
Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration Playbook

SQL Server to Aurora MySQL Migration
Playbook

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server to Aurora MySQL Migration Playbook: Microsoft SQL
Server 2019 to Amazon Aurora MySQL Migration Playbook

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Services or capabilities described in Amazon Web Services documentation might vary by Region. To
see the differences applicable to the China Regions, see Getting Started with Amazon Web Services
in China (PDF).

https://docs.amazonaws.cn/en_us/aws/latest/userguide/services.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/services.html
https://docs.amazonaws.cn/en_us/aws/latest/userguide/aws-ug.pdf#services

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Table of Contents

Overview .. 1
Tables of Feature Compatibility .. 2

Feature Compatibility Legend .. 2
Amazon SCT and Amazon DMS Automation Level Legend .. 3

Migration tools and services ... 5
Amazon Schema Conversion Tool overview ... 5

Download the Software and Drivers ... 6
Configure Amazon SCT .. 6
Create a New Migration Project ... 7

Amazon SCT action code index ... 10
Creating Tables .. 11
Constraints .. 12
Data Types .. 13
Collations .. 14
Window Functions .. 15
PIVOT and UNPIVOT .. 16
TOP and FETCH ... 16
Common Table Expressions .. 17
Cursors ... 18
Flow Control ... 20
Transaction Isolation .. 20
Stored Procedures ... 21
Triggers .. 22
GROUP BY .. 23
Identity and Sequences ... 23
Error Handling ... 24
Date and Time Functions .. 25
User-Defined Functions ... 26
User-Defined Types .. 27
Synonyms .. 27
XML and JSON ... 28
Table Joins .. 28
MERGE ... 29
Query Hints .. 29

iii

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Full-Text Search ... 30
Indexes .. 31
Partitioning ... 32
Backup ... 32
SQL Server Database Mail .. 33
SQL Server Agent ... 33
Linked Servers ... 34
Views .. 34

Amazon Database Migration Service overview .. 35
Migration Tasks Performed by Amazon DMS ... 35
How Amazon DMS Works ... 36

Amazon RDS on Outposts overview .. 37
How It Works ... 38

Amazon RDS Proxy overview ... 39
Amazon RDS Proxy Benefits ... 39
How Amazon RDS Proxy Works ... 40

Amazon Aurora Serverless v1 overview .. 40
Amazon Aurora Serverless v2 .. 43
How to Provision ... 44

Amazon Aurora Backtrack overview .. 45
Backtrack Window .. 48
Backtracking Limitations ... 49

Amazon Aurora Parallel Query overview .. 50
Features ... 50
Benefits of Using Parallel Query ... 51
Important Notes .. 51

ANSI SQL .. 53
Case sensitivity differences for ANSI SQL ... 53

Examples ... 54
Constraints for ANSI SQL ... 55

SQL Server Usage ... 55
MySQL Usage ... 59
Summary ... 64

Creating tables for ANSI SQL .. 65
SQL Server Usage ... 66
MySQL Usage ... 70

iv

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary ... 76
Common table expressions for ANSI SQL ... 77

SQL Server Usage ... 77
MySQL Usage ... 81
Summary ... 85

Data types for ANSI SQL .. 86
SQL Server Usage ... 86
MySQL Usage ... 88
Summary ... 90

GROUP BY for ANSI SQL .. 113
SQL Server Usage ... 113
MySQL Usage .. 117
Summary .. 121

Table JOIN for ANSI SQL ... 122
SQL Server Usage ... 123
MySQL Usage .. 128
Summary .. 132

Views for ANSI SQL ... 133
SQL Server Usage ... 133
MySQL Usage .. 137
Summary .. 141

Window functions for ANSI SQL .. 142
SQL Server Usage ... 142
MySQL Usage .. 145
Summary .. 148

Temporary tables for ANSI SQL ... 148
SQL Server Usage ... 149
MySQL Usage .. 149
Summary .. 150

T-SQL .. 152
Collations for T-SQL .. 153

SQL Server Usage ... 153
MySQL Usage .. 156
Summary .. 160

Cursors for T-SQL .. 161
SQL Server Usage ... 161

v

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage .. 163
Summary .. 167

Date and time functions for T-SQL ... 168
SQL Server Usage ... 169
MySQL Usage .. 171
Summary .. 174

String functions for T-SQL .. 175
SQL Server Usage ... 176
MySQL Usage .. 179
Summary .. 182

Databases and schemas for T-SQL .. 184
SQL Server Usage ... 184
MySQL Usage .. 187
Summary .. 189

Transactions for T-SQL ... 190
SQL Server Usage ... 191
MySQL Usage .. 195
Summary .. 198

DELETE and UPDATE FROM for T-SQL .. 201
SQL Server Usage ... 201
MySQL Usage .. 204
Summary .. 207

Stored procedures for T-SQL .. 207
SQL Server Usage ... 208
MySQL Usage .. 211
Summary .. 214

Error handling for T-SQL ... 218
SQL Server Usage ... 218
MySQL Usage .. 223
Summary .. 229

Flow control for T-SQL ... 230
SQL Server Usage ... 231
MySQL Usage .. 234
Summary .. 237

Full-text search for T-SQL ... 243
SQL Server Usage ... 244

vi

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage .. 248
SQL server graph features for T-SQL .. 254

SQL Server Usage ... 254
MySQL Usage .. 256

JSON and XML for T-SQL .. 256
SQL Server Usage ... 256
MySQL Usage .. 259
Summary .. 264

MERGE for T-SQL ... 265
SQL Server Usage ... 265
MySQL Usage .. 268
Summary .. 272

PIVOT and UNPIVOT for T-SQL .. 273
SQL Server Usage ... 274
MySQL Usage .. 278

Synonyms for T-SQL ... 281
SQL Server Usage ... 281
MySQL Usage .. 283

SQL Server TOP and FETCH and MySQL LIMIT for T-SQL .. 284
SQL Server Usage ... 284
MySQL Usage .. 287
Summary .. 290

Triggers for T-SQL ... 291
SQL Server Usage ... 291
MySQL Usage .. 295
Summary .. 297

User-defined functions for T-SQL .. 301
SQL Server Usage ... 302
MySQL Usage .. 305
Summary .. 307

User-defined types for T-SQL ... 308
SQL Server Usage ... 309
MySQL Usage .. 312
Summary .. 315

Identity and sequences for T-SQL .. 315
SQL Server Usage ... 316

vii

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage .. 322
Summary .. 327

Managing statistics for T-SQL ... 328
SQL Server Usage ... 329
MySQL Usage .. 330
Summary .. 333

Configuration ... 335
Configuring upgrades .. 335

SQL Server Usage ... 335
MySQL Usage .. 337
Summary .. 341

Configuring session options .. 342
SQL Server Usage ... 342
MySQL Usage .. 345
Summary .. 347

Configuring database options ... 349
SQL Server Usage ... 350
MySQL Usage .. 351
Migration Considerations .. 351

Configuring server options .. 351
SQL Server Usage ... 351
MySQL Usage .. 353

High availability and disaster recovery ... 357
Backup and restore design .. 357

SQL Server Usage ... 357
MySQL Usage .. 361
Summary .. 368

High availability essentials ... 371
SQL Server Usage ... 371
MySQL Usage .. 376
Summary .. 384

Indexes ... 386
SQL Server Usage .. 386

Clustered Indexes .. 387
Nonclustered Indexes ... 388
Filtered Indexes and Covering Indexes .. 389

viii

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Indexes on Computed Columns .. 389
MySQL Usage .. 391

Primary Key Indexes .. 392
Column and Multiple Column Secondary Indexes ... 393
Secondary Indexes on Generated Columns .. 393
Prefix Indexes .. 394

Summary .. 394
Management .. 397

SQL Server Agent and MySQL Agent .. 397
SQL Server Usage ... 398
MySQL Usage .. 398
Summary .. 400

Alerting features .. 400
SQL Server Usage ... 401
MySQL Usage .. 403

Database mail features ... 404
SQL Server Usage ... 405
MySQL Usage .. 408

ETL features .. 409
SQL Server Usage ... 409
MySQL Usage .. 411

Viewing server logs ... 416
SQL Server Usage ... 416
MySQL Usage .. 418

Maintenance plans ... 420
SQL Server Usage ... 420
MySQL Usage .. 423
Summary .. 426

Monitoring features ... 427
SQL Server Usage ... 428
MySQL Usage .. 431

Resource governor features ... 434
SQL Server Usage ... 434
MySQL Usage .. 436
Summary .. 438

Linked servers ... 438

ix

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage ... 439
MySQL Usage .. 441

Scripting features ... 441
SQL Server Usage ... 442
MySQL Usage .. 443

Performance tuning .. 447
Tuning run plans .. 447

SQL Server Usage ... 447
MySQL Usage .. 449

Query hints and plan guides ... 452
SQL Server Usage ... 452
MySQL Usage .. 455
Summary .. 460

Storage ... 461
SQL Server Usage .. 461

Syntax .. 462
Examples ... 463

MySQL Usage .. 463
Range Partitioning ... 464
List Partitioning .. 464
Range and List Columns Partitioning .. 465
Hash Partitioning .. 465
Subpartitioning ... 465
Partition Management ... 465
Dropping Partitions .. 465
Adding and Splitting Partitions ... 466
Switching and Exchanging Partitions ... 466
Syntax .. 467
Migration Considerations .. 468
Examples ... 468

Summary .. 469
Security .. 471

Column encryption for Aurora MySQL .. 471
SQL Server Usage ... 471
MySQL Usage .. 474

Data control language for Aurora MySQL .. 476

x

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage ... 476
MySQL Usage .. 477

Transparent data encryption Aurora MySQL ... 481
SQL Server Usage ... 482
MySQL Usage .. 483

Users and roles for Aurora MySQL .. 485
SQL Server Usage ... 485
MySQL Usage .. 486
Summary .. 489

Encrypted connections for Aurora MySQL ... 490
SQL Server Usage ... 491
MySQL Usage .. 491

SQL Server 2018 deprecated features list ... 493
Migration quick tips .. 494

Management ... 494
SQL .. 494

xi

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migration guide overview

The first section of this document provides an overview of Amazon Schema Conversion Tool
(Amazon SCT) and Amazon Database Migration Service (Amazon DMS) tools for automating the
migration of schema, objects and data. The remainder of the document contains individual sections
for the source database features and their Aurora counterparts. Each section provides a short
overview of the feature, examples, and potential workaround solutions for incompatibilities.

You can use this playbook either as a reference to investigate the individual action codes generated
by Amazon SCT, or to explore a variety of topics where you expect to have some incompatibility
issues. When you use Amazon SCT, you may see a report that lists Action codes, which indicates
some manual conversion is required, or that a manual verification is recommended. For your
convenience, this Playbook includes an Amazon SCT Action Code Index section providing direct
links to the relevant topics that discuss the manual conversion tasks needed to address these
action codes. Alternatively, you can explore the Tables of Feature Compatibility section that
provides high-level graphical indicators and descriptions of the feature compatibility between the
source database and Aurora. It also includes a graphical compatibility indicator and links to the
actual sections in the playbook.

The Migration Quick Tips section provides a list of tips for administrators or developers who have
little experience with Aurora (PostgreSQL or MySQL). It briefly highlights key differences between
the source database and Aurora that they are likely to encounter.

Note that not all of the source database features are fully compatible with Aurora or have simple
workarounds. From a migration perspective, this document doesn’t yet cover all source database
features and capabilities.

This database migration playbook covers the following topics:

• Migration Tools and Services

• ANSI SQL

• T-SQL

• Configuration

• High Availability and Disaster Recovery

• Indexes

• Management

1

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Performance Tuning

• Storage

• Security

• SQL Server 2018 Deprecated Features List

• Migration Quick Tips

Disclaimer

The various code snippets, commands, guides, best practices, and scripts included in this document
should be used for reference only and are provided as-is without warranty. Test all of the code,
commands, best practices, and scripts outlined in this document in a non-production environment
first. Amazon and its affiliates are not responsible for any direct or indirect damage that may occur
from the information contained in this document.

Tables of Feature Compatibility

Feature Compatibility Legend

Automation level icon Description

Very high compatibility. None or minimal
low-risk and low-effort rewrites needed.

High compatibility. Some low-risk rewrites
needed, easy workarounds exist for incompati
ble features.

Medium compatibility. More involved low-
medium risk rewrites needed, some redesign
may be needed for incompatible features.

Low compatibility. Medium to high risk
rewrites needed, some incompatible features

Tables of Feature Compatibility 2

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Automation level icon Description

require redesign and reasonable-effort
workarounds exist.

Very low compatibility. High risk and/or
high-effort rewrites needed, some features
require redesign and workarounds are
challenging.

Not compatible. No practical workarounds
yet, may require an application level architect
ural solution to work around incompatibilities.

Amazon SCT and Amazon DMS Automation Level Legend

Automation level icon Description

Full automation. Amazon SCT performs fully
automatic conversion, no manual conversion
needed.

High automation. Minor, simple manual
conversions may be needed.

Medium automation. Low-medium complexit
y manual conversions may be needed.

Low automation. Medium-high complexity
manual conversions may be needed.

Amazon SCT and Amazon DMS Automation Level Legend 3

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Automation level icon Description

Very low automation. High risk or complex
manual conversions may be needed.

No automation. Not currently supported by
Amazon SCT, manual conversion is required
for this feature.

Amazon SCT and Amazon DMS Automation Level Legend 4

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migration tools and services overview

This chapter provides conceptual content about Amazon tools and features used to migrate
from Microsoft SQL Server 2019 to Amazon Aurora MySQL. It introduces key tools and services
such as Amazon Schema Conversion Tool (Amazon SCT), Amazon Database Migration Service
(Amazon DMS), Amazon RDS on Outposts, Amazon RDS Proxy, Amazon Aurora Serverless, and
Aurora’s Backtrack and parallel query features. These concepts are interconnected, offering
a comprehensive overview of the migration process, database management options, and
performance optimization techniques available within the Amazon ecosystem.

Topics

• Amazon Schema Conversion Tool overview

• Amazon SCT action code index

• Amazon Database Migration Service overview

• Amazon RDS on Outposts overview

• Amazon RDS Proxy overview

• Amazon Aurora Serverless v1 overview

• Amazon Aurora Backtrack overview

• Amazon Aurora Parallel Query overview

Amazon Schema Conversion Tool overview

You can use the Amazon Schema Conversion Tool (Amazon SCT) to streamline the migration of
your Microsoft SQL Server 2019 database to Amazon Aurora MySQL. This tool not only converts
compatible objects automatically but also provides detailed recommendations for handling objects
that require manual intervention. With Amazon SCT, you can efficiently plan and execute your
database migration, saving time and minimizing potential errors in the transition to Aurora MySQL.

The Amazon Schema Conversion Tool (Amazon SCT) is a Java utility that connects to source and
target databases, scans the source database schema objects (tables, views, indexes, procedures, and
so on), and converts them to target database objects.

This section provides a step-by-step process for using Amazon SCT to migrate an SQL Server
database to an Aurora MySQL database cluster. Since Amazon SCT can automatically migrate most
of the database objects, it greatly reduces manual effort.

Amazon Schema Conversion Tool overview 5

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

We recommend to start every migration with the process outlined in this section and then use
the rest of the Playbook to further explore manual solutions for objects that couldn’t be migrated
automatically. For more information, see the Amazon Schema Conversion Tool User Guide.

Note

This walkthrough uses the Amazon Database Migration Service Sample Database. You can
download it from GitHub.

Download the Software and Drivers

Download and install Amazon SCT. For more information, see Installing, verifying, and updating in
the Amazon Schema Conversion Tool User Guide.

Download the Microsoft SQL Server and MySQL drivers. For more information, see Installing the
required database drivers in the Amazon Schema Conversion Tool User Guide.

Configure Amazon SCT

1. Start Amazon Schema Conversion Tool (Amazon SCT).

2. Choose Settings and then choose Global settings.

3. On the left navigation bar, choose Drivers.

4. Enter the paths for the SQL Server and MySQL drivers downloaded in the first step.

Download the Software and Drivers 6

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://github.com/aws-samples/aws-database-migration-samples
https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver15#72
https://dev.mysql.com/downloads/connector/j/
https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://docs.amazonaws.cn/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

5. Choose Apply and then OK.

Create a New Migration Project

1. In Amazon SCT, choose File, and then choose New project wizard. Alternatively, use the
keyboard shortcut Ctrl+W.

2. Enter a project name and select a location for the project files. For Source engine, choose
Microsoft SQL Server, and then choose Next.

3. Enter connection details for the source SQL Server database and choose Test connection to
verify. Choose Next.

4. Select the schema or database to migrate and choose Next.

The progress bar displays the objects that Amazon SCT analyzes. When Amazon SCT completes the
analysis, the application displays the database migration assessment report. Read the Executive
summary and other sections. Note that the information on the screen is only partial. To read the

Create a New Migration Project 7

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

full report, including details of the individual issues, choose Save to PDF at the top right and open
the PDF document.

Scroll down to the Database objects with conversion actions for Amazon Aurora (MySQL
compatible) section.

Create a New Migration Project 8

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Scroll further down to the Detailed recommendations for Amazon Aurora (MySQL compatible)
migrations section and review the migration recommendations.

Return to Amazon SCT and choose Next. Enter the connection details for the target Aurora MySQL
database and choose Finish.

When the connection is complete, Amazon SCT displays the main window. In this interface, you can
explore the individual issues and recommendations discovered by Amazon SCT.

Choose the schema, open the context (right-click) menu, and then choose Create report to create a
report tailored for the target database type. You can view this report in Amazon SCT.

The progress bar updates while the report is generated.

Amazon SCT displays the executive summary page of the database migration assessment report.

Choose Action items. In this window, you can investigate each issue in detail and view the
suggested course of action. For each issue, drill down to view all instances of that issue.

Create a New Migration Project 9

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Choose the database name, open the context (right-click) menu, and choose Convert schema.
Make sure that you uncheck the sys and information_schema system schemas. This step
doesn’t make any changes to the target database.

On the right pane, Amazon SCT displays the new virtual schema as if it exists in the target
database. Drilling down into individual objects displays the actual syntax generated by Amazon
SCT to migrate the objects.

Choose the database on the right pane, open the context (right-click) menu, and choose either
Apply to database to automatically run the conversion script against the target database, or
choose Save as SQL to save to an SQL file.

We recommend saving to an SQL file because you can verify and QA the converted code. Also, you
can make the adjustments needed for objects that couldn’t be automatically converted.

For more information, see the Amazon Schema Conversion Tool User Guide.

Amazon SCT action code index

This topic provides reference information for the automation levels and action codes used by
Amazon Schema Conversion Tool (Amazon SCT) when migrating from Microsoft SQL Server 2019
to Amazon Aurora MySQL. You can use this information to understand the degree of automation
available for various database objects and features during the migration process.

The following table shows the icons we use to describe the automation levels of Amazon Schema
Conversion Tool (Amazon SCT) and Amazon Database Migration Service (Amazon DMS).

Automation level icon Description

Full automation — Amazon SCT performs
fully automatic conversion, no manual
conversion needed.

High automation — Minor, simple manual
conversions may be needed.

Amazon SCT action code index 10

http://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Automation level icon Description

Medium automation — Low-medium
complexity manual conversions may be
needed.

Low automation — Medium-high complexity
manual conversions may be needed.

Very low automation — High risk or complex
manual conversions may be needed.

No automation — Not currently supported by
Amazon SCT, manual conversion is required
for this feature.

The following sections list the Amazon Schema Conversion Tool action codes for topics that are
covered in this playbook.

Note

The links in the table point to the Microsoft SQL Server topic pages, which are immediately
followed by the MySQL pages for the same topics.

Creating Tables

Amazon SCT automatically converts the most commonly used constructs of the CREATE TABLE
statement as both SQL Server and Amazon Aurora MySQL-Compatible Edition (Aurora MySQL)
support the entry level American National Standards Institute (ANSI) compliance. These items

Creating Tables 11

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

include table names, containing security schema or database, column names, basic column data
types, column and table constraints, column default values, primary, UNIQUE, and foreign keys.
Some changes may be required for computed columns and global temporary tables.

For more information, see Creating Tables.

Action code Action message

659 If you use recursion, make sure that table
variables in your source database and
temporary tables in your target database have
the same scope.

679 Amazon SCT replaced computed columns with
triggers.

680 MySQL doesn’t support global temporary
tables.

Constraints

Amazon Schema Conversion Tool (Amazon SCT automatically converts most constraints because
SQL Server and Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) support the entry
level ANSI compliance. These items include primary keys, foreign keys, null constraints, unique
constraints, and default constraints with some exceptions. Manual conversions are required for
some foreign key cascading options. Amazon SCT replaces check constraints with triggers, and
some default expressions for DateTime columns aren’t supported for automatic conversion.
Amazon SCT can’t automatically convert complex expressions for other default values.

For more information, see Constraints.

Constraints 12

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

676 MySQL doesn’t support the SET DEFAULT
referential constraint action.

677 MySQL doesn’t support functions or expressio
ns as a default value for BLOB and TEXT
columns.

678 MySQL doesn’t support check constraints.

825 Amazon SCT removed the default value of the
ё column.

826 Amazon SCT can’t convert the default value of
the ё variable.

827 Amazon SCT can’t convert default values.

Data Types

Data type syntax and rules are very similar between SQL Server and Aurora MySQL. Amazon SCT
automatically converts most of data type syntax and rules. Note that date and time handling
paradigms are different for SQL Server and Aurora MySQL and require manual verification or
conversion. Also note that because of differences in data type behavior between SQL Server and
Aurora MySQL, manual verification and strict testing are highly recommended.

For more information, see Data Types.

Action code Action message

601 MySQL doesn’t support including BLOB and
TEXT columns in foreign keys.

Data Types 13

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

706 Amazon SCT replaced the unsupported %s
data type.

707 Amazon SCT can’t convert the usage of a
variable of the unsupported %s data type.

708 Amazon SCT can’t convert the usage of the
unsupported %s data type.

775 Converted code might lose accuracy compared
to the source code.

844 Amazon SCT expanded fractional seconds
support for TIME, DATETIME2 , and
DATETIMEOFFSET values with up to 6 digits
of precision.

919 MySQL doesn’t support the DECIMAL data
type with scale greater than 30.

Collations

The collation paradigms of SQL Server and Aurora MySQL are significantly different. Amazon SCT
can successfully migrate most common use cases including data type differences such as NCHAR
and NVARCHAR in SQL Server that don’t exist in Aurora MySQL. Aurora MySQL provides more
options and flexibility in terms of collations. Rewrites are required for explicit collation clauses that
aren’t supported by Aurora MySQL.

For more information, see Collations.

Collations 14

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

646 MySQL doesn’t support the COLLATE clause.

Window Functions

Aurora MySQL version 5.7 doesn’t support window functions. Amazon SCT can’t automatically
convert window functions.

For workarounds using traditional SQL syntax, see Window Functions.

Action code Action message

647 MySQL doesn’t support the analytic form of
the %s function.

648 MySQL doesn’t support the RANK function.

649 MySQL doesn’t support the DENSE_RANK
function.

650 MySQL doesn’t support the NTILE function.

754 MySQL doesn’t ssupport STDEV functions with
the DISTINCT clause.

755 MySQL doesn’t support STDEVP functions
with the DISTINCT clause.

756 MySQL doesn’t support VAR functions with
the DISTINCT clause.

757 MySQL doesn’t support VARP functions with
the DISTINCT clause.

Window Functions 15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

PIVOT and UNPIVOT

Aurora MySQL version 5.7 doesn’t support the PIVOT and UNPIVOT syntax. Amazon SCT can’t
automatically convert the PIVOT and UNPIVOT clauses.

For workarounds using traditional SQL syntax, see PIVOT and UNPIVOT.

Action code Action message

905 MySQL doesn’t support PIVOT clauses for
SELECT statements.

906 MySQL doesn’t support UNPIVOT clauses for
SELECT statements.

TOP and FETCH

Aurora MySQL supports the non-ANSI compliant (although popular with other common RDBMS
engines) LIMIT… OFFSET operator for paging of results sets. Despite the differences, Amazon
SCT can automatically convert most common paging queries to use the Aurora MySQL syntax.
Some options such as PERCENT and WITH TIES can’t be automatically converted and require
manual conversion.

For more information, see SQL Server TOP and FETCH and MySQL LIMIT.

Action code Action message

604 MySQL doesn’t support the PERCENT
argument in TOP clauses. Amazon SCT skips
this argument in the converted code.

PIVOT and UNPIVOT 16

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

605 MySQL doesn’t support the WITH TIES
argument in TOP clauses. Amazon SCT skips
this argument in the converted code.

608 MySQL doesn’t support the PERCENT
argument in TOP clauses of INSERT statement
s.

612 MySQL doesn’t support the PERCENT
argument in TOP clauses of UPDATE statement
s.

621 MySQL doesn’t support the PERCENT
argument in TOP clauses. Amazon SCT skips
this argument in the converted code.

830 MySQL doesn’t support LIMIT clauses with
IN, ALL, ANY, or SOME subqueries.

Common Table Expressions

Aurora MySQL version 5.7 doesn’t support common table expressions. Amazon SCT can’t
automatically convert common table expressions.

For workarounds using traditional SQL syntax, see Common Table Expressions.

Action code Action message

611 MySQL doesn’t support WITH queries in
UPDATE statements.

Common Table Expressions 17

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

619 MySQL doesn’t support query definitions for
common table expressions.

839 MySQL doesn’t support query definitions for
common table expressions.

840 Amazon SCT can’t convert updated common
table expressions.

Cursors

Amazon SCT automatically converts the most commonly used cursor operations. These operations
include forward-only, read only cursors, and the DECLARE CURSOR, CLOSE CURSOR, and FETCH
NEXT operations. Modifications through cursors and non-forward-only fetches, which aren’t
supported by Aurora MySQL, require manual conversions.

For more information, see Cursors.

Action code Action message

618 MySQL doesn’t support CURRENT OF clauses
for DML queries that are in the body of a
cursor loop.

624 MySQL doesn’t support CURRENT OF clauses
for DML queries that are in the body of a
cursor loop.

625 MySQL doesn’t support the CURSOR data type
as a procedure argument.

637 MySQL doesn’t support global cursors.

Cursors 18

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

638 MySQL doesn’t support the SCROLL option in
cursors.

639 MySQL doesn’t support dynamic cursors.

667 MySQL doesn’t support the %s option in
cursors.

668 MySQL doesn’t support the FIRST option in
cursors.

669 MySQL doesn’t support the PRIOR option in
cursors.

670 MySQL doesn’t support the ABSOLUTE option
in cursors.

671 MySQL doesn’t support the RELATIVE option
in cursors.

692 MySQL doesn’t support cursor variables.

700 Amazon SCT can’t convert the KEYSET option
because MySQL doesn’t support changing the
membership and order of rows for cursors.

701 Amazon SCT doesn’t convert the FAST_FORW
ARD option because this is a default option
for cursors in MySQL.

702 Amazon SCT doesn’t convert the READ_ONLY
 option because this is a default option for

cursors in MySQL.

703 MySQL doesn’t support the SCROLL_LOCKS
option.

Cursors 19

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

704 MySQL doesn’t support the OPTIMISTIC
option for cursors.

705 MySQL doesn’t support the TYPE_WARNING
option for cursors.

842 MySQL doesn’t support the %s option in
cursors.

Flow Control

Although the flow control syntax of SQL Server differs from Aurora MySQL, Amazon SCT can
convert most constructs automatically including loops, command blocks, and delays. Aurora
MySQL doesn’t support the GOTO command nor the WAITFOR TIME command, which require
manual conversion.

For more information, see Flow Control.

Action code Action message

628 MySQL doesn’t support GOTO statements.

691 MySQL doesn’t support the WAITFOR TIME
feature.

Transaction Isolation

Flow Control 20

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Aurora MySQL supports the following four transaction isolation levels specified in the SQL:92
standard: READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.
Amazon SCT automatically converts all these transaction isolation levels. Amazon SCT also
converts BEGIN, COMMIT, and ROLLBACK commands that use slightly different syntax. Manual
conversion is required for named, marked, and delayed durability transactions that aren’t
supported by Aurora MySQL.

For more information, see Transactions.

Action code Action message

629 MySQL doesn’t support named transactions.

630 MySQL doesn’t support WITH MARK options.

631 MySQL doesn’t support distributed transacti
ons.

632 MySQL doesn’t support rolling back named
transactions

633 MySQL doesn’t support the DELAYED_D
URABILITY option.

916 MySQL doesn’t support the SNAPSHOT
transaction isolation level.

Stored Procedures

Aurora MySQL stored procedures provide very similar functionality to SQL Server stored
procedures. Amazon SCT automatically converts SQL Server stored procedures. Manual conversion
is required for procedures that use RETURN values and some less common EXECUTE options such
as RECOMPILE and RESULTS SETS.

For more information, see Stored Procedures.

Stored Procedures 21

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

640 MySQL doesn’t support EXECUTE statements
with the WITH RECOMPILE option.

641 MySQL doesn’t support EXECUTE statements
with the RESULT SETS UNDEFINED option.

642 MySQL doesn’t support EXECUTE statements
with the RESULT SETS NONE option.

643 MySQL doesn’t support EXECUTE statement
s with the RESULT SETS DEFINITION
option.

689 MySQL doesn’t support RETURN statement
s that are used to return values from a
procedure.

695 MySQL doesn’t support the call of a procedure
as a variable.

Triggers

Aurora MySQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE. However,
Aurora MySQL triggers differ substantially from SQL Server triggers, but most common use cases
can be migrated with minimal code changes. Although Amazon SCT can automatically migrate
trigger code, manual inspection and potential code modifications may be required because Aurora
MySQL triggers are ran once for each row, not once for each statement such as triggers in SQL
Server.

For more information, see Triggers.

Triggers 22

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

686 MySQL doesn’t support triggers with the FOR
STATEMENT clause.

GROUP BY

Amazon SCT automatically converts the GROUP BY queries, except for CUBE and GROUPING SETS.
You can create workarounds for these queries, but they require manual code changes.

For more information, see GROUP BY.

Action code Action message

654 MySQL doesn’t support the GROUP BY CUBE
option.

655 MySQL doesn’t support GROUP BY GROUPING
SETS clauses.

Identity and Sequences

Although the syntax for SQL Server IDENTITY and Aurora MySQL AUTO_INCREMENT auto-
enumeration columns differs significantly, it can be automatically converted by Amazon SCT.
Some limitations imposed by Aurora MySQL require manual conversion such as explicit SEED
and INCREMENT auto-enumeration columns that aren’t part of the primary key and the table-
independent SEQUENCE objects.

For more information, see Identity and Sequences.

GROUP BY 23

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

696 MySQL doesn’t support identity columns with
seed and increment.

697 MySQL doesn’t support identity columns
outside the primary key.

732 MySQL doesn’t support identity columns in
compound primary keys.

815 MySQL doesn’t support sequences.

841 MySQL doesn’t support numeric (x, 0) or
decimal (x, 0) data types in columns with the
AUTO_INCREMENT option. Amazon SCT
replaced this data type with a compatible data
type.

920 MySQL doesn’t support identity columns of
the DECIMAL or NUMERIC data type with
precision greater than 19.

Error Handling

The error handling paradigms in Aurora MySQL and SQL Server are significantly different; the
former uses condition and handler objects. Amazon SCT migrates the basic error handling
constructs automatically. Due to the paradigm differences, we highly recommend that you perform
strict inspection and validation of the migrated code. Manual conversions are required for THROW
with variables and for built-in messages in SQL Server.

For more information, see Error Handling.

Error Handling 24

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

729 Amazon SCT can’t convert THROW operators
with variables.

730 Amazon SCT truncated the error code.

733 MySQL doesn’t support PRINT procedures.

814 Amazon SCT can’t convert the RAISERROR
operator with messages from the sys.messa
ges view.

837 MySQL uses a different approach to handle
errors compared to the source code.

Date and Time Functions

Amazon SCT automatically converts the most commonly used date and time functions despite the
significant difference in syntax. Be aware of differences in data types, time zone awareness, and
locale handling as well the functions themselves, and inspect the expression value output carefully.
Some less commonly used options such as millisecond, nanosecond, and time zone offsets require
manual conversion.

For more information, see Date and Time Functions.

Action code Action message

759 MySQL doesn’t support DATEADD functions
with the nanosecond date part.

760 MySQL doesn’t support DATEDIFF functions
with the week date part.

Date and Time Functions 25

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

761 MySQL doesn’t support DATEDIFF functions
with the millisecond date part.

762 MySQL doesn’t support DATEDIFF functions
with the nanosecond date part.

763 MySQL doesn’t support DATENAME functions
with the millisecond date part.

764 MySQL doesn’t support DATENAME functions
with the nanosecond date part.

765 MySQL doesn’t support DATENAME functions
with the TZoffset date part.

767 MySQL doesn’t support DATEPART functions
with the nanosecond date part.

768 MySQL doesn’t support DATEPART functions
with the TZoffset date part.

773 Amazon SCT can’t convert arithmetic
operations with dates.

User-Defined Functions

Aurora MySQL supports only scalar user-defined functions, which are automatically converted
by Amazon SCT. Table-valued user-defined functions, both in-line and multi-statement, require
manual conversion. Workarounds using views or derived tables should be straightforward in most
cases.

For more information, see User-Defined Functions.

User-Defined Functions 26

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

777 Amazon SCT can’t emulate a table-valued
function because the column from the current
query is used as a function parameter.

822 MySQL doesn’t support table-valued functions
in views.

User-Defined Types

Aurora MySQL 5.7 doesn’t support-user defined types and user-defined table-valued parameters.
Amazon SCT can convert standard user defined types by replacing it with their base types, but
manual conversion is required for user defined table types, which are used for table valued
parameters for stored procedures.

For more information, see User-Defined Types.

Action code Action message

690 MySQL doesn’t support table types.

Synonyms

Aurora MySQL version 5.7 doesn’t support synonyms. Amazon SCT can’t automatically convert
synonyms.

For more information, see Synonyms.

User-Defined Types 27

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

792 MySQL doesn’t support synonyms.

XML and JSON

Aurora MySQL provides minimal support for XML, but it does offer a native JSON data type and
more than 25 dedicated JSON functions. Despite these differences, the most commonly used basic
XML functions can be automatically migrated by Amazon SCT. Some options such as EXPLICIT,
used in functions or with subqueries, require manual conversion.

For more information, see JSON and XML.

Action code Action message

817 Amazon SCT can’t convert FOR XML clauses
with EXPLICIT mode specified.

818 Amazon SCT can’t convert correlated
subqueries with FOR XML clauses.

843 Amazon SCT can’t convert FOR XML
statements in functions.

Table Joins

Amazon SCT automatically converts the most commonly used join types. These types include
INNER, OUTER, and CROSS joins. APPLY joins, also known as LATERAL joins, aren’t supported by
Aurora MySQL and require manual conversion.

XML and JSON 28

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Table JOIN.

Action code Action message

831 MySQL doesn’t support the CROSS APPLY
and OUTER APPLY operators where the
subquery references to the column of
attachable table.

MERGE

Aurora MySQL version 5.7 doesn’t support the MERGE statement. Amazon SCT can’t automatically
convert MERGE statements. Manual conversion is straightforward in most cases.

For more information and potential workarounds, see MERGE.

Action code Action message

832 MySQL doesn’t support MERGE statements.

Query Hints

Basic query hints such as index hints can be converted automatically by Amazon SCT, except
for DML statements. Note that specific optimizations used for SQL Server may be completely
inapplicable to a new query optimizer. We recommend that you remove all hints before the start of
migration testin. Then, selectively apply hints as a last resort if other means such as schema, index,
and query optimizations have failed. Plan guides aren’t supported by Aurora MySQL.

For more information, see Query Hints and Plan Guides.

MERGE 29

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

610 MySQL doesn’t support hints in INSERT
statements. Amazon SCT skips WITH(Tabl
e_Hint_Limited) options in the
converted code.

617 MySQL doesn’t support hints in UPDATE
statements. Amazon SCT skips WITH(Tabl
e_Hint_Limited) options in the
converted code.

623 MySQL doesn’t support hints in DELETE
statements. Amazon SCT skips WITH(Tabl
e_Hint_Limited) options in the
converted code.

823 MySQL doesn’t support table hints in DML
statements.

Full-Text Search

Migrating full-text indexes from SQL Server to Aurora MySQL requires a full rewrite of the code
that deals with both creating, managing, and querying of full-text indexes. Amazon SCT can’t
automatically convert full-text indexes.

For more information, see Full-Text Search.

Action code Action message

687 MySQL doesn’t support the CONTAINS
predicate.

Full-Text Search 30

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

688 MySQL doesn’t support the FREETEXT
predicate.

Indexes

Amazon SCT automatically converts basic non-clustered indexes, which are the most commonly
used type of indexes. User-defined clustered indexes aren’t supported by Aurora MySQL because
they are always created for the primary key. In addition, filtered indexes, indexes with included
columns, and some SQL Server specific index options can’t be migrated automatically and require
manual conversion.

For more information, see Indexes.

Action code Action message

602 MySQL has reached the limit of the internal
InnoDB maximum key length.

681 MySQL doesn’t support clustered indexes.

682 MySQL doesn’t support the INCLUDE clause in
indexes.

683 MySQL doesn’t support the WHERE clause in
indexes.

684 MySQL doesn’t support the WITH clause in
indexes.

Indexes 31

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Partitioning

Because Aurora MySQL stores each table in its own file, and because file management is performed
by Amazon and can’t be modified, some of the physical aspects of partitioning in SQL Server don’t
apply to Aurora MySQL. For example, the concept of file groups and assigning partitions to file
groups. Aurora MySQL supports a much richer framework for table partitioning than SQL Server,
with many additional options such as hash partitioning, and sub partitioning. Due to the vast
differences between partition creation, query, and management between Aurora MySQL and SQL
Server, Amazon SCT doesn’t automatically convert table and index partitions. These items require
manual conversion.

For more information, see Storage.

Action code Action message

907 Amazon SCT can’t convert tables arranged in
several partitions.

Backup

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such
as Aurora MySQL is a complete paradigm shift. You no longer need to worry about transaction
logs, file groups, disks running out of space, and purging old backups. Amazon Relational Database
Service (Amazon RDS) provides guaranteed continuous backup with point-in-time restore up to 35
days. Therefore, Amazon SCT doesn’t automatically convert backups.

For more information, see Backup and Restore.

Partitioning 32

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Action code Action message

903 MySQL doesn’t support functionality similar to
SQL Server Backup.

SQL Server Database Mail

Aurora MySQL doesn’t provide native support for sending mail from the database.

For more information and potential workarounds, see Database Mail.

Action code Action message

900 MySQL doesn’t support functionality similar to
SQL Server Database Mail.

SQL Server Agent

Aurora MySQL doesn’t provide functionality similar to SQL Server Agent as an external, cross-
instance scheduler. However, Aurora MySQL provides a native, in-database scheduler. It is limited
to the cluster scope and can’t be used to manage multiple clusters. Therefore, Amazon SCT can’t
automatically convert Agent jobs and alerts.

For more information, see SQL Server Agent and MySQL Agent.

Action code Action message

902 MySQL doesn’t support functionality similar to
SQL Server Agent.

SQL Server Database Mail 33

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Linked Servers

Aurora MySQL doesn’t support remote data access from the database. Connectivity between
schemas is trivial, but connectivity to other instances require a custom solution. Amazon SCT can’t
automatically convert commands on linked servers.

For more information, see Linked Servers.

Action code Action message

645 MySQL doesn’t support running pass-through
commands on linked servers.

Views

MySQL views are similar to views in SQL Server. However, there are slight differences between the
two, mostly around indexing and triggers on views, and also in the query definition.

For more information, see Views.

Action code Action message

779 Amazon SCT can’t convert SELECT statements
that contain a subquery in the FROM clause.

Linked Servers 34

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Amazon Database Migration Service overview

This topic provides conceptual content about Amazon Database Migration Service (Amazon DMS).
It introduces you to the key features and benefits of Amazon DMS, explaining how it can help you
migrate databases to Amazon quickly and securely.

The Amazon Database Migration Service (Amazon DMS) helps you migrate databases to Amazon
quickly and securely. The source database remains fully operational during the migration,
minimizing downtime to applications that rely on the database. The Amazon Database Migration
Service can migrate your data to and from most widely-used commercial and open-source
databases.

The service supports homogenous migrations such as Oracle to Oracle as well as heterogeneous
migrations between different database platforms such as Oracle to Amazon Aurora or Microsoft
SQL Server to MySQL. You can also use Amazon DMS to stream data to Amazon Redshift,
Amazon DynamoDB, and Amazon S3 from any of the supported sources, which are Amazon
Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, SAP ASE, SQL Server, IBM DB2 LUW, and
MongoDB, enabling consolidation and easy analysis of data in a petabyte-scale data warehouse.
The Amazon Database Migration Service can also be used for continuous data replication with high
availability.

For Amazon DMS pricing, see Database Migration Service pricing.

For all supported sources for Amazon DMS, see Sources for data migration.

For all supported targets for Amazon DMS, see Targets for data migration.

Migration Tasks Performed by Amazon DMS

In a traditional solution, you need to perform capacity analysis, procure hardware and software,
install and administer systems, and test and debug the installation. Amazon DMS automatically
manages the deployment, management, and monitoring of all hardware and software needed
for your migration. You can start your migration within minutes of starting the Amazon DMS
configuration process.

With Amazon DMS, you can scale up (or scale down) your migration resources as needed to match
your actual workload. For example, if you determine that you need additional storage, you can
easily increase your allocated storage and restart your migration, usually within minutes. On the

Amazon Database Migration Service overview 35

https://www.amazonaws.cn/dms/pricing
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Source.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_Target.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

other hand, if you discover that you aren’t using all of the resource capacity you configured, you
can easily downsize to meet your actual workload.

Amazon DMS uses a pay-as-you-go model. You only pay for Amazon DMS resources while you
use them as opposed to traditional licensing models with up-front purchase costs and ongoing
maintenance charges.

Amazon DMS automatically manages all of the infrastructure that supports your migration server
including hardware and software, software patching, and error reporting.

Amazon DMS provides automatic failover. If your primary replication server fails for any reason, a
backup replication server can take over with little or no interruption of service.

Amazon DMS can help you switch to a modern, perhaps more cost-effective database engine
than the one you are running now. For example, Amazon DMS can help you take advantage of
the managed database services provided by Amazon RDS or Amazon Aurora. Or, it can help you
move to the managed data warehouse service provided by Amazon Redshift, NoSQL platforms
like Amazon DynamoDB, or low-cost storage platforms like Amazon S3. Conversely, if you want to
migrate away from old infrastructure but continue to use the same database engine, Amazon DMS
also supports that process.

Amazon DMS supports nearly all of modern popular DBMS engines as data sources, including
Oracle, Microsoft SQL Server, MySQL, MariaDB, PostgreSQL, Db2 LUW, SAP, MongoDB, and
Amazon Aurora.

Amazon DMS provides a broad coverage of available target engines including Oracle, Microsoft
SQL Server, PostgreSQL, MySQL, Amazon Redshift, SAP ASE, Amazon S3, and Amazon DynamoDB.

You can migrate from any of the supported data sources to any of the supported data targets.
Amazon DMS supports fully heterogeneous data migrations between the supported engines.

Amazon DMS ensures that your data migration is secure. Data at rest is encrypted with Amazon
Key Management Service (Amazon KMS) encryption. During migration, you can use Secure Socket
Layers (SSL) to encrypt your in-flight data as it travels from source to target.

How Amazon DMS Works

At its most basic level, Amazon DMS is a server in the Amazon Cloud that runs replication software.
You create a source and target connection to tell Amazon DMS where to extract from and load to.
Then, you schedule a task that runs on this server to move your data. Amazon DMS creates the

How Amazon DMS Works 36

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

tables and associated primary keys if they don’t exist on the target. You can pre-create the target
tables manually if you prefer. Or you can use Amazon SCT to create some or all of the target tables,
indexes, views, triggers, and so on.

The following diagram illustrates the Amazon DMS process.

For more information about Amazon DMS, see What is Database Migration Service? and Best
practices for Database Migration Service.

Amazon RDS on Outposts overview

This topic provides conceptual information about Amazon RDS on Outposts, a service that extends
Amazon RDS capabilities to on-premises environments. You can learn about how this service
enables you to run fully managed databases in your own data centers or co-location facilities,
offering low-latency access to local systems and data processing capabilities.

Note

This topic is related to Amazon Relational Database Service (Amazon RDS) and isn’t
supported with Amazon Aurora.

Amazon RDS on Outposts is a fully managed service that offers the same Amazon infrastructure,
Amazon services, APIs, and tools to virtually any data center, co-location space, or on-premises

Amazon RDS on Outposts overview 37

https://docs.amazonaws.cn/dms/latest/userguide/Welcome.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_BestPractices.html
https://docs.amazonaws.cn/dms/latest/userguide/CHAP_BestPractices.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

facility for a truly consistent hybrid experience. Amazon RDS on Outposts is ideal for workloads
that require low latency access to on-premises systems, local data processing, data residency, and
migration of applications with local system inter-dependencies.

When you deploy Amazon RDS on Outposts, you can run Amazon RDS on premises for low latency
workloads that need to be run in close proximity to your on-premises data and applications.
Amazon RDS on Outposts also enables automatic backup to an Amazon Region. You can manage
Amazon RDS databases both in the cloud and on premises using the same Amazon Management
Console, APIs, and CLI. Amazon RDS on Outposts supports Microsoft SQL Server, MySQL, and
PostgreSQL database engines, with support for additional database engines coming soon.

How It Works

Amazon RDS on Outposts lets you run Amazon RDS in your on-premises or co-location site. You
can deploy and scale an Amazon RDS database instance in Outposts just as you do in the cloud,
using the Amazon console, APIs, or CLI. Amazon RDS databases in Outposts are encrypted at rest
using Amazon KMS keys. Amazon RDS automatically stores all automatic backups and manual
snapshots in the Amazon Region.

This option is helpful when you need to run Amazon RDS on premises for low latency workloads
that need to be run in close proximity to your on-premises data and applications.

How It Works 38

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Amazon Outposts Family, Amazon RDS on Outposts, and Create Amazon
RDS DB Instances on Outposts.

Amazon RDS Proxy overview

This topic provides conceptual content about Amazon RDS Proxy, a fully managed database
proxy service for Amazon RDS. It introduces the key benefits and functionality of RDS Proxy,
explaining how it improves application scalability, resilience, and security.understand the purpose
and advantages of using Amazon RDS Proxy in their database architecture.

Amazon RDS Proxy is a fully managed, highly available database proxy for Amazon Relational
Database Service (RDS) that makes applications more scalable, more resilient to database failures,
and more secure.

Many applications, including those built on modern server-less architectures, can have many open
connections to the database server, and may open and close database connections at a high rate,
exhausting database memory and compute resources. Amazon RDS Proxy allows applications
to pool and share connections established with the database, improving database efficiency
and application scalability. With Amazon RDS Proxy, fail-over times for Aurora and Amazon RDS
databases are reduced by up to 66%. You can manage database credentials, authentication,
and access through integration with Amazon Secrets Manager and Amazon Identity and Access
Management (IAM).

You can turn on Amazon RDS Proxy for most applications with no code changes. You don’t need
to provision or manage any additional infrastructure. Pricing is simple and predictable: you pay
for each vCPU of the database instance for which the proxy is enabled. Amazon RDS Proxy is now
generally available for Aurora MySQL, Aurora PostgreSQL, Amazon RDS for MySQL, and Amazon
RDS for PostgreSQL.

Amazon RDS Proxy Benefits

• Improved application performance — Amazon RDS proxy manages a connection pooling which
helps with reducing the stress on database compute and memory resources that typically occurs
when new connections are established and it is useful to efficiently support a large number and
frequency of application connections.

• Increase application availability — By automatically connecting to a new database instance
while preserving application connections Amazon RDS Proxy can reduce fail-over time by 66%.

Amazon RDS Proxy overview 39

https://www.amazonaws.cn/outposts
https://www.amazonaws.cn/rds/outposts
https://www.amazonaws.cn/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts
https://www.amazonaws.cn/blogs/aws/new-create-amazon-rds-db-instances-on-aws-outposts

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Manage application security — Amazon RDS Proxy also enables you to centrally manage
database credentials using Amazon Secrets Manager.

• Fully managed — Amazon RDS Proxy gives you the benefits of a database proxy without
requiring additional burden of patching and managing your own proxy server.

• Fully compatible with your database — Amazon RDS Proxy is fully compatible with the
protocols of supported database engines, so you can deploy Amazon RDS Proxy for your
application without making changes to your application code.

• Available and durable — Amazon RDS Proxy is highly available and deployed over multiple
Availability Zones (AZs) to protect you from infrastructure failure.

How Amazon RDS Proxy Works

For more information, see Amazon RDS Proxy for Scalable Serverless Applications and Amazon
RDS Proxy.

Amazon Aurora Serverless v1 overview

This topic provides conceptual information about Amazon Aurora Serverless. It introduces Aurora
Serverless as an on-demand autoscaling configuration for Amazon Aurora, explaining how it
automatically adjusts compute capacity based on application needs.

Amazon Aurora Serverless version 1 (v1) is an on-demand autoscaling configuration for Amazon
Aurora. An Aurora Serverless DB cluster is a DB cluster that scales compute capacity up and down
based on your application’s needs. This contrasts with Aurora provisioned DB clusters, for which
you manually manage capacity. Aurora Serverless v1 provides a relatively simple, cost-effective
option for infrequent, intermittent, or unpredictable workloads. It is cost-effective because it
automatically starts up, scales compute capacity to match your application’s usage, and shuts
down when it’s not in use.

How Amazon RDS Proxy Works 40

https://www.amazonaws.cn/blogs/aws/amazon-rds-proxy-now-generally-available
https://www.amazonaws.cn/rds/proxy
https://www.amazonaws.cn/rds/proxy

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

To learn more about pricing, see Serverless Pricing under MySQL-Compatible Edition or
PostgreSQL-Compatible Edition on the Amazon Aurora pricing page.

Aurora Serverless v1 clusters have the same kind of high-capacity, distributed, and highly
available storage volume that is used by provisioned DB clusters. The cluster volume for an Aurora
Serverless v1 cluster is always encrypted. You can choose the encryption key, but you can’t turn off
encryption. That means that you can perform the same operations on an Aurora Serverless v1 that
you can on encrypted snapshots. For more information, see Aurora Serverless v1 and snapshots.

Aurora Serverless v1 provides the following advantages:

• Simpler than provisioned — Aurora Serverless v1 removes much of the complexity of managing
DB instances and capacity.

• Scalable — Aurora Serverless v1 seamlessly scales compute and memory capacity as needed,
with no disruption to client connections.

• Cost-effective — When you use Aurora Serverless v1, you pay only for the database resources
that you consume, on a per-second basis.

• Highly available storage — Aurora Serverless v1 uses the same fault-tolerant, distributed
storage system with six-way replication as Aurora to protect against data loss.

Aurora Serverless v1 is designed for the following use cases:

• Infrequently used applications — You have an application that is only used for a few minutes
several times for each day or week, such as a low-volume blog site. With Aurora Serverless v1,
you pay for only the database resources that you consume on a per-second basis.

• New applications — You’re deploying a new application and you’re unsure about the instance
size you need. By using Aurora Serverless v1, you can create a database endpoint and have the
database automatically scale to the capacity requirements of your application.

• Variable workloads — You’re running a lightly used application, with peaks of 30 minutes to
several hours a few times each day, or several times for each year. Examples are applications for
human resources, budgeting, and operational reporting applications. With Aurora Serverless v1,
you no longer need to provision for peak or average capacity.

• Unpredictable workloads — You’re running daily workloads that have sudden and unpredictable
increases in activity. An example is a traffic site that sees a surge of activity when it starts raining.
With Aurora Serverless v1, your database automatically scales capacity to meet the needs of the
application’s peak load and scales back down when the surge of activity is over.

Amazon Aurora Serverless v1 overview 41

https://www.amazonaws.cn/rds/aurora/pricing

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Development and test databases — Your developers use databases during work hours but don’t
need them on nights or weekends. With Aurora Serverless v1, your database automatically shuts
down when it’s not in use.

• Multi-tenant applications — With Aurora Serverless v1, you don’t have to individually manage
database capacity for each application in your fleet. Aurora Serverless v1 manages individual
database capacity for you.

This process takes almost no time. Because the storage is shared between nodes Aurora can scale
up or down in seconds for most workloads. The service currently has autoscaling thresholds of
1.5 minutes to scale up and 5 minutes to scale down. That means metrics must exceed the limits
for 1.5 minutes to trigger a scale up or fall below the limits for 5 minutes to trigger a scale down.
The cool-down period between scaling activities is 5 minutes to scale up and 15 minutes to scale
down. Before scaling can happen the service has to find a “scaling point” which may take longer
than anticipated if you have long-running transactions. Scaling operations are transparent to the
connected clients and applications since existing connections and session state are transferred
to the new nodes. The only difference with pausing and resuming is a higher latency for the first
connection, typically around 25 seconds. You can find more details in the documentation.

Amazon Aurora Serverless v1 overview 42

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Amazon Aurora Serverless v2

Amazon Aurora Serverless v2 has been architected from the ground up to support serverless DB
clusters that are instantly scalable. The Aurora Serverless v2 architecture rests on a lightweight
foundation that’s engineered to provide the security and isolation needed in multitenant serverless
cloud environments. This foundation has very little overhead so it can respond quickly. It’s also
powerful enough to meet dramatic increases in processing demand.

When you create your Aurora Serverless v2 DB cluster, you define its capacity as a range between
minimum and maximum number of Aurora capacity units (ACUs):

• Minimum Aurora capacity units — The smallest number of ACUs down to which your Aurora
Serverless v2 DB cluster can scale.

• Maximum Aurora capacity units — The largest number of ACUs up to which your Aurora
Serverless v2 DB cluster can scale.

Amazon Aurora Serverless v2 43

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Each ACU provides 2 GiB (gibibytes) of memory (RAM) and associated virtual processor (vCPU)
with networking. Unlike Aurora Serverless v1, which scales by doubling ACUs each time the DB
cluster reaches a threshold, Aurora Serverless v2 can increase ACUs incrementally. When your
workload demand begins to reach the current resource capacity, your Aurora Serverless v2 DB
cluster scales the number of ACUs. Your cluster scales ACUs in the increments required to provide
the best performance for the resources consumed.

How to Provision

Log in to your Management Console, choose Amazon RDS , and then choose Create database.

On Engine options, for Engine versions, choose Show versions that support Serverless v2.

How to Provision 44

https://eu-central-1.console.aws.amazon.com/rds/home?#databases:

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Choose the capacity settings for your use case.

For more information, see Amazon Aurora Serverless, Aurora Serverless MySQL Generally Available,
and Amazon Aurora PostgreSQL Serverless Now Generally Available.

Amazon Aurora Backtrack overview

This topic provides conceptual information about Amazon Aurora 's Backtrack feature. You can use
Backtrack to quickly undo mistakes or explore earlier data changes in your Aurora MySQL database

Amazon Aurora Backtrack overview 45

https://www.amazonaws.cn/rds/aurora/serverless
https://www.amazonaws.cn/blogs/aws/aurora-serverless-ga/
https://www.amazonaws.cn/blogs/aws/amazon-aurora-postgresql-serverless-now-generally-available

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

clusters. The feature works by maintaining a log of changes, allowing you to rewind your database
to a specific point in time within a configurable window.

We’ve all been there, you need to make a quick, seemingly simple fix to an important production
database. You compose the query, give it a once-over, and let it run. Seconds later you realize that
you forgot the WHERE clause, dropped the wrong table, or made another serious mistake, and
interrupt the query, but the damage has been done. You take a deep breath, whistle through your
teeth, wish that reality came with an Undo option.

Backtracking rewinds the DB cluster to the time you specify. Backtracking isn’t a replacement for
backing up your DB cluster so that you can restore it to a point in time. However, backtracking
provides the following advantages over traditional backup and restore:

• You can easily undo mistakes. If you mistakenly perform a destructive action, such as a DELETE
without a WHERE clause, you can backtrack the DB cluster to a time before the destructive action
with minimal interruption of service.

• You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a
new DB cluster and restores it from backup data or a DB cluster snapshot, which can take
hours. Backtracking a DB cluster doesn’t require a new DB cluster and rewinds the DB cluster in
minutes.

• You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and
forth in time to help determine when a particular data change occurred. For example, you can
backtrack a DB cluster three hours and then backtrack forward in time one hour. In this case, the
backtrack time is two hours before the original time.

Amazon Aurora uses a distributed, log-structured storage system (read Design Considerations for
High Throughput Cloud-Native Relational Databases to learn a lot more); each change to your
database generates a new log record, identified by a Log Sequence Number (LSN). Enabling the
backtrack feature provisions a FIFO buffer in the cluster for storage of LSNs. This allows for quick
access and recovery times measured in seconds.

When you create a new Aurora MySQL DB cluster, backtracking is configured when you choose
Enable Backtrack and specify a Target Backtrack window value that is greater than zero in the
Backtrack section.

To create a DB cluster, follow the instructions in Creating an Amazon Aurora DB cluster. The
following image shows the Backtrack section.

Amazon Aurora Backtrack overview 46

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

After a production error, you can simply pause your application, open up the Aurora Console, select
the cluster, and choose Backtrack DB cluster.

Then you select Backtrack and choose the point in time just before your epic fail, and choose
Backtrack DB cluster.

Then you wait for the rewind to take place, unpause your application and proceed as if nothing
had happened. When you initiate a backtrack, Aurora will pause the database, close any open
connections, drop uncommitted writes, and wait for the backtrack to complete. Then it will resume

Amazon Aurora Backtrack overview 47

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

normal operation and be able to accept requests. The instance state will be backtracking while the
rewind is underway.

Backtrack Window

With backtracking, there is a target backtrack window and an actual backtrack window:

• The target backtrack window is the amount of time you want to be able to backtrack your DB
cluster. When you enable backtracking, you specify a target backtrack window. For example, you
might specify a target backtrack window of 24 hours if you want to be able to backtrack the DB
cluster one day.

• The actual backtrack window is the actual amount of time you can backtrack your DB cluster,
which can be smaller than the target backtrack window. The actual backtrack window is based on
your workload and the storage available for storing information about database changes, called
change records.

As you make updates to your Aurora DB cluster with backtracking enabled, you generate change
records. Aurora retains change records for the target backtrack window, and you pay an hourly
rate for storing them. Both the target backtrack window and the workload on your DB cluster
determine the number of change records you store. The workload is the number of changes you
make to your DB cluster in a given amount of time. If your workload is heavy, you store more
change records in your backtrack window than you do if your workload is light.

You can think of your target backtrack window as the goal for the maximum amount of time
you want to be able to backtrack your DB cluster. In most cases, you can backtrack the maximum
amount of time that you specified. However, in some cases, the DB cluster can’t store enough
change records to backtrack the maximum amount of time, and your actual backtrack window is
smaller than your target. Typically, the actual backtrack window is smaller than the target when
you have extremely heavy workload on your DB cluster. When your actual backtrack window is
smaller than your target, we send you a notification.

When backtracking is turned on for a DB cluster, and you delete a table stored in the DB cluster,
Aurora keeps that table in the backtrack change records. It does this so that you can revert back to
a time before you deleted the table. If you don’t have enough space in your backtrack window to
store the table, the table might be removed from the backtrack change records eventually.

Backtrack Window 48

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Backtracking Limitations

The following limitations apply to backtracking:

• Backtracking an Aurora DB cluster is available in certain Amazon Regions and for specific Aurora
MySQL versions only. For more information, see Backtracking in Aurora.

• Backtracking is only available for DB clusters that were created with the Backtrack feature
enabled. You can enable the Backtrack feature when you create a new DB cluster or restore a
snapshot of a DB cluster. For DB clusters that were created with the Backtrack feature enabled,
you can create a clone DB cluster with the Backtrack feature enabled. Currently, you can’t
perform backtracking on DB clusters that were created with the Backtrack feature turned off.

• The limit for a backtrack window is 72 hours.

• Backtracking affects the entire DB cluster. For example, you can’t selectively backtrack a single
table or a single data update.

• Backtracking isn’t supported with binary log (binlog) replication. Cross-Region replication must
be turned off before you can configure or use backtracking.

• You can’t backtrack a database clone to a time before that database clone was created. However,
you can use the original database to backtrack to a time before the clone was created. For more
information about database cloning, see Cloning an Aurora DB cluster volume.

• Backtracking causes a brief DB instance disruption. You must stop or pause your applications
before starting a backtrack operation to ensure that there are no new read or write requests.
During the backtrack operation, Aurora pauses the database, closes any open connections, and
drops any uncommitted reads and writes. It then waits for the backtrack operation to complete.

• Backtracking isn’t supported for the following Amazon Regions:

• Africa (Cape Town)

• China (Ningxia)

• Asia Pacific (Hong Kong)

• Europe (Milan)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• You can’t restore a cross-region snapshot of a backtrack-enabled cluster in an Amazon Region
that doesn’t support backtracking.

Backtracking Limitations 49

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• You can’t use backtrack with Aurora multi-master clusters.

• If you perform an in-place upgrade for a backtrack-enabled cluster from Aurora MySQL version 1
to version 2, you can’t backtrack to a point in time before the upgrade happened.

For more information, see: Amazon Aurora Backtrack — Turn Back Time.

Amazon Aurora Parallel Query overview

This topic provides conceptual information about Amazon Aurora parallel query, a feature that
enhances analytical query performance in Amazon Aurora databases. You can leverage this
feature to accelerate your analytical queries while maintaining high throughput for transactional
workloads. By offloading query processing to the Aurora storage layer, parallel query reduces
contention with transactional operations and enables faster data analysis on fresh, real-time data.

Amazon Aurora parallel query is a feature of the Amazon Aurora database that provides faster
analytical queries over your current data, without having to copy the data into a separate system.
It can speed up queries by up to two orders of magnitude, while maintaining high throughput for
your core transactional workload.

While some databases can parallelize query processing across CPUs in one or a handful of servers,
parallel query takes advantage of Aurora unique architecture to push down and parallelize query
processing across thousands of CPUs in the Aurora storage layer. By offloading analytical query
processing to the Aurora storage layer, parallel query reduces network, CPU, and buffer pool
contention with the transactional workload.

Features

Accelerate Your Analytical Queries

In a traditional database, running analytical queries directly on the database means accepting
slower query performance and risking a slowdown of your transactional workload, even when
running light queries. Queries can run for several minutes to hours, depending on the size of the
tables and database server instances. Queries are also slowed down by network latency, since the
storage layer may have to transfer entire tables to the database server for processing.

With Amazon Aurora parallel query, query processing is pushed down to the Aurora storage layer.
The query gains a large amount of computing power, and it needs to transfer far less data over the
network. In the meantime, the Amazon Aurora database instance can continue serving transactions

Amazon Aurora Parallel Query overview 50

https://www.amazonaws.cn/blogs/aws/amazon-aurora-backtrack-turn-back-time

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

with much less interruption. This way, you can run transactional and analytical workloads alongside
each other in the same Aurora database, while maintaining high performance.

Query on Fresh Data

Many analytical workloads require both fresh data and good query performance. For example,
operational systems such as network monitoring, cyber-security or fraud detection rely on fresh,
real-time data from a transactional database, and can’t wait for it to be extracted to a analytics
system.

By running your queries in the same database that you use for transaction processing, without
degrading transaction performance, Amazon Aurora parallel query enables smarter operational
decisions with no additional software and no changes to your queries.

Benefits of Using Parallel Query

• Improved I/O performance, due to parallelizing physical read requests across multiple storage
nodes.

• Reduced network traffic. Amazon Aurora doesn’t transmit entire data pages from storage nodes
to the head node and then filter out unnecessary rows and columns afterward. Instead, Aurora
transmits compact tuples containing only the column values needed for the result set.

• Reduced CPU usage on the head node, due to pushing down function processing, row filtering,
and column projection for the WHERE clause.

• Reduced memory pressure on the buffer pool. The pages processed by the parallel query aren’t
added to the buffer pool. This approach reduces the chance of a data-intensive scan evicting
frequently used data from the buffer pool.

• Potentially reduced data duplication in your extract, transform, and load (ETL) pipeline, by
making it practical to perform long-running analytic queries on existing data.

Important Notes

• Table Formats — The table row format must be COMPACT; partitioned tables aren’t supported.

• Data Types — The TEXT, BLOB, and GEOMETRY data types aren’t supported.

• DDL — The table can’t have any pending fast online DDL operations.

• Cost — You can make use of parallel query at no extra charge. However, because it makes direct
access to storage, there is a possibility that your IO cost will increase.

Benefits of Using Parallel Query 51

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Amazon Aurora Parallel Query.

Important Notes 52

https://www.amazonaws.cn/rds/aurora/parallel-query/

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migrating ANSI SQL features

This chapter provides reference information for ANSI SQL operations required to migrate
from Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can use this information to
understand the key differences and similarities in areas such as object name case sensitivity,
constraint compatibility, table creation, Common Table Expressions (CTEs), data type compatibility,
GROUP BY operations, table joins, views, window functions, and temporary tables.

Topics

• Case sensitivity differences for ANSI SQL

• Constraints for ANSI SQL

• Creating tables for ANSI SQL

• Common table expressions for ANSI SQL

• Data types for ANSI SQL

• GROUP BY for ANSI SQL

• Table JOIN for ANSI SQL

• Views for ANSI SQL

• Window functions for ANSI SQL

• Temporary tables for ANSI SQL

Case sensitivity differences for ANSI SQL

Object name case sensitivity is different for SQL Server and Amazon Aurora MySQL-Compatible
Edition (Aurora MySQL). SQL Server object names case sensitivity is being determined by the
collection. Aurora MySQL names are case sensitive and can be adjusted based on the parameter
mentioned following.

In Aurora MySQL, the case sensitivity is determined by the lower_case_table_names parameter
value. In general, you can use one of the three possible values for this parameter. To avoid issues,
we recommend that you use only the two following values for lower_case_table_names:

• 0 — names stored as given and comparisons are case-sensitive. You can choose this value for all
Amazon Relational Database Service (Amazon RDS) for MySQL versions.

Case sensitivity differences for ANSI SQL 53

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• 1 — names stored in lowercase and comparisons aren’t case-sensitive. You can choose this value
for Amazon RDS for MySQL version 5.6, version 5.7, and version 8.0.19 and higher 8.0 versions.

In Aurora MySQL version 2.10 and higher 2.x versions, make sure to reboot all reader instances
after changing the lower_case_table_names setting and rebooting the writer instance. For
details, see Rebooting an Aurora MySQL cluster (version 2.10 and higher).

In Aurora MySQL version 3, the value of the lower_case_table_names parameter is set
permanently at the time when you create the cluster. If you use a nondefault value for this option,
set up your Aurora MySQL version 3 custom parameter group before upgrading, and specify the
parameter group during the snapshot restore operation that creates the version 3 cluster.

With an Aurora global database based on Aurora MySQL, you can’t perform an in-place upgrade
from Aurora MySQL version 2 to version 3 if the lower_case_table_names parameter is turned
on. For more information on the methods that you can use, see Major version upgrades.

We recommend that you don’t changE the lower_case_table_names parameter for existing
database instances. Doing so can cause inconsistencies with point-in-time recovery backups and
read replica DB instances.

Read replicas should always use the same lower_case_table_names parameter value as the
source DB instance.

By default, object names are being stored in lowercase for MySQL. In most cases, you’ll want to use
Amazon Database Migration Service transformations to change schema, table, and column names
to lowercase.

Examples

For example, to create a table named EMPLOYEES in uppercase in MySQL, you should use the
following:

CREATE TABLE EMPLOYEES (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL);

The following command creates a table named employees in lowercase.

Examples 54

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/USER_RebootCluster.html#aurora-mysql-survivable-replicas
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/aurora-global-database-upgrade.html#aurora-global-database-upgrade.major

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE employees (
 EMP_ID NUMERIC PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL,
 AVG_SALARY NUMERIC NOT NULL);

MySQL will look for objects names in with the exact case sensitivity as written in the query.

You can turn off table name case sensitivity in MySQL by setting the parameter
lower_case_table_names to 1. Column, index, stored routine, event names, and column aliases
aren’t case sensitive on either platform.

For more information, see Identifier Case Sensitivity in the MySQL documentation.

Constraints for ANSI SQL

This topic provides reference information about constraint compatibility between Microsoft SQL
Server 2019 and Amazon Aurora MySQL. You can use this guide to understand the similarities and
differences in how these two database systems handle various types of constraints, including check
constraints, unique constraints, primary key constraints, and foreign key constraints.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Constraints Unsupported CHECK.
Indexing requireme
nts for UNIQUE.

SQL Server Usage

Column and table constraints are defined by the SQL standard and enforce relational data
consistency. There are four types of SQL constraints: check constraints, unique constraints, primary
key constraints, and foreign key constraints.

Check Constraints

CHECK (<Logical Expression>)

Constraints for ANSI SQL 55

https://dev.mysql.com/doc/refman/5.7/en/identifier-case-sensitivity.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Check constraints enforce domain integrity by limiting the data values stored in table columns.
They are logical Boolean expressions that evaluate to one of three values: TRUE, FALSE, and
UNKNOWN.

Note

Check constraint expressions behave differently than predicates in other query clauses. For
example, in a WHERE clause, a logical expression that evaluates to UNKNOWN is functionally
equivalent to FALSE and the row is filtered out. For check constraints, an expression that
evaluates to UNKNOWN is functionally equivalent to TRUE because the value is permitted by
the constraint.

You can assign multiple check constraints to a single column. A single check constraint may apply
to multiple columns. In this case, it is known as a table-level check constraint.

In ANSI SQL, check constraints can’t access other rows as part of the expression. In SQL Server, you
can use user-defined functions in constraints to access other rows, tables, or even databases.

Unique Constraints

UNIQUE [CLUSTERED | NONCLUSTERED] (<Column List>)

Unique constraints should be used for all candidate keys. A candidate key is an attribute or a set of
attributes such as columns that uniquely identify each row in the relation or table data.

Unique constraints guarantee that no rows with duplicate column values exist in a table.

A unique constraint can be simple or composite. Simple constraints are composed of a single
column. Composite constraints are composed of multiple columns. A column may be a part of
more than one constraint.

Although the ANSI SQL standard allows multiple rows having NULL values for unique constraints,
in SQL Server, you can use a NULL value for only one row. Use a NOT NULL constraint in addition to
a unique constraint to disallow all NULL values.

To improve efficiency, SQL Server creates a unique index to support unique constraints. Otherwise,
every INSERT and UPDATE would require a full table scan to verify there are no duplicates. The
default index type for unique constraints is non-clustered.

SQL Server Usage 56

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Primary Key Constraints

PRIMARY KEY [CLUSTERED | NONCLUSTERED] (<Column List>)

A primary key is a candidate key serving as the unique identifier of a table row. Primary keys may
consist of one or more columns. All columns that comprise a primary key must also have a NOT
NULL constraint. Tables can have one primary key.

The default index type for primary keys is a clustered index.

Foreign Key Constraints

FOREIGN KEY (<Referencing Column List>)
REFERENCES <Referenced Table>(<Referenced Column List>)

Foreign key constraints enforce domain referential integrity. Similar to check constraints, foreign
keys limit the values stored in a column or set of columns.

Foreign keys reference columns in other tables, which must be either primary keys or have unique
constraints. The set of values allowed for the referencing table is the set of values existing the
referenced table.

Although the columns referenced in the parent table are indexed (since they must have either
a primary key or unique constraint), no indexes are automatically created for the referencing
columns in the child table. A best practice is to create appropriate indexes to support joins and
constraint enforcement.

Foreign key constraints impose DML limitations for the referencing child table and for the parent
table. The constraint’s purpose is to guarantee that no orphan rows with no corresponding
matching values in the parent table exist in the referencing table. The constraint limits INSERT
and UPDATE to the child table and UPDATE and DELETE to the parent table. For example, you can’t
delete an order having associated order items.

Foreign keys support cascading referential integrity (CRI). CRI can be used to enforce constraints
and define action paths for DML statements that violate the constraints. There are four CRI
options:

• NO ACTION — When the constraint is violated due to a DML operation, an error is raised and the
operation is rolled back.

SQL Server Usage 57

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• CASCADE — Values in a child table are updated with values from the parent table when they are
updated or deleted along with the parent.

• SET NULL — All columns that are part of the foreign key are set to NULL when the parent is
deleted or updated.

• SET DEFAULT — All columns that are part of the foreign key are set to their DEFAULT value
when the parent is deleted or updated.

These actions can be customized independently of others in the same constraint. For example, a
cascading constraint may have CASCADE for UPDATE, but NO ACTION for UPDATE.

Examples

The following example creates a composite non-clustered primary key.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PK_MyTable
 PRIMARY KEY NONCLUSTERED (Col1, Col2)
);

The following example creates a table-level check constraint.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PK_MyTable
 PRIMARY KEY NONCLUSTERED (Col1, Col2),
 CONSTRAINT CK_MyTableCol1Col2
 CHECK (Col2 >= Col1)
);

The following example creates a simple non-null unique constraint.

CREATE TABLE MyTable

SQL Server Usage 58

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PK_MyTable
 PRIMARY KEY NONCLUSTERED (Col1, Col2),
 CONSTRAINT UQ_Col2Col3
 UNIQUE (Col2, Col3)
);

The following example creates a foreign key with multiple cascade actions.

CREATE TABLE MyParentTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PK_MyTable
 PRIMARY KEY NONCLUSTERED (Col1, Col2)
);

CREATE TABLE MyChildTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 INT NOT NULL,
 Col3 INT NOT NULL,
 CONSTRAINT FK_MyChildTable_MyParentTable
 FOREIGN KEY (Col2, Col3)
 REFERENCES MyParentTable (Col1, Col2)
 ON DELETE NO ACTION
 ON UPDATE CASCADE
);

For more information, see Unique Constraints and Check Constraints and Primary and Foreign Key
Constraints in the SQL Server documentation.

MySQL Usage

Similar to SQL Server, Aurora MySQL supports all ANSI constraint types, except check.

MySQL Usage 59

https://docs.microsoft.com/en-us/sql/relational-databases/tables/unique-constraints-and-check-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/tables/primary-and-foreign-key-constraints?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

You can work around some of the functionality of CHECK (<Column>) IN (<Value
List>) using the SET and ENUM data types. For more information, see Data Types.

Unlike SQL Server, constraint names, or symbols in Aurora MySQL terminology, are optional.
Identifiers are created automatically and are similar to SQL Server column constraints that are
defined without an explicit name.

Unique Constraints

Unlike SQL Server, where unique constraints are objects supported by unique indexes, Aurora
MySQL only provides unique indexes. A unique index is the equivalent to a SQL Server unique
constraint.

As with SQL Server, unique indexes enforce distinct values for index columns. If a new row is added
or an existing row is updated with a value that matches an existing row, an error is raised and the
operation is rolled back.

Unlike SQL Server, Aurora MySQL permits multiple rows with NULL values for unique indexes.

Note

If a unique index consists of only one INT type column, you can use the _rowid alias to
reference the index in SELECT statements.

Primary Key Constraints

Similar to SQL Server, a primary key constraint in Aurora MySQL is a unique index where all
columns are NOT NULL. Each table can have only one primary key. The name of the constraint is
always PRIMARY.

Primary keys in Aurora MySQL are always clustered. They can’t be configured as NON CLUSTERED
like SQL Server. For more information, see Indexes.

Applications can reference a primary key using the PRIMARY alias. If a table has no primary key,
which isn’t recommended, Aurora MySQL uses the first NOT NULL and unique index.

MySQL Usage 60

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Keep the primary key short to minimize storage overhead for secondary indexes. In Aurora
MySQL, the primary key is clustered. Therefore, every secondary or nonclustered index
maintains a copy of the clustering key as the row pointer. It is also recommended to create
tables and declare the primary key first, followed by the unique indexes. Then create the
non-unique indexes.

If a primary key consists of a single INTEGER column, it can be referenced using the _rowid alias
in SELECT commands.

Foreign Key Constraints

Note

MySQL doesn’t support foreign key constraints for partitioned tables. For more
information, see Storage.

Aurora MySQL supports foreign key constraints for limiting values in a column, or a set of columns,
of a child table based on their existence in a parent table.

Unlike SQL Server and contrary to the ANSI standard, Aurora MySQL allows foreign keys to
reference nonunique columns in the parent table. The only requirement is that the columns are
indexed as the leading columns of an index, but not necessarily a unique index.

Aurora MySQL supports cascading referential integrity actions using the ON UPDATE and ON
DELETE clauses. The available referential actions are RESTRICT, CASCADE, SET NULL, and NO
ACTION. The default action is RESTRICT. RESTRICT and NO ACTION are synonymous.

Note

SET DEFAULT is supported by some other MySQL Server engines. Aurora MySQL uses the
InnoDB engine exclusively, which doesn’t support SET DEFAULT.

MySQL Usage 61

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Some database engines support the ANSI standard for deferred checks. NO ACTION is
a deferred check as opposed to RESTRICT, which is immediate. In MySQL, foreign key
constraints are always validated immediately. Therefore, NO ACTION is the same as the
RESTRICT action.

Aurora MySQL handles foreign keys differently than most other engines in the following ways:

• If there are multiple rows in the parent table that have the same values for the referenced
foreign key, Aurora MySQL foreign key checks behave as if the other parent rows with the same
key value don’t exist. For example, if a RESTRICT action is defined and a child row has several
parent rows, Aurora MySQL doesn’t permit deleting them.

• If ON UPDATE CASCADE or ON UPDATE SET NULL causes a recursion and updates the same
table that has been updated as part of the same cascade operation, Aurora MySQL treats it as
if it was a RESTRICT action. This effectively turns off self-referencing ON UPDATE CASCADE or
ON UPDATE SET NULL operations to prevent potential infinite loops resulting from cascaded
updates. A self-referencing ON DELETE SET NULL or ON DELETE CASCADE are allowed
because there is no risk of an infinite loop.

• Cascading operations are limited to 15 levels deep.

Check Constraints

Standard ANSI check clauses are parsed correctly and don’t raise syntax errors. However, they are
ignored and aren’t stored as part of the Aurora MySQL table definition.

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(
 <Column Definition>
 [CONSTRAINT [<Symbol>]]
 PRIMARY KEY (<Column List>)
 | [CONSTRAINT [<Symbol>]]
 UNIQUE [INDEX|KEY] [<Index Name>] [<Index Type>] (<Column List>)
 | [CONSTRAINT [<Symbol>]]
 FOREIGN KEY [<Index Name>] (<Column List>)

MySQL Usage 62

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 REFERENCES <Table Name> (<Column List>)
 [ON DELETE RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT]
 [ON UPDATE RESTRICT | CASCADE | SET NULL | NO ACTION | SET DEFAULT]
);

Migration Considerations

• Aurora MySQL doesn’t support check constraints. The engine parses the syntax for check
constraints, but they are ignored.

• Consider using triggers or stored routines to validate data values for complex expressions.

• When using check constraints for limiting to a value list such as CHECK (Col1 IN (1,2,3)),
consider using the ENUM or SET data types.

• In Aurora MySQL, the constraint name (symbol) is optional, even for table constraints defined
with the CONSTRAINT keyword. In SQL Server, it is mandatory.

• Aurora MySQL requires that both the child table and the parent table in foreign key relationship
are indexed. If the appropriate index doesn’t exist, Aurora MySQL automatically creates one.

Examples

The following example creates a composite primary key.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PRIMARY KEY (Col1, Col2)
);

The following example creates a simple non-null unique constraint.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PRIMARY KEY (Col1, Col2),
 CONSTRAINT UNIQUE (Col2, Col3)

MySQL Usage 63

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

);

The following example creates a named foreign key with multiple cascade actions.

CREATE TABLE MyParentTable
(
 Col1 INT NOT NULL,
 Col2 INT NOT NULL,
 Col3 VARCHAR(20) NULL,
 CONSTRAINT PRIMARY KEY (Col1, Col2)
);

CREATE TABLE MyChildTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 INT NOT NULL,
 Col3 INT NOT NULL,
 FOREIGN KEY (Col2, Col3)
 REFERENCES MyParentTable (Col1, Col2)
 ON DELETE NO ACTION
 ON UPDATE CASCADE
);

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Check constraints CHECK Not supported Aurora MySQL parses
CHECK syntax, but
ignores it.

Unique constraints UNIQUE UNIQUE

Primary key constrain
ts

PRIMARY KEY PRIMARY KEY

Foreign key constrain
ts

FOREIGN KEY FOREIGN KEY

Summary 64

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

Cascaded referential
actions

NO ACTION,
CASCADE, SET NULL,
SET DEFAULT

RESTRICT, CASCADE,
SET NULL, NO
ACTION

NO ACTION and
RESTRICT are
synonymous.

Indexing of referenci
ng columns

Not required Required If not specified, an
index is created
silently to support
the constraint.

Indexing of reference
d columns

PRIMARY KEY or
UNIQUE

Required Aurora MySQL
doesn’t enforce
uniqueness of
referenced columns.

Cascade recursion Not allowed,
discovered at CREATE
time

Not allowed,
discovered at run
time.

For more information, see CREATE TABLE Statement, How MySQL Deals with Constraints, and
FOREIGN KEY Constraints in the MySQL documentation.

Creating tables for ANSI SQL

This topic provides reference content comparing the creation of tables in Microsoft SQL Server
2019 and Amazon Aurora MySQL. You can understand the similarities and differences in table
creation syntax, features, and capabilities between these two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Creating Tables IDENTITY and
AUTO_INCREMENT .
Primary key is always

Creating tables for ANSI SQL 65

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/constraints.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

clustered. CREATE
TEMPORARY TABLE
syntax. Unsupported
@table variables.

SQL Server Usage

Tables in SQL Server are created using the CREATE TABLE statement and conform to the ANSI
and ISO entry level standard. The basic features of CREATE TABLE are similar for most relational
database management engines and are well defined in the ANSI and ISO standards.

In its most basic form, the CREATE TABLE statement in SQL Server is used to define:

• Table names, the containing security schema, and database.

• Column names.

• Column data types.

• Column and table constraints.

• Column default values.

• Primary, unique, and foreign keys.

T-SQL Extensions

SQL Server extends the basic syntax and provides many additional options for the CREATE TABLE
or ALTER TABLE statements. The most often used options are:

• Supporting index types for primary keys and unique constraints, clustered or non-clustered, and
index properties such as FILLFACTOR.

• Physical table data storage containers using the ON <File Group> clause.

• Defining IDENTITY auto-enumerator columns.

• Encryption.

• Compression.

SQL Server Usage 66

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Indexes.

For more information, see Data Types, Column Encryption, and Databases and Schemas.

Table Scope

SQL Server provides five scopes for tables:

• Standard tables are created on disk, globally visible, and persist through connection resets and
server restarts.

• Temporary tables are designated with the # prefix. Temporary tables are persisted in TempDB
and are visible to the run scope where they were created and any sub-scope. Temporary tables
are cleaned up by the server when the run scope terminates and when the server restarts.

• Global temporary tables are designated by the ## prefix. They are similar in scope to temporary
tables, but are also visible to concurrent scopes.

• Table variables are defined with the DECLARE statement, not with CREATE TABLE. They are
visible only to the run scope where they were created.

• Memory-Optimized tables are special types of tables used by the In-Memory Online Transaction
Processing (OLTP) engine. They use a nonstandard CREATE TABLE syntax.

Creating a Table Based on an Existing Table or Query

In SQL Server, you can create new tables based on SELECT queries as an alternate to the CREATE
TABLE statement. A SELECT statement that returns a valid set with unique column names can be
used to create a new table and populate data.

SELECT INTO is a combination of DML and DDL. The simplified syntax for SELECT INTO is:

SELECT <Expression List>
INTO <Table Name>
[FROM <Table Source>]
[WHERE <Filter>]
[GROUP BY <Grouping Expressions>...];

When creating a new table using SELECT INTO, the only attributes created for the new table
are column names, column order, and the data types of the expressions. Even a straight forward

SQL Server Usage 67

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

statement such as SELECT * INTO <New Table> FROM <Source Table> doesn’t copy
constraints, keys, indexes, identity property, default values, or any other related objects.

TIMESTAMP Syntax for ROWVERSION Deprecated Syntax

The TIMESTAMP syntax synonym for ROWVERSION has been deprecated as of SQL Server 2008 R2.
For more information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL
Server documentation.

Previously, you could use either the TIMESTAMP or the ROWVERSION keywords to denote a special
data type that exposes an auto-enumerator. The auto-enumerator generates unique eight-byte
binary numbers typically used to version-stamp table rows. Clients read the row, process it, and
check the ROWVERSION value against the current row in the table before modifying it. If they are
different, the row has been modified since the client read it. The client can then apply different
processing logic.

Note that when you migrate to Amazon Aurora MySQL-Compatible Edition (Aurora MySQL)
using Amazon Schema Conversion Tool (Amazon SCT), neither ROWVERSION nor TIMESTAMP are
supported. Amazon SCT raises the following error: 706 — Unsupported data type … of
variable/column was replaced. Check the conversion result.

To maintain this functionality, add customer logic, potentially in the form of a trigger.

Syntax

Simplified syntax for CREATE TABLE.

CREATE TABLE [<Database Name>.<Schema Name>].<Table Name> (<Column Definitions>)
[ON{<Partition Scheme Name> (<Partition Column Name>)];

<Column Definition>:
<Column Name> <Data Type>
[CONSTRAINT <Column Constraint>
[DEFAULT <Default Value>]]
[IDENTITY [(<Seed Value>, <Increment Value>)]
[NULL | NOT NULL]
[ENCRYPTED WITH (<Encryption Specifications>)
[<Column Constraints>]
[<Column Index Specifications>]

SQL Server Usage 68

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

<Column Constraint>:
[CONSTRAINT <Constraint Name>]
{{PRIMARY KEY | UNIQUE} [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = <Fill Factor>]
| [FOREIGN KEY]
REFERENCES <Referenced Table> (<Referenced Columns>)]

<Column Index Specifications>:
INDEX <Index Name> [CLUSTERED | NONCLUSTERED]
[WITH(<Index Options>]

Examples

The following example creates a basic table.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

The following example creates a table with column constraints and an identity.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL PRIMARY KEY IDENTITY (1,1),
 Col2 VARCHAR(20) NOT NULL CHECK (Col2 <> ''),
 Col3 VARCHAR(100) NULL
 REFERENCES MyOtherTable (Col3)
);

The following example creates a table with an additional index.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
 INDEX IDX_Col2 NONCLUSTERED
);

SQL Server Usage 69

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see CREATE TABLE (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Like SQL Server, Aurora MySQL provides ANSI/ISO syntax entry level conformity for CREATE
TABLE and custom extensions to support Aurora MySQL specific functionality.

Note

Unlike SQL Server that uses a single set of physical files for each database, Aurora MySQL
tables are created as separate files for each table. Therefore, the SQL Server concept of File
Groups doesn’t apply to Aurora MySQL. For more information, see Databases and Schemas.

In its most basic form, and very similar to SQL Server, you can use the CREATE TABLE statement in
Aurora MySQL to define:

• Table name, containing security schema, and database.

• Column names.

• Column data types.

• Column and table constraints.

• Column default values.

• Primary, unique, and foreign keys.

Aurora MySQL Extensions

Aurora MySQL extends the basic syntax and allows many additional options to be defined as part
of the CREATE TABLE or ALTER TABLE statements. The most often used options are:

• Defining AUTO_INCREMENT properties for auto-enumerator columns.

• Encryption.

• Compression.

• Indexes.

MySQL Usage 70

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Table Scope

Aurora MySQL provides two table scopes:

• Standard tables are created on disk, visible globally, and persist through connection resets and
server restarts.

• Temporary tables are created using the CREATE TEMPORARY TABLE statement. A temporary
table is visible only to the session that creates it and is dropped automatically when the session
is closed.

Creating a Table Based on an Existing Table or Query

Aurora MySQL provides two ways to create standard or temporary tables based on existing tables
and queries.

CREATE TABLE <New Table> LIKE <Source Table> creates an empty table based on the
definition of another table including any column attributes and indexes defined in the original
table.

CREATE TABLE … AS <Query Expression> is similar to SELECT INTO in SQL Server. You can
use this statement to create a new table and populate data in a single step. Unlike SQL Server, you
can combine standard column definitions and additional columns derived from the query in Aurora
MySQL. This statement doesn’t copy supporting objects or attributes from the source table, similar
to SQL Server. For example:

CREATE TABLE SourceTable
(
 Col1 INT
);

INSERT INTO SourceTable
VALUES (1)

CREATE TABLE NewTable
(
 Col1 INT
)
AS

MySQL Usage 71

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT Col1 AS Col2
FROM SourceTable;

INSERT INTO NewTable (Col1, Col2)
VALUES (2,3);

SELECT * FROM NewTable

For the preceding examples, the result looks as shown following.

Col1 Col2
NULL 1
2 3

Converting TIMESTAMP and ROWVERSION columns

Note

Aurora MySQL has a TIMESTAMP data type, which is a temporal type not to be confused
with TIMESTAMP in SQL Server. For more information, see Data Types.

SQL server provides an automatic mechanism for stamping row versions for application
concurrency control.

Consider the following example.

CREATE TABLE WorkItems
(
 WorkItemID INT IDENTITY(1,1) PRIMARY KEY,
 WorkItemDescription XML NOT NULL,
 Status VARCHAR(10) NOT NULL DEFAULT ('Pending'),
 -- other columns...
 VersionNumber ROWVERSION
);

The VersionNumber column automatically updates when a row is modified. The actual value is
meaningless, just the fact that it changed is what indicates a row modification. The client can now

MySQL Usage 72

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

read a work item row, process it, and ensure no other clients updated the row before updating the
status.

SELECT @WorkItemDescription = WorkItemDescription,
 @Status = Status,
 @VersionNumber = VersionNumber
FROM WorkItems
WHERE WorkItemID = @WorkItemID;

EXECUTE ProcessWorkItem @WorkItemID, @WorkItemDescription, @Status OUTPUT;

IF (
 SELECT VersionNumber
 FROM WorkItems
 WHERE WorkItemID = @WorkItemID
) = @VersionNumber;
 EXECUTE UpdateWorkItems @WorkItemID, 'Completed'; -- Success
ELSE
 EXECUTE ConcurrencyExceptionWorkItem; -- Row updated while processing

In Aurora MySQL, you can add a trigger to maintain the updated stamp for each row.

CREATE TABLE WorkItems
(
 WorkItemID INT AUTO_INCREMENT PRIMARY KEY,
 WorkItemDescription JSON NOT NULL,
 Status VARCHAR(10) NOT NULL DEFAULT 'Pending',
 -- other columns...
 VersionNumber INTEGER NULL
);

CREATE TRIGGER MaintainWorkItemVersionNumber
AFTER UPDATE
ON WorkItems FOR EACH ROW
SET NEW.VersionNumber = OLD.VersionNumber + 1;

For more information, see Triggers.

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>

MySQL Usage 73

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(<Create Definition> ,...)[<Table Options>];

<Create Definition>:
<Column Name> <Column Definition> | [CONSTRAINT [symbol]]
[PRIMARY KEY | UNIQUE | FOREIGN KEY <Foreign Key Definition> | CHECK (<Check
 Predicate>)]
(INDEX <Index Column Name>,...)

<Column Definition>:
<Data Type> [NOT NULL | NULL]
[DEFAULT <Default Value>]
[AUTO_INCREMENT]
[UNIQUE [KEY]] [[PRIMARY] KEY]
[COMMENT <comment>]

Migration Considerations

Migrating CREATE TABLE statements should be mostly compatible with the SQL Server syntax
when using only ANSI standard syntax.

IDENTITY columns should be rewritten to use the Aurora MySQL syntax of AUTO_INCREMENT.
Note that similar to SQL Server, there can be only one such column in a table, but in Aurora MySQL
it also must be indexed.

Temporary table syntax should be modified to use the CREATE TEMPORARY TABLE statement
instead of the CREATE #Table syntax of SQL Server. Global temporary tables and table variables
aren’t supported by Aurora MySQL. For sharing data across connections, use standard tables.

SELECT INTO queries should be rewritten to use CREATE TABLE … AS syntax. When copying
tables, remember that the CREATE TABLE … LIKE syntax also retains all supporting objects
such as constraints and indexes.

Aurora MySQL doesn’t require specifying constraint names when using the CONSTRAINT keyword.
Unique constraint names are created automatically. If specifying a name, the name must be unique
for the database.

Unlike SQL Server IDENTITY columns, which require EXPLICIT SET IDENTITY_INSERT ON to
bypass the automatic generation, Aurora MySQL allows inserting explicit values into the column.
To generate an automatic value, insert a NULL or a 0 value. To reseed the automatic value, use
ALTER TABLE as opposed to DBCC CHECKIDENT in SQL Server.

MySQL Usage 74

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

In Aurora MySQL, you can add a comment to a column for documentation purposes, similar to SQL
Server extended properties feature.

Note

Contrary to the SQL standard, foreign keys in Aurora MySQL can point to non-unique
parent column values. In this case, the foreign key prohibits deletion of any of the parent
rows. For more information, see Constraints and FOREIGN KEY Constraint Differences in the
MySQL documentation.

Examples

The following example creates a basic table.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

The following example creates a table with column constraints and an auto increment column.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
 CHECK (Col2 <> ''),
 Col3 VARCHAR(100) NULL
 REFERENCES MyOtherTable (Col3)
);

The following example creates a table with an additional index.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL,
 INDEX IDX_Col2 (Col2)
);

MySQL Usage 75

https://dev.mysql.com/doc/refman/5.7/en/ansi-diff-foreign-keys.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

ANSI compliance Entry level Entry level Basic syntax is
compatible.

Auto generated
enumerator

IDENTITY AUTO_INCREMENT Only one allowed for
each table. In Aurora
MySQL, insert NULL
or 0 to generate a
new value.

Reseed auto
generated value

DBCC CHECKIDENT ALTER TABLE For more informati
on, see ALTER TABLE
Statement.

Index types CLUSTERED ,
NONCLUSTERED

Implicit — primary
keys use clustered
indexes.

For more informati
on, see Indexes.

Physical storage
location

ON <File Group> Not supported Physical storage is
managed by Amazon.

Temporary tables #TempTable CREATE TEMPORARY
TABLE

Global temporary
tables

##GlobalT
empTable

Not supported Use standard tables
to share data
between connections.

Table variables DECLARE @Table Not supported

Create table as query SELECT… INTO CREATE TABLE… AS

Copy table structure Not supported CREATE TABLE…
LIKE

Summary 76

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

Memory-optimized
tables

Supported Not supported For workloads that
require memory
resident tables,
consider using
Amazon ElastiCac
he (Redis OSS). For
more information,
see Amazon ElastiCac
he for Redis.

For more information, see CREATE TABLE Statement in the MySQL documentation.

Common table expressions for ANSI SQL

This topic provides reference information about Common Table Expressions (CTEs) and their
compatibility between Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can understand
the differences in CTE support between these database systems, which is crucial when migrating
from SQL Server to Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Common Table
Expressions

Rewrite non-recur
sive CTE to use views
and derived tables.
Redesign recursive
CTE code.

SQL Server Usage

Common Table Expressions (CTE), which have been a part of the ANSI standard since SQL:1999,
simplify queries and make them more readable by defining a temporary view, or derived table,

Common table expressions for ANSI SQL 77

https://www.amazonaws.cn/elasticache/redis/
https://www.amazonaws.cn/elasticache/redis/
https://dev.mysql.com/doc/refman/5.7/en/create-table.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

that a subsequent query can reference. SQL Server CTEs can be the target of DML modification
statements and have similar restrictions as updateable views.

SQL Server CTEs provide recursive functionality in accordance with the ANSI 99 standard. Recursive
CTEs can reference themselves and re-run queries until the data set is exhausted, or the maximum
number of iterations is exceeded.

Simplified CTE Syntax

WITH <CTE NAME>
AS
(
SELECT
)
SELECT ...
FROM CTE

Recursive CTE syntax

WITH <CTE NAME>
AS (
<Anchor SELECT query>
UNION ALL
<Recursive SELECT query with reference to <CTE NAME>>
)
SELECT ... FROM <CTE NAME>...

Examples

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)

SQL Server Usage 78

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a CTE to calculate the total quantity in every order and then join to the OrderItems table
to obtain the relative quantity for each item.

WITH AggregatedOrders
AS
(
 SELECT OrderID, SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
)
SELECT O.OrderID, O.Item, O.Quantity,
 (O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 AggregatedOrders AS AO
 ON O.OrderID = AO.OrderID;

For the preceding example, the result looks as shown following.

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Using a recursive CTE, create and populate the Employees table with the DirectManager for
each employee.

CREATE TABLE Employees
(
 Employee VARCHAR(5) NOT NULL PRIMARY KEY,
 DirectManager VARCHAR(5) NULL
);

INSERT INTO Employees(Employee, DirectManager)

SQL Server Usage 79

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

VALUES
('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Use a recursive CTE to display the employee-management hierarchy.

WITH EmpHierarchyCTE AS
(
-- Anchor query retrieves the top manager
SELECT 0 AS LVL,
 Employee,
 DirectManager
FROM Employees AS E
WHERE DirectManager IS NULL
UNION ALL
-- Recursive query gets all Employees managed by the previous level
SELECT LVL + 1 AS LVL,
 E.Employee,
 E.DirectManager
FROM EmpHierarchyCTE AS EH
INNER JOIN
Employees AS E
ON E.DirectManager = EH.Employee
)
SELECT *
FROM EmpHierarchyCTE;

For the preceding example, the result looks as shown following.

LVL Employee DirectManager
0 Dave NULL
1 John Dave
1 Jose Dave
2 Fred John

For more information, see Recursive Queries Using Common Table Expressions in the SQL Server
documentation.

SQL Server Usage 80

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms186243(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) 5.7 doesn’t support Common Table
Expressions (CTE).

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports common table
expressions both nonrecursive and recursive. Common table expressions enable use of
named temporary result sets implemented by permitting a WITH clause preceding SELECT
statements and certain other statements. As of MySQL 8.0.19, the recursive SELECT part of
a recursive common table expression supports a LIMIT clause. LIMIT with OFFSET is also
supported. For more information, see Recursive Common Table Expressions in the MySQL
documentation.

Migration Considerations

As a workaround, use views or derived tables in place of non-recursive CTEs.

Since non-recursive CTEs are more convenient for readability and code simplification, You can
convert the code to use derived tables, which are a subquery in the parent query’s FROM clause. For
example, replace the following CTE:

WITH TopCustomerOrders
(
 SELECT Customer,
 COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY Customer
)
SELECT TOP 10 *
FROM TopCustomerOrders
ORDER BY NumOrders DESC;

With the following subquery:

SELECT *
FROM (
 SELECT Customer,

MySQL Usage 81

https://dev.mysql.com/doc/refman/8.0/en/with.html#common-table-expressions-recursive

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 COUNT(*) AS NumOrders
 FROM Orders
 GROUP BY Customer
) AS TopCustomerOrders
ORDER BY NumOrders DESC
LIMIT 10 OFFSET 0;

When using derived tables, the derived table definition must be repeated if multiple instances are
required for the query.

Converting the code for recursive CTEs isn’t straight forward, but you can achieve similar
functionality using loops.

Examples

Replacing non-recursive CTEs

Use a derived table to replace non-recursive CTE functionality as shown following.

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Define a derived table for TotalQty of every order and then join to the OrderItems to obtain the
relative quantity for each item.

SELECT O.OrderID,
 O.Item,
 O.Quantity,

MySQL Usage 82

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 (O.Quantity / AO.TotalQty) * 100 AS PercentOfOrder
FROM OrderItems AS O
 INNER JOIN
 (
 SELECT OrderID,
 SUM(Quantity) AS TotalQty
 FROM OrderItems
 GROUP BY OrderID
) AS AO
 ON O.OrderID = AO.OrderID;

For the preceding example, the result looks as shown following.

OrderID Item Quantity PercentOfOrder
1 M8 Bolt 100 100.0000000000
2 M8 Nut 100 100.0000000000
3 M8 Washer 100 33.3333333300
3 M6 Washer 200 66.6666666600

Replacing recursive CTEs

Use recursive SQL code in stored procedures and SQL loops to replace a recursive CTEs.

Note

Stored procedure and function recursion in Aurora MySQL is turned off by default. You
can set the server system variable max_sp_recursion_depth to a value of 1 or higher
to enable recursion. However, this approach isn’t recommended because it may increase
contention for the thread stack space.

Create and populate an Employees table.

CREATE TABLE Employees
(
 Employee VARCHAR(5) NOT NULL PRIMARY KEY,
 DirectManager VARCHAR(5) NULL
);

INSERT INTO Employees (Employee, DirectManager)

MySQL Usage 83

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

VALUES
('John', 'Dave'),
('Jose', 'Dave'),
('Fred', 'John'),
('Dave', NULL);

Create an EmpHierarchy table.

CREATE TABLE EmpHierarchy
(
 LVL INT,
 Employee VARCHAR(5),
 Manager VARCHAR(5)
);

Create a procedure that uses a loop to traverse the employee hierarchy. For more information, see
Stored Procedures and Flow Control.

CREATE PROCEDURE P()
BEGIN
DECLARE var_lvl INT;
DECLARE var_Employee VARCHAR(5);
SET var_lvl = 0;
SET var_Employee = (
 SELECT Employee
 FROM Employees |
 WHERE DirectManager IS NULL
);
INSERT INTO EmpHierarchy
VALUES (var_lvl, var_Employee, NULL);
WHILE var_lvl <> -1
DO
INSERT INTO EmpHierarchy (LVL, Employee, Manager)
SELECT var_lvl + 1,
 Employee,
 DirectManager
FROM Employees
WHERE DirectManager IN (
 SELECT Employee
 FROM EmpHierarchy
 WHERE LVL = var_lvl
);

MySQL Usage 84

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

IF NOT EXISTS (
 SELECT *
 FROM EmpHierarchy
 WHERE LVL = var_lvl + 1
)
THEN SET var_lvl = -1;
ELSE SET var_lvl = var_lvl + 1;
END IF;
END WHILE;
END;

Run the procedure.

CALL P()

Select all records from the EmpHierarchy table.

SELECT * FROM EmpHierarchy;

Level Employee Manager
0 Dave
1 John Dave
1 Jose Dave
2 Fred John

Summary

SQL Server Aurora MySQL Comments

Non recursive CTE Derived table For multiple instances of the
same table, the derived table
definition subquery must be
repeated.

Recursive CTE Loop inside a stored
procedure or stored function.

For more information, see WITH (Common Table Expressions) in the MySQL documentation.

Summary 85

https://dev.mysql.com/doc/refman/8.0/en/with.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Data types for ANSI SQL

This topic provides reference content about data type compatibility when migrating from Microsoft
SQL Server 2019 to Amazon Aurora MySQL. You can use this information to understand how
different data types in SQL Server map to their counterparts in Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Data Types Minor syntax and
handling differences.
No special UNICODE
data types.

SQL Server Usage

In SQL Server, each table column, variable, expression, and parameter has an associated data type.

SQL Server provides a rich set of built-in data types as summarized in the following table.

Category Data Types

Numeric BIT, TINYINT, SMALLINT, INT, BIGINT,
NUMERIC, DECIMAL, MONEY, SMALLMONEY ,
FLOAT, REAL

String and character CHAR, VARCHAR, NCHAR, NVARCHAR

Temporal DATE, TIME, SMALLDATETIME , DATETIME,
DATETIME2 , DATETIMEOFFSET

Binary BINARY, VARBINARY

Large Object (LOB) TEXT, NTEXT, IMAGE, VARCHAR(MAX) ,
NVARCHAR(MAX) , VARBINARY(MAX)

Data types for ANSI SQL 86

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Category Data Types

Cursor CURSOR

GUID UNIQUEIDENTIFIER

Hierarchical identifier HIERARCHYID

Spatial GEOMETRY, GEOGRAPHY

Sets (table type) TABLE

XML XML

Other specialty types ROW VERSION, SQL_VARIANT

Note

You can create custom user-defined data types using T-SQL, and the .NET framework.
Custom data types are based on the built-in system data types and are used to simplify
development. For more information, see User-Defined Types.

TEXT, NTEXT, and IMAGE Deprecated Data Types

The TEXT, NTEXT, and IMAGE data types have been deprecated as of SQL Server 2008 R2. For more
information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL Server
documentation.

These data types are legacy types for storing BLOB and CLOB data. The TEXT data type was used to
store ASCII text CLOBS, the NTEXT data type to store UNICODE CLOBS, and IMAGE was used as a
generic data type for storing all BLOB data. In SQL Server 2005, Microsoft introduced the new and
improved VARCHAR (MAX), NVARCHAR(MAX), and VARBINARY(MAX) data types as the new BLOB
and CLOB standard. These new types support a wider range of functions and operations. They also
provide enhanced performance over the legacy types.

If your code uses TEXT, NTEXT, or IMAGE data types, Amazon SCT automatically converts them to
the appropriate Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) BLOB data type. TEXT

SQL Server Usage 87

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

and NTEXT are converted to LONGTEXT and image to LONGBLOB. Make sure you use the proper
collations. For more details, see the Collations.

Examples

Define table columns.

CREATE TABLE MyTable
(
 Col1 AS INTEGER NOT NULL PRIMARY KEY,
 Col2 AS NVARCHAR(100) NOT NULL
);

Define variable types.

DECLARE @MyXMLType AS XML,
 @MyTemporalType AS DATETIME2

DECLARE @MyTableType
AS TABLE
(
 Col1 AS BINARY(16) NOT NULL PRIMARY KEY,
 Col2 AS XML NULL
);

For more information, see Data types (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the following data types:

Category Data Types

Numeric BIT, INTEGER, SMALLINT, TINYINT,
MEDIUMINT , BIGINT, DECIMAL, NUMERIC,
FLOAT, DOUBLE

String and character CHAR, VARCHAR, SET

MySQL Usage 88

https://docs.microsoft.com/en-us/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Category Data Types

Temporal DATE, DATETIME, TIMESTAMP , TIME, YEAR

Binary BINARY, VARBINARY

Large Object (LOB) BLOB, TEXT

Cursor CURSOR

Spatial GEOMETRY, POINT, LINESTRING , POLYGON,
MULTIPOINT , MULTILINESTRING ,
MULTIPOLYGON , GEOMETRYCOLLECTION

JSON JSON

Be aware that Aurora MySQL uses different rules than SQL Server for handling out-of-range and
overflow situations. SQL Server always raises an error for out-of-range values. Aurora MySQL
exhibits different behavior depending on run time settings.

For example, a value may be clipped to the first or last value in the range of permitted values for
the data type if STRICT SQL mode isn’t set.

For more information, see Out-of-Range and Overflow Handling in the MySQL documentation.

Converting from TEXT, NTEXT, and IMAGE SQL Server Deprecated Data Types

The legacy SQL Server types for storing LOB data are deprecated as of SQL Server 2008 R2.

When you convert from these types to Aurora MySQL using the Amazon Schema Conversion Tool
(Amazon SCT, they are converted as shown following:

SQL Server LOB Type Converted to Aurora MySQL
data type

Comments

TEXT LONGTEXT Make sure to choose the right
collation. For more informati
on, see Collations.

MySQL Usage 89

https://dev.mysql.com/doc/refman/5.7/en/out-of-range-and-overflow.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server LOB Type Converted to Aurora MySQL
data type

Comments

NTEXT LONGTEXT Make sure to choose the right
collation. For more informati
on, see Collations.

IMAGE LONGBLOB

The size cap for all of these types is compatible and is capped at 2 GB of data, which may allow less
characters depending on the chosen collation.

Note

Aurora MySQL supports UCS-2 collation, which is compatible with SQL Server UNICODE
types.

While it is safe to use the default conversion types, remember that, unlike SQL Server, Aurora
MySQL also provides smaller BLOB and CLOB types, which may be more efficient for your data.

Even the basic VARCHAR and VARBINARY data types can store strings up to 32 KB, which is much
longer than SQL Server 8 KB limit. If the strings or binary data that you need to store don’t exceed
32 KB, it may be more efficient to store these as non-LOB types in Aurora MySQL.

Summary

The following table summarizes the key differences and migration considerations for migrating
from SQL Server data types to Aurora MySQL data types.

SQL Server Data Type Convert to MySQL Data Type Comments

BIT BIT Aurora MySQL also supports
BIT(m), which can be used
to store multiple bit values.
In SQL Server, literal bit
notation uses the numerical

Summary 90

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

digits 0 and 1. Aurora
MySQL uses b'<value> or
0b<value> notations.

For more information, see
Bit-Value Type - BIT and Bit-
Value Literals in the MySQL
documentation.

TINYINT TINYINT SQL Server only supports
unsigned TINYINT, which can
store values between 0 and
255. Aurora MySQL supports
both signed TINYINT and
TINYINT UNSIGNED. The
latter can be used to store
values between -128 and
127. The default for integer
types in Aurora MySQL is
to use signed integers. For
compatibility, explicitly
specify TINYINT UNSIGNED.

For more information, see
Integer Types (Exact Value) in
the MySQL documentation.

Summary 91

https://dev.mysql.com/doc/refman/5.7/en/bit-type.html
https://dev.mysql.com/doc/refman/5.7/en/bit-value-literals.html
https://dev.mysql.com/doc/refman/5.7/en/bit-value-literals.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

SMALLINT SMALLINT Compatible type. SQL
Server supports only signed
SMALLINT. Aurora MySQL
also supports SMALLINT
UNSIGNED, which can store
values between 0 and 65535.
The default for integer types
in Aurora MySQL is to use
signed integers. Consider
using unsigned integers for
storage optimization.

For more information, see
Integer Types (Exact Value) in
the MySQL documentation.

Summary 92

https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

INTEGER INTEGER Compatible type. SQL
Server supports only signed
INTEGER, which can store
values between -21474836
48 and 2147483647. Aurora
MySQL also supports
INTEGER UNSIGNED, which
can store values between
0 and 4294967295. The
default for integer types
in Aurora MySQL is to use
signed integers. Consider
using unsigned integers for
storage optimization.

Aurora MySQL also supports a
MEDIUMINT type, which uses
only three bytes of storage
vs. four bytes for INTEGER.
For large tables, consider
using MEDIUMINT instead
of INT if the value range is
within -8388608 to -8388607
for a SIGNED type, or 0 to
16777215 for UNSIGNED
type.

For more information, see
Integer Types (Exact Value) in
the MySQL documentation.

Summary 93

https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

BIGINT BIGINT Compatible type. SQL Server
supports only signed BIGINT.
Aurora MySQL also supports
BIGINT UNSIGNED, which
can store values between
0 and 2^64-1. The default
for integer types in Aurora
MySQL is to use signed
integers. Consider using
unsigned integers for storage
optimization.

For more information, see
Integer Types (Exact Value) in
the MySQL documentation.

NUMERIC / DECIMAL NUMERIC / DECIMAL Compatible types. DECIMAL
and NUMERIC are synonymou
s.

MONEY / SMALLMONEY N/A Aurora MySQL doesn’t
support dedicated monetary
types. Use NUMERIC /
DECIMAL instead. If your
application uses literals with
monetary signs (for example,
$50.23), rewrite to remove
the monetary sign.

Summary 94

https://dev.mysql.com/doc/refman/5.7/en/integer-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

FLOAT / REAL FLOAT / REAL / DOUBLE Compatible types. In SQL
Server, both REAL and
FLOAT(n), where n#24,
use 4 bytes of storage, are
equivalent to FLOAT and
REAL in Aurora MySQL. In
SQL Server, FLOAT(n), where
n>24, uses 8 bytes.

The Aurora MySQL DOUBLE
PRECISION type always
uses 8 bytes.

Aurora MySQL also supports
the nonstandard FLOAT(M,D
) , REAL(M,D) or DOUBLE
PRECISION(M,D) where
(M,D) indicates values can be
stored with up to M digits in
total with D digits after the
decimal point.

For more information,
see Floating-Point Types
(Approximate Value) in the
MySQL documentation.

Summary 95

https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

CHAR CHAR / VARCHAR Compatible types up to 255
characters only. SQL Server
supports CHAR data types
up to 8,000 characters. The
Aurora MySQL CHAR data
type is limited to a maximum
of 255 characters.

For strings requiring more
than 255 characters, use
VARCHAR. When convertin
g from CHAR to VARCHAR,
exercise caution because
VARCHAR behaves differently
than CHAR; trailing spaces are
trimmed.

For more information, see The
CHAR and VARCHAR Types in
the MySQL documentation.

VARCHAR VARCHAR Compatible types. SQL Server
supports VARCHAR columns
up to 8,000 characters.
Aurora MySQL can store up to
65,535 characters with regard
to the maximal row size limit.

For more information, see The
CHAR and VARCHAR Types in
the MySQL documentation.

Summary 96

https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/char.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

NCHAR CHAR Aurora MySQL doesn’t require
the use of specific data types
for storing UNICODE data.
Use the CHAR data type and
define a UNICODE collation
using the CHARACTER SET or
COLLATE keywords.

For more information, see
Unicode Character Sets in the
MySQL documentation.

NVARCHAR VARCHAR Aurora MySQL doesn’t require
the use of specific data types
for storing UNICODE data. Use
the VARCHAR data type and
define a UNICODE collation
using the CHARACTER SET or
COLLATE keywords.

For more information, see
Unicode Character Sets in the
MySQL documentation.

Summary 97

https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html
https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

DATE DATE Compatible types. The range
for SQL Server DATE data
type is '0001-01-01' through
'9999-12-31'. The range for
Aurora MySQL is '1000-01-01'
through '9999-12-31'.

Aurora MySQL doesn’t
support dates before 1000
AD. For more information, see
Date and Time Functions.

For more information, see
The DATE, DATETIME, and
TIMESTAMP Types in the
MySQL documentation.

Summary 98

https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

TIME TIME Compatible types. SQL Server
supports explicit fractiona
l seconds using the format
TIME(n) where n is between
0 to 7. Aurora MySQL doesn’t
allow explicit fractional
setting.

Aurora MySQL supports up
to 6 digits for microseco
nd resolution of fractional
seconds. SQL Server provides
one more digit to support
a resolution of up to 100
nanoseconds.

If your application uses the
TIME(n) format, rewrite to
remove the (n) setting.

Aurora MySQL also supports
TIME values that range from
-838:59:59 to 838:59:59

. You can use the hours part
to represent the time of day,
where hours must be less
than 24, or to represent a
time interval, which can be
greater than 24 hours and
have negative values.

For more information, see
The TIME Type in the MySQL
documentation.

Summary 99

https://dev.mysql.com/doc/refman/5.7/en/time.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

SMALLDATETIME DATETIME / TIMESTAMP Aurora MySQL doesn’t
support SMALLDATETIME .
Use DATETIME instead. Use
SMALLDATETIME for storage
space optimization where
lower ranges and resolutions
are required.

For more information, see
Date and Time Functions.

DATETIME DATETIME In SQL Server, the DATETIME
data type supports a value
range between 1753-01-0
1 and 9999-12-31 with
a resolution of up to 3.33ms.
Aurora MySQL DATETIME
supports a wider value range
between 1000-01-01
00:00:00 and 9999-12-3
1 23:59:59 with a higher
resolution of microseconds
and optional six fractional
second digits.

For more information, see
Date and Time Functions.

For more information
about DATETIME, see The
DATE, DATETIME, and
TIMESTAMP Types in the
MySQL documentation.

Summary 100

https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

DATETIME2 DATETIME In SQL Server, the
DATETIME2 data type
supports a value range
between 0001-01-01
and 9999-12-31 with
a resolution of up to 100
nanoseconds using seven
fractional second digits.
Aurora MySQL DATETIME
supports a narrower value
range between 1000-01-01
00:00:00 and 9999-12-3
1 23:59:59 with a lower
resolution of microseconds
and optional six fractional
second digits.

For more information, see
Date and Time Functions.

For more information
about DATETIME, see The
DATE, DATETIME, and
TIMESTAMP Types in the
MySQL documentation.

Summary 101

https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

DATETIMEOFFSET TIMESTAMP Aurora MySQL doesn’t
support full time zone
awareness and managemen
t functions. Use the
time_zone system
variable in conjunction with
TIMESTAMP columns to
achieve partial time zone
awareness.

For more information, see
Server Options.

In Aurora MySQL, TIMESTAMP
 isn’t the same as in SQL

Server. The latter is a
synonym for ROW_VERSION .
Aurora MySQL TIMESTAMP

 is equivalent to the
DATETIME type with a
smaller range.

With Aurora MySQL
DATETIME, you can use
values between 1000-01-0
1 00:00:00 and
9999-12-31 23:59:59 .
TIMESTAMP is limited to
values between 1970-01-0
1 00:00:01 and
2038-01-19 03:14:07 .

Aurora MySQL converts
TIMESTAMP values from the
current time zone to UTC for

Summary 102

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

storage and back from UTC
to the current time zone for
retrieval.

For more information, see
MySQL Server Time Zone
Support in the MySQL
documentation.

Summary 103

https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

BINARY BINARY / VARBINARY In Aurora MySQL, the BINARY
data type is considered to
be a string data type and
is similar to CHAR. BINARY
contains byte strings rather
than character strings and
uses the binary character set
and collation. Comparison
and sorting are based on the
numeric values of the bytes in
the values.

SQL Server supports up to
8,000 bytes for a BINARY
data types. Aurora MySQL
BINARY is limited to 255
characters, similar to CHAR. If
larger values are needed, use
VARBINARY .

Literal assignment for Aurora
MySQL BINARY types use
string literals, unlike SQL
Server explicit binary 0x
notation.

For more information, see
The BINARY and VARBINARY
Types and The binary
Collation Compared to bin
Collations in the MySQL
documentation.

Summary 104

https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

VARBINARY VARBINARY In Aurora MySQL, the
VARBINARY data type is
considered a string data
type, similar to VARCHAR.
VARBINARY contains byte
strings rather than character
strings and has a binary
character set. Collation,
comparison, and sorting are
based on the numeric values
of the bytes in the values.

Aurora MySQL VARBINARY
 supports up to 65,535

characters, significantly larger
than the 8,000 byte limit in
SQL Server. Literal assignmen
t for Aurora MySQL BINARY
types use string literals, unlike
SQL Server explicit binary 0x
notation.

For more information, see
The BINARY and VARBINARY
Types and The binary
Collation Compared to bin
Collations in the MySQL
documentation.

Summary 105

https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

TEXT / VARCHAR (MAX) VARCHAR / TEXT /
MEDIUMTEXT / LONGTEXT

In SQL Server, a TEXT data
type is a variable-length
ASCII string data type with
a maximum string length of
2^31-1 (2 GB).

Use the following list to
determine the optimal Aurora
MySQL data type:

• For a string length of
2^16-1 bytes, use VARCHAR
or TEXT.

• For a string length
of 2^24-1 bytes, use
MEDIUMTEXT .

• For a string length
of 2^32-1 bytes, use
LONGTEXT.

For more information, see The
BLOB and TEXT Types and
Data Type Storage Requireme
nts in the MySQL documenta
tion.

Summary 106

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-string
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-string

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

NTEXT / NVARCHAR (MAX) VARCHAR / TEXT /
MEDIUMTEXT / LONGTEXT

Aurora MySQL doesn’t require
the use of specific data types
for storing UNICODE data. Use
the TEXT compatible data
types listed earlier and define
a UNICODE collation using the
CHARACTER SET or COLLATE
keywords.

For more information, see
Unicode Character Sets in the
MySQL documentation.

Summary 107

https://dev.mysql.com/doc/refman/5.7/en/charset-unicode-sets.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

IMAGE / VARBINARY (MAX) VARBINARY / BLOB /
MEDIUMBLOB / LONGBLOB

In SQL Server, an IMAGE
data type is a variable-length
binary data type with a range
of 0 through 2^31-1 (2 GB).

Similar to the BINARY and
VARBINARY data types, the
BLOB data types are considere
d string data types. BLOB data
types contain byte strings
rather than character strings
and use a binary character
set. Collation, comparison,
and sorting are based on the
numeric values of the bytes in
the values.

Use the following list to
determine the optimal Aurora
MySQL data type:

• For a string length
of 2^16-1 bytes, use
VARBINARY or BLOB.

• For a string length
of 2^24-1 bytes, use
MEDIUMBLOB .

• For a string length
of 2^32-1 bytes, use
LONGBLOB.

For more information, see The
BLOB and TEXT Types, String
Type Storage Requirements,

Summary 108

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html#data-types-storage-reqs-strings

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

and The binary Collation
Compared to bin Collations in
the MySQL documentation.

CURSOR CURSOR Types are compatible,
although in Aurora MySQL a
cursor isn’t really considere
d to be a type. For more
information, see Cursors.

UNIQUEIDENTIFIER N/A Aurora MySQL doesn’t
support a native unique
identifier type. Use
BINARY(16) , which is the
same base type used for the
UNIQUEIDENTIFIER type
in SQL Server. It generates
values using the UUID()
function, which is the
equivalent of the NEW_ID
function in SQL Server.

UUID returns a Universal
Unique Identifier generated
according to RFC 4122. For
more information, see A
Universally Unique IDentifier
(UUID) URN Namespace.

For more information,
see UUID() in the MySQL
documentation.

Summary 109

https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://dev.mysql.com/doc/refman/5.7/en/charset-binary-collations.html
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt
https://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_uuid

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

HIERARCHYID N/A Aurora MySQL doesn’t
support native hierarchy
representation. Rewrite
functionality with custom
application code using one
the common SQL hierarchi
cal data representation
approaches:

• Adjacency list.

• Nested set.

• Closure table.

• Materialized path.

For more information, see
Adjacency list and Nested set
model.

Summary 110

https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Nested_set_model
https://en.wikipedia.org/wiki/Nested_set_model

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

GEOMETRY GEOMETRY In SQL Server, the GEOMETRY
type represents data in a
Euclidean (flat) coordinat
e system. SQL Server
supports a set of methods
for this type, which include
methods defined by the
Open Geospatial Consortium
(OGC) standard, and a set of
additional extensions.

Aurora MySQL supports
GEOMETRY spatial data,
although the syntax and
functionality may differ
significantly from SQL Server.
A rewrite of the code is
required.

For more information, see
Spatial Data Types in the
MySQL documentation.

TABLE N/A Aurora MySQL doesn’t
support a TABLE data type.
For more information, see
User-Defined Types.

Summary 111

https://dev.mysql.com/doc/refman/5.7/en/spatial-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Data Type Convert to MySQL Data Type Comments

XML N/A Aurora MySQL doesn’t
support a native XML data
type. However, it does provide
full support for JSON data
types, which SQL Server
doesn’t.

Because XML and JSON are
text documents, consider
migrating the XML formatted
documents to JSON or use
string BLOBs and custom
code to parse and query
documents.

For more information, see The
JSON Data Type in the MySQL
documentation.

ROW_VERSION N/A Aurora MySQL doesn’t
support a row version. Use
triggers to update a dedicated
column from a primary
sequence value table.

SQL_VARIANT N/A Aurora MySQL doesn’t
support a hybrid, all-purpo
se data type similar to
SQL_VARIANT in SQL
Server. Rewrite applications
to use explicit types.

For more information, see Data Types in the MySQL documentation.

Summary 112

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/data-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

GROUP BY for ANSI SQL

This topic provides reference content comparing the GROUP BY functionality in Microsoft SQL
Server 2019 and Amazon Aurora MySQL. It explores the similarities and differences in syntax,
supported features, and aggregate functions between the two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

GROUP BY Basic syntax
compatible.
Advanced options
such as ALL, CUBE,
GROUPING SETS will
require rewrites to
use multiple queries
with UNION.

SQL Server Usage

GROUP BY is an ANSI SQL query clause used to group individual rows that have passed the WHERE
filter clause into groups to be passed on to the HAVING filter and then to the SELECT list. This
grouping supports the use of aggregate functions such as SUM, MAX, AVG and others.

Syntax

ANSI compliant GROUP BY syntax:

GROUP BY
[ROLLUP | CUBE]
<Column Expression> ...n
[GROUPING SETS (<Grouping Set>)...n

Backward compatibility syntax:

GROUP BY

GROUP BY for ANSI SQL 113

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 [ALL] <Column Expression> ...n
 [WITH CUBE | ROLLUP]

The basic ANSI syntax for GROUP BY supports multiple grouping expressions, the CUBE and
ROLLUP keywords, and the GROUPING SETS clause; all used to add super-aggregate rows to the
output.

Up to SQL Server 2008 R2, the database engine supported a legacy, proprietary, and not ANSI-
compliant syntax using the WITH CUBE and WITH ROLLUP clauses. These clauses added super-
aggregates to the output.

Also, up to SQL Server 2008 R2, SQL Server supported the GROUP BY ALL syntax, which was used
to create an empty group for rows that failed the WHERE clause.

SQL Server supports the following aggregate functions: AVG, CHECKSUM_AGG, COUNT, COUNT_BIG,
GROUPING, GROUPING_ID, STDEV, STDEVP, STRING_AGG, SUM, MIN, MAX, VAR, VARP.

Examples

Legacy CUBE and ROLLUP Syntax

CREATE TABLE Orders
(
 OrderID INT IDENTITY(1,1) NOT NULL
 PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),
 ('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP

SQL Server Usage 114

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Customer OrderDate NumOrders
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6

The rows with NULL values were added as a result of the WITH ROLLUP clause and contain super
aggregates for the following:

• All orders for Jim and John regardless of OrderDate.

• A super aggregated for all customers and all dates.

Using CUBE instead of ROLLUP adds super aggregates in all possible combinations, not only in
group by expression order.

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY Customer, OrderDate
WITH CUBE

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3

SQL Server Usage 115

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

John NULL 3

The additional four rows where the value for Customer is set to NULL, were added by CUBE. These
rows provide super aggregates for every date for all customers that were not part of the ROLLUP
results.

Legacy GROUP BY ALL

Use the Orders table from the preceding example.

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY ALL Customer, OrderDate

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
John 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
Jim 2018-05-04 0
Warning: Null value is eliminated by an aggregate or other SET operation.

The last row for 2018-05-04 failed the WHERE clause and was returned as an empty group as
indicated by the warning for the empty COUNT(*) = 0.

Use GROUPING SETS

The following query uses the ANSI compliant GROUPING SETS syntax to provide all possible
aggregate combinations for the Orders table, similar to the result of the CUBE syntax. This syntax
requires specifying each dimension that needs to be aggregated.

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY GROUPING SETS (
 (Customer, OrderDate),

SQL Server Usage 116

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 (Customer),
 (OrderDate),
 ()
)

Customer OrderDate NumOrders
Jim 2018-05-01 1
John 2018-05-01 1
NULL 2018-05-01 2
John 2018-05-02 1
NULL 2018-05-02 1
Jim 2018-05-03 1
John 2018-05-03 1
NULL 2018-05-03 2
Jim 2018-05-04 1
NULL 2018-05-04 1
NULL NULL 6
Jim NULL 3
John NULL 3

For more information, see Aggregate Functions (Transact-SQL) and SELECT - GROUP BY- Transact-
SQL in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports only the basic ANSI syntax for
GROUP BY and doesn’t support GROUPING SETS or the standard GROUP BY CUBE and GROUP BY
ROLLUP. Aurora MySQL supports the WITH ROLLUP non-ANSI syntax like SQL Server, but not the
CUBE option.

Aurora MySQL supports a wider range of aggregate functions than SQL Server: AVG, BIT_AND,
BIT_OR, BIT_XOR, COUNT, GROUP_CONCAT, JSON_ARRAYAGG, JSON_OBJECTAGG, MAX, MIN, STD,
STDDEV, STDDEV_POP, STDDEV_SAMP, SUM, VAR_POP, VAR_SAMP, VARIANCE.

The bitwise aggregates and the JSON aggregates not available in SQL Server may prove to be very
useful in many scenarios. For more information, see MySQL Handling of GROUP BY in the MySQL
documentation.

Unlike SQL Server, in Aurora MySQL you can’t use ROLLUP and ORDER BY clauses in the same
query. As a workaround, encapsulate the ROLLUP query as a derived table and add the ORDER BY
clause to the outer query.

MySQL Usage 117

https://docs.microsoft.com/en-us/sql/t-sql/functions/aggregate-functions-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15
https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT *
FROM (
 SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
 FROM Orders AS O
 GROUP BY Customer, OrderDate
 WITH ROLLUP
)
ORDER BY OrderDate, Customer;

Additionally, rows produced by ROLLUP can’t be referenced in a WHERE clause or in a FROM clause
as a join condition because the super aggregates are added late in the processing phase.

Even more problematic is the lack of a function equivalent to the GROUPING_ID function in
SQL Server, which can be used to distinguish super aggregate rows from the base groups.
Unfortunately, it is currently not possible to distinguish rows that have NULLs due to being super
aggregates from rows where the NULL is from the base set.

Until SQL92, column expressions not appearing in the GROUP BY list were not allowed in the
HAVING, SELECT, and ORDER BY clauses. This limitation still applies in SQL Server today. For
example, the following query isn’t legal in SQL Serve since a customer group may contain multiple
order dates.

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY Customer

However, in some cases, when the columns that don’t appear in the GROUP BY clause are
functionally dependent on the GROUP BY columns, it does make sense to allow it and ANSI SQL
optional feature T301 does allow it. Aurora MySQL can detect such functional dependencies and
allows such queries to run.

Note

To use non-aggregate columns in the HAVING, SELECT, and ORDER BY clauses, turn on the
ONLY_FULL_GROUP_BY SQL mode.

MySQL Usage 118

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Syntax

SELECT <Select List>
FROM <Table Source>
WHERE <Row Filter>
GROUP BY <Column Name> | <Expression> | <Position>
 [ASC | DESC], ...
 [WITH ROLLUP]]

Migration Considerations

For most aggregate queries that use only grouping expressions without modifiers, the migration
should be straightforward. Even the WITH ROLLUP syntax is supported as is in Aurora MySQL. For
more complicated aggregates such as CUBE and GROUPING SETS, a rewrite to include all sub-
aggregate queries as UNION ALL sets is required.

Because Aurora MySQL supports a wider range of aggregate functions, the migration shouldn’t
present major challenges. Some minor syntax changes, for example replacing STDEVP with
STDDEV_POP, can be performed automatically by the Amazon Schema Conversion Tool
(Amazon SCT. Some may need manual intervention such as rewriting the STRING_AGG syntax
to GROUP_CONCAT. Also consider using Aurora MySQL additional aggregate functions for query
optimizations.

If you plan to keep using the WITH ROLLUP groupings, you must consider how to handle NULLS
since Aurora MySQL doesn’t support an equivalent function to GROUPING_ID in SQL Server.

Examples

Rewrite SQL Server WITH CUBE modifier for migration.

CREATE TABLE Orders
(
 OrderID INT NOT NULL AUTO_INCREMENT
 PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO Orders(Customer, OrderDate)
VALUES ('John', '20180501'), ('John', '20180502'), ('John', '20180503'),

MySQL Usage 119

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 ('Jim', '20180501'), ('Jim', '20180503'), ('Jim', '20180504')

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY Customer, OrderDate
WITH ROLLUP
UNION ALL -- Add the super aggregate rows for each OrderDate
SELECT NULL,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
GROUP BY OrderDate

Customer OrderDate NumOrders
Jim 2018-05-01 1
Jim 2018-05-03 1
Jim 2018-05-04 1
Jim NULL 3
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
John NULL 3
NULL NULL 6
NULL 2018-05-01 2
NULL 2018-05-02 1
NULL 2018-05-03 2
NULL 2018-05-04 1

Rewrite SQL Server GROUP BY ALL for migration.

SELECT Customer,
 OrderDate,
 COUNT(*) AS NumOrders
FROM Orders AS O
WHERE OrderDate <= '20180503'
GROUP BY Customer, OrderDate
UNION ALL -- Add the empty groups
SELECT DISTINCT Customer,
 OrderDate,
 NULL

MySQL Usage 120

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM Orders AS O
WHERE OrderDate > '20180503';

Customer OrderDate NumOrders
Jim 2018-05-01 1
Jim 2018-05-03 1
John 2018-05-01 1
John 2018-05-02 1
John 2018-05-03 1
Jim 2018-05-04 NULL

Summary

Table of similarities, differences, and key migration considerations.

SQL Server feature Aurora MySQL feature Comments

MAX, MIN, AVG, COUNT,
COUNT_BIG

MAX, MIN, AVG, COUNT In Aurora MySQL, COUNT
returns a BIGINT and is
compatible with COUNT and
COUNT_BIG in SQL Server.

CHECKSUM_AGG N/A Use a loop to calculate
checksums.

GROUPING, GROUPING_ID N/A Reconsider query logic to
avoid having NULL groups
that are ambiguous with the
super aggregates.

STDEV, STDEVP, VAR, VARP STDDEV, STDDEV_POP ,
VARIANCE, VAR_POP

Rewrite keywords only.

STRING_AGG GROUP_CONCAT Rewrite syntax.

WITH ROLLUP WITH ROLLUP Compatible

WITH CUBE N/A Rewrite using UNION ALL.

Summary 121

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server feature Aurora MySQL feature Comments

ANSI CUBE / ROLLUP N/A Rewrite using WITH ROLLUP
and using UNION ALL
queries.

GROUPING SETS N/A Rewrite using UNION ALL
queries.

N/A Non-aggregate columns in
HAVING, SELECT, ORDER BY

Requires to turn off the
ONLY_FULL_GROUP_BY

 SQL mode. Functional
dependencies are evaluated
by the engine.

For more information, see MySQL Handling of GROUP BY in the MySQL documentation.

Table JOIN for ANSI SQL

This topic provides reference content comparing table join functionality between Microsoft SQL
Server 2019 and Amazon Aurora MySQL. You can understand the similarities and differences in join
syntax and support between these two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Table Joins Basic syntax
compatible. FULL
OUTER, APPLY, and
ANSI SQL 89 outer
joins will need to be
rewritten.

Table JOIN for ANSI SQL 122

https://dev.mysql.com/doc/refman/5.7/en/group-by-handling.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage

SQL Server supports the standard ANSI join types:

• <Set A> CROSS JOIN <Set B> — Results in a Cartesian product of the two sets. Every JOIN
starts as a Cartesian product.

• <Set A> INNER JOIN <Set B> ON <Join Condition> — Filters the cartesian product to
only the rows where the join predicate evaluates to TRUE.

• <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition> — Adds to the INNER JOIN
all the rows from the reserved left set with NULL for all the columns that come from the right
set.

• <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition> — Adds to the INNER
JOIN all the rows from the reserved right set with NULL for all the columns that come from the
left set.

• <Set A> FULL OUTER JOIN <Set B> ON <Join Condition> — Designates both sets as
reserved and adds non matching rows from both, similar to a LEFT OUTER JOIN and a RIGHT
OUTER JOIN.

APPLY

SQL Server also supports the APPLY operator, which is somewhat similar to a join. However, APPLY
operators enable the creation of a correlation between <Set A> and <Set B> such as that <Set
B> may consist of a subquery, a VALUES row value constructor, or a table valued function that is
evaluated for each row of <Set A> where the <Set B> query can reference columns from the
current row in <Set A>. This functionality isn’t possible with any type of standard JOIN operator.

There are two APPLY types:

• <Set A> CROSS APPLY <Set B> — Similar to a CROSS JOIN in the sense that every row
from <Set A> is matched with every row from <Set B>.

• <Set A> OUTER APPLY <Set B> — Similar to a LEFT OUTER JOIN in the sense that rows
from <Set A> are returned even if the sub query for <Set B> produces an empty set. In that
case, NULL is assigned to all columns of <Set B>.

SQL Server Usage 123

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ANSI SQL 89 JOIN Syntax

Up until SQL Server version 2008 R2, SQL Server also supported the old style JOIN syntax
including LEFT and` RIGHT OUTER JOIN`.

The ANSI syntax for a CROSS JOIN operator was to list the sets in the FROM clause using commas
as separators. Consider the following example:

SELECT *
FROM Table1,
 Table2,
 Table3...

To perform an INNER JOIN, you only needed to add the JOIN predicate as part of the WHERE
clause. Consider the following example:

SELECT *
FROM Table1,
 Table2
WHERE Table1.Column1 = Table2.Column1

Although the ANSI standard didn’t specify outer joins at the time, most RDBMS supported them
in one way or another. T-SQL supported outer joins by adding an asterisk to the left or the right of
equality sign of the join predicate to designate the reserved table. Consider the following example:

SELECT *
FROM Table1,
 Table2
WHERE Table1.Column1 *= Table2.Column1

To perform a FULL OUTER JOIN, asterisks were placed on both sides of the equality sign of the
join predicate.

As of SQL Server 2008R2, outer joins using this syntax have been deprecated. For more
information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL Server
documentation.

SQL Server Usage 124

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Even though inner joins using the ANSI SQL 89 syntax are still supported, they are highly
discouraged due to being notorious for introducing hard to catch programming bugs.

Syntax

CROSS JOIN

FROM <Table Source 1>
 CROSS JOIN
 <Table Source 2>

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>

INNER / OUTER JOIN

FROM <Table Source 1>
 [{ INNER | { { LEFT | RIGHT | FULL } [OUTER] } }] JOIN
 <Table Source 2>
 ON <JOIN Predicate>

-- ANSI 89
FROM <Table Source 1>,
 <Table Source 2>
WHERE <Join Predicate>
<Join Predicate>:: <Table Source 1 Expression> | = | *= | =* | *=* <Table Source 2
 Expression>

APPLY

FROM <Table Source 1>
 { CROSS | OUTER } APPLY
 <Table Source 2>
<Table Source 2>:: <SELECT sub-query> | <Table Valued UDF> | <VALUES clause>

SQL Server Usage 125

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Create the Orders and Items tables.

CREATE TABLE Items
(
Item VARCHAR(20) NOT NULL
 PRIMARY KEY
Category VARCHAR(20) NOT NULL,
Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),
('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL
 REFERENCES Items(Item),
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI

SQL Server Usage 126

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 ON I.Item = OI.Item;

-- ANSI SQL 89
SELECT *
FROM Items AS I,
 OrderItems AS OI
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

Find Items that were never ordered.

SELECT Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

-- ANSI SQL 89
SELECT Item
FROM
(
 SELECT I.Item, O.OrderID
 FROM Items AS I,
 OrderItems AS OI
 WHERE I.Item *= OI.Item
) AS LeftJoined
WHERE LeftJoined.OrderID IS NULL;

FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));
CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *

SQL Server Usage 127

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM T1
 FULL OUTER JOIN
 T2
 ON T1.Col1 = T2.Col1;

Result:
Col1 COl2 Col1 COl2
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

For more information, see FROM clause plus JOIN, APPLY, PIVOT (Transact-SQL) in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the following types of joins in
the same way as SQL Server, except for FULL OUTER JOIN:

• <Set A> CROSS JOIN <Set B> — Results in a Cartesian product of the two sets. Every JOIN
starts as a Cartesian product.

• <Set A> INNER JOIN <Set B> ON <Join Condition> — Filters the Cartesian product to
only the rows where the join predicate evaluates to TRUE.

• <Set A> LEFT OUTER JOIN <Set B> ON <Join Condition> — Adds to the INNER JOIN
all the rows from the reserved left set with NULL for all the columns that come from the right
set.

• <Set A> RIGHT OUTER JOIN <Set B> ON <Join Condition> — Adds to the INNER
JOIN all the rows from the reserved right set with NULL for all the columns that come from the
left set.

In addition, Aurora MySQL supports the following join types not supported by SQL Server:

• <Set A> NATURAL [INNER | LEFT OUTER | RIGHT OUTER] JOIN <Set B> —
Implicitly assumes that the join predicate consists of all columns with the same name from <Set
A> and <Set B>.

• <Set A> STRAIGHT_JOIN <Set B> — Forces <Set A> to be read before <Set B> and is
used as an optimizer hint.

MySQL Usage 128

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Aurora MySQL also supports the USING clause as an alternative to the ON clause. The USING clause
consists of a list of comma separated columns that must appear in both tables. The join predicate is
the equivalent of an AND logical operator for equality predicates of each column. For example, the
following two joins are equivalent:

FROM Table1
 INNER JOIN
 Table2
 ON Table1.Column1 = Table2.column1;

FROM Table1
 INNER JOIN
 Table2
 USING (Column1);

If Column1 is the only column with a common name between Table1 and Table2, the following
statement is also equivalent:

FROM Table1
 NATURAL JOIN
 Table2

Note

Aurora MySQL supports the ANSI SQL 89 syntax for joins using commas in the FROM clause,
but only for inner joins.

Note

Aurora MySQL supports neither APPLY nor the equivalent LATERAL JOIN used by some
other database engines.

Syntax

FROM
 <Table Source 1> CROSS JOIN <Table Source 2>

MySQL Usage 129

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 | <Table Source 1> INNER JOIN <Table Source 2>
 ON <Join Predicate> | USING (Equality Comparison Column List)
 | <Table Source 1> {LEFT|RIGHT} [OUTER] JOIN <Table Source 2>
 ON <Join Predicate> | USING (Equality Comparison Column List)
 | <Table Source 1> NATURAL [INNER | {LEFT|RIGHT} [OUTER]] JOIN <Table Source 2>
 | <Table Source 1> STRAIGHT_JOIN <Table Source 2>
 | <Table Source 1> STRAIGHT_JOIN <Table Source 2>
 ON <Join Predicate>

Migration Considerations

For most joins, the syntax should be equivalent and no rewrites should be needed.

• CROSS JOIN using either ANSI SQL 89 or ANSI SQL 92 syntax.

• INNER JOIN using either ANSI SQL 89 or ANSI SQL 92 syntax.

• OUTER JOIN using the ANSI SQL 92 syntax only.

FULL OUTER JOIN and OUTER JOIN using the pre-ANSI SQL 92 syntax aren’t supported, but they
can be easily worked around.

CROSS APPLY and OUTER APPLY aren’t supported and need to be rewritten.

Examples

Create the Orders and Items tables.

CREATE TABLE Items
(
 Item VARCHAR(20) NOT NULL
 PRIMARY KEY
 Category VARCHAR(20) NOT NULL,
 Material VARCHAR(20) NOT NULL
);

INSERT INTO Items (Item, Category, Material)
VALUES
('M8 Bolt', 'Metric Bolts', 'Stainless Steel'),
('M8 Nut', 'Metric Nuts', 'Stainless Steel'),
('M8 Washer', 'Metric Washers', 'Stainless Steel'),
('3/8" Bolt', 'Imperial Bolts', 'Brass')

MySQL Usage 130

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL
 REFERENCES Items(Item),
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200)

INNER JOIN and OUTER JOIN

SELECT *
FROM Items AS I
 INNER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item;

-- ANSI SQL 89
SELECT *
FROM Items AS I,
 Orders AS O
WHERE I.Item = OI.Item;

LEFT OUTER JOIN

SELECT Item
FROM Items AS I
 LEFT OUTER JOIN
 OrderItems AS OI
 ON I.Item = OI.Item
WHERE OI.OrderID IS NULL;

Rewrite for FULL OUTER JOIN

CREATE TABLE T1(Col1 INT, COl2 CHAR(2));

MySQL Usage 131

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE T2(Col1 INT, COl2 CHAR(2));

INSERT INTO T1 (Col1, Col2)
VALUES (1, 'A'), (2,'B');

INSERT INTO T2 (Col1, Col2)
VALUES (2,'BB'), (3,'CC');

SELECT *
FROM T1
 LEFT OUTER JOIN
 T2
 ON T1.Col1 = T2.Col1
UNION ALL
SELECT NULL, NULL, Col1, Col2
FROM T2
WHERE Col1 NOT IN (SELECT Col1 FROM T1);

Result:
Col1 COl2 Col1 COl2
1 A NULL NULL
2 B 2 BB
NULL NULL 3 CC

Summary

Table of similarities, differences, and key migration considerations.

SQL Server Aurora MySQL Comments

INNER JOIN with ON clause
or commas

Supported

OUTER JOIN with ON clause Supported

OUTER JOIN with commas Not supported Requires T-SQL rewrite post
SQL Server 2008 R2.

CROSS JOIN or using
commas

Supported

Summary 132

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Aurora MySQL Comments

CROSS APPLY and OUTER
APPLY

Not Supported Rewrite required.

Not Supported NATURAL JOIN Not recommended, may cause
unexpected issues if table
structure changes.

Not Supported STRAIGHT_JOIN

Not Supported USING clause

For more information, see JOIN Clause in the MySQL documentation.

Views for ANSI SQL

This topic provides reference information about views in Microsoft SQL Server and Amazon Aurora
MySQL, comparing their features and usage. You can use this content to understand the similarities
and differences between views in these two database systems, which is valuable for planning and
executing migrations from SQL Server to Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Minor syntax and
handling differenc
es. Indexes, triggers,
and temporary views
aren’t supported.

SQL Server Usage

Views are schema objects that provide stored definitions for virtual tables. Similar to tables, views
are data sets with uniquely named columns and rows. With the exception of indexed views, view

Views for ANSI SQL 133

https://dev.mysql.com/doc/refman/5.7/en/join.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

objects don’t store data. They consist only of a query definition and are reevaluated for each
invocation.

Views are used as abstraction layers and security filters for the underlying tables. They can JOIN
and UNION data from multiple source tables and use aggregates, window functions, and other SQL
features as long as the result is a semi-proper set with uniquely identifiable columns and no order
to the rows. You can use distributed views to query other databases and data sources using linked
servers.

As an abstraction layer, a view can decouple application code from the database schema. The
underlying tables can be changed without the need to modify the application code, as long as
the expected results of the view don’t change. You can use this approach to provide backward
compatible views of data.

As a security mechanism, a view can screen and filter source table data. You can perform
permission management at the view level without explicit permissions to the base objects,
provided the ownership chain is maintained.

For more information, see Overview of SQL Server Security in the SQL Server documentation.

View definitions are evaluated when they are created and aren’t affected by subsequent changes to
the underlying tables.

For example, a view that uses SELECT * doesn’t display columns that were added later to the base
table. Similarly, if a column was dropped from the base table, invoking the view results in an error.
Use the SCHEMABINDING option to prevent changes to base objects.

Modifying Data Through Views

Updatable views can both SELECT and modify data. For a view to be updatable, the following
conditions must be met:

• The DML targets only one base table.

• Columns being modified must be directly referenced from the underlying base tables. Computed
columns, set operators, functions, aggregates, or any other expressions aren’t permitted.

• If a view is created with the CHECK OPTION, rows being updated can’t be filtered out of the view
definition as the result of the update.

SQL Server Usage 134

https://docs.microsoft.com/en-us/previous-versions/dotnet/framework/data/adonet/sql/overview-of-sql-server-security?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Special View Types

SQL Server also provides three types of special views:

• Indexed views (also known as materialized views or persisted views) are standard views that
have been evaluated and persisted in a unique clustered index, much like a normal clustered
primary key table. Each time the source data changes, SQL Server re-evaluates the indexed
views automatically and updates the indexed view. Indexed views are typically used as a means
to optimize performance by pre-processing operators such as aggregations, joins, and others.
Queries needing this pre-processing don’t have to wait for it to be reevaluated on every query
run.

• Partitioned views are views that rejoin horizontally partitioned data sets from multiple
underlying tables, each containing only a subset of the data. The view uses a UNION ALL query
where the underlying tables can reside locally or in other databases (or even other servers).
These types of views are called Distributed Partitioned Views (DPV).

• System views are used to access server and object meta data. SQL Server also supports a set of
standard INFORMATION_SCHEMA views for accessing object meta data.

Syntax

CREATE [OR ALTER] VIEW [<Schema Name>.] <View Name> [(<Column Aliases>])]
[WITH [ENCRYPTION][SCHEMABINDING][VIEW_METADATA]]
AS <SELECT Query>
[WITH CHECK OPTION][;]

Examples

Create a view that aggregates items for each customer.

CREATE TABLE Orders
(
 OrderID INT NOT NULL PRIMARY KEY,
 OrderDate DATETIME NOT NULL
 DEFAULT GETDATE()
);

CREATE TABLE OrderItems

SQL Server Usage 135

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(
 OrderID INT NOT NULL
 REFERENCES Orders(OrderID),
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

CREATE VIEW SalesView
AS
SELECT O.Customer,
 OI.Product,
 SUM(CAST(OI.Quantity AS BIGINT)) AS TotalItemsBought
FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

Create an indexed view that pre-aggregates items for each customer.

CREATE VIEW SalesViewIndexed
AS
SELECT O.Customer,
 OI.Product,
 SUM_BIG(OI.Quantity) AS TotalItemsBought
FROM Orders AS O
 INNER JOIN
 OrderItems AS OI
 ON O.OrderID = OI.OrderID;

CREATE UNIQUE CLUSTERED INDEX IDX_SalesView
ON SalesViewIndexed (Customer, Product);

Create a partitioned view.

CREATE VIEW dbo.PartitioneView
WITH SCHEMABINDING
AS
SELECT *
FROM Table1
UNION ALL

SQL Server Usage 136

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT *
FROM Table2
UNION ALL
SELECT *
FROM Table3

For more information, see Views, Modify Data Through a View, and CREATE VIEW (Transact-SQL) in
the SQL Server documentation.

MySQL Usage

Similar to SQL Server, Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) views consist of
a SELECT statement that can references base tables and other views.

Aurora MySQL views are created using the CREATE VIEW statement. The SELECT statement
comprising the definition of the view is evaluated only when the view is created and isn’t affected
by subsequent changes to the underlying base tables.

Aurora MySQL views have the following restrictions:

• A view can’t reference system variables or user-defined variables.

• When used within a stored procedure or function, the SELECT statement can’t reference
parameters or local variables.

• A view can’t reference prepared statement parameters.

• All objects referenced by a view must exist when the view is created. If an underlying table or
view is later dropped, invoking the view results in an error.

• Views can’t reference TEMPORARY tables.

• TEMPORARY views aren’t supported.

• Views don’t support triggers.

• Aliases are limited to a maximum length of 64 characters (not the typical 256 maximum alias
length).

Aurora MySQL provides additional properties not available in SQL Server:

• The ALGORITHM clause is a fixed hint that affects the way the MySQL query processor handles
the view physical evaluation operator.

MySQL Usage 137

https://docs.microsoft.com/en-us/sql/relational-databases/views/views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/views/modify-data-through-a-view?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-view-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The MERGE algorithm uses a dynamic approach where the definition of the view is merged to the
outer query.

The TEMPTABLE algorithm materializes the view data internally. For more information, see View
Processing Algorithms in the MySQL documentation.

• The DEFINER and SQL SECURITY clauses can be used to specify a specific security context for
checking view permissions at run time.

Similar to SQL Server, Aurora MySQL supports updatable views and the ANSI standard CHECK
OPTION to limit inserts and updates to rows referenced by the view.

The LOCAL and CASCADED keywords are used to determine the scope of violation checks. When
using the LOCAL keyword, the CHECK OPTION is evaluated only for the view being created.
CASCADED causes evaluation of referenced views. The default is CASCADED.

In general, only views having a one-to-one relationship between the source rows and the exposed
rows are updatable.

Adding the following constructs prevents modification of data:

• Aggregate functions.

• DISTINCT.

• GROUP BY.

• HAVING.

• UNION or UNION ALL.

• Subquery in the select list.

• Certain joins.

• Reference to a non-updatable view.

• Subquery in the WHERE clause that refers to a table in the FROM clause.

• ALGORITHM = TEMPTABLE.

• Multiple references to any column of a base table.

MySQL Usage 138

https://dev.mysql.com/doc/refman/5.7/en/view-algorithms.html
https://dev.mysql.com/doc/refman/5.7/en/view-algorithms.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

A view must have unique column names. Column aliases are derived from the base tables or
explicitly specified in the SELECT statement of column definition list. ORDER BY is permitted in
Aurora MySQL, but ignored if the outer query has an ORDER BY clause.

Aurora MySQL assesses data access privileges as follows:

• The user creating a view must have all required privileges to use the top-level objects referenced
by the view.

For example, for a view referencing table columns, the user must have privilege for each column
in any clause of the view definition.

• If the view definition references a stored function, only the privileges needed to invoke the
function are checked. The privileges required at run time can be checked only at run time
because different invocations may use different run paths within the function code.

• The user referencing a view must have appropriate SELECT, INSERT, UPDATE, or DELETE
privileges, as with a normal table.

• When a view is referenced, privileges for all objects accessed by the view are evaluated using the
privileges for the view DEFINER account, or the invoker, depending on whether SQL SECURITY
is set to DEFINER or INVOKER.

• When a view invocation triggers the call of a stored function, privileges are checked for
statements that run within the function based on the function’s SQL SECURITY setting. For
functions where the security is set to DEFINER, the function runs with the privileges of the
DEFINER account. For functions where it is set to INVOKER, the function runs with the privileges
determined by the view’s SQL SECURITY setting as described before.

Syntax

CREATE [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { <User> | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW <View Name> [(<Column List>)]
 AS <SELECT Statement>
 [WITH [CASCADED | LOCAL] CHECK OPTION];

MySQL Usage 139

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migration Considerations

The basic syntax for views is very similar to SQL Server and is ANSI compliant. Code migration
should be straightforward.

Aurora MySQL doesn’t support triggers on views. In SQL Server, INSTEAD OF triggers are
supported. For more information, see Triggers.

In Aurora MySQL, ORDER BY is permitted in a view definition. It is ignored if the outer SELECT has
its own ORDER BY. This behavior is different than SQL Server where ORDER BY is allowed only for
TOP filtering. The actual order of the rows isn’t guaranteed.

Security context is explicit in Aurora MySQL, which isn’t supported in SQL Server. Use security
contexts to work around the lack of ownership-chain permission paths.

Unlike SQL Server, a view in Aurora MySQL can invoke functions, which in turn may introduce a
change to the database. For more information, see User-Defined Functions.

The WITH CHECK option in Aurora MySQL can be scoped to LOCAL or CASCADED. The CASCADED
causes the CHECK option to be evaluated for nested views referenced in the parent.

Indexed views aren’t supported in Aurora MySQL. Consider using application maintained tables
instead. Change application code to reference those tables instead of the base table.

Examples

Create and populate the Invoices table.

CREATE TABLE Invoices(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL);

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create the TotalSales view.

MySQL Usage 140

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE VIEW TotalSales
AS
SELECT Customer,
 SUM(TotalAmount) AS CustomerTotalAmount
GROUP BY Customer;

Invoke the view.

SELECT * FROM TotalSales
ORDER BY CustomerTotalAmount DESC;

Customer CustomerTotalAmount
John 1400.23
James 677.22
Jeff 245.00

Summary

Feature SQL Server Aurora MySQL Comments

Indexed views Supported N/A

Partitioned views Supported N/A You can create
partitioned views in
the same way as SQL
Server, they won’t
benefit from the
internal optimizat
ions such as partition
elimination.

Updateable views Supported Supported

Prevent schema
conflicts

SCHEMABINDING
option

Triggers on views INSTEAD OF N/A For more informati
on, see Triggers.

Summary 141

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

Temporary views CREATE VIEW
#View…

N/A

Refresh view definitio
n

sp_refreshview /
ALTER VIEW

ALTER VIEW

For more information, see CREATE VIEW Statement, Restrictions on Views, and Updatable and
Insertable Views in the MySQL documentation.

Window functions for ANSI SQL

This topic provides reference information about window functions in Microsoft SQL Server and
their compatibility with Amazon Aurora MySQL. You can understand the differences in support for
window functions between SQL Server and Aurora MySQL, which is crucial for planning database
migrations.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Window Functions Rewrite window
functions to use
alternative SQL
syntax.

SQL Server Usage

Window functions use an OVER clause to define the window and frame for a data set to be
processed. They are part of the ANSI standard and are typically compatible among various SQL
dialects. However, most database engines don’t yet support the full ANSI specification.

Window functions are a relatively new, advanced, and efficient T-SQL programming tool. They are
highly utilized by developers to solve numerous programming challenges.

Window functions for ANSI SQL 142

https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/view-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html
https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server currently supports the following window functions:

Window function category Examples

Ranking functions ROW_NUMBER , RANK, DENSE_RANK , and
NTILE

Aggregate functions AVG, MIN, MAX, SUM, COUNT, COUNT_BIG
, VAR, STDEV, STDEVP, STRING_AGG ,

GROUPING, GROUPING_ID , VAR, VARP, and
CHECKSUM_AGG

Analytic functions LAG, LEAD, FIRST_Value , LAST_VALU
E , PERCENT_RANK , PERCENTILE_CONT ,
PERCENTILE_DISC , and CUME_DIST

Other functions NEXT_VALUE_FOR . For more information,
see Identity and Sequences.

Syntax

<Function()>
OVER
(
[<PARTITION BY clause>]
[<ORDER BY clause>]
[<ROW or RANGE clause>]
)

Examples

Create and populate the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)

SQL Server Usage 143

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Use a window ranking function to rank items based on the ordered quantity.

SELECT Item,
 Quantity,
 RANK() OVER(ORDER BY Quantity) AS QtyRank
FROM OrderItems;

Item Quantity QtyRank
M8 Bolt 100 1
M8 Nut 100 1
M8 Washer 200 3
M6 Locking Nut 300 4

Use a partitioned window aggregate function to calculate the total quantity for each order
(without using a GROUP BY clause).

SELECT Item,
 Quantity,
 OrderID,
 SUM(Quantity)
 OVER (PARTITION BY OrderID) AS TotalOrderQty
FROM OrderItems;

Item Quantity OrderID TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Use an analytic LEAD function to get the next largest quantity for the order.

SQL Server Usage 144

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT Item,
 Quantity,
 OrderID,
 LEAD(Quantity)
 OVER (PARTITION BY OrderID ORDER BY Quantity) AS NextQtyOrder
FROM OrderItems;

Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 NULL
M8 Nut 100 2 NULL
M8 Washer 200 3 300
M6 Locking Nut 300 3 NULL

For more information, see SELECT - OVER Clause (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Aurora MySQL version 5.7 doesn’t support Window functions.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports window
functions that for each row from a query perform a calculation using rows related to that
row. These include functions such as RANK(), LAG(), and NTILE(). In addition, several
existing aggregate functions now can be used as window functions, for example, SUM()
and AVG(). For more information, see Window Functions in the MySQL documentation.

Migration Considerations

As a temporary workaround, rewrite the code to remove the use of Window functions, and revert
to using more traditional SQL code solutions.

In most cases, you can find an equivalent SQL query, although it may be less optimal in terms of
performance, simplicity, and readability.

See the following examples for migrating Window functions to code that uses correlated
subqueries.

MySQL Usage 145

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/window-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

You may want to archive the original code and then reuse it in the future when Aurora
MySQL is upgraded to version 8. The documentation for version 8 indicates the Window
function syntax is ANSI compliant and will be compatible with SQL Server T-SQL syntax.

For more information, see Window Functions in the MySQL documentation.

Examples

The following examples demonstrate ANSI SQL compliant subquery solutions as replacements for
the two example queries from the previous SQL Server section.

Create and populate an OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Rank items based on ordered quantity. The following example is a workaround for the window
ranking function.

SELECT Item,
Quantity,
(
 SELECT COUNT(*)
 FROM OrderItems AS OI2
 WHERE OI.Quantity > OI2.Quantity) + 1

MySQL Usage 146

https://dev.mysql.com/doc/refman/8.0/en/window-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 AS QtyRank
FROM OrderItems AS OI;

Item Quantity QtyRank
M8 Bolt 100 1
M8 Nut 100 1
M6 Locking Nut 300 4
M8 Washer 200 3

Calculate the grand total. The following example is a workaround for a partitioned Window
aggregate function.

SELECT Item,
Quantity,
OrderID,
(
 SELECT SUM(Quantity)
 FROM OrderItems AS OI2
 WHERE OI2.OrderID = OI.OrderID)
 AS TotalOrderQty
FROM OrderItems AS OI;

Item Quantity OrderID TotalOrderQty
M8 Bolt 100 1 100
M8 Nut 100 2 100
M6 Locking Nut 300 3 500
M8 Washer 200 3 500

Get the next largest quantity for the order. The following example is a workaround for the LEAD
analytical function.

SELECT Item,
Quantity,
OrderID,
(
 SELECT Quantity
 FROM OrderItems AS OI2
 WHERE OI.OrderID = OI2.OrderID
 AND
 OI2.Quantity > OI.Quantity

MySQL Usage 147

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 ORDER BY Quantity
 LIMIT 1
)
 AS NextQtyOrder
FROM OrderItems AS OI

Item Quantity OrderID NextQtyOrder
M8 Bolt 100 1 [NULL]
M8 Nut 100 2 [NULL]
M6 Locking Nut 300 3 [NULL]
M8 Washer 200 3 300

Summary

SQL Server Aurora MySQL Comments

Window functions and OVER
clause.

Not supported yet. Convert code to use tradition
al SQL techniques such as
correlated sub queries.

For more information, see Window Function Descriptions in the MySQL documentation.

Temporary tables for ANSI SQL

This topic provides reference content for temporary table functionality between Microsoft SQL
Server and MySQL, specifically in the context of migrating from SQL Server 2019 to Amazon
Aurora MySQL. You’ll gain insight into how temporary tables are created, stored, and managed in
both database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A

Summary 148

https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage

SQL Server temporary tables are stored in the tempdb system database. There are two types of
temporary tables: local and global. They differ from each other in their names, their visibility, and
their availability. Local temporary tables have a single number sign # as the first character of their
names; they are visible only to the current connection for the user, and they are deleted when the
user disconnects from the instance of SQL Server.

Global temporary tables have two number signs ## as the first characters of their names; they are
visible to any user after they are created, and they are deleted when all users referencing the table
disconnect from the instance of SQL Server.

CREATE TABLE #MyTempTable (col1 INT PRIMARY KEY);

For more information, see Tables and Temporary Tables in the SQL Server documentation.

MySQL Usage

In MySQL, the table structure (DDL) of temporary tables isn’t stored in the database. When a
session ends, the temporary table is dropped.

• Session-Specific — In MySQL, each session is required to create its own temporary tables. Each
session can create its own private temporary tables using identical table names.

• In SQL Server, the default behavior when the ON COMMIT clause is omitted is ON COMMIT
DELETE ROWS. In MySQL, the default is ON COMMIT PRESERVE ROWS and it can’t be changed.

Note

In Amazon Relational Database Service (Amazon RDS) for MySQL 8.0.13, user-created
temporary tables and internal temporary tables created by the optimizer are stored in
session temporary tablespaces that are allocated to a session from a pool of temporary
tablespaces. When a session disconnects its temporary tablespaces are truncated and
released back to the pool. In previous releases temporary tables were created in the
ibtmp1 global temporary tablespace which did not return disk space to the operating
system after temporary tables were dropped. The innodb_temp_tablespaces_dir
variable defines the location where session temporary tablespaces are created.
The default location is the #innodb_temp directory in the data directory. The

SQL Server Usage 149

https://docs.microsoft.com/en-us/sql/relational-databases/tables/tables?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?redirectedfrom=MSDN&view=sql-server-ver15#temporary-tables

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

INNODB_SESSION_TEMP_TABLESPACES table provides metadata about session temporary
tablespaces. The ibtmp1 global temporary tablespace now stores rollback segments for
changes made to user-created temporary tables.

Examples

CREATE TEMPORARY TABLE EMP_TEMP (
 EMP_ID INT PRIMARY KEY,
 EMP_FULL_NAME VARCHAR(60) NOT NULL,
 AVG_SALARY INT NOT NULL1;

Summary

Feature SQL Server Aurora MySQL

Semantic Global temporary table Temporary table

Create table CREATE GLOBAL
TEMPORARY…

CREATE TEMPORARY…

Accessible from multiple
sessions

Yes No

Temporary table DDL persist
after session end or database
restart user-managed
datafiles

Yes No (dropped at the end of the
session)

Create index support Yes Yes

Foreign key support Yes Yes

ON COMMIT default COMMIT DELETE ROWS ON COMMIT PRESERVE
ROWS

ON COMMIT PRESERVE
ROWS

Yes Yes

Summary 150

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL

ON COMMIT DELETE ROWS Yes Yes

Alter table support Yes Yes

Gather statistics dbms_stats.gather_
table_stats

ANALYZE

Oracle 12c GLOBAL_TE
MP_TABLE_STATS

dbms_stats.set_tab
le_prefs

ANALYZE

For more information, see CREATE TEMPORARY TABLE Statement in the MySQL documentation.

Summary 151

https://dev.mysql.com/doc/refman/5.7/en/create-temporary-table.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migrating T-SQL features

This chapter provides reference information for T-SQL extensions required to migrate
from Microsoft SQL Server 2019 to Amazon Aurora MySQL. You can gain a comprehensive
understanding of the differences and similarities between these two database systems across
multiple areas, including collation and character sets, cursors, date and time functions, string
functions, database and schema concepts, transaction handling, SQL syntax, stored procedures,
error handling, flow control, full-text search, graph databases, XML and JSON support, and more.

Topics

• Collations for T-SQL

• Cursors for T-SQL

• Date and time functions for T-SQL

• String functions for T-SQL

• Databases and schemas for T-SQL

• Transactions for T-SQL

• DELETE and UPDATE FROM for T-SQL

• Stored procedures for T-SQL

• Error handling for T-SQL

• Flow control for T-SQL

• Full-text search for T-SQL

• SQL server graph features for T-SQL

• JSON and XML for T-SQL

• MERGE for T-SQL

• PIVOT and UNPIVOT for T-SQL

• Synonyms for T-SQL

• SQL Server TOP and FETCH and MySQL LIMIT for T-SQL

• Triggers for T-SQL

• User-defined functions for T-SQL

• User-defined types for T-SQL

152

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Identity and sequences for T-SQL

• Managing statistics for T-SQL

Collations for T-SQL

This topic provides reference content comparing collation and character set support between
Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can gain insight into how these
database systems handle string management, storage, and comparison rules.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Collations UNICODE uses
CHARACTER SET
property instead of
NCHAR or NVARCHAR
data types.

SQL Server Usage

SQL Server collations define the rules for string management and storage in terms of sorting, case
sensitivity, accent sensitivity, and code page mapping. SQL Server supports both ASCII and UCS-2
UNICODE data.

UCS-2 UNICODE data uses a dedicated set of UNICODE data types denoted by the prefix N: Nchar
and Nvarchar. Their ASCII counterparts are CHAR and VARCHAR.

Choosing a collation and a character set has significant implications on data storage, logical
predicate evaluations, query results, and query performance.

Note

To view all collations supported by SQL Server, use the fn_helpcollations function as
shown following: SELECT * FROM sys.fn_helpcollations().

Collations for T-SQL 153

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Collations define the actual bitwise binary representation of all string characters and the
associated sorting rules. SQL Server supports multiple collations down to the column level. A
table may have multiple string columns that use different collations. Collations for non-UNICODE
character sets determine the code page number representing the string characters.

Note

UNICODE and non-UNICODE data types in SQL Server aren’t compatible. A predicate or
data modification that introduces a type conflict is resolved using predefined collation
precedence rules. For more information, see Collation Precedence in the SQL Server
documentation.

Collations define sorting and matching sensitivity for the following string characteristics:

• Case

• Accent

• Kana

• Width

• Variation selector

SQL Server uses a suffix naming convention that appends the option name to the collation name.
For example, the collation Azeri_Cyrillic_100_CS_AS_KS_WS_SC, is an Azeri-Cyrillic-100
collation that is case-sensitive, accent-sensitive, kana type-sensitive, width-sensitive, and has
supplementary characters.

SQL Server supports three types of collation sets: * Windows Collations use the rules defined for
collations by the operating system locale where UNICODE and non-UNICODE data use the same
comparison algorithms. * Binary Collations use the binary bit-wise code for comparison. Therefore,
the locale doesn’t affect sorting. * SQL Server Collations provide backward compatibility with
previous SQL Server versions. They aren’t compatible with the windows collation rules for non-
UNICODE data.

You can define collations at various levels:

SQL Server Usage 154

https://docs.microsoft.com/en-us/sql/t-sql/statements/collation-precedence-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Server-level collations determine the collations used for all system databases and is the default
for future user databases. While the system databases collation can’t be changed, an alternative
collation can be specified as part of the CREATE DATABASE statement

• Database-level collations inherit the server default unless the CREATE DATABASE statement
explicitly sets a different collation. This collation is used as a default for all CREATE TABLE and
ALTER TABLE statements.

• Column-level collations can be specified as part of the CREATE TABLE or ALTER TABLE
statements to override the database’s default collation setting.

• Expression-level collations can be set for individual string expressions using the COLLATE
function. For example, SELECT * FROM MyTable ORDER BY StringColumn COLLATE
Latin1_General_CS_AS.

Note

SQL Server supports UCS-2 UNICODE only.

SQL Server 2019 adds support for UTF-8 for import and export encoding, and as database-
level or column-level collation for string data. Support includes PolyBase external tables, and
Always Encrypted (when not used with Enclaves). For more information, see Collation and Unicode
Support in the SQL Server documentation.

Syntax

CREATE DATABASE <Database Name>
[ON <File Specifications>]
COLLATE <Collation>
[WITH <Database Option List>];

CREATE TABLE <Table Name>
(
 <Column Name> <String Data Type>
 COLLATE <Collation> [<Column Constraints>]...
);

SQL Server Usage 155

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

The following example creates a database with a default Bengali_100_CS_AI collation.

CREATE DATABASE MyBengaliDatabase
ON
(NAME = MyBengaliDatabase_Datafile,
 FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\MSSQL\DATA
\MyBengaliDatabase.mdf',
 SIZE = 100)
LOG ON
 (NAME = MyBengaliDatabase_Logfile,
FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL13.MSSQLSERVER\MSSQL\DATA
\MyBengaliDblog.ldf',
 SIZE = 25)
COLLATE Bengali_100_CS_AI;

The following example creates a table with two different collations.

CREATE TABLE MyTable
(
 Col1 CHAR(10) COLLATE Hungarian_100_CI_AI_SC NOT NULL PRIMARY KEY,
 COL2 VARCHAR(100) COLLATE Sami_Sweden_Finland_100_CS_AS_KS NOT NULL
);

For more information, see Collation and Unicode support in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports multiple character sets and
a variety of collations that can be used for comparison. Similar to SQL Server, you can define
collations at the server, database, and column level. Additionally, you can define collations at the
table level in Aurora MySQL.

The paradigm of collations in Aurora MySQL is different than in SQL Server and consists of
separate character set and collation objects. Aurora MySQL supports 41 different character sets
and 222 collations. Seven different UNICODE character sets are supported including UCS-2, UTF-8
and UTF-32.

MySQL Usage 156

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Use UCS-2 which is compatible with SQL Server UNICODE types.

Each character set can have one or more associated collations with a single default collation.

Collation names have prefixes consisting of the name of their associated character set followed by
suffixes that indicate additional characteristics.

To see all character sets supported by Aurora MySQL, use the
INFORMATION_SCHEMA.CHARACTER_SETS table or the SHOW CHARACTER SET statement.

To see all collations for a character set, use the INFORMATION_SCHEMA.COLLATIONS table or the
SHOW COLLATION statement.

Note

Character set and collation settings also affect client-to -server communications. You
can set explicit collations for sessions using the SET command. For example, SET NAMES
'utf8'; causes Aurora MySQL to treat incoming object names as UTF-8 encoded.

You can set the default character set and collations at the server level using custom cluster
parameter groups. For more information, see Server Options.

At the database level, you can set a default character set and collation with the CREATE
DATABASE and ALTER DATABASE statements. Consider the following example:

CREATE DATABASE MyDatabase
CHARACTER SET latin1 COLLATE latin1_swedish_ci;

To view the default character set and collation for an Aurora MySQL databases, use the following
statement:

SELECT DEFAULT_CHARACTER_SET_NAME,
 DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA

MySQL Usage 157

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

WHERE SCHEMA_NAME = '<Database Name>';

Note

In Aurora MySQL, a database is equivalent to an SQL Server schema. For more information,
see Databases and Schemas.

Every string column in Aurora MySQL has a character set and an associated collation. If not
explicitly specified, it will inherit the table default. To specify a non-default character set and
collation, use the CHARACTER SET and COLLATE clauses of the CREATE TABLE statement.

CREATE TABLE MyTable
(
 StringColumn VARCHAR(5) NOT NULL
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

At the expression level, similar to SQL Server, you can use the COLLATE function to explicitly
declare a string’s collation. In addition, a prefix to the string can be used to denote a specific
character set. Consider the following example:

SELECT _latin1'Latin non-UNICODE String',
_utf8'UNICODE String' COLLATE utf8_danish_ci;

Note

The Aurora MySQL term for this prefix or string header is introducer. It doesn’t change the
value of the string; only the character set.

At the session level, the server’s setting determines the default character set and collation used to
evaluate nonqualified strings.

Although the server’s character set and collation default settings can be modified using the cluster
parameter groups, it is recommended that client applications don’t assume a specific setting and

MySQL Usage 158

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

explicitly set the required character set and collation using the SET NAMES and SET CHARACTER
SET statements.

For more information, see Connection Character Sets and Collations in the MySQL documentation.

Syntax

The following example creates a database-level collation.

CREATE DATABASE <Database Name>
[DEFAULT] CHARACTER SET <Character Set>
[[DEFAULT] COLLATE <Collation>];

The following example creates a table-level collation.

CREATE TABLE <Table Name>
(Column Specifications)
[DEFAULT] CHARACTER SET <Character Set>
[COLLATE <Collation>];

The following example creates a column collation.

CREATE TABLE <Table Name>
(
<Column Name> {CHAR | VARCHAR | TEXT} (<Length>)
CHARACTER SET CHARACTER SET <Character Set>
[COLLATE <Collation>];

The following example creates an expression collation.

_<Character Set>'<String>' COLLATE <Collation>

Examples

The following walkthrough describes how to change the cluster character set and collation.

1. Log in to your Management Console, choose Amazon RDS , and then choose Parameter
groups.

MySQL Usage 159

https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html
https://eu-central-1.console.aws.amazon.com/rds/home?#databases:

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

2. Choose Create parameter group.

3. For Parameter group family, choose aurora-mysql5.7.

4. For Type, choose DB Cluster Parameter Group.

5. For Group name, enter the identified for the DB parameter group.

6. Choose Create.

7. Choose the newly created group on the Parameter groups list.

8. For Parameters, enter character_set_server in the search box and choose Edit parameters.

9. Choose the server default character set.

10.Delete the search term and enter collation. Select the desired default server collation and
choose Preview changes.

11.Check the values and choose Close, and then choose Save changes.

12.Return to the Management Console dashboard and choose Create database.

13.For Choose a database creation method, choose Easy create.

14.For Engine type, choose Amazon Aurora .

15.Enter the instance size, cluster identifier and username. Choose Create database.

16.Modify the created instance to change the DB Parameter group.

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL

Unicode support UTF 16 using NCHAR and
NVARCHAR data types

8 UNICODE character sets,
using the CHARACTER SET
option

Collations levels Server, Database, Column,
Expression

Server, Database, Table,
Column, Expression

View collation metadata fn_helpcollation system
view

INFORMATION_SCHEMA
.SCHEMATA , SHOW

Summary 160

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL

COLLATION , SHOW
CHARACTER SET

For more information, see Character Sets, Collations, Unicode in the MySQL documentation.

Cursors for T-SQL

This topic provides reference information about cursor compatibility between Microsoft SQL
Server 2019 and Amazon Aurora MySQL. You can understand the differences in cursor support and
functionality when migrating from SQL Server to Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Cursors Aurora MySQL
supports only static,
forward only, read-
only cursors.

SQL Server Usage

A set is a fundamental concept of the relation data model, from which SQL is derived. SQL is a
declarative language that operates on whole sets, unlike most procedural languages that operate
on individual data elements. A single invocation of a SQL statement can return a whole set or
modify millions of rows.

Many developers are accustomed to using procedural or imperative approaches to develop
solutions that are difficult to implement using set-based querying techniques. Also, operating on
row data sequentially may be a more appropriate approach is certain situations.

Cursors provide an alternative mechanism for operating on result sets. Instead of receiving a table
object containing rows of data, applications can use cursors to access the data sequentially, row-
by-row. Cursors provide the following capabilities:

Cursors for T-SQL 161

https://dev.mysql.com/doc/refman/5.7/en/charset.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Positioning the cursor at specific rows of the result set using absolute or relative offsets.

• Retrieving a row, or a block of rows, from the current cursor position.

• Modifying data at the current cursor position.

• Isolating data modifications by concurrent transactions that affect the cursor’s result.

• T-SQL statements can use cursors in scripts, stored procedures, and triggers.

Syntax

DECLARE <Cursor Name>
CURSOR [LOCAL | GLOBAL]
 [FORWARD_ONLY | SCROLL]
 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
 [TYPE_WARNING]
 FOR <SELECT statement>
 [FOR UPDATE [OF <Column List>]][;]

FETCH [NEXT | PRIOR | FIRST | LAST | ABSOLUTE <Value> | RELATIVE <Value>]
FROM <Cursor Name> INTO <Variable List>;

Examples

The following example processes data in a cursor.

DECLARE MyCursor CURSOR FOR
 SELECT *
 FROM Table1 AS T1
 INNER JOIN
 Table2 AS T2
 ON T1.Col1 = T2.Col1;
 OPEN MyCursor;
 DECLARE @VarCursor1 VARCHAR(20);
 FETCH NEXT
 FROM MyCursor INTO @VarCursor1;

 WHILE @@FETCH_STATUS = 0
 BEGIN
 EXEC MyPRocessingProcedure
 @InputParameter = @VarCursor1;

SQL Server Usage 162

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 FETCH NEXT
 FROM product_cursor INTO @VarCursor1;
 END

 CLOSE MyCursor;
 DEALLOCATE MyCursor ;

For more information, see SQL Server Cursors and Cursors (Transact-SQL) in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports cursors only within stored
routines, functions and stored procedures.

Unlike SQL Server, which offers an array of cursor types, Aurora MySQL cursors have the following
characteristics:

• Asensitive — The server can choose to either make a copy of its result table or to access the
source data as the cursor progresses.

• Read-only — Cursors aren’t updatable.

• Nonscrollable — Cursors can only be traversed in one direction and can’t skip rows. The only
supported cursor advance operation is FETCH NEXT.

In Aurora MySQL, cursor declarations appear before handler declarations and after variable and
condition declarations.

Similar to SQL Server, you can declare cursors with the DECLARE CURSOR statement. To open a
cursor, use the OPEN statement. To fetch a cursor, use the FETCH statement. You can close the
cursor with the CLOSE statement.

Note

Aurora MySQL doesn’t have a DEALLOCATE statement because you don’t need it.

DECLARE Cursor

DECLARE <Cursor Name> CURSOR

MySQL Usage 163

https://docs.microsoft.com/en-us/sql/relational-databases/cursors?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/cursors-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FOR <Cursor SELECT Statement>

The DECLARE CURSOR statement instantiates a cursor object and associates it with a SELECT
statement. This SELECT is then used to retrieve the cursor rows.

To fetch the rows, use the FETCH statement. As mentioned before, Aurora MySQL supports only
FETCH NEXT. Make sure that the number of output variables specified in the FETCH statement
matches the number of columns retrieved by the cursor.

Aurora MySQL cursors have additional characteristics:

• SELECT INTO isn’t allowed in a cursor.

• Stored routing can have multiple cursor declarations, but every cursor declared in a given code
block must have a unique name.

• Cursors can be nested.

OPEN Cursor

OPEN <Cursor Name>;

The OPEN command populates the cursor with the data, either dynamically or in a temporary table,
and readies the first row for consumption by the FETCH statement.

FETCH Cursor

FETCH [[NEXT] FROM] <Cursor Name>
INTO <Variable 1> [,<Variable n>]

The FETCH statement retrieves the current pointer row, assigns the column values to the variables
listed in the FETCH statement, and advances the cursor pointer by one row. If the row isn’t
available, meaning the cursor has been exhausted, Aurora MySQL raises a no data condition with
the SQLSTATE value set to 0200000.

To catch this condition, or the alternative NOT FOUND condition, create a condition handler. For
more information, see Error Handling.

MySQL Usage 164

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Carefully plan your error handling flow. The same condition might be raised by other
SELECT statements or other cursors than the one you intended. Place operations within
BEGIN-END blocks to associate each cursor with its own handler.

CLOSE Cursor

CLOSE <Cursor Name>;

The CLOSE statement closes an open cursor. If the cursor with the specified name doesn’t
exist, Aurora MySQL raises an error. If a cursor isn’t explicitly closed, Aurora MySQL closes it
automatically at the end of the BEGIN … END block in which it was declared.

Migration Considerations

The Aurora MySQL Cursors framework is much simpler than SQL Server and provides only the basic
types. If your code relies on advanced cursor features, these will need to be rewritten.

However, most applications use forward only, read only cursors, and those will be easy to migrate.

If your application uses cursors in ad-hoc batches, move the code to a stored procedure or a
function.

Examples

The following examples use a cursor to iterate over source rows and merges into the OrderItems
table.

Create the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)

MySQL Usage 165

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

);

Create and populate the SourceTable table.

CREATE TABLE SourceTable
(
 OrderID INT,
 Item VARCHAR(20),
 Quantity SMALLINT,
 PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through SourceTable and insert rows.

Note

There are syntax differences between T-SQL for the CREATE PROCEDURE and the CURSOR
declaration. For more information, see Stored Procedures.

CREATE PROCEDURE LoopItems()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE var_OrderID INT;
 DECLARE var_Item VARCHAR(20);
 DECLARE var_Quantity SMALLINT;
 DECLARE ItemCursor CURSOR
 FOR
 SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
 DECLARE CONTINUE HANDLER
 FOR NOT FOUND

MySQL Usage 166

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 SET done = TRUE;
 OPEN ItemCursor;
 CursorStart: LOOP
 FETCH NEXT
 FROM ItemCursor
 INTO var_OrderID,
 var_Item,
 var_Quantity;
 IF Done
 THEN LEAVE CursorStart;
 END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 VALUES (var_OrderID, var_Item, var_Quantity);
 END LOOP;
 CLOSE ItemCursor;
END;

Run the stored procedure.

CALL LoopItems();

Select all rows from the OrderItems table.

SELECT * FROM OrderItems;
OrderID Item Quantity
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

Feature SQL Server Aurora MySQL Comments

Cursor options [FORWARD_ONLY |
SCROLL]

[STATIC | KEYSET
| DYNAMIC |
FAST_FORWARD]

Summary 167

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

[READ_ONLY |
SCROLL_LOCKS |
OPTIMISTIC]

Updateable cursors DECLARE CURSOR…
FOR UPDATE

Not supported

Declaration DECLARE CURSOR DECLARE CURSOR No options for
DECLARE CURSOR in
Aurora MySQL.

Open OPEN OPEN

Fetch FETCH NEXT |
PRIOR | FIRST |
LAST | ABSOLUTE
| RELATIVE

FETCH NEXT

Close CLOSE CLOSE

Deallocate DEALLOCATE N/A Not required because
the CLOSE statement
deallocates the cursor

Cursor end condition @@FETCH_STATUS
system variable

Event Handler Event handlers
aren’t specific to
a cursor. For more
information, see Error
Handling.

For more information, see Cursors in the MySQL documentation.

Date and time functions for T-SQL

This topic provides reference information about date and time functions in Microsoft SQL Server
and Amazon Aurora MySQL, which is valuable for database administrators and developers

Date and time functions for T-SQL 168

https://dev.mysql.com/doc/refman/5.7/en/cursors.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

migrating from SQL Server to Aurora MySQL. You can understand the similarities and differences
in how these two database systems handle temporal operations, including system date and time
values, time zone considerations, and specific function equivalents.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Date and Time
Functions

Time zone handling.
Syntax differences.

SQL Server Usage

Date and time functions are scalar functions that perform operations on temporal or numeric input
and return temporal or numeric values.

System date and time values are derived from the operating system of the server where SQL
Server is running.

Note

This section doesn’t address time zone considerations and time zone aware functions. For
more information, see Data Types.

Syntax and Examples

The following table lists the most commonly used date and time functions.

Function Purpose Example Result Comments

GETDATE and
GETUTCDATE

Return a
datetime value
that contains the
current local or

SELECT
GETDATE()

2018-04-05
15:53:01.380

SQL Server Usage 169

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

UTC date and
time.

DATEPART, DAY,
MONTH, and
YEAR

Return an
integer value
representing
the specified
date part of a
specified date.

SELECT
MONTH(GET
DATE()),
YEAR(GETD
ATE())

4, 2018

DATEDIFF Returns an
integer value
of date part
boundaries that
are crossed
between two
dates.

SELECT
DATEDIFF(
DAY,
GETDATE()
, EOMONTH(G
ETDATE()))

25 How many days
are left until
the end of the
month.

DATEADD Returns a
datetime value
that is calculate
d with an offset
interval to the
specified date
part of a date.

SELECT
DATEADD(D
AY, 25,
GETDATE())

2018-04-30
15:55:52.147

SQL Server Usage 170

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

CAST and
CONVERT

Converts
datetime values
to and from
string literals
and to and from
other datetime
formats.

SELECT
CAST(GETD
ATE() AS
DATE)

SELECT
CONVERT(V
ARCHAR(20
),
GETDATE(),
112)

2018-04-05
20180405

Default date
format. Style
112 (ISO) with
no separators.

For more information, see Date and Time functions in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides a very rich set of scalar date
and time functions; more than SQL Server.

Note

While some of the functions such as DATEDIFF seem to be similar to those in SQL Server,
the functionality can be significantly different. Take extra care when migrating temporal
logic to Aurora MySQL paradigms.

Syntax and Examples

Function Purpose Example Result Comments

NOW,
LOCALTIME

, CURRENT_T
IMESTAMP , and
SYSDATE

Returns a
datetime value
that contains
the current local
date and time.

SELECT NOW() 2018-04-06
18:57:54

SYSDATE returns
the time at
which it runs,
compared to
NOW, which

MySQL Usage 171

https://docs.microsoft.com/en-us/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql?view=sql-server-ver15#DateandTimeFunctions

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

returns a
constant time
when the
statement
started running.
Also, SET
TIMESTAMP
doesn’t affect
SYSDATE.

UTC_TIMES
TAMP

Returns a
datetime value
that contains the
current UTC date
and time.

SELECT
UTC_TIMES
TAMP()

2018-04-07
04:57:54

SECOND,
MINUTE, HOUR,
DAY, WEEK,
MONTH, and
YEAR

Returns an
integer value
representing
the specified
date part of a
specified date
function.

SELECT
MONTH(NOW
()),
YEAR(NOW())

4, 2018

DATEDIFF Returns an
integer value of
the difference
in days between
two dates.

SELECT
DATEDIFF(
NOW(),'20
18-05-01')

-25 DATEDIFF in
Aurora MySQL is
only for calculati
ng differenc
e in days. Use
TIMESTAMP
DIFF instead.

MySQL Usage 172

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

TIMESTAMP
DIFF

Returns an
integer value
of the differenc
e in date part
between two
dates.

SELECT
TIMESTAMP
DIFF(DAY,
NOW(),'20
18-05-01')

24

DATE_ADD,
DATE_SUB

Returns a
datetime value
that is calculate
d with an offset
interval to the
specified date
part of a date.

SELECT
DATE_ADD(
NOW(),INT
ERVAL 1
DAY);

2018-04-07
19:35:32

CAST and
CONVERT

Converts
datetime values
to and from
string literals
and to and from
other datetime
formats.

SELECT
CAST(GETD
ATE() AS
DATE)

SELECT
CONVERT(V
ARCHAR(20
),
GETDATE(),
112)

2018-04-05

20180405

Default date
format. Style
112 (ISO) with
no separators.

Migration Considerations

The date and time handling paradigm in Aurora MySQL differs from SQL Server.

Be aware of the differences in data types, time zone awareness, and locale handling. For more
information, see Data Types.

MySQL Usage 173

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server function Aurora MySQL function Comments

GETDATE, CURRENT_T
IMESTAMP

NOW, LOCALTIME ,
CURRENT_TIMESTAMP , and
SYSDATE

CURRENT_TIMESTAMP is
the ANSI standard and it is
compatible. SYSDATE returns
the time at which it runs,
unlike NOW which returns
a constant time when the
statement started running.
Also, SET TIMESTAMP
doesn’t affect SYSDATE.

GETUTCDATE UTC_TIMESTAMP

DAY, MONTH, and YEAR DAY, MONTH, YEAR Compatible syntax.

DATEPART EXTRACT, or one of:
MICROSECOND , SECOND,
MINUTE, HOUR, DAY,
DAYNAME, DAYOFWEEK ,
DAYOFYEAR , WEEK, MONTH,
MONTHNAME , QUARTER, YEAR

Aurora MySQL supports
EXTRACT as a generic
DATEPART function. For
example, EXTRACT (YEAR
FROM NOW()). It also
supports individual functions
for each day part.

DATEDIFF TIMESTAMPDIFF DATEDIFF in Aurora MySQL
only calculates differences in
days.

DATEADD DATE_ADD, DATE_SUB,
TIMESTAMPADD

DATEADD in Aurora MySQL
only adds full days to a
datetime value. Aurora
MySQL also supports
DATE_SUB for subtracting
date parts from a date time

Summary 174

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server function Aurora MySQL function Comments

expression. The argument
order and syntax is also
different and requires a
rewrite.

CAST and CONVERT DATE_FORMAT , TIME_FORM
AT

Although Aurora MySQL
supports both CAST and
CONVERT, they aren’t used
for style conversion as in SQL
Server. Use DATE_FORMAT
and TIME_FORMAT .

For more information, see Date and Time Functions in the MySQL documentation.

String functions for T-SQL

This topic provides reference information about string function compatibility when migrating from
Microsoft SQL Server 2019 to Amazon Aurora MySQL. You can use this guide to understand the
similarities and differences in string manipulation capabilities between the two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Differences with the
UNICODE paradigm.
For more informati
on, see Collations.
Syntax and option
differences.

String functions for T-SQL 175

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage

String functions are typically scalar functions that perform an operation on string input and return
a string or a numeric value.

Syntax and Examples

The following table lists the most commonly used string functions.

Function Purpose Example Result Comments

ASCII and
UNICODE

Convert an ASCII
or UNICODE
character to
its ASCII or
UNICODE code.

SELECT ASCII
('A')

65 Returns a
numeric integer
value.

CHAR and NCHAR Convert
between ASCII
or UNICODE
code to a string
character.

SELECT
CHAR(65)

'A' Numeric integer
value as input.

CHARINDEX
and PATINDEX

Find the starting
position of one
string expressio
n (or string
pattern) within
another string
expression.

SELECT
CHARINDEX
('ab',
'xabcdy')

2 Returns a
numeric integer
value.

CONCAT and
CONCAT_WS

Combine
multiple string
input expressio
ns into a single
string with,
or without,

SELECT
CONCAT('a
','b'),
CONCAT_WS
(',','a',
'b')

'ab', 'a,b'

SQL Server Usage 176

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

a separator
character (WS).

LEFT, RIGHT,
and SUBSTRING

Return a partial
string from
another string
expressio
n based on
position and
length.

SELECT
LEFT('abs
',2),
SUBSTRING
('abcd',2
,2)

'ab', 'bc'

LOWER and
UPPER

Return a
string with all
characters in
lower or upper
case. Use for
presentation
or to handle
case insensitive
expressions.

SELECT
LOWER('AB
cd')

'abcd'

LTRIM, RTRIM
and TRIM

Remove leading
and trailing
spaces.

SELECT LTRIM
('abc d ')

'abc d '

STR Convert a
numeric value to
a string.

SELECT
STR(3.141
5927,5,3)

3.142 Numeric
expressions as
input.

REVERSE Return a string
in reverse order.

SELECT
REVERSE('
abcd')

'dcba'

SQL Server Usage 177

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

REPLICATE Return a string
that consists of
zero or more
concatena
ted copies of
another string
expression.

SELECT
REPLICATE
('abc', 3)

'abcabcabc'

REPLACE Replace all
occurrences of a
string expression
with another.

SELECT
REPLACE('
abcd',
'bc', 'xy')

'axyd'

STRING_SP
LIT

Parse a list of
values with a
separator and
return a set of
all individual
elements.

SELECT
* FROM
STRING_SP
LIT('1,2'
,',') AS X©

1

2

STRING_SP
LIT is a table-
valued function.

STRING_AGG Return a string
that consists of
concatenated
string values in
row groups.

SELECT
STRING_AG
G(C,
',') FROM
VALUES(1,
'a'),
(1, 'b'),
(2,'c') AS X
(ID,C) GROUP
BY I

1 'ab'

2 'c'

STRING_AGG
is an aggregate
function.

For more information, see String Functions (Transact-SQL) in the SQL Server documentation.

SQL Server Usage 178

https://docs.microsoft.com/en-us/sql/t-sql/functions/string-functions-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports a large set of string
functions; far more than SQL Server. See the link at the end of this section for the full list. Some of
the functions, such as regular expressions (REGEXP), don’t exist in SQL Server and may be useful
for your application.

Syntax and Examples

The following table lists the most commonly used string functions.

Function Purpose Example Result Comments

ASCII and ORD Convert an ASCII
or multi-byte
code to its string
character.

SELECT ASCII
('A')

65 Returns a
numeric integer
value.

CHAR Convert
between a
character and its
UNICODE code.

SELECT CHAR
(65)

'A' Numeric integer
value as input.

LOCATE Find the starting
position of one
string expressio
n (or string
pattern) within
another string
expression.

SELECT
LOCATE
('ab',
'xabcdy')

2 Returns a
numeric integer
value.

CONCAT and
CONCAT_WS

Combine
multiple string
input expressio
ns into a single
string with
or without

SELECT
CONCAT ('a','b')
, CONCAT_WS
(',','a','b')

'ab', 'a,b'

MySQL Usage 179

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

a separator
character (WS).

LEFT, RIGHT,
and SUBSTRING

Return a partial
string from
another string
expressio
n based on
position and
length

SELECT
LEFT('abs
',2),
SUBSTRING
('abcd',2
,2)

'ab', 'bc'

LOWER and
UPPER

Return a
string with all
characters in
lower or upper
case. Use for
presentation
or to handle
case insensitive
expressions.

SELECT LOWER
('ABcd')

'abcd' These have no
effect when
applied to
binary collation
strings. Convert
the string to
a non-binary
string collation
to convert letter
case.

LTRIM, RTRIM,
and TRIM

Remove leading
and trailing
spaces.

SELECT
LTRIM(' abc
d ')

SELECT
TRIM(LEAD
ING
'x' FROM
'xxxabcxx
x')

'abc d '

'abcxxx'

TRIM in Aurora
MySQL is not
limited to
spaces.

TRIM ([{BOTH
| LEADING
| TRAILING}
[<Remove
String>]
FROM]
<String>)

MySQL Usage 180

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Function Purpose Example Result Comments

FORMAT Convert a
numeric value to
a string.

SELECT
FORMAT
(3.141592
7,5)

3.14159 Numeric
expressions as
input.

REVERSE Return a string
in reverse order.

SELECT
REVERSE('
abcd')

'dcba'

REPEAT Return a string
that consists of
zero or more
concatena
ted copies of
another string
expression.

SELECT
REPEAT('abc', 3)

'abcabcabc'

REPLACE Replace all
occurrence of a
string expression
with another.

SELECT
REPLACE('
abcd',
'bc','xy')

'axyd'

Migration Considerations

Aurora MySQL doesn’t handle ASCII and UNICODE types separately. Any string can be either
UNICODE or ASCII, depending on its collation property. For more information, see Data Types.

Many of the Aurora MySQL string functions that are compatible with SQL Server also support
additional functionality. For example, the TRIM and CHAR functions. Aurora MySQL also supports
many functions that SQL Server doesn’t support. For example, functions that deal with a delimited
list set of values. Be sure to explore all options.

Aurora MySQL also supports regular expressions. See the REGEXP and RLIKE functions to get
started.

MySQL Usage 181

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server function Aurora MySQL function Comments

ASCII and UNICODE ASCII and ORD Compatible. For more
information, see Data Types.

CHAR and NCHAR CHAR Unlike SQL Server, CHAR in
Aurora MySQL accepts a list
of values and constructs a
concatenated string. For more
information, see Data Types.

CHARINDEX and PATINDEX LOCATE and POSITION LOCATE and POSITION
are synonymous but don’t
support wildcards as
PATINDEX.

Use the FIND_IN_SET
function to extract an
element position in a comma
separated value string.

CONCAT and CONCAT_WS CONCAT and CONCAT_WS Compatible syntax.

LEFT, RIGHT, and
SUBSTRING

LEFT, RIGHT, and
SUBSTRING

Compatible syntax. Aurora
MySQL supports MID
and SUBSTR, which are
synonymous with SUBSTRING

.

Use the SUBSTRING_INDEX
function to extract an
element from a delimited list.

Summary 182

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server function Aurora MySQL function Comments

LOWER and UPPER LOWER AND UPPER Compatible syntax. LOWER
and UPPER have no effect
when applied to binary
collation strings.

LTRIM, RTRIM and TRIM LTRIM, RTRIM and TRIM Compatible syntax. TRIM in
Aurora MySQL is not limited
to both ends and spaces. It
can be used to trim either
leading or trailing characters.

The syntax is shown following
:

TRIM ([{BOTH | LEADING
| TRAILING} [<Remove
String>] FROM]
<String>)

STR FORMAT FORMAT doesn’t support full
precision and scale definitio
n, but does support locale
formatting.

REVERSE REVERSE Compatible syntax.

REPLICATE REPEAT Compatible arguments.

REPLACE REPLACE Compatible syntax.

STRING_SPLIT Not supported. Requires iterative code to
extract elements with scalar
string functions.

Summary 183

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server function Aurora MySQL function Comments

STRING_AGG Not supported Requires iterative code to
build a list with scalar string
functions.

For more information, see String Functions and Operators in the MySQL documentation.

Databases and schemas for T-SQL

This topic provides reference content comparing database and schema concepts between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can gain insight into how these two database
systems differ in their approach to logical containers, security, and object hierarchies.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Schema and database
are synonymous.

SQL Server Usage

Databases and schemas are logical containers for security and access control. Administrators can
grant permissions collectively at both the databases and the schema levels. SQL Server instances
provide security at three levels: individual objects, schemas (collections of objects), and databases
(collections of schemas). For more information, see Data Control Language.

Note

In previous versions of SQL server, the term user was interchangeable with the term
schema. For backward compatibility, each database has several built-in security schemas
including guest, dbo, db_datareaded, sys, INFORMATION_SCHEMA, and so on. You
should migrate these schemas.

Databases and schemas for T-SQL 184

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Each SQL Server instance can host and manage a collection of databases, which consist of SQL
Server processes and the Master, Model, TempDB, and MSDB system databases.

The most common SQL Server administrator tasks at the database level are:

• Managing Physical Files — Add, remove, change file growth settings, and re-size files.

• Managing Filegroups — Partition schemes, object distribution, and read-only protection of
tables.

• Managing default options.

• Creating database snapshots.

Unique object identifiers within an instance use three-part identifiers: <Database
name>.<Schema name>.<Object name>.

The recommended way to view the metadata of database objects, including schemas, is to use the
ANSI standard Information Schema views. In most cases, these views are compatible with other
ANSI compliant RDBMS.

To view a list of all databases on the server, use the sys.databases table.

Syntax

Simplified syntax for CREATE DATABASE:

CREATE DATABASE <database name>
[ON [PRIMARY] <file specifications>[,<filegroup>]
[LOG ON <file specifications>
[WITH <options specification>] ;

Simplified syntax for CREATE SCHEMA:

CREATE SCHEMA <schema name> | AUTHORIZATION <owner name>;

Examples

Add a file to a database and create a table using the new file.

USE master;

SQL Server Usage 185

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ALTER DATABASE NewDB
ADD FILEGROUP NewGroup;

ALTER DATABASE NewDB
ADD FILE (
 NAME = 'NewFile',
 FILENAME = 'D:\NewFile.ndf',
 SIZE = 2 MB
)
TO FILEGROUP NewGroup;

USE NewDB;

CREATE TABLE NewTable
(
 Col1 INT PRIMARY KEY
)
ON NewGroup;

SELECT Name
FROM sys.databases
WHERE database_id > 4;

Create a table within a new schema and database.

USE master

CREATE DATABASE NewDB;

USE NewDB;

CREATE SCHEMA NewSchema;

CREATE TABLE NewSchema.NewTable
(
 NewColumn VARCHAR(20) NOT NULL PRIMARY KEY
);

SQL Server Usage 186

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

The preceding example uses default settings for the new database and schema.

For more information, see sys.databases (Transact-SQL), CREATE SCHEMA (Transact-SQL), and
CREATE DATABASE in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports both the CREATE
SCHEMA and CREATE DATABASE statements. However, in Aurora MySQL, these statements are
synonymous.

Unlike SQL Server, Aurora MySQL doesn’t have the concept of an instance hosting multiple
databases, which in turn contain multiple schemas. Objects in Aurora MySQL are referenced as a
two part name: <schema>.<object>. You can use the term database in place of schema, but it is
conceptually the same thing.

Note

This terminology conflict can lead to confusion for SQL Server database administrators
unfamiliar with the Aurora MySQL concept of a database.

Note

Each database and schema in Aurora MySQL is managed as a separate set of physical files
similar to an SQL Server database.

Aurora MySQL doesn’t have the concept of a schema owner. Permissions must be granted explicitly.
However, Aurora MySQL supports a custom default collation at the schema level, whereas SQL
Server supports it at the database level only. For more information, see Collations.

Syntax

Syntax for CREATE DATABASE:

MySQL Usage 187

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-schema-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-transact-sql?view=sql-server-ver15&tabs=sqlpool

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE {DATABASE | SCHEMA} <database name>
[DEFAULT] CHARACTER SET [=] <character set>|
[DEFAULT] COLLATE [=] <collation>

Migration Considerations

Similar to SQL Server, Aurora MySQL supports the USE command to specify the default database
or schema for missing object qualifiers.

The syntax is identical to SQL Server:

USE <database name>;

After you run the USE command, the default database for the calling scope is changed to the
specified database.

There is a relatively straightforward migration path for a class of common application architectures
that use multiple databases but have all objects in a single schema (typically the default dbo
schema) and require cross database queries. For these types of applications, create an Aurora
MySQL Instance and then create multiple databases as you would in SQL Server using the CREATE
DATABASE command.

Reference all objects using a two-part name instead of a three-part name by omitting the default
schema identifier. For application code using the USE command instead of a three-part identifier,
no rewrite is needed other than replacing the double dot with a single dot.

SELECT * FROM MyDB..MyTable -> SELECT * FROM MyDB.MyTable

For applications using a single database and multiple schemas, the migration path is the same and
requires fewer rewrites because two-part names are already being used.

Applications that use multiple schemas and multiple databases will need to use multiple instances.

Use the SHOW DATABASES command to view databases or schemas in Aurora MySQL.

SHOW DATABASES;

For the preceding example, the result looks as shown following.

MySQL Usage 188

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

database

information_schema
Demo
mysql
performance_schema
sys

Aurora MySQL also supports a CREATE DATABASE syntax reminder command.

SHOW CREATE DATABASE Demo;

For the preceding example, the result looks as shown following.

Database Create Database
Demo CREATE DATABASE `Demo` /*!40100 DEFAULT CHARACTER SET latin1 */

Examples

The following examples create a new table in a new database.

CREATE DATABASE NewDatabase;

USE NewDatabase;

CREATE TABLE NewTable
(
 NewColumn VARCHAR(20) NOT NULL PRIMARY KEY
);

INSERT INTO NewTable VALUES('NewValue');

SELECT * FROM NewTable;

Summary

The following table summarizes the migration path for each architecture.

Summary 189

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Current object architecture Migrate to Aurora MySQL Rewrites

Single database, all objects in
dbo schema.

Single instance, single
database or schema.

If the code already uses two-
part object notation such as
dbo.<object> , consider
creating a dbo schema in
Aurora MySQL to minimize
code changes.

Single database, objects in
multiple schemas.

Single instance, multiple
databases or schemas.

No identifier hierarchy
rewrites needed. Code should
be compatible with respect to
the object hierarchy.

Multiple databases, all objects
in the dbo schema.

Single instance, multiple
databases or schemas.

Identifier rewrite is required
to remove the SQL Server
schema name or the default
dot. Change SELECT * FROM
MyDB..MyTable to SELECT
* FROM MyDB.MyTable .

Multiple databases, objects in
multiple schemas.

Multiple instances. Connectivity between the
instances will need to be
implemented at the applicati
on level.

For more information, see CREATE DATABASE Statement in the MySQL documentation.

Transactions for T-SQL

This topic provides reference information about transaction handling when migrating from
Microsoft SQL Server 2019 to Amazon Aurora MySQL. You can gain insights into the key
differences in transaction support, isolation levels, and syntax between these two database
systems.

Transactions for T-SQL 190

https://dev.mysql.com/doc/refman/5.7/en/create-database.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Transaction Isolation Default isolation
level is set to
REPEATABLE READ .
Default mechanism
CONSISTENT
SNAPSHOT is similar
to READ COMMITTED
SNAPSHOT isolation
in SQL Server. Syntax
and option differenc
es.

SQL Server Usage

A transaction is a unit of work performed against a database and typically represents a change in
the database. Transactions serve the following purposes:

• Provide units of work that enable recovery from logical or physical system failures while keeping
the database in a consistent state.

• Provide units of work that enable recovery from failures while keeping a database in a consistent
state when a logical or physical system failure occurs.

• Provide isolation between users and programs accessing a database concurrently.

Transactions are an all-or-nothing unit of work. Each transactional unit of work must either
complete, or it must rollback all data changes. Also, transactions must be isolated from other
transactions. The results of the view of data for each transaction must conform to the defined
database isolation level.

Database transactions must comply with ACID properties:

• Atomic — Transactions are all-or-nothing. If any part of the transaction fails, the entire
transaction fails and the database remains unchanged.

SQL Server Usage 191

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

There are exceptions to this rule. For example, some constraint violations, for each ANSI
definitions, shouldn’t cause a transaction rollback.

• Consistent — All transactions must bring the database from one valid state to another valid
state. Data must be valid according to all defined rules, constraints, triggers, and so on.

• Isolation — Concurrent run of transactions must result in a system state that would occur if
transactions were run sequentially.

Note

There are several exceptions to this rule based on the lenience of the required isolation
level.

• Durable — After a transaction commits successfully and is acknowledged to the client, the
engine must guarantee that its changes are persisted even in the event of power loss, system
crashes, or any other errors.

Note

By default, SQL Server uses the auto commit or implicit transactions mode set to ON.
Every statement is treated as a transaction on its own unless a transaction was explicitly
defined. This behavior is different than other engines like Oracle where, by default, every
DML requires an explicit COMMIT statement to be persisted.

Syntax

The following examples show the simplified syntax for the commands defining transaction
boundaries.

Define the beginning of a transaction.

BEGIN TRAN | TRANSACTION [<transaction name>]

Commit work and the end of a transaction.

SQL Server Usage 192

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

COMMIT WORK | [TRAN | TRANSACTION [<transaction name>]]

Rollback work at the end of a transaction.

ROLLBACK WORK | [TRAN | TRANSACTION [<transaction name>]]

SQL Server supports the standard ANSI isolation levels defined by the ANSI/ISO SQL standard
(SQL92).

Each level provides a different approach for managing the concurrent run of transactions. The main
purpose of a transaction isolation level is to manage the visibility of changed data as seen by other
running transactions. Additionally, when concurrent transactions access the same data, the level of
transaction isolation affects the way they interact with each other.

• Read uncommitted — A current transaction can see uncommitted data from other transactions.
If a transaction performs a rollback, all data is restored to its previous state.

• Read committed — A transaction only sees data changes that were committed. Therefore,
dirty reads aren’t possible. However, after issuing a commit, it would be visible to the current
transaction while it’s still in a running state.

• Repeatable read — A transaction sees data changes made by the other transactions only after
both transactions issue a commit or are rolled back.

• Serializable — This isolation level is the strictest because it doesn’t permit transaction
overwrites of another transaction’s actions. Concurrent run of a set of serializable transactions is
guaranteed to produce the same effect as running them sequentially in the same order.

The main difference between isolation levels is the phenomena they prevent from appearing. The
three preventable phenomena are:

• Dirty reads — A transaction can read data written by another transaction but not yet
committed.

• Non-repeatable or fuzzy reads — When reading the same data several times, a transaction can
find the data has been modified by another transaction that has just committed. The same query
ran twice can return different values for the same rows.

• Phantom or ghost reads — Similar to a non-repeatable read, but it is related to new data
created by another transaction. The same query ran twice can return different numbers of
records.

SQL Server Usage 193

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The following table summarizes the four ANSI/ISO SQL standard (SQL92) isolation levels and
indicates which phenomena are allowed or disallowed.

Transaction isolation
level

Dirty reads Non-repeatable
reads

Phantom reads

Read uncommitted Allowed Allowed Allowed

Read committed Disallowed Allowed Allowed

Repeatable read Disallowed Disallowed Allowed

Serializable Disallowed Disallowed Disallowed

There are two common implementations for transaction isolation:

• Pessimistic isolation or locking — Resources accessed by a transaction are locked for the
duration of the transaction. Depending on the operation, resource, and transaction isolation
level, other transactions can see changes made by the locking transaction, or they must wait for
it to complete. With this mechanism, there is only one copy of the data for all transactions, which
minimizes memory and disk resource consumption at the expense of transaction lock waits.

• Optimistic isolation (MVCC) — Every transaction owns a set of the versions of the resources
(typically rows) that it accessed. In this mode, transactions don’t have to wait for one another
at the expense of increased memory and disk utilization. In this isolation mechanism, there is a
chance that conflicts will arise when transactions attempt to commit. In case of a conflict, the
application needs to be able to handle the rollback, and attempt a retry.

SQL Server implements both mechanisms. You can use them concurrently.

For optimistic isolation, SQL Server introduced two additional isolation levels: read-committed
snapshot and snapshot.

Set the transaction isolation level using SET command. It affects the current run scope only.

SET TRANSACTION ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ |
 SNAPSHOT | SERIALIZABLE }

SQL Server Usage 194

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

The following example runs two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
INSERT INTO Table1
VALUES (1, 'A');
UPDATE Table2
 SET Column1 = 'Done'
WHERE KeyColumn = 1;
COMMIT TRANSACTION;

For more information, see Transaction Isolation Levels (ODBC) and SET TRANSACTION ISOLATION
LEVEL (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the four transaction isolation
levels specified in the SQL:1992 standard: READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, and SERIALIZABLE.

The simplified syntax for setting transaction boundaries in Aurora MySQL is shown following:

SET [SESSION] TRANSACTION ISOLATION LEVEL [READ WRITE | READ ONLY] | REPEATABLE READ |
 READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE]

Note

Setting the GLOBAL isolation level isn’t supported in Aurora MySQL; only session scope can
be changed. This behavior is similar to Oracle. Also, the default behavior of transactions is
to use REPEATABLE READ and consistent reads. Applications designed to run with READ
COMMITTED may need to be modified. Alternatively, explicitly change the default to READ
COMMITTED.

The default isolation level for Aurora MySQL is REPEATABLE READ.

To set the transaction isolation level, you will need to set the tx_isolation parameter when
using Aurora MySQL. For more information, see Server Options.

MySQL Usage 195

https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/transaction-isolation-levels?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports a new
innodb_deadlock_detect dynamic variable. You can use this variable to turn off
the deadlock detection. On high concurrency systems deadlock detection can cause a
slowdown when numerous threads wait for the same lock. At times it may be more efficient
to turn off deadlock detection and rely on the innodb_lock_wait_timeout setting for
transaction rollback when a deadlock occurs.

Starting from MySQL 8, InnoDB supports NOWAIT and SKIP LOCKED options with SELECT …
FOR SHARE and SELECT … FOR UPDATE locking read statements. NOWAIT causes the statement
to return immediately if a requested row is locked by another transaction.

SKIP LOCKED removes locked rows from the result set. SELECT … FOR SHARE replaces
SELECT … LOCK IN SHARE MODE but LOCK IN SHARE MODE remains available for backward
compatibility. The statements are equivalent. However, FOR UPDATE and FOR SHARE support
NOWAIT SKIP LOCKED and OF tbl_name options. For more information, see SELECT Statement
in the MySQL documentation.

Syntax

Simplified syntax for setting transaction boundaries:

SET [SESSION] TRANSACTION ISOLATION LEVEL [READ WRITE | READ ONLY] | REPEATABLE READ |
READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE]

Note

Setting a GLOBAL isolation level isn’t supported in Aurora MySQL. You can only change
the session scope; similar to SQL Server SET scope. The default behavior of transactions is
to use REPEATABLE READ and consistent reads. Applications designed to run with READ
COMMITTED may need to be modified. Alternatively, they can explicitly change the default
to READ COMMITTED.

In Aurora MySQL, you can optionally specify a transaction intent. Setting a transaction to READ
ONLY turns off the transaction’s ability to modify or lock both transactional and non-transactional

MySQL Usage 196

https://dev.mysql.com/doc/refman/8.0/en/select.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

tables visible to other transactions, but the transaction can still modify or lock temporary tables.
It also enables internal optimization to improve performance and concurrency. The default is READ
WRITE.

Simplified syntax for the commands defining transaction boundaries:

START TRANSACTION WITH CONSISTENT SNAPSHOT | READ WRITE | READ ONLY

Or

BEGIN [WORK]

The WITH CONSISTENT SNAPSHOT option starts a consistent read transaction. The effect is the
same as issuing a START TRANSACTION followed by a SELECT from any table. WITH CONSISTENT
SNAPSHOT doesn’t change the transaction isolation level.

A consistent read uses snapshot information to make query results available based on a point in
time regardless of modifications performed by concurrent transactions. If queried data has been
changed by another transaction, the original data is reconstructed using the undo log. Consistent
reads avoid locking issues that may reduce concurrency. With the REPEATABLE READ isolation
level, the snapshot is based on the time the first read operation is performed. With the READ
COMMITTED isolation level, the snapshot is reset to the time of each consistent read operation.

Use the following statement to commit work at the end of a transaction.

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Use the following statement to rollback work at the end of a transaction.

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

One of the ROLLBACK options is ROLLBACK TO SAVEPOINT<logical_name>. This command will
rollback all changes in current transaction up to the save point mentioned.

Create transaction save point during the transaction

SAVEPOINT <logical_name>

MySQL Usage 197

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

If the current transaction has a save point with the same name, the old save point is
deleted and a new one is set.

Aurora MySQL supports both auto commit and explicit commit modes. You can change mode using
the autocommit system variable.

SET autocommit = {0 | 1}

Examples

The following example runs two DML statements within a serializable transaction.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
START TRANSACTION;
INSERT INTO Table1
VALUES (1, 'A');
UPDATE Table2
SET Column1 = 'Done'
WHERE KeyColumn = 1;
COMMIT;

Summary

The following table summarizes the key differences in transaction support and syntax when
migrating from SQL Server to Aurora MySQL.

Transaction property SQL Server Aurora MySQL Comments

Default isolation level READ COMMITTED REPEATABLE READ The Aurora MySQL
default isolation
level is stricter than
SQL Server. Evaluate
application needs and
set appropriately.

Summary 198

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Transaction property SQL Server Aurora MySQL Comments

Initialize transaction
syntax

BEGIN TRAN or
BEGIN TRANSACTI
ON

START TRANSACTI
ON

Code rewrite is
required from BEGIN
to START. If using
the shorthand
TRAN, rewrite to
TRANSACTION .

Default isolation
mechanism

Pessimistic lock
based

Lock based for writes,
consistent read for
SELECT statements.

The Aurora MySQL
default mode
is similar to the
READ COMMITTED
SNAPSHOT isolation
in SQL Server.

Commit transaction COMMIT [WORK|TRA
N|TRANSACTION]

COMMIT [WORK] If you only use
COMMIT or COMMIT
WORK, no change is
needed. Otherwise
, rewrite TRAN and
TRANSACTION to
WORK.

Rollback transaction ROLLBACK [WORK
|[TRAN |
TRANSACTION]

ROLLBACK [WORK] If you only use
ROLLBACK or
ROLLBACK WORK,
no change is
needed. Otherwise
, rewrite TRAN and
TRANSACTION to
WORK.

Set autocommit off
or on

SET IMPLICIT_
TRANSACTIONS
OFF | ON

SET autocommit
= 0 | 1

For more informati
on, see Session
Options.

Summary 199

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Transaction property SQL Server Aurora MySQL Comments

ANSI isolation REPEATABLE READ
| READ COMMITTED

 | READ UNCOMMITT
ED | SERIALIZA
BLE

REPEATABLE READ
| READ COMMITTED

 | READ UNCOMMITT
ED | SERIALIZA
BLE

Compatible syntax.

MVCC SNAPSHOT and
READ COMMITTED
SNAPSHOT

WITH CONSISTENT
SNAPSHOT

Aurora MySQL
consistent read in
READ COMMITTED
isolation is similar to
READ COMMITTED
SNAPSHOT in SQL
Server.

Nested transactions Supported, view level
with @@trancount

Not supported Starting a new
transaction in Aurora
MySQL while another
transaction is active
causes a COMMIT of
the previous transacti
on.

Transaction chaining Not supported Causes a new
transaction to open
immediately upon
transaction completio
n.

Transaction release Not supported Causes the client
session to disconnec
t upon transaction
completion.

For more information, see Transaction Isolation Levels in the MySQL documentation.

Summary 200

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

DELETE and UPDATE FROM for T-SQL

This topic provides reference information about the differences in SQL syntax and functionality
between Microsoft SQL Server 2019 and Amazon Aurora MySQL, specifically regarding DELETE
and UPDATE statements with joins. You can use this information to understand how to adapt your
existing SQL Server queries when migrating to Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Rewrite to use
subqueries.

SQL Server Usage

SQL Server supports an extension to the ANSI standard that allows using an additional FROM clause
in UPDATE and DELETE statements.

You can use this additional FROM clause to limit the number of modified rows by joining the table
being updated, or deleted from, to one or more other tables. This functionality is similar to using
a WHERE clause with a derived table subquery. For UPDATE, you can use this syntax to set multiple
column values simultaneously without repeating the subquery for every column.

However, these statements can introduce logical inconsistencies if a row in an updated table is
matched to more than one row in a joined table. The current implementation chooses an arbitrary
value from the set of potential values and is non deterministic.

Syntax

UPDATE <Table Name>
SET <Column Name> = <Expression> ,...
FROM <Table Source>
WHERE <Filter Predicate>;

DELETE FROM <Table Name>

DELETE and UPDATE FROM for T-SQL 201

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM <Table Source>
WHERE <Filter Predicate>;

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
 Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

CREATE TABLE Orders
(
 OrderID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
FROM Customers AS C
 LEFT OUTER JOIN
 Orders AS O
 ON O.Customer = C.Customer
WHERE O.OrderID IS NULL;

SELECT *
FROM Customers;

SQL Server Usage 202

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For the preceding examples, the result looks as shown following.

Customer

Jim
Jack

Update multiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections
(
 OrderID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE O
SET Customer = OC.Customer,
 OrderDate = OC.OrderDate
FROM Orders AS O
 INNER JOIN
 OrderCorrections AS OC
 ON O.OrderID = OD.OrderID;

SELECT *
FROM Orders;

For the preceding example, the result looks as shown following.

Customer OrderDate
Jack 2018-03-24
Jack 2018-04-02

For more information, see UPDATE (Transact-SQL), DELETE (Transact-SQL), and FROM clause plus
JOIN, APPLY, PIVOT (Transact-SQL) in the SQL Server documentation.

SQL Server Usage 203

https://docs.microsoft.com/en-us/sql/t-sql/queries/update-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/delete-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/from-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support DELETE and UPDATE
FROM syntax.

Migration Considerations

You can easily rewrite the DELETE and UPDATE FROM statements as subqueries.

For DELETE, place the subqueries in the WHERE clause.

For UPDATE, place the subqueries either in the WHERE or SET clause.

Note

When rewriting UPDATE FROM queries, include a WHERE clause to limit which rows are
updated even if the SQL Server version (where the rows were limited by the join condition)
did not have one.

For DELETE statements, the workaround is simple and, in most cases, easier to read and
understand.

For UPDATE statements, the workaround involves repeating the correlated subquery for each
column being set.

Although this approach makes the code longer and harder to read, it does solve the logical
challenges associated with updates having multiple matched rows in the joined tables.

In the current implementation, the SQL Server engine silently chooses an arbitrary value if more
than one value exists for the same row.

When you rewrite the statement to use a correlated subquery, such as in the following example,
if more than one value is returned from the sub query, a SQL error will be raised: SQL Error
[1242] [21000]: Subquery returns more than 1 row.

Consult the documentation for the Aurora MySQL UPDATE statement as there are significant
processing differences from SQL Server. For example:

• In Aurora MySQL, you can update multiple tables in a single UPDATE statement.

MySQL Usage 204

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• UPDATE expressions are evaluated in order from left to right. This behavior differs from SQL
Server and the ANSI standard, which require an all-at-once evaluation.

For example, in the statement UPDATE Table SET Col1 = Col1 + 1, Col2 = Col1, Col2 is
set to the new value of Col1. The end result is Col1 = Col2.

Examples

Delete customers with no orders.

CREATE TABLE Customers
(
 Customer VARCHAR(20) PRIMARY KEY
);

INSERT INTO Customers
VALUES
('John'),
('Jim'),
('Jack')

CREATE TABLE Orders
(
 OrderID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO Orders (OrderID, Customer, OrderDate)
VALUES
(1, 'Jim', '20180401'),
(2, 'Jack', '20180402');

DELETE FROM Customers
WHERE Customer NOT IN (
 SELECT Customer
 FROM Orders
);

MySQL Usage 205

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT *
FROM Customers;

For the preceding example, the result looks as shown following.

Customer

Jim
Jack

Update multiple columns in Orders based on the values in OrderCorrections.

CREATE TABLE OrderCorrections
(
 OrderID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 OrderDate DATE NOT NULL
);

INSERT INTO OrderCorrections
VALUES (1, 'Jack', '20180324');

UPDATE Orders
SET Customer = (
 SELECT Customer
 FROM OrderCorrections AS OC
 WHERE Orders.OrderID = OC.OrderID
),
OrderDate = (
 SELECT OrderDate
 FROM OrderCorrections AS OC
 WHERE Orders.OrderID = OC.OrderID
IN (
 SELECT OrderID
 FROM OrderCorrections
);

SELECT *
FROM Orders;

MySQL Usage 206

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For the preceding example, the result looks as shown following.

Customer OrderDate
Jack 2018-03-24
Jack 2018-04-02

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Join as part of
DELETE

DELETE FROM …
FROM

N/A Rewrite to use the
WHERE clause with a
subquery.

Join as part of
UPDATE

UPDATE … FROM N/A Rewrite to use
correlated subquery
in the SET clause and
add the WHERE clause
to limit updates set.

For more information, see UPDATE Statement and DELETE Statement in the MySQL documentation.

Stored procedures for T-SQL

This topic provides reference content comparing stored procedures in Microsoft SQL Server 2019
and Amazon Aurora MySQL. You can understand the key differences and similarities between these
two database systems' implementations of stored procedures.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Stored Procedures No support for table-
valued parameters.

Summary 207

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Syntax and option
differences.

SQL Server Usage

Stored procedures are encapsulated, persisted code modules you can run using the EXECUTE T-
SQL statement. They may have multiple input and output parameters. Table-valued user-defined
types can be used as input parameters. IN is the default direction for parameters, but OUT must be
explicitly specified. You can specify parameters as both IN and OUT.

In SQL Server, you can run stored procedures in any security context using the EXECUTE AS option.
They can be explicitly recompiled for every run using the RECOMPILE option and can be encrypted
in the database using the ENCRYPTION option to prevent unauthorized access to the source code.

SQL Server provides a unique feature that allows you to use a stored procedure as an input to an
INSERT statement. When you use this feature, only the first row in the data set returned by the
stored procedure is evaluated.

As part of the stored procedure syntax, SQL Server supports a default output integer parameter
that can be specified along with the RETURN command, for example, RETURN -1. It’s typically
used to signal status or error to the calling scope, which can use the syntax EXEC @Parameter =
<Stored Procedure Name> to retrieve the RETURN value, without explicitly stating it as part of
the parameter list.

Syntax

CREATE [OR ALTER] { PROC | PROCEDURE } <Procedure Name>
[<Parameter List>
[WITH [ENCRYPTION]|[RECOMPILE]|[EXECUTE AS ...]]
AS {
[BEGIN]
<SQL Code Body>
[RETURN [<Integer Value>]]
[END] }[;]

SQL Server Usage 208

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Creating and Running a Stored Procedure

Create a simple parameterized stored procedure to validate the basic format of an email.

CREATE PROCEDURE ValidateEmail
@Email VARCHAR(128), @IsValid BIT = 0 OUT
AS
BEGIN
IF @Email LIKE N'%@%'
 SET @IsValid = 1
ELSE
 SET @IsValid = 0
RETURN
END;

Run the procedure.

DECLARE @IsValid BIT
EXECUTE [ValidateEmail]
 @Email = 'X@y.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

-- Returns 1

EXECUTE [ValidateEmail]
 @Email = 'Xy.com', @IsValid = @IsValid OUT;
SELECT @IsValid;

-- Returns 0

Create a stored procedure that uses RETURN to pass the application an error value.

CREATE PROCEDURE ProcessImportBatch
@BatchID INT
AS
BEGIN
 BEGIN TRY
 EXECUTE Step1 @BatchID
 EXECUTE Step2 @BatchID
 EXECUTE Step3 @BatchID
 END TRY

SQL Server Usage 209

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 BEGIN CATCH
 IF ERROR_NUMBER() = 235
 RETURN -1 -- indicate special condition
 ELSE
 THROW -- handle error normally
 END CATCH
END

Using a Table-Valued Input Parameter

Create and populate the OrderItems table.

CREATE TABLE OrderItems(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Washer', 100);

Create a table-valued type for the OrderItem table-valued parameter.

CREATE TYPE OrderItems
AS TABLE
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

Create a procedure to process order items.

CREATE PROCEDURE InsertOrderItems

SQL Server Usage 210

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

@OrderItems AS OrderItems READONLY
AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,
 Item,
 Quantity
 FROM @OrderItems
END;

Instantiate and populate the table valued variable and pass the data set to the stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),
(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems]
 @OrderItems = @OrderItems;

(3 rows affected)
 Item Quantity
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

INSERT… EXEC Syntax

INSERT INTO <MyTable>
EXECUTE <MyStoredProcedure>;

For more information, see CREATE PROCEDURE (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) stored procedures provide similar
functionality to SQL Server stored procedures.

MySQL Usage 211

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

As with SQL Server, Aurora MySQL supports security run context. It also supports input, output,
and bi-directional parameters.

Stored procedures are typically used for: * Code reuse — Stored procedures offer a convenient
code encapsulation and reuse mechanism for multiple applications, potentially written in various
languages, requiring the same database operations. * Security management — By allowing access
to base tables only through stored procedures, administrators can manage auditing and access
permissions. This approach minimizes dependencies between application code and database code.
Administrators can use stored procedures to process business rules and to perform auditing and
logging. * Performance improvements — Full SQL query text doesn’t need to be transferred from
the client to the database.

Stored procedures, triggers, and user-defined functions in Aurora MySQL are collectively referred
to as stored routines. When binary logging is enabled, MySQL SUPER privilege is required to run
stored routines. However, you can run stored routines with binary logging enabled without SUPER
privilege by setting thelog_bin_trust_function_creators parameter to true for the DB
parameter group for your MySQL instance.

Aurora MySQL permits stored routines to contain control flow, DML, DDL, and transaction
management statements including START TRANSACTION, COMMIT, and ROLLBACK.

Syntax

CREATE [DEFINER = { user | CURRENT_USER }] PROCEDURE sp_name
([IN | OUT | INOUT] <Parameter> <Parameter Data Type> ...)
COMMENT 'string' |
LANGUAGE SQL |
[NOT] DETERMINISTIC |
{ CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA } |
SQL SECURITY { DEFINER | INVOKER }
<Stored Procedure Code Body>

Examples

Replace RETURN value parameter with standard OUTPUT parameters.

CREATE PROCEDURE ProcessImportBatch()
IN @BatchID INT, OUT @ErrorNumber INT
BEGIN
 CALL Step1 (@BatchID)

MySQL Usage 212

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 CALL Step2 (@BatchID)
 CALL Step3 (@BatchID)
IF error_count > 1
 SET @ErrorNumber = -1 -- indicate special condition
END

Use a LOOP cursor with a source table to replace table valued parameters.

Create the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

Create and populate SourceTable as a temporary data store for incoming rows.

CREATE TABLE SourceTable
(
 OrderID INT,
 Item VARCHAR(20),
 Quantity SMALLINT,
 PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through all rows in SourceTable and insert them into the
OrderItems table.

CREATE PROCEDURE LoopItems()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE var_OrderID INT;

MySQL Usage 213

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 DECLARE var_Item VARCHAR(20);
 DECLARE var_Quantity SMALLINT;
 DECLARE ItemCursor CURSOR
 FOR SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
 DECLARE CONTINUE HANDLER
 FOR NOT FOUND SET done = TRUE;
 OPEN ItemCursor;
 CursorStart: LOOP
 FETCH NEXT FROM ItemCursor
 INTO var_OrderID, var_Item, var_Quantity;
 IF Done THEN LEAVE CursorStart;
 END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 VALUES (var_OrderID, var_Item, var_Quantity);
 END LOOP;
 CLOSE ItemCursor;
END;

Call the stored procedure.

CALL LoopItems();

Select all rows from the OrderItems table.

SELECT * FROM OrderItems;

For the preceding example, the result looks as shown following.

OrderID Item Quantity
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

The following table summarizes the differences between MySQL Stored Procedures and SQL Server
Stored Procedures.

Summary 214

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

General CREATE
syntax differences

CREATE PROC|PROC
EDURE
<Procedure Name>
@Parameter1
 <Type>,
...n
AS
<Body>

CREATE PROCEDURE
<Procedure Name>
(Parameter1
<Type>,...n)
<Body>

Rewrite stored
procedure creation
scripts to use
PROCEDURE instead
of PROC.

Rewrite stored
procedure creation
scripts to omit the AS
keyword.

Rewrite stored
procedure parameter
s to not use the @
symbol in parameter
names. Add
parentheses around
the parameter
declaration.

Rewrite stored
procedure parameter
direction OUTPUT
to OUT or INOUT
for bidirectional
parameters. IN is the
parameter direction
for both MySQL and
SQL Server.

Security context { EXEC |
 EXECUTE } AS
{ CALLER | SELF |
 OWNER |
'user_name' }

DEFINER = 'user'
 |
CURRENT_USER

in conjunction with

For stored procedure
s that use an explicit
user name, rewrite
the code from
EXECUTE AS

Summary 215

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

SQL SECURITY {
DEFINER |
 INVOKER }

'user' to DEFINER
= 'user' and SQL
SECURITY DEFINER.

For stored procedures
that use the CALLER
option, rewrite the
code to include SQL
SECURITY INVOKER.

For stored procedure
s that use the SELF
option, rewrite the
code to DEFINER
= CURRENT_USER
and SQL SECURITY
DEFINER.

Unlike SQL Server,
OWNERs can’t be
specified and must be
explicitly named.

Encryption Use the WITH
ENCRYPTION
option.

Not supported in
Aurora MySQL.

Summary 216

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

Parameter direction IN and OUT|OUTPU
T , by default OUT
can be used as IN as
well.

IN, OUT, and INOUT Although the
functionality of these
parameters is the
same for SQL Server
and MySQL, make
sure that you rewrite
the code for syntax
compliance.

Use OUT instead of
OUTPUT.

Use INOUT instead of
OUT for bidirectional
parameters.

Recompile Use the WITH
RECOMPILE option.

Not supported in
Aurora MySQL.

Table-valued
parameters

Use declared table
type user-defined
parameters.

Not supported in
Aurora MySQL.

See the preceding
example for a
workaround.

INSERT… EXEC Use the output of the
stored procedure as
input to an INSERT
statement.

Not supported in
Aurora MySQL.

Use tables to hold
the data or pass
string parameters
formatted as CSV,
XML, JSON (or any
other convenient
format) and then
parse the parameter
s before the INSERT
statement.

Summary 217

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

Additional restricti
ons

Use BULK INSERT to
load data from text
file.

The LOAD DATA
statement isn’t
allowed in stored
procedures.

RETURN value RETURN <Integer
Value>

Not supported. Use a standard
OUTPUT parameter
instead.

For more information, see Stored Procedures and Functions and CREATE PROCEDURE and CREATE
FUNCTION Statements in the MySQL documentation.

Error handling for T-SQL

This topic provides reference content comparing error handling approaches between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can gain insights into the differences in error
handling paradigms, syntax, and capabilities between these two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Error Handling Different paradigm
and syntax requires
rewrite of error
handling code.

SQL Server Usage

SQL Server error handling capabilities have significantly improved throughout the years. However,
previous features are retained for backward compatibility.

Before SQL Server 2008, only very basic error handling features were available. RAISERROR was
the primary statement used for error handling.

Error handling for T-SQL 218

https://dev.mysql.com/doc/refman/5.7/en/faqs-stored-procs.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Starting from SQL Server 2008, SQL Server has added extensive .NET-like error handling
capabilities including TRY/CATCH blocks, THROW statements, the FORMATMESSAGE function, and a
set of system functions that return metadata for the current error condition.

TRY/CATCH Blocks

TRY/CATCH blocks implement error handling similar to Microsoft Visual C# and Microsoft Visual C+
+. TRY … END TRY statement blocks can contain T-SQL statements.

If an error is raised by any of the statements within the TRY … END TRY block, the run stops and
is moved to the nearest set of statements that are bounded by a CATCH … END CATCH block.

Syntax

BEGIN TRY
<Set of SQL Statements>
END TRY
BEGIN CATCH
<Set of SQL Error Handling Statements>
END CATCH

THROW

The THROW statement raises an exception and transfers run of the TRY … END TRY block of
statements to the associated CATCH … END CATCH block of statements.

Throw accepts either constant literals or variables for all parameters.

Syntax

THROW [Error Number>, <Error Message>, < Error State>] [;]

Examples

Use TRY/CATCH error blocks to handle key violations.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY
 BEGIN TRANSACTION
 INSERT INTO ErrorTest(Col1) VALUES(1);

SQL Server Usage 219

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 THROW; -- Throw with no parameters = RETHROW
END CATCH;

(1 row affected)
(1 row affected)
(0 rows affected)
Msg 2627, Level 14, State 1, Line 7
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE54D8676973'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

Note

Contrary to what many SQL developers believe, the values 1 and 2 are indeed inserted
into ErrorTestTable in the preceding example. This behavior is in accordance with ANSI
specifications stating that a constraint violation shouldn’t roll back an entire transaction.

Use THROW with variables.

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO ErrorTest(Col1) VALUES(1);
INSERT INTO ErrorTest(Col1) VALUES(2);
INSERT INTO ErrorTest(Col1) VALUES(1);
COMMIT TRANSACTION;
END TRY
BEGIN CATCH
DECLARE @CustomMessage VARCHAR(1000),
 @CustomError INT,
 @CustomState INT;
SET @CustomMessage = 'My Custom Text ' + ERROR_MESSAGE();
SET @CustomError = 54321;
SET @CustomState = 1;
THROW @CustomError, @CustomMessage, @CustomState;
END CATCH;

SQL Server Usage 220

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(0 rows affected)
Msg 54321, Level 16, State 1, Line 19
My Custom Text Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE545CBDBB9A'.
Cannot insert duplicate key in object 'dbo.ErrorTest'. The duplicate key value is (1).

RAISERROR

The RAISERROR statement is used to explicitly raise an error message, similar to THROW. It causes
an error state for the running session and forwards run to either the calling scope or, if the error
occurred within a TRY … END TRY block, to the associated CATCH … END CATCH block.
RAISERROR can reference a user-defined message stored in the sys.messages system table or
can be used with dynamic message text.

The key differences between THROW and RAISERROR are:

• Message IDs passed to RAISERROR must exist in the sys.messages system table. The error
number parameter passed to THROW doesn’t.

• RAISERROR message text may contain printf formatting styles. The message text of THROW may
not.

• RAISERROR uses the severity parameter for the error returned. For THROW, severity is always 16.

Syntax

RAISERROR (<Message ID>|<Message Text> ,<Message Severity> ,<Message State>
[WITH option [<Option List>]])

Example

Raise a custom error.

RAISERROR (N'This is a custom error message with severity 10 and state 1.', 10, 1)

FORMATMESSAGE

FORMATMESSAGE returns a sting message consisting of an existing error message in the
sys.messages system table, or from a text string, using the optional parameter list replacements.
The FORMATMESSAGE statement is similar to the RAISERROR statement.

SQL Server Usage 221

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Syntax

FORMATMESSAGE (<Message Number> | <Message String>, <Parameter List>)

Error State Functions

SQL Server provides the following error state functions:

• ERROR_LINE

• ERROR_MESSAGE

• ERROR_NUMBER

• ERROR_PROCEDURE

• ERROR_SEVERITY

• ERROR_STATE

• @@ERROR

Examples

Use error state functions within a CATCH block.

CREATE TABLE ErrorTest (Col1 INT NOT NULL PRIMARY KEY);

BEGIN TRY;
 BEGIN TRANSACTION;
 INSERT INTO ErrorTest(Col1) VALUES(1);
 INSERT INTO ErrorTest(Col1) VALUES(2);
 INSERT INTO ErrorTest(Col1) VALUES(1);
 COMMIT TRANSACTION;
END TRY
BEGIN CATCH
 SELECT ERROR_LINE(),
 ERROR_MESSAGE(),
 ERROR_NUMBER(),
 ERROR_PROCEDURE(),
 ERROR_SEVERITY(),
 ERROR_STATE(),
 @@Error;
THROW;

SQL Server Usage 222

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

END CATCH;

6
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'.
Cannot insert duplicate key in object 'dbo.ErrorTest'.
The duplicate key value is (1).
2627
NULL
14
1
2627

(1 row affected)
(1 row affected)
(0 rows affected)
(1 row affected)
Msg 2627, Level 14, State 1, Line 25
Violation of PRIMARY KEY constraint 'PK__ErrorTes__A259EE543C8912D8'.
Cannot insert duplicate key in object 'dbo.ErrorTest'.
The duplicate key value is (1).

For more information, see RAISERROR (Transact-SQL), TRY…CATCH (Transact-SQL), and THROW
(Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) offers a rich error handling framework
with a different paradigm than SQL Server. The Aurora MySQL terminology is:

• CONDITION — The equivalent of an ERROR in SQL Server.

• HANDLER — An object that can handle conditions and perform actions.

• DIAGNOSTICS — The metadata about the CONDITION.

• SIGNAL and RESIGNAL — Statements similar to THROW and RAISERROR in SQL Server.

Errors in Aurora MySQL are identified by the follow items:

• A numeric error code specific to MySQL and, therefore, is not compatible with other database
systems.

MySQL Usage 223

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/raiserror-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/throw-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• A five character SQLSTATE value that uses the ANSI SQL and ODBC standard error conditions.

Note

Not every MySQL error number has a corresponding SQLSTATE value. For errors that
don’t have a corresponding SQLSTATE, the general HY000 error is used.

• A textual message string that describes the nature of the error.

DECLARE … CONDITION

The DECLARE … CONDITION statement declares a named error condition and associates the
name with a condition that requires handling. You can reference this declared name in subsequent
DECLARE … HANDLER statements.

Syntax

DECLARE <Condition Name> CONDITION
FOR <Condition Value>

<Condition Value> = <MySQL Error Code> | <SQLSTATE [VALUE] <SQLState Value>

Examples

Declare a condition for MySQL error 1051 (Unknown table error).

DECLARE TableDoesNotExist CONDITION FOR 1051;

Declare a condition for SQL State 42S02 (Base table or view not found) .

Note

This SQLState error corresponds to the MySQL Error 1051.

DECLARE TableDoesNotExist CONDITION FOR SQLSTATE VALUE '42S02';

MySQL Usage 224

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

DECLARE … HANDLER

A HANDLER object defines the actions or statements to be ran when a CONDITION arises. The
handler object may be used to CONTINUE or EXIT the run.

The condition may be a previously defined condition using the DECLARE … CONDITION
statement or an explicit condition for one of the following items:

• An explicit Aurora MySQL error code. For example 1051, which represents an Unknown Table
Error.

• An explicit SQLSTATE value. For example 42S02.

• Any SQLWARNING event representing any SQLSTATE with a 01 prefix.

• Any NOTFOUND event representing any SQLSTATE with a 02 prefix. This condition is relevant for
cursors. For more information, see Cursors.

• Any SQLEXCEPTION event, representing any SQLSTATE without a 00, 01, or 02 prefix. These
conditions are considered exception errors.

Note

SQLSTATE events with a 00 prefix aren’t errors; they are used to represent successful runs
of statements.

Syntax

DECLARE {CONTINUE | EXIT | UNDO}
HANDLER FOR
<MySQL Error Code> |
<SQLSTATE [VALUE] <SQLState Value> |
<Condition Name> |
SQLWARNING |
NOT FOUND |
SQLEXCEPTION
<Statement Block>

Examples

MySQL Usage 225

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Declare a handler to ignore warning messages and continue run by assigning an empty statement
block.

DECLARE CONTINUE HANDLER
FOR SQLWARNING BEGIN END

Declare a handler to EXIT upon duplicate key violation and log a message to a table.

DECLARE EXIT HANDLER
FOR SQLSTATE '23000'
BEGIN
 INSERT INTO MyErrorLogTable
 VALUES(NOW(), CURRENT_USER(), 'Error 23000')
END

GET DIAGNOSTICS

Each run of an SQL statement produces diagnostic information that is stored in the diagnostics
area. The GET DIAGNOSTICS statement enables users to retrieve and inspect this information.

Note

Aurora MySQL also supports the SHOW WARNINGS and SHOW ERRORS statements to
retrieve conditions and errors.

The GET DIAGNOSTICS statement is typically used in the handler code within a stored routine.
GET CURRENT DIAGNOSTICS is permitted outside the context of a handler to check the run result
of an SQL statement.

The CURRENT keyword causes retrieval of the current diagnostics area. The STACKED keyword
causes retrieval of the information from the second diagnostics area. The second diagnostic area
is only available if the current context is within a code block of a condition handler. The default is
CURRENT.

Syntax

GET [CURRENT | STACKED] DIAGNOSTICS
<@Parameter = NUMBER | ROW_COUNT>
|

MySQL Usage 226

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CONDITION <Condition Number> <@Parameter = CLASS_ORIGIN | SUBCLASS_ORIGIN | RETURNED_
SQLSTATE | MESSAGE_TEXT | MYSQL_ERRNO | CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA |
CONSTRAINT_NAME | CATALOG_NAME | SCHEMA_NAME | TABLE_NAME | COLUMN_NAME | CURSOR_NAME>

Example

Retrieve SQLSTATE and MESSAGE_TEXT from the diagnostic area for the last statement that you
ran.

GET DIAGNOSTICS CONDITION 1 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT

SIGNAL/RESIGNAL

The SIGNAL statement is used to raise an explicit condition or error. It can be used to provide full
error information to a handle, to an outer scope of run, or to the SQL client. The SIGNAL statement
enables explicitly defining the error’s properties such as error number, SQLSTATE value, message,
and so on.

The difference between SIGNAL and RESIGNAL is that RESIGNAL is used to pass on the error
condition information available during the run of a condition handler within a compound
statement inside a stored routine or an event. RESIGNAL can be used to change none, some, or all
the related condition information before passing it for processing in the next calling scope of the
stack.

Note

It is not possible to issue SIGNAL statements using variables.

Syntax

SIGNAL | RESIGNAL <SQLSTATE [VALUE] sqlstate_value | <Condition Name>
[SET <Condition Information Item Name> = <Value> [,...n]]
<Condition Information Item Name> = CLASS_ORIGIN | SUBCLASS_ORIGIN | RETURNED_SQLSTATE
| MESSAGE_TEXT | MYSQL_ERRNO | CONSTRAINT_CATALOG | CONSTRAINT_SCHEMA | CONSTRAINT_
NAME | CATALOG_NAME | SCHEMA_NAME | TABLE_NAME | COLUMN_NAME | CURSOR_NAME

Examples

Raise an explicit error with SQLSTATE 55555.

MySQL Usage 227

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SIGNAL SQLSTATE '55555'

Re-raise an error with an explicit MySQL error number.

RESIGNAL SET MYSQL_ERRNO = 5

Migration Considerations

Note

Error handling is a critical aspect of any software solution. Code migrated from one
paradigm to another should be carefully evaluated and tested.

The basic operations of raising, processing, responding, and obtaining metadata is similar in nature
for most relational database management systems. The technical aspects of rewriting the code to
use different types of objects isn’t difficult.

In SQL Server, there can only be one handler, or CATCH code block, that handles exceptions
for a given statement. In Aurora MySQL, multiple handler objects can be declared. A condition
may trigger more than one handler. Be sure the correct handlers are ran as expected, especially
when there are multiple handlers. The following sections provides rules to help establish your
requirements.

Handler Scope

A handler can be specific or general. Specific handlers are handlers defined for a specific MySQL
error code, SQLSTATE, or a condition name. Therefore, only one type of event will trigger a specific
handler. General handlers are handlers defined for conditions in the SQLWARNING, SQLEXCEPTION,
or NOT FOUND classes. More than one event may trigger the handler.

A handler is in scope for the block in which it is declared. It can’t be triggered by conditions
occurring outside the block boundaries.

A handler declared in a BEGIN … END block is in scope for the SQL statements that follow the
handler declaration.

One or more handlers may be declared in different or the same scopes using different
specifications. For example, a specific MySQL error code handler may be defined in an outer code

MySQL Usage 228

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

block while a more general SQLWARNING handler is defined within an inner code block. Specific
MySQL error code handlers and a general SQLWARNING class handler may exist within the same
code block.

Handler Choice

Only one handler is triggered for a single event. Aurora MySQL decides which handler should be
triggered. The decision regarding which handler should be triggered as a response to a condition
depends on the handler’s scope and value. It also depends on whether or not other handlers are
present that may be more appropriate to handle the event.

When a condition occurs in a stored routine, the server searches for valid handlers in the current
BEGIN … END block scope. If none are found, the engine searches for handlers in each successive
containing BEGIN … END code block scope. When the server finds one or more applicable
handlers at any given scope, the choice of which one to trigger is based on the following condition
precedence:

• A MySQL error code handler takes precedence over a SQLSTATE value handler.

• An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or
NOT FOUND handlers.

• An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.

Multiple applicable handlers with the same precedence may exist for a condition. For example, a
statement could generate several warnings having different error codes. There may exist a specific
MySQL error handler for each. In such cases, the choice is non-deterministic. Different handlers
may be triggered at different times depending on the circumstances.

Summary

The following table identifies similarities, differences, and key migration considerations.

SQL Server error handling
feature

Migrate to Aurora MySQL Comments

TRY … END TRY and CATCH
… END CATCH blocks.

Nested BEGIN … END
code blocks with per-scope
handlers.

DECLARE specific event
handlers for each BEGIN-END

 code block. Note that unlike

Summary 229

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server error handling
feature

Migrate to Aurora MySQL Comments

CATCH blocks, the handlers
must be defined first, not
later. Review the handler
scope and handler choice
sections.

THROW and RAISERROR SIGNAL and RESIGNAL Review the handler scope and
handler choice sections.

THROW with variables. Not supported.

FORMATMESSAGE N/A

Error state functions. GET DIAGNOSTIC

Proprietary error messages
in sys.messages system
table.

Proprietary MySQL error
codes and SQLSTATE ANSI
and ODBC standard.

When rewriting error
handling code, consider
switching to the more
standard SQLSTATE error
codes.

Deterministic rules regarding
condition handler run —
always the next code block in
statement order.

May be non-deterministic if
multiple handlers have the
same precedence and scope.

Review the handler scope and
handler choice sections.

For more information, see The MySQL Diagnostics Area and Condition Handling in the MySQL
documentation.

Flow control for T-SQL

This topic provides reference information about flow control in SQL Server and Amazon Aurora
MySQL, comparing their respective capabilities and syntax differences. You can use this guide to
understand how to adapt your existing SQL Server flow control statements when migrating to
Aurora MySQL.

Flow control for T-SQL 230

https://dev.mysql.com/doc/refman/5.7/en/diagnostics-area.html
https://dev.mysql.com/doc/refman/5.7/en/condition-handling.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Flow Control Syntax and option
differences, similar
functionality.

SQL Server Usage

Although SQL is a mostly declarative language, it does support flow control commands, which
provide run time dynamic changes in script run paths.

Note

Before SQL/PSM was introduced in SQL:1999, the ANSI standard did not include flow
control constructs. Therefore, there are significant syntax differences among RDBMS
engines.

SQL Server provides the following flow control keywords.

• BEGIN… END — Define boundaries for a block of commands that run together.

• RETURN — Exit a server code module such as stored procedure, function, and so on and return
control to the calling scope. You can use RETURN <value> to return an INT value to the calling
scope.

• BREAK — Exit WHILE loop run.

• THROW — Raise errors and potentially return control to the calling stack.

• CONTINUE — Restart a WHILE loop.

• TRY… CATCH — Error handling. For more information, see Error Handling.

• GOTO label — Moves the run point to the location of the specified label.

• WAITFOR — Delay.

• IF… ELSE — Conditional flow control.

• WHILE <condition> — Continue looping while <condition> returns TRUE.

SQL Server Usage 231

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

WHILE loops are commonly used with cursors and use the system variable
@@FETCH_STATUS to determine when to exit. For more information, see Cursors.

For more information, see Error Handling.

Examples

Create and populate the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

WAITFOR

Use WAITFOR to introduce a one minute delay between background batches purging old data.

SET ROWCOUNT 1000;
WHILE @@ROWCOUNT > 0;
BEGIN;
 DELETE FROM OrderItems
 WHERE OrderDate < '19900101';
 WAITFOR DELAY '00:01:00';
END;

GOTO

SQL Server Usage 232

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Use GOTO to skip a code section based on an input parameter in a stored procedure.

CREATE PROCEDURE ProcessOrderItems
@OrderID INT, @Item VARCHAR(20), @Quantity INT, @UpdateInventory BIT
AS
BEGIN
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 SELECT @OrderID, @item, @Quantity
 IF @UpdateInventory = 0
 GOTO Finish
 UPDATE Inventory
 SET Stock = Stock - @Quantity
 WHERE Item = @Item
 /* Additional Inventory Processing */
finish:
/* Generate Results Log*/
END

Dynamic Procedure Run Path

The following example demonstrates a solution for running different processes based on the
number of items in an order.

Declare a cursor for looping through all OrderItems and calculating the total quantity for each
order.

DECLARE OrderItemCursor CURSOR FAST_FORWARD
FOR
SELECT OrderID,
 SUM(Quantity) AS NumItems
FROM OrderItems
GROUP BY OrderID
ORDER BY OrderID;
DECLARE @OrderID INT, @NumItems INT;

-- Instantiate the cursor and loop through all orders.
OPEN OrderItemCursor;

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems

WHILE @@Fetch_Status = 0

SQL Server Usage 233

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

BEGIN;

IF @NumItems > 100
 PRINT 'EXECUTING LogLargeOrder - '
 + CAST(@OrderID AS VARCHAR(5))
 + ' ' + CAST(@NumItems AS VARCHAR(5));
ELSE
 PRINT 'EXECUTING LogSmallOrder - '
 + CAST(@OrderID AS VARCHAR(5))
 + ' ' + CAST(@NumItems AS VARCHAR(5));

FETCH NEXT FROM OrderItemCursor
INTO @OrderID, @NumItems;
END;

-- Close and deallocate the cursor.
CLOSE OrderItemCursor;
DEALLOCATE OrderItemCursor;

For the preceding example, the result looks as shown following.

EXECUTING LogSmallOrder - 1 100
EXECUTING LogSmallOrder - 2 100
EXECUTING LogLargeOrder - 3 200

For more information, see Control-of-Flow in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides the following flow control
constructs:

• BEGIN… END — Define boundaries for a block of commands that are ran together.

• CASE — Run a set of commands based on a predicate (not to be confused with CASE
expressions).

• IF… ELSE — Conditional flow control.

• ITERATE — Restart a LOOP, REPEAT, and WHILE statement.

• LEAVE — Exit a server code module such as stored procedure, function, and so on, and return
control to the calling scope.

MySQL Usage 234

https://docs.microsoft.com/en-us/sql/t-sql/language-elements/control-of-flow?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• LOOP — Loop indefinitely.

• REPEAT… UNTIL — Loop until the predicate is true.

• RETURN — Terminate the run of the current scope and return to the calling scope.

• WHILE — Continue looping while the condition returns TRUE.

• SLEEP — Pause the run for a specified number of seconds.

Examples

Create and populate the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Rewrite of SQL Server WAITFOR delay using SLEEP.

CREATE PROCEDURE P()
BEGIN
 DECLARE RR INT;
 SET RR = (
 SELECT COUNT(*)
 FROM OrderItems
 WHERE OrderDate < '19900101'
);
 WHILE RR > 0 DO
 DELETE FROM OrderItems
 WHERE OrderDate < '19900101';
 DO SLEEP (60);
 SET RR = (

MySQL Usage 235

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 SELECT COUNT(*)
 FROM OrderItems
 WHERE OrderDate < '19900101'
);
 END WHILE;
END;

Rewrite of SQL Server GOTO using nested blocks.

CREATE PROCEDURE ProcessOrderItems
(Var_OrderID INT, Var_Item VARCHAR(20), Var_Quantity INT, UpdateInventory BIT)
BEGIN
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 VALUES(Var_OrderID, Var_Item, Var_Quantity)
 IF @UpdateInventory = 1
 BEGIN
 UPDATE Inventory
 SET Stock = Stock - @Quantity
 WHERE Item = @Item
 /* Additional Inventory Processing...*/
 END
/* Generate Results Log */
END

Dynamic Procedure Run Path

The following example demonstrates a solution for running different processes based on the
number of items in an order.

This example provides the same functionality as the example for SQL Server flow control. However,
unlike the SQL Server example which you run as a batch script, Aurora MySQL variables can only be
used in stored routines such as procedures and functions.

Create a procedure to declare a cursor and loop through the order items.

CREATE PROCEDURE P()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE var_OrderID INT;
 DECLARE var_NumItems INT;

MySQL Usage 236

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 DECLARE OrderItemCursor CURSOR FOR
 SELECT OrderID,
 SUM(Quantity) AS NumItems
 FROM OrderItems
 GROUP BY OrderID
 ORDER BY OrderID;

 DECLARE CONTINUE HANDLER
 FOR NOT FOUND SET done = TRUE;

 OPEN OrderItemCursor;

 CursorStart: LOOP
 FETCH NEXT FROM OrderItemCursor
 INTO var_OrderID, var_NumItems;
 IF done
 THEN LEAVE CursorStart;
 END IF;
 IF var_NumItems > 100
 THEN SELECT CONCAT('EXECUTING LogLargeOrder - ', CAST(var_OrderID AS
 VARCHAR(5)),' Num Items: ', CAST(var_ NumItems AS VARCHAR(5)))
 ELSE SELECT CONCAT('EXECUTING LogSmallOrder - ', CAST(var_OrderID AS VARCHAR(5)),
 ' Num Items: ', CAST(var_NumItems AS VARCHAR(5)))
 END IF;
END LOOP;

CLOSE OrderItemCursor;

END;

Summary

While there are some syntax differences between SQL Server and Aurora MySQL flow control
statements, most rewrites should be straightforward. The following table summarizes the
differences and identifies how to modify T-SQL code to support similar functionality in Aurora
MySQL.

Feature SQL Server Aurora MySQL Workaround

BEGIN… END Define command
block boundaries.

Define command
block boundaries.

Compatible.

Summary 237

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

RETURN Exit the current scope
and return to caller.

Supported for
both scripts and
stored code such
as procedures and
functions.

Exit a stored function
and return to caller.

For Aurora MySQL,
RETURN is valid only
in stored or user-
defined functions. It
isn’t used in stored
procedures, triggers,
or events.

Rewrite the T-SQL
code using the LEAVE
keyword.

The RETURN
statement can
return a value in
both products.
However, LEAVE
doesn’t support
return parameters.
Rewrite the code to
use output parameter
s.

You can’t RETURN in
Aurora MySQL for
scripts that aren’t
part of a stored
routine.

Summary 238

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

BREAK Exit the WHILE loop
run.

Not supported. Rewrite the logic to
explicitly set a value
that will render the
WHILE condition
FALSE. For example,
WHILE a<100
AND control =
1. Explicitly SET
control = 0,
and use ITERATE
to return to the
beginning of the
loop.

THROW Raise errors and
potentially return
control to the calling
stack.

Errors are handled by
HANDLER objects.

For more informati
on, see Error
Handling.

TRY - CATCH Error handling Errors are handled by
HANDLER objects.

For more informati
on, see Error
Handling.

Summary 239

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

GOTO Move run to specified
label.

Not supported. Consider rewriting
the flow logic
using either CASE
statements or nested
stored procedures.
You can use nested
stored procedure
s to circumvent
this limitation by
separating code
sections and encap
sulating them in
sub-procedures.
Use IF <conditio
n> CALL <stored
procedure> in
place of GOTO.

Summary 240

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

WAITFOR Delay. Not supported. Replace WAITFOR
with Aurora MySQL
SLEEP. SLEEP is
less flexible than
WAITFOR and only
supports delays
specified in seconds.
Rewrite the code
using SLEEP to
replace WAITFOR
DELAY and convert
the units to seconds.

WAITFOR TIME
isn’t supported in
Aurora MySQL. You
can calculate the
difference in seconds
between the desired
time and current time
using date and rime
functions and use the
result to dynamically
generate the SLEEP
statement. Alternati
vely, consider using
CREATE EVENT
with a predefined
schedule.

Summary 241

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

IF… ELSE Conditional flow
control.

Conditional flow
control.

The functionality
is compatible, but
the syntax differs.
SQL Server uses
IF <conditio
n> <statement>
ELSE <statemen
t> . Aurora MySQL
uses IF <conditio
n> THEN
<statement>
ELSE <statemen
t> ENDIF .

Rewrite T-SQL
code to add the
mandatory THEN and
ENDIF keywords.

Summary 242

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

WHILE Continue running
while condition is
TRUE.

Continue running
while condition is
TRUE.

The functionality
is compatible, but
the syntax differs.
SQL Server uses
WHILE <conditio
n> BEGIN…END ,
Aurora MySQL uses
WHILE <conditio
n> DO… END
WHILE. Aurora
MySQL doesn’t
require a BEGIN…EN
D block.

Rewrite T-SQL code
to use the Aurora
MySQL keywords.

For more information, see Flow Control Statements in the MySQL documentation.

Full-text search for T-SQL

This topic provides reference information about full-text search capabilities in Microsoft SQL Server
2019 and Amazon Aurora MySQL. It compares the two systems, highlighting their similarities
and differences in implementing full-text search functionality. You can understand how full-text
indexes are created and used in both platforms, including the types of columns that support full-
text indexing and the basic syntax for creating and querying these indexes.

Full-text search for T-SQL 243

https://dev.mysql.com/doc/refman/5.7/en/flow-control-statements.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Full-Text Search Syntax and option
differences, less
comprehensive
but simpler. Most
common basic
functionality is
similar. Requires
rewrite of administr
ation logic and
queries.

SQL Server Usage

SQL Server supports an optional framework for running full-text search queries against character-
based data in SQL Server tables using an integrated, in-process full-text engine, and the
fdhost.exe filter daemon host process.

To run full-text queries, a full-text catalog must first be created, which in turn may contain one or
more full-text indexes. A full-text index is comprised of one or more textual columns of a table.

Full-text queries perform smart linguistic searches against Full-Text indexes by identifying words
and phrases based on specific language rules. The searches can be for simple words, complex
phrases, or multiple forms of a word or a phrase. They can return ranking scores for matches also
known as hits.

Full-Text Indexes

A full-text index can be created on one of more columns of a table or view for any of the following
data types:

• CHAR — Fixed size ASCII string column data type.

• VARCHAR — Variable size ASCII string column data type.

• NCHAR — Fixed size UNICODE string column data type.

SQL Server Usage 244

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• NVARCHAR — Variable size UNICODE string column data type.

• TEXT — ASCII BLOB string column data type (deprecated).

• NTEXT — UNICODE BLOB string column data type (deprecated).

• IMAGE — Binary BLOB data type (deprecated).

• XML — XML structured BLOB data type.

• VARBINARY(MAX) — Binary BLOB data type.

• FILESTREAM — File-based storage data type.

Note

For more information about data types, Data Types.

Full-text indexes are created using the CREATE FULLTEXT INDEX statement. A full-text index
may contain up to 1024 columns from a single table or view. For more information, see CREATE
FULLTEXT INDEX (Transact-SQL) in the SQL Server documentation.

When creating full-text indexes on BINARY type columns, documents such as Microsoft Word can
be stored as a binary stream and parsed correctly by the full-text engine.

Full-Text Catalogs

Full-text indexes are contained within full-text catalog objects. A full-text catalog is a logical
container for one or more full-text indexes and can be used to collectively administer them as a
group for tasks such as back-up, restore, refresh content, and so on.

Full-text catalogs are created using the CREATE FULLTEXT CATALOG statement. A full-text
catalog may contain zero or more full-text indexes and is limited in scope to a single database.
For more information, see CREATE FULLTEXT CATALOG (Transact-SQL) in the SQL Server
documentation.

Full-Text Queries

After a full-text catalog and index have been create and populated, users can perform full-text
queries against these indexes to query for:

• Simple term match for one or more words or phrases.

SQL Server Usage 245

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-fulltext-catalog-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Prefix term match for words that begin with a set of characters.

• Generational term match for inflectional forms of a word.

• Proximity term match for words or phrases which are close to another word or phrase.

• Thesaurus search for synonymous forms of a word.

• Weighted term match for finding words or phrases with weighted proximity values.

Full-text queries are integrated into T-SQL, and use the following predicates and functions:

• CONTAINS predicate.

• FREETEXT predicate.

• CONTAINSTABLE table valued function.

• FREETEXTTABLE table valued function.

Note

Don’t confuse full-text functionality with the LIKE predicate, which is used for pattern
matching only.

Updating Full-Text Indexes

By default, full-text indexes are automatically updated when the underlying data is modified,
similar to a normal B-tree or columnstore index. However, large changes to the underlying data
may inflict a performance impact for the full-text indexes update because it is a resource intensive
operation. In these cases, you can turn off the automatic update of the catalog and update it
manually, or on a schedule, to keep the catalog up to date with the underlying tables.

Note

You can monitor the status of full-text catalog by using the FULLTEXTCATALOGPROPERTY
(<Full-text Catalog Name>, 'Populatestatus') function.

Examples

Create the ProductReviews table.

SQL Server Usage 246

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE ProductReviews
(
 ReviewID INT NOT NULL
 IDENTITY(1,1),
 CONSTRAINT PK_ProductReviews PRIMARY KEY(ReviewID),
 ProductID INT NOT NULL
 /*REFERENCES Products(ProductID)*/,
 ReviewText VARCHAR(4000) NOT NULL,
 ReviewDate DATE NOT NULL,
 UserID INT NOT NULL
 /*REFERENCES Users(UserID)*/
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it isn't that great and failed after two days',
'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Create a full-text catalog for product reviews.

CREATE FULLTEXT CATALOG ProductFTCatalog;

Create a full-text index for ProductReviews.

CREATE FULLTEXT INDEX
ON ProductReviews (ReviewText)
KEY INDEX PK_ProductReviews
ON ProductFTCatalog;

Query the full-text index for reviews containing the word excellent.

SELECT *
FROM ProductReviews
WHERE CONTAINS(ReviewText, 'excellent');

SQL Server Usage 247

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ReviewID ProductID ReviewText
 ReviewDate UserID
1 1 This is a review for product 1, it is excellent and works as
 expected. 2018-07-01 2

For more information, see Full-Text Search in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports all the native full-text
capabilities of MySQL InnoDB full-text indexes. Full-text indexes are used to speed up textual
searches performed against textual data by using the full-text MATCH … AGAINST predicate.

Full-text indexes can be created on any textual column of the following types:

• CHAR — Fixed length string data type.

• VARCHAR — Variable length string data type.

• TEXT — String BLOB data type.

Full-text indexes can be created as part of the CREATE TABLE, ALTER TABLE, and CREATE
INDEX statements. Full-text indexes in Aurora MySQL use an inverted index design where a list of
individual words is stored alongside a list of documents where the words were found. Proximity
search is also supported by storing a byte offset position for each word.

Creating a full-text index in Aurora MySQL creates a set of index system tables that can be
viewed using the INFORMATION_SCHEMA.INNODB_SYS_TABLES view. These tables include the
auxiliary index tables representing the inverted index and a set of management tables that help
facilitate management of the indexes such as deletes and sync with the underlying data, caching,
configuration, and syncing processes.

Full-Text Index Cache

The index cache temporarily caches index entries for recent rows to minimize the contention
associated with inserting documents. These inserts, even small ones, typically result in many
singleton insertions to the auxiliary tables, which may prove to be challenging in terms of
concurrency. Caching and batch flushing help minimize these frequent updates. In addition,
batching also helps alleviate the overhead involved with multiple auxiliary table insertions for

MySQL Usage 248

https://docs.microsoft.com/en-us/previous-versions/sql/2014/relational-databases/search/full-text-search?view=sql-server-2014&viewFallbackFrom=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

words and minimizes duplicate entries as insertions are merged and written to disk as a single
entry.

Full-Text Index Document ID and FTS_DOC_ID Column

Aurora MySQL assigns a document identifier that maps words in the index to the document rows
where those words are found. This warrants a schema change to the source table, namely adding
an indicator column to point to the associated document. This column, known as FTS_DOC_ID
must exist in the table where the full-text index is created. If the column is not present, Aurora
MySQL adds it when the full-text index is created.

Note

Adding a column to a table in Aurora MySQL triggers a full rebuild of the table. That may
be resource intensive for larger tables and a warning is issued.

Running a SHOW WARNINGS statement after creating a full-text index on a table that doesn’t have
this column generates a warning. Consider the following example.

CREATE TABLE TestFT
(
 KeyColumn INT AUTO_INCREMENT NOT NULL
 PRIMARY KEY,
 TextColumn TEXT(200)
);

CREATE FULLTEXT INDEX FTIndex1
ON TestFT(TextColumn);

SHOW WARNINGS;

Level Code Message
Warning 124 InnoDB rebuilding table to add column FTS_DOC_ID.

If the full-text index is created as part of the CREATE TABLE statement, the FTS_DOC_ID column
is added silently and no warning is issued. It is recommended to create the FTS_DOC_ID column
for tables where full-text indexes will be created as part of the CREATE TABLE statement to avoid

MySQL Usage 249

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

an expensive rebuild of a table that is already loaded with large amounts of data. Creating the
FTS_DOC_ID column as an AUTO_INCREMENT column may improve performance of data loading.

Note

Dropping a full-text index from a table doesn’t drop the FTS_DOC_ID column.

Full-Text Index Deletes

Similar to the insert issue described earlier, deleting rows from a table with a Full-Text index may
also result in concurrency challenges due to multiple singleton deletions from the auxiliary tables.

To minimize the impact of this issue, Aurora MySQL logs the deletion of a document ID (DOC_ID)
in a dedicated internal system table named FTS_*_DELETED instead of actually deleting it from
the auxiliary tables. The existence of a DOC_ID in the DELETED table is a type of soft-delete.
The engine consults it to determine if a row that had a match in the auxiliary tables should be
discarded, or if it should be returned to the client. This approach makes deletes much faster at the
expense of somewhat larger index size.

Note

Soft deleted documents aren’t automatically managed. Make sure that you issue an
OPTIMIZE TABLE statement and the innodb_optimize_fulltext_only=ON option to
rebuild the full-text index.

Transaction Control

Due to the caching and batch processing properties of the full-text indexes, UPDATE and INSERT
to a full-text index are committed when a transaction commits. Full-text search can only access
committed data.

Full-Text Search Functions

To query full-text indexes, use the MATCH… AGAINST predicate. The MATCH clause accepts a list
of column names, separated by commas, that define the column names of the columns that have a
full-text index defined and need to be searched. In the AGAINST clause, define the string you want
searched. It also accepts an optional modifier that indicates the type of search to perform.

MySQL Usage 250

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MATCH… AGAINST Syntax

MATCH (<Column List>)
AGAINST (
<String Expression>
[IN NATURAL LANGUAGE MODE
 | IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION
 | IN BOOLEAN MODE
 | WITH QUERY EXPANSION]
)

Note

The search expression must be constant for all rows searched. Therefore a table column
isn’t permitted.

The three types of full-text searches are natural language, Boolean, and query expansion.

Natural Language Search

If no modifier is provided, or the IN NATURAL LANGUAGE MODE modifier is explicitly provided, the
search string is interpreted as natural human language phrase. For this type of search, the stop-
word list is considered and stop words are excluded. For each row, the search returns a relevance
value, which denotes the similarity of the search string to the text, for the row, in all the columns
listed in the MATCH column list. For more information, see Full-Text Stopwords in the MySQL
documentation.

Boolean Search

The IN BOOLEAN MODE modifier specifies a Boolean search. When using Boolean search, some
characters imply special meaning either at the beginning or the end of the words that make up the
search string. The + and — operators are used to indicate that a word must be present or absent for
the match to resolve to TRUE.

For example, the following statement returns rows for which the ReviewText column contains the
word Excellent, but not the word England.

SELECT *

MySQL Usage 251

https://dev.mysql.com/doc/refman/5.7/en/fulltext-stopwords.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM ProductReviews
WHERE MATCH (ReviewText) AGAINST ('+Excellent -England' IN BOOLEAN MODE);

Additional Boolean operators include: * The @distance operator tests if two or more words start
within a specified distance, or the number of words between them. * The < and > operators change
a word’s contribution to the relevance value assigned for a specific row match. * Parentheses ()
are used to group words into sub-expressions and may be nested. * The tilde ~ is used as negative
operator, resulting in the word’s contribution to be deducted from the total relevance value. Use
this operator to mark noise words that are rated lower, but not excluded, as with the - operator.
* The asterisk * operator is used as a wildcard operator and is appended to the word. * Double
quotes ` are used for exact, literal phrase matching.

For more information, see Boolean Full-Text Searches in the MySQL documentation.

Query Expansion

The WITH QUERY EXPANSION or IN NATURAL LANGUAGE MODE WITH QUERY EXPANSION is
useful when a search phrase is too short, which may indicate that the user is looking for implied
knowledge that the full-text engine doesn’t have.

For example, a user that searches for Car may need to match specific car brands such as Ford,
Toyota, Mercedes-Benz, and so on.

Blind query expansions, also known as automatic relevance feedback, performs the searches twice.
On the first pass, the engine looks for the most relevant documents. It then performs a second
pass using the original search phrase concatenated with the results of the first pass. For example,
if the search was looking for Cars and the most relevant documents included the word Ford, the
seconds search would find the documents that also mention Ford.

For more information, see Full-Text Searches with Query Expansion in the MySQL documentation.

Migration Considerations

Migrating full-text indexes from SQL Server to Aurora MySQL requires a full rewrite of the code
that deals with both creating, management, and querying of full-text searches.

Although the Aurora MySQL full-text engine is significantly less comprehensive than SQL Server,
it is also much simpler to create and manage and is sufficiently powerful for most common, basic
full-text requirements.

MySQL Usage 252

https://dev.mysql.com/doc/refman/5.7/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/5.7/en/fulltext-query-expansion.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more complex full-text workloads, Amazon Relational Database Service (Amazon RDS) offers
CloudSearch, a managed service in the Amazon Cloud that makes it simple and cost-effective to
set up, manage, and scale an enterprise grade search solution. Amazon CloudSearch supports
34 languages and advanced search features such as highlighting, autocomplete, and geospatial
search.

Currently, there is no direct tooling integration with Aurora MySQL and, therefore, you must create
a custom application to synchronize the data between Amazon RDS instances and the CloudSearch
Service.

For more information, see Amazon CloudSearch.

Examples

CREATE TABLE ProductReviews
(
 ReviewID INT
 AUTO_INCREMENT NOT NULL
 PRIMARY KEY,
 ProductID INT NOT NULL
 /*REFERENCES Products(ProductID)*/,
 ReviewText TEXT(4000) NOT NULL,
 ReviewDate DATE NOT NULL,
 UserID INT NOT NULL
 /*REFERENCES Users(UserID)*/
);

INSERT INTO ProductReviews
(ProductID, ReviewText, ReviewDate, UserID)
VALUES
(1, 'This is a review for product 1, it is excellent and works as expected',
'20180701', 2),
(1, 'This is a review for product 1, it isn't that great and failed after two days',
'20180702', 2),
(2, 'This is a review for product 3, it has exceeded my expectations. A+++',
'20180710', 2);

Query the full-text index for reviews containing the word excellent.

SELECT *
FROM ProductReviews

MySQL Usage 253

https://www.amazonaws.cn/cloudsearch/

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

WHERE MATCH (ReviewText) AGAINST ('Excellent' IN NATURAL LANGUAGE MODE);

For more information, see InnoDB Full-Text Indexes in the MySQL documentation.

SQL server graph features for T-SQL

This topic provides reference content about graph database capabilities in Microsoft SQL Server
2019 and compares them to Amazon Aurora MySQL. You can understand the key features of graph
databases in SQL Server, including nodes, edges, and their relationships.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Feature isn’t
supported. Migration
will require
implementing a
workaround.

SQL Server Usage

SQL Server offers graph database capabilities to model many-to-many relationships. The graph
relationships are integrated into Transact-SQL and receive the benefits of using SQL Server as the
foundational database management system.

A graph database is a collection of nodes or vertices and edges or relationships. A node represents
an entity (for example, a person or an organization) and an edge represents a relationship between
the two nodes that it connects (for example, likes or friends). Both nodes and edges may have
properties associated with them. Here are some features that make a graph database unique:

• Edges or relationships are first class entities in a graph database and can have attributes or
properties associated with them.

• A single edge can flexibly connect multiple nodes in a graph database.

• You can express pattern matching and multi-hop navigation queries easily.

• You can express transitive closure and polymorphic queries easily.

SQL server graph features for T-SQL 254

https://dev.mysql.com/doc/refman/5.7/en/innodb-fulltext-index.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

A relational database can achieve anything a graph database can. However, a graph database
makes it easier to express certain kinds of queries. Also, with specific optimizations, certain queries
may perform better. Your decision to choose either a relational or graph database is based on
following factors:

• Your application has hierarchical data. The HierarchyID data type can be used to implement
hierarchies, but it has some limitations. For example, it doesn’t allow you to store multiple
parents for a node.

• Your application has complex many-to-many relationships; as application evolves, new
relationships are added.

• You need to analyze interconnected data and relationships.

SQL Server 2017 adds new graph database capabilities for modeling graph many-to-many
relationships. They include a new CREATE TABLE syntax for creating node and edge tables, and
the keyword MATCH for queries.

For more information, see Graph processing with SQL Server and Azure SQL Database in the SQL
Server documentation.

Consider the following CREATE TABLE example:

CREATE TABLE Person (ID INTEGER PRIMARY KEY, Name VARCHAR(100), Age INT) AS NODE;

CREATE TABLE friends (StartDate date) AS EDGE;

The new MATCH clause is introduced to support pattern matching and multi-hop navigation
through the graph. The MATCH function uses ASCII-art style syntax for pattern matching. Consider
the following example:

-- Find friends of John
SELECT Person2.Name
FROM Person Person1, Friends, Person Person2
WHERE MATCH(Person1-(Friends)->Person2)
AND Person1.Name = 'John';

SQL Server 2019 adds ability to define cascaded delete actions on an edge constraint in a graph
database. Edge constraints enable users to add constraints to their edge tables, thereby enforcing

SQL Server Usage 255

https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

specific semantics and also maintaining data integrity. For more information, see Edge constraints
in the SQL Server documentation.

In SQL Server 2019, graph tables have support for table and index partitioning. For more
information, see Partitioned tables and indexes in the SQL Server documentation.

MySQL Usage

Currently, MySQL doesn’t provide native graph database features.

JSON and XML for T-SQL

This topic provides reference information about XML and JSON support in Microsoft SQL
Server 2019 and Amazon Aurora MySQL. It compares how these two database systems handle
semi-structured data formats, highlighting their respective strengths and limitations. You
can understand the differences in native data type support, available functions, and indexing
capabilities for XML and JSON between SQL Server and Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

XML and JSON Minimal XML support,
extensive JSON
support. No XQUERY
support, optionally
convert to JSON.

SQL Server Usage

Java Script Object Notation (JSON) and eXtensible Markup Language (XML) are the two most
common types of semi-structured data documents used by a variety of data interfaces and NoSQL
databases. Most REST web service APIs support JSON as their native data transfer format. XML
is an older, more mature framework still widely used. It also provides many extensions such as
XQuery, name spaces, schemas, and more.

The following example is a JSON document:

MySQL Usage 256

https://docs.microsoft.com/en-us/sql/relational-databases/tables/graph-edge-constraints?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

[{
 "name": "Robert",
 "age": "28"
}, {
 "name": "James",
 "age": "71"
 "lastname": "Drapers"
}]

Its XML counterpart is show following:

<?xml version="1.0" encoding="UTF-16" ?>
<root>
 <Person>
 <name>Robert</name>
 <age>28</age>
 </Person>
 <Person>
 <name>James</name>
 <age>71</age>
 <lastname>Drapers</lastname>
 </Person>
</root>

SQL Server provides native support for XML and JSON in the database using the familiar and
convenient T-SQL interface.

XML Data

SQL Server provides extensive native support for working with XML data including XML data types,
XML columns, XML indexes, and XQuery.

XML Data Types and Columns

XML data can be stored using the following data types:

• The native XML data type uses a BLOB structure but preserves the XML infoset, which consists
of the containment hierarchy, document order, and element or attribute values. An XML typed
document may differ from the original text; whitespace is removed and the order of objects
may change. XML data stored as a native XML data type has the additional benefit of schema
validation.

SQL Server Usage 257

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• You can use an annotated schema (AXSD) to distribute XML documents to one or more tables.
Hierarchical structure is maintained, but element order is not.

• CLOB or BLOB such as VARCHAR(MAX) and VARBINARY(MAX) can be used to store the original
XML document.

XML Indexes

In SQL Server, you can create PRIMARY and SECONDARY XML indexes on columns with a native XML
data type. You can create secondary indexes for PATH, VALUE, or PROPERTY, which are helpful for
various types of workload queries.

XQuery

SQL Server supports a sub set of the W3C XQUERY language specification. In SQL Server, you
can run queries directly against XML data and use them as expressions or sets in standard T-SQL
statements. Consider the following example:

DECLARE @XMLVar XML = '<Root><Data>My XML Data</Data></Root>';
SELECT @XMLVar.query('/Root/Data');

For the preceding example, the result looks as shown following.

Result: <Data>My XML Data</Data>

JSON Data

SQL Server doesn’t support a dedicated JSON data type. However, you can store JSON documents
in an NVARCHAR column. For more information, see Data Types.

SQL Server provides a set of JSON functions that can be used for the following tasks:

• Retrieve and modify values in JSON documents.

• Convert JSON objects to a set (table) format.

• Use standard T-SQL queries with converted JSON objects.

• Convert tabular results of T-SQL queries to JSON format.

The functions are:

SQL Server Usage 258

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• ISJSON tests whether a string contains a valid JSON string. Use in the WHERE clause to avoid
errors.

• JSON_VALUE retrieves a scalar value from a JSON document.

• JSON_QUERY retrieves a whole object or array from a JSON document.

• JSON_MODIFY modifies values in a JSON document.

• OPENJSON converts a JSON document to a SET that can be used in the FROM clause of a T-SQL
query.

The FOR JSON clause of SELECT queries can be used to convert a tabular set to a JSON document.

Examples

The following example creates a table with a native typed XML column.

CREATE TABLE MyTable
(
 XMLIdentifier INT NOT NULL PRIMARY KEY,
 XMLDocument XML NULL
);

The following example queries a JSON document.

DECLARE @JSONVar NVARCHAR(MAX);
SET @JSONVar = '{"Data":{"Person":[{"Name":"John"},{"Name":"Jane"},
{"Name":"Maria"}]}}';
SELECT JSON_QUERY(@JSONVar, '$.Data');

For more information, see JSON data in SQL Server and XML Data in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) support for unstructured data is the
opposite of SQL Server.

There is minimal support for XML, but a native JSON data type and more than 25 dedicated JSON
functions.

MySQL 5.7.22 also added the JSON utility function JSON_PRETTY() which outputs an existing
JSON value in an easy-to-read format; each JSON object member or array value is printed on

MySQL Usage 259

https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/xml/xml-data-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

a separate line and a child object or array is indented 2 spaces with respect to its parent. This
function also works with a string that can be parsed as a JSON value. For more information, see
JSON Utility Functions in the MySQL documentation.

MySQL 5.7.22 also added the JSON utility functions JSON_STORAGE_SIZE() and
JSON_STORAGE_FREE(). JSON_STORAGE_SIZE() returns the storage space in bytes used for the
binary representation of a JSON document prior to any partial update.

JSON_STORAGE_FREE() shows the amount of space freed after it has been partially updated
using JSON_SET() or JSON_REPLACE(); this is greater than zero if the binary representation of
the new value is less than that of the previous value. Each of these functions also accepts a valid
string representation of a JSON document.

For such a value JSON_STORAGE_SIZE() returns the space used by its binary representation
following its conversion to a JSON document. For a variable containing the string representation
of a JSON document JSON_STORAGE_FREE() returns zero. Either function produces an error if its
(non-null) argument can’t be parsed as a valid JSON document and NULL if the argument is NULL.
For more information, see JSON Utility Functions in the MySQL documentation.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 added two JSON
aggregation functions JSON_ARRAYAGG() and JSON_OBJECTAGG(). JSON_ARRAYAGG()
takes a column or expression as its argument and aggregates the result as a single JSON
array. The expression can evaluate to any MySQL data type; this doesn’t have to be a JSON
value. JSON_OBJECTAGG() takes two columns or expressions which it interprets as a
key and a value; it returns the result as a single JSON object. For more information, see
Aggregate Functions in the MySQL documentation.

Note

Amazon RDS for MySQL 8.0.17 adds two functions JSON_SCHEMA_VALID()
and JSON_SCHEMA_VALIDATION_REPORT() for validating JSON documents.
JSON_SCHEMA_VALID() returns TRUE or 1 if the document validates against the schema
and FALSE or 0 if it doesn’t. JSON_SCHEMA_VALIDATION_REPORT() returns a JSON
document containing detailed information about the results of the validation.

MySQL Usage 260

https://dev.mysql.com/doc/refman/8.0/en/json-utility-functions.html
https://dev.mysql.com/doc/refman/8.0/en/json-utility-functions.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions-and-modifiers.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

XML Support

Aurora MySQL supports two XML functions: ExtractValue and UpdateXML.

ExtractValue accepts an XML document, or fragment, and an XPATH expression. The function
returns the character data of the child or element matched by the XPATH expression. If there
is more than one match, the function returns the content of child nodes as a space delimited
character string. ExtractValue returns only CDATA. It doesn’t return tags sub-tags contained
within a matching tag or its content.

Consider the following example.

SELECT ExtractValue('<Root><Person>John</Person><Person>Jim</Person></Root>', '/Root/
Person');

Results: John Jim

You can use UpdateXML to replace an XML fragment with another fragment using XPATH
expressions similar to ExtractValue. If a match is found, it returns the new, updated XML. If
there are no matches, or multiple matches, the original XML is returned.

Consider the following example.

SELECT UpdateXML('<Root><Person>John</Person><Person>Jim</Person></Root>', '/Root',
 '<Person>Jack</Person>')

Results: <Person>Jack</Person>

Note

Aurora MySQL doesn’t support MySQL LOAD XML syntax. For more information, see
Loading data into an Amazon Aurora MySQL DB cluster from text files in an Amazon S3
bucket in the User Guide for Aurora.

JSON Data Type

Aurora MySQL 5.7 supports a native JSON data type for storing JSON documents, which provides
several benefits over storing the same document as a generic string. The first major benefit is that

MySQL Usage 261

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

all JSON documents stored as a JSON data type are validated for correctness. If the document isn’t
valid JSON, it is rejected and an error condition is raised.

In addition, more efficient storage algorithms enable optimized read access to elements within
the document. The optimized internal binary representation of the document enables much faster
operation on the data without requiring expensive re-parsing.

Consider the following example.

CREATE TABLE JSONTable (DocumentIdentifier INT NOT NULL PRIMARY KEY, JSONDocument
 JSON);

JSON Functions

Aurora MySQL supports a rich set of more than 25 targeted functions for working with JSON
data. These functions enable adding, modifying, and searching JSON data. Additionally, you can
use spatial JSON functions for GeoJSON documents. For more information, see Spatial GeoJSON
Functions in the MySQL documentation.

The JSON_ARRAY, JSON_OBJECT, and JSON_QUOTE functions return a JSON document from a list
of values, a list of key-value pairs, or a JSON value respectively.

Consider the following example.

SELECT JSON_OBJECT('Person', 'John', 'Country', 'USA');

{"Person": "John", "Country": "USA"}

You can use The JSON_CONTAINS, JSON_CONTAINS_PATH, JSON_EXTRACT, JSON_KEYS, and
JSON_SEARCH functions to query and search the content of a JSON document.

The CONTAINS functions are Boolean functions that return 1 or 0 (TRUE or FALSE).
JSON_EXTRACT returns a subset of the document based on the XPATH expression.

JSON_KEYS returns a JSON array consisting of the top-level key or path top-level values of a JSON
document.

The JSON_SEARCH function returns the path to one or all of the instances of the search string.

MySQL Usage 262

https://dev.mysql.com/doc/refman/5.7/en/spatial-geojson-functions.html
https://dev.mysql.com/doc/refman/5.7/en/spatial-geojson-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Consider the following example.

SELECT JSON_EXTRACT('["Mary", "Paul", ["Jim", "Ryan"]]', '$[1]');

"Paul"

SELECT JSON_SEARCH('["Mary", "Paul", ["Jim", "Ryan"]]', 'one', 'Paul');

"$[1]"

Aurora MySQL supports the following functions for adding, deleting, and modifying JSON data:
JSON_INSERT, JSON_REMOVE, JSON_REPLACE, and their ARRAY counterparts, which are used to
create, delete, and replace existing data elements.

Consider the following example.

SELECT JSON_ARRAY_INSERT('["Mary", "Paul", "Jim"]', '$[1]', 'Jack');

["Mary", "Jack", "Paul", "Jim"]

You can use JSON_SEARCH to find the location of an element value within a JSON document.

Consider the following example.

SELECT JSON_SEARCH('["Mary", "Paul", ["Jim", "Ryan"]]', 'one', 'Paul');

"$[1]"

JSON Indexes

JSON columns are effectively a BINARY family type, which can’t be indexed.

To index JSON data, use CREATE TABLE or ALTER TABLE to add generated columns that
represent some value from the JSON document and create an index on this generated column.

For more information, see Indexes.

MySQL Usage 263

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

If indexes on generated columns exist for JSON documents, the query optimizer can use
them to match JSON expressions and optimize data access.

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL

XML and JSON native data
types

XML with schema collections JSON

JSON functions IS_JSON, JSON_VALUE ,
JSON_QUERY , JSON_MODF
IY , OPEN_JSON , FOR JSON

A set of over 25 dedicated
JSON functions. For more
information, see JSON
Function Reference in the
MySQL documentation.

XML functions XQUERY and XPATH,
OPEN_XML, FOR XML

ExtractValue and
UpdateXML .

XML and JSON indexes Primary and secondary
PATH, VALUE, and PROPERTY
indexes

Requires adding always-
generated (computed and
persisted) columns with JSON
expressions and indexing
them explicitly. The optimizer
can make use of JSON
expressions only.

For more information, see XML Functions, The JSON Data Type, and JSON Functions in the MySQL
documentation.

Summary 264

https://dev.mysql.com/doc/refman/5.7/en/json-function-reference.html
https://dev.mysql.com/doc/refman/5.7/en/json-function-reference.html
https://dev.mysql.com/doc/refman/5.7/en/xml-functions.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MERGE for T-SQL

This topic provides reference information about migrating from Microsoft SQL Server 2019’s
MERGE statement to equivalent functionality in Amazon Aurora MySQL. You can understand the
key differences and similarities between SQL Server’s MERGE capabilities and alternatives such as
REPLACE and INSERT…ON DUPLICATE KEY UPDATE statements.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

MERGE Rewrite to use
REPLACE and ON
DUPLICATE KEY, or
individual constituent
DML statements.

SQL Server Usage

MERGE is a complex , hybrid DML/DQL statement for performing INSERT, UPDATE, or DELETE
operations on a target table based on the results of a logical join of the target table and a source
data set.

MERGE can also return row sets similar to SELECT using the OUTPUT clause, which gives the calling
scope access to the actual data modifications of the MERGE statement.

The MERGE statement is most efficient for non-trivial conditional DML. For example, inserting data
if a row key value doesn’t exist and updating the existing row if the key value already exists.

You can manage additional logic such as deleting rows from the target that don’t appear in the
source. For simple, straightforward updates of data in one table based on data in another, it is
typically more efficient to use simple INSERT, DELETE, and UPDATE statements. You can replicate
all MERGE functionality using INSERT, DELETE, and UPDATE statements, but not necessarily less
efficiently.

MERGE for T-SQL 265

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The SQL Server MERGE statement offers a wide range of functionality and flexibility and is
compatible with ANSI standard SQL:2008. SQL Server has many extensions to MERGE that provide
efficient T-SQL solutions for synchronizing data.

Syntax

MERGE [INTO] <Target Table> [AS] <Table Alias>]
USING <Source Table>
ON <Merge Predicate>
[WHEN MATCHED [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
[WHEN NOT MATCHED [BY TARGET] [AND <Predicate>]
THEN INSERT [(<Column List>)]
VALUES (<Values List>) | DEFAULT VALUES]
[WHEN NOT MATCHED BY SOURCE [AND <Predicate>]
THEN UPDATE SET <Column Assignments...> | DELETE]
OUTPUT [<Output Clause>]

Examples

Perform a simple one-way synchronization of two tables.

CREATE TABLE SourceTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

CREATE TABLE TargetTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

INSERT INTO SourceTable (Col1, Col2)
VALUES
(2, 'Source2'),
(3, 'Source3'),
(4, 'Source4');

SQL Server Usage 266

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

INSERT INTO TargetTable (Col1, Col2)
VALUES
(1, 'Target1'),
(2, 'Target2'),
(3, 'Target3');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2);

SELECT * FROM TargetTable;

Col1 Col2
1 Target1
2 Source2
3 Source3
4 Source4

Perform a conditional two-way synchronization using NULL for no change and DELETE from the
target when the data isn’t found in the source.

TRUNCATE TABLE SourceTable;
INSERT INTO SourceTable (Col1, Col2) VALUES (3, NULL), (4, 'NewSource4'), (5,
 'Source5');

MERGE INTO TargetTable AS TGT
USING SourceTable AS SRC ON TGT.Col1 = SRC.Col1
WHEN MATCHED AND SRC.Col2 IS NOT NULL
 THEN UPDATE SET TGT.Col2 = SRC.Col2
WHEN NOT MATCHED
 THEN INSERT (Col1, Col2)
 VALUES (SRC.Col1, SRC.Col2)
WHEN NOT MATCHED BY SOURCE
 THEN DELETE;

SQL Server Usage 267

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT *
FROM TargetTable;

Col1 Col2
3 Source3
4 NewSource4
5 Source5

For more information, see MERGE (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support the MERGE statement.
However, it provides two other statements for merging data: REPLACE, and INSERT… ON
DUPLICATE KEY UPDATE.

REPLACE deletes a row and inserts a new row if a duplicate key conflict occurs. INSERT… ON
DUPLICATE KEY UPDATE performs an in-place update. Both REPLACE and ON DUPLICATE KEY
UPDATE rely on an existing primary key and unique constraints. It isn’t possible to define custom
MATCH conditions as with SQL Server MERGE statement.

REPLACE

REPLACE provides a function similar to INSERT. The difference is that REPLACE first deletes an
existing row if a duplicate key violation for a PRIMARY KEY or UNIQUE constraint occurs.

REPLACE is a MySQL extension that isn’t ANSI compliant. It either performs only an INSERT when
no duplicate key violations occur, or it performs a DELETE and then an INSERT if violations occur.

Syntax

REPLACE [INTO] <Table Name> (<Column List>)
VALUES (<Values List>)

REPLACE [INTO] <Table Name>
SET <Assignment List: ColumnName = VALUE...>

REPLACE [INTO] <Table Name> (<Column List>)
SELECT ...

MySQL Usage 268

https://docs.microsoft.com/en-us/sql/t-sql/statements/merge-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

INSERT … ON DUPLICATE KEY UPDATE

The ON DUPLICATE KEY UPDATE clause of the INSERT statement acts as a dual DML hybrid.
Similar to REPLACE, it runs the assignments in the SET clause instead of raising a duplicate key
error. ON DUPLICATE KEY UPDATE is a MySQL extension that in not ANSI compliant.

Syntax

INSERT [INTO] <Table Name> [<Column List>]
VALUES (<Value List>
ON DUPLICATE KEY <Assignment List: ColumnName = Value...>

INSERT [INTO] <Table Name>
SET <Assignment List: ColumnName = Value...>
ON DUPLICATE KEY
 UPDATE <Assignment List: ColumnName = Value...>

INSERT [INTO] <Table Name> [<Column List>]
SELECT ...
ON DUPLICATE KEY
 UPDATE <Assignment List: ColumnName = Value...>

Migration Considerations

REPLACE and INSERT … ON DUPLICATE KEY UPDATE don’t provide a full functional
replacement for MERGE in SQL Server. The key differences are:

• Key violation conditions are mandated by the primary key or unique constraints that exist on the
target table. They can’t be defined using an explicit predicate.

• There is no alternative for the WHEN NOT MATCHED BY SOURCE clause.

• There is no alternative for the OUTPUT clause.

The key difference between REPLACE and INSERT ON DUPLICATE KEY UPDATE is that with
REPLACE, the violating row is deleted or attempted to be deleted. If foreign keys are in place, the
DELETE operation may fail, which may fail the entire transaction.

For INSERT … ON DUPLICATE KEY UPDATE , the update is performed on the existing row in
place without attempting to delete it.

MySQL Usage 269

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

It should be straightforward to replace most MERGE statements with either REPLACE or INSERT…
ON DUPLICATE KEY UPDATE.

Alternatively, break down the operations into their constituent INSERT, UPDATE, and DELETE
statements.

Examples

Use REPLACE to create a simple one-way, two-table sync.

CREATE TABLE SourceTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

CREATE TABLE TargetTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

INSERT INTO SourceTable (Col1, Col2)
VALUES
(2, 'Source2'),
(3, 'Source3'),
(4, 'Source4');

INSERT INTO TargetTable (Col1, Col2)
VALUES
(1, 'Target1'),
(2, 'Target2'),
(3, 'Target3');

REPLACE INTO TargetTable(Col1, Col2)
SELECT Col1,
 Col2
FROM SourceTable;

SELECT *

MySQL Usage 270

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM TargetTable;

Col1 Col2
1 Target1
2 Source2
3 Source3
4 Source4

Create a conditional two-way sync using NULL for no change and DELETE from target when not
found in source.

TRUNCATE TABLE SourceTable;

INSERT INTO SourceTable(Col1, Col2)
VALUES
(3, NULL),
(4, 'NewSource4'),
(5, 'Source5');

DELETE FROM TargetTable
WHERE Col1 NOT IN (SELECT Col1 FROM SourceTable);

INSERT INTO TargetTable (Col1, Col2)
SELECT Col1,
 Col2
FROM SourceTable AS SRC
WHERE SRC.Col1 NOT IN (
 SELECT Col1
 FROM TargetTable
);

UPDATE TargetTable AS TGT
SET Col2 = (
 SELECT COALESCE(SRC.Col2, TGT.Col2)
 FROM SourceTable AS SRC
 WHERE SRC.Col1 = TGT.Col1
)
WHERE TGT.Col1 IN (
 SELECT Col1

MySQL Usage 271

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 FROM SourceTable
);

SELECT *
FROM TargetTable;

Col1 Col2
3 Source3
4 NewSource4
5 Source5

Summary

The following table describes similarities, differences, and key migration considerations.

SQL Server MERGE feature Migrate to Aurora MySQL Comments

Define source set in USING
clause.

Define source set in a SELECT
query or in a table.

Define logical duplicate
key condition with an ON
predicate.

Duplicate key condition
mandated by primary key and
unique constraints on target
table.

WHEN MATCHED THEN
UPDATE

REPLACE or INSERT… ON
DUPLICATE KEY UPDATE

When using REPLACE, the
violating row will be deleted,
or attempted to be deleted.
If there are foreign keys in
place, the DELETE operation
may fail, which may fail the
entire transaction.

With INSERT … ON
DUPLICATE KEY UPDATE,
the updated is performed
on the existing row in place,

Summary 272

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server MERGE feature Migrate to Aurora MySQL Comments

without attempting to delete
it.

WHEN MATCHED THEN
DELETE

DELETE FROM Target
WHERE Key IN (SELECT
Key FROM Source)

WHEN NOT MATCHED THEN
INSERT

REPLACE or INSERT… ON
DUPLICATE KEY UPDATE

See the preceding comment.

WHEN NOT MATCHED BY
SOURCE UPDATE

UPDATE Target SET
<assignments> WHERE
Key NOT IN (SELECT Key
FROM Source)

WHEN NOT MATCHED BY
SOURCE DELETE

DELETE FROM Target
WHERE KEY NOT IN
(SELECT Key FROM
Source)

OUTPUT clause N/A

For more information, see REPLACE Statement and INSERT … ON DUPLICATE KEY UPDATE
Statement in the MySQL documentation.

PIVOT and UNPIVOT for T-SQL

This topic provides reference content on migrating from Microsoft SQL Server 2019 to Amazon
Aurora MySQL, specifically focusing on the PIVOT and UNPIVOT operators. You can use this
guidance to understand the compatibility differences between these database systems and learn
how to adapt your SQL queries.

PIVOT and UNPIVOT for T-SQL 273

https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

PIVOT and UNPIVOT Straightforward
rewrite to use
traditional SQL
syntax.

SQL Server Usage

PIVOT and UNPIVOT are relational operations used to transform a set by rotating rows into
columns and columns into rows.

PIVOT

The PIVOT operator consists of several clauses and implied expressions.

The Anchor column is the column that isn’t be pivoted and results in a single row for each unique
value, similar to GROUP BY.

The pivoted columns are derived from the PIVOT clause and are the row values transformed into
columns. The values for these columns are derived from the source column defined in the PIVOT
clause.

Syntax

SELECT <Anchor column>,
 [Pivoted Column 1] AS <Alias>,
 [Pivoted column 2] AS <Alias>
 ...n
FROM
 (<SELECT Statement of Set to be Pivoted>)
 AS <Set Alias>
PIVOT
(
 <Aggregate Function>(<Aggregated Column>)
FOR

SQL Server Usage 274

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

[<Column With the Values for the Pivoted Columns Names>]
 IN ([Pivoted Column 1], [Pivoted column 2] ...)
) AS <Pivot Table Alias>;

PIVOT Examples

Create and populate the Orders table.

CREATE TABLE Orders
(
 OrderID INT NOT NULL
 IDENTITY(1,1) PRIMARY KEY,
 OrderDate DATE NOT NULL,
 Customer VARCHAR(20) NOT NULL
);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),
('20180104', 'Kevin'),
('20180104', 'Kevin');

Create a simple PIVOT for the number of orders for each day. Days of month from 5 to 31 are
omitted for example simplicity.

SELECT 'Number of Orders Per Day' AS DayOfMonth,
 [1], [2], [3], [4] /*...[31]*/
FROM (
 SELECT OrderID,
 DAY(OrderDate) AS OrderDay
 FROM Orders
) AS SourceSet
PIVOT
(
 COUNT(OrderID)
 FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)
) AS PivotSet;

SQL Server Usage 275

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For the preceding example, the result looks as shown following.

DayOfMonth 1 2 3 4 /*...[31]*/
Number of Orders for Each Day 2 1 0 4

Note

The result set is now oriented in rows and columns. The first column is the description of
the columns to follow.

PIVOT for number of orders for each day for each customer.

SELECT Customer,
 [1], [2], [3], [4] /*...[31]*/
FROM (
 SELECT OrderID,
 Customer,
 DAY(OrderDate) AS OrderDay
 FROM Orders
) AS SourceSet
PIVOT
(
 COUNT(OrderID)
 FOR OrderDay IN ([1], [2], [3], [4] /*...[31]*/)
) AS PivotSet;

Customer 1 2 3 4
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT

UNPIVOT is similar to PIVOT in reverse, but spreads existing column values into rows.

The source set is similar to the result of the PIVOT with values pertaining to particular entities
listed in columns.

SQL Server Usage 276

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Because the result set has more rows than the source, aggregations aren’t required.

It is less commonly used than PIVOT because most data in relational databases have attributes in
columns; not the other way around.

UNPIVOT Examples

Create an populate the pivot-like EmployeeSales table. In real life, this is most likely a view or a
set from an external source.

CREATE TABLE EmployeeSales
(
 SaleDate DATE NOT NULL PRIMARY KEY,
 John INT,
 Kevin INT,
 Mary INT
);

INSERT INTO EmployeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales for each date into individual rows for each employee.

SELECT SaleDate,
 Employee,
 SaleAmount
FROM
(
 SELECT SaleDate, John, Kevin, Mary
 FROM EmployeeSales
) AS SourceSet
UNPIVOT (
 SaleAmount
 FOR Employee IN (John, Kevin, Mary)
)AS UnpivotSet;

SaleDate Employee SaleAmount

SQL Server Usage 277

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

For more information, see FROM - Using PIVOT and UNPIVOT in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support the PIVOT and
UNPIVOT relational operators.

Functionality of both operators can be rewritten to use standard SQL syntax, as shown in the
following examples.

PIVOT Examples

Create and populate the Orders table.

CREATE TABLE Orders
(
 OrderID INT
 AUTO_INCREMENT NOT NULL PRIMARY KEY,
 OrderDate DATE NOT NULL,
 Customer VARCHAR(20) NOT NULL
);

INSERT INTO Orders (OrderDate, Customer)
VALUES
('20180101', 'John'),
('20180201', 'Mitch'),
('20180102', 'John'),
('20180104', 'Kevin'),
('20180104', 'Larry'),

MySQL Usage 278

https://docs.microsoft.com/en-us/sql/t-sql/queries/from-using-pivot-and-unpivot?vieww=%20sql-server-ver15&view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

('20180104', 'Kevin'),
('20180104', 'Kevin');

Create a simple PIVOT for the number of orders for each day. Days of month from 5 to 31 are
omitted for example simplicity.

SELECT 'Number of Orders Per Day' AS DayOfMonth,
 COUNT(CASE WHEN DAY(OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS '1',
 COUNT(CASE WHEN DAY(OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS '2',
 COUNT(CASE WHEN DAY(OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS '3',
 COUNT(CASE WHEN DAY(OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS '4' /*...
[31]*/
FROM Orders AS O;

For the preceding example, the result looks as shown following.

DayOfMonth 1 2 3 4 /*...[31]*/
Number of Orders for Each Day 2 1 0 4

PIVOT for number of orders for each day for each customer.

SELECT Customer,
 COUNT(CASE WHEN DAY(OrderDate) = 1 THEN 'OrderDate' ELSE NULL END) AS '1',
 COUNT(CASE WHEN DAY(OrderDate) = 2 THEN 'OrderDate' ELSE NULL END) AS '2',
 COUNT(CASE WHEN DAY(OrderDate) = 3 THEN 'OrderDate' ELSE NULL END) AS '3',
 COUNT(CASE WHEN DAY(OrderDate) = 4 THEN 'OrderDate' ELSE NULL END) AS '4' /*...
[31]*/
FROM Orders AS O
GROUP BY Customer;

Customer 1 2 3 4
John 1 1 0 0
Kevin 0 0 0 3
Larry 0 0 0 1
Mitch 1 0 0 0

UNPIVOT Examples

Create an populate the pivot-like EmployeeSales table. In real life, this is most likely a view or a
set from an external source.

MySQL Usage 279

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE EmplyeeSales
(
 SaleDate DATE NOT NULL PRIMARY KEY,
 John INT,
 Kevin INT,
 Mary INT
);

INSERT INTO EmplyeeSales
VALUES
('20180101', 150, 0, 300),
('20180102', 0, 0, 0),
('20180103', 250, 50, 0),
('20180104', 500, 400, 100);

Unpivot employee sales for each date into individual rows for each employee.

SELECT SaleDate,
 Employee,
 SaleAmount
FROM
(
 SELECT SaleDate,
 Employee,
 CASE
 WHEN Employee = 'John' THEN John
 WHEN Employee = 'Kevin' THEN Kevin
 WHEN Employee = 'Mary' THEN Mary
 END AS SaleAmount
 FROM EmployeeSales
 CROSS JOIN
 (
 SELECT 'John' AS Employee
 UNION ALL
 SELECT 'Kevin'
 UNION ALL
 SELECT 'Mary'
) AS Employees
) AS UnpivotedSet;

SaleDate Employee SaleAmount

MySQL Usage 280

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

2018-01-01 John 150
2018-01-01 Kevin 0
2018-01-01 Mary 300
2018-01-02 John 0
2018-01-02 Kevin 0
2018-01-02 Mary 0
2018-01-03 John 250
2018-01-03 Kevin 50
2018-01-03 Mary 0
2018-01-04 John 500
2018-01-04 Kevin 400
2018-01-04 Mary 100

For more information, see MySQL/Pivot table in the MySQL documentation.

Synonyms for T-SQL

This topic provides reference information about the compatibility of synonyms between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can understand the differences in how these
database systems handle synonyms, which are alternative identifiers for database objects.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Synonyms Use stored procedure
s and functions to
abstract instance-
wide objects.

SQL Server Usage

Synonyms are database objects that server as alternative identifiers for other database objects. The
referenced database object is called the base object and may reside in the same database, another
database on the same instance, or a remote server.

Synonyms provide an abstraction layer to isolate client application code from changes to the name
or location of the base object.

Synonyms for T-SQL 281

https://en.wikibooks.org/wiki/MySQL/Pivot_table

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

In SQL Server, synonyms are often used to simplify the use of four-part identifiers when accessing
remote instances.

For example, table A resides on server A, and the client application accesses it directly. For scale
out reasons, table A needs to be moved to server B to offload resource consumption on server A.
Without synonyms, the client application code must be rewritten to access server B. Instead, you
can create a synonym called table A and it will transparently redirect the calling application to
Server B without any code changes.

You can create synonyms for the following objects:

• Assembly stored procedures, table-valued functions, scalar functions, and aggregate functions.

• Replication filter procedures.

• Extended stored procedures.

• SQL scalar functions, table-valued functions, inline-tabled-valued functions, views, and stored
procedures.

• User-defined tables including local and global temporary tables.

Syntax

CREATE SYNONYM [<Synonym Schema>] . <Synonym Name>
FOR [<Server Name>] . [<Database Name>] . [Schema Name>] . <Object Name>

Examples

Create a synonym for a local object in a separate database.

CREATE TABLE DB1.Schema1.MyTable
(
 KeyColumn INT IDENTITY PRIMARY KEY,
 DataColumn VARCHAR(20) NOT NULL
);
USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR DB1.Schema1.MyTable

Create a synonym for a remote object.

SQL Server Usage 282

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

-- On ServerA
CREATE TABLE DB1.Schema1.MyTable
(
KeyColumn INT IDENTITY PRIMARY KEY,
DataColumn VARCHAR(20) NOT NULL
);

-- On Server B
USE DB2;
CREATE SYNONYM Schema2.MyTable
FOR ServerA.DB1.Schema1.MyTable;

Note

This example assumes a linked server named server A exists on server B that points to
server A.

For more information, see CREATE SYNONYM (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support synonyms and there is
no known generic workaround.

For accessing tables or views, a partial workaround is to use encapsulating views as an abstraction
layer. Similarly, you can use functions or stored procedures that call other functions or stored
procedures.

Note

Synonyms are often used in conjunction with linked servers, which aren’t supported by
Aurora MySQL.

For more information, see Linked Servers, Views, User-Defined Functions, and Stored Procedures.

MySQL Usage 283

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-synonym-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server TOP and FETCH and MySQL LIMIT for T-SQL

This topic provides reference information about feature compatibility between Microsoft SQL
Server 2019 and Amazon Aurora MySQL, specifically focusing on result set limiting and paging
techniques. You can understand how the TOP and FETCH clauses in SQL Server correspond to the
LIMIT and OFFSET clauses in Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

TOP and FETCH Syntax rewrite, very
similar functionality.
Convert PERCENT
and TIES to
subqueries.

SQL Server Usage

SQL Server supports two options for limiting and paging result sets returned to the client. TOP is a
legacy, proprietary T-SQL keyword that is still supported due to its wide usage. The ANSI compliant
syntax of FETCH and OFFSET were introduced in SQL Server 2012 and are recommended for
paginating results sets.

TOP

The TOP (n) operator is used in the SELECT list and limits the number of rows returned to the
client based on the ORDER BY clause.

Note

When you use TOP with no ORDER BY clause, the query is non-deterministic and may
return any rows up to the number specified by the TOP operator.

You can use TOP (n) used with two modifier options:

SQL Server TOP and FETCH and MySQL LIMIT for T-SQL 284

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• TOP (n) PERCENT is used to designate a percentage of the rows to be returned instead of a
fixed maximal row number limit (n). When using PERCENT, n can be any value from 1-100.

• TOP (n) WITH TIES is used to allow overriding the n maximal number (or percentage) of rows
specified in case there are additional rows with the same ordering values as the last row.

Note

If TOP (n) is used without WITH TIES and there are additional rows that have the same
ordering value as the last row in the group of n rows, the query is also non-deterministic
because the last row may be any of the rows that share the same ordering value.

Syntax

SELECT TOP (<Limit Expression>) [PERCENT] [WITH TIES] <Select Expressions List>
FROM...

OFFSET… FETCH

OFFSET… FETCH as part of the ORDER BY clause is the ANSI compatible syntax for limiting and
paginating result sets. It allows specification of the starting position and limits the number of rows
returned, which enables easy pagination of result sets.

Similar to TOP, OFFSET… FETCH relies on the presentation order defined by the ORDER BY
clause. Unlike TOP, it is part of the ORDER BY clause and can’t be used without it.

Note

Queries using FETCH… OFFSET can still be non-deterministic if there is more than one
row that has the same ordering value as the last row.

Syntax

ORDER BY <Ordering Expression> [ASC | DESC] [,...n]
OFFSET <Offset Expression> { ROW | ROWS }
[FETCH { FIRST | NEXT } <Page Size Expression> { ROW | ROWS } ONLY]

SQL Server Usage 285

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Create the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the three most ordered items by quantity.

-- Using TOP
SELECT TOP (3) *
FROM OrderItems
ORDER BY Quantity DESC;

-- USING FETCH
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
OFFSET 0 ROWS FETCH NEXT 3 ROWS ONLY;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rows with ties.

SELECT TOP (3) WITH TIES *

SQL Server Usage 286

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half of the rows based on quantity.

SELECT TOP (50) PERCENT *
FROM OrderItems
ORDER BY Quantity DESC;

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200

For more information, see SELECT - ORDER BY Clause (Transact-SQL) and TOP (Transact-SQL) in
the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the non-ANSI compliant but
popular with other database engines LIMIT… OFFSET operator for paging results sets.

The LIMIT clause limits the number of rows returned and doesn’t require an ORDER BY clause,
although that would make the query non-deterministic.

The OFFSET clause is zero-based, similar to SQL Server and used for pagination.

Migration Considerations

LIMIT… OFFSET syntax can be used to replace the functionality of both TOP(n) and FETCH…
 OFFSET in SQL Server. It is automatically converted by the Amazon Schema Conversion Tool
(Amazon SCT except for the WITH TIES and PERCENT modifiers.

To replace the PERCENT option, first calculate how many rows the query returns and then calculate
the fixed number of rows to be returned based on that number.

MySQL Usage 287

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-order-by-clause-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/queries/top-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Because this technique involves added complexity and accessing the table twice, consider
changing the logic to use a fixed number instead of percentage.

To replace the WITH TIES option, rewrite the logic to add another query that checks for the
existence of additional rows that have the same ordering value as the last row returned from the
LIMIT clause.

Note

Because this technique introduces significant added complexity and three accesses to the
source table, consider changing the logic to introduce a tie-breaker into the ORDER BY
clause.

Examples

Create the OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

INSERT INTO OrderItems (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),
(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200),
(3, 'M6 Locking Nut', 300);

Retrieve the three most ordered items by quantity.

SELECT *

MySQL Usage 288

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM OrderItems
ORDER BY Quantity DESC
LIMIT 3 OFFSET 0;

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100

Include rows with ties.

SELECT *
FROM
(
 SELECT *
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 3 OFFSET 0
) AS X
UNION
SELECT *
FROM OrderItems
WHERE Quantity = (
 SELECT Quantity
 FROM OrderItems
 ORDER BY Quantity DESC
 LIMIT 1 OFFSET 2
)
ORDER BY Quantity DESC

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200
2 M8 Nut 100
1 M8 Bolt 100

Retrieve half of the rows based on quantity.

MySQL Usage 289

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE PROCEDURE P(Percent INT)
BEGIN
DECLARE N INT;
SELECT COUNT(*) * Percent / 100 FROM OrderItems INTO N;
SELECT *
FROM OrderItems
ORDER BY Quantity DESC
LIMIT N OFFSET 0;
END

CALL P(50);

For the preceding example, the result looks as shown following.

OrderID Item Quantity
3 M6 Locking Nut 300
3 M8 Washer 200

Summary

SQL Server Aurora MySQL Comments

TOP (n) LIMIT n

TOP (n) WITH TIES Not supported See examples for the
workaround.

TOP (n) PERCENT Not supported See examples for the
workaround.

OFFSET… FETCH LIMIT… OFFSET

For more information, see SELECT Statement and LIMIT Query Optimization in the MySQL
documentation.

Summary 290

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/limit-optimization.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Triggers for T-SQL

This topic provides reference information about migrating triggers from Microsoft SQL Server
2019 to Amazon Aurora MySQL. It compares the trigger functionality between the two database
systems, highlighting key differences and similarities. You can understand how triggers work
in both environments, including their scope, access to change sets, supported event types, and
execution phases.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Triggers Only FOR EACH ROW
processing. No DDL
or EVENT triggers.
BEFORE triggers
replace INSTEAD OF
triggers.

SQL Server Usage

Triggers are special type of stored procedure that run automatically in response to events and are
most commonly used for Data Manipulation Language (DML).

SQL Server supports AFTER/FOR and INSTEAD OF triggers, which can be created on tables and
views. AFTER and FOR are synonymous. SQL Server also provides an event trigger framework
at the server and database levels that includes Data Definition Language (DDL), Data Control
Language (DCL), and general system events such as login.

Note

SQL Server doesn’t support FOR EACH ROW triggers in which the trigger code is run once
for each row of modified data.

Triggers for T-SQL 291

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Trigger Run

• AFTER triggers run after DML statements complete run.

• INSTEAD OF triggers run code in place of the original DML statement.

You can create AFTER triggers only on a table. You can create INSTEAD OF triggers on tables and
views.

You can create only a single INSTEAD OF trigger for any given object and event. When multiple
AFTER triggers exist for the same event and object, you can partially set the trigger order by using
the sp_settriggerorder system stored procedure. It enables setting the first and last triggers to
be run, but not the order of others.

Trigger Scope

SQL Server supports only statement level triggers. The trigger code runs only once for each
statement. The data modified by the DML statement is available to the trigger scope and is saved
in two virtual tables: INSERTED and DELETED. These tables contain the entire set of changes
performed by the DML statement that caused trigger run.

SQL triggers always run within the transaction of the statement that triggered the run. If the
trigger code issues an explicit ROLLBACK, or causes an exception that mandates a rollback, the
DML statement is also rolled back. For INSTEAD OF triggers, the DML statement isn’t run and,
therefore, doesn’t require a rollback.

Examples

Use a DML trigger to audit invoice deletions

The following example demonstrates how to use a trigger to log rows deleted from a table.

Create and populate the Invoices table.

CREATE TABLE Invoices
(
InvoiceID INT NOT NULL PRIMARY KEY,
Customer VARCHAR(20) NOT NULL,
TotalAmount DECIMAL(9,2) NOT NULL
);

SQL Server Usage 292

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

INSERT INTO Invoices (InvoiceID,Customer,TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create the InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(
 InvoiceID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 TotalAmount DECIMAL(9,2) NOT NULL,
 DeleteDate DATETIME NOT NULL DEFAULT (GETDATE()),
 DeletedBy VARCHAR(128) NOT NULL DEFAULT (CURRENT_USER)
);

Create an AFTER DELETE trigger to log deletions from the Invoices table to the audit log.

CREATE TRIGGER LogInvoiceDeletes
ON Invoices
AFTER DELETE
AS
BEGIN
INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount)
SELECT InvoiceID,
 Customer,
 TotalAmount
FROM Deleted
END;

Delete an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Query the content of both tables.

SELECT *

SQL Server Usage 293

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM Invoices AS I
FULL OUTER JOIN
InvoiceAuditLog AS IAG
ON I.InvoiceID = IAG.InvoiceID;

For the preceding example, the result looks as shown following.

InvoiceID Customer TotalAmount InvoiceID Customer TotalAmount DeleteDate
 DeletedBy
1 John 1400.23 NULL NULL NULL NULL NULL
2 Jeff 245.00 NULL NULL NULL NULL NULL
NULL NULL NULL 3 James 677.22 20180224 13:02
 Domain/JohnCortney

Create a DDL trigger

Create a trigger to protect all tables in the database from accidental deletion.

CREATE TRIGGER PreventTableDrop
ON DATABASE FOR DROP_TABLE
AS
BEGIN
 RAISERROR ('Tables can't be dropped in this database', 16, 1)
 ROLLBACK TRANSACTION
END;

Test the trigger by attempting to drop a table.

DROP TABLE [Invoices];
 GO

The system displays the follow message indicating the Invoices table can’t be dropped.

Msg 50000, Level 16, State 1, Procedure PreventTableDrop, Line 5 [Batch Start Line 56]
Tables Can't be dropped in this database
Msg 3609, Level 16, State 2, Line 57
The transaction ended in the trigger. The batch has been aborted.

For more information, see DML Triggers and DDL Triggers in the SQL Server documentation.

SQL Server Usage 294

https://docs.microsoft.com/en-us/sql/relational-databases/triggers/dml-triggers?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/triggers/ddl-triggers?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides Data manipulation Language
(DML) triggers only.

MySQL supports BEFORE and AFTER triggers for INSERT, UPDATE, and DELETE with full control
over trigger run order.

MySQL triggers differ substantially from SQL Server. However, you can migrate most common use
cases with minimal code changes. The following list identifies the major differences between the
SQL Server and Aurora MySQL triggers:

• Aurora MySQL triggers are run once for each row, not once for each statement as with SQL
Server.

• Aurora MySQL doesn’t support DDL or system event triggers.

• Aurora MySQL supports BEFORE triggers; SQL Server doesn’t support BEFORE triggers. l Aurora
MySQL supports full run order control for multiple triggers.

Note

Stored procedures, triggers, and user-defined functions in Aurora MySQL are collectively
referred to as stored routines. When binary logging is turned on, MySQL SUPER privilege is
required to run stored routines. However, you can run stored routines with binary logging
enabled without SUPER privilege by setting thelog_bin_trust_function_creators
parameter to true for the DB parameter group for your MySQL instance.

Syntax

CREATE [DEFINER = { user | CURRENT_USER }] TRIGGER <Trigger Name>
{ BEFORE | AFTER } { INSERT | UPDATE | DELETE }
ON <Table Name>
FOR EACH ROW
[{ FOLLOWS | PRECEDES } <Other Trigger Name>]
<Trigger Code Body>

MySQL Usage 295

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Use a DML trigger to audit invoice deletions

The following example demonstrates how to use a trigger to log rows deleted from a table.

Create and populate the Invoices table.

CREATE TABLE Invoices
(
 InvoiceID INT NOT NULL PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 TotalAmount DECIMAL(9,2) NOT NULL
);

INSERT INTO Invoices (InvoiceID, Customer, TotalAmount)
VALUES
(1, 'John', 1400.23),
(2, 'Jeff', 245.00),
(3, 'James', 677.22);

Create the InvoiceAuditLog table.

CREATE TABLE InvoiceAuditLog
(
 InvoiceID INT NOT NULL
 PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL,
 TotalAmount DECIMAL(9,2) NOT NULL,
 DeleteDate DATETIME NOT NULL
 DEFAULT (GETDATE()),
 DeletedBy VARCHAR(128) NOT NULL
 DEFAULT (CURRENT_USER)
);

Create a trigger to log deleted rows.

CREATE OR REPLACE TRIGGER LogInvoiceDeletes
ON Invoices
FOR EACH ROW
AFTER DELETE
AS

MySQL Usage 296

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 BEGIN
 INSERT INTO InvoiceAuditLog (InvoiceID, Customer, TotalAmount, DeleteDate,
 DeletedBy)
 SELECT InvoiceID,
 Customer,
 TotalAmount,
 NOW(),
 CURRENT_USER()
 FROM OLD
END;

Test the trigger by deleting an invoice.

DELETE FROM Invoices
WHERE InvoiceID = 3;

Select all rows from the InvoiceAuditLog table.

SELECT * FROM InvoiceAuditLog;

For the preceding example, the result looks as shown following.

InvoiceID Customer TotalAmount DeleteDate DeletedBy
3 James 677.22 20180224 13:02 George

Note

Additional code changes were required for this example because the GETDATE() function
isn’t supported by MySQL. For more information, see Date and Time Functions.

Summary

Feature SQL Server Aurora MySQL Workaround

DML triggers scope Statement-level only FOR EACH ROW only Most trigger code,
such as the SQL
Server example in

Summary 297

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

the previous section,
will work without
significant code
changes. Even though
SQL Server triggers
process a set of rows
at once, typically no
changes are needed
to process one row at
a time. A set of one
row, is a valid set and
should be processed
correctly either way.

The main drawback
of FOR EACH ROW
triggers, is that you
can’t access other
rows that were
modified in the same
operation. The NEW
and OLD virtual
tables can only
reference the current
row. Therefore, for
example, tasks such
as logging aggregate
data for the entire
DML statement set,
may require more
significant code
changes.

If your SQL Server
trigger code uses

Summary 298

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

loops and cursors to
process one row at
a time, the loop and
cursor sections can be
safely removed.

Access to change set INSERTED and
DELETED virtual
multi-row tables

OLD and NEW virtual
one-row tables

Make sure that you
modify the trigger
code to use NEW
instead of INSERTED,
and OLD instead of
DELETED.

System event triggers DDL, DCL and other
event types

Not supported

Summary 299

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

Trigger run phase AFTER and INSTEAD
OF

AFTER and BEFORE For INSTEAD OF
triggers, make sure
that your modify
the trigger code to
remove the explicit
run of the calling
DML, which isn’t
needed in a BEFORE
trigger.

In Aurora MySQL, the
OLD and NEW tables
are updateable. If
your trigger code
needs to modify
the change set,
update the OLD and
NEW tables with the
changes. The updated
data is applied to the
table data when the
trigger run completes
.

Multi-trigger run
order

Can only set first
and last using
sp_settri
ggerorder .

Can set any run order
using PRECEDS and
FOLLOWS.

Update the trigger
code to reflect the
desired run order.

Drop a trigger DROP TRIGGER
<trigger name>;

DROP TRIGGER
<trigger name>;

Compatible syntax.

Modify trigger code Use the ALTER
TRIGGER statement.

Not supported

Summary 300

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Workaround

Turn on and turn off
a trigger

Use the ALTER
TRIGGER <trigger
name> ENABLE; and
ALTER TRIGGER
<trigger name>
DISABLE;

Not supported A common
workaround is to use
a database table with
flags indicating which
trigger to run.

Modify the trigger
code using condition
al flow control (IF) to
query the table and
determine whether
or not the trigger
should run additiona
l code or exit without
performing any
modifications to the
database.

Triggers on views INSTEAD OF triggers
only

Not supported

For more information, see Trigger Syntax and Examples and CREATE TRIGGER Statement in the
MySQL documentation.

User-defined functions for T-SQL

This topic provides reference content comparing user-defined functions (UDFs) in Microsoft
SQL Server 2019 and Amazon Aurora MySQL. It explains the capabilities, limitations, and key
differences between UDFs in these two database systems. You’ll learn about the types of UDFs
supported, their behavior, and important considerations when migrating from SQL Server to
Aurora MySQL.

User-defined functions for T-SQL 301

https://dev.mysql.com/doc/refman/5.7/en/trigger-syntax.html
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

User-Defined
Functions

Scalar functions only,
rewrite inline TVF
as views or derived
tables, and multi-sta
tement TVF as stored
procedures.

SQL Server Usage

User-defined functions (UDF) are code objects that accept input parameters and return either a
scalar value or a set consisting of rows and columns.

SQL Server UDFs can be implemented using T-SQL or Common Language Runtime (CLR) code.

Note

This section doesn’t cover CLR code objects.

Function invocations can’t have any lasting impact on the database. They must be contained
and can only modify objects and data local to their scope (for example, data in local variables).
Functions aren’t allowed to modify data or the structure of a database.

Functions may be deterministic or non-deterministic. Deterministic functions always return the
same result when you run them with the same data. Non-deterministic functions may return
different results each time they run. For example, a function that returns the current date or time.

SQL Server supports three types of T-SQL UDFs: scalar functions, table-valued functions, and
multi-statement table-valued functions.

SQL Server 2019 adds scalar user-defined functions inlining. Inlining transforms functions into
relational expressions and embeds them in the calling SQL query. This transformation improves the
performance of workloads that take advantage of scalar UDFs. Scalar UDF inlining facilitates cost-

SQL Server Usage 302

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

based optimization of operations inside UDFs. The results are efficient, set-oriented, and parallel
instead of inefficient, iterative, serial run plans. For more information, see Scalar UDF Inlining in the
SQL Server documentation.

Scalar User-Defined Functions

Scalar UDFs accept zero or more parameters and return a scalar value. You can use scalar UDFs in
T-SQL expressions.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
 Value>] [READONLY]} [,...n]])
RETURNS <Return Data Type>
[AS]
BEGIN
<Function Body Code>
RETURN <Scalar Expression>
END[;]

Examples

Create a scalar function to change the first character of a string to upper case.

CREATE FUNCTION dbo.UpperCaseFirstChar (@String VARCHAR(20))
RETURNS VARCHAR(20)
AS
BEGIN
RETURN UPPER(LEFT(@String, 1)) + LOWER(SUBSTRING(@String, 2, 19))
END;

SELECT dbo.UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

User-Defined Table-Valued Functions

Inline table-valued UDFs are similar to views or a Common Table Expressions (CTE) with the added
benefit of parameters. They can be used in FROM clauses as subqueries and can be joined to other

SQL Server Usage 303

https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-inlining?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

source table rows using the APPLY and OUTER APPLY operators. In-line table valued UDFs have
many associated internal optimizer optimizations due to their simple, view-like characteristics.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS TABLE
[AS]
RETURN (<SELECT Query>)[;]

Examples

Create a table valued function to aggregate employee orders.

CREATE TABLE Orders
(
 OrderID INT NOT NULL PRIMARY KEY,
 EmployeeID INT NOT NULL,
 OrderDate DATETIME NOT NULL
);

INSERT INTO Orders (OrderID, EmployeeID, OrderDate)
VALUES
(1, 1, '20180101 13:00:05'),
(2, 1, '20180201 11:33:12'),
(3, 2, '20180112 10:22:35');

CREATE FUNCTION dbo.EmployeeMonthlyOrders
(@EmployeeID INT)
RETURNS TABLE AS
RETURN
(
SELECT EmployeeID,
 YEAR(OrderDate) AS OrderYear,
 MONTH(OrderDate) AS OrderMonth,
 COUNT(*) AS NumOrders
FROM Orders AS O
WHERE EmployeeID = @EmployeeID
GROUP BY EmployeeID,
 YEAR(OrderDate),

SQL Server Usage 304

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 MONTH(OrderDate)
);

SELECT *
FROM dbo.EmployeeMonthlyOrders (1)

EmployeeID OrderYear OrderMonth NumOrders
1 2018 1 1
1 2018 2 1

Multi-Statement User-Defined Table-Valued Functions

Multi-statement table valued UDFs, like inline UDFs, are also similar to views or CTEs, with the
added benefit of allowing parameters. They can be used in FROM clauses as sub queries and can be
joined to other source table rows using the APPLY and OUTER APPLY operators.

The difference between multi-statement UDFs and the inline UDFs is that multi-statement UDFs
aren’t restricted to a single SELECT statement. They can consist of multiple statements including
logic implemented with flow control, complex data processing, security checks, and so on.

The downside of using multi-statement UDFs is that there are far less optimizations possible and
performance may suffer.

Syntax

CREATE FUNCTION <Function Name> ([{<Parameter Name> [AS] <Data Type> [= <Default
Value>] [READONLY]} [,...n]])
RETURNS <@Return Variable> TABLE <Table Definition>
[AS]
BEGIN
<Function Body Code>
RETURN
END[;]

For more information, see CREATE FUNCTION (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the creation of user-defined
scalar functions only. There is no support for table-valued functions.

MySQL Usage 305

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Unlike SQL Server, Aurora MySQL enables routines to read and write data using INSERT, UPDATE,
and DELETE. It also allows DDL statements such as CREATE and DROP. Aurora MySQL doesn’t
permit stored functions to contain explicit SQL transaction statements such as COMMIT and
ROLLBACK.

In Aurora MySQL, you can explicitly specify several options with the CREATE FUNCTION statement.
These characteristics are saved with the function definition and are viewable with the SHOW
CREATE FUNCTION statement.

• The DETERMINISTIC option must be explicitly stated. Otherwise, the engine assumes it is not
deterministic.

Note

The MySQL engine doesn’t check the validity of the deterministic property declaration.
If you wrongly specify a function as DETERMINISTIC when in fact it is not, unexpected
results and errors may occur.

• CONTAINS SQL indicates the function code doesn’t contain statements that read or modify data.

• READS SQL DATA indicates the function code contains statements that read data (for example,
SELECT) but not statements that modify data (for example, INSERT, DELETE, or UPDATE).

• MODIFIES SQL DATA indicates the function code contains statements that may modify data.

Note

The preceding options are advisory only. The server doesn’t constrain the function code
based on the declaration. This feature is useful in assisting code management.

Syntax

CREATE FUNCTION <Function Name> ([<Function Parameter>[,...]])
RETURNS <Returned Data Type> [characteristic ...]
<Function Code Body>

characteristic:
COMMENT '<Comment>' | LANGUAGE SQL | [NOT] DETERMINISTIC
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

MySQL Usage 306

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

| SQL SECURITY { DEFINER | INVOKER }

Migration Considerations

For scalar functions, migration should be straight forward as far as the function syntax is
concerned. Note that rules in Aurora MySQL regarding functions are much more lenient than SQL
Server.

A function in Aurora MySQL may modify data and schema. Function determinism must be explicitly
stated, unlike SQL Server that infers it from the code. Additional properties can be stated for a
function, but most are advisory only and have no functional impact.

Also note that the AS keyword, which is mandatory in SQL Server before the function’s code body,
is not valid Aurora MySQL syntax and must be removed.

Table-valued functions will be harder to migrate. For most in-line table valued functions, a simple
path may consist of migrating to using views, and letting the calling code handle parameters.

Complex multi-statement table valued functions will require rewrite as a stored procedure, which
may in turn write the data to a temporary or standard table for further processing.

Examples

Create a scalar function to change the first character of string to upper case.

CREATE FUNCTION UpperCaseFirstChar (String VARCHAR(20))
RETURNS VARCHAR(20)
BEGIN
RETURN CONCAT(UPPER(LEFT(String, 1)) , LOWER(SUBSTRING(String, 2, 19)));
END

SELECT UpperCaseFirstChar ('mIxEdCasE');

Mixedcase

Summary

The following table identifies similarities, differences, and key migration considerations.

Summary 307

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server user-defined
function feature

Migrate to Aurora MySQL Comment

Scalar UDF Scalar UDF Use CREATE FUNCTION with
similar syntax, remove the AS
keyword.

Inline table-valued UDF N/A Use views and replace
parameters with WHERE filter
predicates.

Multi-statement table-valued
UDF

N/A Use stored procedures to
populate tables and read
from the table directly.

UDF determinism implicit Explicit declaration Use the DETERMINISTIC
characteristic explicitly
to denote a deterministic
function, which enables
engine optimizations.

UDF boundaries local only Can change data and schema UDF rules are more lenient,
avoid unexpected changes
from function invocation.

For more information, see CREATE PROCEDURE and CREATE FUNCTION Statements and CREATE
FUNCTION Statement for Loadable Functions in the MySQL documentation.

User-defined types for T-SQL

This topic provides reference information about user-defined types and table-valued parameters
in Microsoft SQL Server and their compatibility with Amazon Aurora MySQL. It explains the
differences in feature support between SQL Server and Aurora MySQL, highlighting that Aurora
MySQL does not currently support user-defined types or table-valued parameters.

User-defined types for T-SQL 308

https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/5.7/en/create-function-loadable.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

User-Defined Types Replace scalar UDT
with base types.
Rewrite stored
procedures that use
table-type input
parameters to use
strings with CSV,
XML, or JSON, or
to process row-
by-row. For more
information, see
Stored Procedures.

SQL Server Usage

SQL Server user-defined types provide a mechanism for encapsulating custom data types and for
adding NULL constraints.

SQL Server also supports table-valued user-defined types, which you can use to pass a set of
values to a stored procedure.

User defined types can also be associated to CLR code assemblies. Beginning with SQL Server
2014, memory-optimized types support memory optimized tables and code.

Note

If your code uses custom rules bound to data types, Microsoft recommends discontinuing
use of this deprecated feature.

All user-defined types are based on an existing system data types. They allow developers to reuse
the definition, making the code and schema more readable.

SQL Server Usage 309

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Syntax

The simplified syntax for the CREATE TYPE statement.

CREATE TYPE <type name> {
FROM <base type> [NULL | NOT NULL] | AS TABLE (<Table Definition>)}

Examples

User-defined types

Create a ZipCodeScalar user-defined type.

CREATE TYPE ZipCode
FROM CHAR(5)
NOT NULL

Use the ZipCodetype in a table.

CREATE TABLE UserLocations
(UserID INT NOT NULL PRIMARY KEY, ZipCode ZipCode);

INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (1, '94324');
INSERT INTO [UserLocations] ([UserID],[ZipCode]) VALUES (2, NULL);

For the preceding example, the following error message appears. It indicates that NULL values for
ZipCodeare aren’t allowed.

Msg 515, Level 16, State 2, Line 78
Cannot insert the value NULL into column 'ZipCode', table 'tempdb.dbo.UserLocations';
column doesn't allow nulls. INSERT fails.
The statement has been terminated.

Table-valued types

The following example demonstrates how to create and use a table valued types to pass a set of
values to a stored procedure.

Create the OrderItems table.

SQL Server Usage 310

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

Create a table valued type for the OrderItems table.

CREATE TYPE OrderItems
AS TABLE
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

Create the InsertOrderItems procedure. Note that the entire set of rows from the table valued
parameter is handled with one statement.

CREATE PROCEDURE InsertOrderItems
@OrderItems AS OrderItems READONLY
AS
BEGIN
 INSERT INTO OrderItems(OrderID, Item, Quantity)
 SELECT OrderID,
 Item,
 Quantity
 FROM @OrderItems;
END

Instantiate the OrderItems type, insert the values, and pass it to a stored procedure.

DECLARE @OrderItems AS OrderItems;

INSERT INTO @OrderItems ([OrderID], [Item], [Quantity])
VALUES
(1, 'M8 Bolt', 100),

SQL Server Usage 311

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(1, 'M8 Nut', 100),
(1, M8 Washer, 200);

EXECUTE [InsertOrderItems] @OrderItems = @OrderItems;

(3 rows affected)

Select all rows from the OrderItems table.

SELECT * FROM OrderItems;

OrderID Item Quantity
1 M8 Bolt 100
1 M8 Nut 100
1 M8 Washer 200

For more information, see CREATE TYPE (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) 5.7 doesn’t support user defined types
and user defined table valued parameters.

The current documentation doesn’t indicate these features will be supported in Aurora MySQL
version 8.

Migration Considerations

For scalar user-defined types, replace the type name with base type and optional NULL constraints.

For table-valued user-defined types used as stored procedure parameters, the workaround is more
complicated.

Common solutions include using either temporary tables to hold the data or passing large string
parameters containing the data in CSV, XML, JSON (or any other convenient format) and then
writing code to parse these values in a stored procedure. Alternatively, if the logic doesn’t require
access to the entire set of changes, and for small data sets, it is easier to call the stored procedure
in a loop and pass the columns as standard parameters, row by row.

Memory-optimized engines aren’t yet supported in Aurora MySQL. You must convert memory
optimized tables to disk based tables.

MySQL Usage 312

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-type-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Replacing a user-defined type

Replace the ZipCode user-defined type with a base type.

CREATE TABLE UserLocations
(
 UserID INT NOT NULL
 PRIMARY KEY,
 /*ZipCode*/ CHAR(5) NOT NULL
);

Replacing a table-valued stored procedure parameter

The following steps describe how to replace a table-valued parameter with a source table and a
LOOP cursor.

Create an OrderItems table.

CREATE TABLE OrderItems
(
 OrderID INT NOT NULL,
 Item VARCHAR(20) NOT NULL,
 Quantity SMALLINT NOT NULL,
 PRIMARY KEY(OrderID, Item)
);

Create and populate the SourceTable.

CREATE TABLE SourceTable
(
 OrderID INT,
 Item VARCHAR(20),
 Quantity SMALLINT,
 PRIMARY KEY (OrderID, Item)
);

INSERT INTO SourceTable (OrderID, Item, Quantity)
VALUES
(1, 'M8 Bolt', 100),

MySQL Usage 313

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(2, 'M8 Nut', 100),
(3, 'M8 Washer', 200);

Create a procedure to loop through the SourceTable and insert rows.

Note

There are syntax differences from T-SQL for both the CREATE PROCEDURE and the CURSOR
declaration and use. For more information, see Stored Procedures and Cursors.

CREATE PROCEDURE LoopItems()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE var_OrderID INT;
 DECLARE var_Item VARCHAR(20);
 DECLARE var_Quantity SMALLINT;
 DECLARE ItemCursor CURSOR
 FOR SELECT OrderID,
 Item,
 Quantity
 FROM SourceTable;
 DECLARE CONTINUE HANDLER
 FOR NOT FOUND
 SET done = TRUE;
 OPEN ItemCursor;
 CursorStart: LOOP
 FETCH NEXT FROM ItemCursor
 INTO var_OrderID, var_Item, var_Quantity;
 IF Done
 THEN LEAVE CursorStart;
 END IF;
 INSERT INTO OrderItems (OrderID, Item, Quantity)
 VALUES (var_OrderID, var_Item, var_Quantity);
 END LOOP;
 CLOSE ItemCursor;
END;

Call the stored procedure.

CALL LoopItems();

MySQL Usage 314

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Select all rows from the OrderItems table.

SELECT * FROM OrderItems;

OrderID Item Quantity
1 M8 Bolt 100
2 M8 Nut 100
3 M8 Washer 200

Summary

SQL Server Aurora MySQL Comments

Table-valued parameters Not supported Use either temporary tables,
or CSV, XML, JSON string
parameters and parse the
data. Alternatively, rewrite
the stored procedure to
accept the data one row at a
time and process the data in a
loop.

Memory-optimized table-val
ued user-defined types

Not supported Not supported.

For more information, see Cursors in the MySQL documentation.

Identity and sequences for T-SQL

This topic provides reference content comparing identity and sequence features between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can understand the key differences and
similarities in how these database systems handle automatic enumeration functions and columns,
which are commonly used for generating surrogate keys.

Summary 315

https://dev.mysql.com/doc/refman/5.7/en/cursors.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Identity and
Sequences

MySQL doesn’t
support SEQUENCE
objects. Rewrite
IDENTITY to
AUTO_INCR
EMENT . Last value
is evaluated as
MAX(Existing
Value) + 1 on
every restart.

SQL Server Usage

Automatic enumeration functions and columns are common with relational database management
systems and are often used for generating surrogate keys.

SQL Server provides several features that support automatic generation of monotonously
increasing value generators:

• The IDENTITY property of a table column.

• The SEQUENCE objects framework.

• The numeric functions such as IDENTITY and NEWSEQUENTIALID.

Identity

The IDENTITY property is probably the most widely used means of generating surrogate primary
keys in SQL Server applications. Each table may have a single numeric column assigned as an
IDENTITY using the CREATE TABLE or ALTER TABLE DDL statements. You can explicitly specify a
starting value and increment.

SQL Server Usage 316

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

The identity property doesn’t enforce uniqueness of column values, indexing, or any
other property. Additional constraints such as primary or unique keys, explicit index
specifications, or other properties must be specified in addition to the IDENTITY property.

The IDENTITY value is generated as part of the transaction that inserts table rows. Applications
can obtain IDENTITY values using the @@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT
functions.

IDENTITY columns may be used as primary keys by themselves, as part of a compound key, or as
non-key columns.

You can manage IDENTITY columns using the DBCC CHECKIDENT command, which provides
functionality for reseeding and altering properties.

Syntax

IDENTITY [(<Seed Value>, <Increment Value>)]

View the original seed value of an IDENTITY column with the IDENT_SEED system function.

SELECT IDENT_SEED (<Table>)

Reseed an IDENTITY column.

DBCC CHECKIDENT (<Table>, RESEED, <Seed Value>)

Examples

Create a table with an IDENTITY primary key column.

CREATE TABLE MyTABLE
(
 Col1 INT NOT NULL
 PRIMARY KEY NONCLUSTERED IDENTITY(1,1),
 Col2 VARCHAR(20) NOT NULL
);

SQL Server Usage 317

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Insert a row and retrieve the generated IDENTITY value.

DECLARE @LastIdent INT;
INSERT INTO MyTable(Col2)
VALUES('SomeString');
SET @LastIdent = SCOPE_IDENTITY()

Create a table with a non-key IDENTITY column and an increment of 10.

CREATE TABLE MyTABLE
(
 Col1 VARCHAR(20) NOT NULL
 PRIMARY KEY,
 Col2 INT NOT NULL
 IDENTITY(1,10),
);

Create a table with a compound PK including an IDENTITY column.

CREATE TABLE MyTABLE
(
 Col1 VARCHAR(20) NOT NULL,
 Col2 INT NOT NULL
 IDENTITY(1,10),
 PRIMARY KEY (Col1, Col2)
);

SEQUENCE

Sequences are objects that are independent of a particular table or column and are defined using
the CREATE SEQUENCE DDL statement. You can manage sequences using the ALTER SEQUENCE
statement. Multiple tables and multiple columns from the same table may use the values from one
or more SEQUENCE objects.

You can retrieve a value from a SEQUENCE object using the NEXT VALUE FOR function. For
example, a SEQUENCE value can be used as a default value for a surrogate key column.

SEQUENCE objects provide several advantages over IDENTITY columns:

• Can be used to obtain a value before the actual INSERT takes place.

SQL Server Usage 318

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Value series can be shared among columns and tables.

• Easier management, restart, and modification of sequence properties.

• Allow assignment of value ranges using sp_sequence_get_range and not just per-row values.

Syntax

CREATE SEQUENCE <Sequence Name> [AS <Integer Data Type>]
START WITH <Seed Value>
INCREMENT BY <Increment Value>;

ALTER SEQUENCE <Sequence Name>
RESTART [WITH <Reseed Value>]
INCREMENT BY <New Increment Value>;

Examples

Create a sequence for use as a primary key default.

CREATE SEQUENCE MySequence AS INT START WITH 1 INCREMENT BY 1;
CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 PRIMARY KEY NONCLUSTERED DEFAULT (NEXT VALUE FOR MySequence),
 Col2 VARCHAR(20) NULL
);

INSERT MyTable (Col1, Col2) VALUES (DEFAULT, 'cde'), (DEFAULT, 'xyz');

SELECT * FROM MyTable;

Col1 Col2
1 cde
2 xyz

Sequential Enumeration Functions

SQL Server provides two sequential generation functions: IDENTITY and NEWSEQUENTIALID.

SQL Server Usage 319

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

The IDENTITY function shouldn’t be confused with the IDENTITY property of a column.

You can use the IDENTITY function only in a SELECT … INTO statement to insert IDENTITY
column values into a new table.

The NEWSEQUNTIALID function generates a hexadecimal GUID, which is an integer. While the
NEWID function generates a random GUID, the NEWSEQUENTIALID function guarantees that every
GUID created is greater in numeric value than any other GUID previously generated by the same
function on the same server since the operating system restart.

Note

You can use NEWSEQUENTIALID only with DEFAULT constraints associated with columns
having a UNIQUEIDENTIFIER data type.

Syntax

IDENTITY (<Data Type> [, <Seed Value>, <Increment Value>]) [AS <Alias>]

NEWSEQUENTIALID()

Examples

Use the IDENTITY function as surrogate key for a new table based on an existing table.

CREATE TABLE MySourceTable
(
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(10) NOT NULL,
 Col3 VARCHAR(10) NOT NULL
);

INSERT INTO MySourceTable

SQL Server Usage 320

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

VALUES
(12, 'String12', 'String12'),
(25, 'String25', 'String25'),
(95, 'String95', 'String95');

SELECT IDENTITY(INT, 100, 1) AS SurrogateKey,
 Col1,
 Col2,
 Col3
INTO MyNewTable
FROM MySourceTable
ORDER BY Col1 DESC;

SELECT *
FROM MyNewTable;

For the preceding example, the result looks as shown following.

SurrogateKey Col1 Col2 Col3
100 95 String95 String95
101 25 String25 String25
102 12 String12 String12

Use NEWSEQUENTIALID as a surrogate key for a new table.

CREATE TABLE MyTable
(
 Col1 UNIQUEIDENTIFIER NOT NULL
 PRIMARY KEY NONCLUSTERED DEFAULT NEWSEQUENTIALID()
);

INSERT INTO MyTable
DEFAULT VALUES;

SELECT *
FROM MyTable;

For the preceding example, the result looks as shown following.

SQL Server Usage 321

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Col1

9CC01320-C5AA-E811-8440-305B3A017068

For more information, see Sequence Numbers and CREATE TABLE (Transact-SQL) IDENTITY
(Property) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports automatic sequence
generation using the AUTO_INCREMENT column property, similar to the IDENTITY column
property in SQL Server.

Aurora MySQL doesn’t support table-independent sequence objects.

Any numeric column may be assigned the AUTO_INCREMENT property. To make the system
generate the next sequence value, the application must not mention the relevant column’s name
in the insert command, in case the column was created with the NOT NULL definition then also
inserting a NULL value into an AUTO_INCREMENT column will increment it. In most cases, the seed
value is 1 and the increment is 1.

Client applications use the LAST_INSERT_ID function to obtain the last generated value.

Each table can have only one AUTO_INCREMENT column. The column must be explicitly indexed or
be a primary key, which is indexed by default.

The AUTO_INCREMENT mechanism is designed to be used with positive numbers only. Do not
use negative values because they will be misinterpreted as a complementary positive value. This
limitation is due to precision issues with sequences crossing a zero boundary.

There are two server parameters used to alter the default values for new AUTO_INCREMENT
columns:

• auto_increment_increment — Controls the sequence interval.

• auto_increment_offset — Determines the starting point for the sequence.

To reseed the AUTO_INCREMENT value, use ALTER TABLE <Table Name> AUTO_INCREMENT =
<New Seed Value>.

MySQL Usage 322

https://docs.microsoft.com/en-us/sql/relational-databases/sequence-numbers/sequence-numbers?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql-identity-property?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(<Column Name> <Data Type> [NOT NULL | NULL]
AUTO_INCREMENT [UNIQUE [KEY]] [[PRIMARY] KEY]...

Migration Considerations

Since Aurora MySQL doesn’t support table-independent SEQUENCE objects, applications that rely
on its properties must use a custom solution to meet their requirements.

In Aurora MySQL, you can use AUTO_INCREMENT instead of IDENTITY in SQL Server for most
cases. For AUTO_INCREMENT columns, the application must explicitly INSERT a NULL or a 0.

Note

Omitting the AUTO_INCREMENT column from the INSERT column list has the same effect
as inserting a NULL value.

Make sure that your AUTO_INCREMENT columns are indexed and don’t have default
constraints assigned to the same column. There is a critical difference between IDENTITY and
AUTO_INCREMENT in the way the sequence values are maintained upon service restart. Application
developers must be aware of this difference.

Sequence Value Initialization

SQL Server stores the IDENTITY metadata in system tables on disk. Although some values may be
cached and lost when the service is restarted, the next time the server restarts, the sequence value
continues after the last block of values that was assigned to cache. If you run out of values, you can
explicitly set the sequence value to start the cycle over. As long as there are no key conflicts, it can
be reused after the range has been exhausted.

In Aurora MySQL, an AUTO_INCREMENT column for a table uses a special counter called the auto-
increment counter to assign new values for the column. This counter is stored in cache memory
only and isn’t persisted to disk. After a service restart, and when Aurora MySQL encounters an
INSERT to a table containing an AUTO_INCREMENT column, it issues an equivalent of the following
statement:

MySQL Usage 323

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT MAX(<Auto Increment Column>) FROM <Table Name> FOR UPDATE;

Note

The FOR UPDATE CLAUSE is required to maintain locks on the column until the read
completes.

Aurora MySQL then increments the value retrieved by the preceding statement and assigns it to
the in-memory autoincrement counter for the table. By default, the value is incremented by one.
You can change the default using the auto_increment_increment configuration setting. If
the table has no values, Aurora MySQL uses the value 1. You can change the default using the
auto_increment_offset configuration setting.

Every server restart effectively cancels any AUTO_INCREMENT = <Value> table option in CREATE
TABLE and ALTER TABLE statements.

Unlike IDENTITY columns in SQL Server, which by default don’t allow inserting explicit values,
Aurora MySQL allows explicit values to be set. If a row has an explicitly specified AUTO_INCREMENT
column value and the value is greater than the current counter value, the counter is set to the
specified column value.

Examples

Create a table with an AUTO_INCREMENT column.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 AUTO_INCREMENT PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

Insert AUTO_INCREMENT values.

INSERT INTO MyTable (Col2)
VALUES ('AI column omitted');

MySQL Usage 324

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

INSERT INTO MyTable (Col1, Col2)
VALUES (NULL, 'Explicit NULL');

INSERT INTO MyTable (Col1, Col2)
VALUES (10, 'Explicit value');

INSERT INTO MyTable (Col2)
VALUES ('Post explicit value');

SELECT *
FROM MyTable;

For the preceding example, the result looks as shown following.

Col1 Col2
1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value

Reseed AUTO_INCREMENT.

ALTER TABLE MyTable AUTO_INCREMENT = 30;

INSERT INTO MyTable (Col2)
VALUES ('Post ALTER TABLE');

SELECT *
FROM MyTable;

For the preceding example, the result looks as shown following.

1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value

MySQL Usage 325

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

30 Post ALTER TABLE

Change the increment value to 10.

Note

Changing the @@auto_increment_increment value to 10 impacts all AUTO_INCREMENT
enumerators in the database.

SET @@auto_increment_increment=10;

Verify variable change.

SHOW VARIABLES LIKE 'auto_inc%';

For the preceding example, the result looks as shown following.

Variable_name Value
auto_increment_increment 10
auto_increment_offset 1

Insert several rows and then read.

INSERT INTO MyTable (Col1, Col2)
VALUES (NULL, 'Row1'), (NULL, 'Row2'), (NULL, 'Row3'), (NULL, 'Row4');

SELECT Col1, Col2
FROM MyTable;

For the preceding example, the result looks as shown following.

1 AI column omitted
2 Explicit NULL
10 Explicit value
11 Post explicit value
30 Post ALTER TABLE

MySQL Usage 326

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

40 Row1
50 Row2
60 Row3
70 Row4

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Independent
SEQUENCE object

CREATE SEQUENCE Not supported

Automatic enumerato
r column property

IDENTITY AUTO_INCREMENT

Reseed sequence
value

DBCC CHECKIDENT ALTER TABLE
<Table Name>
AUTO_INCREMENT
= <New Seed
Value>

Column restrictions Numeric Numeric, indexed,
and no DEFAULT

Controlling seed and
interval values

CREATE/ALTER
TABLE

auto_incr
ement_inc
rement

auto_incr
ement_offset

Aurora MySQL
settings are global
and can’t be
customized for each
column as in SQL
Server.

Sequence setting
initialization

Maintained through
service restarts

Re-initialized every
service restart

For more informati
on, see Sequence
Value Initialization.

Explicit values to
column

Not allowed by
default, SET

Supported Aurora MySQL
requires explicit

Summary 327

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

IDENTITY_INSERT
ON required

NULL or 0 to trigger
sequence value
assignment. Inserting
an explicit value
larger than all others
will reinitialize the
sequence.

Non PK auto
enumerator column

Supported Not Supported Implement an
application
enumerator.

Compound PK with
auto enumerator
column

Supported Not Supported Implement an
application
enumerator.

For more information, see Using AUTO_INCREMENT, CREATE TABLE Statement, and
AUTO_INCREMENT Handling in InnoDB in the MySQL documentation.

Managing statistics for T-SQL

This topic provides reference information about statistics management in Microsoft SQL Server
and Amazon Aurora MySQL, which is crucial for database performance optimization. You can
understand the differences and similarities in how these two database systems handle statistics
creation, storage, and maintenance.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Statistics contain only
density information,
and only for index
key columns.

Managing statistics for T-SQL 328

https://dev.mysql.com/doc/refman/5.7/en/example-auto-increment.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-auto-increment-handling.html#innodb-auto-increment-initialization.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage

Statistics objects in SQL Server are designed to support cost-based query optimizer. It uses
statistics to evaluate the various plan options and choose an optimal plan for optimal query
performance.

Statistics are stored as BLOBs in system tables and contain histograms and other statistical
information about the distribution of values in one or more columns. A histogram is created for
the first column only and samples the occurrence frequency of distinct values. Statistics and
histograms are collected by either scanning the entire table or by sampling only a percentage of
the rows.

You can view Statistics manually using the DBCC SHOW_STATISTICS statement or the more recent
sys.dm_db_stats_properties and sys.dm_db_stats_histogram system views.

SQL Server provides the capability to create filtered statistics containing a WHERE predicate.
Filtered statistics are useful for optimizing histogram granularity by eliminating rows whose values
are of less interest, for example NULLs.

SQL Server can manage the collection and refresh of statistics automatically, which is the default.
Use the AUTO_CREATE_STATISTICS and AUTO_UPDATE_STATISTICS database options to
change the defaults.

When a query is submitted with AUTO_CREATE_STATISTICS on, and the query optimizer may
benefit from a statistics that doesn’t yet exist, SQL Server creates the statistics automatically.
You can use the AUTO_UPDATE_STATISTICS_ASYNC database property to set new statistics
creation to occur immediately and causing queries to wait or to run asynchronously. When run
asynchronously, the triggering run can’t benefit from optimizations the optimizer may derive from
it.

After creation of a new statistics object, either automatically or explicitly using the
CREATE STATISTICS statement, the refresh of the statistics is controlled by the
AUTO_UPDATE_STATISTICS database option. When set to ON, statistics are recalculated when
they are stale, which happens when significant data modifications have occurred since the last
refresh.

Syntax

CREATE STATISTICS <Statistics Name>
ON <Table Name> (<Column> [,...])

SQL Server Usage 329

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

[WHERE <Filter Predicate>]
[WITH <Statistics Options>;

Examples

Create new statistics on multiple columns. Set to use a full scan and to not refresh.

CREATE STATISTICS MyStatistics
ON MyTable (Col1, Col2)
WITH FULLSCAN, NORECOMPUTE;

Update statistics with a 50% sampling rate.

UPDATE STATISTICS MyTable(MyStatistics)
WITH SAMPLE 50 PERCENT;

View the statistics histogram and data.

DBCC SHOW_STATISTICS ('MyTable','MyStatistics');

Turn off automatic statistics creation for a database.

ALTER DATABASE MyDB SET AUTO_CREATE_STATS OFF;

For more information, see Statistics, CREATE STATISTICS (Transact-SQL), and DBCC
SHOW_STATISTICS (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports two modes of statistics
management: persistent optimizer statistics and non-persistent optimizer statistics. As the name
suggests, persistent statistics are written to disk and survive service restart. Non-persistent
statistics are kept in memory only and need to be recreated after service restart. It is recommended
to use persistent optimizer statistics (the default for Aurora MySQL) for improved plan stability.

Statistics in Aurora MySQL are created for indexes only. Aurora MySQL doesn’t support
independent statistics objects on columns that aren’t part of an index.

Typically, administrators change the statistics management mode by setting the global parameter
innodb_stats_persistent = ON. This option isn’t supported for Aurora MySQL because it

MySQL Usage 330

https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-show-statistics-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

requires server SUPER privileges. Therefore, control the statistics management mode by changing
the behavior for individual tables using the table option STATS_PERSISTENT = 1. There are no
column-level or statistics-level options for setting parameter values.

To view statistics metadata, use the INFORMATION_SCHEMA.STATISTICS standard
view. To view detailed persistent optimizer statistics, use the innodb_table_stats and
innodb_index_stats tables.

The following image shows an example of mysql.innodb_table_stats content.

The following image shows an example of mysql.innodb_index_stats content.

Automatic refresh of statistics is controlled by the global parameter
innodb_stats_auto_recalc, which is set to ON in Aurora MySQL. You can set it individually for
each table using the STATS_AUTO_RECALC=1 option.

To explicitly force refresh of table statistics, use the ANALYZE TABLE statement. It is not possible
to refresh individual statistics or columns.

MySQL Usage 331

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Use the NO_WRITE_TO_BINLOG or its clearer alias LOCAL to avoid replication to replication
replicas.

Use ALTER TABLE … ANALYZE PARTITION to analyze one or more individual partitions. For
more information, see Storage.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 adds new
INFORMATION_SCHEMA.INNODB_CACHED_INDEXES table which reports the number of
index pages cached in the InnoDB buffer pool for each index.

Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE <Table Name> [,...];

CREATE TABLE (<Table Definition>) | ALTER TABLE <Table Name>
STATS_PERSISTENT = <1|0>,
STATS_AUTO_RECALC = <1|0>,
STATS_SAMPLE_PAGES = <Statistics Sampling Size>;

Migration Considerations

Unlike SQL Server, Aurora MySQL collects only density information. It doesn’t collect detailed key
distribution histograms. This difference is critical for understanding run plans and troubleshooting
performance issues, which aren’t affected by individual values used by query parameters.

Statistics collection is managed at the table level. You can’t manage individual statistics objects or
individual columns. In most cases, that shouldn’t pose a challenge for successful migration.

Examples

Create a table with explicitly set statistics options.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL AUTO_INCREMENT,
 Col2 VARCHAR(255),
 DateCol DATETIME,

MySQL Usage 332

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 PRIMARY KEY (Col1),
 INDEX IDX_DATE (DateCol)
) ENGINE=InnoDB,
STATS_PERSISTENT=1,
STATS_AUTO_RECALC=1,
STATS_SAMPLE_PAGES=25;

Refresh all statistics for MyTable1 and MyTable2.

ANALYZE TABLE MyTable1, MyTable2;

Change MyTable to use non persistent statistics.

ALTER TABLE MyTable STATS_PERSISTENT=0;

Summary

The following table identifies similarities, differences, and key migration considerations.

Feature SQL Server Aurora MySQL Comments

Column statistics CREATE STATISTIC
S

N/A

Index statistics Implicit with every
index

Implicit with every
index

Statistics are
maintained
automatically for
every table index.

Refresh / update
statistics

UPDATE STATISTIC
S

EXECUTE
sp_updatestats

ANALYZE TABLE Minimal scope in
Aurora MySQL is
the entire table. No
control over individua
l statistics.

Auto create statistics AUTO_CREA
TE_STATISTICS
database option

N/A

Summary 333

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

Auto update statistics AUTO_UPDA
TE_STATISTICS
database option

STATS_AUT
O_RECALC table
option

Statistics sampling Use the SAMPLE
option of CREATE
and UPDATE
STATISTICS

STATS_SAM
PLE_PAGES table
option

Can only use
page number,
not percentage
for STATS_SAM
PLE_PAGES .

Full scan refresh Use the FULLSCAN
option of CREATE
and UPDATE
STATISTICS

N/A Using a very
large STATS_SAM
PLE_PAGES may
serve the same
purpose.

Non-persistent
statistics

N/A Use STATS_PER
SISTENT=0 table
option

For more information, see The INFORMATION_SCHEMA STATISTICS Table Configuring Persistent
Optimizer Statistics Parameters, Configuring Optimizer Statistics for InnoDB, and Configuring
Optimizer Statistics for InnoDB in the MySQL documentation.

Summary 334

https://dev.mysql.com/doc/refman/5.7/en/information-schema-statistics-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-persistent-stats.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-persistent-stats.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-optimizer-statistics.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-optimizer-statistics.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-performance-optimizer-statistics.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Configuration overview

This chapter reference information for configuring software and resource settings when migrating
from Microsoft SQL Server 2019 to Amazon Aurora MySQL, focusing on database upgrades,
session options, system variables, and configuration settings. These topics describe how each
platform handles runtime settings, database-level options, and server configurations, highlighting
the unique approaches of Aurora MySQL such as parameter groups and cluster-level settings.

Topics

• Configuring upgrades

• Configuring session options

• Configuring database options

• Configuring server options

Configuring upgrades

This topic provides reference content about upgrading database instances in Amazon Aurora
MySQL. You can learn about the reasons for database upgrades, the differences between
upgrading SQL Server and Aurora MySQL, and the process of performing upgrades in Aurora
MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A N/A N/A

SQL Server Usage

As a database administrator, from time to time a database upgrade is required, it can be either for
security fix, bugs fixes, compliance, or new database features.

The database upgrade approach can be planned to minimize the database downtime and risk. You
can perform an upgrade in-place or migrate to a new installation.

Configuring upgrades 335

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Upgrade In-Place

With this approach, we are retaining the current hardware and OS version by adding the new SQL
Server binaries on the same server and then upgrade the SQL Server instance.

Before upgrading the database engine, review the SQL Server release notes for the intended target
release version for any limitations and known issues to help you plan the upgrade.

In general, these will be the steps to perform the upgrade:

Prerequisites steps

• Back up all SQL Server database files, so that it can be restored if required.

• Run the appropriate Database Console Commands (DBCC CHECKDB) on databases to be
upgraded to make sure that they are in a consistent state.

• Ensure to allocate enough disk space for SQL Server components, in addition to user databases.

• Disable all startup stored procedures as stored procedures processed at startup time might block
the upgrade process.

• Stop all applications, including all services that have SQL Server dependencies.

Steps for upgrade

• Install new software.

• Fix issues raised.

• Set if you prefer to have automatic updates or not.

• Select products install to upgrade, this is the new binaries installation.

• Monitor the progress of downloading, extracting, and installing the Setup files.

• Specify the instance of SQL Server to upgrade.

• On the Select Features page, the features to upgrade will be preselected. The prerequisites
for the selected features are displayed on the right-hand pane. SQL Server Setup will install
the prerequisite that aren’t already installed during the installation step described later in this
procedure.

• Review upgrade plan before the actual upgrade.

• Monitor installation progress.

SQL Server Usage 336

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Post upgrade tasks

• Review summary log file for the installation and other important notes.

• Register your servers.

Migrate to a New Installation

This approach maintains the current environment while building a new SQL Server environment.
This is usually done when migrating on a new hardware and with a new version of the operating
system. In this approach migrate the system objects so that they are same as the existing
environment, then migrate the user database either using backup and restore.

For more information, see Upgrade Database Engine in the SQL Server documentation.

MySQL Usage

After migrating your databases to Amazon Aurora MySQL-Compatible Edition (Aurora MySQL), you
will still need to upgrade your database instance from time to time, for the same reasons you have
done it in the past like new features, bugs and security fixes.

In a managed service like Amazon Relational Database Service (Amazon RDS), the upgrade process
is much easier and simpler compare to the on-prem SQL Server process.

To determine the current Aurora MySQL version being used, you can use the following Amazon CLI
command:

aws rds describe-db-engine-versions --engine aurora-mysql --query '*[].[EngineVersion]'
 --output text --region your-AWS-Region

This can also be queried from the database, using the following queries:

SELECT AURORA_VERSION();

In an Aurora MySQL version number scheme, for example 2.08.1, the first digit represents the
major version. Aurora MySQL version 1 is compatible with MySQL 5.6 and Aurora MySQL version
2 is compatible with MySQL 5.7. To find all Amazon Aurora and MySQL versions mapping, see
Database engine updates for Amazon Aurora MySQL version 2.

MySQL Usage 337

https://docs.microsoft.com/en-us/sql/database-engine/install-windows/upgrade-database-engine?view=sql-server-ver15
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.20Updates.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Amazon doesn’t apply major version upgrades on Amazon Aurora automatically. Major version
upgrades contains new features and functionality which often involves system table and other
code changes. These changes may not be backward-compatible with previous versions of the
database so applications testing is highly recommended.

Applying automatic minor upgrades can be set by configuring the Amazon RDS instance to allow it.

You can use the following Amazon CLI command (Linux) to determine the current automatic
upgrade minor versions.

aws rds describe-db-engine-versions --output=table --engine mysql --engine-version
 minor-version --region region

Note

If no results returned, there is no automatic minor version upgrade available and scheduled.

When enabled, the instance will be automatically upgraded during the scheduled maintenance
window.

If you want to upgrade your cluster to a compatible cluster, you can do so by running an upgrade
process on the cluster itself. This kind of upgrade is an in-place upgrade, in contrast to upgrades
that you do by creating a new cluster. The upgrade is relatively fast because it doesn’t require
copying all your data to a new cluster volume. In place upgrade preserves the endpoints and set of
DB instances for your cluster.

To verify application compatibility, performance and maintenance procedures for the upgraded
cluster, you can perform a simulation of the upgrade by doing following

• Clone a cluster.

• Perform an in-place upgrade of the cloned cluster.

• Test applications, performance and so on, using the cloned cluster.

• Resolve any issues, adjust your upgrade plans to account for them.

• Once all the testing looks good, you can perform the in-place upgrade for your production
cluster.

For major upgrades, this is the recommended:

MySQL Usage 338

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Check for open XA transactions by running the XA RECOVER statement. Commit or Rollback the
XA transactions before starting the upgrade.

• Check for DDL statements by running a SHOW PROCESSLIST statement and looking for CREATE,
DROP, ALTER, RENAME, and TRUNCATE statements in the output. Allow all DDLs to finish before
starting the upgrade.

• Check for any uncommitted rows by querying the INFORMATION_SCHEMA.INNODB_TRX table.
The table contains one row for each transaction. Let the transaction complete or shut down
applications that are submitting these changes.

Aurora MySQL performs a major version upgrade in multiple steps. As each step begins, Aurora
MySQL records an event. You can monitor the current status and events as they occur on the
Events page in the Amazon RDS console.

Amazon Aurora performs a series of checks before beginning the upgrade process. If any issues
are detected during these checks, resolve the issue identified in the event details and restart the
upgrade process.

Aurora takes the cluster offline, performs a similar set of tests as in the previous step. If no new
issues are identified, then Aurora moves with the next step. If any issues are detected during these
checks, resolve the issue identified in the event details and restart the upgrade process again.

Aurora backups up the MySQL cluster by creating a snapshot of the cluster volume.

Aurora clones the cluster volume. If any issues are encountered during the upgrade, Aurora reverts
to the original data from the cloned cluster volume and brings the cluster back online.

Aurora performs a clean shutdown and it rolls back any uncommitted transactions.

Aurora upgrades the engine version. It installs the binary for the new engine version and uses the
writer DB instance to upgrade your data to new to MySQL compatible format. During this stage,
Aurora modifies the system tables and performs other conversions that affect the data in your
cluster volume.

The upgrade process is completed. Aurora records a final event to indicate that the upgrade
process completed successfully. Now DB cluster is running the new major version.

Upgrade can be done through the Amazon Console or Amazon CLI.

MySQL Usage 339

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Console

1. Sign in to the Amazon Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases, and then choose the DB cluster that you want to
upgrade.

3. Choose Modify. The Modify DB cluster page appears.

4. For DB engine version, choose the new version.

5. Choose Continue and check the summary of modifications.

6. To apply the changes immediately, choose Apply immediately. Choosing this option can cause
an outage in some cases. For more information, see Modifying an Amazon Aurora DB cluster.

7. On the confirmation page, review your changes. If they are correct, choose Modify cluster to
save your changes. Choose Back to edit your changes or Cancel to cancel your changes.

Amazon CLI

To upgrade the major version of an Aurora MySQL DB cluster, use the Amazon CLI modify-db-
cluster command with the following required parameters:

For Linux, macOS, or Unix:

aws rds modify-db-cluster \
--db-cluster-identifier sample-cluster \
--engine aurora-mysql \
--engine-version 5.7.mysql_aurora.2.09.0 \
--allow-major-version-upgrade \
--apply-immediately

For Windows:

aws rds modify-db-cluster ^
--db-cluster-identifier sample-cluster ^
--engine aurora-mysql ^
--engine-version 5.7.mysql_aurora.2.09.0 ^
--allow-major-version-upgrade ^
--apply-immediately

MySQL Usage 340

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Modifying.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary

Phase SQL Server Step Aurora MySQL

Prerequisite Perform an instance backup Run Amazon RDS instance
backup

Prerequisite DBCC for consistent verificat
ion

N/A

Prerequisite Validate disk size and free
space

N/A

Prerequisite Disable all startup stored
procedures (if applicable)

N/A

Prerequisite Stop application and
connection

N/A

Prerequisite Install new software and fix
prerequisites errors raised

Commit or rollback
uncommitted transactions

Prerequisite Select instances to upgrade Select right Amazon RDS
instance

Prerequisite Review pre-upgrade summary N/A

Runtime Monitor upgrade progress Can be reviewed from the
console

Post-upgrade Results Can be reviewed from the
console

Post-upgrade Register server N/A

Post-upgrade Test applications again the
new upgraded database

Same

Summary 341

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Phase SQL Server Step Aurora MySQL

Production deployment Re-run all steps in a productio
n environment

Same

For more information, see Upgrading Amazon Aurora MySQL DB clusters in the User Guide for
Aurora.

Configuring session options

This topic provides reference information about session options and system variables in SQL Server
and Amazon Aurora MySQL. You can use this content to understand the differences and similarities
between how these two database systems handle runtime settings that control server behavior.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A SET options are
significantly different,
except for transaction
isolation control.

SQL Server Usage

Session options in SQL Server is a collection of run-time settings that control certain aspects of
how the server handles data for individual sessions. A session is the period between a login event
and a disconnect event or the exec sp_reset_connection command for connection pooling.

Each session may have multiple run scopes, which are all the statements before the GO keyword
used in SQL Server management Studio scripts, or any set of commands sent as a single run batch
by a client application. Each run scope may contain additional sub-scopes. For example, scripts
calling stored procedures or functions.

Configuring session options 342

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Updates.Upgrading.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

You can set the global session options, which all run scopes use by default, using the SET T-SQL
command. Server code modules such as stored procedures and functions may have their own run
context settings, which are saved along with the code to guarantee the validity of results.

Developers can explicitly use SET commands to change the default settings for any session or for
an run scope within the session. Typically, client applications send explicit SET commands upon
connection initiation.

You can view the metadata for current sessions using the sp_who_system stored procedure and
the sysprocesses system table.

Note

To change the default setting for SQL Server Management Studio, choose Tools, Options,
Query Execution, SQL Server, Advanced.

Syntax

The following example includes categories and settings for the SET command:

SET
Date and time
DATEFIRST | DATEFORMAT
Locking
DEADLOCK_PRIORITY | SET LOCK_TIMEOUT
Miscellaneous
CONCAT_NULL_YIELDS_NULL | CURSOR_CLOSE_ON_COMMIT | FIPS_FLAGGER |
SET IDENTITY_INSERT | LANGUAGE | OFFSETS | QUOTED_IDENTIFIER
Query Execution
ARITHABORT | ARITHIGNORE | FMTONLY | NOCOUNT | NOEXEC |
NUMERIC_ROUNDABORT | PARSEONLY | QUERY_GOVERNOR_COST_LIMIT |
ROWCOUNT | TEXTSIZE | ANSI ANSI_DEFAULTS | ANSI_NULL_DFLT_OFF |
ANSI_NULL_DFLT_ON | ANSI_NULLS | ANSI_PADDING | ANSI_WARNINGS
Execution Stats
FORCEPLAN | SHOWPLAN_ALL | SHOWPLAN_TEXT | SHOWPLAN_XML | STATISTICS IO |
STATISTICS XML | STATISTICS PROFILE | STATISTICS TIME
Transactions
IMPLICIT_TRANSACTIONS | REMOTE_PROC_TRANSACTIONS |
TRANSACTION ISOLATION LEVEL | XACT_ABORT

SQL Server Usage 343

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see SET Statements (Transact-SQL) in the SQL Server documentation.

SET ROWCOUNT for DML Deprecated Setting

The SET ROWCOUNT for DML statements has been deprecated as of SQL Server 2008.

Up to and including SQL Server 2008 R2, you could limit the number of rows affected by INSERT,
UPDATE, and DELETE operations using SET ROWCOUNT. For example, it is a common practice in
SQL Server to batch large DELETE or UPDATE operations to avoid transaction logging issues. The
following example loops and deletes rows having ForDelete set to 1, but only 5000 rows at a
time in separate transactions (assuming the loop isn’t within an explicit transaction).

SET ROWCOUNT 5000;
WHILE @@ROWCOUNT > 0
BEGIN
 DELETE FROM MyTable
 WHERE ForDelete = 1;
END

Starting with SQL Server 2012, SET ROWCOUNT is ignored for INSERT, UPDATE and DELETE
statements.

You can achieve the same functionality using TOP, which can be converted to LIMIT in Aurora
MySQL. For example, you can rewrite the preceding example as shown following:

WHILE @@ROWCOUNT > 0
BEGIN
 DELETE TOP (5000)
 FROM MyTable
 WHERE ForDelete = 1;
END

Amazon Schema Conversion Tool (Amazon SCT automatically converts this example to Aurora
MySQL.

Examples

Use SET within a stored procedure.

CREATE PROCEDURE <ProcedureName>

SQL Server Usage 344

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

AS
BEGIN
 <Some non critical transaction code>
 SET TRANSACTION_ISOLATION_LEVEL SERIALIZABLE;
 SET XACT_ABORT ON;
 <Some critical transaction code>
END

Note

Explicit SET commands affect their run scope and sub scopes. After the scope terminates
and the procedure code exits, the calling scope resumes its original settings used before the
calling the stored procedure.

For more information, see SET Statements (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports hundreds of Server System
Variables to control server behavior and the global and session levels.

Use the SHOW VARIABLES command to view a list of all variables.

SHOW SESSION VARIABLES;
-- 532 rows returned

Note

Aurora MySQL 5.7 provides additional variables that don’t exist in MySQL 5.7 standalone
installations. These variables are prefixed with Amazon Aurora or Amazon.

You can view Aurora MySQL variables using the MySQL command line utility, Aurora database
cluster parameters, Aurora database instance parameters, or SQL interface system variables.

To view all sessions, use the SHOW PROCESSLIST command or the information_schema
PROCESSLIST view, which displays information such as session current status, default database,
host name, and application name.

MySQL Usage 345

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Unlike standalone installations of MySQL, Amazon Aurora doesn’t provide access to
the configuration file containing system variable defaults. Cluster-level parameters are
managed in database cluster parameter groups and instance-level parameters are managed
in database parameter groups. In Aurora MySQL, some parameters from the full base set
of standalone MySQL installations can’t be modified and others were removed. See Server
Options for a walkthrough of creating a custom parameter group.

Converting from SQL Server 2008 SET ROWCOUNT for DML operations

The use of SET ROWCOUNT for DML operations is deprecated as of SQL Server 2008 R2. Code that
uses the SET ROWCOUNT syntax can’t be converted automatically. You can either rewrite to use TOP
before running Amazon SCT, or manually change it afterward.

The following example runs batch DELETE operations in SQL Server using TOP:

WHILE @@ROWCOUNT > 0
BEGIN
 DELETE TOP (5000)
 FROM MyTable
 WHERE ForDelete = 1;
END

You can rewrite the preceding example to use the LIMIT clause in Aurora MySQL.

WHILE row_count() > 0
DO
 DELETE
 FROM MyTable
 WHERE ForDelete = 1
 LIMIT 5000;
END WHILE;

Examples

View the metadata for all processes.

SELECT *

MySQL Usage 346

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM information_schema.PROCESSLIST;

SHOW PROCESSLIST;

Use the SET command to change session isolation level and SQL mode.

SET sql_mode = 'ANSI_QUOTES';
SET SESSION TRANSACTION ISOLATION LEVEL 'READ-COMMITTED';

Set isolation level using a system variable.

SET SESSION tx_isolation = 'READ-COMMITTED'

The SET SESSION command is the equivalent to the SET command in T-SQL.

However, there are far more configurable parameters in Aurora MySQL than in SQL Server.

Summary

The following table summarizes commonly used SQL Server session options and their
corresponding Aurora MySQL system variables.

Category SQL Server Aurora MySQL Comments

Date and time DATEFIRST

DATEFORMAT

default_w
eek_format

date_format
(deprecated)

default_w
eek_format
operates different
than DATEFIRST

. You can use only
Sunday and Monday
as the start of the
week. It also controls
what is considered
week one of the year
and whether returned
WEEK value is zero-
based, or one-based

Summary 347

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Category SQL Server Aurora MySQL Comments

. There is no alternati
ve to the deprecate
d date_format
variable.

Locking LOCK_TIMEOUT lock_wait
_timeout

Set in database
parameter groups.

ANSI ANSI_NULLS

ANSI_PADDING

N/A

PAD_CHAR_
TO_FULL_LENGTH

Set with the
sql_mode system
variable.

Transactions IMPLICIT_
TRANSACTIONS

TRANSACTION
ISOLATION LEVEL

autocommit

SET SESSION
TRANSACTION
ISOLATION LEVEL

The default for
Aurora MySQL, as
in SQL server, is to
commit automatic
ally. Syntax is
compatible except
the addition of the
SESSION keyword.

Query run IDENTITY_INSERT

LANGUAGE

QUOTED_ID
ENTIFIER

NOCOUNT

See Identity and
Sequences

lc_time_names

ANSI_QUOTES

N/A and not needed

lc_time_names
are set in a database
parameter group.
lc_messages isn’t
supported in Aurora
MySQL. ANSI_QUOT
ES is a value for the
sql_mode parameter
. Aurora MySQL
doesn’t add row
count information to
the errors collection.

Summary 348

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Category SQL Server Aurora MySQL Comments

Runtime stats SHOWPLAN_ALL ,
TEXT, and XML

STATISTICS IO ,
XML, PROFILE, and
TIME

See Run Plans

Miscellaneous CONCAT_NU
LL_YIELDS_NULL

ROWCOUNT

N/A

sql_selec
t_limit

Aurora MySQL always
returns NULL for
any NULL concatena
tion operation
. sql_selec
t_limit only
affects SELECT
statements unlike
ROWCOUNT, which
also affects all DML.

For more information, see Server System Variables in the MySQL documentation.

Configuring database options

This topic provides reference information about database options in Microsoft SQL Server and
how they differ from Amazon Aurora MySQL. You can understand the key differences in database
configuration between these two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A SQL Server database
options are inapplica
ble to Aurora MySQL.

Configuring database options 349

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server Usage

SQL Server provides database level options that can be set using the ALTER DATABASE … SET
command.

These settings enable you to:

• Set default session options. For more information, see Session Options.

• Turn on or turn off database features such as SNAPSHOT_ISOLATION, CHANGE_TRANCKING, and
ENABLE_BROKER.

• Configure high availability and disaster recovery options such as always on availability groups

• Configure security access control such as restricting access to a single user, setting the database
offline, or setting the database to read-only.

Syntax

Use the following syntax to set database options:

ALTER DATABASE { <database name> } SET { <option> [,...n] };

Examples

Set a database to read-only and use ARITHABORT by default.

ALTER DATABASE Demo SET READ_ONLY, ARITHABORT ON;

Set a database to use automatic statistic creation.

ALTER DATABASE Demo SET AUTO_CREATE_STATISTICS ON;

Set a database offline immediately.

ALTER DATABASE DEMO SET OFFLINE WITH ROLLBACK IMMEDIATE;

For more information, see ALTER DATABASE SET options (Transact-SQL) in the SQL Server
documentation.

SQL Server Usage 350

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MySQL Usage

The concept of a database in Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) is
different than SQL Server. In Aurora MySQL, a database is synonymous with a schema. Therefore,
the notion of database options isn’t applicable to Aurora MySQL.

Note

Aurora MySQL has two settings that are saved with the database/schema: the default
character set, and the default collation for creating new objects.

Migration Considerations

For migration considerations, see Server Options.

Configuring server options

This topic provides reference content comparing server and database configuration options
between Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can understand the key
differences in how these database systems manage global settings, runtime configurations, and
security parameters.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use cluster and
database parameter
groups.

SQL Server Usage

SQL Server provides server-level settings that affect all databases and all sessions. You can modify
these settings using the sp_configure system stored procedure.

You can use server options to perform the following configuration tasks:

MySQL Usage 351

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Define hardware utilization such as memory management, affinity mask, priority boost, network
packet size, and soft Non-Uniform Memory Access (NUMA).

• Alter run time global values such as recovery interval, remote login timeout, optimization for ad-
hoc workloads, and cost threshold for parallelism.

• Turn on and turn off global features such as C2 Audit, OLE, procedures, CLR procedures, and
allow trigger recursion.

• Configure global security settings such as server authentication mode, remote access, shell
access with xp_cmdshell, CLR access level, and database chaining.

• Set default values for sessions such as user options, default language, backup compression, and
fill factor.

Some settings require an explicit RECONFIGURE command to apply the changes to the server.
High risk settings require RECONFIGURE WITH OVERRIDE for the changes to be applied. Some
advanced options are hidden by default. To view and modify these settings, set show advanced
options to 1 and run sp_configure.

Note

Server audits are managed through the T-SQL commands CREATE and ALTER SERVER
AUDIT.

Syntax

EXECUTE sp_configure <option>, <value>;

Examples

Limit server memory usage to 4 GB.

EXECUTE sp_configure 'show advanced options', 1;

RECONFIGURE;

sp_configure 'max server memory', 4096;

SQL Server Usage 352

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

RECONFIGURE;

Allow command shell access from T-SQL.

EXEC sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

View current values.

EXECUTE sp_configure

For more information, see Server Configuration Options (SQL Server) in the SQL Server
documentation.

MySQL Usage

The concept of an database in Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) is
different than SQL Server. For Aurora MySQL, the terms database and schema are synonymous.
Therefore, the concept of database options does isn’t applicable to Aurora MySQL.

The Aurora MySQL equivalent of SQL Server database and server options are Server System
Variables, which are run time settings you can modify using one of the following approaches:

• MySQL command line utility.

• Aurora DB Cluster and DB Instance Parameters.

• System variables used by the SQL SET command.

Compared to SQL Server, Aurora MySQL provides a much wider range of server settings and
configurations. For a full list of the options available in Aurora MySQL, see the links at the end of
this section. The Aurora MySQL default parameter group lists more than 250 different parameters.

MySQL Usage 353

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Unlike standalone installations of MySQL, Amazon Aurora doesn’t provide file system
access to the configuration file. Cluster-level parameters are managed in database cluster
parameter groups. Instance-level parameters are managed in database parameter groups.
Also, in Aurora MySQL some parameters from the full base set of standalone MySQL
installations can’t be modified and others were removed. Many parameters are viewable
but not modifiable.

SQL Server and Aurora MySQL are completely different engines. Except for a few obvious settings
such as max server memory which has an equivalent of innodb_buffer_pool_size, most of the
Aurora MySQL parameter settings aren’t compatible with SQL Server.

In most cases, you should use the default parameter groups because they are optimized for
common use cases. Amazon Aurora is a cluster of DB instances and, as a direct result, some of
the MySQL parameters apply to the entire cluster while other parameters apply only to particular
database instances in the cluster. The following table describes how Aurora MySQL parameters are
controlled:

Aurora MySQL Parameter Class Controlled by

Cluster-level parameters

Single cluster parameter group for each
Amazon Aurora cluster.

Managed by cluster parameter groups.
For example, aurora_load_from_s
3_role , default_password_lifetime ,
default_storage_engine .

Database instance-level parameters

You can associate every instance in your
Amazon Aurora cluster with a unique database
parameter group.

Managed by database parameter groups.
For example, autocommit , connect_t
imeout , innodb_change_buff
er_max_size .

Syntax

Server-level options are set with the SET GLOBAL command.

MySQL Usage 354

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SET GLOBAL <option> = <Value>;

Examples

Modify compression level

Decrease compression level to reduce CPU usage.

SET GLOBAL innodb_compression_level = 5;

Create parameter groups

The following walkthrough demonstrates how to create and configure the Amazon Aurora
database and cluster parameter groups:

1. Navigate to Parameter group in the Amazon RDS service of the Amazon Console.

2. Choose Create parameter group.

Note

You can’t edit the default parameter group. Create a custom parameter group to apply
changes to your Amazon Aurora cluster and its database instances.

3. For Parameter group family, choose aurora-mysql5.7.

4. For Type, choose DB Parameter Group. Another option is to choose Cluster Parameter Group
to modify cluster parameters.

5. Choose Create.

Modify a parameter group

The following walkthrough demonstrates how to modify an existing parameter group

1. Navigate to Parameter group in the Amazon RDS service of the Amazon Console.

2. Choose the name of the parameter group to edit.

3. Choose Edit parameters.

4. Change parameter values and choose Save changes.

MySQL Usage 355

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Working with parameter groups in the Amazon Relational Database
Service User Guide and Server System Variables in the MySQL documentation.

MySQL Usage 356

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithParamGroups.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

High availability and disaster recovery

This chapter reference information for migrating database resiliency features when from Microsoft
SQL Server 2019 to Amazon Aurora MySQL. You can gain valuable insights into how these two
database systems handle critical aspects such as backup and recovery, high availability, and disaster
recovery. The comparison highlights the similarities and differences in approaches, emphasizing
cloud-native capabilities like automated continuous backups and managed clustering.

Topics

• Backup and restore design

• High availability essentials

Backup and restore design

This topic provides reference content comparing backup and recovery features between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can gain insight into how these two database
systems handle critical data protection tasks.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Backup Amazon RDS
manages storage-l
evel backups.

SQL Server Usage

The term backup refers to both the process of copying data and to the resulting set of data created
by the processes that copy data for safekeeping and disaster recovery. Backup processes copy SQL
Server data and transaction logs to media such as tapes, network shares, cloud storage, or local
files. You can then copy these backups back to the database using a restore process.

SQL Server uses files, or filegroups, to create backups for an individual database or subset of a
database. Table backups aren’t supported.

Backup and restore design 357

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

When a database uses the FULL recovery model, transaction logs also need to be backed up.
Use transaction logs to back up only database changes since the last full backup and provide a
mechanism for point-in-time restore operations.

Recovery model is a database-level setting that controls transaction log management. The three
available recovery models are SIMPLE, FULL, and BULK LOGGED. For more information, see
Recovery Models (SQL Server) in the SQL Server documentation.

The SQL Server RESTORE process copies data and log pages from a previously created backup back
to the database. It then triggers a recovery process that rolls forward all committed transactions
not yet flushed to the data pages when the backup took place. It also rolls back all uncommitted
transactions written to the data files.

SQL Server supports the following types of backups:

• Copy-only backups are independent of the standard chain of SQL Server backups. They are
typically used as one-off backups for special use cases and don’t interrupt normal backup
operations.

• Data backups copy data files and the transaction log section of the activity during the backup.
A data backup may contain the whole database (Database Backup) or part of the database. The
parts can be a partial backup or a file or filegroup.

• A database backup is a data backup representing the entire database at the point in time when
the backup process finished.

• A differential backup is a data backup containing only the data structures (extents) modified
since the last full backup. A differential backup is dependent on the previous full backup and
can’t be used alone.

• A full backup is a data backup containing a Database Backup and the transaction log records of
the activity during the backup process.

• Transaction log backups don’t contain data pages. They contain the log pages for all transaction
activity since the last Full Backup or the previous transaction log backup.

• File backups consist of one or more files or filegroups.

SQL Server also supports media families and media sets that you can use to mirror and stripe
backup devices. For more information, see Media Sets, Media Families, and Backup Sets in the SQL
Server documentation.

SQL Server Usage 358

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/media-sets-media-families-and-backup-sets-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server 2008 Enterprise edition and later versions support backup compression. Backup
compression provides the benefit of a smaller backup file footprint, less I/O consumption, and less
network traffic at the expense of increased CPU utilization for running the compression algorithm.
For more information, see Backup Compression in the SQL Server documentation.

A database backed up in the SIMPLE recovery mode can only be restored from a full or differential
backup. For FULL and BULK LOGGED recovery models, transaction log backups can be restored
also to minimize potential data loss.

Restoring a database involves maintaining a correct sequence of individual backup restores. For
example, a typical restore operation may include the following steps:

1. Restore the most recent full backup.

2. Restore the most recent differential backup.

3. Restore a set of uninterrupted transaction log backups, in order.

4. Recover the database.

For large databases, a full restore, or a complete database restore, from a full database backup isn’t
always a practical solution. SQL Server supports data file restore that restores and recovers a set of
files and a single data page restore, except for databases that use the SIMPLE recovery model.

Syntax

The following code examples demonstrate the backup syntax.

Backing Up a Whole Database
BACKUP DATABASE <Database Name> [<Files / Filegroups>] [READ_WRITE_FILEGROUPS]
 TO <Backup Devices>
 [<MIRROR TO Clause>]
 [WITH [DIFFERENTIAL]
 [<Option List>][;]

BACKUP LOG <Database Name>
 TO <Backup Devices>
 [<MIRROR TO clause>]
 [WITH <Option List>][;]

<Option List> =

SQL Server Usage 359

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-compression-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

COPY_ONLY | {COMPRESSION | NO_COMPRESSION } | DESCRIPTION = <Description>
| NAME = <Backup Set Name> | CREDENTIAL | ENCRYPTION | FILE_SNAPSHOT | { EXPIREDATE =
<Expiration Date> | RETAINDAYS = <Retention> }
{ NOINIT | INIT } | { NOSKIP | SKIP } | { NOFORMAT | FORMAT } |
{ NO_CHECKSUM | CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
{ NORECOVERY | STANDBY = <Undo File for Log Shipping> } | NO_TRUNCATE
ENCRYPTION (ALGORITHM = <Algorithm> | SERVER CERTIFICATE = <Certificate> | SERVER
ASYMMETRIC KEY = <Key>);

The following code examples demonstrate the restore syntax.

RESTORE DATABASE <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

RESTORE LOG <Database Name> [<Files / Filegroups>] | PAGE = <Page ID>
[FROM <Backup Devices>
[WITH [RECOVERY | NORECOVERY | STANDBY = <Undo File for Log Shipping> }]
[, <Option List>]
[;]

<Option List> =
MOVE <File to Location>
| REPLACE | RESTART | RESTRICTED_USER | CREDENTIAL
| FILE = <File Number> | PASSWORD = <Password>
| { CHECKSUM | NO_CHECKSUM } | { STOP_ON_ERROR | CONTINUE_AFTER_ERROR }
| KEEP_REPLICATION | KEEP_CDC
| { STOPAT = <Stop Time>
| STOPATMARK = <Log Sequence Number>
| STOPBEFOREMARK = <Log Sequence Number>

Examples

Perform a full compressed database backup.

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\FullBackup.bak'
WITH COMPRESSION;

Perform a log backup.

SQL Server Usage 360

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

BACKUP DATABASE MyDatabase TO DISK='C:\Backups\MyDatabase\LogBackup.bak'
WITH COMPRESSION;

Perform a partial differential backup.

BACKUP DATABASE MyDatabase
 FILEGROUP = 'FileGroup1',
 FILEGROUP = 'FileGroup2'
 TO DISK='C:\Backups\MyDatabase\DB1.bak'
 WITH DIFFERENTIAL;

Restore a database to a point in time.

RESTORE DATABASE MyDatabase
 FROM DISK='C:\Backups\MyDatabase\FullBackup.bak'
 WITH NORECOVERY;

RESTORE LOG AdventureWorks2012
 FROM DISK='C:\Backups\MyDatabase\LogBackup.bak'
 WITH NORECOVERY, STOPAT = '20180401 10:35:00';

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

For more information, see Backup Overview and Restore and Recovery Overview in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) continuously backs up all cluster
volumes and retains restore data for the duration of the backup retention period. The backups are
incremental and can be used to restore the cluster to any point in time within the backup retention
period. You can specify a backup retention period from one to 35 days when creating or modifying
a database cluster. Backups incur no performance impact and don’t cause service interruptions.

Additionally, you can manually trigger data snapshots in a cluster volume that can be saved beyond
the retention period. You can use Snapshots to create new database clusters.

MySQL Usage 361

https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/backup-overview-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/backup-restore/restore-and-recovery-overview-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Manual snapshots incur storage charges for Amazon Relational Database Service (Amazon
RDS).

Note

Starting from Amazon RDS 8.0.21, you can turn on and turn off redo logging using
the ALTER INSTANCE {ENABLE|DISABLE} INNODB REDO_LOG syntax. This
functionality is intended for loading data into a new MySQL instance. Disabling
redo logging helps speed up data loading by avoiding redo log writes. The new
INNODB_REDO_LOG_ENABLE privilege permits enabling and disabling redo logging. The
new Innodb_redo_log_enabled status variable permits monitoring redo logging status.
For more information, see Disabling Redo Logging in the MySQL documentation.

Restoring Data

You can recover databases from Amazon Aurora automatically retained data or from a manually
saved snapshot. Using the automatically retained data significantly reduces the need to take
frequent snapshots and maintain Recovery Point Objective (RPO) policies.

The Amazon RDS console displays the available time frame for restoring database instances in the
Latest Restorable Time and Earliest Restorable Time fields. The Latest Restorable Time is typically
within the last five minutes. The Earliest Restorable Time is the end of the backup retention period.

Note

The Latest Restorable Time and Earliest Restorable Time fields display when a database
cluster restore has been completed. Both display NULL until the restore process completes.

Restoring Database Backups from Amazon S3

You can now restore MySQL 5.7 backups stored on Amazon S3 to Amazon Aurora MySQL-
Compatible Edition and Amazon RDS for MySQL.

MySQL Usage 362

https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-disable-redo-logging

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

If you are migrating a MySQL 5.5, 5.6, or 5.7 database to Amazon Aurora MySQL-Compatible
Edition or Amazon RDS for MySQL, you can copy database backups to an Amazon S3 bucket and
restore them for a faster migration. Both full and incremental backups of your database can be
restored. Restoring backups can be considerably quicker than moving data using the mysqldump
utility, which replays SQL statements to recreate the database.

For more information, see Restoring a backup into a MySQL DB instance in the Amazon Relational
Database Service User Guide.

Backtracking an Aurora DB Cluster

With Amazon Aurora with MySQL compatibility, you can backtrack a DB cluster to a specific time,
without restoring data from a backup.

Backtracking rewinds the DB cluster to the time you specify. Backtracking isn’t a replacement for
backing up your DB cluster so that you can restore it to a point in time. However, backtracking
provides the following advantages over traditional backup and restore:

• You can easily undo mistakes. If you mistakenly perform a destructive action, such as a DELETE
without a WHERE clause, you can backtrack the DB cluster to a time before the destructive action
with minimal interruption of service.

• You can backtrack a DB cluster quickly. Restoring a DB cluster to a point in time launches a
new DB cluster and restores it from backup data or a DB cluster snapshot, which can take
hours. Backtracking a DB cluster doesn’t require a new DB cluster and rewinds the DB cluster in
minutes.

• You can explore earlier data changes. You can repeatedly backtrack a DB cluster back and
forth in time to help determine when a particular data change occurred. For example, you can
backtrack a DB cluster three hours and then backtrack forward in time one hour. In this case, the
backtrack time is two hours before the original time.

For additional information, see Backtracking an Aurora DB cluster in the User Guide for Aurora.

Database Cloning

Database cloning is a fast and cost-effective way to create copies of a database. You can create
multiple clones from a single DB cluster and additional clones can be created from existing clones.
When first created, a cloned database requires only minimal additional storage space.

MySQL Usage 363

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Managing.Backtrack.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Database cloning uses a copy-on-write protocol. Data is copied only when it changes either on the
source or cloned database.

Data cloning is useful for avoiding impacts on production databases. For example:

• Testing schema or parameter group modifications.

• Isolating intensive workloads. For example, exporting large amounts of data and running high
resource consuming queries.

• Development and testing with a copy of a production database.

Copying and Sharing Snapshots

You can copy and share database snapshots within the same Amazon Region, across Amazon
Regions, and across Amazon accounts. Snapshot sharing provides an authorized Amazon account
with access to snapshots. Authorized users can restore a snapshot from its current location without
first copying it.

Copying an automated snapshot to another Amazon account requires two steps:

1. Create a manual snapshot from the automated snapshot.

2. Copy the manual snapshot to another account.

Backup Storage

In all Amazon RDS regions, backup storage is the collection of both automated and manual
snapshots for all database instances and clusters. The size of this storage is the sum of all
individual instance snapshots.

When an Aurora MySQL database instance is deleted, all automated backups of that database
instance are also deleted. However, Amazon RDS provides the option to create a final snapshot
before deleting a database instance. This final snapshot is retained as a manual snapshot. Manual
snapshots aren’t automatically deleted.

The Backup Retention Period

Retention periods for Aurora MySQL DB cluster backups are configured when creating a cluster. If
not explicitly set, the default retention is one day when using the Amazon RDS API or the Amazon

MySQL Usage 364

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CLI. The retention period is seven days if using the Amazon Console. You can modify the backup
retention period at any time with a value between one and 35 days.

Disabling Automated Backups

You can’t turn off automated backups on Aurora MySQL. The backup retention period for Aurora
MySQL is managed by the database cluster.

Saving Data from an Amazon Aurora MySQL Database to Amazon S3

Aurora MySQL supports a proprietary syntax for dumping and loading data directly from and to an
Amazon S3 bucket.

You can use the SELECT … INTO OUTFILE S3 statement to export data out of Aurora MySQL.
Also, you can use the LOAD DATA FROM S3 statement for loading data directly from Amazon S3
text files.

Note

This integration enables very efficient dumps since there is no need for an intermediate
client application to handle the data export, import, and save.

The syntax for the SELECT … INTO OUTFILE S3 statement is shown following:

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [PARTITION partition_list]
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]

MySQL Usage 365

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
INTO OUTFILE S3 'S3-URI'
[CHARACTER SET charset_name]
 [export_options]
 [MANIFEST {ON | OFF}]
 [OVERWRITE {ON | OFF}]

export_options:
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]

The syntax for the LOAD DATA FROM S3 statement is shown following:

LOAD DATA FROM S3 [FILE | PREFIX | MANIFEST] 'S3-URI'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [PARTITION (partition_name,...)]
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number {LINES | ROWS}]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

For more information, see Loading data into an Amazon Aurora MySQL DB cluster from text files in
an Amazon S3 bucket in the User Guide for Aurora.

MySQL Usage 366

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.LoadFromS3.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

As you can see from the syntax, Aurora MySQL offers various options for easy control of saving
and loading data directly from an SQL statement without needing to configure options or external
services.

The MANIFEST option of the export allows you to create an accompanying JSON file that lists the
text files created by the SELECT … INTO OUTFILE S3 statement. Later, the LOAD DATA FROM
S3 statement can use this manifest to load the data files back into the database tables.

Migration Considerations

Migrating from a self-managed backup policy to a Platform as a Service (PaaS) environment such
as Aurora MySQL is a complete paradigm shift. You no longer need to worry about transaction
logs, file groups, disks running out of space, and purging old backups.

Amazon RDS provides guaranteed continuous backup with point-in-time restore up to 35 days.

Managing an SQL Server backup policy with similar RTO and RPO is a challenging task. With Aurora
MySQL, all you need to do set is the retention period and take manual snapshots for special use
cases.

Considerations for Exporting Data to Amazon S3

By default, each file created in an Amazon S3 bucket as a result of the export has a maximal size
of 6 GB. The system rolls over to a new file once this limit is exceeded. However, Aurora MySQL
guarantees that rows will not span multiple files, and therefore slight variations from this max size
are possible.

The SELECT … INTO OUTFILE S3 statement is an atomic transaction. Large or complicated
SELECT statements may take a significant amount of time to complete. In the event of an error,
the statement rolls back and should be ran again. However, if some of the data has already been
uploaded to the Amazon S3 bucket, it isn’t deleted as part of the rollback and you can use a
differential approach to upload only the remaining data.

Note

For exports larger than 25 GB, Amazon recommends to split the SELECT … INTO
OUTFILE S3 statement into multiple, smaller batches.

Metadata, such as table schema or file metadata, isn’t uploaded by Aurora MySQL to Amazon S3.

MySQL Usage 367

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Example — Change the Retention Policy to Seven Days

The following walkthrough describes how to change Aurora MySQL DB cluster retention settings
from one day to seven days using the Amazon RDS console.

1. Log in to your Management Console, choose Amazon RDS , and then choose Databases.

2. Choose the relevant DB identifier.

3. Verify the current automatic backup settings.

4. Select the database instance with the writer role and choose Modify.

5. Scroll down to the Backup section. Select 7 Days from the list.

6. Choose Continue, review the summary, select if to use scheduled maintenance window or to
apply immediate and choose Modify DB instance.

For more information, see Maintenance Plans.

Exporting Data to Amazon S3

For a detailed example with all the necessary preliminary steps required to export data from
Aurora MySQL to an Amazon S3 bucket, see Saving data from an Amazon Aurora MySQL DB cluster
into text files in an Amazon S3 bucket in the User Guide for Aurora.

Summary

Feature SQL Server Aurora MySQL Comments

Recovery model SIMPLE, BULK
LOGGED, FULL

N/A The functionality
of Aurora MySQL
backups is equivalent
to the FULL recovery
model.

Backup database BACKUP DATABASE Automatic and
continuous

Partial backup BACKUP DATABASE
...
FILE= ... |

N/A

Summary 368

https://eu-central-1.console.aws.amazon.com/rds/home?#databases:
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

FILEGROUP = ...

Log backup BACKUP LOG N/A Backup is at the
storage level.

Differential Backups BACKUP DATABASE
...
WITH DIFFERENT
IAL

N/A

Database snapshots BACKUP DATABASE
...
WITH COPY_ONLY

Amazon RDS console
or API

The terminology is
inconsistent between
SQL Server and
Aurora MySQL. A
database snapshot
in SQL Server is
similar to database
cloning in Aurora
MySQL. Aurora
MySQL database
snapshots are similar
to a COPY_ONLY
backup in SQL Server.

Summary 369

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

Database clones CREATE
DATABASE...
AS SNAPSHOT OF...

 The terminology is
inconsistent between
SQL Server and
Aurora MySQL. A
database snapshot
in SQL Server is
similar to database
cloning in Aurora
MySQL. Aurora
MySQL database
snapshots are similar
to a COPY_ONLY
backup in SQL Server.

Point in time restore RESTORE DATABASE
 | LOG ... WITH
STOPAT...

Any point within
the retention period
using the Amazon
RDS console or API

Partial restore RESTORE DATABASE.
..
FILE= ... |
FILEGROUP = ...

N/A

Export and import
table data

DTS, SSIS, BCP, linked
servers to files

SELECT INTO ...
 OUTFILE S3
LOAD DATA FROM S3

For more information, see Overview of backing up and restoring an Aurora DB cluster and Saving
data from an Amazon Aurora MySQL DB cluster into text files in an Amazon S3 bucket in the User
Guide for Aurora.

Summary 370

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Managing.Backups.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.SaveIntoS3.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

High availability essentials

This topic provides reference content comparing high availability and disaster recovery features
between Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can gain insight into how
Aurora MySQL offers similar or enhanced capabilities for database replication, failover, and read
scaling compared to SQL Server’s solutions like Always On Availability Groups and Failover Cluster
Instances.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Multi replica, scale
out solution using
Amazon Aurora
clusters and Availabil
ity Zones.

SQL Server Usage

SQL Server provides several solutions to support high availability and disaster recovery
requirements including Always On Failover Cluster Instances (FCI), Always On Availability Groups,
Database Mirroring, and Log Shipping. The following sections describe each solution.

SQL Server 2017 also adds new Availability Groups functionality which includes read-scale support
without a cluster, Minimum Replica Commit Availability Groups setting, and Windows-Linux cross-
OS migrations and testing.

SQL Server 2019 introduces support for creating Database Snapshots of databases. A database
snapshot is a read-only, static view of a SQL Server database. The database snapshot is
transactional consistent with the source database as of the moment of the snapshot’s creation.
Among other things, some benefits of the database snapshots with regard to high availability are:

• Snapshots can be used for reporting purposes.

• Maintaining historical data for report generation.

• Using a mirror database that you are maintaining for availability purposes to offload reporting.

High availability essentials 371

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Database Snapshots in the SQL Server documentation.

SQL Server 2019 introduces secondary to primary connection redirection for Always On Availability
Groups. It allows client application connections to be directed to the primary replica regardless of
the target server specified in the connections string. The connection string can target a secondary
replica. Using the right configuration of the availability group replica and the settings in the
connection string, the connection can be automatically redirected to the primary replica.

For more information, see Secondary to primary replica read/write connection redirection in the
SQL Server documentation.

Always On Failover Cluster Instances

Always On Failover Cluster Instances use the Windows Server Failover Clustering (WSFC) operating
system framework to deliver redundancy at the server instance level.

An FCI is an instance of SQL Server installed across two or more WSFC nodes. For client
applications, the FCI is transparent and appears to be a normal instance of SQL Server running
on a single server. The FCI provides failover protection by moving the services from one WSFC
node Windows server to another WSFC node windows server in the event the current "active" node
becomes unavailable or degraded.

FCIs target scenarios where a server fails due to a hardware malfunction or a software hang up.
Without FCI, a significant hardware or software failure would render the service unavailable until
the malfunction is corrected. With FCI, another server can be configured as a "stand by" to replace
the original server if it stops servicing requests.

For each service or cluster resource, there is only one node that actively services client requests
(known as owning a resource group). A monitoring agent constantly monitors the resource owners
and can transfer ownership to another node in the event of a failure or planned maintenance such
as installing service packs or security patches. This process is completely transparent to the client
application, which may continue to submit requests as normal when the failover or ownership
transfer process completes.

FCI can significantly minimize downtime due to hardware or software general failures. The main
benefits of FCI are:

• Full instance level protection.

• Automatic failover of resources from one node to another.

SQL Server Usage 372

https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-snapshots-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Supports a wide range of storage solutions. WSFC cluster disks can be iSCSI, Fiber Channel, SMB
file shares, and others.

• Supports multi-subnet.

• No need client application configuration after a failover.

• Configurable failover policies.

• Automatic health detection and monitoring.

For more information, see Always On Failover Cluster Instances in the SQL Server documentation.

Always On Availability Groups

Always On Availability Groups is the most recent high availability and disaster recovery solution for
SQL Server. It was introduced in SQL Server 2012 and supports high availability for one or more
user databases. Because it can be configured and managed at the database level rather than the
entire server, it provides much more control and functionality. As with FCI, Always On Availability
Groups relies on the framework services of Windows Server Failover Cluster (WSFC) nodes.

Always On Availability Groups utilize real-time log record delivery and apply mechanism to
maintain near real-time, readable copies of one or more databases.

These copies can also be used as redundant copies for resource usage distribution between servers
(a scale-out read solution).

The main characteristics of Always On Availability Groups are:

• Supports up to nine availability replicas: One primary replica and up to eight secondary readable
replicas.

• Supports both asynchronous-commit and synchronous-commit availability modes.

• Supports automatic failover, manual failover, and a forced failover. Only the latter can result in
data loss.

• Secondary replicas allow both read-only access and offloading of backups.

• Availability Group Listener may be configured for each availability group. It acts as a virtual
server address where applications can submit queries. The listener may route requests to a read-
only replica or to the primary replica for read-write operations. This configuration also facilitates
fast failover as client applications don’t need to be reconfigured post failover.

• Flexible failover policies.

SQL Server Usage 373

https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/always-on-failover-cluster-instances-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• The automatic page repair feature protects against page corruption.

• Log transport framework uses encrypted and compressed channels.

• Rich tooling and APIs including Transact-SQL DDL statements, management studio wizards,
Always On Dashboard Monitor, and PowerShell scripting.

For more information, see Always On availability groups: a high-availability and disaster-recovery
solution in the SQL Server documentation.

Database Mirroring

Note

Microsoft recommends avoiding Database Mirroring for new development. This feature is
deprecated and will be removed in a future release. It is recommended to use Always On
Availability Groups instead.

Database mirroring is a legacy solution to increase database availability by supporting near
instantaneous failover. It is similar in concept to Always On Availability Groups, but can only be
configured for one database at a time and with only one standby replica.

For more information, see Database Mirroring in the SQL Server documentation.

Log Shipping

Log shipping is one of the oldest and well tested high availability solutions. It is configured at the
database level similar to Always On Availability Groups and Database Mirroring. Log shipping can
be used to maintain one or more secondary databases for a single primary database.

The log shipping process involves three steps:

1. Backing up the transaction log of the primary database instance.

2. Copying the transaction log backup file to a secondary server.

3. Restoring the transaction log backup to apply changes to the secondary database.

Log shipping can be configured to create multiple secondary database replicas by repeating steps
2 and 3 for each secondary server. Unlike FCI and Always On Availability Groups, log shipping
solutions don’t provide automatic failover.

SQL Server Usage 374

https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/database-mirroring/database-mirroring-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

In the event the primary database becomes unavailable or unusable for any reason, an
administrator must configure the secondary database to serve as the primary and potentially
reconfigure all client applications to connect to the new database.

Note

Secondary databases can be used for read-only access, but require special handling. For
more information, see Configure Log Shippingin the SQL Server documentation.

The main characteristics of Log Shipping solutions are:

• Provides redundancy for a single primary database and one or more secondary databases. Log
shipping is considered less of a high availability solution due to the lack of automatic failover.

• Supports limited read-only access to secondary databases.

• Administrators have control over the timing and delays of the primary server log backup and
secondary server restoration.

• Longer delays can be useful if data is accidentally modified or deleted in the primary database.

For more information, see About Log Shipping in the SQL Server documentation.

Examples

Configure an Always On Availability Group.

CREATE DATABASE DB1;

ALTER DATABASE DB1 SET RECOVERY FULL;

BACKUP DATABASE DB1 TO DISK = N'\\MyBackupShare\DB1\DB1.bak' WITH FORMAT;

CREATE ENDPOINT DBHA STATE=STARTED
AS TCP (LISTENER_PORT=7022) FOR DATABASE_MIRRORING (ROLE=ALL);

CREATE AVAILABILITY GROUP AG_DB1
 FOR
 DATABASE DB1

SQL Server Usage 375

https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/configure-log-shipping-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-server?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 REPLICA ON
 'SecondarySQL' WITH
 (
 ENDPOINT_URL = 'TCP://SecondarySQL.MyDomain.com:7022',
 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,
 FAILOVER_MODE = MANUAL
);

-- On SecondarySQL
ALTER AVAILABILITY GROUP AG_DB1 JOIN;

RESTORE DATABASE DB1 FROM DISK = N'\\MyBackupShare\DB1\DB1.bak'
WITH NORECOVERY;

-- On Primary
BACKUP LOG DB1
TO DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'
 WITH NOFORMAT

-- On SecondarySQL
RESTORE LOG DB1
 FROM DISK = N'\\MyBackupShare\DB1\DB1_Tran.bak'
 WITH NORECOVERY

ALTER DATABASE MyDb1 SET HADR AVAILABILITY GROUP = MyAG;

For more information, see Business continuity and database recovery in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) is a fully managed Platform as a
Service (PaaS) providing high availability capabilities. Amazon Relational Database Service (Amazon
RDS) provides database and instance administration functionality for provisioning, patching,
backup, recovery, failure detection, and repair.

New Aurora MySQL database instances are always created as part of a cluster. If you don’t specify
replicas at creation time, a single-node cluster is created. You can add database instances to
clusters later.

MySQL Usage 376

https://docs.microsoft.com/en-us/sql/database-engine/sql-server-business-continuity-dr?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Regions and Availability Zones

Amazon Relational Database Service (Amazon RDS) is hosted in multiple global locations. Each
location is composed of Regions and Availability Zones. Each Region is a separate geographic area
having multiple, isolated Availability Zones. Amazon RDS supports placement of resources such as
database instances and data storage in multiple locations. By default, resources aren’t replicated
across regions.

Each region is completely independent and each Availability Zone is isolated from all others.
However, the main benefit of Availability Zones within a Region is that they are connected through
low-latency, high bandwidth local network links.

Resources may have different scopes. A resource may be global, associated with a specific region
(region level), or associated with a specific Availability Zone within a region. For more information,
see Resource locations in the User Guide for Linux Instances.

When you create a database instance, you can specify an availability zone or use the default No
preference option. In this case, Amazon chooses the availability zone for you.

You can distribute Aurora MySQL instances across multiple availability zones. You can design
applications designed to take advantage of failover such that in the event of an instance in one
availability zone failing, another instance in different availability zone will take over and handle
requests.

You can use elastic IP addresses to abstract the failure of an instance by remapping the virtual
IP address to one of the available database instances in another Availability Zone. For more
information, see Elastic IP addresses in the User Guide for Linux Instances.

MySQL Usage 377

https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/resources.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

An Availability Zone is represented by a region code followed by a letter identifier. For example,
us-east-1a.

Note

To guarantee even resource distribution across Availability Zones for a region, Amazon
RDS independently maps Availability Zones to identifiers for each account. For example,
the Availability Zone us-east-1a for one account might not be in the same location as us-
east-1a for another account. Users can’t coordinate Availability Zones between accounts.

Aurora MySQL DB Cluster

A DB cluster consists of one or more DB instances and a cluster volume that manages the data
for those instances. A cluster volume is a virtual database storage volume that may span multiple
Availability Zones with each holding a copy of the database cluster data.

An Amazon Aurora database cluster is made up of one of more of the following types of instances:

• A primary instance that supports both read and write workloads. This instance is used for all DML
transactions. Every Amazon Aurora DB cluster has one, and only, one primary instance.

• An Amazon Aurora replica that supports read-only workloads. Every Aurora MySQL database
cluster may contain from zero to 15 Amazon Aurora replicas in addition to the primary
instance for a total maximum of 16 instances. Amazon Aurora Replicas enable scale-out of
read operations by offloading reporting or other read-only processes to multiple replicas. Place
Amazon Aurora replicas in multiple availability Zones to increase availability of the databases.

MySQL Usage 378

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Endpoints

Endpoints are used to connect to Aurora MySQL databases. An endpoint is a Universal Resource
Locator (URL) comprised of a host address and port number.

• A cluster endpoint is an endpoint for an Amazon Aurora database cluster that connects to the
current primary instance for that database cluster regardless of the availability zone in which
the primary resides. Every Aurora MySQL DB cluster has one cluster endpoint and one primary
instance. The cluster endpoint should be used for transparent failover for either read or write
workloads.

Note

Use the cluster endpoint for all write operations including all DML and DDL statements.

MySQL Usage 379

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

If the primary instance of a DB cluster fails for any reason, Amazon Aurora automatically
fails over server requests to a new primary instance. An example of a typical Aurora
MySQL DB Cluster endpoint is: mydbcluster.cluster-123456789012.us-
east-1.rds.amazonaws.com:3306.

• A reader endpoint is an endpoint that is used to connect to one of the Aurora read-only replicas
in the database cluster. Each Aurora MySQL database cluster has one reader endpoint. If there
are more than one Aurora Replicas in the cluster, the reader endpoint redirects the connection
to one of the available replicas. Use the Reader Endpoint to support load balancing for read-
only connections. If the DB cluster contains no replicas, the reader endpoint redirects the
connection to the primary instance. If an Aurora Replica is created later, the Reader Endpoint
starts directing connections to the new Aurora Replica with minimal interruption in service.
An example of a typical Aurora MySQL DB Reader Endpoint is: mydbcluster.cluster-
ro-123456789012.us-east-1.rds.amazonaws.com:3306.

• An instance endpoint is a specific endpoint for every database instance in an Aurora DB
cluster. Every Aurora MySQL DB instance regardless of its role has its own unique instance
endpoint. Use the Instance Endpoints only when the application handles failover and read
workload scale-out on its own. For example, you can have certain clients connect to one
replica and others to another. An example of a typical Aurora MySQL DB Reader Endpoint is:
mydbinstance.123456789012.us-east-1.rds.amazonaws.com:3306.

Some general considerations for using endpoints:

• Consider using the cluster endpoint instead of individual instance endpoints because it
supports high-availability scenarios. In the event that the primary instance fails, Aurora MySQL
automatically fails over to a new primary instance. You can accomplish this configuration by
either promoting an existing Aurora replica to be the new primary or by creating a new primary
instance.

• If you use the cluster endpoint instead of the instance endpoint, the connection is automatically
redirected to the new primary.

• If you choose to use the instance endpoint, you must use the Amazon RDS console or the API to
discover which database instances in the database cluster are available and their current roles.
Then, connect using that instance endpoint.

MySQL Usage 380

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Be aware that the reader endpoint load balances connections to Aurora Replicas in an Aurora
database cluster, but it doesn’t load balance specific queries or workloads. If your application
requires custom rules for distributing read workloads, use instance endpoints.

• The reader endpoint may redirect connection to a primary instance during the promotion of an
Aurora Replica to a new primary instance.

Amazon Aurora Storage

Aurora MySQL data is stored in a cluster volume. The cluster volume is a single, virtual volume that
uses fast solid-state disk (SSD) drives. The cluster volume is comprised of multiple copies of the
data distributed between availability zones in a region. This configuration minimizes the chances of
data loss and allows for the failover scenarios mentioned in the preceding sections.

Amazon Aurora cluster volumes automatically grow to accommodate the growth in size of your
databases. An Aurora cluster volume has a maximum size of 64 terabytes (TiB). Since table size
is theoretically limited to the size of the cluster volume, the maximum table size in an Aurora DB
cluster is 64 TiB.

Storage Auto-Repair

The chance of data loss due to disk failure is greatly minimize due to the fact that Aurora MySQL
maintains multiple copies of the data in three Availability Zones. Aurora MySQL detects failures
in the disks that make up the cluster volume. If a disk segment fails, Aurora repairs the segment
automatically. Repairs to the disk segments are made using data from the other cluster volumes to
ensure correctness. This process allows Aurora to significantly minimize the potential for data loss
and the subsequent need to restore a database.

Survivable Cache Warming

When a database instance starts, Aurora MySQL performs a warming process for the buffer pool.
Aurora MySQL pre-loads the buffer pool with pages that have been frequently used in the past.
This approach improves performance and shortens the natural cache filling process for the initial
period when the database instance starts servicing requests. Aurora MySQL maintains a separate
process to manage the cache, which can stay alive even when the database process restarts. The
buffer pool entries remain in memory regardless of the database restart providing the database
instance with a fully warm buffer pool.

MySQL Usage 381

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Crash Recovery

Aurora MySQL can instantaneously recover from a crash and continue to serve requests. Crash
recovery is performed asynchronously using parallel threads enabling the database to remain open
and available immediately after a crash.

For more information, see Fault tolerance for an Aurora DB cluster in the User Guide for Aurora.

Delayed Replication

Note

Amazon RDS for MySQL now supports delayed replication, which enables you to set a
configurable time period for which a read replica lags behind the source database. In a
standard MySQL replication configuration, there is minimal replication delay between the
source and the replica. With delayed replication, you can introduce an intentional delay
as a strategy for disaster recovery. A delay can be helpful when you want to recover from
a human error. For example, if someone accidentally drops a table from your primary
database, you can stop the replication just before the point at which the table was dropped
and promote the replica to become a standalone instance. To assist with this process,
Amazon RDS for MySQL now includes a stored procedure that will stop replication once a
specified point in the binary log is reached. Refer to the blog post for more details.
Configuring a read replica for delayed replication is done with stored procedure and can
either be performed when the read replica is initially created or be specified for an existing
read replica. Delayed replication is available for MySQL version 5.7.22 and later or MySQL
5.6.40 and later in all Amazon Regions.
For more information, see Working with MySQL read replicas in the Amazon Relational
Database Service User Guide.

For more information, see Fault tolerance for an Aurora DB cluster in the User Guide for Aurora.

Examples

With Amazon RDS and Amazon Aurora for MySQL there are two options for additional reader
instance.

MySQL Usage 382

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraHighAvailability.html#Aurora.Managing.FaultTolerance
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_MySQL.Replication.ReadReplicas.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Concepts.AuroraHighAvailability.html#Aurora.Managing.FaultTolerance

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Amazon RDS Read Instance
Option

Description Usage

Reader Another reader instance in
the same region

Better for lower costs and
latency between instance

Cross-region read replica Another reader instance in
another region

Better when disaster recovery
plan requires minimal
distance between the primary
and the standby instance

The following walkthroughs demonstrate how to create a cross-region read replica and a read
replica in the same region.

To create a cross-region read replica

1. Log in to the Amazon Console, and choose RDS.

2. Select the instance and choose Instance actions, Create cross-region read replica.

3. On the next page, enter all required details and choose Create.

After the replica is created, you can run read and write operations on the primary instance and
read-only operations on the replica.

MySQL Usage 383

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

To create a read replica in the same region

1. Log in to the Amazon Console, and choose RDS.

2. Select the instance and choose Instance actions, Add reader.

3. On the next page, enter all required details and choose Create.

After the replica is created, you can run read and write operations on the primary instance and
read-only operations on the replica.

Summary

Feature SQL Server Aurora MySQL Comments

Server level failure
protection

Failover Cluster
Instances

N/A Not applicable.
Clustering is handled
by Aurora MySQL.

Database level failure
protection

Always On Availabil
ity Groups

Amazon Aurora
Replicas

Log replication Log Shipping N/A Not applicable.
Aurora MySQL
handles data replicati

Summary 384

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature SQL Server Aurora MySQL Comments

on at the storage
level.

Disk error protection RESTORE… PAGE= Automatically

Maximum read-only
replicas

8 + Primary 15 + Primary

Failover address Availability group
listener

Cluster endpoint

Read-only workloads READ INTENT
connection

Read endpoint

For more information, see Amazon Aurora DB clusters in the User Guide for Aurora and Regions and
Zones in the User Guide for Linux Instances.

Summary 385

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.amazonaws.cn/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migrating indexes to Aurora MySQL

This topic provides reference content comparing index features between Microsoft SQL Server
and Amazon Aurora MySQL. You can gain valuable insights into the differences in index
implementation, capabilities, and limitations when migrating from SQL Server to Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Indexes MySQL supports only
clustered primary
keys. MySQL doesn’t
support filtered
indexes and included
columns.

SQL Server Usage

Indexes are physical disk structures used to optimize data access. They are associated with tables
or materialized views and allow the query optimizer to access rows and individual column values
without scanning an entire table.

An index consists of index keys, which are columns from a table or view. They are sorted in
ascending or descending 1order providing quick access to individual values for queries that use
equality or range predicates. Database indexes are similar to book indexes that list page numbers
for common terms. Indexes created on multiple columns are called Composite Indexes.

SQL Server implements indexes using the Balanced Tree algorithm (B-tree).

Note

SQL Server supports additional index types such as hash indexes (for memory-optimized
tables), spatial indexes, full text indexes, and XML indexes.

SQL Server Usage 386

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Indexes are created automatically to support table primary keys and unique constraints. They are
required to efficiently enforce uniqueness. Up to 250 indexes can be created on a table to support
common queries.

SQL Server provides two types of B-Tree indexes: clustered Indexes and nonclustered Indexes.

Clustered Indexes

Clustered indexes include all the table’s column data in their leaf level. The entire table data is
sorted and logically stored in order on disk. A Clustered Index is similar to a phone directory index
where the entire data is contained for every index entry. Clustered indexes are created by default
for Primary Key constraints. However, a primary key doesn’t necessarily need to use a clustered
index if it is explicitly specified as nonclustered.

You can create a clustered index using the CREATE CLUSTERED INDEX statement. Only one
clustered index can be created for each table because the index itself is the table’s data. A table
having a clustered index is called a clustered table (also known as an index-organized table in other
relational database management systems). A table with no clustered index is called a heap.

Examples

The following example creates a clustered index as part of table definition.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
);

The following examples create an explicit clustered index using CREATE INDEX.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 PRIMARY KEY NONCLUSTERED,
 Col2 VARCHAR(20) NOT NULL
);

CREATE CLUSTERED INDEX IDX1

Clustered Indexes 387

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ON MyTable(Col2);

Nonclustered Indexes

Non-clustered indexes also use the B-Tree algorithm but consist of a data structure separate from
the table itself. They are also sorted by the index keys, but the leaf level of a nonclustered index
contains pointers to the table rows; not the entire row as with a clustered index.

You can create up to 999 nonclustered indexes on a SQL Server table. The type of pointer used at
the lead level of a nonclustered index (also known as a row locator) depends on whether the table
has a clustered index (clustered table) or not (heap). For heaps, the row locators use a physical
pointer (RID). For clustered tables, row locators use the clustering key plus a potential uniquifier.
This approach minimizes nonclustered index updates when rows move around, or the clustered
index key value changes.

Both clustered and nonclustered indexes may be defined as UNIQUE using the CREATE UNIQUE
INDEX statement. SQL Server maintains indexes automatically for a table or view and updates the
relevant keys when table data is modified.

Examples

The following example creates a unique nonclustered index as part of table definition.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
 UNIQUE
);

The following examples create a unique nonclustered index using CREATE INDEX.

CREATE TABLE MyTable
(
 Col1 INT NOT NULL
 PRIMARY KEY CLUSTERED,
 Col2 VARCHAR(20) NOT NULL
);

Nonclustered Indexes 388

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE UNIQUE NONCLUSTERED INDEX IDX1 ON MyTable(Col2);

Filtered Indexes and Covering Indexes

SQL Server also supports two special options for nonclustered indexes. Filtered indexes can
be created to index only a subset of the table’s data. They are useful when it is known that the
application will not need to search for specific values such as NULLs.

For queries that typically require searching on particular columns but also need additional column
data from the table, nonclustered indexes can be configured to include additional column data in
the index leaf level in addition to the row locator. This may prevent expensive lookup operations,
which follow the pointers to either the physical row location (in a heap) or traverse the clustered
index key to fetch the rest of the data not part of the index. If a query can get all the data it needs
from the nonclustered index leaf level, that index is considered a covering index.

Examples

The following example creates a filtered index to exclude NULL values.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable(Col2)
WHERE Col2 IS NOT NULL;

The following example creates a covering index for queries that search on col2 but also need data
from col3.

CREATE NONCLUSTERED INDEX IDX1
ON MyTable (Col2)
INCLUDE (Col3);

Indexes on Computed Columns

In SQL Server, you can create indexes on persisted computed columns. Computed columns are
table or view columns that derive their value from an expression based on other columns in the
table. They aren’t explicitly specified when data is inserted or updated. This feature is useful
when a query filter predicates aren’t based on the column table data as-is but on a function or
expression.

Filtered Indexes and Covering Indexes 389

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

For example, consider the following table that stores phone numbers for customers. The format
isn’t consistent for all rows. Particularly, some rows include country code and some don’t:

CREATE TABLE PhoneNumbers
(
 PhoneNumber VARCHAR(15) NOT NULL
 PRIMARY KEY,
 Customer VARCHAR(20) NOT NULL
);

INSERT INTO PhoneNumbers
VALUES
 ('+1-510-444-3422','Dan'),
 ('644-2442-3119','John'),
 ('1-402-343-1991','Jane');

The following query to look up the owner of a specific phone number must scan the entire table
because the index can’t be used due to the preceding % wildcard:

SELECT Customer
FROM PhoneNumbers
WHERE PhoneNumber LIKE '%510-444-3422';

A potential solution would be to add a computed column that holds the phone number in reverse
order.

ALTER TABLE PhoneNumbers
ADD ReversePhone AS REVERSE(PhoneNumber)
PERSISTED;

CREATE NONCLUSTERED INDEX IDX1
ON PhoneNumbers (ReversePhone)
INCLUDE (Customer);

Now, you can use the following query to search for the customer based on the reverse string,
This revers string places the wildcard at the end of the LIKE predicate. This approach provides an
efficient index seek to retrieve the customer based on the phone number value:

Indexes on Computed Columns 390

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

DECLARE @ReversePhone VARCHAR(15) = REVERSE('510-444-3422');
SELECT Customer
FROM PhoneNumbers
WHERE ReversePhone LIKE @ReversePhone + '%';

For more information, see Clustered and nonclustered indexes described and CREATE INDEX
(Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports Balanced Tree (b-tree)
indexes similar to SQL Server. However, the terminology, use, and options for these indexes are
different.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports invisible indexes.
An invisible index isn’t used by the optimizer at all but is otherwise maintained normally.
Indexes are visible by default. Invisible indexes make it possible to test the effect of
removing an index on query performance without making a destructive change that must
be undone should the index turn out to be required. For more information, see Invisible
Indexes in the MySQL documentation.

Note

Amazon RDS for MySQL 8 supports descending indexes: DESC in an index definition is no
longer ignored but causes storage of key values in descending order. Previously, indexes
could be scanned in reverse order but at a performance penalty. A descending index can be
scanned in forward order which is more efficient. Descending indexes also make it possible
for the optimizer to use multiple-column indexes when the most efficient scan order mixes
ascending order for some columns and descending order for others. For more information,
see Descending Indexes in the MySQL documentation.

MySQL Usage 391

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/clustered-and-nonclustered-indexes-described?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/descending-indexes.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Primary Key Indexes

Primary key indexes are created automatically by Aurora MySQL to support Primary Key
constraints. They are the equivalent of SQL Server clustered indexes and contain the entire row in
the leaf level of the index. Unlike SQL Server, primary key indexes aren’t configurable; you can’t use
a non-clustered index to support a primary key. In Aurora MySQL, a primary key index consisting of
multiple columns is called Multiple Column index. It is the equivalent of an SQL Server composite
index.

The MySQL query optimizer can use b-tree indexes to efficiently filter equality and range
predicates. The Aurora MySQL optimizer considers using b-tree indexes to access data especially
when queries use one or more of the following operators: >, >=, <, #, =, or IN, BETWEEN, IS NULL,
or IS NOT NULL predicates.

Primary key indexes in Aurora MySQL can’t be created with the CREATE INDEX statement. Since
they are part of the primary key, they can only be created as part of the CREATE TABLE statement
or with the ALTER TABLE… ADD CONSTRAINT… PRIMARY KEY statement. To drop a primary
key index, use the ALTER TABLE… DROP PRIMARY KEY statement.

The relational model specifies that every table must have a primary key, but Aurora MySQL and
most other relational database systems don’t enforce it. If a table doesn’t have a primary key
specified, Aurora MySQL locates the first unique index where all key columns are specified as NOT
NULL and uses that as the clustered index.

Note

If no primary key or suitable unique index can be found, Aurora MySQL creates a hidden
GEN_CLUST_INDEX clustered index with internally generated row ID values. These auto-
generated row IDs are based on a six-byte field that increases monotonically (similar to
IDENTITY or SEQUENCE).

Examples

The following example creates a primary key index as part of the table definition.

CREATE TABLE MyTable (Col1 INT NOT NULL PRIMARY KEY, Col2 VARCHAR(20) NOT NULL);

The following example creates a primary key index for an existing table with no primary key.

Primary Key Indexes 392

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ALTER TABLE MyTable ADD CONSTRAINT PRIMARY KEY (Col1);

Note

You don’t need to explicitly name constraints in Aurora MySQL such as in SQL Server.

Column and Multiple Column Secondary Indexes

Aurora MySQL single column indexes are called column indexes and are the equivalent of SQL
Server single column non-clustered indexes. Multiple column indexes are the equivalent of
composite non-clustered indexes in SQL Server. They can be created as part of the table definition
when creating unique constraints or explicitly using the INDEX or KEY keywords. For more
information, see Creating Tables.

Multiple column indexes are useful when queries filter on all or leading index key columns.
Specifying the optimal order of columns in a multiple column index can improve the performance
of multiple queries accessing the table with similar predicates.

Examples

The following example creates a unique b-tree index as part of the table definition.

CREATE TABLE MyTable (Col1 INT NOT NULL PRIMARY KEY, Col2 VARCHAR(20) UNIQUE);

The following example creates a non-unique multiple column index on an existing table.

CREATE INDEX IDX1 ON MyTable (Col1, Col2) USING BTREE;

Note

The USING clause isn’t mandatory. The default index type for Aurora MySQL is BTREE.

Secondary Indexes on Generated Columns

Aurora MySQL supports creating indexes on generated columns. They are the equivalent of SQL
Server computed columns. Generated columns derive their values from the result of an expression.

Column and Multiple Column Secondary Indexes 393

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Creating an index on a generated column enables generated columns to be used as part of a filter
predicate and may use the index for data access.

Generated columns can be created as STORED or VIRTUAL, but indexes can only be created on
STORED generated columns.

Generated expressions can’t exceed 64 KB for the entire table. For example, you can create a single
generated column with an expression length of 64 KB or create 12 fields with a length of 5 KB
each. For more information, see Creating Tables.

Prefix Indexes

Aurora MySQL also supports indexes on partial string columns. Indexes can be created that use
only the leading part of column values using the following syntax:

CREATE INDEX <Index Name> ON <Table Name> (<col name>(<prefix length>));

Prefixes are optional for CHAR, VARCHAR, BINARY, and VARBINARY column indexes, but must be
specified for BLOB and TEXT column indexes.

Index prefix length is measured in bytes. The prefix length for CREATE TABLE, ALTER TABLE,
and CREATE INDEX statements is interpreted as the number of characters for non-binary string
types (CHAR, VARCHAR, TEXT) or the number of bytes for binary string types (BINARY, VARBINARY,
BLOB).

Example

The following example creates a prefix index for the first ten characters of a customer name.

CREATE INDEX PrefixIndex1 ON Customers (CustomerName(10));

Summary

The following table summarizes the key differences to consider when migrating b-tree indexes
from SQL Server to Aurora MySQL.

Prefix Indexes 394

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Index feature SQL Server Aurora MySQL Comments

Clustered indexes
supported for:

Table keys, composite
or single column,
unique and non-
unique, null or not
null.

Primary keys only.

Non clustered index
supported for:

Table keys, composite
or single column,
unique and non-
unique, null or not
null.

Unique constraints,
single column and
multicolumn.

Max number of non
clustered indexes.

999. 64.

Max total index key
size.

900 bytes. 3072 bytes for a 16
KB page size, 1536
bytes for a 8 KB page
size 768 bytes for a 4
KB page size.

Max columns for each
index.

32. 16.

Index Prefix. N/A. Optional for CHAR,
VARCHAR, BINARY,
and VARBINARY .
Mandatory for BLOB
and TEXT.

Filtered Indexes. Supported. N/A.

Included columns. Supported. N/A. Add the required
columns as index key

Summary 395

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Index feature SQL Server Aurora MySQL Comments

columns instead of
included.

Indexes on BLOBS N/A. Supported, limited
by maximal index key
size.

For more information, see CREATE INDEX Statement, Column Indexes, and Multiple-Column
Indexes in the MySQL documentation.

Summary 396

https://dev.mysql.com/doc/refman/5.7/en/create-index.html
https://dev.mysql.com/doc/refman/5.7/en/column-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/multiple-column-indexes.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migrating management features to Aurora MySQL

This chapter provides reference information for migrating databases that use management
features from Microsoft SQL Server 2019 to Amazon Aurora MySQL. You can gain insights into
how these two database systems handle tasks such as job scheduling, event notifications, email
functionality, ETL processes, logging, maintenance, monitoring, resource management, linked
servers, and scripting.

Topics

• SQL Server Agent and MySQL Agent

• Alerting features

• Database mail features

• ETL features

• Viewing server logs

• Maintenance plans

• Monitoring features

• Resource governor features

• Linked servers

• Scripting features

SQL Server Agent and MySQL Agent

This topic provides reference information about the differences between SQL Server Agent
functionality in Microsoft SQL Server 2019 and comparable features in Amazon Aurora MySQL.
You can understand the limitations and alternatives available when migrating from SQL Server to
Aurora MySQL, particularly regarding scheduling, automation, and alerting capabilities.

SQL Server Agent and MySQL Agent 397

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

SQL Server Agent For more informati
on, see Alerting and
Maintenance Plans.

SQL Server Usage

SQL Server Agent provides two main functions: scheduling automated maintenance and backup
jobs, and for alerting.

Note

Other SQL built-in frameworks such as replication, also use SQL Server Agent jobs under
the covers.

Maintenance plans, backups and alerting are covered in separate sections.

For more information, see SQL Server Agent in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) does provide a native, in-database
scheduler. It is limited to the cluster scope and can’t be used to manage multiple clusters. There are
no native alerting capabilities in Aurora MySQL similar to SQL Server Agent alerts.

Although Amazon Relational Database Service (Amazon RDS) doesn’t currently provide an external
scheduling agent like SQL Server Agent, CloudWatch Events provides the ability to specify a cron-
like schedule to run Lambda functions. This approach requires writing custom code in C#, NodeJS,
Java, or Python. Additionally, any task that runs longer than five minutes will not work due to the
Amazon Lambda time out limit. For example, this limit may pose a challenge for index rebuild
operations. Other options include:

1. Running an SQL Server for the sole purpose of using the Agent.

SQL Server Usage 398

https://docs.microsoft.com/en-us/sql/ssms/agent/sql-server-agent?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

2. Using a t2 or container to schedule your code (C#, NodeJS, Java, Python) with Cron. A t2.nano
is simple to deploy and can run tasks indefinitely at a very modest cost. For most scheduling
applications, the low resources shouldn’t be an issue.

Aurora MySQL Database Events

Aurora MySQL also provides a native, in-database scheduling framework that can be used to
trigger scheduled operations including maintenance tasks.

Events are running by a dedicated thread, which can be seen in the process list. The global
event_scheduler must be turned on explicitly from its default state of OFF for the event
thread to run. Event errors are written to the error log. Event metadata can be viewed using the
INFORMATION_SCHEMA.EVENTS view.

Syntax

CREATE EVENT <Event Name>
 ON SCHEDULE <Schedule>
 [ON COMPLETION [NOT] PRESERVE][ENABLE | DISABLE | DISABLE ON SLAVE]
 [COMMENT 'string']
 DO <Event Body>;

<Schedule>:
 AT <Time Stamp> [+ INTERVAL <Interval>] ...
 | EVERY <Interval>
 [STARTS <Time Stamp> [+ INTERVAL <Interval>] ...]
 [ENDS <Time Stamp> [+ INTERVAL <Interval>] ...]

<Interval>:
 quantity {YEAR | QUARTER | MONTH | DAY | HOUR | MINUTE |
 WEEK | SECOND | YEAR_MONTH | DAY_HOUR | DAY_MINUTE |
 DAY_SECOND | HOUR_MINUTE | HOUR_SECOND | MINUTE_SECOND}

Examples

Create an event to collect login data statistics that runs once five hours after creation.

CREATE EVENT Update_T1_In_5_Hours
 ON SCHEDULE AT CURRENT_TIMESTAMP + INTERVAL 5 HOUR
 DO

MySQL Usage 399

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 INSERT INTO LoginStatistics
 SELECT UserID,
 COUNT(*) AS LoginAttempts
 FROM Logins AS L
 GROUP BY UserID
 WHERE LoginData = '20180502';

Create an event to run every hour and delete session information older than four hours.

CREATE EVENT Clear_Old_Sessions
 ON SCHEDULE
 EVERY 4 HOUR
 DO
 DELETE FROM Sessions
 WHERE LastCommandTime < CURRENT_TIMESTAMP - INTERVAL 4 HOUR;

Schedule weekly index rebuilds and pass parameters.

CREATE EVENT Rebuild_Indexes
 ON SCHEDULE
 EVERY 1 WEEK
 DO
 CALL IndexRebuildProcedure(1, 80)

Summary

For more information, see CREATE EVENT Statement and Event Scheduler Configuration in the
MySQL documentation; Amazon CloudWatch and Amazon Lambda.

Alerting features

This topic provides reference information about event notifications and alerts in SQL Server
and Amazon Aurora MySQL. You can use event notifications to monitor and respond to various
database events, performance conditions, and system changes.

Summary 400

https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/events-configuration.html
https://www.amazonaws.cn/cloudwatch
https://www.amazonaws.cn/lambda

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use event notificat
ions subscription with
Amazon SNS. For
more information,
see Using Amazon
RDS event notificat
ion and Amazon
Simple Notification
Service.

SQL Server Usage

SQL Server provides SQL Server Agent to generate alerts. When running, SQL Server Agent
constantly monitors SQL Server windows application log messages, performance counters, and
Windows Management Instrumentation (WMI) objects. When a new error event is detected, the
agent checks the MSDB database for configured alerts and runs the specified action.

You can define SQL Server Agent alerts for the following categories:

• SQL Server events

• SQL Server performance conditions

• WMI events

For SQL Server events, the alert options include the following settings:

• Error number — Alert when a specific error is logged.

• Severity level — Alert when any error in the specified severity level is logged.

• Database — Filter the database list for which the event will generate an alert.

• Event text — Filter specific text in the event message.

SQL Server Usage 401

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html
https://www.amazonaws.cn/sns
https://www.amazonaws.cn/sns
https://www.amazonaws.cn/sns

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

SQL Server Agent is pre-configured with several high severity alerts. It is highly
recommended to enable these alerts.

To generate an alert in response to a specific performance condition, specify the performance
counter to be monitored, the threshold values for the alert, and the predicate for the alert to occur.
The following list identifies the performance alert settings:

• Object — The performance counter category or the monitoring area of performance.

• Counter — A counter is a specific attribute value of the object.

• Instance — Filter by SQL Server instance (multiple instances can share logs).

• Alert if counter and Value — The threshold for the alert and the predicate. The threshold is a
number. Predicates are falls below, becomes equal to, or rises above the threshold.

WMI events require the WMI namespace and the WMI Query Language (WQL) query for specific
events.

Alerts can be assigned to specific operators with schedule limitations and multiple response types
including:

• Run an SQL Server Agent job.

• Send email, net send command, or a pager notification.

You can configure alerts and responses with SQL Server Management Studio or with a set of
system stored procedures.

Examples

Configure an alert for all errors with severity 20.

EXEC msdb.dbo.sp_add_alert
 @name = N'Severity 20 Error Alert',
 @severity = 20,
 @notification_message = N'A severity 20 Error has occurred. Initiating emergency
 procedure',

SQL Server Usage 402

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 @job_name = N'Error 20 emergency response';

For more information, see Alerts in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support direct configuration of
engine alerts.

Use the event notifications infrastructure to collect history logs or receive event notifications in
near real-time.

Amazon Relational Database Service (Amazon RDS) uses Amazon Simple Notification Service
(Amazon SNS) to provide notifications for events. SNS can send notifications in any form supported
by the region including email, text messages, or calls to HTTP endpoints for response automation.

Events are grouped into categories. You can only subscribe to event categories, not individual
events. SNS sends notifications when any event in a category occurs.

You can subscribe to alerts for database instances, database clusters, database snapshots, database
cluster snapshots, database security groups and database parameter groups. For example, a
subscription to the backup category for a specific database instance sends notifications when
backup related events occur on that instance.

A subscription to a configuration change category for a database security group sends notifications
when the security group changes.

Note

For Amazon Aurora, some events occur at the cluster rather than instance level. You will
not receive those events if you subscribe to an Aurora DB instance.

SNS sends event notifications to the address specified when the subscription was created. Typically,
administrators create several subscriptions. For example, one subscription to receive logging events
and another to receive only critical events for a production environment requiring immediate
responses.

MySQL Usage 403

https://docs.microsoft.com/en-us/sql/ssms/agent/alerts?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

You can turn off notifications without deleting a subscription by setting the Enabled radio button
to No in the Amazon RDS console. Alternatively, use the Command Line Interface (CLI) or Amazon
RDS API to change the Enabled setting.

Subscriptions are identified by the Amazon Resource Name (ARN) of an Amazon SNS topic. The
Amazon RDS console creates ARNs when subscriptions are created. When using the CLI or API,
make sure that you create the ARN using the Amazon SNS console or the Amazon SNS API.

Examples

The following walkthrough demonstrates how to create an event notification subscription:

1. Sign in to your Amazon account, and choose RDS.

2. Choose Events on the left navigation pane. This screen that presents relevant Amazon RDS
events occurs.

3. Choose Event subscriptions and then choose Create event subscription.

4. Enter the Name of the subscription and select a Target of ARN or Email. For email
subscriptions, enter values for Topic name and With these recipients.

5. Select the event source, choose specific event categories to be monitored, and choose Create.

6. On the Amazon RDS dashboard, choose Recent events.

For more information, see Using Amazon RDS event notification in the Amazon Relational Database
Service User Guide.

Database mail features

This topic provides reference information about migrating the Database Mail feature from
Microsoft SQL Server 2019 to Amazon Aurora MySQL. You can understand the key differences in
email functionality between these two database systems and learn about alternative approaches
for sending emails from Aurora MySQL.

Database mail features 404

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Events.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

SQL Server Database
Mail

Use Amazon Lambda
integration. For more
information, see
Invoking a Lambda
function from an
Amazon Aurora
MySQL DB cluster.

SQL Server Usage

The Database Mail framework is an email client solution for sending messages directly from SQL
Server. Email capabilities and APIs within the database server provide easy management of the
following messages:

• Server administration messages such as alerts, logs, status reports, and process confirmations.

• Application messages such as user registration confirmation and action verifications.

Note

Database Mail is turned off by default.

The main features of the Database Mail framework are:

• Database Mail sends messages using the standard and secure Simple Mail Transfer Protocol
(SMTP).

• The email client engine runs asynchronously and sends messages in a separate process to
minimize dependencies.

• Database Mail supports multiple SMTP Servers for redundancy.

• Full support and awareness of Windows Server Failover Cluster for high availability
environments.

SQL Server Usage 405

https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Multi-profile support with multiple failover accounts in each profile.

• Enhanced security management with separate roles in MSDB.

• Security is enforced for mail profiles.

• Attachment sizes are monitored and can be capped by the administrator.

• Attachment file types can be added to the deny list.

• Email activity can be logged to SQL Server, the Windows application event log, and to a set of
system tables in MSDB.

• Supports full auditing capabilities with configurable retention policies.

• Supports both plain text and HTML messages.

Architecture

Database Mail is built on top of the Microsoft SQL Server Service Broker queue management
framework.

The system stored procedure sp_send_dbmail sends email messages. When this stored procedure
runs, it inserts an row to the mail queue and records the email message.

The queue insert operation triggers the run of the Database Mail process (DatabaseMail.exe).
The Database Mail process then reads the email information and sends the message to the SMTP
servers.

When the SMTP servers acknowledge or reject the message, the Database Mail process inserts a
status row into the status queue, including the result of the send attempt. This insert operation
triggers the run of a system stored procedure that updates the status of the Email message send
attempt.

Database Mail records all Email attachments in the system tables. SQL Server provides a set of
system views and stored procedures for troubleshooting and administration of the Database Mail
queue.

Deprecated SQL Mail Framework

The old SQL Mail framework using xp_sendmail has been deprecated as of SQL Server 2008 R2.
For more information, see Deprecated Database Engine Features in SQL Server 2008 R2 in the SQL
Server documentation.

SQL Server Usage 406

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The legacy mail system has been completely replaced by the greatly enhanced DB mail framework
described here. The old system has been out-of-use for many years because it was prone to
synchronous run issues and windows mail profile quirks.

Syntax

EXECUTE sp_send_dbmail
 [[,@profile_name =] '<Profile Name>']
 [,[,@recipients =] '<Recipients>']
 [,[,@copy_recipients =] '<CC Recipients>']
 [,[,@blind_copy_recipients =] '<BCC Recipients>']
 [,[,@from_address =] '<From Address>']
 [,[,@reply_to =] '<Reply-to Address>']
 [,[,@subject =] '<Subject>']
 [,[,@body =] '<Message Body>']
 [,[,@body_format =] '<Message Body Format>']
 [,[,@importance =] '<Importance>']
 [,[,@sensitivity =] '<Sensitivity>']
 [,[,@file_attachments =] '<Attachments>']
 [,[,@query =] '<SQL Query>']
 [,[,@execute_query_database =] '<Execute Query Database>']
 [,[,@attach_query_result_as_file =] <Attach Query Result as File>]
 [,[,@query_attachment_filename =] <Query Attachment Filename>]
 [,[,@query_result_header =] <Query Result Header>]
 [,[,@query_result_width =] <Query Result Width>]
 [,[,@query_result_separator =] '<Query Result Separator>']
 [,[,@exclude_query_output =] <Exclude Query Output>]
 [,[,@append_query_error =] <Append Query Error>]
 [,[,@query_no_truncate =] <Query No Truncate>]
 [,[,@query_result_no_padding =] @<Parameter for Query Result No Padding>]
 [,[,@mailitem_id =] <Mail item id>] [,OUTPUT]

Examples

Create a Database Mail account.

EXECUTE msdb.dbo.sysmail_add_account_sp
 @account_name = 'MailAccount1',
 @description = 'Mail account for testing DB Mail',
 @email_address = 'Address@MyDomain.com',
 @replyto_address = 'ReplyAddress@MyDomain.com',
 @display_name = 'Mailer for registration messages',

SQL Server Usage 407

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 @mailserver_name = 'smtp.MyDomain.com' ;

Create a Database Mail profile.

EXECUTE msdb.dbo.sysmail_add_profile_sp
 @profile_name = 'MailAccount1 Profile',
 @description = 'Mail Profile for testing DB Mail' ;

Associate the account with the profile.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
 @profile_name = 'MailAccount1 Profile',
 @account_name = 'MailAccount1',
 @sequence_number =1 ;

Grant the profile access to the DBMailUsers role.

EXECUTE msdb.dbo.sysmail_add_principalprofile_sp
 @profile_name = 'MailAccount1 Profile',
 @principal_name = 'ApplicationUser',
 @is_default = 1 ;

Send a message with sp_db_sendmail.

EXEC msdb.dbo.sp_send_dbmail
 @profile_name = 'MailAccount1 Profile',
 @recipients = 'Recipient@Mydomain.com',
 @query = 'SELECT * FROM fn_WeeklySalesReport(GETDATE())',
 @subject = 'Weekly Sales Report',
 @attach_query_result_as_file = 1 ;

For more information, see Database Mail in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t provide native support sending
mail from the database.

For alerting purposes, use the event notification subscription feature to send email notifications to
operators. For more information, see Alerting.

MySQL Usage 408

https://docs.microsoft.com/en-us/sql/relational-databases/database-mail/database-mail?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For application email requirements, consider using a dedicated email framework. If the code
generating email messages must be in the database, consider using a queue table. Replace
all occurrences of sp_send_dbmail with an INSERT into the queue table. Design external
applications to connect, read the queue, send email an message, and then update the status
periodically. With this approach, messages can be populated with a query result similar to
sp_send_dbmail with the query option.

The only way to send email from the database, is to use the Amazon Lambda integration.

For more information, see Amazon Lambda.

Examples

You can send emails from Aurora MySQL using Amazon Lambda integration. For more information,
see Invoking a Lambda function from an Amazon Aurora MySQL DB cluster.

ETL features

This topic provides reference content comparing SQL Server’s ETL capabilities with those of
Amazon Aurora MySQL. You can understand the evolution of SQL Server’s ETL tools from DTS to
SSIS, and learn about Amazon Glue as the recommended ETL solution for Aurora MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use Amazon Glue for
ETL.

SQL Server Usage

SQL Server offers a native Extract, Transform, and Load (ETL) framework of tools and services to
support enterprise ETL requirements. The legacy Data Transformation Services (DTS) has been
deprecated as of SQL Server 2008 and replaced with SQL Server Integration Services (SSIS), which
was introduced with SQL Server 2005. For more information, see Deprecated Database Engine
Features in SQL Server 2008 R2 in the SQL Server documentation.

ETL features 409

https://www.amazonaws.cn/lambda
https://docs.amazonaws.cn/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Integrating.Lambda.html
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

DTS

DTS was introduced in SQL Server version 7 in 1998. It was significantly expanded in SQL Server
2000 with features such as FTP, database level operations, and Microsoft Message Queuing
(MSMQ) integration. It included a set of objects, utilities, and services that enabled easy, visual
construction of complex ETL operations across heterogeneous data sources and targets.

DTS supported OLE DB, ODBC, and text file drivers. It allowed transformations to be scheduled
using SQL Server Agent. DTS also provided version control and backup capabilities with version
control systems such as Microsoft Visual SourceSafe.

The fundamental entity in DTS was the DTS Package. Packages were the logical containers for DTS
objects such as connections, data transfers, transformations, and notifications. The DTS framework
also included the following tools:

• DTS Wizards

• DTS Package Designers

• DTS Query Designer

• DTS Run Utility

SSIS

The SSIS framework was introduced in SQL Server 2005, but was limited to the top-tier editions
only, unlike DTS which was available with all editions.

SSIS has evolved over DTS to offer a true modern, enterprise class, heterogeneous platform for a
broad range of data migration and processing tasks. It provides a rich workflow oriented design
with features for all types of enterprise data warehousing. It also supports scheduling capabilities
for multi-dimensional cubes management.

SSIS provides the following tools:

• SSIS Import/Export Wizard is an SQL Server Management Studio extension that enables
quick creation of packages for moving data between a wide array of sources and destinations.
However, it has limited transformation capabilities.

• SQL Server Business Intelligence Development Studio (BIDS) is a developer tool for creating
complex packages and transformations. It provides the ability to integrate procedural code into

SQL Server Usage 410

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

package transformations and provides a scripting environment. Recently, BIDS has been replaced
by SQL Server Data Tools — Business Intelligence (SSDT-BI).

SSIS objects include:

• Connections

• Event handlers

• Workflows

• Error handlers

• Parameters (Beginning with SQL Server 2012)

• Precedence constraints

• Tasks

• Variables

SSIS packages are constructed as XML documents and can be saved to the file system or stored
within a SQL Server instance using a hierarchical name space.

For more information, see SQL Server Integration Services in the SQL Server documentation and
Data Transformation Services in the Wikipedia.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides Amazon Glue for enterprise
class Extract, Transform, and Load (ETL). It is a fully-managed service that performs data
cataloging, cleansing, enriching, and movement between heterogeneous data sources and
destinations. Being a fully managed service, the user doesn’t need to be concerned with
infrastructure management.

Amazon Glue key features include the following.

Integrated Data Catalog

The Amazon Glue Data Catalog is a persistent meta-data store, that can be used to store all data
assets, whether in the cloud or on-premises. It stores table schemas, job steps, and additional
meta data information for managing these processes. Amazon Glue can automatically calculate
statistics and register partitions to make queries more efficient. It maintains a comprehensive
schema version history for tracking changes over time.

MySQL Usage 411

https://docs.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver15
https://en.wikipedia.org/wiki/Data_Transformation_Services

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Automatic Schema Discovery

Amazon Glue provides automatic crawlers that can connect to source or target data providers.
The crawler uses a prioritized list of classifiers to determine the schema for your data and then
generates and stores the metadata in the Amazon Glue Data Catalog. You can schedule crawlers
or run them on-demand. You can also trigger a crawler when an event occurs to keep meta-data
current.

Code Generation

Amazon Glue automatically generates the code to extract, transform, and load data. All you need
to do is point Glue to your data source and target. The ETL scripts to transform, flatten, and enrich
data are created automatically. Amazon Glue scripts can be generated in Scala or Python and are
written for Apache Spark.

Developer Endpoints

When interactively developing Glue ETL code, Amazon Glue provides development endpoints for
editing, debugging, and testing. You can use any IDE or text editor for ETL development. Custom
readers, writers, and transformations can be imported into Glue ETL jobs as libraries. You can
also use and share code with other developers in the Amazon Glue GitHub repository. For more
information, see this repository on GitHub.

Flexible Job Scheduler

Amazon Glue jobs can be triggered for running either on a pre-defined schedule, on-demand, or as
a response to an event.

Multiple jobs can be started in parallel and dependencies can be explicitly defined across jobs to
build complex ETL pipelines. Glue handles all inter-job dependencies, filters bad data, and retries
failed jobs. All logs and notifications are pushed to Amazon CloudWatch; you can monitor and get
alerts from a central service.

Migration Considerations

Currently, there are no automatic tools for migrating ETL packages from DTS or SSIS into Amazon
Glue. Migration from SQL Server to Aurora MySQL requires rewriting ETL processes to use Amazon
Glue.

MySQL Usage 412

https://github.com/awslabs/aws-glue-libs

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Alternatively, consider using an EC2 SQL Server instance to run the SSIS service as an interim
solution. The connectors and tasks must be revised to support Aurora MySQL instead of SQL
Server, but this approach allows gradual migration to Amazon Glue.

Examples

The following walkthrough describes how to create an Amazon Glue job to upload a comma-
separated values (CSV) file from Amazon S3 to Aurora MySQL.

The source file for this walkthrough is a simple Visits table in CSV format. The objective is to
upload this file to an Amazon S3 bucket and create an Amazon Glue job to discover and copy it into
an Aurora MySQL database.

Step 1 — Create a Bucket in Amazon S3 and Upload the CSV File

1. In the Amazon console, choose S3, and then choose Create bucket.

Note

This walkthrough demonstrates how to create the buckets and upload the files manually,
which is automated using the Amazon S3 API for production ETLs. Using the console to
manually run all the settings will help you get familiar with the terminology, concepts,
and workflow.

2. Enter a unique name for the bucket, select a region, and define the level of access.

3. Turn on versioning, add tags, turn on server-side encryption, and choose Create bucket.

4. On the Amazon S3 Management Console, choose the newly created bucket.

5. On the bucket page, choose Upload.

6. Choose Add files, select your CSV file, and choose Upload.

Step 2 — Add an Amazon Glue Crawler to Discover and Catalog the Visits File

1. In the Amazon console, choose Amazon Glue.

2. Choose Tables, and then choose Add tables using a crawler.

3. Enter the name of the crawler and choose Next.

4. On the Specify crawler source type page, leave the default values, and choose Next.

5. On the Add a data store page, specify a valid Amazon S3 path, and choose Next.

MySQL Usage 413

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

6. On the Choose an IAM role page, choose an existing IAM role, or create a new IAM role. Choose
Next.

7. On the Create a schedule for this crawler page, choose Run on demand, and choose Next.

8. On the Configure the crawler’s output page, choose a database for the crawler’s output, enter
an optional table prefix for easy reference, and choose Next.

9. Review the information that you provided and choose Finish to create the crawler.

Step 3 — Run the Amazon Glue Crawler

1. In the Amazon console, choose Amazon Glue, and then choose Crawlers.

MySQL Usage 414

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

2. Choose the crawler that you created on the previous step, and choose Run crawler.

After the crawler completes, the table should be discovered and recorded in the catalog in the
table specified.

Click the link to get to the table that was just discovered and then click the table name.

Verify the crawler identified the table’s properties and schema correctly.

Note

You can manually adjust the properties and schema JSON files using the buttons on the
top right.

If you don’t want to add a crawler, you can add tables manually.

1. In the Amazon console, choose Amazon Glue.

2. Choose Tables, and then choose Add table manually.

Step 4 — Create an ETL Job to Copy the Visits Table to an Aurora MySQL Database

1. In the Amazon console, choose Amazon Glue.

2. Choose Jobs (legacy), and then choose Add job.

3. Enter a name for the ETL job and pick a role for the security context. For this example, use the
same role created for the crawler. The job may consist of a pre-existing ETL script, a manually-
authored script, or an automatic script generated by Amazon Glue. For this example, use
Amazon Glue. Enter a name for the script file or accept the default, which is also the job’s name.
Configure advanced properties and parameters if needed and choose Next.

4. Select the data source for the job and choose Next.

5. On the Choose a transform type page, choose Change schema.

6. On the Choose a data target page, choose Create tables in your data target, use the JDBC Data
store, and the gluerds connection type. Choose Add connection.

7. On the Add connection page, enter the access details for the Amazon Aurora Instance and
choose Add.

MySQL Usage 415

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

8. Choose Next to display the column mapping between the source and target. Leave the default
mapping and data types, and choose Next.

9. Review the job properties and choose Save job and edit script.

10.Review the generated script and make manual changes if needed. You can use the built-in
templates for source, target, target location, transform, and spigot using the buttons at the top
right section of the screen.

11.Choose Run job.

12.In the Amazon console, choose Amazon Glue, and then choose Jobs (legacy).

13.On the history tab, verify that the job status is set to Succeeded.

14.Open your query IDE, connect to the Aurora MySQL cluster, and query the visits database to
make sure the data has been transferred successfully.

For more information, see Amazon Glue Developer Guide and Amazon Glue resources.

Viewing server logs

This topic provides reference information about logging capabilities in SQL Server and Amazon
Aurora MySQL. You can gain insights into how these database systems handle error logging, slow
query logging, and general logging.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A View logs from the
Amazon RDS console,
the Amazon RDS API,
the Amazon CLI, or
the Amazon SDKs.

SQL Server Usage

SQL Server logs system and user generated events to the SQL Server Error Log and to the Windows
Application Log. It logs recovery messages, kernel messages, security events, maintenance events,

Viewing server logs 416

https://docs.amazonaws.cn/glue/latest/dg/what-is-glue.html
https://www.amazonaws.cn/glue/resources

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

and other general server level error and informational messages. The Windows Application Log
contains events from all windows applications including SQL Server and SQL Server agent.

SQL Server Management Studio Log Viewer unifies all logs into a single consolidated view. You can
also view the logs with any text editor.

Administrators typically use the SQL Server Error Log to confirm successful completion of
processes, such as backup or batches, and to investigate the cause of run time errors. These logs
can help detect current risks or potential future problem areas.

To view the log for SQL Server, SQL Server Agent, Database Mail, and Windows applications, open
the SQL Server Management Studio Object Explorer pane, navigate to Management, SQL Server
Logs, and choose the current log.

The following table identifies some common error codes database administrators typically look for
in the error logs:

Error code Error message

1105 Couldn’t allocate space.

3041 Backup failed.

9002 Transaction log full.

14151 Replication agent failed.

17053 Operating system error.

18452 Login failed.

9003 Possible database corruption.

Examples

The following screenshot shows the typical log file viewer content:

SQL Server Usage 417

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Monitoring the Error Logs in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides administrators with access to
the MySQL error log, slow query log, and the general log.

The MySQL Error Log is generated by default. To generate the slow query and general logs, set
the corresponding parameters in the database parameter group. For more information, see Server
Options.

You can view Aurora MySQL logs directly from the Amazon RDS console, the Amazon RDS API,
the Amazon CLI, or the Amazon SDKs. You can also direct the logs to a database table in the main
database and use SQL queries to view the data. To download a binary log, use the mysqlbinlog
utility.

The system writes error events to the mysql-error.log file, which you can view using the
Amazon RDS console. Alternatively, you can use the Amazon RDS API, the Amazon RDS CLI, or the
Amazon SDKs retrieve to retrieve the log.

MySQL Usage 418

https://docs.microsoft.com/en-us/sql/tools/configuration-manager/monitoring-the-error-logs?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The mysql-error.log file buffers are flushed every five minutes and are appended to the
filemysql-error-running.log. The mysql-error-running.log file is rotated every hour
and retained for 24 hours.

Aurora MySQL writes to the error log only on server startup, server shutdown, or when an error
occurs. A database instance may run for long periods without generating log entries.

You can turn on and configure the Aurora MySQL Slow Query and general logs to write log entries
to a file or a database table by setting the corresponding parameters in the database parameter
group. The following list identifies he parameters that control the log options:

• slow_query_log — Set to 1 to create the Slow Query Log. The default is 0.

• general_log — Set to 1 to create the General Log. The default is 0.

• long_query_time — Specify a value in seconds for the shortest query run time to be logged.
The default is 10 seconds; the minimum is 0.

• log_queries_not_using_indexes — Set to 1 to log all queries not using indexes to the slow
query log. The default is 0. Queries using indexes are logged even if their run time is less than
the value of the long_query_time parameter.

• log_output — Specify one of the following options:

• TABLE — Write general queries to the mysql.general_log table and slow queries to the
mysql.slow_log table. This option is set by default.

• FILE — Write both general and slow query logs to the file system. Log files are rotated hourly.

• NONE — Disable logging.

Examples

The following walkthrough demonstrates how to view the Aurora PostgreSQL error logs in the
Amazon RDS console.

1. In the Amazon console, choose RDS, and then choose Databases.

2. Choose the instance for which you want to view the error log.

MySQL Usage 419

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

3. Scroll down to the logs section and choose the log name. The log viewer displays the log
content.

For more information, see MySQL database log files in the Amazon Relational Database Service User
Guide.

Maintenance plans

This topic provides reference information about migrating maintenance tasks from Microsoft SQL
Server 2019 to Amazon Aurora MySQL. You can understand the key differences in how routine
database maintenance is handled between these two systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use Amazon RDS for
backups. Use SQL for
table maintenance.

SQL Server Usage

A maintenance plan is a set of automated tasks used to optimize a database, performs regular
backups, and ensure it is free of inconsistencies. Maintenance plans are implemented as SQL Server
Integration Services (SSIS) packages and are run by SQL Server Agent jobs. You can run them
manually or automatically at scheduled time intervals.

Maintenance plans 420

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server provides a variety of pre-configured maintenance tasks. You can create custom tasks
using TSQL scripts or operating system batch files.

Maintenance plans are typically used for the following tasks:

• Backing up database and transaction log files.

• Performing cleanup of database backup files in accordance with retention policies.

• Performing database consistency checks.

• Rebuilding or reorganizing indexes.

• Decreasing data file size by removing empty pages (shrink a database).

• Updating statistics to help the query optimizer obtain updated data distributions.

• Running SQL Server Agent jobs for custom actions.

• Running a T-SQL task.

Maintenance plans can include tasks for operator notifications and history or maintenance cleanup.
They can also generate reports and output the contents to a text file or the maintenance plan
tables in the msdb database.

You can create and manage maintenance plans using the maintenance plan wizard in SQL Server
Management Studio, Maintenance Plan Design Surface (provides enhanced functionality over the
wizard), Management Studio Object Explorer, and T-SQL system stored procedures.

For more information, see SQL Server Agent and MySQL Agent.

Deprecated DBCC Index and Table Maintenance Commands

The DBCC DBREINDEX, INDEXDEFRAG, and SHOWCONTIG commands have been deprecated as of
SQL Server 2008R2. For more information, see Deprecated Database Engine Features in SQL Server
2008 R2 in the SQL Server documentation.

In place of the deprecated DBCC, SQL Server provides newer syntax alternatives as detailed in the
following table.

Deprecated DBCC command Use instead

DBCC DBREINDEX ALTER INDEX … REBUILD

SQL Server Usage 421

https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)
https://docs.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms143729(v=sql.105)

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Deprecated DBCC command Use instead

DBCC INDEXDEFRAG ALTER INDEX … REORGANIZE

DBCC SHOWCONTIG sys.dm_db_index_physical_stats

For the Aurora MySQL alternatives to these maintenance commands, see Aurora MySQL
Maintenance Plans.

Examples

Enable Agent XPs, which are turned off by default.

EXEC [sys].[sp_configure] @configname = 'show advanced options', @configvalue = 1
 RECONFIGURE ;

EXEC [sys].[sp_configure] @configname = 'agent xps', @configvalue = 1 RECONFIGURE;

Create a T-SQL maintenance plan for a single index rebuild.

USE msdb;

Add the Index Maintenance IDX1 job to SQL Server Agent.

EXEC dbo.sp_add_job @job_name = N'Index Maintenance IDX1', @enabled = 1, @description =
 N'Optimize IDX1 for INSERT' ;

Add the T-SQL job step Rebuild IDX1 to 50 percent fill.

EXEC dbo.sp_add_jobstep @job_name = N'Index Maintenance IDX1', @step_name = N'Rebuild
 IDX1 to 50 percent fill', @subsystem = N'TSQL',
@command = N'Use MyDatabase; ALTER INDEX IDX1 ON Shcema.Table REBUILD WITH
 (FILL_FACTOR = 50), @retry_attempts = 5, @retry_interval = 5;

Add a schedule to run every day at 01:00 AM.

EXEC dbo.sp_add_schedule @schedule_name = N'Daily0100', @freq_type = 4, @freq_interval
 = 1, @active_start_time = 010000;

SQL Server Usage 422

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Associate the schedule Daily0100 with the job index maintenance IDX1.

EXEC sp_attach_schedule @job_name = N'Index Maintenance IDX1' @schedule_name =
 N'Daily0100' ;

For more information, see Maintenance Plans in the SQL Server documentation.

MySQL Usage

Amazon Relational Database Service (Amazon RDS) performs automated database backups by
creating storage volume snapshots that back up entire instances, not individual databases.

Amazon RDS creates snapshots during the backup window for individual database instances and
retains snapshots in accordance with the backup retention period. You can use the snapshots to
restore a database to any point in time within the backup retention period.

Note

The state of a database instance must be ACTIVE for automated backups to occur.

You can backup database instances manually by creating an explicit database snapshot. Use the
Amazon console, the Amazon CLI, or the Amazon API to take manual snapshots.

Examples

Create a manual database snapshot using the Amazon RDS console

1. In the Amazon console, choose RDS, and then choose Databases.

2. Choose your Aurora PostgreSQL instance, and for Instance actions choose Take snapshot.

MySQL Usage 423

https://docs.microsoft.com/en-us/sql/relational-databases/maintenance-plans/maintenance-plans?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Restore a database from a snapshot

1. In the Amazon console, choose RDS, and then choose Snapshots.

2. Choose the snapshot to restore, and for Actions choose Restore snapshot.

This action creates a new instance.

3. Enter the required configuration options in the wizard for creating a new Amazon Aurora
database instance. Choose Restore DB Instance.

You can also restore a database instance to a point-in-time. For more information, see Backup and
Restore.

For all other tasks, use a third-party or a custom application scheduler.

Rebuild and reorganize an index

Aurora MySQL supports the OPTIMIZE TABLE command, which is similar to the REORGANIZE
option of SQL Server indexes.

OPTIMIZE TABLE MyTable;

To perform a full table rebuild with all secondary indexes, perform a null altering action using
either ALTER TABLE <table> FORCE or ALTER TABLE <table> ENGINE = <current
engine>.

MySQL Usage 424

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

ALTER TABLE MyTable FORCE;

ALTER TABLE MyTable ENGINE = InnoDB

Perform Database Consistency Checks

Use the CHECK TABLE command to perform a database consistency check.

CHECK TABLE <table name> [FOR UPGRADE | QUICK]

The FOR UPGRADE option checks if the table is compatible with the current version of MySQL to
determine whether there have been any incompatible changes in any of the table’s data types or
indexes since the table was created. The QUICK options doesn’t scan the rows to check for incorrect
links.

For routine checks of a table, use the QUICK option.

Note

In most cases, Aurora MySQL will find all errors in the data file. When an error is found, the
table is marked as corrupted and can’t be used until it is repaired.

Converting Deprecated DBCC Index and Table Maintenance Commands

Deprecated DBCC command Aurora MySQL equivalent

DBCC DBREINDEX ALTER TABLE … FORCE

DBCC INDEXDEFRAG OPTIMIZE TABLE

DBCC SHOWCONTIG CHECK TABLE

Decrease Data File Size by Removing Empty Pages

Unlike SQL Server that uses a single set of files for an entire database, Aurora MySQL uses one file
for each database table. Therefore you don’t need to shrink an entire database.

MySQL Usage 425

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Update Statistics to Help the Query Optimizer Get Updated Data Distribution

Aurora MySQL uses both persistent and non-persistent table statistics. Non-persistent statistics
are deleted on server restart and after some operations. The statistics are then recomputed on the
next table access. Therefore, different estimates could be produced when recomputing statistics
leading to different choices in run plans and variations in query performance.

Persistent optimizer statistics survive server restarts and provide better plan stability resulting in
more consistent query performance. Persistent optimizer statistics provide the following control
and flexibility options:

• Set the innodb_stats_auto_recalc configuration option to control whether statistics are
updated automatically when changes to a table cross a threshold.

• Set the STATS_PERSISTENT, STATS_AUTO_RECALC, and STATS_SAMPLE_PAGES clauses
with CREATE TABLE and ALTER TABLE statements to configure custom statistics settings for
individual tables.

• View optimizer statistics in the mysql.innodb_table_stats and
mysql.innodb_index_stats tables.

• View the last_update column of the mysql.innodb_table_stats and
mysql.innodb_index_stats tables to see when statistics were last updated.

• Modify the mysql.innodb_table_stats and mysql.innodb_index_stats tables to force a
specific query optimization plan or to test alternative plans without modifying the database.

For more information, see Managing Statistics.

Summary

The following table summarizes the key tasks that use SQL Server maintenance plans and a
comparable Aurora MySQL solutions.

Task SQL Server Aurora MySQL Comments

Rebuild or reorganize
indexes

ALTER INDEX /
ALTER TABLE

OPTIMIZE TABLE /
ALTER TABLE

Summary 426

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Task SQL Server Aurora MySQL Comments

Decrease data file
size by removing
empty pages

DBCC SHRINKDAT
ABASE / DBCC
SHRINKFILE

Files are for each
table; not for each
database. Rebuilding
a table optimizes file
size.

Not needed

Update statistics
to help the query
optimizer get
updated data
distribution

UPDATE STATISTIC
S / sp_update
stats

Set innodb_st
ats_auto_
recalc to ON in
the instance global
parameter group.

Perform database
consistency checks

DBCC CHECKDB /
DBCC CHECKTABLE

CHECK TABLE

Back up the database
and transaction log
files

BACKUP DATABASE /
BACKUP LOG

Automated backups
and snapshots

For more informati
on, see Backup and
Restore.

Run SQL Server
Agent jobs for
custom actions

sp_start_job ,
scheduled

Not supported

For more information, see CHECK TABLE Statement in the MySQL documentation and Working with
backups in the Amazon Relational Database Service User Guide.

Monitoring features

This topic provides reference information about monitoring and performance management for
Microsoft SQL Server and Amazon Aurora MySQL databases. You can learn about the different
monitoring capabilities and tools available for each database system, including SQL Server’s
dynamic management views and integration with Amazon CloudWatch and Performance Insights.

Monitoring features 427

https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_WorkingWithAutomatedBackups.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use Amazon
CloudWatch service.
For more informati
on, see Monitoring
metrics in an Amazon
RDS instance in the
Amazon Relational
Database Service User
Guide.

SQL Server Usage

Monitoring server performance and behavior is a critical aspect of maintaining service quality and
includes ad-hoc data collection, ongoing data collection, root cause analysis, preventative actions,
and reactive actions. SQL Server provides an array of interfaces to monitor and collect server data.

SQL Server 2017 introduces several new dynamic management views:

• sys.dm_db_log_stats exposes summary level attributes and information on transaction log
files, helpful for monitoring transaction log health.

• sys.dm_tran_version_store_space_usage tracks version store usage for each database,
useful for proactively planning tempdb sizing based on the version store usage for each
database.

• sys.dm_db_log_info exposes VLF information to monitor, alert, and avert potential
transaction log issues.

• sys.dm_db_stats_histogram is a new dynamic management view for examining statistics.

• sys.dm_os_host_info provides operating system information for both Windows and Linux.

SQL Server 2019 adds new configuration parameter, LIGHTWEIGHT_QUERY_PROFILING. It turns
on or turns off the lightweight query profiling infrastructure. The lightweight query profiling

SQL Server Usage 428

https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

infrastructure (LWP) provides query performance data more efficiently than standard profiling
mechanisms and is enabled by default. For more information, see Query Profiling Infrastructure in
the SQL Server documentation.

Windows Operating System Level Tools

You can use the Windows Scheduler to trigger run of script files such as CMD, PowerShell, and so
on to collect, store, and process performance data.

System Monitor is a graphical tool for measuring and recording performance of SQL Server and
other Windows-related metrics using the Windows Management Interface (WMI) performance
objects.

Note

Performance objects can also be accessed directly from T-SQL using the SQL Server
Operating System Related DMVs. For a full list of the DMVs, see SQL Server Operating
System Related Dynamic Management Views (Transact-SQL) in the SQL Server
documentation.

Performance counters exist for real-time measurements such as CPU Utilization and for aggregated
history such as average active transactions. For a full list of the object hierarchy, see: Use SQL
Server Objects in the SQL Server documentation.

SQL Server Extended Events

SQL Server latest tracing framework provides very lightweight and robust event collection and
storage. SQL Server Management Studio features the New Session Wizard and New Session graphic
user interfaces for managing and analyzing captured data. SQL Server Extended Events consists of
the following items:

• SQL Server Extended Events Package is a logical container for Extended Events objects.

• SQL Server Extended Events Targets are consumers of events. Targets include Event File, which
writes data to the file Ring Buffer for retention in memory, or for processing aggregates such as
Event Counters and Histograms.

• SQL Server Extended Events Engine is a collection of services and tools that comprise the
framework.

SQL Server Usage 429

https://docs.microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/use-sql-server-objects?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• SQL Server Extended Events Sessions are logical containers mapped many-to-many with
packages, events, and filters.

The following example creates a session that logs lock escalations and lock timeouts to a file.

CREATE EVENT SESSION Locking_Demo
ON SERVER
 ADD EVENT sqlserver.lock_escalation,
 ADD EVENT sqlserver.lock_timeout
 ADD TARGET package0.etw_classic_sync_target
 (SET default_etw_session_logfile_path = N'C:\ExtendedEvents\Locking
\Demo_20180502.etl')
 WITH (MAX_MEMORY=8MB, MAX_EVENT_SIZE=8MB);
GO

SQL Server Tracing Framework and the SQL Server Profiler Tool

The SQL Server trace framework is the predecessor to the Extended Events framework and remains
popular among database administrators. The lighter and more flexible Extended Events Framework
is recommended for development of new monitoring functionality. For more information, see SQL
Server Profiler in the SQL Server documentation.

SQL Server Management Studio

SQL Server Management Studio (SSMS) provides several monitoring extensions:

• SQL Server Activity Monitor is an in-process, real-time, basic high-level information graphical
tool.

• Query Graphical Show Plan provides easy exploration of estimated and actual query run plans.

• Query Live Statistics displays query run progress in real time.

• Replication Monitor presents a publisher-focused view or distributor-focused view of all
replication activity. For more information, see Overview of the Replication Monitor Interface in
the SQL Server documentation.

• Log Shipping Monitor displays the status of any log shipping activity whose status is available
from the server instance to which you are connected. For more information, see View the Log
Shipping Report (SQL Server Management Studio) in the SQL Server documentation.

• Standard Performance Reports is set of reports that show the most important performance
metrics such as change history, memory usage, activity, transactions, HA, and more.

SQL Server Usage 430

https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sql-server-profiler/sql-server-profiler?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/monitor/overview-of-the-replication-monitor-interface?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/database-engine/log-shipping/view-the-log-shipping-report-sql-server-management-studio?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

T-SQL

From the T-SQL interface, SQL Server provides many system stored procedures, system views, and
functions for monitoring data.

System stored procedures such as sp_who and sp_lock provide real-time information. The
sp_monitor procedure provides aggregated data.

Built in functions such as @@CONNECTIONS, @@IO_BUSY, @@TOTAL_ERRORS, and others provide
high level server information.

A rich set of System Dynamic Management functions and views are provided for monitoring
almost every aspect of the server. These functions reside in the sys schema and are prefixed with
dm_string. For more information, see System Dynamic Management Views in the SQL Server
documentation.

Trace Flags

You can set trace flags to log events. For example, set trace flag 1204 to log deadlock information.
For more information, see DBCC TRACEON - Trace Flags (Transact-SQL) in the SQL Server
documentation.

SQL Server Query Store

Query Store is a database-level framework supporting automatic collection of queries, run
plans, and run time statistics. This data is stored in system tables. You can use this data to
diagnose performance issues, understand patterns, and understand trends. It can also be set to
automatically revert plans when a performance regression is detected.

For more information, see Monitoring performance by using the Query Store in the SQL Server
documentation.

MySQL Usage

The native features for monitoring MySQL databases such as innodb logging and the performance
schema are turned off for Aurora MySQL. Most third-party tools that rely on these features can’t be
used. Some vendors provide monitoring services specifically for Aurora MySQL.

However, Amazon RDS provides a very rich monitoring infrastructure for Aurora MySQL clusters
and instances with the native Amazon CloudWatch service.

MySQL Usage 431

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/database-console-commands/dbcc-traceon-trace-flags-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

These services are improved frequently.

Amazon RDS Performance Insights, an advanced database performance monitoring feature that
makes it easy to diagnose and solve performance challenges on Amazon RDS databases, now
supports additional counter metrics on Amazon RDS for MySQL and Amazon Aurora MySQL-
Compatible Edition (Aurora MySQL). With counter metrics, you can customize the Performance
Insights dashboard to include up to 10 additional graphs that show a selection from dozens
of operating system and database performance metrics. Counter metrics provide additional
information that can be correlated with the database load chart to help identify performance
issues and analyze performance. For more information, see Performance Insights.

To turn on Performance Insight for your instance, use the step-by-step walkthrough. For more
information, see Turning Performance Insights on and off in the Amazon Relational Database
Service User Guide.

When the Performance Schema is turned on for Aurora MySQL, Performance Insights provides
more detailed information. For example, Performance Insights displays DB load categorized by
detailed wait events. When Performance Schema is turned off, Performance Insights displays DB
load categorized by the list state of the MySQL process.

MySQL Usage 432

https://www.amazonaws.cn/rds/performance-insights/
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_PerfInsights.Enabling.html#USER_PerfInsights.Enabling.Console.Modifying

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

The Performance Schema stores many useful metrics that will help you analyze and solve
performance related issues.

You have the following options for enabling the Performance Schema:

• Allow Performance Insights to manage required parameters automatically. When you create an
Aurora MySQL DB instance with Performance Insights enabled, Performance Schema is turned
on automatically. In this case, Performance Insights automatically manages your parameters.

Note

In this scenario, Performance Insights changes schema-related parameters on the
DB instance. These changes aren’t visible in the parameter group associated with the
DB instance. However, these changes are visible in the output of the SHOW GLOBAL
VARIABLES command.

• Set the required parameters yourself. For Performance Insights to list wait events, you must set
all parameters as shown in the following table.

Parameter name Value

performance_schema 1 (the Source column has the value engine-de
fault)

performance-schema-consumer-
events-waits-current

ON

performance-schema-instrument wait/%=ON

performance-schema-consumer-
global-instrumentation

ON

performance-schema-consumer-
thread-instrumentation

ON

MySQL Usage 433

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Server Options and Performance Schema Quick Start in the MySQL
documentation, Monitoring metrics in an Amazon RDS instance and Monitoring OS metrics with
Enhanced Monitoring in the Amazon Relational Database Service User Guide.

Resource governor features

This topic provides reference information about resource management and workload isolation
capabilities in SQL Server 2019 and Amazon Aurora MySQL. You can understand the differences in
how these database systems handle resource limits and workload management.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Use the resource limit
for each user.

SQL Server Usage

SQL Server Resource Governor provides the capability to control and manage resource
consumption. Administrators can specify and enforce workload limits on CPU, physical I/O, and
Memory. Resource configurations are dynamic and you can change them in real time.

In SQL Server 2019 configurable value for the REQUEST_MAX_MEMORY_GRANT_PERCENT option of
CREATE WORKLOAD GROUP and ALTER WORKLOAD GROUP has been changed from an integer to a
float data type to allow more granular control of memory limits. For more information, see ALTER
WORKLOAD GROUP (Transact-SQL) and CREATE WORKLOAD GROUP (Transact-SQL) in the SQL
Server documentation.

Use Cases

The following list identifies typical Resource Governor use cases:

• Minimize performance bottlenecks and inconsistencies to better support Service Level
Agreements (SLA) for multiple workloads and users.

Resource governor features 434

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-quick-start.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-workload-group-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-workload-group-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Protect against runaway queries that consume a large amount of resources or explicitly throttle
I/O intensive operations. For example, consistency checks with DBCC that may bottleneck the I/
O subsystem and negatively impact concurrent workloads.

• Allow tracking and control for resource-based pricing scenarios to improve predictability of
user charges.

Concepts

The three basic concepts in Resource Governor are Resource Pools, Workload Groups, and
Classification.

• Resource Pools represent physical resources. Two built-in resource pools, internal and default,
are created when SQL Server is installed. You can create custom user-defined resource pools for
specific workload types.

• Workload Groups are logical containers for session requests with similar characteristics.
Workload Groups allow aggregate resource monitoring of multiple sessions. Resource limit
policies are defined for a Workload Group. Each Workload Group belongs to a Resource Pool.

• Classification is a process that inspects incoming connections and assigns them to a specific
Workload Group based on the common attributes. User-defined functions are used to implement
Classification. For more information, see User-Defined Functions.

Examples

Turn on the Resource Governor.

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Resource Pool.

CREATE RESOURCE POOL ReportingWorkloadPool
 WITH (MAX_CPU_PERCENT = 20);

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a Workload Group.

SQL Server Usage 435

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE WORKLOAD GROUP ReportingWorkloadGroup USING poolAdhoc;

ALTER RESOURCE GOVERNOR RECONFIGURE;

Create a classifier function.

CREATE FUNCTION dbo.WorkloadClassifier()
RETURNS sysname WITH SCHEMABINDING
AS
BEGIN
 RETURN (CASE
 WHEN HOST_NAME()= 'ReportServer'
 THEN 'ReportingWorkloadGroup'
 ELSE 'Default'
 END)
END;

Register the classifier function.

ALTER RESOURCE GOVERNOR with (CLASSIFIER_FUNCTION = dbo.WorkloadClassifier);

ALTER RESOURCE GOVERNOR RECONFIGURE;

For more information, see Resource Governor in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) doesn’t support a server-wide,
granular, resource-based, workload resource isolation and management capability similar to
SQL Server Resource Governor. However, Aurora MySQL does support the feature User Resource
Limit Options that you can use to achieve similar high-level functionality for limiting resource
consumption of user connections.

You can specify User Resource Limit Options as part of the CREATE USER statement to place the
following limits on users:

• The number of total queries in hour an account is allowed to issue.

• The number of updates in hour an account is allowed to issue.

MySQL Usage 436

https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor/resource-governor?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• The number of times in hour an account can establish a server connection.

• The total number of concurrent server connections allowed for the account.

For more information, see Users and Roles.

Syntax

CREATE USER <User Name> ...
WITH
MAX_QUERIES_PER_HOUR count |
MAX_UPDATES_PER_HOUR count |
MAX_CONNECTIONS_PER_HOUR count |
MAX_USER_CONNECTIONS count

Migration Considerations

Although both SQL Server Resource Manager and Aurora MySQL User Resource Limit Options
provide the same basic function — limiting the amount of resources for distinct types of workloads
— they differ significantly in scope and flexibility.

SQL Server Resource Manager is a dynamically configured independent framework based on actual
run-time resource consumption. User Resource Limit Options are defined as part of the security
objects and requires application connection changes to map to limited users. To modify these
limits, you must alter the user object.

User Resource Limit Options don’t allow limiting workload activity based on actual resource
consumption, but rather provides a quantitative limit for the number of queries or number of
connections. A runaway query that consumes a large amount of resources may slow down the
server.

Another important difference is how exceeded resource limits are handled. SQL Server Resource
Governor throttles the run; Aurora MySQL raises errors.

Example

Create a resource-limited user.

CREATE USER 'ReportUsers'@'localhost'
IDENTIFIED BY 'ReportPassword'
WITH

MySQL Usage 437

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

MAX_QUERIES_PER_HOUR 60
MAX_UPDATES_PER_HOUR 0
MAX_CONNECTIONS_PER_HOUR 5
MAX_USER_CONNECTIONS 2;

Summary

Feature SQL Server Resource
Governor

Aurora MySQL User
Resource Limit
Options

Comments

Scope Dynamic workload
pools and workload
groups, mapped to a
classifier function.

For each user. Application connectio
n strings need to use
specific limited users.

Limited resources IO, CPU, and memory. Number of queries,
number of connectio
ns.

Modifying limits ALTER RESOURCE
POOL

ALTER USER Application may use
a dynamic connection
string.

When resource
threshold limit is
reached.

Throttles and queues
runs.

Raises an error. Application retry
logic may need to be
added.

For more information, see CREATE USER Resource-Limit Options and Setting Account Resource
Limits in the MySQL documentation.

Linked servers

This topic provides reference information about linked servers in Microsoft SQL Server and their
absence in Amazon Aurora MySQL-Compatible Edition. You can understand the functionality and
benefits of linked servers in SQL Server, including their ability to connect to external data sources
and run distributed queries.

Summary 438

https://dev.mysql.com/doc/refman/5.7/en/create-user.html#create-user-resource-limits
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Linked Servers Data transfer across
schemas only, use a
custom application
solution to access
remote instances.

SQL Server Usage

Linked servers enable the database engine to connect to external Object Linking and Embedding
for databases (OLE-DB) sources. They are typically used to run T-SQL commands and include tables
in other instances of SQL Server, or other RDBMS engines such as Oracle. SQL Server supports
multiple types of OLE-DB sources as linked servers, including Microsoft Access, Microsoft Excel, text
files and others.

The main benefits of using linked servers are:

• Reading external data for import or processing.

• Running distributed queries, data modifications, and transactions for enterprise-wide data
sources.

• Querying heterogeneous data source using the familiar T-SQL API.

You can configure linked servers using either SQL Server Management Studio, or the system stored
procedure sp_addlinkedserver. The available functionality and the specific requirements vary
significantly between the various OLE-DB sources. Some sources may allow read only access, others
may require specific security context settings, and so on.

The linked server definition contains the linked server alias, the OLE DB provider, and all the
parameters needed to connect to a specific OLE-DB data source.

The OLE-DB provider is a .NET Dynamic Link Library (DLL) that handles the interaction of SQL
Server with all data sources of its type. For example, OLE-DB Provider for Oracle. The OLE-DB data
source is the specific data source to be accessed, using the specified OLE-DB provider.

SQL Server Usage 439

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

You can use SQL Server distributed queries with any custom OLE DB provider as long as the
required interfaces are implemented correctly.

SQL Server parses the T-SQL commands that access the linked server and sends the appropriate
requests to the OLE-DB provider. There are several access methods for remote data, including
opening the base table for read or issuing SQL queries against the remote data source.

You can manage linked servers using SQL Server Management Studio graphical user interface or T-
SQL system stored procedures.

• EXECUTE sp_addlinkedserver to add new server definitions.

• EXECUTE sp_addlinkedserverlogin to define security context.

• EXECUTE sp_linkedservers or SELECT * FROM sys.servers system catalog view to
retrieve meta data.

• EXECUTE sp_dropserver to delete a linked server.

You can access linked server data sources from T-SQL using a fully qualified, four-part naming
scheme: <Server Name>.<Database Name>.<Schema Name>.<Object Name>.

Additionally, you can use the OPENQUERY row set function to explicitly invoke pass-through queries
on the remote linked server. Also, you can use the OPENROWSET and OPENDATASOURCE row set
functions for one-time remote data access without defining the linked server in advance.

Syntax

EXECUTE sp_addlinkedserver
 [@server=] <Linked Server Name>
 [, [@srvproduct=] <Product Name>]
 [, [@provider=] <OLE DB Provider>]
 [, [@datasrc=] <Data Source>]
 [, [@location=] <Data Source Address>]
 [, [@provstr=] <Provider Connection String>]
 [, [@catalog=] <Database>];

SQL Server Usage 440

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Create a linked server to a local text file.

EXECUTE sp_addlinkedserver MyTextLinkedServer, N'Jet 4.0',
 N'Microsoft.Jet.OLEDB.4.0',
 N'D:\TextFiles\MyFolder',
 NULL,
 N'Text';

Define security context.

EXECUTE sp_addlinkedsrvlogin MyTextLinkedServer, FALSE, Admin, NULL;

Use sp_tables_ex to list tables in a folder.

EXEC sp_tables_ex MyTextLinkedServer;

Issue a SELECT query using a four-part name.

SELECT *
FROM MyTextLinkedServer...[FileName#text];

For more information, see sp_addlinkedserver (Transact-SQL) and Distributed Queries Stored
Procedures (Transact-SQL) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition doesn’t support remote data access.

Connectivity between schemas is trivial, connectivity to other instances will require an application
custom solution.

Scripting features

This topic provides reference information about the differences in scripting and automation
capabilities between Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can understand
the contrasting tool sets and scripting languages used in these database systems.

MySQL Usage 441

https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-addlinkedserver-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/distributed-queries-stored-procedures-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Non-compatible tool
sets and scripting
languages. Use
MySQL Workbench
, Amazon RDS API,
Amazon Management
Console, and Amazon
CLI.

SQL Server Usage

SQL Server supports T-SQL and XQuery scripting within multiple run frameworks such as SQL
Server Agent, and stored procedures.

The SQLCMD command line utility can also be used to run T-SQL scripts. However, the most
extensive and feature-rich scripting environment is PowerShell.

SQL Server provides two PowerShell snap-ins that implement a provider exposing the entire SQL
Server Management Object Model (SMO) as PowerShell paths. Additionally, you can use cmd in SQL
Server to run specific SQL Server commands.

Note

You can use Invoke-Sqlcmd to run scripts using the SQLCMD utility.

The sqlps utility launches the PowerShell scripting environment and automatically loads the SQL
Server modules. You can launch sqlps from a command prompt or from the Object Explorer pane
of SQL Server Management Studio. You can run one-time PowerShell commands and script files
(for example, .\SomeFolder\SomeScript.ps1).

SQL Server Usage 442

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

SQL Server Agent supports running PowerShell scripts in job steps. For more information,
see SQL Server Agent and MySQL Agent.

SQL Server also supports three types of direct database engine queries: T-SQL, XQuery, and the
SQLCMD utility. You can call T-SQL and XQuery from stored procedures, SQL Server Management
Studio (or other IDE), and SQL Server agent jobs. The SQLCMD utility also supports commands and
variables.

Examples

Backup a database with PowerShell using the default backup options.

PS C:\> Backup-SqlDatabase -ServerInstance "MyServer\SQLServerInstance" -Database
 "MyDB"

Get all rows from the MyTable table in the MyDB database.

PS C:\> Read-SqlTableData -ServerInstance MyServer\SQLServerInstance" -DatabaseName
 "MyDB" -TableName "MyTable"

For more information, see SQL Server PowerShell, Database Engine Scripting, and sqlcmd Utility in
the SQL Server documentation.

MySQL Usage

As a Platform as a Service (PaaS), Aurora MySQL accepts connections from any compatible client,
but you can’t access the MySQL command line utility typically used for database administration.
However, you can use MySQL tools installed on a network host and the Amazon RDS API. The most
common tools for Aurora MySQL scripting and automation include MySQL Workbench, MySQL
Utilities, and the Amazon RDS API. The following sections describe each tool.

MySQL Workbench

MySQL Workbench is the most commonly used tool for development and administration of MySQL
servers. It is available as a free Community Edition and a paid Commercial Edition that adds

MySQL Usage 443

https://docs.microsoft.com/en-us/sql/powershell/sql-server-powershell?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/scripting/database-engine-scripting?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/tools/sqlcmd-utility?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

enterprise features such as database documentation features. MySQL Workbench is an integrated
IDE with the following features:

• SQL Development — Manage and configure connections to aurora MySQL clusters and run SQL
queries using the SQL editor.

• Data Modeling — Reverse and forward engineer graphical database schema models and manage
schemas with the Table Editor.

• Server Administration — Not applicable to Aurora MySQL. Use the Amazon RDS console to
administer servers.

The MySQL Workbench also supports a Python scripting shell that you can use interactively and
programmatically.

MySQL Utilities

MySQL Utilities are a set of Python command line tools used for common maintenance and
administration of MySQL servers tasks. They can reduce the need to write custom code for
common tasks and can be easily customized.

The following tools are included in the MySQL Utilities set. Note that some tools will not work with
Aurora MySQL because you don’t have root access to the underlying server.

• Admin utilities — Clone, Copy, Compare, Diff, Export, Import, and User Management.

• Replication utilities — Setup, Configuration, and Verification

• General utilities — Disk Usage, Redundant Indexes, Manage Metadata, and Manage Audit Data

Amazon RDS API

The Amazon RDS API is a web service for managing and maintaining Aurora PostgreSQL and other
relational databases. You can use Amazon RDS API to setup, operate, scale, backup, and perform
many common administration tasks. The Amazon RDS API supports multiple database platforms
and can integrate administration seamlessly for heterogeneous environments.

Note

The Amazon RDS API is asynchronous. Some interfaces may require polling or callback
functions to receive command status and results.

MySQL Usage 444

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

You can access Amazon RDS using the Amazon Management Console, the Amazon Command Line
Interface (CLI), and the Amazon RDS Programmatic API as described in the following sections.

Amazon Management Console

The Amazon Management Console is a simple web-based set of tools for interactive management
of Aurora PostgreSQL and other Amazon RDS services. To access the Amazon Management
Console, sign in to your Amazon account, and choose RDS.

Amazon Command Line Interface

The Amazon Command Line Interface is an open source tool that runs on Linux, Windows, or
macOS having Python 2 version 2.6.5 and higher or Python 3 version 3.3 and higher.

The Amazon CLI is built on top of the Amazon SDK for Python (Boto), which provides commands
for interacting with Amazon services. With minimal configuration, you can start using all Amazon
Management Console functionality from your favorite terminal application.

• Linux shells — Use common shell programs such as Bash, Zsh, or tsch.

• Windows command line — Run commands in PowerShell or the Windows Command Processor.

• Remotely — Run commands on Amazon EC2 instances through a remote terminal such as PuTTY
or SSH.

The Amazon Tools for Windows PowerShell and Amazon Tools for PowerShell Core are PowerShell
modules built on the functionality exposed by the Amazon SDK for .NET. These Tools enable
scripting operations for Amazon resources using the PowerShell command line.

Note

You can’t use SQL Server cmdlets in PowerShell.

Amazon RDS Programmatic API

You can use the Amazon RDS API to automate management of database instances and other
Amazon RDS objects.

For more information, see Actions, Data Types, Common Parameters, and Common Errors in the
Amazon Relational Database Service API Reference.

MySQL Usage 445

https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_Operations.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/API_Types.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/CommonParameters.html
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/CommonErrors.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

The following walkthrough describes how to connect to an Aurora MySQL database instance using
the MySQL utility.

1. Sign in to your Amazon account, choose RDS, and then choose Databases.

2. Choose the MySQL database you want to connect to and copy the cluster endpoint address.

Note

You can also connect to individual database instances. For more information, see High
Availability Essentials.

3. In the command shell, enter the following:

mysql -h <mysql-instance-endpoint-address> -P 3306 -u MasterUser

In the preceding example, the -h parameter is the endpoint Domain Name System (DNS) name
of the Aurora MySQL database cluster.

In the preceding example, the -P parameter is the port number.

4. Provide the password when prompted. The system displays the following (or similar) message.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 350
Server version: 5.6.27-log MySQL Community Server (GPL)
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

For more information, see MySQL Product Archives, MySQL Workbench 8.0.29, Command Line
Interface, and Amazon Relational Database Service API Reference.

MySQL Usage 446

https://downloads.mysql.com/archives/utilities/
https://dev.mysql.com/downloads/workbench/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/cli/latest/reference/
https://docs.amazonaws.cn/AmazonRDS/latest/APIReference/Welcome.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Performance tuning for Aurora MySQL

This topic provides reference information about query execution plans and query hints in Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can use this knowledge to understand how
these database systems handle query optimization and performance analysis. The content explores
the similarities and differences between SQL Server and Aurora MySQL in terms of execution
plan features, automatic tuning capabilities, and supported query hints. By understanding these
concepts, you can better troubleshoot performance issues, optimize queries, and adapt your
database management strategies when migrating between these platforms.

Topics

• Tuning run plans

• Query hints and plan guides

Tuning run plans

This topic provides reference information about query execution plans in Microsoft SQL Server and
Amazon Aurora MySQL. You can use these tools to analyze and optimize query performance in
your database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Syntax differences.
Completely different
optimizer with
different operators
and rules.

SQL Server Usage

Run plans provide users detailed information about the data access and processing methods
chosen by the SQL Server Query Optimizer. They also provide estimated or actual costs of each

Tuning run plans 447

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

operator and sub tree. Run plans provide critical data for troubleshooting query performance
challenges.

SQL Server creates run plans for most queries and returns them to client applications as plain text
or XML documents. SQL Server produces a run plan when a query run, but it can also generate
estimated plans without running a query.

SQL Server Management Studio provides a graphical view of the underlying XML plan document
using icons and arrows instead of textual information. This graphical view is extremely helpful
when investigating the performance aspects of a query.

To request an estimated run plan, use the SET SHOWPLAN_XML, SHOWPLAN_ALL, or
SHOWPLAN_TEXT statements.

SQL Server 2017 introduces automatic tuning, which notifies users whenever a potential
performance issue is detected and lets them apply corrective actions, or lets the database engine
automatically fix performance problems. Automatic tuning SQL Server enables users to identify
and fix performance issues caused by query run plan choice regressions. For more information, see
Automatic tuning in the SQL Server documentation.

Examples

Show the estimated run plan for a query.

SET SHOWPLAN_XML ON;
SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET SHOWPLAN_XML OFF;

Actual run plans return after run of the query or batch of queries completes. Actual run plans
include run-time statistics about resource usage and warnings. To request the actual run plan, use
the SET STATISTICS XML statement to return the XML document object. Alternatively, use the
STATISTICS PROFILE statement, which returns an additional result set containing the query run
plan.

Show the actual run plan for a query.

SET STATISTICS XML ON;

SQL Server Usage 448

https://docs.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SELECT *
FROM MyTable
WHERE SomeColumn = 3;
SET STATISTICS XML OFF;

The following example shows a partial graphical run plan from SQL Server Management Studio.

For more information, see Display and Save Execution Plans in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides the EXPLAIN/DESCRIBE
statement to display run plan and used with the SELECT, DELETE, INSERT, REPLACE, and UPDATE
statements.

Note

You can use the EXPLAIN/DESCRIBE statement to retrieve table and column metadata.

When you use EXPLAIN with a statement, MySQL returns the run plan generated by the query
optimizer. MySQL explains how the statement will be processed including information about table
joins and order. When you use EXPLAIN with the FOR CONNECTION option, it returns the run plan
for the statement running in the named connection. You can use the FORMAT option to select
either a TRADITIONAL tabular format or a JSON format.

The EXPLAIN statement requires SELECT permissions for all tables and views accessed by the
query directly or indirectly. For views, EXPLAIN requires the SHOW VIEW permission. EXPLAIN
can be extremely valuable for improving query performance when used to find missing indexes.

MySQL Usage 449

https://docs.microsoft.com/en-us/sql/relational-databases/performance/display-and-save-execution-plans?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

You can also use EXPLAIN to determine if the optimizer joins tables in an optimal order. MySQL
Workbench includes an easy to read visual explain feature similar to SQL Server Management
Studio graphical run plans.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL implements a new form of
the EXPLAIN statement. You can use EXPLAIN ANALYZE in MySQL 8.0.18. This statement
provides expanded information about the run of SELECT statements in the TREE format
for each iterator used in processing the query and making it possible to compare estimated
cost with the actual cost of the query. This information includes startup cost total cost
number of rows returned by this iterator and the number of run loops. In MySQL 8.0.21 and
later this statement also supports a FORMAT=TREE specifier. TREE is the only supported
format. For more information, see Obtaining Information with EXPLAIN ANALYZE in the
MySQL documentation.

Syntax

Simplified syntax for the EXPLAIN statement:

{EXPLAIN | DESCRIBE | DESC} [EXTENDED | FORMAT = TRADITIONAL | JSON]
[SELECT statement | DELETE statement | INSERT statement | REPLACE statement | UPDATE
statement | FOR CONNECTION <connection id>]

Examples

View the run plan for a statement.

CREATE TABLE Employees
(
 EmployeeID INT NOT NULL PRIMARY KEY,
 Name VARCHAR(100) NOT NULL,
 INDEX USING BTREE(Name)
);

EXPLAIN SELECT *
 FROM Employees

MySQL Usage 450

https://dev.mysql.com/doc/refman/8.0/en/explain.html#explain-analyze

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 WHERE Name = 'Jason';

id select_type table partitions type possible_keys key key_len ref rows
 Extra
1 SIMPLE Employees ref Name Name 102 const 1

View the MySQL Workbench graphical run plan.

Note

To instruct the optimizer to use a join order corresponding to the order in which the tables
are specified in a SELECT statement, use SELECT STRAIGHT_JOIN. For more information,
see Query Hints and Plan Guides.

MySQL Usage 451

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see EXPLAIN Statement in the MySQL documentation.

Query hints and plan guides

This topic provides reference information about query hints and their compatibility between
Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can use this knowledge to understand
the differences in query optimization techniques when migrating from SQL Server to Aurora
MySQL.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Query Hints Difference.

SQL Server Usage

SQL Server hints are instructions that override automatic choices made by the query processor for
DML and DQL statements. The term hint is misleading because, in reality, it forces an override to
any other choice of the run plan.

JOIN Hints

You can explicitly add LOOP, HASH, MERGE, and REMOTE hints to a JOIN. For example, … Table1
INNER LOOP JOIN Table2 ON … . These hints force the optimizer to use nested loops, hash
match, or merge physical join algorithms. REMOTE enables processing a join with a remote table on
the local server.

Table Hints

Table hints override the default behavior of the query optimizer. Table hints are used to explicitly
force a particular locking strategy or access method for a table operation clause. These hints don’t
modify the defaults and apply only for the duration of the DML or DQL statement. Some common
table hints are INDEX = <Index value>, FORCESEEK, NOLOCK, and TABLOCKX.

Query hints and plan guides 452

https://dev.mysql.com/doc/refman/5.7/en/explain.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Query Hints

Query hints affect the entire set of query operators, not just the individual clause in which they
appear. Query hints may be JOIN hints, table hints, or from a set of hints that are only relevant for
query hints.

Some common table hints include OPTIMIZE FOR, RECOMPILE, FORCE ORDER, and FAST
<rows>.

Query hints are specified after the query itself following the WITH options clause.

Plan Guides

Plan guides provide similar functionality to query hints in the sense they allow explicit user
intervention and control over query optimizer plan choices. Plan guides can use either query hints
or a full fixed, pre-generated plan attached to a query. The difference between query hints and
plan guides is the way they are associated with a query.

While query or table hints need to be explicitly stated in the query text, they aren’t an option if
you have no control over the source code generating these queries. If an application uses one-time
queries instead of stored procedures, views, and functions, the only way to affect query plans is to
use plan guides. They are often used to mitigate performance challenges with third-party software.

A plan guide consists of the statement whose run plan needs to be adjusted and either an OPTION
clause that lists the desired query hints or a full XML query plan that is enforced as long it is valid.

At run time, SQL Server matches the text of the query specified by the guide and attaches the
OPTION hints. Or, it assigns the provided plan for run.

SQL Server supports three types of plan guides.

• Object plan guides target statements that run within the scope of a code object such as a stored
procedure, function, or trigger. If the same statement is found in another context, the plan guide
isn’t be applied.

• SQL plan guides are used for matching general ad-hoc statements not within the scope of code
objects. In this case, any instance of the statement regardless of the originating client is assigned
the plan guide.

• Template plan guides can be used to abstract statement templates that differ only in parameter
values. It can be used to override the PARAMETERIZATION database option setting for a family
of queries.

SQL Server Usage 453

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Syntax

Use the following syntax to create query hints.

Note

The following syntax is for SELECT. Query hints can be used in all DQL and DML
statements.

SELECT <statement>
OPTION
(
{{HASH|ORDER} GROUP
|{CONCAT |HASH|MERGE} UNION
|{LOOP|MERGE|HASH} JOIN
|EXPAND VIEWS
|FAST <Rows>
|FORCE ORDER
|{FORCE|DISABLE} EXTERNALPUSHDOWN
|IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
|KEEP PLAN
|KEEPFIXED PLAN
|MAX_GRANT_PERCENT = <Percent>
|MIN_GRANT_PERCENT = <Percent>
|MAXDOP <Number of Processors>
|MAXRECURSION <Number>
|NO_PERFORMANCE_SPOOL
|OPTIMIZE FOR (@<Variable> {UNKNOWN|= <Value>}[,...])
|OPTIMIZE FOR UNKNOWN
|PARAMETERIZATION {SIMPLE|FORCED}
|RECOMPILE
|ROBUST PLAN
|USE HINT ('<Hint>' [,...])
|USE PLAN N'<XML Plan>'
|TABLE HINT (<Object Name> [,<Table Hint>[[,...]])
});

Use the following syntax to create a plan guide:

EXECUTE sp_create_plan_guide @name = '<Plan Guide Name>'

SQL Server Usage 454

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

 ,@stmt = '<Statement>'
 ,@type = '<OBJECT|SQL|TEMPLATE>'
 ,@module_or_batch = 'Object Name>'|'<Batch Text>'| NULL
 ,@params = '<Parameter List>'|NULL }
 ,@hints = 'OPTION(<Query Hints>'|'<XML Plan>'|NULL;

Examples

Limit parallelism for a sales report query.

EXEC sp_create_plan_guide
 @name = N'SalesReportPlanGuideMAXDOP',
 @stmt = N'SELECT *
 FROM dbo.fn_SalesReport(GETDATE())
 @type = N'SQL',
 @module_or_batch = NULL,
 @params = NULL,
 @hints = N'OPTION (MAXDOP 1)';

Use table and query hints.

SELECT *
FROM MyTable1 AS T1
 WITH (FORCESCAN)
 INNER LOOP JOIN
 MyTable2 AS T2
 WITH (TABLOCK, HOLDLOCK)
 ON T1.Col1 = T2.Col1
WHERE T1.Date BETWEEN DATEADD(DAY, -7, GETDATE()) AND GETDATE()

For more information, see Hints and Plan Guides in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports two types of hints: optimizer
hints and index hints. Unlike SQL Server, MySQL doesn’t provide a feature similar to plan guides.

MySQL Usage 455

https://docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/performance/plan-guides?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Index Hints

The index hints should appear familiar to SQL Server users although the syntax is somewhat
different. Index hints are placed directly after the table name as with SQL Server, but the keywords
are different.

Syntax

SELECT ...
FROM <Table Name>
 USE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)
 | IGNORE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)
 | FORCE {INDEX|KEY}
 [FOR {JOIN|ORDER BY|GROUP BY}] (<Index List>)
...n

The USE INDEX hint limits the optimizer’s choice to one of the indexes listed in the <Index List>
allow list. Alternatively, indexes can be added to the deny list using the IGNORE keyword.

The FORCE INDEX hint is similar to USE INDEX (index_list), but with strong favor towards seek
against scan. This hint is similar to the FORCESEEK hint in SQL Server, although the Aurora MySQL
optimizer can choose a scan if other options aren’t valid.

The hints use the actual index names; not column names. You can refer to primary keys using the
keyword PRIMARY.

Note

In Aurora MySQL, the primary key is the clustered index. For more information see Indexes.

The syntax for index Aurora MySQL hints has the following characteristics:

• Omitting the <Index List> is allowed for USE INDEX only. It translates to don’t use any
indexes, which is equivalent to a clustered index scan.

• Index hints can be further scoped down using the FOR clause. Use FOR JOIN, FOR ORDER BY, or
FOR GROUP BY to limit the hint applicability to that specific query processing phase.

• Multiple index hints can be specified for the same or different scope.

MySQL Usage 456

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Optimizer Hints

Optimizer hints give developers or administrators control over some of the optimizer decision tree.
They are specified within the statement text as a comment with the + prefix.

Optimizer hints may pertain to different scopes and are valid in only one or two scopes. The
available scopes for optimizer hints in descending scope width order are:

• Global hints affect the entire statement. Only MAX_EXECUTION TIME is a global optimizer hint.

• Query-level hints affect a query block within a composed statement such as UNION or a
subquery.

• Table-level hints affect a table within a query block.

• Index-level hints affect an index of a table.

Syntax

SELECT /*+ <Optimizer Hints> */ <Select List>...

INSERT /*+ <Optimizer Hints> */ INTO <Table>...

REPLACE /*+ <Optimizer Hints> */ INTO <Table>...

UPDATE /*+ <Optimizer Hints> */ <Table> SET...

DELETE /*+ <Optimizer Hints> */ FROM <Table>...

You can use the following optimizer hints in Aurora MySQL:

Hint name Description Applicable scopes

BKA, NO_BKA Turns on or off Batched Key
Access join processing

Query block, table

BNL, NO_BNL Turns on or off Block Nested-
Loop join processing

Query block, table

MySQL Usage 457

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Hint name Description Applicable scopes

MAX_EXECUTION_TIME Limits statement run time Global

MRR, NO_MRR Turns on or turns off multi-
range read optimization

Table, index

NO_ICP Turns off index condition
push-down optimization

Table, index

NO_RANGE_OPTIMIZAT
ION

Turns off range optimization Table, index

QB_NAME Assigns a logical name to a
query block

Query block

SEMIJOIN, NO_SEMIJOIN Turns on or off semi-join
strategies

Query block

SUBQUERY Determines MATERIALI
ZATION , and INTOEXISTS
processing

Query block

Query block names (using QB_NAME) are used to distinguish a block for limiting the scope of
the table hint. Add @ to indicate a hint scope for one or more named subqueries as shown in the
following example.

SELECT /*+ SEMIJOIN(@SubQuery1 FIRSTMATCH, LOOSESCAN) */ *
FROM Table1
WHERE Col1 IN (SELECT /*+ QB_NAME(SubQuery1) */ Col1
FROM t3);

Values for MAX_EXECUTION_TIME are measured in seconds and are always global for the entire
query.

Note

This option doesn’t exist in SQL Server where the run time limit is for the session scope.

MySQL Usage 458

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Controlling the Query Optimizer, Optimizer Hints, Index Hints, and
Optimizing Subqueries, Derived Tables, and View References in the MySQL documentation.

Migration Considerations

In general, the Aurora MySQL hint framework is relatively limited compared to the granular
control provided by SQL Server. The specific optimizations used for SQL Server may be completely
inapplicable to a new query optimizer. It is recommended to start migration testing with all hints
removed. Then, selectively apply hints as a last resort if other means such as schema, index, and
query optimizations have failed.

Aurora MySQL uses a list of indexes and hints, both allowed list or USE and disallowed list or
IGNORE, as opposed to explicit index approach in SQL Server.

Index hints aren’t mandatory instructions. Aurora MySQL has some room to choose alternatives if it
can’t use the hinted index. In SQL Server, forcing a non valid index or access method raises an error.

Examples

Force an index access.

SELECT * FROM Table1 USE INDEX (Index1) ORDER BY Col1;

Specify multiple index hints.

SELECT * FROM Table1 USE INDEX (Index1) INNER JOIN Table2 IGNORE INDEX(Index2) ON
Table1.Col1 = Table2.Col1 ORDER BY Col1;

Specify optimizer hints.

SELECT /*+ NO_RANGE_OPTIMIZATION(Table1 PRIMARY, Index2) */ Col1 FROM Table1 WHERE
Col2 = 300;

SELECT /*+ BKA(t1) NO_BKA(t2) */ * FROM Table1 INNER JOIN Table2 ON ...;

SELECT /*+ NO_ICP(t1, t2) */ * FROM Table1 INNER JOIN Table2 ON ...;

MySQL Usage 459

https://dev.mysql.com/doc/refman/5.7/en/controlling-optimizer.html
https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html
https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Summary

Feature SQL Server Aurora MySQL

Force a specific plan Plan guides N/A

Apply hints to a query at
runtime

Plan guides N/A

Join hints LOOP, MERGE, HASH BNL, NO_BNL (block-nested
loops)

Locking hints Supported N/A

Force seek or scan FORCESEEK , FORCESCAN USE with no index list forces a
clustered index scan

Force an index INDEX= USE

Allowed list and disallowed
list indexes

N/A Supported with USE and
IGNORE

Parameter value hints OPTIMIZE FOR N/A

Compilation hints RECOMPILE N/A

For more information, see Controlling the Query Optimizer, Optimizer Hints, Index Hints, and
Optimizing Subqueries, Derived Tables, and View References in the MySQL documentation.

Summary 460

https://dev.mysql.com/doc/refman/5.7/en/controlling-optimizer.html
https://dev.mysql.com/doc/refman/5.7/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/5.7/en/index-hints.html
https://dev.mysql.com/doc/refman/5.7/en/subquery-optimization.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Storage for Aurora MySQL

This topic provides reference content comparing partitioning features between Microsoft SQL
Server 2019 and Amazon Aurora MySQL. You can gain insights into the similarities and differences
in partitioning capabilities, including partition types, scope, boundary direction, and management.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

Partitioning More partition types
in Aurora MySQL with
more restrictions on
partitioned tables.

SQL Server Usage

SQL Server provides a logical and physical framework for partitioning table and index data. Each
table and index are partitioned, but may have only one partition. SQL Server 2017 supports up to
15,000 partitions.

Partitioning separates data into logical units that can be stored in more than one file group. SQL
Server partitioning is horizontal, where data sets of rows are mapped to individual partitions. A
partitioned table or index is a single object and must reside in a single schema within a single
database. Composing objects of disjointed partitions isn’t allowed.

All DQL and DML operations are partition agnostic except for the special predicate $partition,
which can be used for explicit partition elimination.

Partitioning is typically needed for large tables to ease the following management and
performance challenges:

• Deleting or inserting large amounts of data in a single operation, with partition switching instead
of individual row processing, while maintaining logical consistency.

SQL Server Usage 461

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Maintenance operations can be split and customized for each partition. For example, older data
partitions can be compressed and more active partitions can be rebuilt or reorganized more
frequently.

• Partitioned tables may use internal query optimization techniques such as collocated and
parallel partitioned joins.

• Physical storage performance optimization by distributing IO across partitions and physical
storage channels.

• Concurrency improvements due to the engine’s ability to escalate locks to the partition level and
not the whole table.

Partitioning in SQL Server uses the following three objects:

• Partitioning column — A partitioning column is the column or columns that partition function
uses to partition the table or index. The value of this column determines the logical partition
to which it belongs. You can use computed columns in a partition function as long as they are
explicitly PERSISTED. Partitioning may be any data type that is a valid index column with less
than 900 bytes for each key, except timestamp and LOB data types.

• Partition function — A partition function is a database object that defines how the values of the
partitioning columns for individual tables or index rows are mapped to a logical partition. The
partition function describes the partitions for the table or index and their boundaries.

• Partition scheme — A partition scheme is a database object that maps individual logical
partitions of a table or an index to a set of file groups, which in turn consist of physical operating
system files. Placing individual partitions on individual file groups enables backup operations for
individual partitions by backing their associated file groups.

Syntax

CREATE PARTITION FUNCTION <Partition Function>(<Data Type>)
AS RANGE [LEFT | RIGHT]
FOR VALUES (<Boundary Value 1>,...)[;]

CREATE PARTITION SCHEME <Partition Scheme>
AS PARTITION <Partition Function>
[ALL] TO (<File Group> | [PRIMARY] [,...])[;]

Syntax 462

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE TABLE <Table Name> (<Table Definition>)
ON <Partition Schema> (<Partitioning Column>);

Examples

The following examples create a partitioned table.

CREATE PARTITION FUNCTION PartitionFunction1 (INT)
AS RANGE LEFT FOR VALUES (1, 1000, 100000);

CREATE PARTITION SCHEME PartitionScheme1
AS PARTITION PartitionFunction1
ALL TO (PRIMARY);

CREATE TABLE PartitionTable (
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20)
)
ON PartitionScheme1 (Col1);

For more information, see Partitioned Tables and Indexes, CREATE TABLE (Transact-SQL), CREATE
PARTITION SCHEME (Transact-SQL), and CREATE PARTITION FUNCTION (Transact-SQL) in the SQL
Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports a much richer framework for
table partitioning than SQL Server with many additional options such as hash partitioning, sub
partitioning and other features. However, it also introduces many restrictions on the tables that
participate in partitioning.

Note

The maximum number of partitions for a table is 8,192, including subpartitions. Although
smaller than 15,000 partitions in SQL Server, practical partitioning rarely contains more
than a few hundred partitions.

Examples 463

https://docs.microsoft.com/en-us/sql/relational-databases/partitions/partitioned-tables-and-indexes?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-scheme-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-partition-function-transact-sql?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

In Amazon Relational Database Service (Amazon RDS) for MySQL 8, ADD PARTITION,
DROP PARTITION, COALESCE PARTITION, REORGANIZE PARTITION, and REBUILD
PARTITION ALTER TABLE options are supported by native partitioning in-place APIs and
may be used with ALGORITHM={COPY|INPLACE} and LOCK clauses. DROP PARTITION
with ALGORITHMM=INPLACE deletes data stored in the partition and drops the partition.
However, DROP PARTITION with ALGORITHM=COPY or old_alter_table=ON rebuilds
the partitioned table and attempts to move data from the dropped partition to another
partition with a compatible PARTITION … VALUES definition. Data that can’t be moved
to another partition is deleted.

The following sections describe the types of partitions supported by Aurora MySQL.

Range Partitioning

Range partitions are the equivalent of SQL Server RANGE partition functions, which are the only
type currently supported. A range partitioned table has explicit boundaries defined. Each partition
contains only rows for which the partitioning expression value lies within the boundaries. Value
ranges must be contiguous and can’t overlap. Partition boundaries are defined using the VALUES
LESS THAN operator.

List Partitioning

List partitioning somewhat resembles range partitioning. Similar to range, each partition must be
defined explicitly. The main difference between list and range partitioning is that list partitions are
defined using a set of value lists instead of a contiguous range.

Use the PARTITION BY LIST(<Column Expression>) to define the type and the partitioning
column. Make sure that <Column Expression> returns an integer value.

Afterward, every partition is defined using the VALUES IN (<Value List>) where <Value
List> consists of a comma-separated list of integer values.

Range Partitioning 464

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Range and List Columns Partitioning

Columns partitioning is a variant of both range and list partitioning. However, for columns
partitioning, you can use multiple columns in partitioning keys. All column values are considered
for matching to a particular partition.

Both range columns partitioning and list columns partitioning enable you to use non-integer
values for defining value ranges and value lists. The following data types are supported for
columns partitioning:

• All integer types.

• DATE and DATETIME.

• CHAR, VARCHAR, BINARY, and VARBINARY.

Hash Partitioning

Hash partitioning is typically used to guarantee even distribution of rows for a desired number
of partitions. When using range or list partitioning, or their variants, the boundaries are explicitly
defined and associate a row to a partition based on the column value or set of values.

With hash partitioning, Aurora MySQL manages the values and individual partitions. You only need
to specify the column or column expression to be hashed and the total number of partitions.

Subpartitioning

With subpartitioning, or composite partitioning, each primary partition is further partitioned to
create a two-layer partitioning hierarchy. Subpartitions must use either HASH or KEY partitioning
and only range or list partitions may be subpartitioned. SQL Server doesn’t support subpartitions.

Partition Management

Aurora MySQL provides several mechanisms for managing partitioned tables including adding,
dropping, redefining, merging, and splitting existing partitioned tables. These management
operations can use the Aurora MySQL partitioning extensions to the ALTER TABLE statement.

Dropping Partitions

For tables using either range or list partitioning, drop a partition using the ALTER TABLE …
DROP PARTITION statement option.

Range and List Columns Partitioning 465

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

When a partition is dropped from a range partitioned table, all the data in the current partition is
deleted and new rows with values that would have fit the partition go to the immediate neighbor
partition.

When a partition is dropped from a list partitioned table, data is also deleted but new rows with
values that would have fit the partition can’t be INSERTED or UPDATED because they no longer
have a logical container.

For hash and key partitions, use the ALTER TABLE … COALESCE PARTITION <Number of
Partitions>. This approach reduces the current total number of partitions by the <Number of
Partitions> value.

Adding and Splitting Partitions

To add a new range boundary, or partition for a new list of values, use the ALTER TABLE … ADD
PARTITION statement option.

For range partitioned tables, you can only add a new range to the end of the list of existing
partitions.

If you need to split an existing range partition into two partitions, use the ALTER TABLE …
REORGANIZE PARTITION statement.

Switching and Exchanging Partitions

Aurora MySQL supports the exchange of a table partition, or a subpartition, with another table.
Use the ALTER TABLE <Partitioned Table> EXCHANGE PARTITION <Partition> WITH
TABLE <Non Partitioned Table> statement option.

The non-partitioned table can’t be a temporary table and the schema of both tables must be
identical. The non-partitioned table can’t have a foreign key being referenced, or referencing it. It
is critical that all rows in the nonpartitioned table are within the partition boundaries, unless the
WITHOUT VALIDATION option is used.

Note

ALTER TABLE … EXCHANGE PARTITION requires the ALTER, INSERT, CREATE, and
DROP privileges.

Adding and Splitting Partitions 466

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Executing the ALTER TABLE … EXCHANGE PARTITION statement doesn’t trigger the running of
triggers on the partitioned table or the exchanged non-partitioned table.

Note

AUTO_INCREMENT columns in the exchanged table are reset when you run the ALTER
TABLE … EXCHANGE PARTITION statement. For more information, see Identity and
Sequences.

Syntax

Create a partitioned table.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] <Table Name>
(<Table Definition>) [<Table Options>]
PARTITION BY
{ [LINEAR] HASH(<Expression>)
 | [LINEAR] KEY [ALGORITHM={1|2}] (<Column List>)
 | RANGE{(expr) | COLUMNS(<Column List>)}
 | LIST{(expr) | COLUMNS(<Column List>)} }
[PARTITIONS <Number>]
[SUBPARTITION BY
 { [LINEAR] HASH(<Expression>)
 | [LINEAR] KEY [ALGORITHM={1|2}] (<Column List>) }
[SUBPARTITIONS <Number>]

Reorganize or split a partition.

ALTER TABLE <Table Name>
REORGANIZE PARTITION <Partition> INTO (
PARTITION <New Partition 1> VALUES LESS THAN (<New Range Boundary>),
PARTITION <New Partition 2> VALUES LESS THAN (<Range Boundary>)
);

Exchange a partition.

ALTER TABLE <Partitioned Table> EXCHANGE PARTITION <Partition> WITH TABLE <Non
 Partitioned Table>;

Syntax 467

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Drop a partition.

ALTER TABLE <Table Name> DROP PARTITION <Partition>;

Migration Considerations

Because Aurora MySQL stores each table in its own file and since file management is performed
by Amazon and can’t be modified, some of the physical aspects of partitioning in SQL Server don’t
apply to Aurora MySQL. For example, the concept of file groups and assigning partitions to file
groups.

Aurora MySQL doesn’t support foreign keys partitioned tables. Neither the referencing table nor
referenced table can use partitioning. Partitioned tables can’t have foreign keys referencing other
tables or be referenced from other tables. Partitioning keys or expressions in Aurora MySQL must
be INT data types. They can’t be 1ENUM types. The expression may result in a NULL state. The
exceptions to this rule are:

• Partitioning by range columns or list columns. It is possible to use strings, DATE, and DATETIME
columns.

• Partitioning by [LINEAR] KEY. Allows use of any valid MySQL data type except TEXT and BLOB
for partitioning keys. In Aurora MySQL, key-hashing functions result in the correct data type.

Partitioned tables support neither FULLTEXT indexes nor spatial data types such as POINT and
GEOMETRY.

Unlike SQL Server, exchanging partitions in Aurora MySQL is only supported between a partitioned
and a nonpartitioned table. In SQL server, SWITCH PARTITION can be used to switch any partition
between partitions tables because technically all tables are partitioned to one or more partitions.

Examples

Create a range partitioned table.

CREATE TABLE MyTable (
 Col1 INT NOT NULL PRIMARY KEY,
 Col2 VARCHAR(20) NOT NULL
)
PARTITION BY RANGE (Col1)

Migration Considerations 468

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

(
 PARTITION p0 VALUES LESS THAN (100000),
 PARTITION p1 VALUES LESS THAN (200000),
 PARTITION p2 VALUES LESS THAN (300000),
 PARTITION p3 VALUES LESS THAN (400000)
);

Create subpartitions.

CREATE TABLE MyTable (Col1 INT NOT NULL, DateCol DATE NOT NULL,)
PARTITION BY RANGE(YEAR(DateCol))
SUBPARTITION BY HASH(TO_DAYS(<DateCol>))
SUBPARTITIONS 2 (
 PARTITION p0 VALUES LESS THAN (1990),
 PARTITION p1 VALUES LESS THAN (2000),
 PARTITION p2 VALUES LESS THAN MAXVALUE
);

Drop a range partition.

ALTER TABLE MyTable DROP PARTITION p2

Reduce the number of hash partitions by four.

ALTER TABLE <Table Name> COALESCE PARTITION 4;

Add range partitions.

ALTER TABLE MyTable ADD PARTITION (PARTITION p4 VALUES LESS THAN (50000));

Summary

The following table identifies similarities, differences, and key migration considerations.

Index feature SQL Server Aurora MySQL Comments

Partition types. RANGE only. RANGE, LIST, HASH,
KEY.

Summary 469

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Index feature SQL Server Aurora MySQL Comments

Partitioned tables
scope.

All tables are
partitioned, some
have more than one
partition.

All tables aren’t
partitioned, unless
explicitly partitioned.

Partition boundary
direction.

LEFT or RIGHT. RIGHT only. Only determines to
which partition the
boundary value itself
will go.

Dynamic range
partition.

N/A — literal values
must be explicitly set
in partition function.

Exchange partition. Any partition to any
partition.

Partition to table
(nonpartitioned
table).

Only partition to
table, no partition to
partition switch.

Partition function. Abstract function
object, independent
of individual column.

Defined for each
partitioned table.

Partition scheme. Abstract partition
storage mapping
object.

N/A In Aurora MySQL,
physical storage is
managed by Amazon
RDS.

Limitations on
partitioned tables.

None — all tables are
partitioned.

Extensive — no FK,
no full text.

For more informati
on, see Restrictions
and Limitations on
Partitioning.

For more information, see Overview of Partitioning in MySQL, Partition Management, and
Partitioning Types in the MySQL documentation.

Summary 470

https://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-overview.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-management.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-types.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migrating security features to Aurora MySQL

This topic provides reference information about security features and encryption capabilities in
Microsoft SQL Server 2019 and Amazon Aurora MySQL. You can gain insights into how these
database systems handle user permissions, access control, data encryption, and secure connections.
The content explores the similarities and differences between SQL Server and Aurora MySQL
in areas such as Transparent Data Encryption, user management, authentication methods, and
encrypted connections.

Topics

• Column encryption for Aurora MySQL

• Data control language for Aurora MySQL

• Transparent data encryption Aurora MySQL

• Users and roles for Aurora MySQL

• Encrypted connections for Aurora MySQL

Column encryption for Aurora MySQL

This topic provides reference information about encryption and decryption functions in SQL Server
and Amazon Aurora MySQL. You can use these functions to secure sensitive data in your database,
such as individual column contents or application user security tokens.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Difference.

SQL Server Usage

SQL Server provides encryption and decryption functions to secure the content of individual
columns. The following list identifies common encryption functions:

Column encryption for Aurora MySQL 471

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• EncryptByKey and DecryptByKey.

• EncryptByCert and DecruptByCert.

• EncryptByPassPhrase and DecruptByPassPhrase.

• EncryptByAsymKey and DecryptByAsymKey.

You can use these functions anywhere in your code; they aren’t limited to encrypting table
columns. A common use case is to increase run time security by encrypting of application user
security tokens passed as parameters.

These functions follow the general SQL Server encryption hierarchy, which in turn use the Windows
Server Data Protection API.

Symmetric encryption and decryption consume minimal resources and can be used for large data
sets.

Note

This section doesn’t cover Transparent Data Encryption (TDE) or AlwaysEncrypted end-to-
end encryption.

Syntax

The following example includes the general syntax for EncryptByKey and DecryptByKey.

EncryptByKey (<key GUID> , { 'text to be encrypted' }, { <use authenticator flag>},
 { <authenticator> });

DecryptByKey ('Encrypted Text' , <use authenticator flag>, { <authenticator>)

Examples

The following example demonstrates how to encrypt an employee Social Security Number.

The following example creates a database master key.

USE MyDatabase;

SQL Server Usage 472

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

CREATE MASTER KEY
ENCRYPTION BY PASSWORD = '<MyPassword>';

The following examples create a certificate and a key.

CREATE CERTIFICATE Cert01
WITH SUBJECT = 'SSN';

CREATE SYMMETRIC KEY SSN_Key
WITH ALGORITHM = AES_256
ENCRYPTION BY CERTIFICATE Cert01;

The following example creates an employees table.

CREATE TABLE Employees
(
 EmployeeID INT PRIMARY KEY,
 SSN_encrypted VARBINARY(128) NOT NULL
);

Open the symmetric key for encryption.

OPEN SYMMETRIC KEY SSN_Key
DECRYPTION BY CERTIFICATE Cert01;

Insert the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_encrypted)
VALUES
(1, EncryptByKey(Key_GUID('SSN_Key') , '1112223333', 1, HashBytes('SHA1',
 CONVERT(VARBINARY, 1)));

SELECT EmployeeID,
CONVERT(CHAR(10), DecryptByKey(SSN, 1 , HashBytes('SHA1', CONVERT(VARBINARY,
 EmployeeID)))) AS SSN
FROM Employees;

EmployeeID SSN_Encrypted SSN
1 0x00F983FF436E32418132... 1112223333

SQL Server Usage 473

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Encrypt a Column of Data and Encryption Hierarchy in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides encryption and decryption
functions similar to SQL Server with a much less elaborate security hierarchy that is easier to
manage.

The encryption functions require the actual key as a string, so you must take extra measures to
protect the data. For example, hashing the key values on the client.

Aurora MySQL supports the AES and DES encryption algorithms. You can use the following
functions for data encryption and decryption:

• AES_DECRYPT

• AES_ENCRYPT

• DES_DECRYPT

• DEC_ENCRYPT

Note

The ENCRYPT, DECRYPT, ENCODE, and DECODE functions are deprecated beginning with
MySQL version 5.7.2 and 5.7.6. Asymmetric encryption isn’t supported in Aurora MySQL.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports FIPS mode if
compiled using OpenSSL and an OpenSSL library and FIPS Object Module are available at
runtime. FIPS mode imposes conditions on cryptographic operations such as restrictions
on acceptable encryption algorithms or requirements for longer key lengths. For more
information, see FIPS Support in the MySQL documentation.

Syntax

The following example shows the general syntax for the encryption functions:

MySQL Usage 474

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encrypt-a-column-of-data?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/encryption-hierarchy?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/fips-mode.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

[A|D]ES_ENCRYPT(<string to be encrypted>, <key string> [,<initialization vector>])
[A|D]ES_DECRYPT(<encrypted string>, <key string> [,<initialization vector>])

For more information, see AES_ENCRYPT in the MySQL documentation.

It is highly recommended to use the optional initialization vector to circumvent whole value
replacement attacks. When encrypting column data, it is common to use an immutable key as the
initialization vector. With this approach, decryption fails if a whole value moves to another row.

Consider using SHA2 instead of SHA1 or MD5 because there are known exploits available for the
SHA1 and MD5. Passwords, keys, or any sensitive data passed to these functions from the client
aren’t encrypted unless you are using an SSL connection. One benefit of using Amazon IAM is that
database connections are encrypted with SSL by default.

Examples

The following examples demonstrate how to encrypt an employee Social Security Number.

The following example creates an employees table.

CREATE TABLE Employees
(
 EmployeeID INT NOT NULL PRIMARY KEY,
 SSN_Encrypted BINARY(32) NOT NULL
);

The following example inserts the encrypted data.

INSERT INTO Employees (EmployeeID, SSN_Encrypted)
VALUES (1, AES_ENCRYPT('1112223333', UNHEX(SHA2('MyPassword',512)), 1));

Note

Use the UNHEX function for more efficient storage and comparisons.

Verify decryption.

SELECT EmployeeID,

MySQL Usage 475

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_aes-encrypt

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SSN_Encrypted,
AES_DECRYPT(SSN_Encrypted, UNHEX(SHA2('MyPassword',512)), EmployeeID) AS SSN
FROM Employees

EmployeeID SSN_Encrypted SSN
1 ` ©> +yp°øýNZ~Gø 1112223333

For more information, see Encryption and Compression Functions in the MySQL documentation.

Data control language for Aurora MySQL

This topic provides reference information foruser permissions and access control in Amazon Aurora
MySQL compared to Microsoft SQL Server. You can understand the similarities and differences in
how these database systems manage user privileges, including the types of permissions available,
the granularity of access control, and the commands used to grant or revoke permissions.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A Difference.

SQL Server Usage

The ANSI standard specifies, and most Relational Database Management Systems (RDBMS) use
GRANT and REVOKE commands to control permissions.

However, SQL Server also provides a DENY command to explicitly restrict access to a resource. DENY
takes precedence over GRANT and is needed to avoid potentially conflicting permissions for users
having multiple logins. For example, if a user has DENY for a resource through group membership
but GRANT access for a personal login, the user is denied access to that resource.

SQL Server allows granting permissions at multiple levels from lower-level objects such as columns
to higher level objects such as servers. Permissions are categorized for specific services and
features such as the service broker.

Data control language for Aurora MySQL 476

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Permissions are used in conjunction with database users and roles.

For more information, see Users and Roles.

Syntax

The following examples show the simplified syntax for SQL Server DCL commands:

GRANT { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

DENY { ALL [PRIVILEGES] } | <permission> [ON <securable>] TO <principal>

REVOKE [GRANT OPTION FOR] {[ALL [PRIVILEGES]]|<permission>} [ON <securable>]
 { TO | FROM } <principal>

For more information, see Permissions Hierarchy (Database Engine) in the SQL Server
documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports the ANSI Data Control
Language (DCL) commands GRANT and REVOKE.

Administrators can grant or revoke permissions for individual objects such as a column, a stored
function, or a table. Administrators can grant permissions to multiple objects using wildcards.

Only explicitly granted permissions can be revoked. For example, if a user was granted SELECT
permissions for the entire database using the following command:

GRANT SELECT
ON database.*
TO UserX;

It isn’t possible to REVOKE the permission for a single table. Instead, revoke the SELECT permission
for all tables using the following command:

REVOKE SELECT
ON database.*

MySQL Usage 477

https://docs.microsoft.com/en-us/sql/relational-databases/security/permissions-hierarchy-database-engine?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

FROM UserX;

Aurora MySQL provides a GRANT permission option, which is very similar to the WITH GRANT
OPTION clause in SQL Server. This permission gives a user permission to further grant the same
permission to other users.

GRANT EXECUTE
ON PROCEDURE demo.Procedure1
TO UserY
WITH GRANT OPTION;

Note

Aurora MySQL users can have resource restrictions associated with their accounts similar to
the SQL Server resource governor. For more information, see Resource Governor.

The following table identifies Aurora MySQL privileges:

Permissions Use to

ALL [PRIVILEGES] Grant all privileges at the specified access level
except GRANT OPTION and PROXY.

ALTER Enable use of ALTER TABLE. Levels: Global,
database, table.

ALTER ROUTINE Enable stored routines to be altered or
dropped. Levels: Global, database, procedure.

CREATE Enable database and table creation. Levels:
Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global,
database.

CREATE TEMPORARY TABLES Enable the use of CREATE TEMPORARY
TABLE. Levels: Global, database.

MySQL Usage 478

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Permissions Use to

CREATE USER Enable the use of CREATE USER, DROP USER,
RENAME USER, and REVOKE ALL PRIVILEGE
S . Level: Global.

CREATE VIEW Enable views to be created or altered. Levels:
Global, database, table.

DELETE Enable the use of DELETE. Level: Global,
database, table.

DROP Enable databases, tables, and views to be
dropped. Levels: Global, database, table.

EVENT Enable the use of events for the Event
Scheduler. Levels: Global, database.

EXECUTE Enable the user to run stored routines. Levels:
Global, database, table.

GRANT OPTION Enable privileges to be granted to or removed
from other accounts. Levels: Global, database,
table, procedure, proxy.

INDEX Enable indexes to be created or dropped.
Levels: Global, database, table.

INSERT Enable the use of INSERT. Levels: Global,
database, table, column.

LOCK TABLES Enable the use of LOCK TABLES on tables for
which you have the SELECT privilege. Levels:
Global, database.

PROXY Enable user proxying. Level: From user to user.

REFERENCES Enable foreign key creation. Levels: Global,
database, table, column.

MySQL Usage 479

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Permissions Use to

REPLICATION CLIENT Enable the user to determine the location of
primary and secondary servers. Level: Global.

REPLICATION SLAVE Enable replication replicas to read binary log
events from the primary. Level: Global.

SELECT Enable the use of SELECT. Levels: Global,
database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all
databases. Level: Global.

SHOW VIEW Enable the use of SHOW CREATE VIEW.
Levels: Global, database, table.

TRIGGER Enable trigger operations. Levels: Global,
database, table.

UPDATE Enable the use of UPDATE. Levels: Global,
database, table, column.

Syntax

GRANT <privilege type>...
ON [object type] <privilege level>
TO <user> ...

REVOKE <privilege type>...
ON [object type] <privilege level>
FROM <user> ...

Note

Table, Function, and Procedure object types can be explicitly stated but aren’t mandatory.

MySQL Usage 480

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Examples

Attempt to REVOKE a partial permission that was granted as a wild card permission.

CREATE USER TestUser;
GRANT SELECT
 ON Demo.*
 TO TestUser;
REVOKE SELECT ON Demo.Invoices
 FROM TestUser

For the preceding example, the result looks as shown following.

SQL ERROR [1147][42000]: There is no such grant defined for user TestUser on host '%'
on table 'Invoices'

Grant the SELECT permission to a user on all tables in the demo database.

GRANT SELECT
ON Demo.*
TO 'user'@'localhost';

Revoke EXECUTE permissions from a user on the EmployeeReport stored procedure.

REVOKE EXECUTE
ON Demo.EmployeeReport
FROM 'user'@'localhost';

For more information, see GRANT Statement in the MySQL documentation.

Transparent data encryption Aurora MySQL

This topic provides reference information about data encryption capabilities in Microsoft SQL
Server and Amazon Aurora MySQL. You can understand how Transparent Data Encryption (TDE)
works in SQL Server to protect data at rest without requiring application changes.

Transparent data encryption Aurora MySQL 481

https://dev.mysql.com/doc/refman/5.7/en/grant.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A Enable encryption
when creating the
database instance.

SQL Server Usage

Transparent data encryption (TDE) is an SQL Server feature designed to protect data at-rest in the
event an attacker obtains the physical media containing database files.

TDE doesn’t require application changes and is completely transparent to users. The storage engine
encrypts and decrypts data on-the-fly. Data isn’t encrypted while in memory or on the network.
TDE can be turned on or off individually for each database.

TDE encryption uses a Database Encryption Key (DEK) stored in the database boot record, making
it available during database recovery. The DEK is a symmetric key signed with a server certificate
from the primary system database.

In many instances, security compliance laws require TDE for data at rest.

Examples

The following example demonstrates how to enable TDE for a database.

Create a master key and certificate.

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'MyPassword';
CREATE CERTIFICATE TDECert WITH SUBJECT = 'TDE Certificate';

Create a database encryption key.

USE MyDatabase;
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE TDECert;

SQL Server Usage 482

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Enable TDE.

ALTER DATABASE MyDatabase SET ENCRYPTION ON;

For more information, see Transparent data encryption (TDE) in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) provides the ability to encrypt data
at rest (data stored in persistent storage) for new database instances. When data encryption is
enabled, Amazon Relational Database Service (RDS) automatically encrypts the database server
storage, automated backups, read replicas, and snapshots using the AES-256 encryption algorithm.

You can manage the keys used for Amazon Relational Database Service (Amazon RDS) encrypted
instances from the Identity and Access Management (IAM) console using the Amazon Key
Management Service (Amazon KMS). If you require full control of a key, you must manage it
yourself. You can’t delete, revoke, or rotate default keys provisioned by Amazon KMS.

The following limitations exist for Amazon RDS encrypted instances:

• You can only enable encryption for an Amazon RDS database instance when you create it, not
afterward. It is possible to encrypt an existing database by creating a snapshot of the database
instance and then creating an encrypted copy of the snapshot. You can restore the database
from the encrypted snapshot. For more information, see Copying a snapshot.

• Encrypted database instances can’t be modified to turn off encryption.

• Encrypted Read Replicas must be encrypted with the same key as the source database instance.

• An unencrypted backup or snapshot can’t be restored to an encrypted database instance.

• KMS encryption keys are specific to the region where they are created. Copying an encrypted
snapshot from one region to another requires the KMS key identifier of the destination region.

Note

Disabling the key for an encrypted database instance prevents reading from, or writing
to, that instance. When Amazon RDS encounters a database instance encrypted by a key
to which Amazon RDS doesn’t have access, it puts the database instance into a terminal
state. In this state, the database instance is no longer available and the current state of the

MySQL Usage 483

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption?view=sql-server-ver15
https://docs.amazonaws.cn/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

database can’t be recovered. To restore the database instance, you must re-enable access to
the encryption key for Amazon RDS and then restore the database instance from a backup.

Table encryption can now be managed globally by defining and enforcing encryption defaults. The
default_table_encryption variable defines an encryption default for newly created schemas
and general tablespace. The encryption default for a schema can also be defined using the
DEFAULT ENCRYPTION clause when creating a schema. By default a table inherits the encryption
of the schema or general tablespace it is created in. Encryption defaults are enforced by enabling
the table_encryption_privilege_check variable. The privilege check occurs when creating
or altering a schema or general tablespace with an encryption setting that differs from the
default_table_encryption setting or when creating or altering a table with an encryption
setting that differs from the default schema encryption. The TABLE_ENCRYPTION_ADMIN privilege
permits overriding default encryption settings when table_encryption_privilege_check
is enabled. For more information, see Defining an Encryption Default for Schemas and General
Tablespaces.

Creating an Encryption Key

To create your own key, browse to the Key Management Service (KMS) and choose Customer
managed keys and create a new key.

1. Choose relevant options and choose Next.

2. Define alias as the name of the key and choose Next.

3. You can skip Define Key Administrative Permissions and choose Next.

4. On the next step make sure to assign the key to the relevant users who will need to interact with
Amazon Aurora.

5. On the last step you will be able to see the ARN of the key and its account.

6. Choose Finish and now this key will be listed in under customer managed keys.

Now you will be able to set Master encryption key by using the ARN of the key that you have
created or picking it from the list.

Proceed to finish and launch the instance.

As part of the database settings, you will be prompted to enable encryption and select a master
key.

MySQL Usage 484

https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Encryption for an Amazon RDS DB instance can be enabled only during the instance creation.

You can select the default key provided for the account or define a specific key based on an IAM
KMS ARN from your account or a different account.

Users and roles for Aurora MySQL

This topic provides reference information comparing security features between Microsoft
SQL Server 2019 and Amazon Aurora MySQL. You can understand the key differences in user
management, authentication methods, and access control between these two database systems.

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A No native role
support in the
database. Use
Amazon IAM accounts
with the Amazon
Authentication
Plugin.

SQL Server Usage

SQL Server provides two layers of security principals: Logins at the server level and Users at the
database level. Logins are mapped to users in one or more databases. Administrators can grant
logins server-level permissions that aren’t mapped to particular databases such as Database
Creator, System Administrator and Security Administrator.

SQL Server also supports Roles for both the server and the database levels. At the database level,
administrators can create custom roles in addition to the general purpose built-in roles.

For each database, administrators can create users and associate them with logins. At the database
level, the built-in roles include db_owner, db_datareader, db_securityadmin, and others. A
database user can belong to one or more roles (users are assigned to the public role by default and

Users and roles for Aurora MySQL 485

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

can’t be removed). Administrators can grant permissions to roles and then assign individual users
to the roles to simplify security management.

Logins are authenticated using either Windows Authentication, which uses the Windows Server
Active Directory framework for integrated single sign-on, or SQL authentication, which is managed
by the SQL Server service and requires a password, certificate, or asymmetric key for identification.
Logins using windows authentication can be created for individual users and domain groups.

In previous versions of SQL server, the concepts of user and schema were interchangeable. For
backward compatibility, each database has several existing schemas, including a default schema
named dbo which is owned by the db_owner role. Logins with system administrator privileges are
automatically mapped to the dbo user in each database. Typically, you don’t need to migrate these
schemas.

Examples

The following example creates a login.

CREATE LOGIN MyLogin WITH PASSWORD = 'MyPassword'

The following example creates a database user for MyLogin.

USE MyDatabase; CREATE USER MyUser FOR LOGIN MyLogin;

The following example assigns MyLogin to a server role.

ALTER SERVER ROLE dbcreator ADD MEMBER 'MyLogin'

The following example assigns MyUser to the db_datareader role.

ALTER ROLE db_datareader ADD MEMBER 'MyUser';

For more information, see Database-level roles in the SQL Server documentation.

MySQL Usage

Amazon Aurora MySQL-Compatible Edition (Aurora MySQL) supports only Users; Roles aren’t
supported. Database administrators must specify privileges for individual users. Aurora MySQL uses
database user accounts to authenticate sessions and authorize access to specific database objects.

MySQL Usage 486

https://docs.microsoft.com/en-us/sql/relational-databases/security/authentication-access/database-level-roles?view=sql-server-ver15

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

When granting privileges, you have the option to use wild-card characters for specifying
multiple privileges for multiple objects. For more information, see Data Control Language.

When using Identity and Access Management (IAM) database authentication, roles are available
as part of the IAM framework and can be used for authentication. This authentication method
uses tokens in place of passwords. Amazon Signature Version 4 generates authentication tokens
with a lifetime of 15 minutes. You don’t need to store user credentials in the database because
authentication is managed externally. You can use IAM in conjunction with standard database
authentication.

Note

In Aurora MySQL, a database is equivalent to an SQL Server schema.

The Amazon Authentication Plugin works seamlessly with Aurora MySQL instances. Users logged in
with Amazon IAM accounts use access tokens to authenticate. This mechanism is similar to the SQL
Server windows authentication option.

IAM database authentication provides the following benefits:

• Supports roles for simplifying user and access management.

• Provides a single sign on experience that is safer than using MySQL managed passwords.

• Encrypts network traffic to and from the database using Secure Sockets Layer (SSL) protocol.

• Provides centrally managed access to your database resources, alleviating the need to manage
access individually for each database instance or database cluster.

Note

IAM database authentication limits the number of new connections to 20 connections/
second.

MySQL Usage 487

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8 supports roles which
are named collections of privileges. Roles can be created and dropped. Roles can have
privileges granted to and revoked from them. Roles can be granted to and revoked from
user accounts. The active applicable roles for an account can be selected from among those
granted to the account and can be changed during sessions for that account. For more
information, see Using Roles.

CREATE ROLE 'app_developer', 'app_read', 'app_write';

Note

Amazon RDS for MySQL 8 incorporates the concept of user account categories with
system and regular users distinguished according to whether they have the SYSTEM_USER
privilege. For more information, see Account Categories.

CREATE USER u1 IDENTIFIED BY 'password';

GRANT ALL ON *.* TO u1 WITH GRANT OPTION;

-- GRANT ALL includes SYSTEM_USER, so at this point

-- u1 can manipulate system or regular accounts

Syntax

Simplified syntax for CREATE USER in Aurora MySQL:

CREATE USER <user> [<authentication options>] [REQUIRE {NONE | <TLS options>] }]
[WITH <resource options>] [<Password options> | <Lock options>]

<Authentication option>:
{IDENTIFIED BY 'auth string'|PASSWORD 'hash string'|WITH auth plugin|auth plugin BY
'auth_string'|auth plugin AS 'hash string'}

MySQL Usage 488

https://dev.mysql.com/doc/refman/8.0/en/roles.html
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

<TLS options>: {SSL| X509| CIPHER 'cipher'| ISSUER 'issuer'| SUBJECT 'subject'}
<Resource options>: { MAX_QUERIES_PER_HOUR | MAX_UPDATES_PER_HOUR | MAX_CONNECTIONS_
PER_HOUR | MAX_USER_CONNECTIONS count}
<Password options>: {PASSWORD EXPIRE | DEFAULT | NEVER | INTERVAL N DAY}
<Lock options>: {ACCOUNT LOCK | ACCOUNT UNLOCK}

Note

In Aurora MySQL, you can assign resource limitations to specific users, similar to SQL Server
Resource Governor. For more information, see Resource Governor.

Examples

The following example creates a user, forces a password change, and imposes resource limits.

CREATE USER 'Dan'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'Dan''sPassword'
WITH MAX_QUERIES_PER_HOUR 500
PASSWORD EXPIRE;

The following example creates a user with IAM authentication.

CREATE USER LocalUser
IDENTIFIED WITH AWSAuthenticationPlugin AS 'IAMUser';

Summary

The following table summarizes common security tasks and the differences between SQL Server
and Aurora MySQL.

Task SQL Server Aurora MySQL

View database users SELECT Name FROM
 sys.sysusers

SELECT User FROM
 mysql.user

Create a user and password CREATE USER <User Name>
 WITH

CREATE USER <User Name>

Summary 489

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Task SQL Server Aurora MySQL

PASSWORD = <PassWord>; IDENTIFIED BY <Password
>

Create a role CREATE ROLE <Role Name> Use Amazon IAM Roles

Change a user’s password ALTER LOGIN <SQL Login>
 WITH
PASSWORD = <PassWord>;

ALTER USER <User Name>
IDENTIFIED BY <Password
>

External authentication Windows Authentication Amazon IAM (Identity and
Access Management)

Add a user to a role ALTER ROLE <Role Name>
 ADD MEMBER <User Name>

Use Amazon IAM Roles

Lock a user ALTER LOGIN <Login Name>
DISABLE

ALTER User <User Name>
ACCOUNT LOCK

Grant SELECT on a schema GRANT SELECT ON
 SCHEMA::<Schema Name>
 to <User Name>

GRANT SELECT ON <Schema
 Name>.* TO <User Name>

For more information, see What is IAM and IAM Identities (users, user groups, and roles).

Encrypted connections for Aurora MySQL

This topic provides reference information about encrypted connections in Microsoft SQL Server
and MySQL, with a focus on how these concepts apply to Amazon Aurora MySQL migration. You’ll
learn about the protocols and technologies used for secure data transmission in both database
systems.

Encrypted connections for Aurora MySQL 490

https://docs.amazonaws.cn/IAM/latest/UserGuide/introduction.html
https://docs.amazonaws.cn/IAM/latest/UserGuide/id.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Feature compatibi
lity

Amazon SCT /
Amazon DMS
automation level

Amazon SCT action
code index

Key differences

N/A N/A

SQL Server Usage

In SQL Server, you can encrypt data across communication channels. Encrypted connections are
enabled for an instance of the SQL Server Database Engine and use SQL Server Configuration
Manager to specify a certificate.

Make sure that the server has a certificate provisioned. To provision the certificate on the server,
make sure to import it into Windows. The client machine must be set up to trust the certificate’s
root authority.

Note

Starting with SQL Server 2016 (13.x), Secure Sockets Layer (SSL) has been discontinued.
Use Transport Layer Security (TLS) instead.

MySQL Usage

MySQL supports encrypted connections between clients and the server using the TLS (Transport
Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL
doesn’t actually use the SSL protocol for encrypted connections because its encryption is weak.

OpenSSL 1.1.1 supports the TLS v1.3 protocol for encrypted connections.

Note

Amazon Relational Database Service (Amazon RDS) for MySQL 8.0.16 and higher supports
TLS v1.3 as well if both the server and client are compiled using OpenSSL 1.1.1 or higher.

SQL Server Usage 491

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

For more information, see Encrypted Connection TLS Protocols and Ciphers in the MySQL
documentation.

MySQL Usage 492

https://dev.mysql.com/doc/refman/5.7/en/encrypted-connection-protocols-ciphers.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

SQL Server 2018 deprecated features list

This topic provides reference information for deprecated features from SQL Server 2018. For more
information, refer to the linked topics.

SQL Server 2018 deprecated feature Section

TEXT, NTEXT, and IMAGE data types Data Types

SET ROWCOUNT for DML Session Options

TIMESTAMP syntax for CREATE TABLE Creating Tables

DBCC DBREINDEX , INDEXDEFRAG , and
SHOWCONTIG

Maintenance Plans

Old SQL Mail Database Mail

IDENTITY seed, increment, non primary key,
and compound

Identity and Sequences

Stored procedures RETURN values Stored Procedures

GROUP BY ALL, Cube, and Compute By GROUP BY

DTS ETL

Old outer join syntax = and = Table JOIN

'String Alias' = Expression Migration Quick Tips

DEFAULT keyword for INSERT statements Migration Quick Tips

493

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

Migration quick tips

This section provides migration tips that can help save time as you transition from SQL Server
to Aurora MySQL. They address many of the challenges faced by administrators new to Aurora
MySQL. Some of these tips describe functional differences in similar features between SQL Server
and Aurora MySQL.

Management

• The concept of a database in MySQL isn’t the same as SQL Server. A database in MySQL is
synonymous with schema. For more information, see Databases and Schemas.

• You can’t create explicit statistics objects in Aurora MySQL. Statistics are collected and
maintained for indexes only.

• The equivalent of CREATE DATABASE… AS SNAPSHOT OF… in SQL Server resembles Amazon
Aurora MySQL-Compatible Edition (Aurora MySQL) Database cloning. However, unlike SQL
Server snapshots, which are read-only, Aurora MySQL cloned databases are updatable.

• In Aurora MySQL, database snapshot is equivalent to BACKUP DATABASE… WITH COPY_ONLY
in SQL Server.

• Partitioning in Aurora MySQL supports more partition types than SQL Server. However, be aware
that partitioning in Aurora MySQL restricts the use of many other fundamental features such as
foreign keys.

• Partition SWITCH in SQL Server can be performed between any two partitions of any two tables.
In Aurora MySQL, you can only EXCHANGE a table partition with a full table.

• Unlike SQL Server statistics, Aurora MySQL doesn’t collect detailed key value distribution; it
relies on selectivity only. When troubleshooting runtime, be aware that parameter values are
insignificant to plan choices.

SQL

• Triggers work differently in Aurora MySQL. You can run triggers for each row. The syntax for
inserted and deleted for each row is new and old. They always contain 0, or 1 row.

• You can’t modify triggers in Aurora MySQL using the ALTER command. Drop and replace a
trigger instead.

Management 494

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• Aurora MySQL doesn’t support @@FETCH_STATUS system parameter for cursors. When you
declare cursors in Aurora MySQL, create an explicit HANDLER object, which can set a variable
based on the row not found in cursor event. For more information, see Stored Procedures.

• To run a stored procedure, use CALL instead of EXECUTE.

• To run a string as a query, use Aurora MySQL Prepared Statements instead of sp_executesql
or EXECUTE (<String>).

• Aurora MySQL supports AFTER and BEFORE triggers. There is no equivalent to INSTEAD OF
triggers. The only difference between BEFORE and INSTEAD OF triggers is that DML statements
are applied row by row to the base table when using BEFORE and doesn’t require an explicit
action in the trigger. To make changes to data affected by a trigger, you can UPDATE the new and
old tables; the changes are persisted.

• Aurora MySQL doesn’t support user defined types. Use base types instead and add column
constraints as needed.

• The CASE keyword in Aurora MySQL isn’t only a conditional expression as in SQL Server.
Depending on the context where it appears, you can use CASE for flow control similar to IF
<condition> BEGIN <Statement block> END ELSE BEGIN <statement block> END.

• In Aurora MySQL, terminate IF blocks with END IF. Also, terminate WHILE loops with END
WHILE. The same rule applies to REPEAT — END REPEAT and LOOP — END LOOP.

• You can’t deallocate cursors in Aurora MySQL. Closing them provides the same behavior.

• Aurora MySQL syntax for opening a transaction is START TRANSACTION as opposed to BEGIN
TRANSACTION. COMMIT and ROLLBACK are used without the TRANSACTION keyword.

• The default isolation level in Aurora MySQL is REPEATABLE READ as opposed to READ
COMMITTED in SQL Server. By default, it also uses consistent reads similar to READ COMMITTED
SNAPSHOT in SQL Server.

• Aurora MySQL supports Boolean expressions in SELECT lists using the = operator. In SQL Server,
= operators in select lists are used to assign aliases. SELECT Col1 = 1 FROM T in Aurora
MySQL returns a column with the alias Col1 = 1, and the value 1 for the rows where Col1 =
1, and 0 for the rows where Col1 <> 1 OR Col1 IS NULL.

• Aurora MySQL doesn’t use special data types for UNICODE data. All string types may use any
character set and any relevant collation including multiple types of character sets not supported
by SQL Server such as UTF-8, UTF-32, and so on. A VARCHAR column can be of a UTF-8 character
set, and have a latin1_CI collation for example. Similarly, there is no N prefix for string literals.

SQL 495

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• You can define collations at the server, database, and column level similar to SQL Server. You can
also define collations at the table level.

• In SQL Server, you can use the DELETE <Table Name> syntax omitting the FROM keyword. This
syntax isn’t valid in Aurora MySQL. Add the FROM keyword to all delete statements.

• UPDATE expressions in Aurora MySQL are evaluated in order from left to right. This behavior is
different from SQL Server and the ANSI standard which require an all at once evaluation. For
example, in the statement UPDATE Table SET Col1 = Col1 + 1, Col2 = Col1, Col2 is
set to the new value of Col1. The end result is Col1 = Col2.

• In Aurora MySQL, you can use multiple rows with NULL for a UNIQUE constraint. In SQL Server,
you can use only one row. Aurora MySQL follows the behavior specified in the ANSI standard.

• Although Aurora MySQL supports the syntax for CHECK constraints, they are parsed, but ignored.

• Aurora MySQL AUTO_INCREMENT column property is similar to IDENTITY in SQL Server.
However, there is a major difference in the way sequences are maintained. SQL Server caches a
set of values in memory and records the last allocation on disk. When the service restarts, some
values may be lost, but the sequence continues from where it left off. In Aurora MySQL, each
time you restart the service, the seed value to AUTO_INCREMET is reset to one increment interval
larger than the largest existing value. Sequence position isn’t maintained across service restarts.

• Parameter names in Aurora MySQL don’t require a preceding "@". You can declare local variables
such as DECLARE MyParam1 INTEGER.

• Parameters that use the @sign don’t have to be declared first. You can assign a value directly,
which implicitly declares the parameter. For example, SET @MyParam = 'A'.

• The local parameter scope isn’t limited to an run scope. You can define or set a parameter in one
statement, run it, and then query it in the following batch.

• Error handling in Aurora MySQL is called condition handling. It uses explicitly created objects,
named conditions, and handlers. Instead of THROW and RAISERROR, it uses the SIGNAL and
RESIGNAL statements.

• Aurora MySQL doesn’t support the MERGE statement. Use the REPLACE statement and the
INSERT… ON DUPLICATE KEY UPDATE statement as alternatives.

• In Aurora MySQL, you can’t concatenate strings with the + operator. In Aurora MySQL, 'A'
+ 'B' isn’t a valid expression. Use the CONCAT function instead. For example, CONCAT('A',
'B').

• Aurora MySQL doesn’t support aliasing in the select list using the 'String Alias' =
Expression. Aurora MySQL treats it as a logical predicate, returns 0 or FALSE, and will alias the

SQL 496

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

column with the full expression. Use the AS syntax instead. Also note that this syntax has been
deprecated as of SQL Server 2008 R2.

• Aurora MySQL doesn’t support using the DEFAULT keyword for INSERT statements. Use explicit
NULL instead. Also note that this syntax has been deprecated as of SQL Server 2008 R2.

• Aurora MySQL has a large set of string functions that is much more diverse than SQL Server.
Some of the more useful string functions are:

• TRIM isn’t limited to full trim or spaces. The syntax is TRIM([{BOTH | LEADING |
TRAILING} [<remove string>] FROM] <source string>)).

• LENGTH in MySQL is equivalent to DATALENGTH in T-SQL. CHAR_LENGTH is the equivalent of
LENGTH in T-SQL.

• SUBSTRING_INDEX returns a substring from a string before the specified number of
occurrences of the delimiter.

• FIELD returns the index position of the first argument in the subsequent arguments.

• FIND_IN_SET returns the index position of the first argument within the second argument.

• REGEXP and RLIKE provide support for regular expressions.

• STRCMP provides string comparison.

• For more information, see String Functions and Operators.

• Aurora MySQL Date and Time functions differ from SQL Server functions and can cause
confusion during migration. Consider the following example:

• DATEADD is supported, but is only used to add dates. Use TIMESTAMPADD, DATE_ADD, or
DATE_SUB. There is similar behavior for DATEDIFF.

• Do not use CAST and CONVERT for date formatting styles. In Aurora MySQL, use
DATE_FORMAT and TIME_FORMAT.

• If your application uses the ANSI CURRENT_TIMESTAMP syntax, conversion isn’t required. Use
NOW in place of GETDATE.

• Object identifiers are case sensitive by default in Aurora MySQL. If you get an Object not found
error, verify the object name case.

• In Aurora MySQL, you can’t declare variables interactively in a script but only within stored
routines such as stored procedures, functions, and triggers.

• Aurora MySQL is much stricter than SQL Server in terms of statement terminators. Make sure
that you always use a semicolons at the end of statements.

SQL 497

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

SQL Server to Aurora MySQL Migration Playbook Microsoft SQL Server 2019 to Amazon Aurora MySQL Migration
Playbook

• The syntax for CREATE PROCEDURE requires parenthesis after the procedure name, similar to
user-defined functions in SQL Server. You can’t use the AS keyword before the procedure body.

• Beware of control characters when copying and pasting a script to Aurora MySQL clients. Aurora
MySQL is much more sensitive to these than SQL Server, and they result in frustrating syntax
errors that are hard to spot.

SQL 498

	SQL Server to Aurora MySQL Migration Playbook
	Table of Contents
	Migration guide overview
	Tables of Feature Compatibility
	Feature Compatibility Legend
	Amazon SCT and Amazon DMS Automation Level Legend

	Migration tools and services overview
	Amazon Schema Conversion Tool overview
	Download the Software and Drivers
	Configure Amazon SCT
	Create a New Migration Project

	Amazon SCT action code index
	Creating Tables
	Constraints
	Data Types
	Collations
	Window Functions
	PIVOT and UNPIVOT
	TOP and FETCH
	Common Table Expressions
	Cursors
	Flow Control
	Transaction Isolation
	Stored Procedures
	Triggers
	GROUP BY
	Identity and Sequences
	Error Handling
	Date and Time Functions
	User-Defined Functions
	User-Defined Types
	Synonyms
	XML and JSON
	Table Joins
	MERGE
	Query Hints
	Full-Text Search
	Indexes
	Partitioning
	Backup
	SQL Server Database Mail
	SQL Server Agent
	Linked Servers
	Views

	Amazon Database Migration Service overview
	Migration Tasks Performed by Amazon DMS
	How Amazon DMS Works

	Amazon RDS on Outposts overview
	How It Works

	Amazon RDS Proxy overview
	Amazon RDS Proxy Benefits
	How Amazon RDS Proxy Works

	Amazon Aurora Serverless v1 overview
	Amazon Aurora Serverless v2
	How to Provision

	Amazon Aurora Backtrack overview
	Backtrack Window
	Backtracking Limitations

	Amazon Aurora Parallel Query overview
	Features
	Benefits of Using Parallel Query
	Important Notes

	Migrating ANSI SQL features
	Case sensitivity differences for ANSI SQL
	Examples

	Constraints for ANSI SQL
	SQL Server Usage
	Check Constraints
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Examples

	MySQL Usage
	Unique Constraints
	Primary Key Constraints
	Foreign Key Constraints
	Check Constraints
	Migration Considerations
	Examples

	Summary

	Creating tables for ANSI SQL
	SQL Server Usage
	T-SQL Extensions
	Table Scope
	Creating a Table Based on an Existing Table or Query
	TIMESTAMP Syntax for ROWVERSION Deprecated Syntax
	Syntax
	Examples

	MySQL Usage
	Aurora MySQL Extensions
	Table Scope
	Creating a Table Based on an Existing Table or Query
	Converting TIMESTAMP and ROWVERSION columns
	Syntax
	Migration Considerations
	Examples

	Summary

	Common table expressions for ANSI SQL
	SQL Server Usage
	Simplified CTE Syntax
	Recursive CTE syntax
	Examples

	MySQL Usage
	Migration Considerations
	Examples

	Summary

	Data types for ANSI SQL
	SQL Server Usage
	TEXT, NTEXT, and IMAGE Deprecated Data Types
	Examples

	MySQL Usage
	Converting from TEXT, NTEXT, and IMAGE SQL Server Deprecated Data Types

	Summary

	GROUP BY for ANSI SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Table JOIN for ANSI SQL
	SQL Server Usage
	APPLY
	ANSI SQL 89 JOIN Syntax
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Views for ANSI SQL
	SQL Server Usage
	Modifying Data Through Views
	Special View Types
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Window functions for ANSI SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Migration Considerations
	Examples

	Summary

	Temporary tables for ANSI SQL
	SQL Server Usage
	MySQL Usage
	Examples

	Summary

	Migrating T-SQL features
	Collations for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Examples

	Summary

	Cursors for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	DECLARE Cursor
	OPEN Cursor
	FETCH Cursor
	CLOSE Cursor
	Migration Considerations
	Examples

	Summary

	Date and time functions for T-SQL
	SQL Server Usage
	Syntax and Examples

	MySQL Usage
	Syntax and Examples
	Migration Considerations

	Summary

	String functions for T-SQL
	SQL Server Usage
	Syntax and Examples

	MySQL Usage
	Syntax and Examples
	Migration Considerations

	Summary

	Databases and schemas for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Transactions for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Examples

	Summary

	DELETE and UPDATE FROM for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Migration Considerations
	Examples

	Summary

	Stored procedures for T-SQL
	SQL Server Usage
	Syntax
	Creating and Running a Stored Procedure
	Using a Table-Valued Input Parameter
	INSERT…​ EXEC Syntax

	MySQL Usage
	Syntax
	Examples

	Summary

	Error handling for T-SQL
	SQL Server Usage
	TRY/CATCH Blocks
	THROW
	RAISERROR
	FORMATMESSAGE
	Error State Functions

	MySQL Usage
	DECLARE …​ CONDITION
	DECLARE …​ HANDLER
	GET DIAGNOSTICS
	SIGNAL/RESIGNAL
	Migration Considerations
	Handler Scope
	Handler Choice

	Summary

	Flow control for T-SQL
	SQL Server Usage
	Examples

	MySQL Usage
	Examples

	Summary

	Full-text search for T-SQL
	SQL Server Usage
	Full-Text Indexes
	Full-Text Catalogs
	Full-Text Queries
	Updating Full-Text Indexes
	Examples

	MySQL Usage
	Full-Text Index Cache
	Full-Text Index Document ID and FTS_DOC_ID Column
	Full-Text Index Deletes
	Transaction Control
	Full-Text Search Functions
	MATCH…​ AGAINST Syntax
	Natural Language Search
	Boolean Search
	Query Expansion
	Migration Considerations
	Examples

	SQL server graph features for T-SQL
	SQL Server Usage
	MySQL Usage

	JSON and XML for T-SQL
	SQL Server Usage
	XML Data
	XML Data Types and Columns
	XML Indexes
	XQuery
	JSON Data
	Examples

	MySQL Usage
	XML Support
	JSON Data Type
	JSON Functions
	JSON Indexes

	Summary

	MERGE for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	REPLACE
	INSERT …​ ON DUPLICATE KEY UPDATE
	Migration Considerations
	Examples

	Summary

	PIVOT and UNPIVOT for T-SQL
	SQL Server Usage
	PIVOT
	Syntax
	PIVOT Examples

	UNPIVOT
	UNPIVOT Examples

	MySQL Usage
	PIVOT Examples
	UNPIVOT Examples

	Synonyms for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage

	SQL Server TOP and FETCH and MySQL LIMIT for T-SQL
	SQL Server Usage
	TOP
	OFFSET…​ FETCH

	MySQL Usage
	Migration Considerations
	Examples

	Summary

	Triggers for T-SQL
	SQL Server Usage
	Trigger Run
	Trigger Scope
	Examples

	MySQL Usage
	Syntax
	Examples

	Summary

	User-defined functions for T-SQL
	SQL Server Usage
	Scalar User-Defined Functions
	User-Defined Table-Valued Functions
	Multi-Statement User-Defined Table-Valued Functions

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	User-defined types for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Migration Considerations
	Examples

	Summary

	Identity and sequences for T-SQL
	SQL Server Usage
	Identity
	Syntax
	Examples

	SEQUENCE
	Syntax
	Examples

	Sequential Enumeration Functions
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Sequence Value Initialization
	Examples

	Summary

	Managing statistics for T-SQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Examples

	Summary

	Configuration overview
	Configuring upgrades
	SQL Server Usage
	Upgrade In-Place
	Migrate to a New Installation

	MySQL Usage
	Console
	Amazon CLI

	Summary

	Configuring session options
	SQL Server Usage
	Syntax
	SET ROWCOUNT for DML Deprecated Setting
	Examples

	MySQL Usage
	Converting from SQL Server 2008 SET ROWCOUNT for DML operations
	Examples

	Summary

	Configuring database options
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Migration Considerations

	Configuring server options
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Examples

	High availability and disaster recovery
	Backup and restore design
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Restoring Data
	Restoring Database Backups from Amazon S3
	Backtracking an Aurora DB Cluster
	Database Cloning
	Copying and Sharing Snapshots
	Backup Storage
	The Backup Retention Period
	Disabling Automated Backups
	Saving Data from an Amazon Aurora MySQL Database to Amazon S3
	Migration Considerations
	Considerations for Exporting Data to Amazon S3
	Example — Change the Retention Policy to Seven Days
	Exporting Data to Amazon S3

	Summary

	High availability essentials
	SQL Server Usage
	Always On Failover Cluster Instances
	Always On Availability Groups
	Database Mirroring
	Log Shipping
	Examples

	MySQL Usage
	Regions and Availability Zones
	Aurora MySQL DB Cluster
	Endpoints
	Amazon Aurora Storage
	Storage Auto-Repair
	Survivable Cache Warming
	Crash Recovery
	Delayed Replication
	Examples

	Summary

	Migrating indexes to Aurora MySQL
	SQL Server Usage
	Clustered Indexes
	Examples

	Nonclustered Indexes
	Examples

	Filtered Indexes and Covering Indexes
	Examples

	Indexes on Computed Columns
	Examples

	MySQL Usage
	Primary Key Indexes
	Examples

	Column and Multiple Column Secondary Indexes
	Examples

	Secondary Indexes on Generated Columns
	Prefix Indexes
	Example

	Summary

	Migrating management features to Aurora MySQL
	SQL Server Agent and MySQL Agent
	SQL Server Usage
	MySQL Usage
	Aurora MySQL Database Events
	Syntax
	Examples

	Summary

	Alerting features
	SQL Server Usage
	Examples

	MySQL Usage
	Examples

	Database mail features
	SQL Server Usage
	Architecture
	Deprecated SQL Mail Framework
	Syntax
	Examples

	MySQL Usage
	Examples

	ETL features
	SQL Server Usage
	DTS
	SSIS

	MySQL Usage
	Integrated Data Catalog
	Automatic Schema Discovery
	Code Generation
	Developer Endpoints
	Flexible Job Scheduler
	Migration Considerations
	Examples
	Step 1 — Create a Bucket in Amazon S3 and Upload the CSV File
	Step 2 — Add an Amazon Glue Crawler to Discover and Catalog the Visits File
	Step 3 — Run the Amazon Glue Crawler
	Step 4 — Create an ETL Job to Copy the Visits Table to an Aurora MySQL Database

	Viewing server logs
	SQL Server Usage
	Examples

	MySQL Usage
	Examples

	Maintenance plans
	SQL Server Usage
	Deprecated DBCC Index and Table Maintenance Commands
	Examples

	MySQL Usage
	Examples
	Perform Database Consistency Checks
	Converting Deprecated DBCC Index and Table Maintenance Commands
	Decrease Data File Size by Removing Empty Pages
	Update Statistics to Help the Query Optimizer Get Updated Data Distribution

	Summary

	Monitoring features
	SQL Server Usage
	Windows Operating System Level Tools
	SQL Server Extended Events
	SQL Server Tracing Framework and the SQL Server Profiler Tool
	SQL Server Management Studio
	T-SQL
	Trace Flags
	SQL Server Query Store

	MySQL Usage

	Resource governor features
	SQL Server Usage
	Use Cases
	Concepts
	Examples

	MySQL Usage
	Syntax
	Migration Considerations
	Example

	Summary

	Linked servers
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage

	Scripting features
	SQL Server Usage
	Examples

	MySQL Usage
	MySQL Workbench
	MySQL Utilities
	Amazon RDS API
	Amazon Management Console
	Amazon Command Line Interface
	Amazon RDS Programmatic API
	Examples

	Performance tuning for Aurora MySQL
	Tuning run plans
	SQL Server Usage
	Examples

	MySQL Usage
	Syntax
	Examples

	Query hints and plan guides
	SQL Server Usage
	JOIN Hints
	Table Hints
	Query Hints
	Plan Guides
	Syntax
	Examples

	MySQL Usage
	Index Hints
	Syntax

	Optimizer Hints
	Syntax

	Migration Considerations
	Examples

	Summary

	Storage for Aurora MySQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Range Partitioning
	List Partitioning
	Range and List Columns Partitioning
	Hash Partitioning
	Subpartitioning
	Partition Management
	Dropping Partitions
	Adding and Splitting Partitions
	Switching and Exchanging Partitions
	Syntax
	Migration Considerations
	Examples

	Summary

	Migrating security features to Aurora MySQL
	Column encryption for Aurora MySQL
	SQL Server Usage
	Syntax
	Examples

	MySQL Usage
	Syntax
	Examples

	Data control language for Aurora MySQL
	SQL Server Usage
	Syntax

	MySQL Usage
	Syntax
	Examples

	Transparent data encryption Aurora MySQL
	SQL Server Usage
	Examples

	MySQL Usage
	Creating an Encryption Key

	Users and roles for Aurora MySQL
	SQL Server Usage
	Examples

	MySQL Usage
	Syntax
	Examples

	Summary

	Encrypted connections for Aurora MySQL
	SQL Server Usage
	MySQL Usage

	SQL Server 2018 deprecated features list
	Migration quick tips
	Management
	SQL

