/send-cloudtrail-events-to-cloudwatch-logs.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide

If your user pool is approaching the upper limit of your quota, you might consider purchasing
additional capacity to handle the volume. You might be able to reduce the volume of requests in
your application. For more information, see Optimize request rates for quota limits.

Request a new token only when you need one

Machine to machine (M2M) authorization with client credentials grants can reach a high volume of
token requests. Each new token request has an effect on your request-rate quota and the size of
your bill. To optimize cost, include token expiration settings and token handling in the design of
your applications.

• Cache access tokens so that when your application requests a new token, it receives a cached
version of a previously-issued token. When you implement this method, your caching proxy acts
as a guard against applications that request access tokens without awareness of the expiration
of previously-acquired tokens. Caching tokens is ideal for short-lived microservices like Lambda
functions and Docker containers.

• Implement token-handling mechanisms in your applications that account for token expiration.
Don’t request a new token until previous tokens are about to expire. As a best practice, refresh
tokens at about 75% of the token lifetime. This practice maximizes token duration while
ensuring user continuity in your application.

Evaluate the confidentiality and availability needs of each application and configure the user
pool app client to issue access tokens with an appropriate validity period. Custom token duration
works best with longer-lived APIs and servers that can persistently manage the frequency of
requests for credentials.

ListUsers, not AdminGetUser

To query the attributes of users in your user pool, use the ListUsers API operation and associated
SDK methods when possible. AdminGetUser marks a user as active for the month and contributes
to the monthly active users (MAUs) that are used to calculate your bill for user pools.

Delete unused client credentials app clients

M2M authorization bills based on two factors: the rate of token requests and the number of app
clients that do client credentials grants. When app clients for M2M authorization aren’t in use,
delete them or remove their authorization to issue client credentials. For more information about
managing app client configuration, see Application-specific settings with app clients.

Monitoring costs 1260

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://www.amazonaws.cn/developer/tools/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html

Amazon Cognito Developer Guide

Manage feature plans

When you choose a feature plan in a user pool, the billing rate applies to all MAUs in the user pool.
If you have users that don't need features that come with a higher-level feature plan, separate
them into another user pool.

Exporting logs from Amazon Cognito user pools

You can configure your user pool to send detailed logs of some additional activity to another
Amazon Web Services service, like a CloudWatch log group. These logs are of a finer granularity
than those in Amazon CloudTrail, and can be useful to troubleshoot your user pool and analyze
user sign-in activity with advanced security features. When you want to stream logs of SMS and
email notification errors, your user pool sends ERROR-level logs to a CloudWatch log group. When
you want to stream logs of user sign-in activity, your user pool sends INFO-level logs to a log
group, a Amazon Data Firehose stream, or an Amazon S3 bucket. You can combine both options in
a user pool.

Topics

• Things to know about log export

• Exporting email and SMS message delivery errors

• Exporting threat protection user activity logs

Things to know about log export

Cost impact

Amazon Data Firehose, Amazon S3, and CloudWatch Logs incur costs for data ingestion and
retrieval. Your logging configuration might affect your Amazon bill. For more information, see
the following:

• Vended Logs in Amazon CloudWatch Pricing.

• Amazon Data Firehose pricing

• Amazon S3 pricing

User-activity log exports contain security assessments and are a function of user pool advanced
security features. Amazon Cognito only generates these logs when advanced security features
are active. These features increase the cost per monthly active user (MAU) in your user pool. For
more information, see Amazon Cognito Pricing.

Exporting user pool logs 1261

https://www.amazonaws.cn/cloudwatch/pricing/#Vended_Logs
https://www.amazonaws.cn/firehose/pricing/
https://www.amazonaws.cn/s3/pricing/
https://www.amazonaws.cn/cognito/pricing

Amazon Cognito Developer Guide

User activity logs are INFO level

Exported user-activity logs are at the INFO error level only and provide information for
statistical and security analysis of authentication activity. Messages at the WARNING and ERROR
error levels, for example throttling errors, aren't included in the exported logs.

Best-effort delivery

Delivery of logs from Amazon Cognito is best effort. The volume of logs that your user pool
delivers, and your service quotas for CloudWatch Logs, Amazon S3, and Firehose can affect the
delivery of logs.

Existing external logs are unaffected

These logging options don't replace or change the following log functions of user pools.

1. CloudTrail logs of routine user activity like sign-up and sign-in.

2. Analysis of user activity at scale with CloudWatch metrics.

Separately, you can also find logs from Viewing the user pool import results in the CloudWatch
console and Customizing user pool workflows with Lambda triggers in CloudWatch Logs.
Amazon Cognito and Lambda store these logs in different log groups from the ones that you
specify for user activity logs.

Applies only to user pools

No log export capabilities exist for identity pools.

Requires user permissions and service-linked role

The Amazon principal that sets up log export must have permissions to modify the target
resources, as described in the topics that follow. Amazon Cognito creates a service-linked role
on your behalf and assumes the role to deliver logs to the target resource.

For more information about the authorization model for sending logs from Amazon Cognito,
see Enable logging from Amazon Web Services services in the Amazon CloudWatch Logs User
Guide.

Log level is exclusive to log type

Message-delivery logs are of the userNotification type and of the ERROR errorlevel.
Advanced security user activity logs are of the userAuthEvents type and of the
INFO errorlevel. You can combine two members of LogConfigurations, one for

Exporting user pool logs 1262

https://docs.amazonaws.cn/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-vended-logs-permissions

Amazon Cognito Developer Guide

userNotification to CloudWatch Logs, and one for userAuthEvents to Firehose, Amazon
S3, or CloudWatch Logs.

You can't send user-activity logs to multiple destinations. You can't send user-notification logs
to any destination other than CloudWatch Logs.

Different configuration options

You can only configure user-notification logs with the Amazon Cognito user pools API or an
Amazon SDK. You can configure advanced security user-activity logs with the API or in the
Amazon Cognito console. To set both, use the API as demonstrated in the example request at
SetLogDeliveryConfiguration.

Additional configuration required with large resource-based policies

To send logs to log groups with a resource policy of a size greater than 5120 characters,
configure a log group with a path that starts with /aws/vendedlogs. For more information,
see Enabling logging from certain Amazon services.

Automatic creation of a folder in Amazon S3

When you configure threat protection log export to an Amazon S3 bucket, Amazon Cognito
might create an AWSLogs folder in your bucket. That folder is not created in all cases, and the
configuration can succeed without creating it.

Exporting email and SMS message delivery errors

For email and SMS message delivery errors, you can deliver Error-level user notification logs from
your user pool. When you activate this feature, you can choose the log group where you want
Amazon Cognito to send logs. User notification logging is useful when you want to find out the
status of email and SMS messages that your user pool delivered with Amazon SNS and Amazon
SES. This log export option, unlike user-activity export, doesn't require the Plus feature plan.

You can configure detailed notification logs with the Amazon Cognito user pools API in a
SetLogDeliveryConfiguration API request. You can view the logging configuration of a user pool in
a GetLogDeliveryConfiguration API request. The following is an example request body.

{
 "LogConfigurations": [
 {
 "CloudWatchLogsConfiguration": {

Exporting user pool logs 1263

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetLogDeliveryConfiguration.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetLogDeliveryConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetLogDeliveryConfiguration.html

Amazon Cognito Developer Guide

 "LogGroupArn": "arn:aws:logs:us-west-2:123456789012:log-group:example-user-
pool-exported"
 },
 "EventSource": "userNotification",
 "LogLevel": "ERROR"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

You must authorize these requests with Amazon credentials that have the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageUserPoolLogs",
 "Action": [
 "cognito-idp:SetLogDeliveryConfiguration",
 "cognito-idp:GetLogDeliveryConfiguration"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "CognitoLog",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "CognitoLoggingCWL",
 "Action": [

Exporting user pool logs 1264

Amazon Cognito Developer Guide

 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

The following is an example event from a user pool. This log schema is subject to change. Some
fields might be logged with null values.

{
 "eventTimestamp": "1687297330677",
 "eventSource": "USER_NOTIFICATION",
 "logLevel": "ERROR",
 "message": {
 "details": "String"
 },
 "logSourceId": {
 "userPoolId": "String"
 }
}

Exporting threat protection user activity logs

User pools with the Plus feature plan and threat protection log user activity events: the details and
security assessment of user sign-in, sign-out, and other authentication operations with your user
pool. You might want to review user activity logs in your own log-management system, or create
an archive. You can export this data to a Amazon CloudWatch Logs log group, an Amazon Data
Firehose stream, or an Amazon Simple Storage Service (Amazon S3) bucket. From there, you can
ingest this data into other systems that analyze, normalize or otherwise process data in ways that
fit it in to your operational processes. To export data of this type, your user pool must be on the
Plus feature plan and advanced security features must be active in your user pool.

With the information in these user activity logs, you can view a profile of user sign-in and
account-management activity. By default, Amazon Cognito captures these events to storage
that's based in your user pool. The following example is an example event for a user who

Exporting user pool logs 1265

Amazon Cognito Developer Guide

signed in and was evaluated to have no risk factors. You can retrieve this information with the
AdminListUserAuthEvents API operation. The following is an example output:

{
 "AuthEvents": [
 {
 "EventId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "EventType": "SignIn",
 "CreationDate": "2024-06-27T10:49:59.139000-07:00",
 "EventResponse": "Pass",
 "EventRisk": {
 "RiskDecision": "NoRisk",
 "CompromisedCredentialsDetected": false
 },
 "ChallengeResponses": [
 {
 "ChallengeName": "Password",
 "ChallengeResponse": "Success"
 }
],
 "EventContextData": {
 "IpAddress": "192.0.2.1",
 "DeviceName": "Chrome 126, Windows 10",
 "Timezone": "-07:00",
 "City": "null",
 "Country": "United States"
 }
 }
],
 "NextToken": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222#2024-06-27T17:49:59.139Z"
}

You can activate log export for user activity in the Amazon Cognito console or with the
SetLogDeliveryConfiguration API operation.

Amazon Web Services Management Console

1. If you don't already have one that you want to use, create an S3 bucket, Firehose stream, or
CloudWatch log group.

2. Sign in to the Amazon Cognito console.

3. Choose User Pools.

Exporting user pool logs 1266

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetLogDeliveryConfiguration.html
https://docs.amazonaws.cn/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.amazonaws.cn/firehose/latest/dev/basic-create.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://console.amazonaws.cn/cognito/home

Amazon Cognito Developer Guide

4. Choose an existing user pool from the list, or create a user pool.

5. Choose the Advanced security tab. Locate Export user activity logs and choose Edit

6. Under Logging status, select the checkbox next to Activate user activity log export.

7. Under Logging destination, choose the Amazon Web Services service that you want to
handle your logs: CloudWatch log group, Amazon Data Firehose stream, or S3 bucket.

8. Your selection will populate the resource selector with the corresponding resource type.
Select a log group, stream, or bucket from the list. You can also select the Create button
to navigate to the Amazon Web Services Management Console for the selected service and
create a new resource.

9. Select Save changes.

API

Choose one type of destination for your user activity logs.

The following is an example SetLogDeliveryConfiguration request body that sets a
Firehose stream as the log destination.

{
 "LogConfigurations": [
 {
 "EventSource": "userAuthEvents",
 "FirehoseConfiguration": {
 "StreamArn": "arn:aws:firehose:us-west-2:123456789012:deliverystream/
example-user-pool-activity-exported"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

The following is an example SetLogDeliveryConfiguration request body that sets a
Amazon S3 bucket as the log destination.

{
 "LogConfigurations": [
 {
 "EventSource": "userAuthEvents",

Exporting user pool logs 1267

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

 "S3Configuration": {
 "BucketArn": "arn:aws:s3:::amzn-s3-demo-logging-bucket"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

The following is an example SetLogDeliveryConfiguration request body that sets a
CloudWatch log group as the log destination.

{
 "LogConfigurations": [
 {
 "EventSource": "userAuthEvents",
 "CloudWatchLogsConfiguration": {
 "LogGroupArn": "arn:aws:logs:us-west-2:123456789012:log-group:DOC-
EXAMPLE-LOG-GROUP"
 },
 "LogLevel": "INFO"
 }
],
 "UserPoolId": "us-west-2_EXAMPLE"
}

The user that configures log delivery must be a user pool administrator and have the following
additional permissions:

Amazon S3

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageUserPoolLogs",
 "Action": [
 "cognito-idp:SetLogDeliveryConfiguration",
 "cognito-idp:GetLogDeliveryConfiguration",
],
 "Resource": [
 "*"

Exporting user pool logs 1268

Amazon Cognito Developer Guide

],
 "Effect": "Allow"
 },
 {
 "Sid": "ManageLogsS3",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "s3:PutBucketPolicy",
 "s3:GetBucketPolicy"
],
 "Resource": "*"
 }
]
}

CloudWatch Logs

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageUserPoolLogs",
 "Action": [
 "cognito-idp:SetLogDeliveryConfiguration",
 "cognito-idp:GetLogDeliveryConfiguration",
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "ManageLogsCWL",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"

Exporting user pool logs 1269

Amazon Cognito Developer Guide

],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

Amazon Data Firehose

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageUserPoolLogs",
 "Action": [
 "cognito-idp:SetLogDeliveryConfiguration",
 "cognito-idp:GetLogDeliveryConfiguration",
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 },
 {
 "Sid": "ManageUserPoolLogsFirehose",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "iam:CreateServiceLinkedRole",
 "firehose:TagDeliveryStream"
],
 "Resource": "*"
 }
]
}

The following is an example event from a user pool. This log schema is subject to change. Some
fields might be logged with null values.

{

Exporting user pool logs 1270

Amazon Cognito Developer Guide

 "eventTimestamp": "1687297330677",
 "eventSource": "USER_ACTIVITY",
 "logLevel": "INFO",
 "message": {
 "version": "1",
 "eventId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111",
 "eventType": "SignUp",
 "userSub": "a1b2c3d4-5678-90ab-cdef-EXAMPLE22222",
 "userName": "test-user",
 "userPoolId": "us-west-2_EXAMPLE",
 "clientId": "1example23456789",
 "creationDate": "Wed Jul 17 17:25:55 UTC 2024",
 "eventResponse": "InProgress",
 "riskLevel": "",
 "riskDecision": "PASS",
 "challenges": [],
 "deviceName": "Other, Other",
 "ipAddress": "192.0.2.1",
 "requestId": "a1b2c3d4-5678-90ab-cdef-EXAMPLE33333",
 "idpName": "",
 "compromisedCredentialDetected": "false",
 "city": "Seattle",
 "country": "United States",
 "eventFeedbackValue": "",
 "eventFeedbackDate": "",
 "eventFeedbackProvider": "",
 "hasContextData": "true"
 },
 "logSourceId": {
 "userPoolId": "us-west-2_EXAMPLE"
 }
}

Tracking quotas and usage in CloudWatch and Service Quotas

You can monitor Amazon Cognito user pools using Amazon CloudWatch or using Service Quotas.
You can also monitor identity pools usage in Service Quotas. CloudWatch collects raw data and
processes it into readable, near real-time metrics. In CloudWatch, you can set alarms that watch for
certain thresholds and send notifications or take actions when those thresholds are met. To create
a CloudWatch alarm for a service quota, see Create a CloudWatch alarm. Amazon Cognito metrics
are available at five minute intervals. For more information about retention periods in CloudWatch,
visit the Amazon CloudWatch FAQ page.

Monitoring quotas and usage 1271

https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html#create-a-cloud-watch-alarm
https://www.amazonaws.cn/cloudwatch/faqs

Amazon Cognito Developer Guide

You can use Service Quotas to view and manage your Amazon Cognito user pools and identity
pools quota usage. The Service Quotas console has three features: view service quotas, request a
service quota increase, and view current utilization. You can use the first feature to view quotas and
see whether the quota is adjustable. You can use the second feature to request a Service Quotas
increase. You can use the last feature to view quota utilization. This feature is only available after
your account has been active for a while. For more information on viewing quotas in the Service
Quotas console, see Viewing Service Quotas.

Note

Amazon Cognito metrics are available at 5 minute intervals. For more information about
retention periods in CloudWatch, visit the Amazon CloudWatch FAQ page.

If you are signed in to an Amazon Web Services account that is set up as a monitoring account
in CloudWatch cross-account observability, you can use that monitoring account to visualize
service quotas and set alarms for metrics in the source accounts that are linked to that monitoring
account. For more information, see CloudWatch cross-account observability.

Topics

• User pool metrics in CloudWatch

• Metrics in Service Quotas

User pool metrics in CloudWatch

User pools report user-activity statistics to CloudWatch as metrics. From CloudWatch, you can
analyze the volume of authentication activity and quota usage in your user pools. With the
information in these metrics, you can set alarms for noteworthy events and adjust your user pool
configuration as needed. Where user-activity logging has detailed records of user activity in your
user pools, CloudWatch metrics have aggregated statistics and performance indicators.

The following table lists the metrics available for Amazon Cognito user pools. Amazon Cognito
publishes metrics to the namespaces AWS/Cognito and AWS/Usage. For more information, see
Namespaces in Amazon CloudWatch User Guide.

For more information about tracking quotas and usage, see Track quota usage and Track monthly
active users (MAUs).

Monitoring quotas and usage 1272

https://docs.amazonaws.cn/servicequotas/latest/userguide/gs-request-quota.html
https://www.amazonaws.cn/cloudwatch/faqs/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Namespace

Amazon Cognito Developer Guide

Note

Metrics that haven't had any new data points in the past two weeks don't appear in the
console. They also don't appear when you enter their metric name or dimension names in
the search box in the All metrics tab in the console. In addition, they are not returned in
the results of a list-metrics command. The best way to retrieve these metrics is with the
get-metric-data or get-metric-statistics commands in the Amazon CLI.

Metric Description Namespace

SignUpSuccesses Provides the total number
of successful user registrat
ion requests made to the
Amazon Cognito user pool.
A successful user registration
request produces a value of
1, whereas an unsuccessful
request produces a value of
0. A throttled request is also
considered as an unsuccessful
request, and hence a throttled
request will also produce a
count of 0.

To find the percentage of
successful user registration
requests, use the Average
statistic on this metric. To
count the total number of
user registration requests,
use the Sample Count
statistic on this metric. To
count the total number of
successful user registration
requests, use the Sum statistic
on this metric. To count the

AWS/Cognito

Monitoring quotas and usage 1273

Amazon Cognito Developer Guide

Metric Description Namespace

total number of failed user
registration requests, use the
CloudWatch Math expression
and subtract the Sum statistic
from the Sample Count
statistic.

This metric is published for
each user pool for each user
pool client. In case when the
user registration is performed
by an admin, the metric is
published with the user pool
client as Admin.

Note that this metric is not
emitted for User import and
User migration cases.

Metric dimension: UserPool,
UserPoolClient

Units: Count

Monitoring quotas and usage 1274

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-using-import-tool.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-import-using-lambda.html

Amazon Cognito Developer Guide

Metric Description Namespace

SignUpThrottles Provides the total number
of throttled user registration
requests made to the Amazon
Cognito user pool. A count
of 1 is published whenever
a user registration request is
throttled.

To count the total number
of throttled user registration
requests, use the Sum statistic
for this metric.

This metric is published for
each user pool for each client.
In case when the request that
was throttled was made by
an administrator, the metric
is published with user pool
client as Admin.

Metric dimension: UserPool,
UserPoolClient

Units: Count

AWS/Cognito

Monitoring quotas and usage 1275

Amazon Cognito Developer Guide

Metric Description Namespace

SignInSuccesses Provides the total number of
successful user authentication
requests made to the Amazon
Cognito user pool. A user
authentication is considere
d successful when authentic
ation token is issued to the
user. A successful authentic
ation produces a value of
1, whereas an unsuccessful
request produces a value of
0. A throttled request is also
considered as an unsuccessful
request, and hence a throttled
 request will also produce a
count of 0.

To find the percentage of
successful user authentication
requests, use the Average
statistic on this metric. To
count the total number of
user authentication requests,
use the Sample Count
statistic on this metric. To
count the total number of
successful user authentication
requests, use the Sum statistic
on this metric. To count the
total number of failed user
authentication requests,
use the CloudWatch Math
expression and subtract the
Sum statistic from the Sample
Count statistic.

AWS/Cognito

Monitoring quotas and usage 1276

Amazon Cognito Developer Guide

Metric Description Namespace

This metric is published
for each user pool for each
client. In case an invalid user
pool client is provided with
a request, the correspon
ding user pool client value in
the metric contains a fixed
value Invalid instead of the
actual invalid value sent in
the request.

Note that requests to refresh
the Amazon Cognito token
is not included in this metric.
There is a separate metric
for providing Refresh token
statistics.

Metric dimension: UserPool,
UserPoolClient

Units: Count

Monitoring quotas and usage 1277

Amazon Cognito Developer Guide

Metric Description Namespace

SignInThrottles Provides the total number of
throttled user authentication
requests made to the Amazon
Cognito user pool. A count
of 1 is published whenever
an authentication request is
throttled.

To count the total number of
throttled user authentication
requests, use the Sum statistic
for this metric.

This metric is published
for each user pool for each
client. In case an invalid user
pool client is provided with
a request, the correspon
ding user pool client value in
the metric contains a fixed
value Invalid instead of the
actual invalid value sent in
the request.

Requests to refresh Amazon
Cognito token is not included
in this metric. There is a
separate metric for providing
Refresh token statistics.

Metric dimension: UserPool,
UserPoolClient

Units: Count

AWS/Cognito

Monitoring quotas and usage 1278

Amazon Cognito Developer Guide

Metric Description Namespace

TokenRefreshSucces
ses

Provides the total number
of successful requests to
refresh an Amazon Cognito
token that were made to
the Amazon Cognito user
pool. A successful refresh
Amazon Cognito token
request produces a value of
1, whereas an unsuccessful
request produces a value of
0. A throttled request is also
considered as an unsuccessful
request, and hence a throttled
request will also produce a
count of 0.

To find the percentage of
successful requests to refresh
an Amazon Cognito token,
use the Average statistic on
this metric. To count the total
number of requests to refresh
an Amazon Cognito token,
use the Sample Count
statistic on this metric. To
count the total number of
successful requests to refresh
an Amazon Cognito token,
use the Sum statistic on this
metric. To count the total
number of failed requests to
refresh an Amazon Cognito
token, use the CloudWatch
Math expression and subtract

AWS/Cognito

Monitoring quotas and usage 1279

Amazon Cognito Developer Guide

Metric Description Namespace

the Sum statistic from the
Sample Count statistic.

This metric is published per
each user pool client. If an
invalid user pool client is in a
request, the user pool client
value contains a fixed value of
Invalid.

Metric dimension: UserPool,
UserPoolClient

Units: Count

Monitoring quotas and usage 1280

Amazon Cognito Developer Guide

Metric Description Namespace

TokenRefreshThrott
les

Provides the total number
of throttled requests to
refresh an Amazon Cognito
token that were made to the
Amazon Cognito user pool.
A count of 1 is published
whenever a refresh Amazon
Cognito token request is
throttled.

To count the total number of
throttled requests to refresh
an Amazon Cognito token,
use the Sum statistic for this
metric.

This metric is published
for each user pool for each
client. In case an invalid
user pool client is provided
with a request, correspon
ding user pool client value in
the metric contains a fixed
value Invalid instead of the
actual invalid value sent in
the request.

Metric dimension: UserPool,
UserPoolClient

Units: Count

AWS/Cognito

Monitoring quotas and usage 1281

Amazon Cognito Developer Guide

Metric Description Namespace

FederationSuccesses Provides the total number of
successful identity federatio
n requests to the Amazon
Cognito user pool. An identity
federation is considered
successful when Amazon
Cognito issues authentic
ation tokens to the user. A
successful identity federatio
n request produces a value
of 1, whereas an unsuccess
ful request produces a value
of 0. Throttled requests and
requests that generate an
authorization code but no
tokens produce a value of 0.

To find the percentage of
successful identity federatio
n requests, use the Average
statistic on this metric. To
count the total number of
identity federation requests,
use the Sample Count
statistic on this metric. To
count the total number of
successful identity federation
requests, use the Sum statistic
on this metric. To count
the total number of failed
identity federation requests,
use the CloudWatch Math
expression and subtract the
Sum statistic from the Sample
Count statistic.

AWS/Cognito

Monitoring quotas and usage 1282

Amazon Cognito Developer Guide

Metric Description Namespace

Metric dimension: UserPool,
UserPoolClient ,
IdentityProvider

Units: Count

FederationThrottles Provides the total number of
throttled identity federatio
n requests to the Amazon
Cognito user pool. A count of
1 is published whenever an
identity federation request is
throttled.

To count the total number of
throttled identity federation
requests, use the Sum statistic
for this metric.

Metric dimension: UserPool,
UserPoolClient ,
IdentityProvider

Units: Count

AWS/Cognito

Monitoring quotas and usage 1283

Amazon Cognito Developer Guide

Metric Description Namespace

CallCount Provides the total number of
calls customers made related
to a category. This metric
includes all the calls, such as
throttled calls, failed calls,
and successful calls.

The category quota is
enforced for each Amazon
account across all user pools
in an account and Region.

You can count the total
number of calls in a category
using the Sum statistic for this
metric.

Metric dimension: Service,
Type, Resource, Class

Units: Count

AWS/Usage

Monitoring quotas and usage 1284

Amazon Cognito Developer Guide

Metric Description Namespace

ThrottleCount Provides the total number
of throttled calls related to a
category.

This metric is published at the
account level.

You can count the total
number of calls in a category,
using the Sum statistic for this
metric.

Metric dimension: Service,
Type, Resource, Class

Units: Count

AWS/Usage

Viewing threat protection metrics

The metrics that your user pool publishes have statistical information about the effect that your
threat protection settings have on user authentication activity. You might want to know how
many users are attempting to sign in with compromised credentials. You can also find out what
percentage of sign-in activity was evaluated to have some level of risk. Amazon Cognito publishes
metrics for threat protection features to your account in Amazon CloudWatch. Amazon Cognito
groups the threat protection metrics together by risk level and also by request level.

To add context to your risk analysis, you can view information about individual user sign-in
attempts, either in your user pool or in an exported data source.

To view metrics in the CloudWatch console

1. Open the CloudWatch console at https://console.amazonaws.cn/cloudwatch/.

2. In the navigation pane, choose Metrics.

3. Choose Amazon Cognito.

4. Choose a group of aggregated metrics, such as By Risk Classification.

5. The All metrics tab displays all metrics for that choice. You can do the following:

Monitoring quotas and usage 1285

https://console.amazonaws.cn/cloudwatch/

Amazon Cognito Developer Guide

• To sort the table, use the column heading.

• To graph a metric, select the check box next to the metric. To select all metrics, select the
check box in the heading row of the table.

• To filter by resource, choose the resource ID, and then choose Add to search.

• To filter by metric, choose the metric name, and then choose Add to search.

Metric Description Metric Dimensions Namespace

CompromisedCredent
ialRisk

Requests where
Amazon Cognito
detected compromis
ed credentials.

Operation: The
type of operation
. PasswordC
hange , SignIn, or
SignUp are the only
dimensions.

UserPoolId: The
identifier of the user
pool.

RiskLevel: high
(default), medium, or
low.

AWS/Cognito

AccountTakeoverRisk Requests where
Amazon Cognito
detected account
take-over risk.

Operation: The
type of operation
. PasswordC
hange , SignIn, or
SignUp are the only
dimensions.

UserPoolId: The
identifier of the user
pool.

RiskLevel: high,
medium, or low.

AWS/Cognito

Monitoring quotas and usage 1286

Amazon Cognito Developer Guide

Metric Description Metric Dimensions Namespace

OverrideBlock Requests that
Amazon Cognito
blocked because of
the configuration
provided by the
developer.

Operation: The
type of operation
. PasswordC
hange , SignIn, or
SignUp are the only
dimensions.

UserPoolId: The
identifier of the user
pool.

RiskLevel: high,
medium, or low.

AWS/Cognito

Risk Requests that
Amazon Cognito
marked as risky.

Operation: The type
of operation, such as
PasswordChange ,
SignIn, or SignUp.

UserPoolId: The
identifier of the user
pool.

AWS/Cognito

NoRisk Requests where
Amazon Cognito did
not identify any risk.

Operation: The type
of operation, such as
PasswordChange ,
SignIn, or SignUp.

UserPoolId: The
identifier of the user
pool.

AWS/Cognito

Amazon Cognito offers you two predefined groups of metrics for ready analysis in CloudWatch.
By Risk Classification identifies the granularity of the risk level for requests that Amazon Cognito
identifies as risky. By Request Classification reflects metrics aggregated by request level.

Monitoring quotas and usage 1287

Amazon Cognito Developer Guide

Aggregated Metrics Group Description

By Risk Classification Requests that Amazon Cognito identifies as
risky.

By Request Classification Metrics aggregated by request.

Dimensions for Amazon Cognito user pools

The following dimensions are used to refine the usage metrics that are published by Amazon
Cognito. The dimensions only apply to CallCount and ThrottleCount metrics.

Dimension Description

Service The name of the Amazon service containin
g the resource. For Amazon Cognito usage
metrics, the value for this dimension is
Cognito user pool.

Type The type of entity that is being reported. The
only valid value for Amazon Cognito usage
metrics is API.

Resource The type of resource that is running. The only
valid value is category name.

Class The class of resource being tracked. Amazon
Cognito doesn't use the class dimension.

Use the CloudWatch console to track metrics

You can track and collect Amazon Cognito user pools metrics using CloudWatch. The CloudWatch
dashboard will display metrics about every Amazon service you use. You can use CloudWatch to
create metric alarms. The alarms can be set up to send you notifications or make a change to a
specific resource that you are monitoring. To view service quota metrics in CloudWatch, complete
the following steps.

Monitoring quotas and usage 1288

Amazon Cognito Developer Guide

1. Open the CloudWatch console.

2. In the navigation pane, choose Metrics.

3. In All metrics select a metric and a dimension.

4. Select the check box next to a metric. The metrics will appear in the graph.

Note

Metrics that haven't had any new data points in the past two weeks don't appear in the
console. They also don't appear when you enter their metric name or dimension names in
the search box in the All metrics tab in the console, and they are not returned in the results
of a list-metrics command. The best way to retrieve these metrics is with the get-metric-
data or get-metric-statistics commands in the Amazon CLI.

Create a CloudWatch alarm for a quota

Amazon Cognito provides CloudWatch usage metrics that correspond to the Amazon service
quotas for CallCount and ThrottleCount APIs. For more information about tracking usage in
CloudWatch, see Track quota usage.

In the Service Quotas console, you can create alarms that alert you when your usage approaches
a service quota. To learn how to set up a CloudWatch alarm using the Service Quotas console, see
Service Quotas and CloudWatch alarms.

Metrics in Service Quotas

You can view and manage your Amazon Cognito user pools and identity pools quotas from a
central location with Service Quotas. You can use the Service Quotas console to view details about
a specific quota, monitor quota utilization, and request a quota increase. For some quota types, you
can create a CloudWatch alarm to track your quota utilization. To learn more about what Amazon
Cognito metrics you can track, see Track quota usage.

To view Amazon Cognito user pools and identity pools service quotas utilization, complete the
following steps.

1. Open the Service Quotas console.

2. In the navigation pane, choose Amazon services.

Monitoring quotas and usage 1289

https://console.aws.amazon.com/cloudwatch/
https://docs.amazonaws.cn/servicequotas/latest/userguide/configure-cloudwatch.html
https://console.aws.amazon.com/servicequotas/

Amazon Cognito Developer Guide

3. From the Amazon services list, search and choose Amazon Cognito user pools or Amazon
Cognito Federated Identities. The service quota page appears.

4. Select a quota that supports CloudWatch monitoring. For example, choose Rate of
UserAuthentication requests in Amazon Cognito user pools.

5. Scroll down to Monitoring. This section appears only for quotas that support CloudWatch
monitoring.

6. In Monitoring you can view current service quota utilization in the graph.

7. In Monitoring select either one hour, three hours, twelve hours, one day, three days, or one
week.

8. Select any area inside of the graph to view the service quota utilization percentage. From here,
you can add the graph to your dashboard or use the action menu to select View in metrics,
which will take you to the related metrics in the CloudWatch console.

Amazon Cognito logging in Amazon CloudTrail

Amazon Cognito is integrated with Amazon CloudTrail, a service that provides a record of actions
taken by a user, role, or an Amazon service in Amazon Cognito. CloudTrail captures a subset of
API calls for Amazon Cognito as events, including calls from the Amazon Cognito console and
from code calls to the Amazon Cognito API operations. If you create a trail, you can choose to
deliver CloudTrail events to an Amazon S3 bucket, including events for Amazon Cognito. If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to Amazon Cognito, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, including how to configure and activate it, see the Amazon
CloudTrail User Guide.

You can also create Amazon CloudWatch alarms for specific CloudTrail events. For example, you
can set up CloudWatch to trigger an alarm if an identity pool configuration is changed. For more
information, see Creating CloudWatch alarms for CloudTrail events: Examples.

Topics

• Information that Amazon Cognito sends to CloudTrail

• Analyzing Amazon Cognito CloudTrail events with Amazon CloudWatch Logs Insights

• Example Amazon Cognito events

CloudTrail logs 1290

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html

Amazon Cognito Developer Guide

Information that Amazon Cognito sends to CloudTrail

CloudTrail is turned on when you create your Amazon Web Services account. When supported
event activity occurs in Amazon Cognito, that activity is recorded in a CloudTrail event along with
other Amazon service events in Event history. You can view, search, and download recent events in
your Amazon account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your Amazon account, including events for Amazon Cognito,
create a trail. A CloudTrail trail delivers log files to an Amazon S3 bucket. By default, when you
create a trail in the console, the trail applies to all Regions. The trail logs events from all Regions
in the Amazon partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other Amazon services to further analyze and act upon the event
data collected in CloudTrail logs. For more information, see:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another Amazon service.

For more information, see the CloudTrail userIdentity element.

Confidential data in Amazon CloudTrail

Because user pools and identity pools process user data, Amazon Cognito obscures some private
fields in your CloudTrail events with the value HIDDEN_FOR_SECURITY_REASONS. For examples
of fields that Amazon Cognito doesn't populate to events, see Example Amazon Cognito events.
Amazon Cognito only obscures some fields that commonly contain user information, like
passwords and tokens. Amazon Cognito doesn't perform any automatic detection or masking of
personally-identifying information that you populate to non-private fields in your API requests.

CloudTrail logs 1291

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-list
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon Cognito Developer Guide

User pool events

Amazon Cognito supports logging for all of the actions listed on the User pool actions page as
events in CloudTrail log files. Amazon Cognito logs user pool events to CloudTrail as management
events.

The eventType field in a Amazon Cognito user pools CloudTrail entry tells you whether your app
made the request to the Amazon Cognito user pools API or to an endpoint that serves resources
for OpenID Connect, SAML 2.0, or managed login pages. API requests have an eventType of
AwsApiCall and endpoint requests have an eventType of AwsServiceEvent.

Amazon Cognito logs the following requests to your managed login services as events in
CloudTrail.

Hosted UI (classic) events

Hosted UI (classic) events in CloudTrail

Operation Description

Login_GET , CognitoAuthentication A user views or submits credentials to your
Login endpoint.

OAuth2_Authorize_GET , Beta_Auth
orize_GET

A user views your Authorize endpoint.

OAuth2Response_GET , OAuth2Res
ponse_POST

A user submits an IdP token to your /
oauth2/idpresponse endpoint.

SAML2Response_POST , Beta_SAML
2Response_POST

A user submits an IdP SAML assertion to
your /saml2/idpresponse endpoint.

Login_OIDC_SAML_POST A user enters a username at your Login
endpoint and matches with an IdP identifier.

Token_POST , Beta_Token_POST A user submits an authorization code to your
Token endpoint.

Signup_GET , Signup_POST A user submits sign-up information to your /
signup endpoint.

CloudTrail logs 1292

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-integrating-3rd-party-saml-providers.html

Amazon Cognito Developer Guide

Operation Description

Confirm_GET , Confirm_POST A user submits a confirmation code in the
hosted UI.

ResendCode_POST A user submits a request to resend a
confirmation code in the hosted UI.

ForgotPassword_GET , ForgotPas
sword_POST

A user submits a request to reset their
password to your /forgotPassword
endpoint.

ConfirmForgotPassword_GET ,
ConfirmForgotPassword_POST

A user submits a code to your /confirmF
orgotPassword endpoint that confirms
their ForgotPassword request.

ResetPassword_GET , ResetPass
word_POST

A user submits a new password in the hosted
UI.

Mfa_GET, Mfa_POST A user submits a multi-factor authentication
(MFA) code in the hosted UI.

MfaOption_GET , MfaOption_POST A user chooses their preferred method for
MFA in the hosted UI.

MfaRegister_GET , MfaRegister_POST A user submits a multi-factor authentication
(MFA) code in the hosted UI when registering
the MFA.

Logout A user signs out at your /logout endpoint.

SAML2Logout_POST A user signs out at your /saml2/logout
endpoint.

Error_GET A user views an error page in the hosted UI.

UserInfo_GET , UserInfo_POST A user or IdP exchanges information with
your userInfo endpoint.

CloudTrail logs 1293

Amazon Cognito Developer Guide

Operation Description

Confirm_With_Link_GET A user submits a confirmation based on a
link that Amazon Cognito sent in an email
message.

Event_Feedback_GET A user submits feedback to Amazon Cognito
about an advanced security features event.

Managed login events

Managed login events in CloudTrail

Operation Description

login_POST A user submits credentials to your Login
endpoint.

login_continue_POST A user who has already signed in one time
chooses to sign in again.

forgotPassword_POST A user resets their password.

selectChallenge_POST A user responds to an authentication
challenge after they submit their username
or credentials.

confirmUser_GET A user opens the link in a confirmation or
verification email message.

mfa_back_POST A user chooses the Back button after an MFA
prompt.

mfa_options_POST A user selects an MFA option.

mfa_phone_register_POST A user submits a phone number to register
as a MFA factor. This operation causes
Amazon Cognito to send an MFA code to
their phone number.

CloudTrail logs 1294

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html

Amazon Cognito Developer Guide

Operation Description

mfa_phone_verify_POST A user submits an MFA code sent to their
phone number.

mfa_phone_resendCode_POST A user submits a request to resend a MFA
code to their phone number.

mfa_totp_POST A user submits a TOTP MFA code.

signup_POST A user submits information to your /signup
managed login page.

signup_confirm_POST A user submits a confirmation code from an
email or SMS message.

verifyCode_POST A user submits a one-time password (OTP)
for passwordless authentication.

passkeys_add_POST A user submits a request to register a new
passkey credential.

passkeys_add_GET A user navigates to the page where they can
register a passkey.

login_passkey_POST A user signs in with a passkey.

Note

Amazon Cognito records UserSub but not UserName in CloudTrail logs for requests that
are specific to a user. You can find a user for a given UserSub by calling the ListUsers
API, and using a filter for sub.

Identity pools events

Data events

CloudTrail logs 1295

Amazon Cognito Developer Guide

Amazon Cognito logs the following Amazon Cognito Identity events to CloudTrail as data events.
Data events are high-volume data-plane API operations that CloudTrail doesn’t log by default.
Additional charges apply for data events.

• GetCredentialsForIdentity

• GetId

• GetOpenIdToken

• GetOpenIdTokenForDeveloperIdentity

• UnlinkIdentity

To generate CloudTrail logs for these API operations, you must activate data events in your trail
and choose event selectors for Cognito identity pools. For more information, see Logging data
events for trails in the Amazon CloudTrail User Guide.

You can also add identity pools event selectors to your trail with the following CLI command.

aws cloudtrail put-event-selectors --trail-name <trail name> --advanced-event-selectors
 \
"{\
 \"Name\": \"Cognito Selector\",\
 \"FieldSelectors\": [\
 {\
 \"Field\": \"eventCategory\",\
 \"Equals\": [\
 \"Data\"\
]\
 },\
 {\
 \"Field\": \"resources.type\",\
 \"Equals\": [\
 \"AWS::Cognito::IdentityPool\"\
]\
 }\
]\
}"

Management events

Amazon Cognito logs the remainder of Amazon Cognito identity pools API operations as
management events. CloudTrail logs management event API operations by default.

CloudTrail logs 1296

https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetCredentialsForIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetId.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdToken.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_GetOpenIdTokenForDeveloperIdentity.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_UnlinkIdentity.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.amazonaws.cn/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html

Amazon Cognito Developer Guide

For a list of the Amazon Cognito identity pools API operations that Amazon Cognito logs to
CloudTrail, see the Amazon Cognito identity pools API Reference.

Amazon Cognito Sync

Amazon Cognito logs all Amazon Cognito Sync API operations as management events. For a list of
the Amazon Cognito Sync API operations that Amazon Cognito logs to CloudTrail, see the Amazon
Cognito Sync API Reference.

Analyzing Amazon Cognito CloudTrail events with Amazon CloudWatch Logs
Insights

You can search and analyze your Amazon Cognito CloudTrail events with Amazon CloudWatch Logs
Insights. When you configure your trail to send events to CloudWatch Logs, CloudTrail sends only
the events that match your trail settings.

To query or research your Amazon Cognito CloudTrail events, in the CloudTrail console, make
sure that you select the Management events option in your trail settings so that you can monitor
the management operations performed on your Amazon resources. You can optionally select the
Insights events option in your trail settings when you want to identify errors, unusual activity, or
unusual user behavior in your account.

Sample Amazon Cognito queries

You can use the following queries in the Amazon CloudWatch console.

General queries

Find the 25 most recently added log events.

fields @timestamp, @message | sort @timestamp desc | limit 25
| filter eventSource = "cognito-idp.amazonaws.com"

Get a list of the 25 most recently added log events that include exceptions.

fields @timestamp, @message | sort @timestamp desc | limit 25
| filter eventSource = "cognito-idp.amazonaws.com" and @message like /Exception/

Exception and Error Queries

Find the 25 most recently added log events with error code NotAuthorizedException along
with Amazon Cognito user pool sub.

CloudTrail logs 1297

https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/cognitosync/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/cognitosync/latest/APIReference/API_Operations.html

Amazon Cognito Developer Guide

fields @timestamp, additionalEventData.sub as user | sort @timestamp desc | limit 25
| filter eventSource = "cognito-idp.amazonaws.com" and errorCode=
 "NotAuthorizedException"

Find the number of records with sourceIPAddress and corresponding eventName.

filter eventSource = "cognito-idp.amazonaws.com"
| stats count(*) by sourceIPAddress, eventName

Find the top 25 IP addresses that triggered a NotAuthorizedException error.

filter eventSource = "cognito-idp.amazonaws.com" and errorCode=
 "NotAuthorizedException"
| stats count(*) as count by sourceIPAddress, eventName
| sort count desc | limit 25

Find the top 25 IP addresses that called the ForgotPassword API.

filter eventSource = "cognito-idp.amazonaws.com" and eventName = 'ForgotPassword'
| stats count(*) as count by sourceIPAddress
| sort count desc | limit 25

Example Amazon Cognito events

Amazon Cognito logs information to Amazon CloudTrail about user authentication activity
and administrative management activity. This applies to both user pools and identity pools.
For example, you can see GetId and UpdateIdentityPool events in the same trail, or
UpdateAuthEventFeedback and SetRiskConfiguration events. You'll also see user pool
logs for hosted UI activity that doesn't correspond to operations in the user pools API. This section
has some examples of logs you might see. To understand the CloudTrail event schema for any
operation, generate a request for that operation and review the events that it creates in your trail.

A trail can deliver events as log files to an Amazon S3 bucket that you specify. CloudTrail log files
contain one or more log entries. An event represents a single request from any source and includes
information about the requested action, the date and time of the action, request parameters, and
so on. CloudTrail log files are not an ordered stack trace of the public API calls, so they do not
appear in any specific order.

Topics

CloudTrail logs 1298

Amazon Cognito Developer Guide

• Example CloudTrail events for a hosted UI sign-up

• Example CloudTrail event for a SAML request

• Example CloudTrail events for requests to the token endpoint

• Example CloudTrail event for CreateIdentityPool

• Example CloudTrail event for GetCredentialsForIdentity

• Example CloudTrail event for GetId

• Example CloudTrail event for GetOpenIdToken

• Example CloudTrail event for GetOpenIdTokenForDeveloperIdentity

• Example CloudTrail event for UnlinkIdentity

Example CloudTrail events for a hosted UI sign-up

The following example CloudTrail events demonstrate the information that Amazon Cognito logs
when a user signs up through the hosted UI.

Amazon Cognito logs the following event when a new user navigates to the sign-in page for your
app.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-04-06T05:38:12Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Login_GET",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "errorCode": "",
 "errorMessage": "",
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 200.0
 },
 "requestParameters":

CloudTrail logs 1299

Amazon Cognito Developer Guide

 {
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "response_type":
 [
 "token"
],
 "client_id":
 [
 "1example23456789"
]
 }
 },
 "eventID": "382ae09a-151d-4116-8f2b-6ac0a804a38c",
 "readOnly": true,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when a new user chooses Sign up from the sign-in page
for your app.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-05T23:21:43Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Signup_GET",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,

CloudTrail logs 1300

Amazon Cognito Developer Guide

 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 200
 },
 "requestParameters":
 {
 "response_type":
 [
 "code"
],
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "client_id":
 [
 "1example23456789"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "7a63e7c2-b057-4f3d-a171-9d9113264fff",
 "eventID": "5e7b27a0-6870-4226-adb4-f86cd51ac5d8",
 "readOnly": true,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when a new user chooses a username, enters an email
address, and chooses a password from the sign-in page for your app. Amazon Cognito doesn't log
identifying information about the user's identity to CloudTrail.

{

CloudTrail logs 1301

Amazon Cognito Developer Guide

 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-05T23:22:05Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Signup_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 302
 },
 "requestParameters":
 {
 "password":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "requiredAttributes[email]":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "response_type":
 [
 "code"
],
 "_csrf":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "client_id":
 [
 "1example23456789"

CloudTrail logs 1302

Amazon Cognito Developer Guide

],
 "username":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "9ad58dd8-3517-4aa8-96a5-d17a01df9eb4",
 "eventID": "c75eb7a5-eb8c-43d1-8331-f4412e756e69",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when a new user accesses the user confirmation page in
the hosted UI after they sign up.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-05T23:22:06Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Confirm_GET",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {

CloudTrail logs 1303

Amazon Cognito Developer Guide

 "status": 200
 },
 "requestParameters":
 {
 "response_type":
 [
 "code"
],
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "client_id":
 [
 "1example23456789"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "58a5b170-3127-45bb-88cc-3e652d779e0b",
 "eventID": "7f87291a-6d50-409a-822f-e3a5ec7e60da",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when, in the user confirmation page in the hosted UI, a
user enters a code that Amazon Cognito sent them in an email message.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-05T23:23:32Z",

CloudTrail logs 1304

Amazon Cognito Developer Guide

 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Confirm_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 302
 },
 "requestParameters":
 {
 "confirm":
 [
 ""
],
 "deliveryMedium":
 [
 "EMAIL"
],
 "sub":
 [
 "704b1e47-34fe-40e9-8c41-504997494531"
],
 "code":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "destination":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "response_type":
 [
 "code"
],
 "_csrf":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "cognitoAsfData":

CloudTrail logs 1305

Amazon Cognito Developer Guide

 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "client_id":
 [
 "1example23456789"
],
 "username":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "9764300a-ed35-4f87-8a0f-b18b3fe2b11e",
 "eventID": "e24ac6e5-2f70-4c6e-ad4e-2f08a547bb36",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Example CloudTrail event for a SAML request

Amazon Cognito logs the following event when a user who has authenticated with your SAML IdP
submits the SAML assertion to your /saml2/idpresponse endpoint.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },

CloudTrail logs 1306

Amazon Cognito Developer Guide

 "eventTime": "2022-05-06T00:50:57Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "SAML2Response_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 302
 },
 "requestParameters":
 {
 "RelayState":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "SAMLResponse":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "4f6f15d1-c370-4a57-87f0-aac4817803f7",
 "eventID": "9824b50f-d9d1-4fb8-a2c1-6aa78ca5902a",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "625647942648",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Example CloudTrail events for requests to the token endpoint

The following are example events from requests to the Token endpoint.

CloudTrail logs 1307

Amazon Cognito Developer Guide

Amazon Cognito logs the following event when a user who has authenticated and received an
authorization code submits the code to your /oauth2/token endpoint.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-12T22:12:30Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Token_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 200
 },
 "requestParameters":
 {
 "code":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "grant_type":
 [
 "authorization_code"
],
 "redirect_uri":
 [
 "https://www.amazon.com"
],
 "client_id":
 [
 "1example23456789"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",

CloudTrail logs 1308

Amazon Cognito Developer Guide

 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "f257f752-cc14-4c52-ad5b-152a46915238",
 "eventID": "0bd1586d-cd3e-4d7a-abaf-fd8bfc3912fd",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when your backend system submits a
client_credentials request for an access token to your /oauth2/token endpoint.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-12T21:07:05Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Token_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {
 "status": 200
 },
 "requestParameters":
 {
 "grant_type":
 [
 "client_credentials"

CloudTrail logs 1309

Amazon Cognito Developer Guide

],
 "client_id":
 [
 "1example23456789"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "4f871256-6825-488a-871b-c2d9f55caff2",
 "eventID": "473e5cbc-a5b3-4578-9ad6-3dfdcb8a6d34",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Amazon Cognito logs the following event when your app exchanges a refresh token for a new ID
and access token with your /oauth2/token endpoint.

{
 "eventVersion": "1.08",
 "userIdentity":
 {
 "accountId": "123456789012"
 },
 "eventTime": "2022-05-12T22:16:40Z",
 "eventSource": "cognito-idp.amazonaws.com",
 "eventName": "Token_POST",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)...",
 "requestParameters": null,
 "responseElements": null,
 "additionalEventData":
 {
 "responseParameters":
 {

CloudTrail logs 1310

Amazon Cognito Developer Guide

 "status": 200
 },
 "requestParameters":
 {
 "refresh_token":
 [
 "HIDDEN_DUE_TO_SECURITY_REASONS"
],
 "grant_type":
 [
 "refresh_token"
],
 "client_id":
 [
 "1example23456789"
]
 },
 "userPoolDomain": "mydomain.auth.us-west-2.amazoncognito.com",
 "userPoolId": "us-west-2_EXAMPLE"
 },
 "requestID": "2829f0c6-a3a9-4584-b046-11756dfe8a81",
 "eventID": "12bd3464-59c7-44fa-b8ff-67e1cf092018",
 "readOnly": false,
 "eventType": "AwsServiceEvent",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "serviceEventDetails":
 {
 "serviceAccountId": "111122223333"
 },
 "eventCategory": "Management"
}

Example CloudTrail event for CreateIdentityPool

The following example is a log entry for a request for the CreateIdentityPool action. The
request was made by an IAM user named Alice.

{
 "eventVersion": "1.03",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "PRINCIPAL_ID",

CloudTrail logs 1311

Amazon Cognito Developer Guide

 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "['EXAMPLE_KEY_ID']",
 "userName": "Alice"
 },
 "eventTime": "2016-01-07T02:04:30Z",
 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "CreateIdentityPool",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "USER_AGENT",
 "requestParameters": {
 "identityPoolName": "TestPool",
 "allowUnauthenticatedIdentities": true,
 "supportedLoginProviders": {
 "graph.facebook.com": "000000000000000"
 }
 },
 "responseElements": {
 "identityPoolName": "TestPool",
 "identityPoolId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE",
 "allowUnauthenticatedIdentities": true,
 "supportedLoginProviders": {
 "graph.facebook.com": "000000000000000"
 }
 },
 "requestID": "15cc73a1-0780-460c-91e8-e12ef034e116",
 "eventID": "f1d47f93-c708-495b-bff1-cb935a6064b2",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example CloudTrail event for GetCredentialsForIdentity

The following example is a log entry for a request for the GetCredentialsForIdentity action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "Unknown"
 },
 "eventTime": "2023-01-19T16:55:08Z",
 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "GetCredentialsForIdentity",

CloudTrail logs 1312

Amazon Cognito Developer Guide

 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.4",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Darwin/21.6.0 exe/x86_64 prompt/off
 command/cognito-identity.get-credentials-for-identity",
 "requestParameters": {
 "logins": {
 "cognito-idp.us-east-1.amazonaws.com/us-east-1_aaaaaaaaa":
 "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE"
 },
 "responseElements": {
 "credentials": {
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionToken": "aAaAaAaAaAaAab1111111111EXAMPLE",
 "expiration": "Jan 19, 2023 5:55:08 PM"
 },
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE"
 },
 "requestID": "659dfc23-7c4e-4e7c-858a-1abce884d645",
 "eventID": "6ad1c766-5a41-4b28-b5ca-e223ccb00f0d",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::Cognito::IdentityPool",
 "ARN": "arn:aws:cognito-identity:us-east-1:111122223333:identitypool/us-
east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

Example CloudTrail event for GetId

The following example is a log entry for a request for the GetId action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "Unknown"
 },
 "eventTime": "2023-01-19T16:55:05Z",

CloudTrail logs 1313

Amazon Cognito Developer Guide

 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "GetId",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.4",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Darwin/21.6.0 exe/x86_64 prompt/off
 command/cognito-identity.get-id",
 "requestParameters": {
 "identityPoolId": "us-east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE",
 "logins": {
 "cognito-idp.us-east-1.amazonaws.com/us-east-1_aaaaaaaaa":
 "HIDDEN_DUE_TO_SECURITY_REASONS"
 }
 },
 "responseElements": {
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE"
 },
 "requestID": "dc28def9-07c8-460a-a8f3-3816229e6664",
 "eventID": "c5c459d9-40ec-41fd-8f6b-57865d5a9975",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::Cognito::IdentityPool",
 "ARN": "arn:aws:cognito-identity:us-east-1:111122223333:identitypool/us-
east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

Example CloudTrail event for GetOpenIdToken

The following example is a log entry for a request for the GetOpenIdToken action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "Unknown"
 },
 "eventTime": "2023-01-19T16:55:08Z",
 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "GetOpenIdToken",
 "awsRegion": "us-east-1",

CloudTrail logs 1314

Amazon Cognito Developer Guide

 "sourceIPAddress": "192.0.2.4",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Darwin/21.6.0 exe/x86_64 prompt/off
 command/cognito-identity.get-open-id-token",
 "requestParameters": {
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE",
 "logins": {
 "cognito-idp.us-east-1.amazonaws.com/us-east-1_aaaaaaaaa":
 "HIDDEN_DUE_TO_SECURITY_REASONS"
 }
 },
 "responseElements": {
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE"
 },
 "requestID": "a506ba18-10d7-4fdb-9548-a8187b2e38bb",
 "eventID": "19ffc1a6-6ed8-4580-a4e1-3062c5ce6457",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::Cognito::IdentityPool",
 "ARN": "arn:aws:cognito-identity:us-east-1:111122223333:identitypool/us-
east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

Example CloudTrail event for GetOpenIdTokenForDeveloperIdentity

The following example is a log entry for a request for the
GetOpenIdTokenForDeveloperIdentity action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROA1EXAMPLE:johns-AssumedRoleSession",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/johns-AssumedRoleSession",
 "accountId": "111122223333",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {

CloudTrail logs 1315

Amazon Cognito Developer Guide

 "type": "Role",
 "principalId": "AROA1EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 },
 "attributes": {
 "creationDate": "2023-01-19T16:53:14Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2023-01-19T16:55:08Z",
 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "GetOpenIdTokenForDeveloperIdentity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "27.0.3.154",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Darwin/21.6.0 exe/x86_64 prompt/off
 command/cognito-identity.get-open-id-token-for-developer-identity",
 "requestParameters": {
 "tokenDuration": 900,
 "identityPoolId": "us-east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE",
 "logins": {
 "JohnsDeveloperProvider": "HIDDEN_DUE_TO_SECURITY_REASONS"
 }
 },
 "responseElements": {
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE"
 },
 "requestID": "b807df87-57e7-4dd6-b90c-b06f46a61c21",
 "eventID": "f26fed91-3340-4d70-91ae-cdf555547b76",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::Cognito::IdentityPool",
 "ARN": "arn:aws:cognito-identity:us-east-1:111122223333:identitypool/us-
east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

CloudTrail logs 1316

Amazon Cognito Developer Guide

Example CloudTrail event for UnlinkIdentity

The following example is a log entry for a request for the UnlinkIdentity action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "Unknown"
 },
 "eventTime": "2023-01-19T16:55:08Z",
 "eventSource": "cognito-identity.amazonaws.com",
 "eventName": "UnlinkIdentity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.4",
 "userAgent": "aws-cli/2.7.25 Python/3.9.11 Darwin/21.6.0 exe/x86_64 prompt/off
 command/cognito-identity.unlink-identity",
 "requestParameters": {
 "logins": {
 "cognito-idp.us-east-1.amazonaws.com/us-east-1_aaaaaaaaa":
 "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "identityId": "us-east-1:1cf667a2-49a6-454b-9e45-23199EXAMPLE",
 "loginsToRemove": ["cognito-idp.us-east-1.amazonaws.com/us-east-1_aaaaaaaaa"]
 },
 "responseElements": null,
 "requestID": "99c2c8e2-9c29-416f-bb17-b650a5cbada9",
 "eventID": "d8e26126-202a-43c2-b458-3f225efaedc7",
 "readOnly": false,
 "resources": [{
 "accountId": "111122223333",
 "type": "AWS::Cognito::IdentityPool",
 "ARN": "arn:aws:cognito-identity:us-east-1:111122223333:identitypool/us-
east-1:2dg778b3-50b7-565c-0f56-34200EXAMPLE"
 }],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "111122223333",
 "eventCategory": "Data"
}

CloudTrail logs 1317

Amazon Cognito Developer Guide

Compliance validation for Amazon Cognito

Third-party auditors assess the security and compliance of Amazon Cognito as part of multiple
Amazon compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of Amazon services in scope of specific compliance programs, see Amazon services in
scope by compliance program. For general information, see Amazon compliance programs.

You can download third-party audit reports using Amazon Artifact. For more information, see
Downloading reports in Amazon Artifact.

Your compliance responsibility when using Amazon Cognito is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. Amazon provides
the following resources to help with compliance:

• Security and compliance quick start guidesSecurity and compliance quick start guides – These
deployment guides discuss architectural considerations and provide steps for deploying security-
and compliance-focused baseline environments on Amazon.

• Architecting for HIPAA security and compliance whitepaper – This whitepaper describes how
companies can use Amazon to create HIPAA-compliant applications.

• Amazon compliance resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating resources with rules in the Amazon Config Developer Guide – Amazon Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• Amazon Security Hub – This Amazon service provides a comprehensive view of your security
state within Amazon that helps you check your compliance with security industry standards and
best practices.

Resilience in Amazon Cognito

The Amazon global infrastructure is built around Amazon Regions and Availability Zones. Regions
provide multiple physically separated and isolated Availability Zones, which are connected through
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

Compliance validation 1318

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://www.amazonaws.cn/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.pdf
https://aws.amazon.com/compliance/resources/
https://docs.amazonaws.cn/config/latest/developerguide/evaluate-config.html
https://docs.amazonaws.cn/securityhub/latest/userguide/what-is-securityhub.html

Amazon Cognito Developer Guide

For more information about Amazon Regions and Availability Zones, see Amazon global
infrastructure.

Topics

• Regional data considerations

Regional data considerations

Amazon Cognito user pools are each created in one Amazon Region, and they store the user profile
data only in that region. User pools can send user data to a different Amazon Region, depending on
how optional features are configured.

• If the default no-reply@verificationemail.com email address setting is used for routing
verification of emails addresses with Amazon Cognito user pools, emails are routed through the
same region as the associated user pool.

• If a different email address is used to configure Amazon Simple Email Service (Amazon SES) with
Amazon Cognito user pools, that email address is routed through the Amazon Region associated
with the email address in Amazon SES.

• SMS messages from Amazon Cognito user pools are routed through the same region Amazon
SNS unless noted otherwise on Configuring email or phone verification.

• If Amazon Pinpoint analytics are used with Amazon Cognito user pools, the event data is routed
to the US East (N. Virginia) Region.

Note

Amazon Pinpoint is available in several Amazon Regions in North America, Europe, Asia,
and Oceania. Amazon Pinpoint regions include the Amazon Pinpoint API. If a Amazon
Pinpoint region is supported by Amazon Cognito, then Amazon Cognito will send events
to Amazon Pinpoint projects within the same Amazon Pinpoint region. If a region isn't
supported by Amazon Pinpoint, then Amazon Cognito will only support sending events
in us-east-1. For Amazon Pinpoint detailed region information, see Amazon Pinpoint
endpoints and quotas and Using Amazon Pinpoint analytics with amazon cognito user
pools.

Regional data considerations 1319

https://www.amazonaws.cn/about-aws/global-infrastructure/
https://www.amazonaws.cn/about-aws/global-infrastructure/
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.amazonaws.cn/general/latest/gr/pinpoint.html
https://docs.amazonaws.cn/general/latest/gr/pinpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-pinpoint-integration.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-pinpoint-integration.html

Amazon Cognito Developer Guide

Infrastructure security in Amazon Cognito

As a managed service, Amazon Cognito is protected by Amazon global network security. For
information about Amazon security services and how Amazon protects infrastructure, see Amazon
Cloud Security. To design your Amazon environment using the best practices for infrastructure
security, see Infrastructure Protection in Security Pillar Amazon Well‐Architected Framework.

You use Amazon published API calls to access Amazon Cognito through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the Amazon Security Token Service (Amazon STS)
to generate temporary security credentials to sign requests.

Configuration and vulnerability analysis in Amazon Cognito
user pools

Amazon handles basic security tasks like guest operating system (OS) and database patching,
firewall configuration, and disaster recovery. These procedures have been reviewed and certified by
the appropriate third parties. For more details, see the following resources:

• Compliance validation for Amazon Cognito

• Shared Responsibility Model

Amazon managed policies for Amazon Cognito

To add permissions to users, groups, and roles, it is easier to use Amazon managed policies than
to write policies yourself. It takes time and expertise to create IAM customer managed policies
that provide your team with only the permissions they need. To get started quickly, you can use

Infrastructure security 1320

https://www.amazonaws.cn/security/
https://www.amazonaws.cn/security/
https://docs.amazonaws.cn/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.amazonaws.cn/STS/latest/APIReference/welcome.html
https://www.amazonaws.cn/compliance/shared-responsibility-model/
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_create-console.html

Amazon Cognito Developer Guide

our Amazon managed policies. These policies cover common use cases and are available in your
Amazon account. For more information about Amazon managed policies, see Amazon managed
policies in the IAM User Guide.

Amazon services maintain and update Amazon managed policies. You can't change the permissions
in Amazon managed policies. Services occasionally add additional permissions to an Amazon
managed policy to support new features. This type of update affects all identities (users, groups,
and roles) where the policy is attached. Services are most likely to update an Amazon managed
policy when a new feature is launched or when new operations become available. Services do not
remove permissions from an Amazon managed policy, so policy updates won't break your existing
permissions.

Additionally, Amazon supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess Amazon managed policy provides read-only access to all Amazon
services and resources. When a service launches a new feature, Amazon adds read-only permissions
for new operations and resources. For a list and descriptions of job function policies, see Amazon
managed policies for job functions in the IAM User Guide.

Amazon managed IAM policies that grant access to Amazon Cognito

• AmazonCognitoPowerUser - Permissions for accessing and managing all aspects
of your identity pools and user pools. To view the permissions for this policy, see
AmazonCognitoPowerUser.

• AmazonCognitoReadOnly - Permissions for read-only access to your identity pools and user
pools. To view the permissions for this policy, see AmazonCognitoReadOnly.

• AmazonCognitoDeveloperAuthenticatedIdentities - Permissions for your
authentication system to integrate with Amazon Cognito. To view the permissions for this policy,
see AmazonCognitoDeveloperAuthenticatedIdentities.

These policies are maintained by the Amazon Cognito team, so even as new APIs are added, your
users continue to have the same level of access.

Note

When you create a new identity pool, you can automatically create new roles for
authenticated and guest user access. The administrator who creates your identity pool with
new IAM roles must also have IAM permissions to create roles.

Amazon managed policies 1321

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies_job-functions.html
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonCognitoPowerUser
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonCognitoReadOnly
https://console.amazonaws.cn/iam/home#/policies/arn:aws:iam::aws:policy/AmazonCognitoDeveloperAuthenticatedIdentities

Amazon Cognito Developer Guide

Identity pools with unauthenticated guest access apply an additional Amazon managed policy
as a session policy to unauthenticated users. This Amazon managed policy has no intended
administrative use. Instead, it limits the scope of permissions that you can apply to guest users in
the identity pools enhanced authentication flow. For more information, see IAM roles.

Amazon managed IAM policies that Amazon Cognito grants to guest users

• AmazonCognitoUnAuthedIdentitiesSessionPolicy - In combination with an inline
session policy, limits the permissions that IAM administrators can grant to identity pool guest
users. Amazon Cognito automatically applies this policy to guest sessions. For more information,
see The Amazon managed session policy for guests.

Amazon Cognito updates to Amazon managed policies

View details about updates to Amazon managed policies for Amazon Cognito since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the Amazon Cognito Document history page.

Change Description Date

AmazonCognitoPower
User –Change

Amazon Cognito added new
actions to permit the use
of the Amazon End User
Messaging SMS API operation
DescribeAccountAttributes for
Amazon Cognito user pools
administrative power users.

February 27, 2025

AmazonCognitoUnAut
hedIdentitiesSessi
onPolicy –Change

Amazon Cognito added new
actions to permit the use of
Amazon Key Management
Service for unauthenticated
(guest) users in identity pools.

October 30, 2024

Policy updates 1322

https://docs.amazonaws.cn/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.amazonaws.cn/cognito/latest/developerguide/authentication-flow.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-document-history.html
https://docs.amazonaws.cn/pinpoint/latest/apireference_smsvoicev2/API_DescribeAccountAttributes.html

Amazon Cognito Developer Guide

Change Description Date

AmazonCognitoUnAut
hedIdentitiesSessi
onPolicy –Change

Amazon Cognito added new
actions to permit the use of
Amazon Location Service for
unauthenticated (guest) users
in identity pools.

August 9, 2024

AmazonCognitoUnAut
hedIdentitiesSessi
onPolicy –New policy

Added an Amazon managed
policy for privilege scope-dow
n of guest users in identity
pools.

July 14, 2023

AmazonCognitoPower
User and AmazonCog
nitoReadOnly –Change

Added new permissions to
allow power users to view
and manage associations of
Amazon WAF web ACLs to
Amazon Cognito user pools.

Added new permissions to
allow read-only users to view
associations of Amazon WAF
web ACLs to Amazon Cognito
user pools.

July 19, 2022

Policy updates 1323

Amazon Cognito Developer Guide

Change Description Date

AmazonCognitoPower
User –Change

Added a new permission to
allow Amazon Cognito to call
Amazon Simple Email Service
PutIdentityPolicy and
ListConfigurationS
ets operations.

This change allows Amazon
Cognito user pools to
update Amazon SES sending
authorization policies and to
apply Amazon SES configura
tion sets when you configure
email sending in your user
pool.

November 17, 2021

AmazonCognitoPower
User –Change

Added a new permission to
allow Amazon Cognito to
call Amazon Simple Notificat
ion Service's GetSMSSan
dboxAccountStatus
operation.

This change allows Amazon
Cognito user pools to decide
if you need to graduate out of
the Amazon Simple Notificat
ion Service sandbox in order
to send messages to all end
users through user pools.

June 1, 2021

Amazon Cognito started
tracking changes

Amazon Cognito started
tracking changes for its
Amazon managed policies.

March 1, 2021

Policy updates 1324

Amazon Cognito Developer Guide

Tagging Amazon Cognito resources

A tag is a metadata label that you or Amazon assigns to an Amazon resource. Each tag consists of
a key and a value. For tags that you assign, you define the key and value. For example, you might
define the key as stage and the value for one resource as test.

Tags help you do the following:

• Identify and organize your Amazon resources. Many Amazon services support tagging, so that
you can assign the same tag to resources from different services. This helps you indicate which
resources are related. For example, you could assign the same tag to an Amazon Cognito user
pool that you assign to an Amazon DynamoDB table.

• Track your Amazon costs. You can activate these tags on the Amazon Billing and Cost
Management dashboard. Amazon uses cost allocation tags to categorize your costs and deliver a
monthly cost allocation report to you. For more information, see Use cost allocation tags in the
Amazon Billing User Guide.

• Control access to your resources based on the tags that are assigned to them. You can control
access by specifying tag keys and values in the conditions for an Amazon Identity and Access
Management (IAM) policy. For example, you could allow a user to update a user pool only if
the user pool has an owner tag with a value of that user's name. For more information, see
Controlling access using tags in the IAM User Guide.

You can use the Amazon Command Line Interface or the Amazon Cognito API to add, edit, or
delete tags for both user and identity pools. You can also manage tags for user pools by using the
Amazon Cognito console.

For tips on using tags, see the Amazon tagging strategies post on the Amazon Answers blog.

The following sections provide more information about tags for Amazon Cognito.

Supported resources in Amazon Cognito

The following resources in Amazon Cognito support tagging:

• User pools

• Identity pools

Supported resources 1325

https://docs.amazonaws.cn/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/access_tags.html
https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

Amazon Cognito Developer Guide

Tag restrictions

The following restrictions apply to tags on Amazon Cognito resources:

• Maximum number of tags that you can assign to a resource – 50

• Maximum key length – 128 Unicode characters

• Maximum value length – 256 Unicode characters

• Valid characters for keys and values – a-z, A-Z, 0-9, space, and the following characters: _ . : / = +
- @

• Keys and values are case sensitive

• Don't use aws: as a prefix for keys; it's reserved for Amazon use

Managing tags using the Amazon Cognito console

You can use the Amazon Cognito console to manage the tags that are assigned to your user pools.

To add tags to a user pool

1. Navigate to the Amazon Cognito console. If prompted, enter your Amazon credentials.

2. Choose User Pools.

3. Choose an existing user pool from the list, or create a user pool.

4. Choose the Settings menu and locate the Tags tab.

5. Choose Add tags to add your first tag. If you have previously assigned tags to this user pool, in
Manage tags, chose Add another.

6. Specify values for Tag Key and Tag Value.

7. For each additional tag that you want to add, choose Add another.

8. When you are finished adding tags, choose Save changes.

To tag an identity pool, navigate to the Identity pools menu and select or create an identity pool.
In the Identity pool properties tab, locate Tags. Choose Add tag.

Tag restrictions 1326

https://console.amazonaws.cn/cognito/home
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html

Amazon Cognito Developer Guide

Amazon CLI examples

The Amazon CLI provides commands that help you manage the tags that you assign to your
Amazon Cognito user pools and identity pools.

Assigning tags

Use the following commands to assign tags to your existing user pools and identity pools.

Example tag-resource Command for user pools

Assign tags to a user pool by using tag-resource within the cognito-idp set of commands:

$ aws cognito-idp tag-resource \
> --resource-arn user-pool-arn \
> --tags Stage=Test

This command includes the following parameters:

• resource-arn – The Amazon Resource Name (ARN) of the user pool that you are applying tags
to. To look up the ARN, choose the user pool in the Amazon Cognito console, and view the Pool
ARN value on the General settings tab.

• tags – The key-value pairs of the tags, in the format key=value.

To assign multiple tags at once, specify them in a comma-separated list:

$ aws cognito-idp tag-resource \
> --resource-arn user-pool-arn \
> --tags Stage=Test,CostCenter=80432,Owner=SysEng

Example tag-resource Command for identity pools

Assign tags to an identity pool by using tag-resource within the cognito-identity set of
commands:

$ aws cognito-identity tag-resource \
> --resource-arn identity-pool-arn \
> --tags Stage=Test

This command includes the following parameters:

Amazon CLI examples 1327

https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/tag-resource.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/tag-resource.html

Amazon Cognito Developer Guide

• resource-arn – The Amazon Resource Name (ARN) of the identity pool that you are applying
tags to. To look up the ARN, choose the identity pool in the Amazon Cognito console, and choose
Edit identity pool. Then, at Identity pool ID, choose Show ARN.

• tags – The key-value pairs of the tags, in the format key=value.

To assign multiple tags at once, specify them in a comma-separated list:

$ aws cognito-identity tag-resource \
> --resource-arn identity-pool-arn \
> --tags Stage=Test,CostCenter=80432,Owner=SysEng

Viewing tags

Use the following commands to view the tags that you have assigned to your user pools and
identity pools.

Example list-tags-for-resource Command for user pools

View the tags that are assigned to a user pool by using list-tags-for-resource within the
cognito-idp set of commands:

$ aws cognito-idp list-tags-for-resource --resource-arn user-pool-arn

Example list-tags-for-resource Command for identity pools

View the tags that are assigned to an identity pool by using list-tags-for-resource within
the cognito-identity set of commands:

$ aws cognito-identity list-tags-for-resource --resource-arn identity-pool-arn

Removing tags

Use the following commands to remove tags from your user pools and identity pools.

Example untag-resource Command for user pools

Remove tags from a user pool by using untag-resource within the cognito-idp set of
commands:

Viewing tags 1328

https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/list-tags-for-resource.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/untag-resource.html

Amazon Cognito Developer Guide

$ aws cognito-idp untag-resource \
> --resource-arn user-pool-arn \
> --tag-keys Stage CostCenter Owner

For the --tag-keys parameter, specify one or more tag keys. Don't include the tag values.
Separate keys with spaces.

Example untag-resource Command for identity pools

Remove tags from an identity pool by using untag-resource within the cognito-identity set
of commands:

$ aws cognito-identity untag-resource \
> --resource-arn identity-pool-arn \
> --tag-keys Stage CostCenter Owner

For the --tag-keys parameter, specify one or more tag keys. Don't include the tag values.

Important

After you delete a user or identity pool, tags related to the deleted pool can still appear in
the console or API calls for up to 30 days after deletion.

Applying tags when you create resources

Use the following commands to assign tags at the moment you create a user pool or identity pool.

Example create-user-pool Command with tags

When you create a user pool by using the create-user-pool command, you can specify tags
with the --user-pool-tags parameter:

$ aws cognito-idp create-user-pool \
> --pool-name user-pool-name \
> --user-pool-tags Stage=Test,CostCenter=80432,Owner=SysEng

Key-value pairs for tags must be in the format key=value. If you are adding multiple tags, specify
them in a comma-separated list.

Applying tags when you create resources 1329

https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/untag-resource.html
https://docs.amazonaws.cn/cli/latest/reference/cognito-idp/create-user-pool.html

Amazon Cognito Developer Guide

Example create-identity-pool Command with tags

When you create an identity pool by using the create-identity-pool command, you can
specify tags with the --identity-pool-tags parameter:

$ aws cognito-identity create-identity-pool \
> --identity-pool-name identity-pool-name \
> --allow-unauthenticated-identities \
> --identity-pool-tags Stage=Test,CostCenter=80432,Owner=SysEng

Key-value pairs for tags must be in the format key=value. If you are adding multiple tags, specify
them in a comma-separated list.

Managing tags using the Amazon Cognito API

You can use the following actions in the Amazon Cognito API to manage the tags for your user
pools and identity pools.

API actions for user pool tags

Use the following API actions to assign, view, and remove tags for user pools.

• TagResource

• ListTagsForResource

• UntagResource

• CreateUserPool

API actions for identity pool tags

Use the following API actions to assign, view, and remove tags for identity pools.

• TagResource

• ListTagsForResource

• UntagResource

• CreateIdentityPool

API actions 1330

https://docs.amazonaws.cn/cli/latest/reference/cognito-identity/create-identity-pool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/API_CreateIdentityPool.html

Amazon Cognito Developer Guide

Quotas in Amazon Cognito

Amazon Cognito has default quotas, formerly referred to as limits, for the maximum number
of operations that you can perform in your account. Amazon Cognito also has quotas for the
maximum number and size of Amazon Cognito resources.

Each Amazon Cognito quota represents a maximum volume of requests in one Amazon Web
Services Region in one Amazon Web Services account. For example, your apps can make API
requests at up to the Default quota (RPS) rate for UserAuthentication operations against all
of your user pools in US East (N. Virginia). Your apps in Asia Pacific (Tokyo) can produce the same
volume of requests against all of your user pools in their own Region. Amazon can only grant a
quota increase request in one Region at a time. A successful quota increase in US East (N. Virginia)
has no effect on your maximum request rate in Asia Pacific (Tokyo).

Topics

• Understanding API request rate quotas

• Managing API request rate quotas

• Amazon Cognito user pools API operation categories and request rate quotas

• Amazon Cognito identity pools (federated identities) API operation request rate quotas

• Quotas on resource number and size

Understanding API request rate quotas

Quota categorization

Amazon Cognito enforces a maximum request rate for API operations. For more information about
the API operations that Amazon Cognito makes available, see the API reference guides for user
pools and identity pools. For user pools, these operations are grouped into categories of common
use cases like UserAuthentication or UserCreation. For a list of user pool API operations by
category, see Amazon Cognito user pools API operation categories and request rate quotas.

In the Service Quotas console, you can track your quota usage by category user pools and identity
pools.If the request rate of your Amazon Cognito user pools or exceeds a quota, you can purchase
additional capacity. You can track your user pool quota usage by category and purchase quota
increases in the Service Quotas console.

Understanding API request rate quotas 1331

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/Welcome.html
https://docs.amazonaws.cn/cognitoidentity/latest/APIReference/Welcome.html
https://console.amazonaws.cn/servicequotas/home
https://console.amazonaws.cn/servicequotas/home

Amazon Cognito Developer Guide

Operation quotas are defined as the maximum number of requests per second (RPS) for all
operations within a category. The Amazon Cognito user pools service applies quotas to all
operations in each category. For example, the category UserCreation includes four operations:
SignUp, ConfirmSignUp, AdminCreateUser, and AdminConfirmSignUp. It's allocated with
a combined quota of 50 RPS. If multiple operations take place at the same time, each operation
within this category can call up to 50 RPS separately or combined.

Note

Category quotas only apply to user pools. Amazon Cognito applies each identity pool
quota to a single operation. For both per-category and per-operation request rate quotas,
Amazon measures the aggregate rate of all requests from all user pools or identity pools in
your Amazon Web Services account in one Region.

Amazon Cognito user pools API operations with special request rate
handling

Operation quotas are measured and enforced for the combined total requests at the category level,
except for the AdminRespondToAuthChallenge and RespondToAuthChallenge operations,
where special handling rules are applied.

The UserAuthentication category includes four operations in the Amazon Cognito user
pools API: AdminInitiateAuth, InitiateAuth, AdminRespondToAuthChallenge, and
RespondToAuthChallenge. Additionally, user authentication in the hosted UI contributes
to this quota. The InitiateAuth and AdminInitiateAuth operations are measured and
enforced per category quota. The matching operations RespondToAuthChallenge and
AdminRespondToAuthChallenge are subject to a separate quota that is three times the
UserAuthentication category limit. This elevated quota accommodates multiple authentication
challenges set up in your apps. The quota is sufficient to cover the large majority of use cases. After
your app makes up to three responses to authentication challenges, additional requests count
toward the UserAuthentication category quota. Multi-factor authentication (MFA), device
authentication, and custom authentication are all examples of challenge prompts that you might
engineer into your user pool.

For example, if your quota for the UserAuthentication category is 80 RPS, you can call
RespondToAuthChallenge or AdminRespondToAuthChallenge at a rate up to 240 RPS (3 *
80 RPS). If your user pool prompts for four rounds of challenge per authentication and 70 users

Amazon Cognito user pools API operations with special request rate handling 1332

Amazon Cognito Developer Guide

sign in per second, then the total RespondToAuthChallenge is 280 RPS (70 x 4), which is 40 RPS
above the quota. The extra 40 RPS is added to 70 InitiateAuth calls, making the total usage of
UserAuthentication category 110 RPS (40 + 70). Because this value exceeds the category quota
set at 80 RPS by 30 RPS, Amazon Cognito throttles requests from your app.

Monthly active users

When Amazon Cognito calculates user pool billing, it charges you a rate for each monthly active
user (MAU). Consider your current and projected MAU count in your planning for quota increase
requests. A user is counted as a MAU if, within a calendar month, there is an identity operation
related to that user. When you link federated users to local users, with SAML or OIDC federation,
the local user will count as an enterprise directory MAU or EnterpriseMAU, regardless of whether
the user signs in directly or via federation. See Amazon Cognito Pricing for more information.

• Sign-up or administrative creation of a user. User CSV import doesn't contribute to your MAU
count.

• User account confirmation or attribute verification.

• Sign-in and challenge response. Operations that you authorize with the currently signed-in user's
access token don't contribute to your MAU count; however, because sign-in produces access
tokens, these operations indicate that the associated user is an MAU.

• Sign-out and token revocation.

• Password self-service reset and setting of user passwords as an administrator. Resetting user
passwords as an administrator (AdminResetUserPassword) doesn't contribute to your MAU count.

• Change user attributes or group membership.

• Query detailed attributes of a user as an administrator.

Note

The category Query detailed attributes of a user as an administrator includes the API
operation AdminGetUser, but not ListUsers. A detailed user-by-user query in a large user
pool can have a significant impact on your Amazon bill. To avoid additional cost, collect
user data with ListUsers or store user information in an external database.

You aren't charged for additional sessions by any active user, or for any users that weren't active
within a calendar month. In a month where you have changed your user pool feature plan between

Monthly active users 1333

https://www.amazonaws.cn/cognito/pricing/
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html

Amazon Cognito Developer Guide

the available options of Lite, Essentials, and Plus, your bill for that month is computed from the
sum of monthly active users (MAUs) in each tier, with each MAU assigned to the highest-priced
assigned tier when the user was active. For example:

1. At the beginning of the month, your user pool is on the Plus feature plan.

2. User A signs in on the first day of the month.

3. User B signs in on the first and last days of the month.

4. On the tenth day of the month, you switch your feature plan to Essentials.

5. User C signs in on the last day of the month.

In this scenario, user A and user B are Plus MAUs and user C is an Essentials MAU.

Lite MAU

A user that was active at least once in a month when the user pool was on the Lite feature plan,
and was never active when the user pool was on the Essentials or Plus plans.

Essentials MAU

A user that was active at least once in a month when the user pool was on the Essentials feature
plan, and was never active when the user pool was on the Plus plan.

Plus MAU

A user that was active at least once in a month when the user pool was on the Plus plan.

For more information, see User pool feature plans.

Managing API request rate quotas

Identify quota requirements

Important

If you increase Amazon Cognito quotas for categories such as UserAuthentication,
UserCreation, or AccountRecovery, you may need to increase quotas for other
Amazon Web Services services. For example, messages that Amazon Cognito sends with

Managing API request rate quotas 1334

Amazon Cognito Developer Guide

Amazon Simple Notification Service (Amazon SNS) or Amazon Simple Email Service
(Amazon SES) can fail if request rate quotas are insufficient in those services.

To calculate quota requirements, determine how many active users will interact with your
application in a specific time period. For example, if you expect your application to sign in
an average of one million active users within an eight-hour period, then you must be able to
authenticate an average of 35 users per second.

In addition, if you assume that the average user session is two hours, and you configure tokens to
expire after an hour, each user must refresh their tokens once during their session. The required
average quota for the UserAuthentication category to support this load is 70 RPS.

If you assume a peak-to-average ratio of 3:1 by accounting for the variance of user sign-in
frequency during the eight-hour period, then you need the desired UserAuthentication quota
of 200 RPS.

Note

If you call multiple operations for each user action, you must sum up the individual
operation call rates at the category level.

Optimize request rates for quota limits

Because increasing API rate limits adds costs to your Amazon bill, consider adjustments to your
usage model before you request a quota increase. The following are some examples of app
architecture that optimizes request rates.

Retry the attempt after a back-off waiting period

You can catch errors with each API call, and then re-try the attempt after a back-off period. You
can adjust the back-off algorithm according to business needs and load. Amazon SDKs have
built-in retry logic. For more information, see Tools to Build on Amazon.

Use an external database for frequently updated attributes

If your application requires several calls to a user pool to read or write custom attributes, use
external storage. You can use your preferred database to store custom attributes or use a cache

Optimize request rates 1335

https://aws.amazon.com/tools/

Amazon Cognito Developer Guide

layer to load a user profile during sign-in. You can reference this profile from the cache when
needed, instead of reloading the user profile from a user pool.

Validate JSON web tokens (JWTs) on the client side

Applications must validate JWT tokens before trusting them. You can verify the signature and
validity of tokens on the client side without sending API requests to a user pool. After the
token is validated, you can trust claims in the token and use the claims instead of making more
getUser API calls. For more information, see Verifying a JSON Web Token.

Throttle traffic to your web application with a waiting room

If you expect traffic from a large number of users signing in during a time-bound event, such as
taking an exam or attending a live event, you can optimize request traffic with self-throttling
mechanisms. You can, for example, set up a waiting room where users can stand by until a
session is available, allowing you to process requests when you have available capacity. See the
Amazon Virtual Waiting Room solution for a reference architecture of a waiting room.

Cache JWTs

Reuse access tokens until they expire. For an example framework with token caching in an
API Gateway, see Managing user pool token expiration and caching. Instead of generating API
requests to query user information, cache ID tokens until they expire, and read user attributes
from the cache.

For more information about working with API request rates in Amazon, see Managing and
monitoring API throttling in your workloads. For information about optimizing Amazon Cognito
operations that add costs to your Amazon bill, see Managing costs.

Track quota usage

Amazon Cognito generates CallCount and ThrottleCount metrics in Amazon CloudWatch
for each API operation category at the account level. You can use CallCount to track the
total number of calls customers made related to a category. You can use ThrottleCount to
track the total number of throttled calls related to a category. You can use the CallCount and
ThrottleCount metrics with the Sum statistic to count the total number of calls in a category. For
more information, see CloudWatch usage metrics.

When monitoring service quotas, utilization is the percentage of a service quota in use. For
example, if the quota value is 200 resources, and 150 resources are in use, the utilization is 75%.
Usage is the number of resources or operations in use for a service quota.

Track quota usage 1336

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-verifying-a-jwt.html
https://aws.amazon.com/solutions/implementations/aws-virtual-waiting-room
https://www.amazonaws.cn/blogs/mt/managing-monitoring-api-throttling-in-workloads/
https://www.amazonaws.cn/blogs/mt/managing-monitoring-api-throttling-in-workloads/
https://docs.amazonaws.cn/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

Amazon Cognito Developer Guide

Tracking usage through CloudWatch metrics

You can track and collect Amazon Cognito user pools utilization metrics with CloudWatch. The
CloudWatch dashboard displays metrics about every Amazon Web Services service that you use.
With CloudWatch, you can create metric alarms to notify you or change a specific resource that you
are monitoring. For more information about CloudWatch metrics, see Track your CloudWatch usage
metrics.

Tracking utilization through Service Quotas metrics

Amazon Cognito user pools are integrated with Service Quotas, a console interface to display and
manage your service quota usage. In the Service Quotas console, you can look up the value of
a specific quota, view monitoring information, request a quota increase, or set up CloudWatch
alarms. After your account has been active for a while, you can view a graph of your resource
utilization.

The Applied account-level quota value column in the Service Quotas console for Amazon Cognito
user pools and Amazon Cognito identity pools displays your current quota. The Utilization column
displays your current rate of quota usage. Adjustable Amazon Cognito user pools requests-per-
second (RPS) quotas display their current usage. The Service Quotas console can also navigate
you to CloudWatch metrics for a closer look at a selected quota metric. For more information on
viewing quotas in the Service Quotas console, see Viewing Service Quotas.

Track monthly active users (MAUs)

The number of monthly active users (MAUs) in your user pool contributes important data to your
planning for increases to request-rate quotas. You can compare your API request rates to the
number of users you had active in a given time period. With that knowledge, you can calculate how
an increase in active users of your applications will affect your quotas in your usage model. For
example, imagine that your combined applications in US West (Oregon) resulted in 2 million active
users in a month and your UserAuthentication category received occasional throttling errors at
the default quota of 120 requests per second (RPS). In the previous month, before your successful
advertising campaign, you had 1 million MAUs and your applications never exceeded 80 RPS. If you
anticipate a similar spike as a result of a new TV spot, you might purchase an additional 40 RPS to
accommodate the next million users with an adjusted quota of 160 RPS.

To review your MAUs

Access the Amazon Billing console and review a recent bill. Under charges by service, you can filter
on Cognito to view a breakdown of your MAUs for that billing period.

Track monthly active users (MAUs) 1337

https://console.amazonaws.cn/servicequotas/home/services/cognito-idp/quotas
https://console.amazonaws.cn/servicequotas/home/services/cognito-idp/quotas
https://console.amazonaws.cn/servicequotas/home/services/cognito-identity/quotas
https://docs.amazonaws.cn/servicequotas/latest/userguide/gs-request-quota.html
https://console.amazonaws.cn/billing/home

Amazon Cognito Developer Guide

Requesting a quota increase

Amazon Cognito has a quota for the maximum number of operations per second that you
can perform in your user pools and identity pools in each Amazon Web Services Region.
You can purchase an increase to adjustable Amazon Cognito user pools API request rate
quotas. Check your current quota and purchase an increase from the Service Quotas
console or with the Service Quotas API operations ListAWSDefaultServiceQuotas and
RequestServiceQuotaIncrease.

• To purchase a quota increase using the Service Quotas console, see Requesting a API quota
increase in the Service Quotas User Guide.

• Amazon targets completion of quota increase requests within 10 days. However, several
considerations might cause the request processing time to exceed 10 days. Some requests, for
example, might require Amazon Cognito to provision additional hardware capacity, and seasonal
increases in request volumes might introduce delays.

• If the quota isn't available in Service Quotas, use the Service limit increase form.

Important

Only adjustable quotas can be increased. You must purchase increased quota capacity. For
quota-increase pricing, see Amazon Cognito pricing.

Amazon Cognito user pools API operation categories and
request rate quotas

Because Amazon Cognito has overlapping classes of API operations with differing authorization
models, each operation belongs to a category. Each category has its own pooled quota for
all member API operations, across all user pools in one Amazon Web Services Region in your
account. You can only request an increase to adjustable category quotas. For more information, see
Requesting a quota increase. Quota adjustments apply to the user pools in your account in a single

Region. Amazon Cognito restricts operations in some categories3 to 5 requests per second (RPS),
per user pool. The Default quota (RPS) additionally applies to all user pools in an Amazon Web
Services account.

Requesting a quota increase 1338

https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://console.amazonaws.cn/support/home#/case/create?issueType=service-limit-increase
https://www.amazonaws.cn/cognito/pricing/
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html

Amazon Cognito Developer Guide

Note

The quota for each category is measured in Monthly Active Users (MAUs). Amazon Web
Services accounts with fewer than two million MAUs can operate within the default quota.
If you have less than one million MAUs and Amazon Cognito is throttling requests, consider
optimizing your app. For more information, see Optimize request rates for quota limits.

Category operation quotas are applied across all users in all user pools within one Amazon Web
Services Region. Amazon Cognito also maintains a quota for the number of requests that your
app can generate against one user. You must limit per-user API requests as shown in the following
table.

Amazon Cognito user pools per-user request rate quotas

Operation Operations per user
per second

Read user profile

Examples: GetUser, GetDevice , InitiateAuth , RespondTo
AuthChallenge

10

Write user profile

Examples: UpdateUserAttributes , SetUserSettings

10

You must limit per-category API requests as shown in the following table.

Amazon Cognito user pools per-category request rate quotas

Category Description Default quota (RPS) Adjustable

UserAuthe
ntication

• InitiateAuth

Operations that
authenticate (sign in)
a user.

120 Yes

User pools request rate quotas 1339

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_InitiateAuth.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

• Token refresh with
InitiateAuth
or Token endpoint

• RespondTo

AuthChallenge1

• AdminInitiateAuth

• AdminResp
ondToAuth

Challenge1

• Hosted UI sign-
in and MFA in
authorization-code

or implicit grants2

These operations are
subject to Amazon
Cognito user pools
API operations with
special request rate
handling .

UserCreation

• SignUp

• ConfirmSignUp

• AdminCreateUser

• AdminConf
irmSignUp

Operations that
create or confirm an
Amazon Cognito local
user. This is a user
that is created and
verified directly by
your Amazon Cognito
user pools.

50 Yes

UserFederation

Operations that
federate (authenti
cate) users with a
third-party identity
provider into your
Amazon Cognito user
pools.

Operations that
submit an IdP
response to a user
pool federation
endpoint. OIDC
or social provider
operations that result
in an IdP token, and
all SAML requests,
contribute to this
quota.

25 Yes

User pools request rate quotas 1340

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminInitiateAuth.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminCreateUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminConfirmSignUp.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserAccou
ntRecovery

• ChangePassword

• ConfirmFo
rgotPassword

• ForgotPassword

• AdminRese
tUserPassword

• AdminSetU
serPassword

• RespondTo

AuthChallenge1

• AdminResp
ondToAuth

Challenge1

• Managed login
password reset

Operations that
recover a user's
account, or change
or update a user's
password.

30 No

UserRead

• AdminGetUser

• GetUser

Operations that
retrieve a user from
your user pools.

120 Yes

User pools request rate quotas 1341

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ChangePassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgotPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminResetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserPassword.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRespondToAuthChallenge.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUser.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserUpdate

• AdminAddU
serToGroup

• AdminDele
teUserAttributes

• AdminUpda
teUserAttributes

• AdminDeleteUser

• AdminDisableUser

• AdminEnableUser

• AdminLink
ProviderForUser

• AdminDisa
bleProviderForUser

• VerifyUserAttribute

• DeleteUser

• DeleteUserAttribut
es

• UpdateUse
rAttributes

• AdminUser
GlobalSignOut

• GlobalSignOut

• AdminRemo
veUserFromGroup

Operations that you
use to manage users
and user attributes.

25 No

UserToken

• RevokeToken

Operations for token
management

120 Yes

User pools request rate quotas 1342

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminAddUserToGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminAddUserToGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDeleteUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminEnableUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminLinkProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminDisableProviderForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifyUserAttribute.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUserGlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GlobalSignOut.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRemoveUserFromGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminRemoveUserFromGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_RevokeToken.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserResou
rceRead

• AdminGetDevice

• AdminList
GroupsForUser

• AdminListDevices

• GetDevice

• ListDevices

• GetUserAttributeVe
rificationCode

• ResendCon
firmationCode

• AdminList
UserAuthEvents

Operations that
retrieve user resource
information from
Amazon Cognito,
such as a remembere
d device or a group
membership.

50 Yes

User pools request rate quotas 1343

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminGetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListGroupsForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListGroupsForUser.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListDevices.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserAttributeVerificationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ResendConfirmationCode.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListUserAuthEvents.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminListUserAuthEvents.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserResou
rceUpdate

• AdminForgetDevice

• AdminUpda
teAuthEve
ntFeedback

• AdminSetU
serMFAPreference

• AdminSetU
serSettings

• AdminUpda
teDeviceStatus

• UpdateDev
iceStatus

• UpdateAut
hEventFeedback

• ConfirmDevice

• SetUserMF
APreference

• SetUserSettings

• VerifySoftwareToke
n

• AssociateSoftwareT
oken

• ForgetDevice

Operations that
update resource
information for
a user, such as
a remembered
device or a group
membership.

25 No

UserList

• ListUsers

• ListUsersInGroup

Operations that
return a list of users.

30 No

User pools request rate quotas 1344

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserSettings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminSetUserSettings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AdminUpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateDeviceStatus.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateAuthEventFeedback.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ConfirmDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserMFAPreference.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserSettings.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_VerifySoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AssociateSoftwareToken.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ForgetDevice.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUsersInGroup.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserPoolRead

• DescribeUserPool

• ListUserPools

Operations that read
your user pools.

15 No

UserPoolUpdate

• CreateUserPool

• UpdateUserPool

• DeleteUserPool

Operations that
create, update, or
delete your user
pools.

15 No

User pools request rate quotas 1345

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserPools.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPool.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPool.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserPoolR
esourceRead

• DescribeIdentityPr
ovider

• DescribeR
esourceServer

• DescribeU
serImportJob

• DescribeU
serPoolDomain

• GetCSVHeader

• GetGroup

• GetSigningCertific
ate

• GetIdentityProvide
rByIdentifier

• GetUserPo
olMfaConfig

• ListGroups

• ListIdentityProvid
ers

• ListResourceServer
s

• ListTagsForResourc
e

• ListUserImportJobs

• DescribeRiskConfig
uration

• GetUICust
omization

Operations that
retrieve information
about resources, such
as groups or resource
servers, from a user

pool.3

20 No

User pools request rate quotas 1346

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetCSVHeader.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetSigningCertificate.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetSigningCertificate.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetIdentityProviderByIdentifier.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetIdentityProviderByIdentifier.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListGroups.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListIdentityProviders.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListIdentityProviders.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListResourceServers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListResourceServers.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListTagsForResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserImportJobs.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUICustomization.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_GetUICustomization.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

UserPoolR
esourceUpdate

• AddCustom
Attributes

• CreateGroup

• CreateIdentityProv
ider

• CreateRes
ourceServer

• CreateUse
rImportJob

• CreateUse
rPoolDomain

• DeleteGroup

• DeleteIdentityProv
ider

• DeleteRes
ourceServer

• DeleteUse
rPoolDomain

• SetUserPo
olMfaConfig

• StartUser
ImportJob

• StopUserImportJob

• UpdateGroup

• UpdateIdentityProv
ider

• UpdateRes
ourceServer

Operations that
modify resources
, such as groups or
resource servers, in a

user pool.3

15 No

User pools request rate quotas 1347

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AddCustomAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_AddCustomAttributes.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUserPoolMfaConfig.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StartUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_StopUserImportJob.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateGroup.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateIdentityProvider.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateResourceServer.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateResourceServer.html

Amazon Cognito Developer Guide

Category Description Default quota (RPS) Adjustable

• UpdateUse
rPoolDomain

• SetRiskConfigurati
on

• SetUICust
omization

• TagResource

• UntagResource

UserPoolC
lientRead

• DescribeUserPoolCl
ient

• ListUserPoolClients

Operations that
retrieve information
about your user pool

clients.3

15 No

UserPoolC
lientUpdate

• CreateUserPoolClie
nt

• DeleteUserPoolClie
nt

• UpdateUse
rPoolClient

Operations that
create, update, and
delete your user pool

clients.3

15 No

ClientAut
hentication

client_cr
edentials grant
type requests to the
token endpoint.

Operations that
generate credentia
ls to be used in
authorizing machine-
to-machine requests

150 No

User pools request rate quotas 1348

https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolDomain.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetRiskConfiguration.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_SetUICustomization.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_TagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UntagResource.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DescribeUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_ListUserPoolClients.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_CreateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_DeleteUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html
https://docs.amazonaws.cn/cognito-user-identity-pools/latest/APIReference/API_UpdateUserPoolClient.html

Amazon Cognito Developer Guide

 1 A RespondToAuthChallenge or AdminRespondToAuthChallenge response with a
ChallengeName of NEW_PASSWORD_REQUIRED counts toward the UserAccountRecovery
category. All other challenge responses count toward the UserAuthentication category.

2 Each hosted UI operation during sign-in contributes one request to the quota. For example, a user
who signs in and provides an MFA code contributes 2 requests. Token redemption in authorization-
code grants is subject to an additional quota allocation at the same rate as your quota in the
UserAuthentication category.

3 Any individual operation in this category has a constraint that prevents the operation from being
called at a rate higher than 5 RPS for a single user pool.

Amazon Cognito identity pools (federated identities) API
operation request rate quotas

Operation Description Default quota

(RPS)1

Adjustable Quota increase
eligibility

GetId Retrieve an
identity ID from
an identity pool.

25 Yes Contact your
account team.

GetOpenId
Token

Retrieve an
OpenID token
from an identity
pool in the
classic workflow.

200 Yes Contact your
account team.

GetCreden
tialsForI
dentity

Retrieve Amazon
credentials from
an identity pool
in the enhanced
workflow.

200 Yes Contact your
account team.

GetOpenId
TokenForD

Retrieve an
OpenID token
from an identity

50 Yes Contact your
account team.

Identity pools request rate quotas 1349

Amazon Cognito Developer Guide

Operation Description Default quota

(RPS)1

Adjustable Quota increase
eligibility

eveloperI
dentity

pool in the
developer
 workflow.

ListIdent
ities

Retrieve a list of
identity IDs in an
identity pool.

5 Yes Contact your
account team.

DeleteIde
ntities

Delete one or
more registered
identities from
an identity pool.

10 Yes Contact your
account team.

TagResource Apply a tag to
an identity pool.

5 Yes Contact your
account team.

UntagReso
urce

Remove a tag
from an identity
pool.

5 Yes Contact your
account team.

ListTagsF
orResource

Display a list of
the tags applied
to an identity
pool.

10 Yes Contact your
account team.

1 The default quota is the minimum request rate quota for the identity pools in any Amazon Web
Services Region in your Amazon Web Services account. Your RPS quota might be higher in some
Regions.

Quotas on resource number and size

Resource quotas are the maximum number or size of resources, input fields, time duration, and
other miscellaneous features in Amazon Cognito.

Quotas on resource number and size 1350

Amazon Cognito Developer Guide

You can request an adjustment to some resource quotas in the Service Quotas console or from a
Service limit increase form. To request a quota from the Service Quotas console, see Requesting a
quota increase in the Service Quotas User Guide. If the quota isn't available in Service Quotas, use
the Service limit increase form.

Note

Resource quotas at the Amazon Web Services account level, like User pools per Region,
apply to Amazon Cognito resources in each Amazon Web Services Region. For example, you
can have 1,000 user pools in US East (N. Virginia) and another 1,000 in Europe (Stockholm).

The following tables indicate default resource quotas, and whether they're adjustable.

Amazon Cognito user pools resource quotas

Resource Quota Adjustable Maximum quota

App clients per user
pool

1,000 Yes 10,000

User pools per Region 1,000 Yes 10,000

Identity providers per
user pool

300 Yes 1,000

Resource servers per
user pool

25 Yes 300

Users per user pool 40,000,000 Yes Contact your account
team.

Total combined
changes in pre token
generation Lambda

trigger1

5,000 Yes Contact your account
team.

Quotas on resource number and size 1351

https://console.amazonaws.cn/support/home#/case/create?issueType=service-limit-increase
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://docs.amazonaws.cn/servicequotas/latest/userguide/request-quota-increase.html
https://console.amazonaws.cn/support/home#/case/create?issueType=service-limit-increase

Amazon Cognito Developer Guide

Resource Quota Adjustable Maximum quota

Managed login
branding styles per
user pool

10 No N/A

Custom attributes per
user pool

50 No N/A

Characters per
attribute

2,048 bytes No N/A

Characters in custom
attribute name

20 No N/A

Required minimum
password characters
in password policy

6–99 No N/A

Email messages
sent daily per
Amazon Web Services

account2

50 No N/A

Characters in email
subject

140 No N/A

Characters in email
message

20,000 No N/A

Characters in SMS
verification message

140 No N/A

Characters in
password

256 No N/A

Characters in identity
provider name

32 No N/A

Quotas on resource number and size 1352

Amazon Cognito Developer Guide

Resource Quota Adjustable Maximum quota

Characters in a SAML
response

100,000 No N/A

Identifiers per
identity provider

50 No N/A

Identities linked to a
user

5 No N/A

Passkey/WebAuthn
authenticators per
user

20 No N/A

Callback URLs per
app client

100 No N/A

Logout URLs per app
client

100 No N/A

Scopes per resource
server

100 No N/A

Scopes per app client 50 No N/A

Custom domains per
account

4 No N/A

Groups to which each
user can belong

100 No N/A

Groups per user pool 10,000 No N/A

1 This quota might be encountered in tokens from a Pre token generation Lambda trigger. The
number of existing and added claims plus scopes in access and identity tokens in one transaction
must add up to a number smaller than or equal to this quota. Suppressed claims and scopes don't
contribute to this quota.

Quotas on resource number and size 1353

Amazon Cognito Developer Guide

2 This quota applies only if you are using the default email feature for an Amazon Cognito user
pool. For a higher email delivery volume, configure your user pool to use your Amazon SES email
configuration. This restriction resets daily at 0900 UTC. For more information, see Email settings
for Amazon Cognito user pools.

Amazon Cognito user pools session validity parameters

Token Quota

ID token 5 minutes – 1 day

Refresh token 1 hour – 3,650 days

Access token 5 minutes – 1 day

Hosted UI session cookie 1 hour

Authentication session token 3 minutes – 15 minutes

Amazon Cognito user pools code security resource quotas (non-adjustable)

Resource Quota

Sign-up confirmation code validity period 24 hours

User attribute verification code validity period 24 hours

Multi-factor authentication (MFA) code validity
period

3–15 minutes

Forgot password code validity period 1 hour

Maximum number of ConfirmForgotPassw
ord and ForgotPassword requests per

user per hour1

5–20

Maximum number of ResendConfirmation
Code requests per user per hour

5

Quotas on resource number and size 1354

Amazon Cognito Developer Guide

Resource Quota

Maximum number of ConfirmSignUp
requests per user per hour

15

Maximum number of ChangePassword
requests per user per hour

5

Maximum number of GetUserAttributeVe
rificationCode requests per user per
hour

5

Maximum number of VerifyUserAttribut
e requests per user per hour

15

1 Amazon Cognito evaluates risk factors in the request to update passwords and assigns a quota
that's tied to the evaluated risk level. For more information, see Forgot password behavior.

Amazon Cognito user pools user import job resource quotas

Resource Quota Adjustable Maximum quota

User import jobs per
user pool

1,000 Yes Contact your account
team.

Maximum characters
per user import CSV
row

16,000 No N/A

Maximum CSV file
size

100 MB No N/A

Maximum number of
users per CSV file

500,000 No N/A

Amazon Cognito identity pools (federated identities) resource quotas

Quotas on resource number and size 1355

Amazon Cognito Developer Guide

Resource Quota Adjustable Maximum quota

Identity pools per
account

1,000 Yes N/A

Amazon Cognito user
pool providers per
identity pool

50 Yes 1000

Character length
of an identity pool
name

128 bytes No N/A

Character length of a
login provider name

2,048 bytes No N/A

Identities per identity
pool

Unlimited No N/A

Identity providers for
which role mappings
can be specified

10 No N/A

Results from a single
list or lookup call

60 No N/A

Role-based access
control (RBAC) rules

25 No N/A

Amazon Cognito Sync resource quotas

Resource Quota Adjustable Maximum quota

Datasets per identity 20 Yes Contact your account
team.

Records per dataset 1,024 Yes Contact your account
team.

Quotas on resource number and size 1356

Amazon Cognito Developer Guide

Resource Quota Adjustable Maximum quota

Size of a single
dataset

1 MB Yes Contact your account
team.

Characters in dataset
name

128 bytes No N/A

Waiting time for a
bulk publish after a
successful request

24 hours No N/A

Quotas on resource number and size 1357

Amazon Cognito Developer Guide

Document history for Amazon Cognito

The following table describes important additions to the documentation for Amazon Cognito. We
also make frequent minor updates to the documentation in response to the feedback that you
send. To submit feedback, locate the Feedback link at the bottom of any page in Amazon Cognito
documentation.

Change Description Date

Amazon WAF web ACLs in
managed login.

You can now apply Amazon
WAF web ACL rules to user
pool app clients that have
the managed login branding
version.

June 24, 2025

Updated Lambda trigger
examples.

Updated the example
function for custom email and
SMS sender Lambda triggers
to be compatible with Node.js
22.x. The example is also now
more accessible for testing.

May 19, 2025

New prompt parameter. You now have greater control
over reauthentication of
existing managed login
sessions with the prompt
parameter. You can also pass
values for this parameter to
third-party providers.

May 15, 2025

Client metadata for M2M
requests.

You can now pass client
metadata in client credentia
ls, or machine-to-machine
 (M2M), requests. Amazon
Cognito passes M2M client
metadata to the pre token
generation Lambda trigger.

April 29, 2025

1358

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-waf.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-waf.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-email-sender.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-email-sender.html
https://docs.amazonaws.cn/cognito/latest/developerguide/authorization-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/token-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/token-endpoint.html

Amazon Cognito Developer Guide

Refresh token rotation. You can now get new refresh
tokens and invalidate the
originals in refresh-token
requests.

April 22, 2025

Amazon Cognito is now
available in the Asia Pacific
(Malaysia) Amazon Web
Services Region.

You can now create Amazon
Cognito resources in the Asia
Pacific (Malaysia) Region.

March 7, 2025

Access token customization
for machine identities.

The pre token generation
Lambda trigger now has
a version three event that
modifies access token claims
and scopes in client-cr
edentials grants for machine-
to-machine (M2M) authoriza
tion.

March 3, 2025

Updated information about
AmazonCognitoPower
User Amazon managed
policy.

Added an Amazon End User
Messaging SMS operation in
the Amazon managed policy
for Amazon Cognito user
pools power users.

February 27, 2025

Updated overview of OpenID
Connect (OIDC) integration.

Added a diagram that illustrat
es how Amazon Cognito
authenticates with OIDC
identity providers.

February 25, 2025

Added information about MFA
logic.

Added a diagram that illustrat
es how Amazon Cognito
applies your user pool multi-
factor authentication (MFA)
settings to users at runtime.

February 25, 2025

1359

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-the-refresh-token.html#using-the-refresh-token-rotation
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-oidc-flow.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-oidc-flow.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-mfa.html#user-pool-settings-mfa-user-outcomes
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-mfa.html#user-pool-settings-mfa-user-outcomes

Amazon Cognito Developer Guide

Added Amazon Cognito user
pools security best practices.

Added a page about securing
secrets and otherwise
following security best
practices in user pool
configuration.

February 25, 2025

Updates to getting-started
resources for user pools.

The getting started experienc
e with Amazon Cognito user
pools has a new console
design and application
options.

November 21, 2024

New pricing model with
feature plans.

Updated the billing model
for user pools. Advanced
security features are now
threat protection. Component
s in the advanced security
features license are now
in the Essentials and Plus
feature plans.

November 21, 2024

New managed login feature. Launched managed login, an
update to the hosted UI.

November 21, 2024

A new authentication method
and new authentication flows.

You can now sign in to
Amazon Cognito user pools
with passkeys and one-time
passwords.

November 21, 2024

Updated information about
AmazonCognitoUnAut
hedIdentitiesSessi
onPolicy .

Moved Amazon Key
Management Service
operations in the Amazon
managed policy for scope-
down of unauthenticated
identities from inline policy to
Amazon managed policy.

November 1, 2024

1360

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-security-best-practices.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-security-best-practices.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-user-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-user-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-sign-in-feature-plans.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-sign-in-feature-plans.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-managed-login.html
https://docs.amazonaws.cn/cognito/latest/developerguide/authentication.html
https://docs.amazonaws.cn/cognito/latest/developerguide/authentication.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html

Amazon Cognito Developer Guide

Added login_hint
parameter.

You can now add a username
hint to authorization requests
for the hosted UI, OIDC IdPs,
and Google IdPs.

October 3, 2024

New advanced security
features for email MFA.

You can now send multi-
factor authentication (MFA)
codes by email message with
advanced security features.

September 12, 2024

New content and page
changes.

Modified titles, removed
unneeded content, added
scenario-based intros, moved
user pools OIDC & hosted UI
endpoints reference to user
pools section.

September 9, 2024

Updated information about
AmazonCognitoUnAut
hedIdentitiesSessi
onPolicy .

The Amazon managed policy
for scope-down of unauthent
icated identities in identity
pools now permits Amazon
Location Service.

August 9, 2024

New threat prevention
for custom authentication
with Lambda triggers and
enhanced threat detection.

You can now analyze custom
authentication sign-in with
threat protection and apply
adaptive authentication
responses. Threat protectio
n also now analyzes sign-
in traffic for impossibl
e geographical distance
between attempts.

August 8, 2024

1361

https://docs.amazonaws.cn/cognito/latest/developerguide/authorization-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/authorization-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/features-email-mfa.html
https://docs.amazonaws.cn/cognito/latest/developerguide/features-email-mfa.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/security-iam-awsmanpol.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection-threat-protection.html

Amazon Cognito Developer Guide

New advanced security
features for password reuse
prevention and user-activity
log export.

You can now export user
activity logs and set a
password-history policy with
advanced security features in
Amazon Cognito user pools.

August 6, 2024

Amazon Cognito is now
available in the Canada West
(Calgary) and Asia Pacific
(Hong Kong) Amazon Web
Services Regions.

You can now create Amazon
Cognito resources in the
Canada West (Calgary)and
Asia Pacific (Hong Kong)
Regions.

July 9, 2024

Improved description of
application behavior for
advanced security

Updated information about
device context data for
advanced security adaptive
authentication.

June 10, 2024

Added support for complex
objects in pre token Lambda
trigger

You can now add arrays and
JSON objects to ID and access
token claims.

May 30, 2024

Updated information about
Verified Permissions and
Amazon Cognito.

Amazon Verified Permissions
now has more direct integrati
on with Amazon Cognito.

May 15, 2024

Multi-Region Amazon SES
verified identities.

In some Amazon Web Services
Regions without Amazon SES,
Amazon Cognito user pools
load balance email between
two remote Regions.

May 10, 2024

Added information about
M2M authorization and
managing costs.

Learn how to use client
credentials grants for
machine-to-machine (M2M)
use cases with Amazon
Cognito user pools.

May 9, 2024

1362

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-viewing-threat-protection-app.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-viewing-threat-protection-app.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-viewing-threat-protection-app.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html

Amazon Cognito Developer Guide

Amazon Cognito is now
available in the Europe
(Spain) and Asia Pacific
(Hyderabad) Amazon Web
Services Regions.

You can now create Amazon
Cognito resources in the
Europe (Spain) and Asia
Pacific (Hyderabad) Regions.

April 15, 2024

Amazon Cognito is now
available in the Asia Pacific
(Melbourne) Amazon Web
Services Region.

You can now create Amazon
Cognito resources in the Asia
Pacific (Melbourne) Region.

April 4, 2024

Added an example Android
app in Flutter for Amazon
Cognito user pools.

You can build a starter mobile
app for Amazon Cognito from
an example Flutter applicati
on on GitHub.

April 4, 2024

New getting-started content Expanded content for getting
started, common scenarios,
multi-tenant best practices,
and accessing resources after
sign-in.

April 1, 2024

Amazon Cognito is now
available in the Europe
(Zurich) Amazon Web Services
Region.

You can now create Amazon
Cognito resources in the
Europe (Zurich) Region.

March 14, 2024

Amazon Cognito is now
available in the Middle East
(UAE) Amazon Web Services
Region.

You can now create Amazon
Cognito resources in the
Middle East (UAE) Region.

March 8, 2024

New SAML features and
improved content.

You can now sign SAML
requests, encrypt SAML
responses, and set up IdP-initi
ated SAML SSO.

February 1, 2024

1363

https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-test-application-flutter.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-test-application-flutter.html
https://docs.amazonaws.cn/cognito/latest/developerguide/getting-started-test-application-flutter.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-getting-started.html
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://www.amazonaws.cn/about-aws/global-infrastructure/regional-product-services/
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-saml-idp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-saml-idp.html

Amazon Cognito Developer Guide

Quota increases available. You can now purchase
additional capacity for
Amazon Cognito request-rate
quotas.

January 25, 2024

Amazon Cognito identity
pools support request rates in
Service Quotas.

You can now monitor
requests-per-second (RPS)
quotas for Amazon Cognito
identity pools and request
increase in the Service Quotas
console.

December 19, 2023

Added a new feature for
customization of the contents
of access tokens.

You can now add, modify, and
remove claims and scopes in
user pool access tokens.

December 12, 2023

Improved content about app
clients and OAuth scopes.

Clarity edits and correctio
ns to Application-specific
settings with app clients and
Scopes, M2M, and APIs with
resource servers. Removed
legacy console instructions.

November 14, 2023

Improved content about
devices and device authentic
ation.

New content about the use
of device keys and device SRP
authentication.

October 18, 2023

Updated Amazon Web
Services Management
Console guidance.

Removed user pools console
reference and redistributed
topics within related subjects,
and added guidance to tab-
based organization in Amazon
Cognito console.

August 30, 2023

1364

https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-device-tracking.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-device-tracking.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-device-tracking.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-console.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-console.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-console.html

Amazon Cognito Developer Guide

De-emphasized direct access
to LOGIN endpoint.

Added a visual overview of
the user pool Login endpoint
and emphasized starting
authentication with Authorize
endpoint.

August 30, 2023

Amazon Cognito is now
available in the Asia Pacific
(Osaka) and Israel (Tel
Aviv) Amazon Web Services
Regions.

You can now create Amazon
Cognito resources in the Asia
Pacific (Osaka) and Israel (Tel
Aviv) Regions.

August 30, 2023

Introduced information about
authorization for Amazon
Cognito with Amazon Verified
Permissions.

In your app, you can invoke
the Verified Permissions API
to produce access decisions
from a central authority.

August 1, 2023

Added a new feature for
logging user pool detailed
user activity to Amazon
CloudWatch Logs.

You can now log email and
SMS message delivery errors
to CloudWatch log groups.

August 1, 2023

Updated information about
Amazon managed policy for
identity pool guest users.

Permissions scope-down for
identity pool guest users
now includes both an inline
session policy and an Amazon
managed session policy.

May 16, 2023

Content improvement and
new console instructions for
Amazon Cognito identity
pools.

Added new console walkthrou
ghs to reflect the new console
experience, improved code
integration details for identity
pools.

May 16, 2023

Additions and improvements
to service homepage and user
pools homepage.

Updated overview pages for
Amazon Cognito and user
pools.

May 16, 2023

1365

https://docs.amazonaws.cn/cognito/latest/developerguide/login-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/login-endpoint.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-logs.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-logs.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-logs.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-logs.html
https://docs.amazonaws.cn/cognito/latest/developerguide/iam-roles.html
https://docs.amazonaws.cn/cognito/latest/developerguide/iam-roles.html
https://docs.amazonaws.cn/cognito/latest/developerguide/iam-roles.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-identity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools.html

Amazon Cognito Developer Guide

General improvements to user
pool token documentation.

Updated example tokens,
added new information about
verifying tokens.

February 16, 2023

You can now log Amazon
Cognito identity pools data
events in Amazon CloudTrail.

CloudTrail supports the
selection of Amazon Cognito
identity pools high-volume
API operations in trails that
log data events.

February 15, 2023

Updated Lambda trigger
examples and descriptions.

Lambda trigger examples
are updated to JavaScrip
t version 3. You can now
directly correlate Lambda
triggers to API actions.

January 31, 2023

Amazon Cognito identity
pools apply an Amazon
managed policy to unauthent
icated sessions.

Identity pool users who
authenticate using the
enhanced flow now have an
additional Amazon managed
policy applied to their session.

January 31, 2023

Added code examples. This guide now includes
example code for your
Amazon Cognito app in a
variety of programming
langages.

January 23, 2023

Added information about API
models and authentication
with Amazon Cognito user
pools.

Amazon Cognito user pools
have multiple API interface
s and formats for request
authorization.

December 15, 2022

Amazon Cognito is now
available in the Europe
(Milan) Amazon Web Services
Region.

You can now create Amazon
Cognito user pools in the
Europe (Milan) Region.

December 6, 2022

1366

https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools-cloudtrail-events.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools-cloudtrail-events.html
https://docs.amazonaws.cn/cognito/latest/developerguide/identity-pools-cloudtrail-events.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-aws-lambda-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-aws-lambda-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/access-policies.html
https://docs.amazonaws.cn/cognito/latest/developerguide/access-policies.html
https://docs.amazonaws.cn/cognito/latest/developerguide/access-policies.html
https://docs.amazonaws.cn/cognito/latest/developerguide/access-policies.html
https://docs.amazonaws.cn/cognito/latest/developerguide/service_code_examples.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pools-API-operations.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer

Amazon Cognito Developer Guide

Added information about user
pool deletion protection.

When you create a new
user pool with the Amazon
Web Services Management
Console, it's now protected
against deletion by default.

October 20, 2022

Added a user guide for the
hosted UI, and informati
on about TOTP MFA in the
hosted UI.

Your users can now register
a TOTP MFA device in the
Amazon Cognito hosted UI.
You can now preview the
default hosted UI.

September 8, 2022

Added information about
Amazon WAF and Amazon
Cognito.

You can now associate a
Amazon WAF web ACL with a
Amazon Cognito user pool.

August 3, 2022

Added more example Amazon
CloudTrail events.

Amazon Cognito now logs
federation and hosted UI
requests to your trail.

June 15, 2022

Added information about
two-step attribute verificat
ion.

You can now choose whether
your user must verify a new
email address or phone
number before they can sign
in with it.

June 9, 2022

Updated federation
documentation. New IP
address propagation feature.

Updated walkthroughs for
setting up user pool social
IdPs. Added information
about federated user profiles
and attribute mapping. Added
new information about device
fingerprints for advanced
security.

May 31, 2022

1367

https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-deletion-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-deletion-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-hosted-ui-user-experience.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-hosted-ui-user-experience.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-hosted-ui-user-experience.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-hosted-ui-user-experience.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-waf.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-waf.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-waf.html
https://docs.amazonaws.cn/cognito/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/cognito/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html#user-pool-settings-verifications-verify-attribute-updates
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html#user-pool-settings-verifications-verify-attribute-updates
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html#user-pool-settings-verifications-verify-attribute-updates
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-adaptive-authentication.html#user-pool-settings-adaptive-authentication-device-fingerprint
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-adaptive-authentication.html#user-pool-settings-adaptive-authentication-device-fingerprint
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-adaptive-authentication.html#user-pool-settings-adaptive-authentication-device-fingerprint

Amazon Cognito Developer Guide

Sign in federated users
without interaction with the
hosted UI

Added a new page about how
to bookmark applications so
that Amazon Cognito silently
directs users to federated
sign-in.

May 29, 2022

In-Region SMS and email
messaging for Amazon
Cognito user pools

You can now use Amazon
Simple Notification Service
for SMS messages and
Amazon Simple Email Service
for email messages in the
same Amazon Web Services
Region as your user pool.

March 14, 2022

Updates to quotas page Added and clarified resource
and request-rate quotas.

January 10, 2022

New Amazon Cognito user
pools console experience

Updated instructions to
create and manage user
pools in the updated Amazon
Cognito console.

November 18, 2021

RevokeToken API and
Revocation Endpoint

You can use the RevokeToken
operation to revoke a refresh
token for a user.

June 10, 2021

Multi-tenant best practices Added best practices for
multi-tenant applications.

March 4, 2021

1368

https://docs.amazonaws.cn/cognito/latest/developerguide/bookmark-applications-in-idp-portal.html
https://docs.amazonaws.cn/cognito/latest/developerguide/bookmark-applications-in-idp-portal.html
https://docs.amazonaws.cn/cognito/latest/developerguide/bookmark-applications-in-idp-portal.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html#user-pool-email-developer.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-as-user-directory.html
https://docs.amazonaws.cn/cognito/latest/developerguide/token-revocation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/token-revocation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/multi-tenant-application-best-practices.html

Amazon Cognito Developer Guide

Attributes for access control Amazon Cognito Identity
Pools provide attributes for
access control (AFAC) as a way
for customers to grant users
access to Amazon resources
. Authorization can be done
based on users' attributes
from the identity provider
which they used to federate
with Amazon Cognito.

January 15, 2021

Custom SMS Sender Lambda
Trigger and Custom Email
Sender Lambda Trigger

The Custom SMS Sender
Lambda Trigger and Custom
Email Sender Lambda Trigger
allow you to enable a third-
party provider to send email
and SMS notifications to
your users from within your
Lambda function code.

November 30, 2020

Amazon Cognito token
updates

Updated expiration informati
on was added to Access, ID,
and Refresh tokens.

October 29, 2020

1369

https://docs.amazonaws.cn/cognito/latest/developerguide/attributes-for-access-control.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-sender-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-sender-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-custom-sender-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon Cognito Developer Guide

Amazon Cognito Service
Quotas

Service Quotas are available
for Amazon Cognito category
quotas. You can use the
Service Quotas console to
view quota usage, request a
quota increase, and create
CloudWatch alarms to
monitor your quota usage.
As part of this change the
Available CloudWatch Metrics
for Amazon Cognito User
Pools section was updated
to reflect the new informati
on. The new section name is:
Tracking quotas and usage
in CloudWatch and Service
Quotas

October 29, 2020

Amazon Cognito quota
categorization

Quota categories are available
to help you monitor quota
usage and request an
increase. The quotas are
grouped into categories based
on common use cases.

August 17, 2020

Amazon Cognito supported in
US Amazon GovCLoud

Amazon Cognito is now
supported in the Amazon
GovCloud (US) Region.

May 13, 2020

Amazon Cognito Pinpoint
document updates

New service-linked role was
added. Instructions were
updated on "Using Amazon
Pinpoint Analytics with
Amazon Cognito User Pools".

May 13, 2020

1370

https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-and-service-quotas.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tracking-quotas-and-usage-in-cloud-watch-and-service-quotas.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/govcloud-us/latest/UserGuide/govcloud-cog.html
https://docs.amazonaws.cn/govcloud-us/latest/UserGuide/govcloud-cog.html
https://docs.amazonaws.cn/cognito/latest/developerguide/using-service-linked-roles.html
https://docs.amazonaws.cn/cognito/latest/developerguide/using-service-linked-roles.html

Amazon Cognito Developer Guide

New Amazon Cognito
dedicated security chapter

The Security chapter can
help your organization get
in-depth information about
both the built-in and the
configurable security of
Amazon services. Our new
chapters provide informati
on about the security of the
cloud and in the cloud.

April 30, 2020

Amazon Cognito Identity
Pools now supports Sign in
with Apple

Sign in with Apple is available
in all regions where Amazon
Cognito operates, except cn-
north-1 region.

April 7, 2020

New Facebook API Versioning Added version selection to
Facebook API.

April 3, 2020

Username case insensitivity
update

Added recommendation
about enabling username
case insensitivity before
creating a user pool.

February 11, 2020

New information about
Amazon Amplify

Added information about
integrating Amazon Cognito
with your web or mobile app
by using Amazon Amplify
SDKs and libraries. Removed
information about using the
Amazon Cognito SDKs that
preceded Amazon Amplify.

November 22, 2019

1371

https://docs.amazonaws.cn/cognito/latest/developerguide/managing-security.html
https://docs.amazonaws.cn/cognito/latest/developerguide/managing-security.html
https://docs.amazonaws.cn/cognito/latest/developerguide/apple.html
https://docs.amazonaws.cn/cognito/latest/developerguide/apple.html
https://docs.amazonaws.cn/cognito/latest/developerguide/apple.html
https://docs.amazonaws.cn/cognito/latest/developerguide/facebook.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-case-sensitivity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-case-sensitivity.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-integrate-apps.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-integrate-apps.html

Amazon Cognito Developer Guide

New attribute for user pool
triggers

Amazon Cognito now includes
a clientMetadata
parameter in the event
information that it passes
to the Amazon Lambda
functions for most user
pool triggers. You can use
this parameter to enhance
your custom authentication
workflow with additional
data.

October 4, 2019

Updated limit The throttling limit for
the ListUsers API action is
updated.

June 25, 2019

New limit The soft limits for user pools
now include a limit for the
number of users.

June 17, 2019

Amazon SES email settings
for Amazon Cognito user
pools

You can configure a user
pool so that Amazon Cognito
emails your users by using
your Amazon SES configura
tion. This setting allows
Amazon Cognito to send
email with a higher delivery
volume than is otherwise
possible.

April 8, 2019

Tagging support Added information about
tagging Amazon Cognito
resources.

March 26, 2019

1372

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-aws-lambda-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-aws-lambda-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-email.html
https://docs.amazonaws.cn/cognito/latest/developerguide/tagging.html

Amazon Cognito Developer Guide

Change the certificate for a
custom domain

If you use a custom domain
to host the Amazon Cognito
hosted UI, you can change the
SSL certificate for this domain
as needed.

December 19, 2018

New limit A new limit is added for the
maximum number of groups
that each user can belong to.

December 14, 2018

Updated limits The soft limits for user pools
are updated.

December 11, 2018

Documentation update for
verifying email addresses and
phone numbers

Added information about
configuring your user pool
to require email or phone
verification when a user signs
up in your app.

November 20, 2018

Documentation update for
testing emails

Added guidance for initiating
emails from Amazon Cognito
while you test your app.

November 13, 2018

Amazon Cognito Advanced
Security

Added new security features
to enable developers to
protect their apps and
users from malicious bots,
secure user accounts against
compromised credentials,
and automatically adjust the
challenges required to sign in
based on the calculated risk
of the sign in attempt.

June 14, 2018

Custom Domains for Amazon
Cognito Hosted UI

Allow developers to use their
own fully custom domain
for the hosted UI in Amazon
Cognito User Pools.

June 4, 2018

1373

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-add-custom-domain.html#cognito-user-pools-add-custom-domain-changing-certificate
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-add-custom-domain.html#cognito-user-pools-add-custom-domain-changing-certificate
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/limits.html
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html#allowing-users-to-sign-up-and-confirm-themselves
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html#allowing-users-to-sign-up-and-confirm-themselves
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html#allowing-users-to-sign-up-and-confirm-themselves
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html#managing-users-accounts-email-testing
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html#managing-users-accounts-email-testing
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-add-custom-domain.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-add-custom-domain.html

Amazon Cognito Developer Guide

Amazon Cognito User Pools
OIDC Identity Provider

Added user pool sign-in
through an OpenID Connect
(OIDC) identity provider such
as Salesforce or Ping Identity.

May 17, 2018

Amazon Cognito Lambda
Migration Trigger

Added pages covering the
Lambda Migration Trigger
feature

April 8, 2018

Amazon Cognito Developer
Guide Update

Added top level "What
is Amazon Cognito" and
"Getting Started with Amazon
Cognito". Also added common
scenarios and reorganized the
user pools TOC. Added a new
"Getting Started with Amazon
Cognito user pools" section.

April 6, 2018

Amazon Cognito Advanced
Security Beta

Added new security features
to enable developers to
protect their apps and
users from malicious bots,
secure user accounts against
credentials in the wild that
have been compromised
elsewhere on the internet,
and automatically adjust the
challenges required to sign in
based on the calculated risk
of the sign in attempt.

November 28, 2017

Amazon Pinpoint integration Added the ability to use
Amazon Pinpoint to provide
analytics for your Amazon
Cognito User Pools apps and
to enrich the user data for
Amazon Pinpoint campaigns.

September 26, 2017

1374

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-oidc-idp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-oidc-idp.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-migrate-user.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-lambda-migrate-user.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pool-settings-threat-protection.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-pinpoint-integration.html

Amazon Cognito Developer Guide

Federation and built-in app UI
features of Amazon Cognito
user pools

Added the ability to allow
your users to sign in to your
user pool through Facebook,
Google, Login with Amazon,
or a SAML identity provider.
Added a customizable built-in
app UI and OAuth 2.0 support
with custom claims.

August 10, 2017

HIPAA and PCI compliance-
related feature changes

Added the ability to allow
your users to use a phone
number or email address as
their user name.

July 6, 2017

User groups and role-based
access control features

Added administrative
capability to create and
manage user groups.
Administrators can assign IAM
roles to users based on group
membership and administr
ator-created rules.

December 15, 2016

Documentation update Updated examples that show
how to use Amazon Lambda
triggers with user pools.

November 27, 2016

Documentation update Updated iOS code examples. November 18, 2016

Documentation update Added information about
confirmation flow for user
accounts.

November 9, 2016

Create user accounts feature Added administrative
capability to create user
accounts through the Amazon
Cognito console and the API.

October 6, 2016

1375

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-identity-federation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-identity-federation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-identity-federation.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html
https://docs.amazonaws.cn/cognito/latest/developerguide/user-pool-settings-attributes.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-working-with-lambda-triggers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/developer-authenticated-identities.html
https://docs.amazonaws.cn/cognito/latest/developerguide/signing-up-users-in-your-app.html
https://docs.amazonaws.cn/cognito/latest/developerguide/how-to-create-user-accounts.html

Amazon Cognito Developer Guide

User import feature Added bulk import capabilit
y for Cognito User Pools. Use
this feature to migrate users
from your existing identity
provider to an Amazon
Cognito user pool.

September 1, 2016

General availability of
Cognito User Pools

Added the Cognito User Pools
feature. Use this feature to
create and maintain a user
directory and add sign-up and
sign-in to your mobile app or
web application using user
pools.

July 28, 2016

SAML support Added support for authentic
ation with identity providers
through Security Assertion
Markup Language 2.0 (SAML
2.0).

June 23, 2016

CloudTrail integration Added integration with
Amazon CloudTrail.

February 18, 2016

Integration of events with
Lambda

Enables you to execute an
Amazon Lambda function in
response to important events
in Amazon Cognito.

April 9, 2015

Data stream to Amazon
Kinesis

Provides control and insight
into your data streams.

March 4, 2015

OpenID Connect support Enables support for OpenID
Connect providers.

November 23, 2014

Push synchronization Enables support for silent
push synchronization.

November 6, 2014

1376

https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools-using-import-tool.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-user-pools.html
https://docs.amazonaws.cn/cognito/latest/developerguide/saml-identity-provider.html
https://docs.amazonaws.cn/cognito/latest/developerguide/logging-using-cloudtrail.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-events.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-events.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-streams.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-streams.html
https://docs.amazonaws.cn/cognito/latest/developerguide/external-identity-providers.html
https://docs.amazonaws.cn/cognito/latest/developerguide/cognito-sync.html

Amazon Cognito Developer Guide

Developer-authenticated
identities support added

Enables developers who own
their own authentication and
identity management systems
to be treated as an identity
provider in Amazon Cognito.

September 29, 2014

Amazon Cognito general
availability

July 10, 2014

1377

https://docs.amazonaws.cn/cognito/latest/developerguide/developer-authenticated-identities.html
https://docs.amazonaws.cn/cognito/latest/developerguide/developer-authenticated-identities.html

	Amazon Cognito
	Table of Contents
	What is Amazon Cognito?
	User pools
	Identity pools
	Features of Amazon Cognito
	User pools
	Identity pools

	Amazon Cognito user pools and identity pools comparison
	Getting started with Amazon Cognito
	Regional availability
	Pricing for Amazon Cognito
	Common Amazon Cognito terms and concepts
	General
	User pools
	Identity pools

	Getting started with Amazon
	Sign up for an Amazon Web Services account
	Secure IAM users

	Getting started with user pools
	Create a new application in the Amazon Cognito console
	Other application options
	Set up an example React single page application
	Create an application
	Creating a React developer environment with Amazon Lightsail

	Set up an example Android app with Flutter
	Create an application

	Add more features and security options to your user pool
	Add social sign-in to your user pool
	Register with a social IdP
	To register an app with Facebook
	To register an app with Amazon
	To register an app with Google
	To register an app with Apple

	Add a social IdP to your user pool
	Test your social IdP configuration

	Add a SAML 2.0 identity provider

	Getting started with Amazon Cognito identity pools
	Create an identity pool in Amazon Cognito
	Set up an SDK
	Integrate the identity providers
	Get credentials

	Guided setup options for Amazon Cognito
	Integrating Amazon Cognito authentication and authorization with web and mobile apps
	Authentication with Amazon Amplify
	Creating a user interface (UI) with Amplify

	Authentication with Amazon SDKs
	How authentication works with Amazon Cognito
	User pool authentication with managed login
	User pool API authentication and authorization with an Amazon SDK
	User pool authentication with a third-party identity provider
	Identity pool authentication

	Using this service with an Amazon SDK
	Authorization with Amazon Verified Permissions
	API authorization with Verified Permissions
	Choosing policy store settings
	Example policy for role-based API authorization

	Example policy for an Amazon Cognito user

	Code examples for Amazon Cognito using Amazon SDKs
	Code examples for Amazon Cognito Identity using Amazon SDKs
	Basic examples for Amazon Cognito Identity using Amazon SDKs
	Actions for Amazon Cognito Identity using Amazon SDKs
	Use CreateIdentityPool with an Amazon SDK or CLI
	Use DeleteIdentityPool with an Amazon SDK or CLI
	Use DescribeIdentityPool with a CLI
	Use GetCredentialsForIdentity with an Amazon SDK
	Use GetIdentityPoolRoles with a CLI
	Use ListIdentityPools with an Amazon SDK or CLI
	Use SetIdentityPoolRoles with a CLI
	Use UpdateIdentityPool with a CLI

	Scenarios for Amazon Cognito Identity using Amazon SDKs
	Create an Amazon Textract explorer application

	Code examples for Amazon Cognito Identity Provider using Amazon SDKs
	Hello Amazon Cognito
	Basic examples for Amazon Cognito Identity Provider using Amazon SDKs
	Hello Amazon Cognito
	Actions for Amazon Cognito Identity Provider using Amazon SDKs
	Use AdminCreateUser with an Amazon SDK or CLI
	Use AdminGetUser with an Amazon SDK or CLI
	Use AdminInitiateAuth with an Amazon SDK or CLI
	Use AdminRespondToAuthChallenge with an Amazon SDK or CLI
	Use AdminSetUserPassword with an Amazon SDK or CLI
	Use AssociateSoftwareToken with an Amazon SDK or CLI
	Use ConfirmDevice with an Amazon SDK or CLI
	Use ConfirmForgotPassword with an Amazon SDK or CLI
	Use ConfirmSignUp with an Amazon SDK or CLI
	Use CreateUserPool with an Amazon SDK or CLI
	Use CreateUserPoolClient with an Amazon SDK or CLI
	Use DeleteUser with an Amazon SDK or CLI
	Use ForgotPassword with an Amazon SDK or CLI
	Use InitiateAuth with an Amazon SDK or CLI
	Use ListUserPools with an Amazon SDK or CLI
	Use ListUsers with an Amazon SDK or CLI
	Use ResendConfirmationCode with an Amazon SDK or CLI
	Use RespondToAuthChallenge with an Amazon SDK or CLI
	Use SignUp with an Amazon SDK or CLI
	Use UpdateUserPool with an Amazon SDK or CLI
	Use VerifySoftwareToken with an Amazon SDK or CLI

	Scenarios for Amazon Cognito Identity Provider using Amazon SDKs
	Automatically confirm known Amazon Cognito users with a Lambda function using an Amazon SDK
	Automatically migrate known Amazon Cognito users with a Lambda function using an Amazon SDK
	Sign up a user with an Amazon Cognito user pool that requires MFA using an Amazon SDK
	Write custom activity data with a Lambda function after Amazon Cognito user authentication using an Amazon SDK

	Code examples for Amazon Cognito Sync using Amazon SDKs
	Basic examples for Amazon Cognito Sync using Amazon SDKs
	Actions for Amazon Cognito Sync using Amazon SDKs
	Use ListIdentityPoolUsage with an Amazon SDK

	Multi-tenant application best practices
	User-pool multi-tenancy best practices
	App-client multi-tenancy best practices
	User group multi-tenancy best practices
	Custom-attribute multi-tenancy best practices
	Custom scope multi-tenancy best practices
	Example resource

	Multi-tenancy security recommendations

	Common Amazon Cognito scenarios
	Authenticate with a user pool
	Access back-end resources with user pool tokens
	Access resources with API Gateway and Lambda with a user pool
	Access Amazon services with a user pool and an identity pool
	Authenticate with a third party and access Amazon services with an identity pool
	Access Amazon AppSync resources with Amazon Cognito

	Amazon Cognito user pools
	Features
	Sign-up
	Sign-in
	Managed login
	Security
	Custom user experience
	Monitoring and analytics
	Amazon Cognito identity pools integration

	User pool feature plans
	Select a feature plan
	Features by plan
	Essentials plan features
	Access token customization
	Email MFA
	Password reuse prevention
	Managed login hosted sign-in and authorization server
	Choice-based authentication

	Plus plan features
	Threat protection: adaptive authentication
	Threat protection: compromised-credentials detection
	Threat protection: user activity logging

	Turning off features to change feature plans

	Security best practices for Amazon Cognito user pools
	Protect your user pool at the network level
	Protect against SMS message abuse
	Understand public authentication
	Protect confidential clients with client secrets
	Protect other secrets
	User pool administration least privilege
	Secure and verify tokens
	Determine the identity providers that you want to trust
	Understand the effect of scopes on access to user profiles
	Sanitize inputs for user attributes

	Authentication with Amazon Cognito user pools
	Implement authentication flows
	Things to know about authentication with user pools
	Authentication session flow duration
	Lockout behavior for failed sign-in attempts

	An example authentication session
	Configure authentication methods for managed login
	User pool settings for managed login

	Manage authentication methods in Amazon SDKs
	Choice-based authentication
	Client-based authentication

	Authentication flows
	Sign-in with third-party IdPs
	Sign-in with persistent passwords
	Sign-in with persistent passwords and secure payload
	Passwordless sign-in with one-time passwords
	Passwordless sign-in with WebAuthn passkeys
	What are passkeys?
	How does Amazon Cognito implement passkey authentication?

	MFA after sign-in
	Refresh tokens
	Custom authentication
	Custom authentication flow
	Custom authentication flow and challenges
	Use SRP password verification in custom authentication flow

	User migration authentication flow

	Authorization models for API and SDK authentication
	Server-side authentication options
	Client-side authentication options
	Understanding API, OIDC, and managed login pages authentication
	List of API operations grouped by authorization model
	IAM-authorized management operations
	IAM-authorized user operations
	Unauthenticated user operations
	Token-authorized user operations

	User pool sign-in with third party identity providers
	How federated sign-in works in Amazon Cognito user pools
	The responsibilities of an app as a service provider with Amazon Cognito
	Things to know about Amazon Cognito user pools third-party sign-in
	Configuring identity providers for your user pool
	Set up user sign-in with a social IdP
	Set up user sign-in with an OIDC IdP
	Set up user sign-in with a SAML IdP

	Using social identity providers with a user pool
	Set up a social IdP developer account and application
	Configure your user pool with a social IdP
	Test your social IdP configuration

	Using SAML identity providers with a user pool
	Quick reference for IdP configuration
	Things to know about SAML IdPs in Amazon Cognito user pools
	Case sensitivity of SAML user names
	Configuring your third-party SAML identity provider
	Adding and managing SAML identity providers in a user pool
	SAML session initiation in Amazon Cognito user pools
	Implement SP-initated SAML sign-in
	Implement IdP-initiated SAML sign-in

	Signing out SAML users with single sign-out
	SAML signing and encryption
	Accepting encrypted SAML responses from your IdP
	Signing SAML requests

	SAML identity provider names and identifiers

	Using OIDC identity providers with a user pool
	Prerequisites
	Register an application with an OIDC IdP
	Add an OIDC IdP to your user pool
	Test your OIDC IdP configuration
	OIDC user pool IdP authentication flow
	How a user pool processes claims from an OIDC provider

	Mapping IdP attributes to profiles and tokens
	Things to know about mappings
	Specifying identity provider attribute mappings for your user pool (Amazon Web Services Management Console)
	Specifying identity provider attribute mappings for your user pool (Amazon CLI and Amazon API)

	Linking federated users to an existing user profile

	User pool managed login
	Managed login localization
	Setting up managed login with Amazon Amplify
	Setting up managed login with the Amazon Cognito console
	Viewing your sign-in page
	Customizing your authentication pages
	Things to know about managed login and the hosted UI
	Configuring a user pool domain
	Things to know about user pool domains
	Using the Amazon Cognito prefix domain for managed login
	Prerequisites
	Configure an Amazon Cognito domain prefix
	Verify your sign-in page

	Using your own domain for managed login
	Adding a custom domain to a user pool
	Prerequisites
	Step 1: Enter your custom domain name
	Step 2: Add an alias target and subdomain
	To add an alias target and subdomain to your current DNS configuration
	To add an alias target and subdomain using Route 53

	Step 3: Verify your sign-in page
	Changing the SSL certificate for your custom domain

	Apply branding to managed login pages
	Choose a branding experience and assign styles
	Update and delete styles

	The branding editor and customizing managed login
	Text and localization
	Quick setup
	Detailed settings
	Foundation
	Components

	API and SDK operations for managed login branding
	Image assets
	Tools for managed login branding operations

	Customizing hosted UI (classic) branding
	Specifying a custom logo in classic branding
	Specifying CSS customizations in classic branding
	Customizing the hosted UI with classic branding in the Amazon Web Services Management Console
	Customizing the hosted UI with classic branding in the user pools API and with the Amazon CLI

	Customizing user pool workflows with Lambda triggers
	Things to know about Lambda triggers
	Add a user pool Lambda trigger
	User pool Lambda trigger event
	User pool Lambda trigger common parameters
	Client metadata
	Connecting API operations to Lambda triggers
	Lambda triggers in the Amazon Cognito API
	Lambda triggers for Amazon Cognito local users in managed login
	Lambda triggers for federated users

	Connecting Lambda triggers to user pool functional operations
	Pre sign-up Lambda trigger
	Pre sign-up Lambda trigger parameters
	Pre sign-up request parameters
	Pre sign-up response parameters

	Pre sign-up example: Auto-confirm users from a registered domain
	Pre sign-up example: Auto-confirm and auto-verify all users
	Pre sign-up example: Deny sign-up if user name has fewer than five characters

	Post confirmation Lambda trigger
	Post confirmation Lambda trigger parameters
	Post confirmation request parameters
	Post confirmation response parameters

	Post confirmation example

	Pre authentication Lambda trigger
	Flow overview
	Pre authentication Lambda trigger parameters
	Pre authentication request parameters
	Pre authentication response parameters

	Pre authentication example

	Post authentication Lambda trigger
	Authentication flow overview
	Post authentication Lambda trigger parameters
	Post authentication request parameters
	Post authentication response parameters

	Post authentication example

	Custom authentication challenge Lambda triggers
	Define Auth challenge Lambda trigger
	Define Auth challenge Lambda trigger parameters
	Define Auth challenge request parameters
	Define Auth challenge response parameters

	Define Auth challenge example

	Create Auth challenge Lambda trigger
	Create Auth challenge Lambda trigger parameters
	Create Auth challenge request parameters
	Create Auth challenge response parameters

	Create Auth challenge example

	Verify Auth challenge response Lambda trigger
	Verify Auth challenge Lambda trigger parameters
	Verify Auth challenge request parameters
	Verify Auth challenge response parameters

	Verify Auth challenge response example

	Pre token generation Lambda trigger
	Event versions
	Claims and scopes reference
	Customizing the identity token
	Customizing the access token
	Pre token generation Lambda trigger sources
	Pre token generation Lambda trigger parameters
	Pre token generation request parameters
	Pre token generation response parameters

	Pre token trigger event version two example: Add and suppress claims, scopes, and groups
	Pre token generation event version two example: Add claims with complex objects
	Pre token generation event version one example: Add a new claim and suppress an existing claim
	Pre token generation event version one example: Modify the user's group membership

	Migrate user Lambda trigger
	Migrate user Lambda trigger sources
	Migrate user Lambda trigger parameters
	Migrate user request parameters
	Migrate user response parameters

	Example: Migrate a user with an existing password

	Custom message Lambda trigger
	Custom message Lambda trigger sources
	Custom message Lambda trigger parameters
	Custom message request parameters
	Custom message response parameters

	Custom message for sign-up example
	Custom message for admin create user example

	Custom sender Lambda triggers
	Required resources
	Custom email sender Lambda trigger
	Custom email sender Lambda trigger sources
	Custom email sender Lambda trigger parameters
	Custom email sender request parameters
	Custom email sender response parameters

	Activating the custom email sender Lambda trigger
	Code example

	Custom SMS sender Lambda trigger
	Custom SMS sender Lambda trigger sources
	Custom SMS sender Lambda trigger parameters
	Custom SMS sender request parameters
	Custom SMS sender response parameters

	Activating the custom SMS sender Lambda trigger
	Code example
	Evaluate SMS message capabilities with a custom SMS sender function

	Managing users in your user pool
	Configuring policies for user creation
	Signing up and confirming user accounts
	Overview of user account confirmation
	Verifying contact information at sign-up
	Other actions that confirm and verify user attributes
	To configure your user pool to require email or phone verification
	Authentication flow with email or phone verification
	If you require users to confirm both email addresses and phone numbers

	Allowing users to sign up in your app but confirming them as a user pool administrator
	Computing secret hash values
	Confirming user accounts without verifying email or phone number
	Verifying when users change their email or phone number
	Confirmation and verification processes for user accounts created by administrators or developers
	Confirmation and verification processes for imported user accounts
	Sending emails while testing your app
	Configuring email or phone verification
	Verifying updates to email addresses and phone numbers
	Authorizing Amazon Cognito to send SMS messages on your behalf

	Configuring verification and invitation messages
	Message templates
	Customizing the SMS message
	Customizing SMS verification messages

	Customizing email verification messages
	Customizing user invitation messages
	Customizing your email address
	Authorizing Amazon Cognito to send Amazon SES email on your behalf (from a custom FROM email address)

	Creating user accounts as administrator
	User authentication flows and creating users
	Create users without passwords
	Creating users who will provide required-attribute values later
	Creating a new user in the Amazon Web Services Management Console
	Set a password policy and enable self-registration
	Customize email and SMS messages
	Create a user

	Adding groups to a user pool
	Assigning IAM roles to groups
	Assigning precedence values to groups
	Using groups to control permission with Amazon API Gateway
	Limitations on groups
	Creating a new group in the Amazon Web Services Management Console

	Managing and searching for user accounts
	Viewing user attributes
	Resetting a user's password
	Enable, disable, and delete user accounts
	Searching user attributes
	Searching for users with the Amazon Web Services Management Console
	Searching for users with the ListUsers API
	Examples of using the ListUsers API

	Passwords, account recovery, and password policies
	Password reset and recovery
	Configure password reset and recovery
	Forgot password behavior

	Adding user pool password requirements

	Importing users into a user pool
	Importing users with a user migration Lambda trigger
	Importing users into user pools from a CSV file
	Creating the CloudWatch Logs IAM role
	Creating the user import CSV file
	Downloading the CSV file header (console)
	Downloading the CSV file header (Amazon CLI)
	Formatting the CSV file

	Creating and running the Amazon Cognito user pool import job
	Importing users from a CSV file (console)
	Importing users (Amazon CLI)
	Creating a user import job
	Status values for a user import job
	Uploading the CSV file
	Describing a user import job
	Listing your user import jobs
	Starting a user import job
	Stopping a user import job

	Viewing the user pool import results in the CloudWatch console
	Viewing the results
	Interpreting the results

	Requiring imported users to reset their passwords

	Working with user attributes
	Standard attributes
	View required attributes

	Username and preferred username
	Customizing sign-in attributes
	How to choose between alias attributes and username attributes
	Option 1: Multiple sign-in attributes (alias attributes)
	Option 2: Email address or phone number as a sign-in attribute (username attributes)

	Custom attributes
	Attribute permissions and scopes
	Attribute permissions with scopes

	Understanding user pool JSON web tokens (JWTs)
	Understanding the identity (ID) token
	ID Token Header
	ID token default payload
	ID Token Signature

	Understanding the access token
	Access token header
	Access token default payload
	Access token signature

	Refresh tokens
	Getting new access and identity tokens with a refresh token
	Refresh token rotation
	API and SDK token refresh
	OAuth token refresh
	Revoking refresh tokens

	Ending user sessions with token revocation
	Enable token revocation
	Revoke a token

	Verifying JSON web tokens
	Prerequisites
	Validate tokens with aws-jwt-verify
	Understanding and inspecting tokens
	Confirm the structure of the JWT
	Validate the JWT
	Verify the claims

	Managing user pool token expiration and caching
	Caching machine-to-machine access tokens with Amazon API Gateway

	Accessing resources after successful sign-in
	Authorizing access to client or server resources with Amazon Verified Permissions
	Accessing resources with API Gateway after sign-in
	Accessing Amazon Web Services services using an identity pool after sign-in
	Setting up a user pool with the Amazon Web Services Management Console
	Setting up an identity pool with the Amazon Web Services Management Console
	Integrating a user pool with an identity pool

	Scopes, M2M, and APIs with resource servers
	API authorization
	Machine-to-machine (M2M) authorization
	About scopes
	About resource servers
	Defining a resource server for your user pool (Amazon Web Services Management Console)
	Defining a resource server for your user pool (Amazon CLI and Amazon API)

	Configure user pool features
	Updating user pool and app client configuration
	Settings you can't change
	SMS configuration
	Updating a user pool with an Amazon SDK, Amazon CDK, or REST API

	Application-specific settings with app clients
	App client types
	JSON web tokens
	App client terms
	Creating an app client
	Updating a user pool app client (Amazon CLI and Amazon API)
	Getting information about a user pool app client (Amazon CLI and Amazon API)
	Listing all app client information in a user pool (Amazon CLI and Amazon API)
	Deleting a user pool app client (Amazon CLI and Amazon API)

	Working with user devices in your user pool
	Setting up remembered devices
	Getting a device key
	Signing in with a device
	Viewing, updating and forgetting devices

	Using Amazon Pinpoint for user pool analytics
	Amazon Cognito and Amazon Pinpoint Region availability
	Specifying Amazon Pinpoint analytics settings (Amazon Web Services Management Console)
	Specifying Amazon Pinpoint analytics settings (Amazon CLI and Amazon API)

	Integrating your app with Amazon Pinpoint

	Email settings for Amazon Cognito user pools
	Default email configuration
	Amazon SES email configuration
	Amazon SES email configuration Regions

	Configuring email for your user pool
	Step 1: Verify your email address or domain with Amazon SES
	Step 2: Move your account out of the Amazon SES sandbox
	Step 3: Grant email permissions to Amazon Cognito
	To grant permissions to use the default email configuration
	To grant permissions to use your Amazon SES configuration

	Step 4: Configure your user pool

	SMS message settings for Amazon Cognito user pools
	Best practices
	Setting up SMS messaging for the first time in Amazon Cognito user pools
	Prepare an IAM role that Amazon Cognito can use to send SMS messages with Amazon SNS
	Choose the Amazon Web Services Region for Amazon SNS SMS messages
	Obtain an origination identity to send SMS messages to US phone numbers
	Confirm that you are in the SMS sandbox
	Review SMS sandbox status in the Amazon Cognito console

	Move your account out of Amazon SNS sandbox
	Verify phone numbers for Amazon Cognito in Amazon SNS
	Complete user pool setup in Amazon Cognito

	Using Amazon Cognito user pools security features
	Adding MFA to a user pool
	Things to know about user pool MFA
	User MFA preferences
	User pool settings and their effect on MFA options
	Configure MFA preferences for users

	Details of MFA logic at user runtime
	Configure a user pool for multi-factor authentication
	SMS and email message MFA
	Considerations for SMS and email message MFA

	TOTP software token MFA
	Configuring TOTP MFA for a user
	Associate the TOTP software token
	Verify the TOTP token
	Sign in with TOTP MFA
	Remove the TOTP token

	Configuring your Amazon WAF web ACL for managed login TOTP MFA

	Advanced security with threat protection
	Considerations and limitations for threat protection
	Turning on threat protection in user pools
	Threat protection enforcement concepts
	Threat protection for standard authentication and custom authentication
	Threat protection prerequisites
	Setting up threat protection
	Working with compromised-credentials detection
	Working with adaptive authentication
	Adaptive authentication overview
	Adding user device and session data to API requests
	Accepting additional user context data (Amazon Web Services Management Console)

	Viewing and exporting user event history
	Viewing user event history (Amazon Web Services Management Console)
	Viewing user event history (API/CLI)
	Exporting user authentication events

	Providing event feedback
	Sending notification messages

	Collecting data for threat protection in applications
	Submitting user context data in client-only applications with Amplify
	Collecting context data in client-server applications
	Context data libraries for client-server applications
	JavaScript
	iOS/Swift
	Android

	Associate an Amazon WAF web ACL with a user pool
	Things to know about Amazon WAF web ACLs and Amazon Cognito
	Associating a web ACL with your user pool
	Testing and logging Amazon WAF web ACLs

	User pool case sensitivity
	User pool deletion protection
	Managing user existence error responses
	Authentication and user creation operations
	Preventing UsernameExistsException errors for email addresses and phone numbers on sign-up

	Password reset operations
	Confirmation operations

	User pool endpoints and managed login reference
	User-interactive managed login and classic hosted UI endpoints
	The managed login sign-in endpoint: /login
	GET /login
	

	User-initiated sign-in request

	The managed login sign-out endpoint: /logout
	GET /logout
	Request parameters
	Example requests

	Identity provider and relying party endpoints
	The redirect and authorization endpoint
	GET /oauth2/authorize
	Request parameters

	Example: authorization code grant
	Example: authorization code grant with PKCE
	Example: require re-authentication with prompt=login
	Example: silent authentication with prompt=none
	Example: Token (implicit) grant without openid scope
	Example: Token (implicit) grant with openid scope
	Examples of negative responses

	The token issuer endpoint
	Format a POST request to the token endpoint
	Request parameters in header
	Request parameters in body

	Exchanging an authorization code for tokens
	Client credentials with basic authorization
	Client credentials with POST body authorization
	Authorization code grant with PKCE
	Token refresh without refresh token rotation
	Token refresh with refresh token rotation
	Examples of negative responses

	The user attributes endpoint
	GET /oauth2/userInfo
	Request parameters in header
	Example – request
	Example – positive response
	Example negative responses
	Example – bad request
	Example – bad token

	The token revocation endpoint
	POST /oauth2/revoke
	Request parameters in header
	Request parameters in body

	Revocation request examples
	Revocation error response

	The IdP SAML assertion endpoint
	POST /saml2/idpresponse
	IdP-initiated request body parameters
	Example requests with positive responses

	OAuth 2.0 grants
	Using PKCE in authorization code grants
	How Amazon Cognito uses PKCE

	Managed login and federation error responses

	Amazon Cognito identity pools
	Identity pools console overview
	Create an identity pool
	User IAM roles
	Authenticated and unauthenticated identities
	Activate or deactivate guest access
	Change the role associated with an identity type
	Edit identity providers
	Delete an identity pool
	Delete an identity from an identity pool
	Using Amazon Cognito Sync with identity pools
	Managing datasets
	Create a dataset for an identity
	Delete a dataset associated with an identity

	Bulk publish data
	Activate push synchronization
	Set up Amazon Cognito Streams
	Set up Amazon Cognito Events

	Identity pools authentication flow
	IAM roles
	Set up a trust policy
	Trust policies for IAM roles in Basic (Classic) authentication
	Additional trust policy conditions

	Access policies
	Services that unauthenticated users can access
	The inline session policy for guest users
	The Amazon managed session policy for guests
	Access policy examples

	Role trust and permissions

	Security best practices for Amazon Cognito identity pools
	IAM configuration best practices
	Use trust policy conditions in IAM roles
	Apply least privilege permissions

	Identity pool configuration best practices
	Understand the effects of guest access
	Use enhanced authentication by default
	Use developer providers securely

	Using attributes for access control
	Using attributes for access control with Amazon Cognito identity pools
	Using attributes for access control policy example
	Turn off attributes for access control (console)
	Default provider mappings

	Using role-based access control
	Creating roles for role mapping
	Granting pass-role permission
	Using tokens to assign roles to users
	Using rule-based mapping to assign roles to users
	Token claims to use in rule-based mapping
	Best practices for role-based access control

	Getting credentials
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Accessing Amazon Web Services services with temporary credentials
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Identity pools third-party identity providers
	Setting up Facebook as an identity pools IdP
	Set up Facebook
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript

	Configure an identity provider in the Amazon Cognito identity pools console
	Using Facebook
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Setting up Login with Amazon as an identity pools IdP
	Setting up Login with Amazon
	Configure the external provider in the Amazon Cognito console
	Use Login with Amazon: Android
	Use Login with Amazon: iOS - Objective-C
	Use Login with Amazon: iOS - Swift
	Use Login with Amazon: JavaScript

	Setting up Google as an identity pool IdP
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript

	Setting up Sign in with Apple as an identity pool IdP
	Set up Sign in with Apple
	Configure the external provider in the Amazon Cognito federated identities console
	Sign in with Apple as a provider in the Amazon Cognito federated identities CLI examples
	Use Sign in with Apple: Android
	Use Sign in with Apple: iOS - Objective-C
	Use Sign in with Apple: iOS - Swift
	Use Sign in with Apple: JavaScript

	Setting up an OIDC provider as an identity pool IdP
	Android
	iOS - Objective-C
	JavaScript

	Setting up a SAML provider as an identity pool IdP
	Configuring your identity pool for a SAML IdP
	Configuring your SAML IdP
	Customizing your user role with SAML
	Authenticating users with a SAML IdP

	Developer-authenticated identities
	Understanding the authentication flow
	Define a developer provider name and associate it with an identity pool
	Implement an identity provider
	Android
	iOS - objective-C
	iOS - swift
	JavaScript
	Unity
	Xamarin

	Updating the logins map (Android and iOS only)
	Android
	iOS - objective-C
	iOS - swift

	Getting a token (server side)
	Connect to an existing social identity
	Supporting transition between providers
	Android
	iOS - objective-C
	iOS - swift
	Unity
	Xamarin

	Switching unauthenticated users to authenticated users
	Android
	iOS - objective-C
	iOS - swift
	JavaScript
	Initially unauthenticated user
	Switch to authenticated user

	Unity
	Xamarin

	Amazon Cognito Sync
	Getting started with Amazon Cognito Sync
	Set up an identity pool in Amazon Cognito
	Store and sync data

	Synchronizing data across clients
	Initializing the Amazon Cognito Sync client
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Understanding datasets
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Reading and writing data in datasets
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin
	Android
	iOS - Objective-C
	iOS - Swift
	Unity
	Xamarin

	Synchronizing local data with the sync store
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Handling event callbacks
	Android
	iOS - Objective-C
	iOS - Swift
	JavaScript
	Unity
	Xamarin

	Implementing push synchronization
	Create an Amazon Simple Notification Service (Amazon SNS) app
	Enable push sync in the Amazon Cognito console
	Use push sync in your app: Android
	Use push sync in your app: iOS - Objective-C
	Use push sync in your app: iOS - Swift

	Implementing Amazon Cognito Sync streams
	Customizing workflows with Amazon Cognito Events

	Security in Amazon Cognito
	Data protection in Amazon Cognito
	Data encryption

	Identity and access management for Amazon Cognito
	Audience
	Authenticating with identities
	Amazon Web Services account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Cognito works with IAM
	Identity-based policies for Amazon Cognito
	Identity-based policy examples for Amazon Cognito

	Resource-based policies within Amazon Cognito
	Policy actions for Amazon Cognito
	Signed versus unsigned APIs

	Policy resources for Amazon Cognito
	Amazon resource names (ARNs)

	Policy condition keys for Amazon Cognito
	Access control lists (ACLs) in Amazon Cognito
	Attribute-based access control (ABAC) with Amazon Cognito
	Using temporary credentials with Amazon Cognito
	Cross-service principal permissions for Amazon Cognito
	Service roles for Amazon Cognito
	Service-linked roles for Amazon Cognito

	Identity-based policy examples for Amazon Cognito
	Policy best practices
	Using the Amazon Cognito console
	Allow users to view their own permissions
	Restricting console access to a specific identity pool
	Allowing access to specific dataset for all identities in a pool

	Troubleshooting Amazon Cognito identity and access
	I am not authorized to perform an action in Amazon Cognito
	I am not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access Amazon Cognito
	I want to allow people outside of my Amazon account to access my Amazon Cognito resources

	Using service-linked roles for Amazon Cognito
	Service-linked role permissions for Amazon Cognito
	Creating a service-linked role for Amazon Cognito
	Editing a service-linked role for Amazon Cognito
	Deleting a service-linked role for Amazon Cognito
	Supported Regions for Amazon Cognito service-linked roles

	Logging and monitoring in Amazon Cognito
	Monitoring and managing costs
	Viewing and anticipating costs
	Managing costs

	Exporting logs from Amazon Cognito user pools
	Things to know about log export
	Exporting email and SMS message delivery errors
	Exporting threat protection user activity logs

	Tracking quotas and usage in CloudWatch and Service Quotas
	User pool metrics in CloudWatch
	Viewing threat protection metrics
	Dimensions for Amazon Cognito user pools
	Use the CloudWatch console to track metrics
	Create a CloudWatch alarm for a quota

	Metrics in Service Quotas

	Amazon Cognito logging in Amazon CloudTrail
	Information that Amazon Cognito sends to CloudTrail
	User pool events
	Identity pools events

	Analyzing Amazon Cognito CloudTrail events with Amazon CloudWatch Logs Insights
	Sample Amazon Cognito queries

	Example Amazon Cognito events
	Example CloudTrail events for a hosted UI sign-up
	Example CloudTrail event for a SAML request
	Example CloudTrail events for requests to the token endpoint
	Example CloudTrail event for CreateIdentityPool
	Example CloudTrail event for GetCredentialsForIdentity
	Example CloudTrail event for GetId
	Example CloudTrail event for GetOpenIdToken
	Example CloudTrail event for GetOpenIdTokenForDeveloperIdentity
	Example CloudTrail event for UnlinkIdentity

	Compliance validation for Amazon Cognito
	Resilience in Amazon Cognito
	Regional data considerations

	Infrastructure security in Amazon Cognito
	Configuration and vulnerability analysis in Amazon Cognito user pools
	Amazon managed policies for Amazon Cognito
	Amazon Cognito updates to Amazon managed policies

	Tagging Amazon Cognito resources
	Supported resources in Amazon Cognito
	Tag restrictions
	Managing tags using the Amazon Cognito console
	Amazon CLI examples
	Assigning tags
	Viewing tags
	Removing tags
	Applying tags when you create resources

	Managing tags using the Amazon Cognito API
	API actions for user pool tags
	API actions for identity pool tags

	Quotas in Amazon Cognito
	Understanding API request rate quotas
	Quota categorization
	Amazon Cognito user pools API operations with special request rate handling
	Monthly active users

	Managing API request rate quotas
	Identify quota requirements
	Optimize request rates for quota limits
	Track quota usage
	Track monthly active users (MAUs)
	Requesting a quota increase

	Amazon Cognito user pools API operation categories and request rate quotas
	Amazon Cognito identity pools (federated identities) API operation request rate quotas
	Quotas on resource number and size

	Document history for Amazon Cognito

